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Inherent openness of the wireless medium imposes stronger challenges on the

security of wireless communications. Information-theoretic security addresses these

challenges at the physical layer by using tools from wireless communication theory,

signal processing and information theory. In information-theoretic security, physical

layer communication is intelligently designed to exploit the characteristics of the

wireless medium, such as fading, interference, cooperation, and multi-dimensional

signaling, in order to provide or improve security. In this dissertation, we study the

security of several fundamental wireless network configurations from an information-

theoretic perspective.

First, we study the Gaussian multiple-input multiple-output (MIMO) wiretap

channel. In this channel, the transmitter sends a common message to both the

legitimate user and the eavesdropper. In addition to the common message, a private

message is sent only to the legitimate user, which needs to be kept hidden as much as

possible from the eavesdropper. We obtain the entire capacity-equivocation region

for this channel model. In particular, we show the sufficiency of jointly Gaussian



auxiliary random variables and channel input to evaluate the existing single-letter

description of the capacity-equivocation region due to Csiszar-Korner.

Next, we study the secure broadcasting problem, where a transmitter wants to

have secure communication with multiple legitimate users in the presence of an ex-

ternal eavesdropper. We study several special cases of the secure broadcasting prob-

lem. First, we consider the degraded multi-receiver wiretap channel, and establish

its secrecy capacity region. Second, we consider the parallel less noisy multi-receiver

wiretap channel, and obtain its common message secrecy capacity and sum secrecy

capacity. Third, we consider the parallel degraded multi-receiver wiretap channel

for the two-user and two-sub-channel case, and obtain its entire secrecy capacity

region. Finally, we consider a parallel channel model with two sub-channels, where

the transmitter can use only one of the subchannels at any time, and characterize

its secrecy capacity region.

Then, we study the two-user Gaussian MIMO broadcast channel with common

and confidential messages. In this channel model, the transmitter sends a common

message to both users, and a confidential message to each user which needs to be

kept perfectly secret from the other user. We obtain the entire capacity region

of this channel. We also explore the connections between this channel model and

its non-confidential counterpart, i.e., the Gaussian MIMO broadcast channel with

common and private message.

Next, we consider the Gaussian MIMO multi-receiver wiretap channel and

obtain its secrecy capacity region for the most general case. We first show that

even for the single-input single-output (SISO) case, existing converse techniques



fall short of proving the secrecy capacity region, to emphasize the need for a new

proof technique, which we develop by using the relationships between the Fisher

information and the differential entropy. Using this new proof technique, we obtain

the secrecy capacity region of the degraded MIMO channel. We then establish

the secrecy capacity region of the general MIMO channel by using the channel

enhancement technique in conjunction with the capacity result we obtained for the

degraded MIMO channel. For the general MIMO channel, we show that dirty-paper

coding (DPC) combined with stochastic encoding attains the entire secrecy capacity

region.

Then, we study the multi-receiver wiretap channel for a more general scenario,

where, in addition to confidential messages, the transmitter sends public messages

to the legitimate users, on which there are no secrecy constraints. First, we consider

the degraded discrete memoryless channel, and obtain inner and outer bounds for

the capacity region. These inner and outer bounds match for certain cases, provid-

ing the capacity region. Second, we obtain an inner bound for the general discrete

memoryless channel by using Marton’s inner bound. Third, we consider the de-

graded Gaussian MIMO channel, and show that jointly Gaussian auxiliary random

variables and channel input are sufficient to exhaust the inner and outer bounds.

Finally, we provide an inner bound for the capacity region of the general Gaussian

MIMO channel.

Next, we focus on the multiple access wiretap (MAC-WT) channel whose

capacity region is unknown. We consider a special class of MAC-WT channels

which we call the weak eavesdropper class, where each user’s link to the legitimate



receiver is stronger than its link to the eavesdropper. For this class of channels, we

develop an outer bound for the secrecy capacity region, which partially matches the

achievable region in an n-letter form. We evaluate a looser version of our outer bound

for the Gaussian case, and show that our outer bound is within 0.5 bits/channel use

of the achievable rates along the individual secrecy rates for all weak eavesdropper

Gaussian MAC-WT.

Then, we investigate the effects of user cooperation on the secrecy of broad-

cast channels by considering the cooperative relay broadcast channel (CRBC). We

propose an achievable scheme that combines Marton’s coding scheme for broadcast

channels and Cover and El Gamal’s compress-and-forward (CAF) scheme for relay

channels. For the Gaussian CRBC, we show that both users can have positive se-

crecy rates, which is not possible for scalar Gaussian broadcast channels without

cooperation.

We further investigate the effects of user cooperation on secrecy by considering

the multiple access channel with generalized feedback (MAC-GF), which can be

viewed as the MAC-dual of the CRBC. We propose a CAF-based achievable secrecy

rate region for the MAC-GF. Specializing our results to a Gaussian MAC-GF, we

present numerical results which demonstrate that cooperation can improve secrecy

for the MAC-GF.

Next, we study the two-user one-eavesdropper discrete memoryless compound

wiretap channel, and provide the best known lower bound for the secrecy capacity

of this compound channel. We evaluate this achievable secrecy rate for the Gaussian

MIMO case by using DPC. We show that this achievable secrecy rate achieves at



least half of the secrecy capacity of this Gaussian MIMO compound wiretap channel,

and also attains the secrecy capacity when the eavesdropper is degraded with respect

to one of the two users.

Then, we study the degraded compound multi-receiver wiretap channel (DCM-

RWC), which, in addition to a group of eavesdroppers, has two groups of users,

namely the stronger group and the weaker group. We study two different communi-

cation scenarios for this channel. In the first scenario, there is only one eavesdropper,

and the transmitter sends a confidential message to each group of legitimate users

while keeping both messages secret from the eavesdropper. In the second scenario,

we study the DCMRWC with layered messages without any restriction on the num-

ber of eavesdroppers. For both scenarios, we obtain the secrecy capacity region for

the discrete memoryless channel, the parallel channel, and the Gaussian parallel

channel. For the Gaussian MIMO channel, we obtain the secrecy capacity region

when there is only one user in the second group.

Next, we study the two-user fading broadcast channel and obtain its ergodic

secrecy capacity region. We show that, thanks to fading, both users can have simul-

taneous secure communication with the transmitter, although this is not possible

in the scalar non-fading Gaussian broadcast channel where only one user can have

secure communication. This simultaneous secrecy of both users is achieved by an

opportunistic communication scheme, in which, at each time instant, the transmitter

communicates with the user having a better channel gain.

Then, we study the secure lossy transmission of a vector Gaussian source to

a legitimate user in the presence of an eavesdropper, where both the legitimate



user and the eavesdropper have vector Gaussian side information. We obtain an

outer bound for the rate, equivocation and distortion region. Moreover, we obtain

the maximum equivocation at the eavesdropper when there is no constraint on the

transmission rate. By using this maximum equivocation result, we show two facts.

First, for this problem, in general, Wyner-Ziv scheme is suboptimal, although, it

is optimal in the absence of an eavesdropper. And, second, even when there is no

transmission rate constraint, an uncoded transmission scheme is suboptimal; the

presence of an eavesdropper necessitates the use of a coded scheme to attain the

maximum equivocation.

Finally, we revisit the secure lossy source coding problem. In all works on this

problem, either the equivocation of the source at the eavesdropper or the equivoca-

tion of the legitimate user’s reconstruction of the source at the eavesdropper is used

to measure secrecy. We first propose the relative equivocation of the source at the

eavesdropper with respect to the legitimate user as a new secrecy measure. We argue

that this new secrecy measure is the one that corresponds to the natural generaliza-

tion of the equivocation in a wiretap channel to the context of secure lossy source

coding. Under this new secrecy measure, we provide a single-letter description of

the rate, relative equivocation and distortion region, as well as its specializations

to degraded and reversely degraded cases. We investigate the relationships between

the optimal scheme that attains this region and the Wyner-Ziv scheme.
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Chapter 1

Introduction

Information-theoretic secrecy was initiated by Shannon [1], who considered a spe-

cial case of the now so-called wiretap channel where both the legitimate user and

the eavesdropper observe the transmitted signal through noise-free links. Shannon

showed that to be able to transmit the message securely to the legitimate user, the

transmitter and the legitimate user need to share a secret key whose entropy should

be equal to the entropy of the message. In other words, the length of this secret

key should be as long as the size of the message, which is too demanding for many

communication systems.

After this pessimistic result, Wyner studied a noisy wiretap channel, where the

eavesdropper gets a degraded version of the legitimate receiver’s observation [2]. For

this degraded model, he found the capacity-equivocation region where the equivoca-

tion refers to the portion of the message rate that can be delivered to the legitimate

receiver, while the eavesdropper is kept totally ignorant of this part. His result

uncovered the fact that if the eavesdropper’s observation is a degraded version of

the legitimate user’s observation, information-theoretically secure communication

between the transmitter and the legitimate user is possible while keeping the eaves-

dropper completely ignorant of this secure message, without using any keys.

Later, Wyner’s result is generalized to general, not necessarily degraded, wire-
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tap channels by Csiszar and Korner [3]. In particular, they considered the general

wiretap channel, where there is no presumed degradation order between the legit-

imate user and the eavesdropper. They found the capacity-equivocation region of

this general wiretap channel. Their result proved that even when the eavesdropper

is not degraded with respect to the legitimate user, secure communication between

the transmitter and the legitimate user is still possible by exploiting the inherent

randomness of the channel.

In recent years, information-theoretic secrecy has gained a renewed interest

as a methodology to study secure communications over wireless networks. Wireless

communication channel brings unique challenges as well as opportunities to the se-

cure communication problem. The inherent openness of the wireless medium makes

it easier to launch eavesdropping attacks, as all transmitted signals are overheard

at all receivers in the network, due to the broadcast nature of wireless communi-

cations. On the other hand, wireless medium provides ample amount of additional

randomness, e.g., fading and interference, as well as opportunities for vector com-

munications via multiple antennas, and cooperative communications via overheard

signals and relaying, all of which can be utilized for secrecy.

Along this direction, in this dissertation, we study several fundamental multi-

user channel models from an information-theoretic secrecy point of view. For each

channel model, we either determine the exact capacity region, or provide lower and

upper bounds on the capacity region. In the latter case, we investigate the condi-

tions under which these bounds match. In this dissertation, we develop achievable

schemes for secure communications and determine achievable rates they provide,
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as well as converse techniques to establish secure capacity limits of some network

structures. In addition, we develop communication techniques, such as opportunistic

communications in fading channels, cooperative relaying in broadcast and multiple

access channels, and directional communications in multiple antenna channels, that

enable multiple user pairs have simultaneous secure communications.

In Chapter 2, we consider the Gaussian multiple-input multiple-output (MIMO)

instance of the wiretap channel. This model consists of a transmitter, a legitimate

user, and an eavesdropper. In this channel, the transmitter sends a common message

to both the legitimate user and the eavesdropper in addition to a private message

which is directed to only the legitimate user. There is a secrecy concern regarding

this private message in the sense that the private message needs to be kept secret

as much as possible from the eavesdropper. The secrecy of the private message is

measured by its equivocation at the eavesdropper.

We obtain the entire capacity-equivocation region of the Gaussian MIMO wire-

tap channel. This region is known in a single-letter form due to [3]. In Chapter 2, we

show that jointly Gaussian auxiliary random variables and channel input are suffi-

cient to evaluate this single-letter description for the capacity-equivocation region of

the Gaussian MIMO wiretap channel. We prove the sufficiency of the jointly Gaus-

sian auxiliary random variables and channel input by using channel enhancement [4]

and an extremal inequality from [5]. In our proof, we also use the equivalence be-

tween the Gaussian MIMO wiretap channel and the Gaussian MIMO wiretap chan-

nel with public messages [6, Problem 33-c], [7]. In the latter channel model, the

transmitter has three messages, a common, a confidential, and a public message.
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The common message is sent to both the legitimate user and the eavesdropper,

while the confidential and public messages are directed to only the legitimate user.

Here, the confidential message needs to be transmitted in perfect secrecy, whereas

there is no secrecy constraint on the public message. Since the Gaussian MIMO

wiretap channel and the Gaussian MIMO wiretap channel with public messages are

equivalent, i.e., there is a one-to-one correspondence between the capacity regions

of these two models, in our proof, we obtain the capacity region of the Gaussian

MIMO wiretap channel with public messages, which, in turn, gives us the capacity-

equivocation region of the Gaussian MIMO wiretap channel.

In Chapter 3, we consider the secure broadcasting problem, where one trans-

mitter wants to have confidential communication with an arbitrary number of users

in a broadcast channel, while this communication is being eavesdropped by an ex-

ternal entity. Characterizing the secrecy capacity region of this channel model in

its most general form is difficult, because the version of this problem without any

secrecy constraints, is the broadcast channel with an arbitrary number of receivers,

whose capacity region is unknown. Consequently, to have progress in understanding

the limits of secure broadcasting, we resort to studying several special classes of

channels, with increasing generality. Precisely, the channel models we consider and

the corresponding results we obtain in Chapter 3 are as follows.

First, we consider the degraded multi-receiver wiretap channel with an arbi-

trary number of users and one eavesdropper, where users are arranged according to

a degradedness order, and each user has a less noisy channel with respect to the

eavesdropper. We find the secrecy capacity region when each user receives both an
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independent message and a common confidential message. Second, we focus on a

class of parallel multi-receiver wiretap channels with an arbitrary number of legiti-

mate receivers and an eavesdropper, where in each sub-channel, for any given user,

either the user’s channel is less noisy with respect to the eavesdropper’s channel,

or vice versa. We establish the common message secrecy capacity of this channel.

Then, we study the scenario where each legitimate receiver wishes to receive an in-

dependent message for another sub-class of parallel multi-receiver wiretap channels.

For channels belonging to this sub-class, in each sub-channel, there is a less noisi-

ness order which is not necessarily the same for all sub-channels. We find the sum

secrecy capacity for this class. Third, we investigate a class of parallel multi-receiver

wiretap channels with two sub-channels, two users and one eavesdropper. For the

channels in this class, there is a specific degradation order in each sub-channel such

that in the first (resp. second) sub-channel the second (resp. first) user is degraded

with respect to the first (resp. second) user, while the eavesdropper is degraded with

respect to both users in both sub-channels. For this class, we determine the entire

secrecy capacity region when each user receives both an independent message and a

common message. We discuss the generalization of this result to arbitrary numbers

of users and sub-channels. Finally, we consider the parallel multi-receiver wiretap

channel with two sub-channels, two users and one eavesdropper, and the degrada-

tion order in each sub-channel is exactly the same as in the previous item. However,

in this case, the input and output alphabets of one sub-channel are non-intersecting

with the input and output alphabets of the other sub-channel, and in addition, we

can use only one of these sub-channels at any time. We determine the secrecy capac-
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ity region of this channel when the transmitter sends both an independent message

to each receiver and a common message to both receivers.

In Chapter 4, we study the two-user Gaussian MIMO broadcast channel, where

the transmitter sends a common message to both users, and a confidential message

to each user which needs to be kept perfectly secret from the other user. We call the

corresponding channel model the Gaussian MIMO broadcast channel with common

and confidential messages. We obtain the capacity region of this chanel model. In

particular, we show that a variant of the secret dirty-paper coding (S-DPC) scheme

proposed in [8] is capacity-achieving. Similar to [8], we also notice an invariance

property of this achievable scheme with respect to the encoding order used in the S-

DPC scheme. In other words, two achievable rate regions arising from two possible

encoding orders used in the S-DPC scheme are identical, and equal to the capacity

region. We provide the proof of this statement as well as the converse proof for the

capacity region of the Gaussian MIMO broadcast channel with common and confi-

dential messages by using the channel enhancement technique [4] and an extremal

inequality from [5].

In Chapter 4, we also explore the connections between the Gaussian MIMO

broadcast channel with common and confidential messages and its non-confidential

counterpart, i.e., the (two-user) Gaussian MIMO broadcast channel with common

and private messages. In the latter model, the transmitter again sends a common

message to both users, and a private message to each user, for which there is no

secrecy constraint now, i.e., private message of each user does not need to be kept

secret from the other user. We note that although there are partial results for
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the Gaussian MIMO broadcast channel with common and private messages [9, 10],

its capacity region is not known completely. However, in Chapter 4, we are able

to obtain the entire capacity region of its confidential version, i.e., of the Gaussian

MIMO broadcast channel with common and confidential messages. In Chapter 4, we

provide an intuitive explanation of this at-first-sight surprising point as well as the

invariance property of the achievable rate region with respect to the encoding orders

that can be used in the S-DPC scheme, by using the sum capacity result from [10]

for the Gaussian MIMO broadcast channel with common and private messages.

In Chapter 5, we study the Gaussian MIMO multi-receiver wiretap channel,

where the transmitter wants to send a confidential message to each legitimate user

while there is an external eavesdropper listening to this on-going communication

between the transmitter and the legitimate users. We obtain the secrecy capacity

region of the Gaussian MIMO multi-receiver wiretap channel for the most general

case. Towards obtaining the secrecy capacity region, we come up with a new tech-

nique to evaluate the single-letter descriptions for the (vector) Gaussian models.

This new technique uses the Fisher information and the de Bruijn identity (a dif-

ferential connection between the Fisher information and the differential entropy) to

evaluate the single-letter expressions. To be able to present this new technique in

a simple setting, in Chapter 5, we first obtain the secrecy capacity region of the

Gaussian single-input single-output (SISO) multi-receiver wiretap channel.

After introducing this new technique through the SISO case, we consider the

MIMO channel in two main steps: First, we consider the degraded Gaussian MIMO

multi-receiver wiretap channel, for which, a single-letter description of the secrecy
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capacity region exists due to our results in Chapter 3. At this step, we use our

new technique to evaluate this single-letter description and show that superposition

coding with Gaussian signals attains the secrecy capacity region of the degraded

Gaussian MIMO channel. Next, we consider the non-degraded Gaussian MIMO

multi-receiver wiretap channel for which there is no single-letter description of the

secrecy capacity region. Despite the lack of such a description, we obtain the secrecy

capacity region for the non-degraded case by using the channel enhancement tech-

nique [4] in conjunction with the capacity result for the degraded case. In particular,

we show that DPC scheme with Gaussian signals can attain the secrecy capacity

region of the Gaussian MIMO multi-receiver wiretap channel.

The proof technique introduced in Chapter 5 can be used in other vector Gaus-

sian network information theory problems. In particular, we use our new technique

to provide an alternative proof for the capacity region of the degraded Gaussian

MIMO broadcast channel, which was originally proved in [4], and an outer bound

for the rate-distortion region of the vector Gaussian CEO problem. We provide the

application of our new technique to these vector Gaussian models in Appendix 5.9.7

and Appendix 5.9.8.

In Chapter 6, we study the multi-receiver wiretap channel for a more general

scenario than we did in Chapters 3 and 5. In these previous chapters, we consider

the multi-receiver wiretap channel for the scenario where the transmitter wants

to send a confidential message to each legitimate user. On the other hand, in

Chapter 6, we study the multi-receiver wiretap channel with public and confidential

messages, in which, the transmitter sends a pair of public and confidential messages
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to each legitimate user. While there are no secrecy concerns on the public messages,

confidential messages need to be transmitted in perfect secrecy.

In Chapter 6, we first consider the degraded discrete memoryless multi-receiver

wiretap channel and its MIMO instance. We propose inner and outer bounds for its

capacity region. Although these inner and outer bounds do not match in general, we

show that under certain conditions, these bounds match providing the exact capac-

ity region. For the degraded Gaussian MIMO channel, we evaluate these inner and

outer bounds explicitly, and show that it is sufficient to consider jointly Gaussian

auxiliary random variables and channel input for the evaluation of both the inner

and outer bounds. We prove the sufficiency of Gaussian auxiliary random variables

and channel input by using our methodology, that was proposed in Chapter 5 to eval-

uate the single-letter expressions for vector Gaussian models. Second, we consider

the general, not necessarily degraded, discrete memoryless multi-receiver wiretap

channel as well as its MIMO instance. For the general, not necessarily degraded,

channel, we propose an inner bound for its capacity region by using Marton’s in-

ner bound [11], superposition coding, rate-splitting and binning. This inner bound

generalizes the inner bound we proposed for the degraded case by using Marton’s

coding. We evaluate this achievable scheme for the Gaussian MIMO multi-receiver

wiretap channel by using DPC [12], and obtain an inner bound for its capacity

region.

In Chapter 7, we consider the multiple access wiretap (MAC-WT) channel, in

which there is a legitimate multiple access channel whose communication is being

listened by an external eavesdropper. In Chapter 7, we study a special class of
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MAC-WT channels called the weak eavesdropper class. For channels belonging to

this class, each user’s link to the legitimate receiver is stronger than its link to

the eavesdropper. We provide an n-letter outer bound for the secrecy capacity

region of channels belonging to this class, which partially matches the achievable

region. Then, we consider the weak eavesdropper Gaussian MAC-WT, for which, we

evaluate our n-letter outer bound. This evaluation reveals that the gap between our

inner and outer bounds is independent of the channel parameters, and is less than

0.5 bits/channel use along individual rate dimensions. Moreover, we show that if the

links of users to the legitimate receiver are orthogonal, the gap between our outer

bound and inner bound becomes less than 0.5 bits/channel use along all dimensions,

i.e., both along the individual rate dimensions and the sum rate line. In Chapter 7,

we also show that our outer bound improves the existing our outer bounds for the

degraded MAC-WT, which is subsumed by the weak eavesdropper MAC-WT.

In addition, we note in Chapter 7 that the weak eavesdropper MAC-WT re-

sembles the interference wiretap channel (IC-WT) which consists of an ordinary

interference channel (IC) and an eavesdropper listening to the ongoing communi-

cation on this IC. The similarity between the IC-WT with very strong interference

among the users and the weak eavesdropper Gaussian MAC-WT with orthogonal

components enables us to adapt our outer bound technique we used for the MAC-

WT to the IC-WT, and consequently, to get an outer bound for the secrecy capacity

region of the IC-WT.

In Chapters 8 and 9, we study the interaction between cooperation and se-

crecy, more precisely the effects of cooperation on secrecy. Since it is well-known
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that cooperation improves the users’ throughput in a typical wireless medium, by

studying the effects of cooperation on secrecy, we aim to understand whether it

improves secrecy as well, i.e., whether there is a parallelism or trade-off between

cooperation and secrecy.

For that purpose, in Chapter 8, we consider the cooperative relay broadcast

channel (CRBC) where there is a broadcast channel with receivers that are able to

cooperate with each other. Although these users cooperate with each other, for the

secrecy of their messages, they treat each other as an eavesdropper. In other words,

users in the system are untrusted (since each one can eavesdrop on the other one),

however, not malicious (since users cooperate). We provide an achievable secrecy

rate region by using the compress-and-forward (CAF) scheme for the CRBC. We

then evaluate this region for the Gaussian CRBC to demonstrate that, in fact, there

is a parallelism between cooperation and secrecy, in the sense that, by cooperating,

users can improve their individual secrecy rates. In particular, we show that by

means of cooperation, both users can have secure communication with the trans-

mitter in a Gaussian CRBC, although this is not possible without cooperation, i.e.,

in the underlying Gaussian broadcast channel. Hence, this Gaussian example shows

that a synergy between cooperation and secrecy can be generated by using CAF as

the cooperative strategy.

In Chapter 9, we consider the multiple access dual of the CRBC to study

the effects of cooperation on secrecy to determine whether the synergy between user

cooperation and secrecy we observe for the CRBC can be created in a multiple access

setting as well. In particular, we study the multiple access channel with generalized
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feedback (MAC-GF), where the users can cooperate through the feedback links

they have. Similar to the CRBC setting, in this model also, users cooperate with

each other, although they do not trust each other, and hence, each user treats the

other as an eavesdropper. For the MAC-GF, we propose an achievable secrecy

rate region relying on the CAF scheme, and evaluate it for the Gaussian MAC-GF.

This evaluation for Gaussian channels shows that although, without cooperation,

the users cannot have simultaneous secure communication with the receiver, by

means of cooperation, simultaneous secrecy for both users is possible. Hence, this

result implies that, in the MAC-GF also, a synergy can be created between user

cooperation and secrecy.

In Chapter 10, we study the compound wiretap channel, in which, the trans-

mitter wants to multicast a single confidential message to a group of legitimate users

in the presence of a group of eavesdroppers. We first consider the two-user one-

eavesdropper discrete memoryless compound wiretap channel and propose a lower

bound for its secrecy capacity by using indirect decoding [13] and Marton’s inner

bound for discrete memoryless broadcast channels [11]. This lower bound is the

best known lower bound for the secrecy capacity of the two-user one-eavesdropper

compound wiretap channel. We next consider the Gaussian MIMO instance of the

aforementioned compound wiretap channel, and propose an achievable secrecy rate

by using DPC [12] in the achievable scheme we obtained for the discrete memory-

less channel. We address the tightness of the resulting achievable secrecy rate by

showing that it can achieve at least half of the secrecy capacity. We also consider

a special class of two-user one-eavesdropper Gaussian MIMO compound wiretap
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channels, where the eavesdropper is degraded with respect to one of the two users.

We obtain the secrecy capacity for this class of channels as the minimum of the

secrecy capacities of the two underlying wiretap channels in the compound wiretap

channel.

In Chapter 11, we generalize the compound wiretap channel we studied in

Chapter 10 to a multi-user setting by incorporating multiple groups of legitimate

users, each group getting a different confidential message from the transmitter.

In particular, we introduce the degraded compound multi-receiver wiretap channel

(DCMRWC) which consists of two groups of users and a group of eavesdroppers.

DCMRWC exhibits a certain degradation order such that an arbitrary user from

each group and an arbitrary eavesdropper satisfy a certain Markov chain. We con-

sider two different communication scenarios for the DCMRWC: In the first scenario,

the transmitter sends a confidential message to the users in the first group, and a dif-

ferent confidential message to the users in the second group, where both messages

need to be kept confidential from the eavesdroppers. In the second scenario, the

transmitter sends a confidential message to the users in the first group which needs

to be kept confidential from the users in the second group and the eavesdroppers.

Moreover, the transmitter sends a different confidential message to the users in the

second group, which needs to be kept confidential from the eavesdroppers.

For the first scenario, we assume that there exists only one eavesdropper and

obtain the secrecy capacity region in a single-letter form. Then, we specialize this

single-letter form to the parallel DCMRWC by establishing the optimality of in-

dependent signaling in each sub-channel. We evaluate the corresponding secrecy
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capacity region for the Gaussian parallel DCMRWC by showing the optimality of

jointly Gaussian auxiliary random variables and channel input. Finally, we obtain

the secrecy capacity region of the Gaussian MIMO DCMRWC when there is only

one user in the second group by again showing the optimality of jointly Gaussian

distribution for auxiliary random variables and channel inputs. For the second

scenario also, we obtain the secrecy capacity region in a single-letter form for a

general discrete memoryless setting. Then, we specialize this single-letter form to

the parallel DCMRWC by showing the optimality of independent signaling in each

sub-channel. We evaluate the resulting secrecy capacity region for the Gaussian

parallel DCMRWC by showing the optimality of jointly Gaussian distribution for

auxiliary random variables and channel inputs. Finally, we establish the secrecy ca-

pacity region of the Gaussian MIMO DCMRWC when there is only one user in the

second group by again proving the optimality of jointly Gaussian auxiliary random

variables and channel inputs.

In Chapter 12, we consider the two-user fading broadcast channel with con-

fidential messages where the transmitter sends a confidential message to each user

that needs to be kept hidden from the other user. Towards obtaining the secrecy

capacity region of this channel, we first consider the parallel broadcast channel with

less noisy sub-channels, where in each sub-channel, one of the users’ channel is less

noisy with respect to the other user. We establish the secrecy capacity region of this

channel for the case where the transmitter sends a common message to both users

and an individual confidential message to each user. Next, using this capacity result,

we obtain the secrecy capacity region of the parallel Gaussian broadcast channel.
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Finally, noting that the fading Gaussian broadcast channel is equivalent to a paral-

lel Gaussian broadcast channel from an ergodic capacity perspective, we explicitly

evaluate the ergodic secrecy capacity region of the fading broadcast channel. This

result demonstrates that, thanks to fading, the transmitter can have secure com-

munication with both users simultaneously, although this is not possible without

fading. This simultaneous secrecy can be achieved by an opportunistic communica-

tion scheme, in which, at each time instant, the transmitter sends the message of

the user having a stronger channel gain.

In Chapter 13, we study the secure lossy transmission of a vector Gaussian

source, when both the legitimate user and the eavesdropper have vector Gaussian

side information. In this model, the transmitter wants to enable the legitimate user

to reconstruct the source within a distortion level while keeping the equivocation of

the source at the eavesdropper as high as possible. A single-letter characterization

of the rate-equivocation region for this setting is given in [14]. We obtain an outer

bound for the rate-equivocation region by optimizing the rate and equivocation

constraints separately. As a consequence of these separate optimizations, we obtain

the maximum achievable equivocation at the eavesdropper when there is no rate

constraint on the transmitter to describe the source to the legitimate user. We show

that even in the absence of a rate constraint on the transmitter, the transmitter still

needs to use a coded scheme to obtain the maximum equivocation by showing the

strict sub-optimality of uncoded schemes. Finally, by further studying the maximum

equivocation result we obtained, we show that in general, Wyner-Ziv coding, which

is optimal in the absence of an eavesdropper, is strictly sub-optimal for the vector
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Gaussian model, since it cannot yield the maximum equivocation. In other words,

the presence of an eavesdropper necessitates more sophisticated coding schemes than

the Wyner-Ziv scheme.

In Chapter 14, we revisit the secure lossy source coding problem that we

consider in Chapter 13, and reformulate the problem by defining the relative equiv-

ocation of the source at the eavesdropper with respect to the legitimate user as the

secrecy measure. In previous works, the equivocation of the source at the eaves-

dropper is used as the secrecy measure, as a direct generalization of the one used

for the wiretap channel [2, 3], where secrecy is measured by the equivocation of the

message at the eavesdropper. However, in a wiretap channel, since the message is

decoded at the legitimate user, the equivocation of the message at the legitimate

user is zero, and hence, the equivocation of the message at the eavesdropper and the

relative equivocation of the source at the eavesdropper with respect to the legitimate

user are equivalent; both measuring the relative confusion of the eavesdropper. On

the other hand, in the secure lossy source coding problem, since the legitimate user

does not reconstruct the source in a lossless fashion, the equivocation of the source

at the legitimate user is not necessarily zero, and consequently, there is no such

equivalence between the equivocation and the relative equivocation.

Motivated by these observations, in Chapter 14, we propose the relative equiv-

ocation of the source as the secrecy measure for the secure lossy source coding prob-

lem, and obtain the corresponding rate, relative equivocation and distortion region

in a single-letter form. In addition, we provide specializations of this single-letter

description to the degraded and reversely degraded cases. Finally, we show that
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Wyner-Ziv scheme is not optimal in general, although it is optimal for the degraded

and reversely degraded cases as well as in the absence of an eavesdropper.

In Chapter 15, we provide conclusions of this dissertation.
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Chapter 2

Capacity-Equivocation Region of the Gaussian MIMO Wiretap

Channel

2.1 Introduction

In this chapter, we consider the Gaussian MIMO wiretap channel, which consists of

a transmitter, a legitimate user, and an eavesdropper. In this channel, the trans-

mitter sends a common message to both the legitimate user and the eavesdropper

in addition to a private message which is directed to only the legitimate user. There

is a secrecy concern regarding this private message in the sense that the private

message needs to be kept secret as much as possible from the eavesdropper. The

secrecy of the private message is measured by its equivocation at the eavesdropper.

Here, we consider the entire capacity-equivocation region of the Gaussian

MIMO wiretap channel. This region contains all achievable rate triples (R0, R1,

Re), where R0 denotes the common message rate directed to both the legitimate

user and the eavesdropper, R1 denotes the private message rate directed to only the

legitimate user, and Re denotes the private message’s equivocation (secrecy) rate.

Our result generalizes several previous partial results on the capacity-equivocation

region of the Gaussian MIMO wiretap channel. In particular, our result subsumes

the following previous findings about the capacity-equivocation region of the Gaus-
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sian MIMO wiretap channel: i) The secrecy capacity of this channel, i.e., maxR1

when R0 = 0, Re = R1, is obtained in [15, 16] for the general case, and in [17] for the

2-2-1 case. ii) The common and confidential rate region under perfect secrecy, i.e.,

(R0, R1) region with Re = R1, is obtained in [18]. iii) The capacity-equivocation re-

gion without a common message, i.e., (R1, Re) region with R0 = 0, is obtained in [7].

iv) The capacity region of the Gaussian MIMO broadcast channel with degraded

message sets without a secrecy concern, i.e., (R0, R1) region with no consideration

on Re, is obtained in [9]. Here, we obtain the entire (R0, R1, Re) region. Our result

as well as the previous results listed above hold when there is a covariance constraint

on the channel input as well as when there is a total power constraint on the channel

input.

2.2 Discrete Memoryless Wiretap Channels

The discrete memoryless wiretap channel consists of a transmitter, a legitimate

user and an eavesdropper; see Figure 2.1. The channel transition probability is

denoted by p(y, z|x), where x ∈ X is the channel input, y ∈ Y is the legitimate

user’s observation, and z ∈ Z is the eavesdropper’s observation. We consider the

following scenario for the discrete memoryless wiretap channel: The transmitter

sends a common message to both the legitimate user and the eavesdropper, and a

private message to the legitimate user which is desired to be kept hidden as much

as possible from the eavesdropper.

An (n, 2nR0 , 2nR1) code for this channel consists of two message sets W0 =
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Transmitter

Legitimate User
Y Ŵ0, Ŵ1p(y|x)

XW0,W1

Eavesdropper
Z Ŵ0,W1p(z|x)

Figure 2.1: The wiretap channel.

{1, . . . , 2nR0}, W1 = {1, . . . , 2nR1}, one encoder at the transmitter f : W0 ×W1 →

X n, one decoder at the legitimate user gu : Yn → W0 × W1, and one decoder

at the eavesdropper ge : Zn → W0. The probability of error is defined as P n
e =

max{P n
e,u, P

n
e,e}, where P n

e,u = Pr[gu(Y
n) 6= (W0,W1)], P n

e,e = Pr[ge(Z
n) 6= W0], and

Wj is a uniformly distributed random variable in Wj, j = 0, 1. We note that

W0 corresponds to the common message that is transmitted to both the legitimate

user and the eavesdropper, and W1 denotes the private message sent only to the

legitimate user, on which there is a secrecy constraint. The secrecy of the legitimate

user’s private message is measured by its equivocation at the eavesdropper [2, 3],

i.e.,

1

n
H(W1|W0, Z

n) (2.1)

A rate triple (R0, R1, Re) is said to be achievable if there exists an (n, 2nR0 , 2nR1)

code such that limn→∞ P
n
e = 0, and

Re ≤ lim
n→∞

1

n
H(W1|W0, Z

n) (2.2)
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The capacity-equivocation region of the discrete memoryless wiretap channel is de-

fined as the convex closure of all achievable rate triples (R0, R1, Re), and denoted

by C. The capacity-equivocation region of the discrete memoryless wiretap channel,

which is obtained in [3], is stated in the following theorem.

Theorem 2.1 ([3, Theorem 1]) The capacity-equivocation region of the discrete

memoryless wiretap channel C is given by the union of rate triples (R0, R1, Re) sat-

isfying

0 ≤ Re ≤ R1 (2.3)

Re ≤ I(V ;Y |U)− I(V ;Z|U) (2.4)

R0 +R1 ≤ I(V ;Y |U) + min{I(U ;Y ), I(U ;Z)} (2.5)

R0 ≤ min{I(U ;Y ), I(U ;Z)} (2.6)

for some U, V,X such that

U → V → X → (Y, Z) (2.7)

We next provide an alternative description for C. This alternative description

will arise as the capacity region of a different, however related, communication sce-

nario for the discrete memoryless wiretap channel. In this communication scenario,

the transmitter has three messages, W0,Wp,Ws, where W0 is the common message

sent to both the legitimate user and the eavesdropper, Wp is the public message

sent only to the legitimate user on which there is no secrecy constraint, and Ws is
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the confidential message sent only to the legitimate user in perfect secrecy. In this

scenario, since Ws needs to be transmitted in perfect secrecy, it needs to satisfy the

following condition

lim
n→∞

1

n
I(Ws;Z

n,W0) = 0 (2.8)

As we noted before, unlike Ws, there is no secrecy constraint on the public message

Wp. We also note that the perfect secrecy on a message is attained when the

equivocation of this message is equal to its rate, i.e., when we have Re = Rs,

which can be seen by comparing (2.2) and (2.8). To distinguish this communication

scenario from the previous one, we call the channel model arising from this scenario

the discrete memoryless wiretap channel with public messages. We note that this

alternative description for wiretap channels has been previously considered in [6,

Problem 33-c], [7].

An (n, 2nR0 , 2nRp , 2nRs) code for this scenario consists of three message sets

W0 = {1, . . . , 2nR0},Wp = {1, . . . , 2nRp},Ws = {1, . . . , 2nRs}, one encoder at the

transmitter f : W0 × Wp × Ws → X n, one decoder at the legitimate user gu :

Yn → W0 ×Wp ×Ws, and one decoder at the eavesdropper ge : Zn → W0. The

probability of error is defined as P n
e = max{P n

e,u, P
n
e,e}, where P n

e,u = Pr[gu(Y
n) 6=

(W0,Wp,Ws)] and P n
e,e = Pr[ge(Z

n) 6= W0]. A rate triple (R0, Rp, Rs) is said to be

achievable if there exists an (n, 2nR0 , 2nRp , 2nRs) code such that limn→∞ P
n
e = 0 and

(2.8) is satisfied. The capacity region Cp of the discrete memoryless wiretap channel

with public messages is defined as the convex closure of all achievable rate triples
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(R0, Rp, Rs). The following lemma establishes the equivalence between C and Cp.

Lemma 2.1 (R0, Rp, Rs) ∈ Cp iff (R0, Rs +Rp, Rs) ∈ C.

The proof of this lemma is given in Appendix 2.7.1. This proof consists of two

steps. In the first step, we note that if (R0, Rp, Rs) ∈ Cp, then in the corresponding

achievable scheme attaining this rate triple, we can combine the messages Ws,Wp

to obtain W1 = (Ws,Wp), whose equivocation will be as least Rs due to the perfect

secrecy requirement on Ws. Hence, this argument proves the inclusion Cp ⊆ C. In

the second step, we show the reverse inclusion C ⊆ Cp. To this end, we consider

the achievable scheme that attains the entire region C, and call this achievable

scheme the optimal achievable scheme. If the rate triple (R0, R1, Re) ∈ C, in the

corresponding optimal achievable scheme, the private message W1 can be divided

into two parts W1 = (W̃p, W̃s) where the rate of W̃s is sufficiently close to Re

and satisfies the perfect secrecy requirement. Hence, this argument shows that

(R0, R1 − Re, Re) ∈ Cp, i.e., C ⊆ Cp; completing the proof of Lemma 2.1. Using

Lemma 2.1 and Theorem 2.1, we can express Cp as stated in the following theorem.

Theorem 2.2 The capacity region of the discrete memoryless wiretap channel with

public messages Cp is given by the union of rate triples (R0, Rp, Rs) satisfying

0 ≤ Rs ≤ I(V ;Y |U)− I(V ;Z|U) (2.9)

R0 +Rp +Rs ≤ I(V ;Y |U) + min{I(U ;Y ), I(U ;Z)} (2.10)

R0 ≤ min{I(U ;Y ), I(U ;Z)} (2.11)
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for some (U, V,X) such that

U → V → X → (Y, Z) (2.12)

2.3 Gaussian MIMO Wiretap Channel

The Gaussian MIMO wiretap channel is defined by, see Figure 2.2,

Y = HY X + NY (2.13)

Z = HZX + NZ (2.14)

where the channel input X is a t×1 vector, Y is an rY ×1 column vector denoting the

legitimate user’s observation, Z is an rZ × 1 column vector denoting the eavesdrop-

per’s observation, HY ,HZ are the channel gain matrices of sizes rY ×t, rZ×t, respec-

tively, and NY ,NZ are Gaussian random vectors with covariance matrices ΣY ,ΣZ
1,

respectively, which are assumed to be strictly positive-definite, i.e., ΣY � 0,ΣZ � 0.

We consider a covariance constraint on the channel input as follows

E
[
XX>

]
� S (2.15)

where S � 0. The capacity-equivocation region of the Gaussian MIMO wiretap

channel is denoted by C(S) which contains all achievable rate triples (R0, R1, Re).

The main result of this paper is the characterization of the capacity-equivocation

1Without loss of generality, we can set ΣY = ΣZ = I. However, we let ΣY ,ΣZ be arbitrary
for ease of presentation.
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Y
Legitimate User

W0,W1
Transmitter

X

Z
Eavesdropper

HY NY

HZ NZ

Ŵ0, Ŵ1

Ŵ0,W1

Figure 2.2: The Gaussian MIMO wiretap channel.

region C(S) which is stated in the following theorem.

Theorem 2.3 The capacity-equivocation region of the Gaussian MIMO wiretap

channel C(S) is given by the union of rate triples (R0, R1, Re) satisfying

0 ≤ Re ≤
1

2
log
|HY KH>Y + ΣY |

|ΣY |
− 1

2
log
|HZKH>Z + ΣZ |

|ΣZ |
(2.16)

R0 +R1 ≤
1

2
log
|HY KH>Y + ΣY |

|ΣY |

+ min

{
1

2
log
|HY SH>Y + ΣY |
|HY KH>Y + ΣY |

,
1

2
log
|HZSH>Z + ΣZ |
|HZKH>Z + ΣZ |

}
(2.17)

R0 ≤ min

{
1

2
log
|HY SH>Y + ΣY |
|HY KH>Y + ΣY |

,
1

2
log
|HZSH>Z + ΣZ |
|HZKH>Z + ΣZ |

}
(2.18)

for some positive semi-definite matrix K such that 0 � K � S.

Similar to what we did in the previous section, we can establish an alternative

statement for Theorem 2.3 by considering the Gaussian MIMO wiretap channel with

public messages, where the legitimate user’s private message is divided into two parts

such that one part (confidential message) needs to be transmitted in perfect secrecy
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and there is no secrecy constraint on the other part (public message). The capacity

region for this alternative scenario is denoted by Cp(S). We note that Lemma 2.1

provides a one-to-one connection between the capacity regions C and Cp, and this

equivalence can be extended to the capacity regions C(S) and Cp(S) by incorporating

the covariance constraint on the channel input in the proof of Lemma 2.1. Thus,

using Lemma 2.1 and Theorem 2.3, Cp(S) can be obtained as follows.

Theorem 2.4 The capacity region of the Gaussian MIMO wiretap channel with

public messages Cp(S) is given by the union of rate triples (R0, Rp, Rs) satisfying

0 ≤ Rs ≤
1

2
log
|HY KH>Y + ΣY |

|ΣY |
− 1

2
log
|HZKH>Z + ΣZ |

|ΣZ |
(2.19)

R0 +Rp +Rs ≤
1

2
log
|HY KH>Y + ΣY |

|ΣY |

+ min

{
1

2
log
|HY SH>Y + ΣY |
|HY KH>Y + ΣY |

,
1

2
log
|HZSH>Z + ΣZ |
|HZKH>Z + ΣZ |

}
(2.20)

R0 ≤ min

{
1

2
log
|HY SH>Y + ΣY |
|HY KH>Y + ΣY |

,
1

2
log
|HZSH>Z + ΣZ |
|HZKH>Z + ΣZ |

}
(2.21)

for some positive semi-definite matrix K such that 0 � K � S.

We next define a sub-class of Gaussian MIMO wiretap channels called the

aligned Gaussian MIMO wiretap channel, which can be obtained from (2.13)-(2.14)

by setting HY = HZ = I,

Y = X + NY (2.22)

Z = X + NZ (2.23)
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In this work, we first prove Theorems 2.3 and 2.4 for the aligned Gaussian MIMO

wiretap channel. Then, we establish the capacity region for the general channel

model in (2.13)-(2.14) by following the analysis in Section V.B of [4] and Section 7.1

of [19] in conjunction with the capacity result we obtain for the aligned channel.

2.3.1 Capacity Region under a Power Constraint

We note that the covariance constraint on the channel input in (2.15) is a rather

general constraint that subsumes the average power constraint

E
[
X>X

]
= tr

(
E
[
XX>

])
≤ P (2.24)

as a special case, see Lemma 1 and Corollary 1 of [4]. Therefore, using Theorem 2.3,

the capacity-equivocation region arising from the average power constraint in (2.24),

C(P ), can be found as follows.

Corollary 2.1 The capacity-equivocation region of the Gaussian MIMO wiretap

channel subject to an average power constraint P , C(P ), is given by the union of
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rate triples (R0, R1, Re) satisfying

0 ≤ Re ≤
1

2
log
|HY K1H

>
Y + ΣY |

|ΣY |
− 1

2
log
|HZK1H

>
Z + ΣZ |

|ΣZ |
(2.25)

R0 +R1 ≤
1

2
log
|HY K1H

>
Y + ΣY |

|ΣY |

+ min

{
1

2
log
|HY (K1 + K2)H>Y + ΣY |
|HY K1H>Y + ΣY |

,
1

2
log
|HZ(K1 + K2)H>Z + ΣZ |
|HZK1H>Z + ΣZ |

}

(2.26)

R0 ≤ min

{
1

2
log
|HY (K1 + K2)H>Y + ΣY |
|HY K1H>Y + ΣY |

,
1

2
log
|HZ(K1 + K2)H>Z + ΣZ |
|HZK1H>Z + ΣZ |

}

(2.27)

for some positive semi-definite matrices K1,K2 such that tr(K1 + K2) ≤ P .

2.4 Proof of Theorem 2.3 for the Aligned Case

Instead of proving Theorem 2.3, here we prove Theorem 2.4, which implies Theo-

rem 2.3 due to Lemma 2.1. Achievability of the region given in Theorem 2.4 can be

shown by setting V = X in Theorem 2.2, and using jointly Gaussian (U,X = U+T),

where U,T are independent Gaussian random vectors with covariance matrices

S−K,K, respectively. In the rest of this section, we provide the converse proof. To

this end, we note that since Cp(S)2 is convex by definition, it can be characterized

2Although Cp(S) is originally defined for the general, not necessarily aligned, Gaussian wiretap
channel with public messages, here we use Cp(S) to denote the capacity region of the aligned
Gaussian MIMO wiretap channel with public messages as well.
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by solving the following optimization problem3

f(R∗0) = max
(R∗0 ,Rp,Rs)∈Cp(S)

µpRp + µsRs (2.29)

for all µp ∈ [0,∞), µs ∈ [0,∞), and all possible common message rates R∗0, which is

bounded as follows

0 ≤ R∗0 ≤ min{CY (S), CZ(S)} (2.30)

where CY (S), CZ(S) are the single-user capacities for the legitimate user and the

eavesdropper channels, respectively, i.e.,

CY (S) =
1

2
log
|S + ΣY |
|ΣY |

(2.31)

CZ(S) =
1

2
log
|S + ΣZ |
|ΣZ |

(2.32)

3Although characterizing Cp(S) by solving the following optimization problem

max
(R0,Rp,Rs)∈Cp(S)

µ0R0 + µpRp + µsRs (2.28)

for all µ0, µp, µs seems to be more natural, we find working with (2.29) more convenient. Here, we
characterize Cp(S) by solving (2.29) for all µp, µs, for all fixed feasible R∗0.
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We note that the optimization problem in (2.29) can be expressed in the following

more explicit form

f(R∗0) = max
U→V→X→(Y,Z)

E[XX>]�S

µpRp + µsRs (2.33)

s.t.





0 ≤ Rs ≤ I(V ; Y|U)− I(V ; Z|U)

R∗0 +Rp +Rs ≤ I(V ; Y|U) + min{I(U ; Y), I(U ; Z)}

R∗0 ≤ min{I(U ; Y), I(U ; Z)}

(2.34)

We also consider the Gaussian rate region RG(S) which is defined as

RG(S)

=





(R0, Rp, Rs) :

0 ≤ Rs ≤ Rs(K)

R0 +Rp +Rs ≤ Rs(K) +Rp(K) + min{R0Y (K), R0Z(K)}

R0 ≤ min{R0Y (K), R0Z(K)}

for some 0 � K � S





(2.35)
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where Rs(K), Rp(K), R0Y (K), R0Z(K) are given as follows

Rs(K) =
1

2
log
|K + ΣY |
|ΣY |

− 1

2
log
|K + ΣZ |
|ΣZ |

(2.36)

Rp(K) =
1

2
log
|K + ΣZ |
|ΣZ |

(2.37)

R0Y (K) =
1

2
log
|S + ΣY |
|K + ΣY |

(2.38)

R0Z(K) =
1

2
log
|S + ΣZ |
|K + ΣZ |

(2.39)

To provide the converse proof, i.e., to prove the optimality of jointly Gaussian

(U, V = X) for the optimization problem in (2.33)-(2.34), we will show that

f(R∗0) = g(R∗0), 0 ≤ R∗0 ≤ min{CY (S), CZ(S)} (2.40)

where g(R∗0) is defined as

g(R∗0) = max
(R∗0 ,Rp,Rs)∈RG(S)

µpRp + µsRs (2.41)

We show (2.40) in two parts:

• µs ≤ µp

• µp < µs
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2.4.1 µs ≤ µp

In this case, f(R∗0) can be written as

f(R∗0) = max
U→V→X→(Y,Z)

E[XX>]�S

µp(Rp +Rs) (2.42)

s.t.





R∗0 +Rp +Rs ≤ I(X; Y|U) + min{I(U ; Y), I(U ; Z)}

R∗0 ≤ min{I(U ; Y), I(U ; Z)}

(2.43)

where we use the fact that µs ≤ µp, and the secret message rate Rs can be given

up in favor of the private message rate Rp. In other words, we use the fact that

when µp ≥ µs, the maximum of µpRp + µsRs is given by µpR
′
p, where R′p = Rs +Rp

is an achievable public message rate since the secret message can be converted into

a public message. This optimization problem gives us the capacity region of the

two-user Gaussian MIMO broadcast channel with degraded message sets, where a

common message is sent to both users, and a private message, on which there is no

secrecy constraint, is sent to one of the two users [20]. The optimization problem for

this case given in (2.42)-(2.43) is solved in [9] by showing the optimality of jointly

Gaussian (U,X), i.e., f(R∗0) = g(R∗0). This completes the converse proof for the case

µs ≤ µp.
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2.4.2 µp < µs

In this case, we first study the optimization problem in (2.41). We rewrite g(R∗0) as

follows

g(R∗0) = max
0�K�S
Rp

µpRp + µsRs(K) (2.44)

s.t.





R∗0 +Rp ≤ Rp(K) + min{R0Y (K), R0Z(K)}

R∗0 ≤ min{R0Y (K), R0Z(K)}
(2.45)

where we use the fact that since µs > µp, the secret message rate should be set

as high as possible to maximize µpRp + µsRs, i.e., we should set Rs = Rs(K).

Let (K∗, R∗p) be the maximizer for this optimization problem. The necessary KKT

conditions that (K∗, R∗p) needs to satisfy are given in the following lemma.

Lemma 2.2 K∗ needs to satisfy

(µs − µpλ− βY )(K∗ + ΣY )−1 + M = (µs − µpλ+ βZ)(K∗ + ΣZ)−1 + MS (2.46)

for some positive semi-definite matrices M,MS such that

K∗M = MK∗ = 0 (2.47)

(S−K∗)MS = MS(S−K∗) = 0 (2.48)
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and for some λ = 1− λ̄ such that it satisfies 0 ≤ λ ≤ 1 and

λ





= 0 if R0Y (K∗) > R0Z(K∗)

= 1 if R0Y (K∗) < R0Z(K∗)

(2.49)

and (βY , βZ) are given as follows

(βY , βZ) =





(0, 0) if R∗0 < min{R0Y (K∗), R0Z(K∗)}

(0,≥ 0) if R∗0 = R0Z(K∗) < R0Y (K∗)

(≥ 0, 0) if R∗0 = R0Y (K∗) < R0Z(K∗)

(≥ 0,≥ 0) if R∗0 = R0Y (K∗) = R0Z(K∗)

(2.50)

R∗p needs to satify

R∗p = Rp(K
∗) + min{R0Y (K∗), R0Z(K∗)} −R∗0 (2.51)

The proof of Lemma 2.2 is given in Appendix 2.7.2. We treat three cases separately:

• R∗0 < min{R0Y (K∗), R0Z(K∗)}

• R∗0 = R0Y (K∗) ≤ R0Z(K∗)

• R∗0 = R0Z(K∗) < R0Y (K∗)
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2.4.2.1 R∗0 < min{R0Y (K∗), R0Z(K∗)}

In this case, we have βY = βZ = 0, see (2.50). Thus, the KKT condition in (2.46)

reduces to

(µs − µpλ)(K∗ + ΣY )−1 + M = (µs − µpλ)(K∗ + ΣZ)−1 + MS (2.52)

We first note that K∗ satisfying (2.52) achieves the secrecy capacity of this Gaussian

MIMO wiretap channel [21], i.e.,

R∗s = Rs(K
∗) (2.53)

= CS(S) (2.54)

= max
0�K�S

1

2
log
|K + ΣY |
|ΣY |

− 1

2
log
|K + ΣZ |
|ΣZ |

(2.55)

Next, we define a new covariance matrix Σ̃Z as follows

(µs − µpλ)(K∗ + Σ̃Z)−1 = (µs − µpλ)(K∗ + ΣZ)−1 + MS (2.56)

which is similar to the channel enhancement done in [21]. This new covariance

matrix Σ̃Z has some useful properties which are listed in the following lemma.

Lemma 2.3 We have the following facts.

• 0 � Σ̃Z

• Σ̃Z � ΣZ
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• Σ̃Z � ΣY

• (K∗ + Σ̃Z)−1(S + Σ̃Z) = (K∗ + ΣZ)−1(S + ΣZ)

The proof of Lemma 2.3 is given in Appendix 2.7.3. Thus, we have

R0Z(K∗) =
1

2
log
|S + ΣZ |
|K∗ + ΣZ |

(2.57)

=
1

2
log
|S + Σ̃Z |
|K∗ + Σ̃Z |

(2.58)

≥ 1

2
log
|S + ΣY |
|K∗ + ΣY |

(2.59)

= R0Y (K∗) (2.60)

where (2.58) comes from the third part of Lemma 2.3, (2.59) is due to the fact that

|A + B + ∆|
|B + ∆| ≤ |A + B|

|B| (2.61)

for A � 0, ∆ � 0, B � 0 by noting the second part of Lemma 2.3. Therefore, we

have

R0Z(K∗) ≥ R0Y (K∗) (2.62)

where K∗ satisfies (2.52). Using (2.62) in (2.51), we find R∗p as follows

R∗p = Rp(K
∗) +R0Y (K∗)−R∗0 (2.63)
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We also note the following

R∗0 +R∗p +R∗s = R0Y (K∗) +Rp(K
∗) +Rs(K

∗) (2.64)

=
1

2
log
|S + ΣY |
|ΣY |

(2.65)

= CY (S) (2.66)

Now, we show that

g(R∗0) = f(R∗0) (2.67)

To this end, we assume that

g(R∗0) < f(R∗0) (2.68)

which implies that there exists a rate triple (R∗0, R
o
p, R

o
s) ∈ Cp(S) such that

µpR
∗
p + µsR

∗
s < µpR

o
p + µsR

o
s (2.69)

To prove (2.67), i.e., that (2.68) is not possible, we note the following bounds

Ro
s ≤ CS(S) = R∗s (2.70)

Ro
p +Ro

s ≤ CY (S)−R∗0 = R∗p +R∗s (2.71)
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where (2.70) comes from (2.55) and the fact that the rate of the confidential message,

i.e., Rs, cannot exceed the secrecy capacity, and (2.71) is due to (2.66) and the fact

that the sum rate R0 + Rp + Rs cannot exceed the legitimate user’s single-user

capacity. Thus, in view of µs > µp, we can multiply (2.70) and (2.71) by µs − µp

and µp, respectively, and add the corresponding inequalities to obtain

µpR
o
p + µsR

o
s ≤ µpR

∗
p + µsR

∗
s (2.72)

which contradicts with (2.69); proving (2.67). This completes the converse proof for

this case.

Before starting the proofs of the other two cases, we now recap our proof

for the case R∗0 < min{R0Y (K∗), R0Z(K∗)}. We note that we did not show the

optimality of Gaussian signalling directly, instead, we prove it indirectly by showing

the following

g(R∗0) = f(R∗0) (2.73)

First, we show that for the given common message rate R∗0, we can achieve the

secrecy capacity, i.e., R∗s = CS(S), see (2.53)-(2.55). In other words, we show that

(R∗0, 0, R
∗
s) is on the boundary of the capacity region Cp(S). Secondly, we show that

for the given common message rate R∗0, (R∗p, R
∗
s) achieve the sum capacity of the

public and confidential messages, i.e., R∗s + R∗p is sum rate optimal for the given

common message rate R∗0, see (2.64)-(2.66) and (2.71). These two findings lead to
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the inequalities in (2.70)-(2.71). Finally, we use a time-sharing argument for these

two inequalities in (2.70)-(2.71) to obtain (2.73), which completes the proof.

2.4.2.2 R∗0 = R0Y (K∗) ≤ R0Z(K∗)

We first rewrite the KKT condition in (2.46) as follows

(µs − µpλ− µ0β)(K∗ + ΣY )−1 + M = (µs − µpλ+ µ0β̄)(K∗ + ΣZ)−1 + MS

(2.74)

by defining µ0 = βY + βZ , µ0β = βY , and µ0β̄ = βZ . We note that if R0Y (K∗) <

R0Z(K∗), we have β = λ = 1, if R0Y (K∗) = R0Z(K∗), we have 0 ≤ λ ≤ 1, 0 ≤

β ≤ 1. The proof of these two cases are very similar, and we consider only the case

0 ≤ λ ≤ 1, 0 ≤ β ≤ 1, i.e., we assume R0Y (K∗) = R0Z(K∗). The other case can be

proved similarly.

Similar to Section 2.4.2.1, here also, we prove the desired identity

g(R∗0) = f(R∗0) (2.75)

by contradiction. We first assume that

g(R∗0) < f(R∗0) (2.76)

39



which implies that there exists a rate triple (R∗0, R
o
p, R

o
s) ∈ Cp(S) such that

µpR
∗
p + µsR

∗
s < µpR

o
p + µsR

o
s (2.77)

where we define R∗s = Rs(K
∗). Since the sum rate R0 +Rp +Rs needs to be smaller

than the legitimate user’s single user capacity, we have

R∗0 +Ro
p +Ro

s ≤ CY (S) (2.78)

On the other hand, we have the following

R∗0 +R∗p +R∗s = min{R0Y (K∗), R0Z(K∗)}+Rp(K
∗) +Rs(K

∗) (2.79)

= R0Y (K∗) +Rp(K
∗) +Rs(K

∗) (2.80)

= CY (S) (2.81)

where (2.79) comes from (2.51), and (2.80) is due to our assumption that R∗0 =

R0Y (K∗) = R0Z(K∗). Equations (2.78) and (2.81) imply that

Ro
p +Ro

s ≤ R∗p +R∗s (2.82)

In the rest of this section, we prove that we have Ro
s ≤ R∗s for the given common

message rate R∗0, which, in conjunction with (2.82), will yield a contradiction with

(2.77); proving (2.75). To this end, we first define a new covariance matrix Σ̃Y as
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follows

(µs − µpλ)(K∗ + Σ̃Y )−1 = (µs − µpλ)(K∗ + ΣY )−1 + M (2.83)

This new covariance matrix Σ̃Y has some useful properties which are listed in the

following lemma.

Lemma 2.4 We have the following facts.

• 0 � Σ̃Y

• Σ̃Y � ΣY

• Σ̃Y � ΣZ

• (K∗ + Σ̃Y )−1Σ̃Y = (K∗ + ΣY )−1ΣY

The proof of this lemma is given in Appendix 2.7.4. Using this new covariance

matrix, we define a random vector Ỹ as

Ỹ = X + ÑY (2.84)

where ÑY is a Gaussian random vector with covariance matrix Σ̃Y . Due to the first

and second statements of Lemma 2.4, we have the following Markov chains

U → V → X→ Ỹ → Y (2.85)

U → V → X→ Ỹ → Z (2.86)
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We next study the following optimization problem

max
(R0,Rp,Rs)∈Cp(S)

µ0R0 + (µs − µpλ)Rs

= max
U→V→X→(Y,Z)

E[XX>]�S

µ0 min{I(U ; Y), I(U ; Z)}+ (µs − µpλ) [I(V ; Y|U)− I(V ; Z|U)]

(2.87)

where the equality follows from the fact that the maximum of µ0R0+µsRs is obtained

by selecting both R0 and Rs to be individually maximum, i.e., by setting R0 =

min{I(U ; Y), I(U ; Z)}, Rs = I(V ; Y|U)−I(V ; Z|U), since this is possible by simply

setting Rp = 0.

Since we assume (R∗0, R
o
p, R

o
s) ∈ Cp(S), we have the following lower bound for

(2.87)

µ0R
∗
0 + (µs − µpλ)Ro

s ≤ max
(R0,Rp,Rs)∈Cp(S)

µ0R0 + (µs − µpλ)Rs (2.88)
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Now we solve the optimization problem in (2.87) as follows

max
(R0,Rp,Rs)∈Cp(S)

µ0R0 + (µs − µpλ)Rs

= max
U→V→X→(Y,Z)

E[XX>]�S

µ0 min{I(U ; Y), I(U ; Z)}+ (µs − µpλ) [I(V ; Y|U)− I(V ; Z|U)]

(2.89)

≤ max
U→V→X→(Y,Z)

E[XX>]�S

µ0β̄I(U ; Z) + µ0βI(U ; Y) + (µs − µpλ) [I(V ; Y|U)− I(V ; Z|U)]

(2.90)

≤ max
U→V→X→(Y,Z)

E[XX>]�S

µ0β̄I(U ; Z) + µ0βI(U ; Y) + (µs − µpλ)
[
I(V ; Ỹ|U)− I(V ; Z|U)

]

(2.91)

≤ max
U→X→(Y,Z)

E[XX>]�S

µ0β̄I(U ; Z) + µ0βI(U ; Y) + (µs − µpλ)
[
I(X; Ỹ|U)− I(X; Z|U)

]

(2.92)

≤ µ0β̄

2
log
|S + ΣZ |
|K∗ + ΣZ |

+
µ0β

2
log
|S + ΣY |
|K∗ + ΣY |

+
µs − µpλ

2

[
log
|K∗ + Σ̃Y |
|Σ̃Y |

− log
|K∗ + ΣZ |
|ΣZ |

]
(2.93)

= µ0β̄R0Z(K∗) + µ0βR0Y (K∗) +
µs − µpλ

2

[
log
|K∗ + Σ̃Y |
|Σ̃Y |

− log
|K∗ + ΣZ |
|ΣZ |

]

(2.94)

= µ0β̄R0Z(K∗) + µ0βR0Y (K∗) +
µs − µpλ

2

[
log
|K∗ + ΣY |
|ΣY |

− log
|K∗ + ΣZ |
|ΣZ |

]

(2.95)

= µ0β̄R0Z(K∗) + µ0βR0Y (K∗) + (µs − µpλ)Rs(K
∗) (2.96)

= µ0R
∗
0 + (µs − µpλ)R∗s (2.97)
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where (2.90) comes from the fact that 0 ≤ β = 1 − β̄ ≤ 1, (2.91)-(2.92) are due

to the Markov chains in (2.85)-(2.86), respectively, (2.93) can be obtained by using

the analysis in [18, eqns (30)-(32)] which uses an extremal inequality from [5] to

establish this result, (2.95) comes from the third part of Lemma 2.4, and (2.97) is

due to our assumption that R∗0 = R0Y (K∗) = R0Z(K∗). Thus, (2.97) implies

max
(R0,Rp,Rs)∈Cp(S)

µ0R0 + (µs − µpλ)Rs ≤ µ0R
∗
0 + (µs − µpλ)R∗s (2.98)

Comparing (2.88) and (2.98) yields

Ro
s ≤ R∗s (2.99)

Using (2.82) and (2.99) and noting µs > µp, we can get

µpR
o
p + µsR

o
s ≤ µpR

∗
p + µsR

∗
s (2.100)

which contradicts with (2.77); proving (2.75). This completes the converse proof for

this case.

Before providing the proof for the last case, we recap our proof for the case

R∗0 = R0Y (K∗) ≤ R0Z(K∗). Similar to Section 2.4.2.1, here also, we prove the

optimality of Gaussian signalling indirectly, i.e., we show the desired identity

g(R∗0) = f(R∗0) (2.101)
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indirectly. First, we show that for the given common message rate R∗0, R∗s+R
∗
p is sum

rate optimal, i.e., (R∗p, R
∗
s) achieve the sum capacity of the public and confidential

messages, by obtaining (2.82). Secondly, we show that (R∗0, 0, R
∗
s) is also on the

boundary of the capacity region Cp(S) by obtaining (2.98). These two findings give

us the inequalities in (2.82) and (2.99). Finally, we use a time-sharing argument for

these two inequalities in (2.82) and (2.99) to establish (2.101), which completes the

proof.

2.4.2.3 R∗0 = R0Z(K∗) < R0Y (K∗)

In this case, we have λ = βY = 0, see (2.49)-(2.50). Hence, the KKT condition in

(2.46) reduces to

µs(K
∗ + ΣY )−1 + M = (µs + βZ)(K∗ + ΣZ)−1 + MS (2.102)

We again prove the desired identity

g(R∗0) = f(R∗0) (2.103)

by contradiction. We first assume that

g(R∗0) < f(R∗0) (2.104)
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which implies that there exists a rate triple (R∗0, R
o
p, R

o
s) ∈ Cp(S) such that

µpR
∗
p + µsR

∗
s < µpR

o
p + µsR

o
s (2.105)

In the rest of the section, we show that

µpR
∗
p + µsR

∗
s ≥ µpR

o
p + µsR

o
s (2.106)

to reach a contradiction, and hence, prove (2.103). To this end, we define a new

covariance matrix Σ̃Y as follows

µs(K
∗ + Σ̃Y )−1 = µs(K

∗ + ΣY )−1 + M (2.107)

This new covariance matrix Σ̃Y has some useful properties listed in the following

lemma.

Lemma 2.5 We have the following facts.

• 0 � Σ̃Y

• Σ̃Y � ΣY

• Σ̃Y � ΣZ

• (K∗ + Σ̃Y )−1Σ̃Y = (K∗ + ΣY )−1ΣY
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The proof of this lemma is very similar to the proof Lemma 2.4, and hence is omitted.

Using this new covariance matrix Σ̃Y , we define a random vector Ỹ as

Ỹ = X + ÑY (2.108)

where ÑY is a Gaussian random vector with covariance matrix Σ̃Y . Due to the first

and second statements of Lemma 2.5, we have the following Markov chains

U → V → X→ Ỹ → Y (2.109)

U → V → X→ Ỹ → Z (2.110)

Next, we study the following optimization problem

max
(R0,Rp,Rs)∈Cp(S)

(µp + βZ)R0 + µpRp + µsRs (2.111)

We note that since (R∗0, R
o
p, R

o
s) ∈ Cp(S), we have the following lower bound for the

optimization problem in (2.111)

(µp + βZ)R∗0 + µpR
o
p + µsR

o
s ≤ max

(R0,Rp,Rs)∈Cp(S)
(µp + βZ)R0 + µpRp + µsRs

(2.112)

We next obtain the maximum for (2.111). To this end, we introduce the following

lemma which provides an explicit form for this optimization problem.
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Lemma 2.6 For µs > µp, we have

max
(R0,Rp,Rs)∈Cp(S)

(µp + βZ)R0 + µpRp + µsRs

= max
U→V→X→(Y,Z)

E[XX>]�S

(µp + βZ) min{I(U ; Y), I(U ; Z)}+ µpI(V ; Z|U)

+ µs [I(V ; Y|U)− I(V ; Z|U)] (2.113)

The proof of this lemma is given in Appendix 2.7.5.

Next we introduce the following extremal inequality from [5], which will be

used subsequently in the solution of (2.113).

Lemma 2.7 ([5, Corollary 4]) Let (U,X) be an arbitrarily correlated random

vector, where X has a covariance constraint E
[
XX>

]
� S and S � 0. Let N1,N2

be Gaussian random vectors with covariance matrices Σ1,Σ2, respectively. They are

independent of (U,X). Furthermore, Σ1,Σ2 satisfy Σ1 � Σ2. Assume that there

exists a covariance matrix K∗ such that K∗ � S and

ν(K∗ + Σ1)−1 = γ(K∗ + Σ2)−1 + MS (2.114)

where ν ≥ 0, γ ≥ 0 and MS is positive semi-definite matrix such that (S−K∗)MS =

0. Then, for any (U,X), we have

νh(X + N1|U)− γh(X + N2|U) ≤ ν

2
log |(2πe)(K∗ + Σ1)| − γ

2
log |(2πe)(K∗ + Σ2)|

(2.115)
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Now we use Lemma 2.7. To this end, we note that using (2.107) in (2.102),

we get

µs(K
∗ + Σ̃Y )−1 = (µs + βZ)(K∗ + ΣZ)−1 + MS (2.116)

In view of (2.116) and the fact that Σ̃Y � ΣZ , Lemma 2.7 implies

µsh(Ỹ|U)− (µs + βZ)h(Z|U) ≤ µs
2

log |(2πe)(K∗ + Σ̃Y )|

− µs + βZ
2

log |(2πe)(K∗ + ΣZ)| (2.117)

We now consider the maximization in (2.113) as follows

max
(R0,Rp,Rs)∈Cp(S)

(µp + βZ)R0 + µpRp + µsRs

= max
U→V→X→(Y,Z)

E[XX>]�S

(µp + βZ) min{I(U ; Y), I(U ; Z)}+ µpI(V ; Z|U)

+ µs [I(V ; Y|U)− I(V ; Z|U)] (2.118)

≤ max
U→V→X→(Y,Z)

E[XX>]�S

(µp + βZ)I(U ; Z) + µpI(V ; Z|U) + µs [I(V ; Y|U)− I(V ; Z|U)]

(2.119)

≤ max
U→V→X→(Y,Z)

E[XX>]�S

(µp + βZ)I(U ; Z) + µpI(X; Z|U) + µs [I(V ; Y|U)− I(V ; Z|U)]

(2.120)
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≤ max
U→V→X→(Y,Z)

E[XX>]�S

(µp + βZ)I(U ; Z) + µpI(X; Z|U) + µs

[
I(V ; Ỹ|U)− I(V ; Z|U)

]

(2.121)

≤ max
U→X→(Y,Z)

E[XX>]�S

(µp + βZ)I(U ; Z) + µpI(X; Z|U) + µs

[
I(X; Ỹ|U)− I(X; Z|U)

]

(2.122)

= max
U→X→(Y,Z)

E[XX>]�S

(µp + βZ)h(Z) + µsh(Ỹ|U)− (µs + βZ)h(Z|U)

− µs
2

log |(2πe)Σ̃Y |+
µs − µp

2
log |(2πe)ΣZ | (2.123)

≤ µp + βZ
2

log |(2πe)(S + ΣZ)|+ max
U→X→(Y,Z)

E[XX>]�S

µsh(Ỹ|U)− (µs + βZ)h(Z|U)

− µs
2

log |(2πe)Σ̃Y |+
µs − µp

2
log |(2πe)ΣZ | (2.124)

≤ µp + βZ
2

log |(2πe)(S + ΣZ)|+ µs
2

log |(2πe)(K∗ + Σ̃Y )|

− µs + βZ
2

log |(2πe)(K∗ + ΣZ)| − µs
2

log |(2πe)Σ̃Y |+
µs − µp

2
log |(2πe)ΣZ |

(2.125)

=
µp + βZ

2
log
|S + ΣZ |
|K∗ + ΣZ |

+
µp
2

log
|K∗ + ΣZ |
|ΣZ |

+
µs
2

[
log
|K∗ + Σ̃Y |
|Σ̃Y |

− log
|K∗ + ΣZ |
|ΣZ |

]
(2.126)

= (µp + βZ)R0Z(K∗) + µpRp(K
∗) +

µs
2

[
log
|K∗ + Σ̃Y |
|Σ̃Y |

− log
|K∗ + ΣZ |
|ΣZ |

]
(2.127)

= (µp + βZ)R0Z(K∗) + µpRp(K
∗) +

µs
2

[
log
|K∗ + ΣY |
|ΣY |

− log
|K∗ + ΣZ |
|ΣZ |

]
(2.128)

= (µp + βZ)R0Z(K∗) + µpRp(K
∗) + µsRs(K

∗) (2.129)

= (µp + βZ)R∗0 + µpR
∗
p + µsR

∗
s (2.130)
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where (2.119) is due to min{a, b} ≤ a, (2.120) is due to the Markov chain in (2.110),

(2.121)-(2.122) come from the Markov chains in (2.109)-(2.110), respectively, (2.124)

is due to the maximum entropy theorem [22], (2.125) comes from (2.117), and (2.128)

is due to the third part of Lemma 2.5. Comparing (2.130) and (2.112) yields

µpR
o
p + µsR

o
s ≤ µpR

∗
p + µsR

∗
s (2.131)

which contradicts with our assumption in (2.105); implying (2.103). This completes

the converse proof for this case.

We note that contrary to Sections 2.4.2.1 and 2.4.2.2, here we prove the opti-

mality of Gaussian signalling, i.e.,

g(R∗0) = f(R∗0) (2.132)

directly. In other words, to show (2.132), we did not find any other points on

the boundary of the capacity region Cp(S) and did not have to use a time-sharing

argument between these points to reach (2.132). (This was our strategy in Sec-

tions 2.4.2.1 and 2.4.2.2.) Instead, we define a new optimization problem given in

(2.113) whose solution yields (2.132).

2.5 Proof of Theorem 2.3 for the General Case

The achievability of the region given in Theorem 2.3 can be shown by comput-

ing the region in Theorem 2.1 with the following selection of (U, V,X): V = X,
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X = U + T where T,U are independent Gaussian random vectors with covariance

matrices K,S−K, respectively, U = U. In the rest of this section, we consider the

converse proof. We first note that following the approaches in Section V.B of [4]

and Section 7.1 of [19], it can be shown that a new Gaussian MIMO wiretap channel

can be constructed from any Gaussian MIMO wiretap channel described by (2.13)-

(2.14) such that the new channel has the same capacity-equivocation region with the

original one and in the new channel, both the legitimate user and the eavesdropper

have the same number of antennas as the transmitter, i.e., rY = rZ = t. Thus, with-

out loss of generality, we assume that rY = rZ = t. We next apply singular-value

decomposition to the channel gain matrices HY ,HZ as follows

HY = UY ΛY V>Y (2.133)

HZ = UZΛZV>Z (2.134)

where UY ,UZ ,VY ,VZ are t × t orthogonal matrices, and ΛY ,ΛZ are diagonal

matrices. We now define a new Gaussian MIMO wiretap channel as follows

Y = HY X + NY (2.135)

Z = HZX + NZ (2.136)
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where HY ,HZ are defined as

HY = UY (ΛY + αI)V>Y (2.137)

HZ = UZ(ΛZ + αI)V>Z (2.138)

for some α > 0. We denote the capacity-equivocation region of the Gaussian MIMO

wiretap channel defined in (2.135)-(2.136) by Cα(S). Since HY ,HZ are invertible,

the capacity-equivocation region of the channel in (2.135)-(2.136) is equal to the

capacity-equivocation region of the following aligned channel

Y = X + H
−1

Y NY (2.139)

Z = X + H
−1

Z NZ (2.140)

Thus, using the capacity result for the aligned case, which was proved in the previous

section, we obtain Cα(S) as the union of rate triples (R0, R1, Re) satisfying

0 ≤ Re ≤
1

2
log

∣∣∣HY KH
>
Y + ΣY

∣∣∣
|ΣY |

− 1

2
log

∣∣∣HZKH
>
Z + ΣZ

∣∣∣
|ΣZ |

(2.141)

R0 +R1 ≤
1

2
log

∣∣∣HY KH
>
Y + ΣY

∣∣∣
|ΣY |

+ min





1

2
log

∣∣∣HY SH
>
Y + ΣY

∣∣∣
∣∣∣HY KH

>
Y + ΣY

∣∣∣
,
1

2
log

∣∣∣HZSH
>
Z + ΣZ

∣∣∣
∣∣∣HZKH

>
Z + ΣZ

∣∣∣



 (2.142)

R0 ≤ min





1

2
log

∣∣∣HY SH
>
Y + ΣY

∣∣∣
∣∣∣HY KH

>
Y + ΣY

∣∣∣
,
1

2
log

∣∣∣HZSH
>
Z + ΣZ

∣∣∣
∣∣∣HZKH

>
Z + ΣZ

∣∣∣



 (2.143)

for some positive semi-definite matrix K such that 0 � K � S.
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We next obtain an outer bound for the capacity-equivocation region of the

original Gaussian MIMO wiretap channel in (2.13)-(2.14) in terms of Cα(S). To this

end, we first note the following Markov chains

X→ Y → Y (2.144)

X→ Z→ Z (2.145)

which imply that if the messages (W0,W1) with rates (R0, R1) are transmitted with

a vanishingly small probability of error in the original Gaussian MIMO wiretap

channel given by (2.13)-(2.14), they will be transmitted with a vanishingly small

probability of error in the new Gaussian MIMO wiretap channel given by (2.135)-

(2.136) as well. However, as opposed to the rates R0, R1, we cannot immediately

conclude that if an equivocation rate Re is achievable in the original Gaussian MIMO

wiretap channel given in (2.13)-(2.14), it is also achievable in the new Gaussian

MIMO wiretap channel in (2.135)-(2.136). The reason for this is that both the

legitimate user’s and the eavesdropper’s channel gain matrices are enhanced in the

new channel given by (2.135)-(2.136), see (2.137)-(2.138) and/or (2.144)-(2.145), and

consequently, it is not clear what the overall effect of these two enhancements on

the equivocation rate will be. However, in the sequel, we show that if (R0, R1, Re) ∈

C(S), then we have (R0, R1, Re − γ) ∈ Cα(S). This will let us write down an outer

bound for C(S) in terms of Cα(S). To this end, we note that if (R0, R1, Re) ∈

C(S), we need to have a random vector (U, V,X) such that the inequalities given

in Theorem 2.1 hold. Assume that we use the same random vector (U, V,X) for
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the new Gaussian MIMO wiretap channel in (2.135)-(2.136), and achieve the rate

triple (R0, R1, Re). Due to the Markov chains in (2.144)-(2.145), we already have

R1 ≤ R1, R0 ≤ R0. Furthermore, following the analysis in Section 4 of [18], we can

bound the gap between Re and Re, i.e., γ, as follows

γ = Re −Re ≤
1

2
log

∣∣∣HZSH
>
Z + ΣZ

∣∣∣
|ΣZ |

− 1

2
log
|HZSH>Z + ΣZ |

|ΣZ |
(2.146)

Thus, we have

C(S) ⊆ Cα(S) + G(S) (2.147)

where G(S) is

G(S) =



(0, 0, Re) : 0 ≤ Re ≤

1

2
log

∣∣∣HZSH
>
Z + ΣZ

∣∣∣
|ΣZ |

− 1

2
log
|HZSH>Z + ΣZ |

|ΣZ |





(2.148)

Taking α→ 0 in (2.147), we get

C(S) ⊆ lim
α→0
Cα(S) (2.149)

where we use the fact that

lim
α→0

1

2
log

∣∣∣HZSH
>
Z + ΣZ

∣∣∣
|ΣZ |

− 1

2
log
|HZSH>Z + ΣZ |

|ΣZ |
= 0 (2.150)
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which follows from the continuity of log | · | in positive semi-definite matrices, and

the fact that limα→0 HZ = HZ . Finally, we note that

lim
α→0
Cα(S) (2.151)

converges to the region given in Theorem 2.3 due to the continuity of log | · | in

positive semi-definite matrices and limα→0 HY = HY , limα→0 HZ = HZ ; completing

the proof.

2.6 Conclusions

In this chapter, we obtain the capacity-equivocation region of the Gaussian MIMO

wiretap channel. In particular, we show that jointly Gaussian auxiliary random

variables and channel input are sufficient to evaluate the existing single-letter de-

scription for the capacity-equivocation region of the Gaussian MIMO wiretap chan-

nel due to [3]. We prove this sufficiency by using channel enhancement [4] and an

extremal inequality from [5].

2.7 Appendix

2.7.1 Proof of Lemma 2.1

The proof of this lemma for R0 = 0 is outlined in [6, Problem 33-c], [7]. We extend

their proof to the general case of interest here. We first note the inclusion Cp ⊆ C,

which follows from the fact that if (R0, Rp, Rs) ∈ Cp, we can attain the rate triple
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(R0, R1 = Rs + Rp, Re = Rs), i.e., (R0, Rs + Rp, Rs) ∈ C. To show the reverse

inclusion, we use the achievability proof for Theorem 2.1 given in [3]. According to

this achievable scheme, W1 can be divided into two parts as W1 = (Wp,Ws) with

rates (R1 −Re, Re), respectively, and we have

H(W1|W0, Z
n) = H(Wp,Ws|Zn,W0) (2.152)

≥ H(Ws|Zn,W0) (2.153)

≥ H(Ws)− nγn (2.154)

for some γn which satisfies limn→∞ γn = 0. Hence, using this capacity achieving

scheme for C, we can attain the rate triple (R0, Rp = R1 −Re, Rs = Re) ∈ Cp. This

implies C ⊆ Cp; completing the proof of the lemma.

2.7.2 Proof of Lemma 2.2

Since the program in (2.44)-(2.45) is not necessarily convex, the KKT conditions

are necessary but not sufficient. The Lagrangian for this optimization problem is

given by

L = µsRs(K) + µpRp + λY [Rp(K) +R0Y (K)−Rp −R∗0]

+ λZ [Rp(K) +R0Z(K)−Rp −R∗0] + βY [R0Y (K)−R∗0] + βZ [R0Z(K)−R∗0]

+ tr(KM) + tr((S−K)MS) (2.155)
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where M,MS are positive semi-definite matrices, and λY ≥ 0, λZ ≥ 0, βY ≥ 0, βZ ≥

0.

The necessary KKT conditions that they need to satisfy are given as follows

∂L
∂Rp

|Rp=R∗p = 0 (2.156)

∇KL |K=K∗ = 0 (2.157)

tr(K∗M) = 0 (2.158)

tr((S−K∗)MS) = 0 (2.159)

λY
[
Rp(K

∗) +R0Y (K∗)−R∗p −R∗0
]

= 0 (2.160)

λZ
[
Rp(K

∗) +R0Z(K∗)−R∗p −R∗0
]

= 0 (2.161)

βY (R0Y (K∗)−R∗0) = 0 (2.162)

βZ(R0Z(K∗)−R∗0) = 0 (2.163)

The first KKT condition in (2.156) implies λY +λZ = µp. We define λY = µpλ, λZ =

µpλ̄ and consequently, we have 0 ≤ λ̄ = 1 − λ ≤ 1. The second KKT condition in

(2.157) implies (2.46). Since tr(AB) = tr(BA) and tr(AB) ≥ 0 for A � 0,B � 0,

(2.158)-(2.159) imply (2.47)-(2.48). The KKT conditions in (2.160)-(2.161) imply

(2.51). Furthermore, the KKT conditions in (2.160)-(2.161) state the conditions that

if R0Y (K∗) > R0Z(K∗), λ = 0, if R0Y (K∗) < R0Z(K∗), λ = 1, and if R0Y (K∗) =

R0Z(K∗), λ is arbitrary, i.e., 0 ≤ λ ≤ 1. Similarly, the KKT conditions in (2.162)-

(2.163) imply (2.50).
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2.7.3 Proof of Lemma 2.3

We note the following identities

(µs − µpλ)(K∗ + Σ̃Z)−1 = (µs − µpλ)(K∗ + ΣZ)−1 + MS (2.164)

(µs − µpλ)(K∗ + Σ̃Z)−1 = (µs − µpλ)(K∗ + ΣY )−1 + M (2.165)

where (2.164) is due to (2.56), and (2.165) is obtained by plugging (2.164) into

(2.52). Since M � 0,MS � 0, (2.164)-(2.165) implies

(µs − µpλ)(K∗ + Σ̃Z)−1 � (µs − µpλ)(K∗ + ΣZ)−1 (2.166)

(µs − µpλ)(K∗ + Σ̃Z)−1 � (µs − µpλ)(K∗ + ΣY )−1 (2.167)

Using the fact that for A � 0, B � 0, if A � B, then A−1 � B−1 in (2.166)-(2.167),

we can get the second and third parts of Lemma 2.3. Next, we prove the first part
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of the lemma as follows

Σ̃Z =

[
(K∗ + ΣY )−1 +

1

µs − µpλ
M

]−1

−K∗ (2.168)

=

[
I +

1

µs − µpλ
(K∗ + ΣY )M

]−1

(K∗ + ΣY )−K∗ (2.169)

=

[
I +

1

µs − µpλ
ΣY M

]−1

(K∗ + ΣY )−K∗ (2.170)

=

[
Σ−1
Y +

1

µs − µpλ
M

]−1

Σ−1
Y (K∗ + ΣY )−K∗ (2.171)

=

[
Σ−1
Y +

1

µs − µpλ
M

]−1 [
Σ−1
Y +

1

µs − µpλ
M

]
K∗ +

[
Σ−1
Y +

1

µs − µpλ
M

]−1

−K∗ (2.172)

= K∗ +

[
Σ−1
Y +

1

µs − µpλ
M

]−1

−K∗ (2.173)

=

[
Σ−1
Y +

1

µs − µpλ
M

]−1

(2.174)

� 0 (2.175)

where (2.168) comes from (2.165), (2.170) and (2.172) follow from the KKT condi-

tion in (2.47).
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Finally, we show the fourth part of Lemma 2.3 as follows

(K∗ + Σ̃Z)−1(S + Σ̃Z) = (K∗ + Σ̃Z)−1(S + K∗ −K∗ + Σ̃Z) (2.176)

= I + (K∗ + Σ̃Z)−1(S−K∗) (2.177)

= I +

[
(K∗ + ΣZ)−1 +

1

µs − µpλ
MS

]
(S−K∗) (2.178)

= I + (K∗ + ΣZ)−1(S−K∗) (2.179)

= (K∗ + ΣZ)−1(K∗ + ΣZ) + (K∗ + ΣZ)−1(S−K∗)

(2.180)

= (K∗ + ΣZ)−1(S + ΣZ) (2.181)

where (2.178) is due to (2.164), and (2.179) comes from (2.48). The proof is com-

plete.

2.7.4 Proof of Lemma 2.4

We note the following

(µs − µpλ)(K∗ + Σ̃Y )−1 = (µs − µpλ)(K∗ + ΣY )−1 + M (2.182)

(µs − µpλ)(K∗ + Σ̃Y )−1 = (µs − µpλ+ µ0β̄)(K∗ + ΣZ)−1 + µ0β(K∗ + ΣY )−1

+ MS (2.183)
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where (2.182) is (2.83), and (2.183) comes from plugging (2.182) into (2.74). Since

M � 0, (2.182) implies

(µs − µpλ)(K∗ + Σ̃Y )−1 � (µs − µpλ)(K∗ + ΣY )−1 (2.184)

Using the fact that for A � 0, B � 0, if A � B, then A−1 � B−1 in (2.184) yields

the second statement of the lemma. Since 0 ≤ β = 1− β̄ ≤ 1 and MS � 0, (2.183)

implies

(µs − µpλ)(K∗ + Σ̃Y )−1 � (µs − µpλ)(K∗ + ΣZ)−1 (2.185)

Using the fact that for A � 0, B � 0, if A � B, then A−1 � B−1 in (2.185) yields

the first statement of the lemma. To prove the first statement of the lemma, we

note that (2.182) implies

Σ̃Y =

[
(K∗ + ΣY )−1 +

1

µs − µpλ
M

]−1

−K∗ (2.186)

which is already shown to be positive semi-definite as done through (2.168)-(2.175)

in Appendix 2.7.3.
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Finally, we consider the fourth statement of this lemma as follows

(K∗ + Σ̃Y )−1Σ̃Y = (K∗ + Σ̃Y )−1(K∗ −K∗ + Σ̃Y ) (2.187)

= I− (K∗ + Σ̃Y )−1K∗ (2.188)

= I−
[
(K∗ + ΣY )−1 +

1

µs − µpλ
M

]
K∗ (2.189)

= I− (K∗ + ΣY )−1K∗ (2.190)

= (K∗ + ΣY )−1(K∗ + ΣY )− (K∗ + ΣY )−1K∗ (2.191)

= (K∗ + ΣY )−1ΣY (2.192)

where (2.189) is due to (2.182) and (2.190) comes from (2.47).

2.7.5 Proof of Lemma 2.6

The optimization problem in (2.113) can be written as

max
U→V→X→(Y,Z)

E[XX>]�S

µsRs + µpRp + (µp + βZ)R0 (2.193)

s.t.





0 ≤ Rs ≤ I(V ; Y|U)− I(V ; Z|U)

Rs +Rp +R0 ≤ I(V ; Y|U) + min{I(U ; Y), I(U ; Z)}

R0 ≤ min{I(U ; Y), I(U ; Z)}

(2.194)
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For a given (U, V,X), we can rewrite the cost function in (2.193) as follows

µsRs + µpRp + (µp + βZ)R0

≤ µsRs + µp[I(V ; Y|U) + min{I(U ; Y), I(U ; Z)} −Rs −R0] + (µp + βZ)R0

(2.195)

= (µs − µp)Rs + µp[I(V ; Y|U) + min{I(U ; Y), I(U ; Z)}] + βZR0 (2.196)

≤ (µs − µp)[I(V ; Y|U)− I(V ; Z|U)] + µp[I(V ; Y|U) + min{I(U ; Y), I(U ; Z)}]

+ βZR0 (2.197)

= µs[I(V ; Y|U)− I(V ; Z|U)] + µp[I(V ; Z|U) + min{I(U ; Y), I(U ; Z)}] + βZR0

(2.198)

≤ µs[I(V ; Y|U)− I(V ; Z|U)] + µp[I(V ; Z|U) + min{I(U ; Y), I(U ; Z)}]

+ βZ min{I(U ; Y), I(U ; Z)} (2.199)

= µs[I(V ; Y|U)− I(V ; Z|U)] + µpI(V ; Z|U) + (µp + βZ) min{I(U ; Y), I(U ; Z)}

(2.200)

where (2.195) comes from the second constraint in (2.194), (2.197) is due to the first

constraint in (2.194) and the assumption µs > µp, and (2.199) comes from the third

constraint in (2.194). The proof can be concluded by noting that the upper bound

on the cost function given in (2.200) is attainable.
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Chapter 3

Secure Broadcasting over Multi-receiver Wiretap Channels

3.1 Introduction

In this chapter, we consider the secure broadcasting problem, where one transmitter

wants to have confidential communication with an arbitrary number of users in a

broadcast channel, while this communication is being eavesdropped by an external

entity (see Figure 3.1). In its most general form, the secure broadcasting prob-

lem subsumes the broadcast channel whose capacity region is still unknown, and is

considered to be a hard problem. Hence, towards understanding the fundamental

limits of secure broadcasting, the previous works consider some special cases of this

problem [23, 24].

Reference [23] first considers an arbitrary wiretap channel with two legitimate

receivers and one eavesdropper, and provides an inner bound for achievable rates

when each user wishes to receive an independent message. Secondly, [23] focuses on

the degraded wiretap channel with two receivers and one eavesdropper, where there

is a degradedness order among the receivers, and the eavesdropper is degraded with

respect to both users (see Figure 3.2 for a more general version of this problem that

we study here). For this setting, [23] finds the secrecy capacity region. We obtain

this result concurrently and independently, see Corollary 3.1.

Another relevant work on secure broadcasting is [24] which considers secure
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Y1

YK
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p(y1|x)

p(yK |x)

p(z|x)

Figure 3.1: Secure broadcasting to many users in the presence of an eavesdropper.

p(yK |x) p(y1|y2). . .

p(z|x)

X

YK

Z

Y2 Y1

Figure 3.2: The degraded multi-receiver wiretap channel with a more noisy eaves-
dropper.

broadcasting to K users using M sub-channels (see Figure 3.3) for two different

scenarios: In the first scenario, the transmitter wants to convey only a common

confidential message to all users, and in the second scenario, the transmitter wants

to send independent messages to all users. For both scenarios, [24] considers a

sub-class of parallel multi-receiver wiretap channels, where in any given sub-channel

there is a degradation order such that each receiver’s observation (except the best

one) is a degraded version of some other receiver’s observation, and this degradation

order is not necessarily the same for all sub-channels. For the first scenario, [24] finds

the common message secrecy capacity for this sub-class. For the second scenario,

where each user wishes to receive an independent message, [24] finds the sum secrecy
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...
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Y1M

p(yKM |xM)

XM

Figure 3.3: The parallel multi-receiver wiretap channel.

capacity for this sub-class of channels.

In this chapter, our approach will be two-fold: First, we will identify more

general channel models than considered in [23, 24] and generalize the results in

[23, 24] to those channel models, and secondly, we will consider somewhat more

specialized channel models than in [24] and provide more comprehensive results.

More precisely, our contributions in this chapter are:

1. We consider the degraded multi-receiver wiretap channel with an arbitrary

number of users and one eavesdropper, where users are arranged according to

a degradedness order, and each user has a less noisy channel with respect to the

eavesdropper, see Figure 3.2. We find the secrecy capacity region when each

user receives both an independent message and a common confidential mes-

sage. Since degradedness implies less noisiness [3], this channel model contains

the sub-class of channel models where in addition to the degradedness order

users exhibit, the eavesdropper is degraded with respect to all users. Conse-

quently, our result can be specialized to the degraded multi-receiver wiretap

channel with an arbitrary number of users and a degraded eavesdropper, see
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Corollary 3.1 and also [25]. The two-user version of the degraded multi-receiver

wiretap channel was studied and the capacity region was found independently

and concurrently in [23].

2. We then focus on a class of parallel multi-receiver wiretap channels with an

arbitrary number of legitimate receivers and an eavesdropper, see Figure 3.3,

where in each sub-channel, for any given user, either the user’s channel is less

noisy with respect to the eavesdropper’s channel, or vice versa. We establish

the common message secrecy capacity of this channel, which is a generalization

of the corresponding capacity result in [24] to a broader class of channels.

Secondly, we study the scenario where each legitimate receiver wishes to receive

an independent message for another sub-class of parallel multi-receiver wiretap

channels. For channels belonging to this sub-class, in each sub-channel, there

is a less noisiness order which is not necessarily the same for all sub-channels.

Consequently, this ordered class of channels is a subset of the class for which

we establish the common message secrecy capacity. We find the sum secrecy

capacity for this class, which is again a generalization of the corresponding

result in [24] to a broader class of channels.

3. We also investigate a class of parallel multi-receiver wiretap channels with two

sub-channels, two users and one eavesdropper, see Figure 3.4. For the chan-

nels in this class, there is a specific degradation order in each sub-channel such

that in the first (resp. second) sub-channel the second (resp. first) user is de-

graded with respect to the first (resp. second) user, while the eavesdropper is

68



Y11
p(y21|y11)

Y21
p(z1|y21)

Z1X1
p(y11|x1)

X2
p(y22|x2) p(y22|y12) p(z2|y12)

Y22 Y12 Z2

Figure 3.4: The parallel degraded multi-receiver wiretap channel.

degraded with respect to both users in both sub-channels. This is the model of

[24] for K = 2 users and M = 2 sub-channels. This model is more restrictive

compared to the one mentioned in the previous item. Our motivation to study

this more special class is to provide a stronger and more comprehensive result.

In particular, for this class, we determine the entire secrecy capacity region

when each user receives both an independent message and a common mes-

sage. In contrast, [24] gives the common message secrecy capacity (when only

a common message is transmitted) and sum secrecy capacity (when only inde-

pendent messages are transmitted) of this class. We discuss the generalization

of this result to arbitrary numbers of users and sub-channels.

4. We finally consider a variant of the previous channel model. In this model,

we again have a parallel multi-receiver wiretap channel with two sub-channels,

two users and one eavesdropper, and the degradation order in each sub-channel

is exactly the same as in the previous item. However, in this case, the input

and output alphabets of one sub-channel are non-intersecting with the input

and output alphabets of the other sub-channel. Moreover, we can use only one

of these sub-channels at any time. We determine the secrecy capacity region
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of this channel when the transmitter sends both an independent message to

each receiver and a common message to both receivers.

3.2 Degraded Multi-receiver Wiretap Channels

We first consider the generalization of Wyner’s degraded wiretap channel to the case

with many legitimate receivers. In particular, the channel consists of a transmit-

ter with an input alphabet x ∈ X , K legitimate receivers with output alphabets

yk ∈ Yk, k = 1, . . . , K, and an eavesdropper with output alphabet z ∈ Z. The

transmitter sends a confidential message to each user, say wk ∈ Wk to the kth user,

in addition to a common message, w0 ∈ W0, which is to be delivered to all users.

All messages are to be kept secret from the eavesdropper. The channel is assumed

to be memoryless with a transition probability p(y1, y2, . . . , yK , z|x).

In this section, we consider a special class of these channels, see Figure 3.2,

where users exhibit a certain degradation order, i.e., their channel outputs satisfy

the following Markov chain

X → YK → . . .→ Y1 (3.1)

and each user has a less noisy channel with respect to the eavesdropper, i.e., we

have

I(U ;Yk) > I(U ;Z) (3.2)
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for every U such that U → X → (Yk, Z). In fact, since a degradation order exists

among the users, it is sufficient to say that user 1 has a less noisy channel with respect

to the eavesdropper to guarantee that all users do. Hereafter, we call this channel

the degraded multi-receiver wiretap channel with a more noisy eavesdropper. We

note that this channel model contains the degraded multi-receiver wiretap channel

which is defined through the Markov chain

X → YK → . . .→ Y1 → Z (3.3)

because the Markov chain in (3.3) implies the less noisiness condition in (3.2).

A (2nR0 , 2nR1 , . . . , 2nRK , n) code for this channel consists of K+1 message sets,

Wk = {1, . . . , 2nRk}, k = 0, 1, . . . , K, an encoder f : W0 × . . . ×WK → X n, K de-

coders, one at each legitimate receiver, gk : Yk →W0×Wk, k = 1, . . . , K. The prob-

ability of error is defined as P n
e = maxk=1,...,K Pr [gk(Y

n
k ) 6= (W0,Wk)]. A rate tuple

(R0, R1, . . . , RK) is said to be achievable if there exists a code with limn→∞ P
n
e = 0

and

lim
n→∞

1

n
H(S(W )|Zn) ≥

∑

k∈S(W )

Rk, ∀ S(W ) (3.4)

where S(W ) denotes any subset of {W0,W1, . . . ,WK}. Hence, we consider only

perfect secrecy rates. The secrecy capacity region is defined as the closure of all

achievable rate tuples.

The secrecy capacity region of the degraded multi-receiver wiretap channel
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with a more noisy eavesdropper is given by the following theorem whose proof is

provided in Appendix 3.7.1.

Theorem 3.1 The secrecy capacity region of the degraded multi-receiver wiretap

channel with a more noisy eavesdropper is given by the union of the rate tuples

(R0, R1, . . . , RK) satisfying

R0 +
∑̀

k=1

Rk ≤
∑̀

k=1

I(Uk;Yk|Uk−1)− I(U`;Z), ` = 1, . . . , K (3.5)

where U0 = φ, UK = X, and the union is over all probability distributions of the

form

p(u1)p(u2|u1) . . . p(uK−1|uK−2)p(x|uK−1) (3.6)

Remark 3.1 Theorem 3.1 implies that a modified version of superposition coding

can achieve the boundary of the capacity region. The difference between the superpo-

sition coding scheme used to achieve (3.5) and the standard one in [22], that is used

to achieve the capacity region of the degraded broadcast channel, is that the former

uses stochastic encoding in each layer of the code to associate each message with

many codewords. This controlled amount of redundancy prevents the eavesdropper

from being able decode the message.

As stated earlier, the degraded multi-receiver wiretap channel with a more

noisy eavesdropper contains the degraded multi-receiver wiretap channel which re-

quires the eavesdropper to be degraded with respect to all users as stated in (3.3).
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Thus, we can specialize our result in Theorem 3.1 to the degraded multi-receiver

wiretap channel as given in the following corollary.

Corollary 3.1 The secrecy capacity region of the degraded multi-receiver wiretap

channel is given by the union of the rate tuples (R0, R1, . . . , RK) satisfying

R0 +
∑̀

k=1

Rk ≤
∑̀

k=1

I(Uk;Yk|Uk−1, Z), ` = 1, . . . , K (3.7)

where U0 = φ, UK = X, and the union is over all probability distributions of the

form

p(u1)p(u2|u1) . . . p(uK−1|uK−2)p(x|uK−1) (3.8)

The proof of this corollary can be carried out from Theorem 3.1 by noting the

following identity

I(U`;Z) =
∑̀

k=1

I(Uk;Z|Uk−1) (3.9)

and the following Markov chains

Uk−1 → Uk → Yk → Z, k = 1, . . . , K (3.10)

We acknowledge an independent and concurrent work regarding the degraded

multi-receiver wiretap channel. Reference [23] considers the two-user case and es-

tablishes the secrecy capacity region as well.
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So far we have determined the entire secrecy capacity region of the degraded

multi-receiver wiretap channel with a more noisy eavesdropper. This class of chan-

nels requires a certain degradation order among the legitimate receivers which may

be viewed as being too restrictive from a practical point of view. Our goal is to

consider progressively more general channel models. Towards that goal, in the next

section, we consider channel models where the users are not ordered in a degrad-

edness or noisiness order. However, the concepts of degradedness and noisiness are

essential in proving capacity results. In the next section, we will consider multi-

receiver broadcast channels which are composed of independent sub-channels. We

will assume some noisiness properties in these sub-channels in order to derive certain

capacity results. However, even though the sub-channels will have certain noisiness

properties, the overall broadcast channel will not have any degradedness or noisiness

properties.

3.3 Parallel Multi-receiver Wiretap Channels

Here, we investigate the parallel multi-receiver wiretap channel where the transmit-

ter communicates with K legitimate receivers using M independent sub-channels in

the presence of an eavesdropper, see Figure 3.3. The channel transition probability

of a parallel multi-receiver wiretap channel is

p
(
{y1m, . . . , yKm, zm}Mm=1 | {xm}

M
m=1

)
=

M∏

m=1

p (y1m, . . . , yKm, zm|xm) (3.11)
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where xm ∈ Xm is the input in the mth sub-channel where Xm is the corresponding

channel input alphabet, ykm ∈ Ykm (resp. zm ∈ Zm) is the output in the kth user’s

(resp. eavesdropper’s) mth sub-channel where Ykm (resp. Zm) is the kth user’s

(resp. eavesdropper’s) mth sub-channel output alphabet.

We note that the parallel multi-receiver wiretap channel can be regarded as an

extension of the parallel wiretap channel [26, 27] to the case of multiple legitimate

users. Though [26, 27] establish the secrecy capacity of the parallel wiretap channel

for the most general case, for the parallel multi-receiver wiretap channel, obtaining

the secrecy capacity region for the most general case seems to be intractable for now.

Thus, in this section, we investigate special classes of parallel multi-receiver wiretap

channels. These channel models contain the class of channel models studied in [24]

as a special case. Similar to [24], our emphasis will be on the common message

secrecy capacity and the sum secrecy capacity.

3.3.1 The Common Message Secrecy Capacity

We first consider the simplest possible scenario where the transmitter sends a com-

mon confidential message to all users. Despite its simplicity, the secrecy capacity

of a common confidential message (hereafter will be called the common message

secrecy capacity) in a general broadcast channel is unknown.

The common message secrecy capacity for a special class of parallel multi-

receiver wiretap channels was studied in [24]. In this class of parallel multi-receiver

wiretap channels [24], each sub-channel exhibits a certain degradation order which

75



is not necessarily the same for all sub-channels, i.e., the following Markov chain is

satisfied

Xl → Yπl(1) → Yπl(2) → . . .→ Yπl(K+1) (3.12)

in the lth sub-channel, where (Yπl(1), Yπl(2), . . . , Yπl(K+1)) is a permutation of (Y1l,

. . . , YKl, Zl). Hereafter, we call this channel the parallel degraded multi-receiver

wiretap channel1. Although [24] established the common message secrecy capacity

for this class of channels, in fact, their result is valid for the broader class in which

we have either

Xl → Ykl → Zl (3.13)

or

Xl → Zl → Ykl (3.14)

valid for everyXl and for any (k, l) pair where k ∈ {1, . . . , K}, l ∈ {1, . . . ,M}. Thus,

it is sufficient to have a degradedness order between each user and the eavesdropper

in any sub-channel instead of the long Markov chain between all users and the

eavesdropper as in (3.12).

Here, we focus on a broader class of channels where in each sub-channel, for any

1In [24], these channels are called reversely degraded parallel channels. Here, we call them
parallel degraded multi-receiver wiretap channels to be consistent with the terminology used in
the rest of the chapter.
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given user, either the user’s channel is less noisy than the eavesdropper’s channel,

or vice versa. More formally, we have either

I(U ;Ykl) > I(U ;Zl) (3.15)

or

I(U ;Ykl) < I(U ;Zl) (3.16)

for all U → Xl → (Ykl, Z) and any (k, l) pair where k ∈ {1, . . . , K}, l ∈ {1, . . . ,M}.

Hereafter, we call this channel the parallel multi-receiver wiretap channel with a

more noisy eavesdropper. Since the Markov chain in (3.12) implies either (3.15) or

(3.16), the parallel multi-receiver wiretap channel with a more noisy eavesdropper

contains the parallel degraded multi-receiver wiretap channel studied in [24].

A (2nR, n) code for this channel consists of a message set, W0 = {1, . . . , 2nR},

an encoder, f : W0 → X n
1 × . . . × X n

M , K decoders, one at each legitimate receiver

gk : Yk1 × . . . × YkM → W0, k = 1, . . . , K. The probability of error is defined as

P n
e = maxk=1,...,K Pr

[
Ŵk0 6= W0

]
where Ŵk0 is the kth user’s decoder output. The

secrecy of the common message is measured through the equivocation rate which is

defined as 1
n
H(W0|Zn

1 , . . . , Z
n
M). A common message secrecy rate, R, is said to be

achievable if there exists a code such that limn→∞ P
n
e = 0, and

lim
n→∞

1

n
H(W0|Zn

1 , . . . , Z
n
M) ≥ R (3.17)
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The common message secrecy capacity is the supremum of all achievable secrecy

rates.

The common message secrecy capacity of the parallel multi-receiver wiretap

channel with a more noisy eavesdropper is stated in the following theorem whose

proof is given in Appendix 3.7.2.

Theorem 3.2 The common message secrecy capacity, C0, of the parallel multi-

receiver wiretap channel with a more noisy eavesdropper is given by

C0 = max min
k=1,...,K

M∑

l=1

[
I(Xl;Ykl)− I(Xl;Zl)

]+
(3.18)

where the maximization is over all distributions of the form p(x1, . . . , xM) =
∏M

l=1 p(xl).

Remark 3.2 Theorem 3.2 implies that we should not use the sub-channels in which

there is no user that has a less noisy channel than the eavesdropper. Moreover, The-

orem 3.2 shows that the use of independent inputs in each sub-channel is sufficient

to achieve the capacity, i.e., inducing correlation between channel inputs of sub-

channels cannot provide any improvement. This is similar to the results of [28, 29]

in the sense that [28, 29] established the optimality of the use of independent inputs

in each sub-channel for the product of two degraded broadcast channels.

As stated earlier, the parallel multi-receiver wiretap channel with a more noisy

eavesdropper encompasses the parallel degraded multi-receiver wiretap channel stud-

ied in [24]. Hence, we can specialize Theorem 3.2 to recover the common message

secrecy capacity of the parallel degraded multi-receiver wiretap channel established
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in [24]. This is stated in the following corollary whose proof can be carried out from

Theorem 3.2 by noting the Markov chain Xl → Ykl → Zl, ∀(k, l).

Corollary 3.2 The common message secrecy capacity of the parallel degraded multi-

receiver wiretap channel is given by

C0 = max min
k=1,...,K

M∑

l=1

I(Xl;Ykl|Zl) (3.19)

where the maximization is over all distributions of the form p(x1, . . . , xM) =
∏M

l=1 p(xl).

3.3.2 The Sum Secrecy Capacity

We now consider the scenario where the transmitter sends an independent confi-

dential message to each legitimate receiver, and focus on the sum secrecy capacity.

We consider a class of parallel multi-receiver wiretap channels where the legiti-

mate receivers and the eavesdropper exhibit a certain less noisiness order in each

sub-channel. These less noisiness orders are not necessarily the same for all sub-

channels. Therefore, the overall channel does not have a less noisiness order. In the

lth sub-channel, for all U → Xl → (Y1l, . . . , YKl, Zl), we have

I(U ;Yπl(1)) > I(U ;Yπl(2)) > . . . > I(U ;Yπl(K+1)) (3.20)

where (Yπl(1), Yπl(2), . . . , Yπl(K+1)) is a permutation of (Y1l, . . . , YKl, Zl). We call this

channel the parallel multi-receiver wiretap channel with a less noisiness order in

each sub-channel. We note that this class of channels is a subset of the paral-
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lel multi-receiver wiretap channel with a more noisy eavesdropper studied in Sec-

tion 3.3.1, because of the additional ordering imposed between users’ sub-channels.

We also note that the class of parallel degraded multi-receiver wiretap channels

with a degradedness order in each sub-channel studied in [24] is not only a subset

of parallel multi-receiver wiretap channels with a more noisy eavesdropper studied

in Section 3.3.1 but also a subset of parallel multi-receiver wiretap channels with a

less noisiness order in each sub-channel studied in this section.

A (2nR1 . . . , 2nRK , n) code for this channel consists of K message sets, Wk =

{1, . . . , 2nRk}, k = 1, . . . , K, an encoder, f : W1 × . . . ×WK → X n
1 × . . . × X n

M , K

decoders, one at each legitimate receiver gk : Yk1 × . . .× YkM →Wk, k = 1, . . . , K.

The probability of error is defined as P n
e = maxk=1,...,K Pr

[
Ŵk 6= Wk

]
where Ŵk is

the kth user’s decoder output. The secrecy is measured through the equivocation

rate which is defined as 1
n
H(W1, . . . ,WK |Zn

1 , . . . , Z
n
M). A sum secrecy rate, Rs, is

said to be achievable if there exists a code such that limn→∞ P
n
e = 0, and

lim
n→∞

1

n
H(W1, . . . ,WK |Zn

1 , . . . , Z
n
M) ≥ Rs (3.21)

The sum secrecy capacity is defined to be the supremum of all achievable sum secrecy

rates.

The sum secrecy capacity for the class of parallel multi-receiver wiretap chan-

nels with a less noisiness order in each sub-channel studied in this section is stated

in the following theorem whose proof is given in Appendix 3.7.3.

Theorem 3.3 The sum secrecy capacity of the parallel multi-receiver wiretap chan-
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nel with a less noisiness order in each sub-channel is given by

max
M∑

l=1

[
I(Xl;Yρ(l)l)− I(Xl;Zl)

]+
(3.22)

where the maximization is over all input distributions of the form p(x1, . . . , xM) =

∏M
l=1 p(xl) and ρ(l) denotes the index of the strongest user in the lth sub-channel in

the sense that

I(U ;Ykl) ≤ I(U ;Yρ(l)l) (3.23)

for all U → Xl → (Y1l, . . . , YKl, Zl) and any k ∈ {1, . . . , K}.

Remark 3.3 Theorem 3.3 implies that the sum secrecy capacity is achieved by send-

ing information only to the strongest user in each sub-channel. As in Theorem 3.2,

here also, the use of independent inputs for each sub-channel is capacity-achieving,

which is again reminiscent of the result in [28, 29] about the optimality of the use

of independent inputs in each sub-channel for the product of two degraded broadcast

channels.

As mentioned earlier, since the class of parallel multi-receiver wiretap channels

with a less noisiness order in each sub-channel contains the class of parallel degraded

multi-receiver wiretap channels studied in [24], Theorem 3.3 can be specialized to

give the sum secrecy capacity of the latter class of channels as well. This result was

originally obtained in [24]. This is stated in the following corollary. Since the proof

of this corollary is similar to the proof of Corollary 3.2, we omit its proof.
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Corollary 3.3 The sum secrecy capacity of the parallel degraded multi-receiver wire-

tap channel is given by

max
M∑

l=1

I(Xl;Yρ(l)l|Zl) (3.24)

where the maximization is over all input distributions of the form p(x1, . . . , xM) =

∏M
l=1 p(xl) and ρ(l) denotes the index of the strongest user in the lth sub-channel in

the sense that

Xl → Yρ(l)l → Ykl (3.25)

for all input distributions on Xl and any k ∈ {1, . . . , K}.

So far, we have considered special classes of parallel multi-receiver wiretap

channels for specific scenarios and obtained results similar to [24], only for broader

classes of channels. In particular, in Section 3.3.1, we focused on the transmission of

a common message, whereas in Section 3.3.2, we focused on the sum secrecy capacity

when only independent messages are transmitted to all users. In the subsequent

sections, we will specialize our channel model, but we will develop stronger and

more comprehensive results. In particular, we will let the transmitter send both

common and independent messages, and we will characterize the entire secrecy

capacity region.
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3.4 Parallel Degraded Multi-receiver Wiretap Channels

We consider a special class of parallel degraded multi-receiver wiretap channels with

two sub-channels, two users and one eavesdropper. We consider the most general

scenario where each user receives both an independent message and a common

message. All messages are to be kept secret from the eavesdropper.

For the special class of parallel degraded multi-receiver wiretap channels in

consideration, there is a specific degradation order in each sub-channel. In particu-

lar, we have the following Markov chain

X1 → Y11 → Y21 → Z1 (3.26)

in the first sub-channel, and the following Markov chain

X2 → Y22 → Y12 → Z2 (3.27)

in the second sub-channel. Consequently, although in each sub-channel, one user is

degraded with respect to the other one, this does not hold for the overall channel,

and the overall channel is not degraded for any user. The corresponding channel

transition probability is

p(y11|x1)p(y21|y11)p(z1|y21)p(y22|x2)p(y12|y22)p(z2|y12) (3.28)

If we ignore the eavesdropper by setting Z1 = Z2 = φ, this channel model reduces
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to the broadcast channel that was studied in [28, 29].

A (2nR0 , 2nR1 , 2nR2 , n) code for this channel consists of three message sets,

W0 = {1, . . . , 2nR0}, Wj = {1, . . . , 2nRj}, j = 1, 2, one encoder f :W0×W1×W2 →

X n
1 ×X n

2 , two decoders one at each legitimate receiver gj : Ynj1×Ynj2 →W0×Wj, j =

1, 2. The probability of error is defined as P n
e = maxj=1,2 Pr

[
gj(Y

n
j1, Y

n
j2) 6= (W0,Wj)

]
.

A rate tuple (R0, R1, R2) is said to be achievable if there exists a code such that

limn→∞ P
n
e = 0 and

lim
n→∞

1

n
H(S(W )|Zn

1 , Z
n
2 ) ≥

∑

k∈S(W )

Rk, ∀ S(W ) (3.29)

where S(W ) denotes any subset of {W0,W1,W2}. The secrecy capacity region is

the closure of all achievable secrecy rate tuples.

The secrecy capacity region of this parallel degraded multi-receiver wiretap

channel is characterized by the following theorem whose proof is given in Ap-

pendix 3.7.4.

Theorem 3.4 The secrecy capacity region of the parallel degraded multi-receiver

wiretap channel defined by (3.28) is the union of the rate tuples (R0, R1, R2) satis-

fying

R0 ≤ I(U1;Y11|Z1) + I(U2;Y12|Z2) (3.30)

R0 ≤ I(U1;Y21|Z1) + I(U2;Y22|Z2) (3.31)

R0 +R1 ≤ I(X1;Y11|Z1) + I(U2;Y12|Z2) (3.32)
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R0 +R2 ≤ I(X2;Y22|Z2) + I(U1;Y21|Z1) (3.33)

R0 +R1 +R2 ≤ I(X1;Y11|Z1) + I(U2;Y12|Z2) + I(X2;Y22|U2, Z2) (3.34)

R0 +R1 +R2 ≤ I(X2;Y22|Z2) + I(U1;Y21|Z1) + I(X1;Y11|U1, Z1) (3.35)

where the union is over all distributions of the form p(u1, u2, x1, x2) = p(u1, x1)p(u2, x2).

Remark 3.4 If we let the encoder use an arbitrary joint distribution p(u1, x1, u2, x2)

instead of the ones that satisfy p(u1, x1, u2, x2) = p(u1, x1)p(u2, x2), this would not

enlarge the region given in Theorem 3.4, because all rate expressions in Theo-

rem 3.4 depend on either p(u1, x1) or p(u2, x2) but not on the joint distribution

p(u1, u2, x1, x2).

Remark 3.5 The capacity achieving scheme uses either superposition coding in both

sub-channels or superposition coding in one of the sub-channels, and a dedicated

transmission in the other one. We again note that this superposition coding is

different from the standard one [22] in the sense that it associates each message

with many codewords by using stochastic encoding at each layer of the code due to

secrecy concerns.

Remark 3.6 If we set Z1 = Z2 = φ, we recover the capacity region of the underlying

broadcast channel [29].

Remark 3.7 If we disable one of the sub-channels, say the first one, by setting

Y11 = Y21 = Z1 = φ, the parallel degraded multi-receiver wiretap channel of this

section reduces to the degraded multi-receiver wiretap channel of Section 3.2. The
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corresponding secrecy capacity region is then given by the union of the rate tuples

(R0, R1, R2) satisfying

R0 +R1 ≤ I(U2;Y12|Z2) (3.36)

R0 +R1 +R2 ≤ I(X2;Y22|U2, Z2) + I(U2;Y12|Z2) (3.37)

where the union is over all p(u2, x2). This region can be obtained through either

Corollary 3.1 or Theorem 3.4 (by setting Y11 = Y21 = Z1 = φ and eliminating

redundant bounds) implying the consistency of the results.

Next, we consider the scenario where the transmitter does not send a common

message, and find the secrecy capacity region.

Corollary 3.4 The secrecy capacity region of the parallel degraded multi-receiver

wiretap channel defined through (3.28) with no common message is given by the

union of the rate pairs (R1, R2) satisfying

R1 ≤ I(X1;Y11|Z1) + I(U2;Y12|Z2) (3.38)

R2 ≤ I(X2;Y22|Z2) + I(U1;Y21|Z1) (3.39)

R1 +R2 ≤ I(X1;Y11|Z1) + I(U2;Y12|Z2) + I(X2;Y22|U2, Z2) (3.40)

R1 +R2 ≤ I(X2;Y22|Z2) + I(U1;Y21|Z1) + I(X1;Y11|U1, Z1) (3.41)

where the union is over all distributions of the form p(u1)p(u2)p(x1|u1)p(x2|u2).

Proof: Since the common message rate can be exchanged with any user’s
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independent message rate, we set R0 = α + β,R′1 = R1 + α,R′2 = R2 + β where

α, β ≥ 0. Plugging these expressions into the rates in Theorem 3.4 and using

Fourier-Moztkin elimination, we get the region given in the corollary. 2

Remark 3.8 If we disable the eavesdropper by setting Z11 = Z22 = φ, we recover

the capacity region of the underlying broadcast channel without a common message,

which was found originally in [28].

At this point, one may ask whether the results of this section can be extended

to arbitrary numbers of users and parallel sub-channels. Once we have Theorem 3.4,

the extension of the results to an arbitrary number of parallel sub-channels is rather

straightforward. Let us consider the parallel degraded multi-receiver wiretap channel

with M sub-channels, and in each sub-channel, we have either the following Markov

chain

Xl → Y1l → Y2l → Zl (3.42)

or this Markov chain

Xl → Y2l → Y1l → Zl (3.43)

for any l ∈ {1, . . . ,M}. We define the set of indices S1 (resp. S2) as those where for

every l ∈ S1 (resp. l ∈ S2), the Markov chain in (3.42) (resp. in (3.43)) is satisfied.

Then, using Theorem 3.4, we obtain the secrecy capacity region of the channel with

two users and M sub-channels as given in the following theorem which is proved in
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Appendix 3.7.5.

Theorem 3.5 The secrecy capacity region of the parallel degraded multi-receiver

wiretap channel with M sub-channels, where each sub-channel satisfies either (3.42)

or (3.43) is given by the union of the rate tuples (R0, R1, R2) satisfying

R0 ≤
M∑

l=1

I(Ul;Y1l|Zl) (3.44)

R0 ≤
M∑

l=1

I(Ul;Y2l|Zl) (3.45)

R0 +R1 ≤
∑

l∈S1

I(Xl;Y1l|Zl) +
∑

l∈S2

I(Ul;Y1l|Zl) (3.46)

R0 +R2 ≤
∑

l∈S2

I(Xl;Y2l|Zl) +
∑

l∈S1

I(Ul;Y2l|Zl) (3.47)

R0 +R1 +R2 ≤
∑

l∈S1

I(Xl;Y1l|Zl) +
∑

l∈S2

I(Ul;Y1l|Zl) +
∑

l∈S2

I(Xl;Y2l|Ul, Zl) (3.48)

R0 +R1 +R2 ≤
∑

l∈S2

I(Xl;Y2l|Zl) +
∑

l∈S1

I(Ul;Y2l|Zl) +
∑

l∈S1

I(Xl;Y1l|Ul, Zl) (3.49)

where the union is over all distributions of the form
∏M

l=1 p(ul, xl).

We are now left with the question whether these results can be generalized to

an arbitrary number of users. If we consider the parallel degraded multi-receiver

wiretap channel with more than two sub-channels and an arbitrary number of users,

the secrecy capacity region for the scenario where each user receives a common mes-

sage in addition to an independent message does not seem to be characterizable.

Our intuition comes from the fact that, as of now, the capacity region of the corre-

sponding broadcast channel without secrecy constraints is unknown [30]. However,

if we consider the scenario where each user receives only an independent message,
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i.e., there is no common message, then the secrecy capacity region may be found,

because the capacity region of the corresponding broadcast channel without secrecy

constraints can be established [30], although there is no explicit expression for it in

the literature. We expect this particular generalization to be rather straightforward,

and do not pursue it here.

3.5 Sum of Degraded Multi-receiver Wiretap Channels

We now consider a different multi-receiver wiretap channel which can be viewed

as a sum of two degraded multi-receiver wiretap channels with two users and one

eavesdropper. In this channel model, the transmitter has two non-intersecting input

alphabets, i.e., X1,X2 with X1 ∩X2 = ∅, and each receiver has two non-intersecting

alphabets, i.e., Yj1,Yj2 with Yj1∩Yj2 = ∅ for the jth user, j = 1, 2, and Z1,Z2 with

Z1 ∩Z2 = ∅ for the eavesdropper. The channel is again memoryless with transition

probability

p(y1, y2, z|x) =





p(y11|x1)p(y21|y11)p(z1|y21) if (x, y1, y2, z) ∈ X1 × Y11 × Y21 ×Z1

p(y22|x2)p(y12|y22)p(z2|y12) if (x, y1, y2, z) ∈ X2 × Y21 × Y22 ×Z2

0 otherwise

(3.50)

where x ∈ X = X1 ∪ X2, yj ∈ Yj = Yj1 ∪ Yj2, j = 1, 2 and z ∈ Z = Z1 ∪

Z2. Thus, if the transmitter chooses to use its first alphabet, i.e., X1, the second

user (resp. eavesdropper) receives a degraded version of user 1’s (resp. user 2’s)

observation. However, if the transmitter uses its second alphabet, i.e., X2, the first
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user (resp. eavesdropper) receives a degraded version of user 2’s (resp. user 1’s)

observation. Consequently, the overall channel is not degraded from any user’s

perspective, however it is degraded from the eavesdropper’s perspective.

A (2nR0 , 2nR1 , 2nR2 , n) code for this channel consists of three message sets, w0 ∈

W0 = {1, . . . , 2nR0}, wj ∈ Wj = {1, . . . , 2nRj}, j = 1, 2, one encoder f :W0 ×W1 ×

W2 → X n and two decoders, one at each legitimate receiver, gj : Ynj →W0×Wj, j =

1, 2. The probability of error is defined as P n
e = maxj=1,2 Pr

[
gj(Y

n
j ) 6= (W0,Wj)

]
. A

rate tuple (R0, R1, R2) is said to be achievable if there exists a code with limn→∞ P
n
e =

0 and

lim
n→∞

1

n
H(S(W )|Zn) ≥

∑

j∈S(W )

Rj, ∀ S(W ) (3.51)

where S(W ) denotes any subset of {W0,W1,W2}. The secrecy capacity region is

the closure of all achievable secrecy rate tuples.

The secrecy capacity region of this channel is given in the following theorem

which is proved in Appendix 3.7.6.

Theorem 3.6 The secrecy capacity region of the sum of two degraded multi-receiver

wiretap channels is given by the union of the rate tuples (R0, R1, R2) satisfying

R0 ≤ αI(U1;Y11|Z1) + ᾱI(U2;Y12|Z2) (3.52)

R0 ≤ αI(U1;Y21|Z1) + ᾱI(U2;Y22|Z2) (3.53)
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R0 +R1 ≤ αI(X1;Y11|Z1) + ᾱI(U2;Y12|Z2) (3.54)

R0 +R2 ≤ αI(U1;Y21|Z1) + ᾱI(X2;Y22|Z2) (3.55)

R0 +R1 +R2 ≤ αI(X1;Y11|Z1) + ᾱI(U2;Y12|Z2) + ᾱI(X2;Y22|U2, Z2) (3.56)

R0 +R1 +R2 ≤ αI(U1;Y21|Z1) + αI(X1;Y11|U1, Z1) + ᾱI(X2;Y22|Z2) (3.57)

where the union is over all α ∈ [0, 1] and distributions of the form p(u1, u2, x1, x2) =

p(u1, x1)p(u2, x2).

Remark 3.9 This channel model is similar to the parallel degraded multi-receiver

wiretap channel of the previous section in the sense that it can be viewed to consist of

two parallel sub-channels, however now the transmitter cannot use both sub-channels

simultaneously. Instead, it should invoke a time-sharing approach between these two

so-called parallel sub-channels (α reflects this concern). Moreover, superposition

coding scheme again achieves the boundary of the secrecy capacity region, however

it differs from the standard one [22] in the sense that it needs to be modified to

incorporate secrecy constraints, i.e., it needs to use stochastic encoding to associate

each message with multiple codewords.

Remark 3.10 An interesting point about the secrecy capacity region is that if we

drop the secrecy constraints by setting Z1 = Z2 = φ, we are unable to recover

the capacity region of the corresponding broadcast channel that was found in [29].

After setting Z1 = Z2 = φ, we note that each expression in Theorem 3.6 and its

counterpart describing the capacity region [29] differ by exactly h(α). The reason for

this is as follows. Here, α not only denotes the time-sharing variable but also carries
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an additional information, i.e., the change of the channel that is in use is part of

the information transmission. However, since the eavesdropper can also decode these

messages, the term h(α), which is the amount of information that can be transmitted

via changes of the channel in use, disappears in the secrecy capacity region.

3.6 Conclusions

In this chapter, we study the secure broadcasting problem for degraded multi-

receiver wiretap channels, parallel multi-receiver wiretap channels with a more noisy

eavesdropper, parallel multi-receiver wiretap channels with less noisiness orderings

in each sub-channel, and parallel degraded multi-receiver wiretap channels. Our

motivation to focus on these specific channel models comes from the fact that al-

though the broadcast channel problem is a largely open problem, its solution, i.e.,

the capacity region, is known for the specific cases listed above. Hence, by obtaining

either a partial characterization of the secrecy capacity region or the entire secrecy

capacity region for these specific instances of the secure broadcasting problem, we

bring the literature of the secure broadcasting problem to the level of the literature

on the broadcast channel problem.

3.7 Appendix

3.7.1 Proof of Theorem 3.1

First, we show achievability, then provide the converse.
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3.7.1.1 Achievability

Fix the probability distribution as

p(u1)p(u2|u1) . . . p(uK−1|uK−2)p(x|uK−1) (3.58)

Codebook generation:

• Generate 2n(R0+R1+R̃1) length-n sequences u1 through p(u1) =
∏n

i=1 p(u1,i) and

index them as u1(w0, w1, w̃1) where w0 ∈
{

1, . . . , 2nR0
}

, w1 ∈
{

1, . . . , 2nR1
}

and w̃1 ∈
{

1, . . . , 2nR̃1
}

.

• For each uj−1, where j = 2, . . . , K−1, generate 2n(Rj+R̃j) length-n sequences uj

through p(uj|uj−1) =
∏n

i=1 p(uj,i|uj−1,i) and index them as uj(w0, w1, . . . , wj,

w̃1, . . . , w̃j) where wj ∈
{

1, . . . , 2nRj
}

and w̃j ∈
{

1, . . . , 2nR̃j
}

.

• Finally, for each uK−1, generate 2n(RK+R̃K) length-n sequences x through

p(x|uK−1) =
∏n

i=1 p(xi|uK,i) and index them as x(w0, w1, . . . , wK , w̃1, . . . , w̃K)

where wK ∈
{

1, . . . , 2nRK
}

and w̃K ∈
{

1, . . . , 2nR̃K
}

.

• Furthermore, we set

R̃i = I(Ui;Z|Ui−1), i = 1, . . . , K (3.59)

where U0 = φ and UK = X.

Encoding:
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Assume the messages to be transmitted are (w0, w1, . . . , wK). Then, the en-

coder randomly picks a set (w̃1, . . . , w̃K) and sends x(w0, w1, . . . , wK , w̃1, . . . , w̃K).

Decoding:

It is straightforward to see that if the following conditions are satisfied,

R0 +R1 + R̃1 ≤ I(U1;Y1) (3.60)

Rj + R̃j ≤ I(Uj;Yj|Uj−1), j = 2, . . . , K − 1 (3.61)

RK + R̃K ≤ I(X;YK |UK−1) (3.62)

then all users can decode both the common message and the independent mes-

sage directed to itself with vanishingly small error probability. Moreover, since the

channel is degraded, each user, say the jth one, can decode all of the independent

messages intended for the users whose channels are degraded with respect to the

jth user’s channel. Thus, these degraded users’ rates can be exploited to increase

the jth user’s rate which leads to the following achievable region

R0 +
∑̀

j=1

Rj +
∑̀

j=1

R̃j ≤
∑̀

j=1

I(Uj;Yj|Uj−1), ` = 1, . . . , K (3.63)

where U0 = φ and UK = X. Moreover, after eliminating
{
R̃j

}K
j=1

, (3.63) can be

expressed as

R0 +
∑̀

j=1

Rj ≤
∑̀

j=1

I(Uj;Yj|Uj−1)− I(U`;Z), ` = 1, . . . , K (3.64)
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where we used the fact that

∑̀

j=1

R̃j =
∑̀

j=1

I(Uj;Z|Uj−1) = I(U1, . . . , U`;Z) = I(U`;Z) (3.65)

where the second and the third equalities are due to the following Markov chain

U1 → . . .→ UK−1 → X → Z (3.66)

Equivocation computation:

We now calculate the equivocation of the code described above. To that end,

we first introduce the following lemma which states that a code satisfying the sum

rate secrecy constraint fulfills all other secrecy constraints.

Lemma 3.1 If the sum rate secrecy constraint is satisfied, i.e.,

1

n
H(W0,W1, . . . ,WK |Zn) ≥

K∑

j=0

Rj − εn (3.67)

then all other secrecy constraints are satisfied as well, i.e.,

1

n
H(S(W )|Zn) ≥

∑

j∈S(W )

Rj − εn (3.68)

where S(W ) denotes any subset of {W0,W1, . . . ,WK}.
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Proof: The proof of this lemma is as follows.

1

n
H(S(W )|Zn) =

1

n
H(S(W ),Sc(W )|Zn)− 1

n
H(Sc(W )|S(W ), Zn) (3.69)

≥
K∑

j=0

Rj − εn −
1

n
H(Sc(W )|S(W ), Zn) (3.70)

=
∑

j∈S(W )

Rj − εn +
∑

j∈Sc(W )

Rj −
1

n
H(Sc(W )|S(W ), Zn) (3.71)

=
∑

j∈S(W )

Rj − εn +
1

n
H(Sc(W ))− 1

n
H(Sc(W )|S(W ), Zn) (3.72)

≥
∑

j∈S(W )

Rj − εn (3.73)

where (3.70) is due to the fact that we assumed that sum rate secrecy constraint

(3.67) is satisfied and (3.72) follows from

∑

j∈Sc(W )

Rj =
1

n
H(Sc(W )) (3.74)

which is a consequence of the fact that message sets are uniformly and independently

distributed. 2

Hence, it is sufficient to check whether coding scheme presented satisfies the
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sum rate secrecy constraint.

H(W0,W1, . . . ,WK |Zn) = H(W0,W1, . . . ,WK , Z
n)−H(Zn) (3.75)

= H(Un
1 , . . . , U

n
K−1, X

n,W0,W1, . . . ,WK , Z
n)−H(Zn)

−H(Un
1 , . . . , U

n
K−1, X

n|W0,W1, . . . ,WK , Z
n) (3.76)

= H(Un
1 , . . . , U

n
K−1, X

n) +H(W0,W1, . . . ,WK , Z
n|Un

1 , . . . , U
n
K−1, X

n)−H(Zn)

−H(Un
1 , . . . , U

n
K−1, X

n|W0,W1, . . . ,WK , Z
n) (3.77)

≥ H(Un
1 , . . . , U

n
K−1, X

n)− I(Un
1 , . . . , U

n
K−1, X

n;Zn)

−H(Un
1 , . . . , U

n
K−1, X

n|W0,W1, . . . ,WK , Z
n) (3.78)

where each term will be treated separately. Since given Un
k = unk , Un

k+1 can take

2n(Rk+1+R̃k+1) values uniformly, the first term is

H(Un
1 , . . . , U

n
K−1, X

n) = H(Un
1 ) +

K−1∑

k=2

H(Un
k |Un

k−1) +H(Xn|Un
K−1) (3.79)

= nR0 + n
K∑

k=1

Rk + n
K∑

k=1

R̃k (3.80)

where the first equality follows from the following Markov chain

Un
1 → Un

2 → . . .→ Un
K−1 → Xn (3.81)
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The second term in (3.78) is

I(Un
1 , . . . , U

n
K−1, X

n;Zn) = I(Xn;Zn) + I(Un
1 , U

n
2 , . . . , U

n
K−1;Zn|Xn) (3.82)

= I(Xn;Zn) (3.83)

≤ nI(X;Z) + γn (3.84)

where (3.83) follows from the Markov chain in (3.81) and (3.84) can be shown by

following the approach devised in [2]. We now bound the third term in (3.78). To

that end, assume that the eavesdropper tries to decode
(
Un

1 , . . . , U
n
K−1, X

n
)

using the

side information (W0,W1, . . . ,WK) which is equivalent to decoding
(
W̃1, . . . , W̃K

)
.

Since R̃js are selected to ensure that the eavesdropper can decode them successively,

see (3.59), then using Fano’s lemma, we have

H(Un
1 , . . . , U

n
K−1, X

n|W0,W1, . . . ,WK , Z
n) ≤ εn (3.85)

Thus, using (3.80), (3.84) and (3.85) in (3.78), we get

H(W0,W1, . . . ,WK |Zn) ≥ n
K∑

j=0

Rj + n
K∑

j=1

R̃j − nI(X;Z)− εn (3.86)

= n

K∑

j=0

Rj − εn − γn (3.87)
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where (3.87) follows from the following, see (3.59) and (3.65),

K∑

j=1

R̃j = I(X;Z) (3.88)

3.7.1.2 Converse

First let us define the following auxiliary random variables,

Uk,i = W0W1 . . .WkY
i−1
k+1Z

n
i+1, k = 1, . . . , K − 1 (3.89)

which satisfy the following Markov chain

U1,i → U2,i → . . .→ UK−1,i → Xi → (Zi, YK,i, . . . , Y1,i) (3.90)

To provide a converse, we will show

1

n
H(W0,W1, . . . ,W`|Zn) ≤

∑̀

k=1

I(Uk;Yk|Uk−1)− I(U`;Z), ` = 1, . . . , K (3.91)

where U0 = φ, UK = X. We show this in three steps. First, let us write down

H(W0,W1, . . . ,W`|Zn) = H(W0,W1|Zn) +
∑̀

k=2

H(Wk|W0,W1, . . . ,Wk−1, Z
n)

(3.92)
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The first term on the right hand side of (3.92) is bounded as follows,

H(W0,W1|Zn) ≤ I(W0,W1;Y n
1 )− I(W0,W1;Zn) + εn (3.93)

≤
n∑

i=1

I(W0,W1;Y1,i|Y i−1
1 , Zn

i+1)− I(W0,W1;Zi|Y i−1
1 , Zn

i+1) + εn (3.94)

≤
n∑

i=1

I(W0,W1;Y1,i|Y i−1
1 , Zn

i+1)− I(W0,W1;Zi|Y i−1
1 , Zn

i+1)

+ I(Y i−1
1 , Zn

i+1;Y1,i)− I(Y i−1
1 , Zn

i+1;Zi) + εn (3.95)

=
n∑

i=1

I(W0,W1, Y
i−1

1 , Zn
i+1;Y1,i)− I(W0,W1, Y

i−1
1 , Zn

i+1;Zi) + εn (3.96)

≤
n∑

i=1

I(W0,W1, Y
i−1

1 , Zn
i+1;Y1,i)− I(W0,W1, Y

i−1
1 , Zn

i+1;Zi)

+ I(Y i−1
2 ;Y1,i|W0,W1, Y

i−1
1 , Zn

i+1)− I(Y i−1
2 ;Zi|W0,W1, Y

i−1
1 , Zn

i+1) + εn (3.97)

=
n∑

i=1

I(W0,W1, Y
i−1

1 , Zn
i+1, Y

i−1
2 ;Y1,i)− I(W0,W1, Y

i−1
1 , Zn

i+1, Y
i−1

2 ;Zi) + εn

(3.98)

=
n∑

i=1

I(W0,W1, Z
n
i+1, Y

i−1
2 ;Y1,i)− I(W0,W1, Z

n
i+1, Y

i−1
2 ;Zi) (3.99)

+ I(Y i−1
1 ;Y1,i|W0,W1, Z

n
i+1, Y

i−1
2 )− I(Y i−1

1 ;Zi|W0,W1, Z
n
i+1, Y

i−1
2 ) + εn (3.100)

=
n∑

i=1

I(W0,W1, Z
n
i+1, Y

i−1
2 ;Y1,i)− I(W0,W1, Z

n
i+1, Y

i−1
2 ;Zi) + εn (3.101)

=
n∑

i=1

I(U1,i;Y1,i)− I(U1,i;Zi) + εn (3.102)

where (3.93) follows from Fano’s lemma, (3.94) is obtained using Csiszar-Korner

identity (see Lemma 7 of [3]), (3.95) is due to the fact that

I(Y i−1
1 , Zn

i+1;Y1,i)− I(Y i−1
1 , Zn

i+1;Zi) > 0 (3.103)
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which follows from the fact that each user’s channel is less noisy with respect to the

eavesdropper. Similarly, (3.97) follows from the fact that

I(Y i−1
2 ;Y1,i|W0,W1, Y

i−1
1 , Zn

i+1)− I(Y i−1
2 ;Zi|W0,W1, Y

i−1
1 , Zn

i+1) > 0 (3.104)

which is a consequence of the fact that each user’s channel is less noisy with respect

to the eavesdropper’s channel. Finally, (3.101) is due to the following Markov chain

Y i−1
1 → Y i−1

2 →
(
W0,W1, Z

n
i+1, Y1,i, Zi

)
(3.105)

which is a consequence of the fact that the legitimate receivers exhibit a degradation

order.

We now bound the terms of the summation in (3.92) for 2 ≤ k ≤ K − 1. Let

us use the shorthand notation, W̃k−1 = (W0,W1, . . . ,Wk−1), then

H(Wk|W̃k−1, Z
n) ≤ I(Wk;Y

n
k |W̃k−1)− I(Wk;Z

n|W̃k−1) + εn (3.106)

≤
n∑

i=1

I(Wk;Yk,i|W̃k−1, Y
i−1
k , Zn

i+1)− I(Wk;Zi|W̃k−1, Y
i−1
k , Zn

i+1) + εn (3.107)

≤
n∑

i=1

I(Wk;Yk,i|W̃k−1, Y
i−1
k , Zn

i+1)− I(Wk;Zi|W̃k−1, Y
i−1
k , Zn

i+1)

+ I(Y i−1
k+1 ;Yk,i|W̃k−1, Y

i−1
k , Zn

i+1,Wk)− I(Y i−1
k+1 ;Zi|W̃k−1, Y

i−1
k , Zn

i+1,Wk) + εn

(3.108)

=
n∑

i=1

I(Wk, Y
i−1
k+1 ;Yk,i|W̃k−1, Y

i−1
k , Zn

i+1)− I(Wk, Y
i−1
k+1 ;Zi|W̃k−1, Y

i−1
k , Zn

i+1) + εn

(3.109)
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=
n∑

i=1

I(Uk,i;Yk,i|Uk−1,i)− I(Uk,i;Zi|Uk−1,i) + εn (3.110)

where (3.106) follows from Fano’s lemma, (3.107) is obtained through Csiszar-Korner

identity, and (3.108) is a consequence of the fact that

I(Y i−1
k+1 ;Yk,i|W̃k−1, Y

i−1
k , Zn

i+1,Wk)− I(Y i−1
k+1 ;Zi|W̃k−1, Y

i−1
k , Zn

i+1,Wk) > 0 (3.111)

which follows from the fact that each user’s channel is less noisy with respect to the

eavesdropper’s channel. Finally, we bound the following term where we again use

the shorthand notation W̃K−1 = (W0,W1, . . . ,WK−1),

H(WK |W̃K−1, Z
n) ≤ I(WK ;Y n

K |W̃K−1)− I(WK ;Zn|W̃K−1) + εn (3.112)

≤
n∑

i=1

I(WK ;YK,i|W̃K−1, Y
i−1
K , Zn

i+1)− I(WK ;Zi|W̃K−1, Y
i−1
K , Zn

i+1) + εn (3.113)

≤
n∑

i=1

I(WK ;YK,i|W̃K−1, Y
i−1
K , Zn

i+1)− I(WK ;Zi|W̃K−1, Y
i−1
K , Zn

i+1)

+ I(Xi;YK,i|W̃K−1, Y
i−1
K , Zn

i+1,WK)− I(Xi;Zi|W̃K−1, Y
i−1
K , Zn

i+1,WK) + εn

(3.114)

=
n∑

i=1

I(WK , Xi;YK,i|W̃K−1, Y
i−1
K , Zn

i+1)− I(WK , Xi;Zi|W̃K−1, Y
i−1
K , Zn

i+1) + εn

(3.115)

=
n∑

i=1

I(Xi;YK,i|W̃K−1, Y
i−1
K , Zn

i+1) + I(WK ;YK,i|W̃K−1, Y
i−1
K , Zn

i+1, Xi)

− I(Xi;Zi|W̃K−1, Y
i−1
K , Zn

i+1)− I(WK ;Zi|W̃K−1, Y
i−1
K , Zn

i+1, Xi) + εn (3.116)

=
n∑

i=1

I(Xi;YK,i|W̃K−1, Y
i−1
K , Zn

i+1)− I(Xi;Zi|W̃K−1, Y
i−1
K , Zn

i+1) + εn (3.117)
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=
n∑

i=1

I(Xi;YK,i|UK−1,i)− I(Xi;Zi|UK−1,i) + εn (3.118)

where (3.112) follows from Fano’s lemma, (3.113) is obtained by using Csiszar-

Korner identity, and (3.114) follows from the fact that

I(Xi;YK,i|W̃K−1, Y
i−1
K , Zn

i+1,WK)− I(Xi;Zi|W̃K−1, Y
i−1
K , Zn

i+1,WK) > 0 (3.119)

which is due to the fact that each user’s channel is less noisy with respect to the

eavesdropper and (3.117) is due to the Markov chain

(YK,i, Zi)→ Xi →
(
W0,W1, . . . ,WK , Y

i−1
K , Zn

i+1

)
(3.120)

which follows from the fact that the channel is memoryless. Finally, plugging (3.102),

(3.110) and (3.118) into (3.92), we get

H(W0,W1, . . . ,W`|Zn) ≤ n
∑̀

k=1

I(Uk;Yk|Uk−1)− nI(U`;Z), ` = 1, . . . , K (3.121)

where U0 = φ and UK = X, and this concludes the converse.
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3.7.2 Proof of Theorem 3.2

Achievability of these rates follows from Proposition 2 of [24]. We provide the

converse. First let us define the following random variables,

Zn = (Zn
1 , . . . , Z

n
M) (3.122)

Y n
k = (Y n

k1, . . . , Y
n
kM) (3.123)

Zn
i+1 =

(
Zn

1,i+1, . . . , Z
n
M,i+1

)
(3.124)

Y i−1
k =

(
Y i−1
k1 . . . , Y i−1

kM

)
(3.125)

Yk(i) = (Yk1(i), . . . , YkM(i)) (3.126)

Z(i) = (Z1(i), . . . , ZM(i)) (3.127)

where Y i−1
kl = (Ykl(1), . . . , Ykl(i− 1)), Zn

l,i+1 = (Zl(i+ 1), . . . , Zl(n)). Start with the

definition,

H(W0|Zn) = H(W0)− I(W0;Zn) (3.128)

≤ I(W0;Y n
k )− I(W0;Zn) + εn (3.129)

=
n∑

i=1

I(W0;Yk(i)|Y i−1
k )− I(W0;Z(i)|Zn

i+1) + εn (3.130)

=
n∑

i=1

I(W0, Z
n
i+1;Yk(i)|Y i−1

k )− I(Zn
i+1;Yk(i)|Y i−1

k ,W0)

− I(W0, Y
i−1
k ;Z(i)|Zn

i+1) + I(Y i−1
k ;Z(i)|Zn

i+1,W0) + εn (3.131)

=
n∑

i=1

I(W0, Z
n
i+1;Yk(i)|Y i−1

k )− I(W0, Y
i−1
k ;Z(i)|Zn

i+1) + εn (3.132)
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=
n∑

i=1

I(W0;Yk(i)|Y i−1
k , Zn

i+1) + I(Zn
i+1;Yk(i)|Y i−1

k )

− I(W0;Z(i)|Zn
i+1, Y

i−1
k )− I(Y i−1

k ;Z(i)|Zn
i+1) + εn (3.133)

=
n∑

i=1

I(W0;Yk(i)|Y i−1
k , Zn

i+1)− I(W0;Z(i)|Zn
i+1, Y

i−1
k ) + εn (3.134)

where (3.132) and (3.134) are due the following identities

n∑

i=1

I(Zn
i+1;Yk(i)|Y i−1

k ,W0) =
n∑

i=1

I(Y i−1
k ;Z(i)|Zn

i+1,W0) (3.135)

n∑

i=1

I(Zn
i+1;Yk(i)|Y i−1

k ) =
n∑

i=1

I(Y i−1
k ;Z(i)|Zn

i+1) (3.136)

respectively, which are due to Lemma 7 of [3]. Now, we will bound each summand

in (3.134) separately. First, define the following variables.

Uk,i =
(
Zn
i+1, Y

i−1
k

)
(3.137)

Ỹ l−1
k (i) =

(
Yk1(i), . . . , Yk(l−1)(i)

)
(3.138)

Z̃M
l+1(i) = (Zl+1(i), . . . , ZM(i)) (3.139)

Hence, the summand in (3.134) can be written as follows,

I(W0;Yk(i)|Y i−1
k , Zn

i+1)− I(W0;Z(i)|Zn
i+1, Y

i−1
k ) (3.140)

= I(W0;Yk(i)|Uk,i)− I(W0;Z(i)|Uk,i) (3.141)

= I(W0;Yk1(i), . . . , YkM(i)|Uk,i)− I(W0;Z1(i), . . . , ZM(i)|Uk,i) (3.142)
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=
M∑

l=1

I(W0;Ykl(i)|Uk,i, Ỹ l−1
k (i))− I(W0;Zl(i)|Uk,i, Z̃M

l+1(i)) (3.143)

=
M∑

l=1

I(W0, Z̃
M
l+1(i);Ykl(i)|Uk,i, Ỹ l−1

k (i))− I(Z̃M
l+1(i);Ykl(i)|Uk,i, Ỹ l−1

k (i),W0)

− I(W0, Ỹ
l−1
k (i);Zl(i)|Uk,i, Z̃M

l+1(i)) + I(Ỹ l−1
k (i);Zl(i)|Uk,i, Z̃M

l+1(i),W0) (3.144)

=
M∑

l=1

I(W0, Z̃
M
l+1(i);Ykl(i)|Uk,i, Ỹ l−1

k (i))− I(W0, Ỹ
l−1
k (i);Zl(i)|Uk,i, Z̃M

l+1(i))

(3.145)

=
M∑

l=1

I(Z̃M
l+1(i);Ykl(i)|Uk,i, Ỹ l−1

k (i)) + I(W0;Ykl(i)|Uk,i, Ỹ l−1
k (i), Z̃M

l+1(i))

− I(Ỹ l−1
k (i);Zl(i)|Uk,i, Z̃M

l+1(i))− I(W0;Zl(i)|Uk,i, Z̃M
l+1(i), Ỹ l−1

k (i)) (3.146)

=
M∑

l=1

I(W0;Ykl(i)|Uk,i, Ỹ l−1
k (i), Z̃M

l+1(i))− I(W0;Zl(i)|Uk,i, Z̃M
l+1(i), Ỹ l−1

k (i))

(3.147)

where (3.145) and (3.147) follow from the following identities

M∑

l=1

I(Z̃M
l+1(i);Ykl(i)|Uk,i, Ỹ l−1

k (i),W0) =
M∑

l=1

I(Ỹ l−1
k (i);Zl(i)|Uk,i, Z̃M

l+1(i),W0)

(3.148)

M∑

l=1

I(Z̃M
l+1(i);Ykl(i)|Uk,i, Ỹ l−1

k (i)) =
M∑

l=1

I(Ỹ l−1
k (i);Zl(i)|Uk,i, Z̃M

l+1(i)) (3.149)

respectively, which are again due to Lemma 7 of [3]. Now, define the set of sub-

channels, say S(k), in which the kth user is less noisy with respect to the eaves-

dropper. Thus, the summands in (3.147) for l /∈ S(k) are negative and by dropping
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them, we can bound (3.147) as follows,

I(W0;Yk(i)|Y i−1
k , Zn

i+1)− I(W0;Z(i)|Zn
i+1, Y

i−1
k )

≤
∑

l∈S(k)

I(W0;Ykl(i)|Uk,i, Ỹ l−1
k (i), Z̃M

l+1(i))− I(W0;Zl(i)|Uk,i, Z̃M
l+1(i), Ỹ l−1

k (i))

(3.150)

Moreover, for l ∈ S(k), we have

I(Uk,i, Ỹ
l−1
k (i), Z̃M

l+1(i);Ykl(i))− I(Uk,i, Ỹ
l−1
k (i), Z̃M

l+1(i);Zl(i)) ≥ 0

(3.151)

I(Xl(i);Ykl(i)|Uk,i, Ỹ l−1
k (i), Z̃M

l+1(i),W0)− I(Xl(i);Zl(i)|Uk,i, Z̃M
l+1(i), Ỹ l−1

k (i),W0) ≥ 0

(3.152)

where both are due to the fact that for l ∈ S(k), in this sub-channel the kth user is

less noisy with respect to the eavesdropper. Therefore, adding (3.151) and (3.152)

to each summand in (3.150), we get the following bound,

I(W0;Yk(i)|Y i−1
k , Zn

i+1)− I(W0;Z(i)|Zn
i+1, Y

i−1
k )

≤
∑

l∈S(k)

I(Xl(i),W0, Uk,i, Ỹ
l−1
k (i), Z̃M

l+1(i);Ykl(i))

− I(Xl(i),W0, Uk,i, Ỹ
l−1
k (i), Z̃M

l+1(i);Zl(i)) (3.153)

=
∑

l∈S(k)

I(Xl(i);Ykl(i))− I(Xl(i);Zl(i)) (3.154)
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where the equality follows from the following Markov chain

(
W0, Uk,i, Ỹ

l−1
k (i), Z̃M

l+1(i)
)
→ Xl(i)→ (Ykl(i), Zl(i)) (3.155)

which is a consequence of the facts that channel is memoryless and sub-channels are

independent. Finally, using (3.154) in (3.134), we get

H(W0|Zn) ≤
n∑

i=1

∑

l∈S(k)

I(Xl(i);Ykl(i))− I(Xl(i);Zl(i)) + εn (3.156)

≤ n
∑

l∈S(k)

I(Xl;Ykl)− I(Xl;Zl) + εn (3.157)

= n
M∑

l=1

[I(Xl;Ykl)− I(Xl;Zl)]
+ + εn (3.158)

which completes the proof.

3.7.3 Proof of Theorem 3.3

Achievability of Theorem 3.3 is a consequence of the achievability result for wiretap

channels in [3]. We provide the converse proof here. We first define the function

ρ(l) which denotes the index of the strongest user in the lth subchannel in the sense

that

I(U ;Ykl) ≤ I(U ;Yρ(l)l) (3.159)

108



for all U → Xl → (Y1l, . . . , YKl, Zl) and any k ∈ {1, . . . , K}. Moreover, we define

the following shorthand notations

Ỹ n
l = Y n

ρ(l)l, l = 1, . . . ,M (3.160)

Ỹ n = (Ỹ n
1 , . . . , Ỹ

n
M) (3.161)

Y n
k = (Y n

k1, . . . , Y
n
kM), k = 1, . . . , K (3.162)

Zn = (Zn
1 , . . . , Z

n
M) (3.163)

Y i−1
k = (Y i−1

k1 , . . . , Y i−1
kM ), k = 1, . . . , K (3.164)

Zi−1 = (Zi−1
1 , . . . , Zi−1

M ) (3.165)

Ỹ n
i+1 = (Ỹ n

1,i+1, . . . , Ỹ
n
M,i+1) (3.166)

Y l−1
k (i) = (Yk1(i), . . . , Yk,l−1(i)), l = 1, . . . ,M (3.167)

Z l−1(i) = (Z1(i), . . . , Zl−1(i)), l = 1, . . . ,M (3.168)

Ỹ M
l+1(i) = (Ỹl+1(i), . . . , ỸM(i)), l = 1, . . . ,M (3.169)

We first introduce the following lemma.

Lemma 3.2 For the parallel multi-receiver wiretap channel with less noisiness or-

der, we have

I(Wk;Y
n
k ) ≤ I(Wk; Ỹ

n), k = 1, . . . , K (3.170)
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Proof: Consecutive uses of Csiszar-Korner identity [3], as in Appendix 3.7.2,

yield

I(Wk;Y
n
k )− I(Wk; Ỹ

n) =
n∑

i=1

M∑

l=1

[
I(Wk;Ykl(i)|Y i−1

k , Ỹ n
i+1, Y

l−1
k (i), Ỹ M

l+1(i))

−I(Wk; Ỹl(i)|Y i−1
k , Ỹ n

i+1, Y
l−1
k (i), Ỹ M

l+1(i))
]

(3.171)

where each of the summand is negative, i.e., we have

I(Wk;Ykl(i)|Y i−1
k , Ỹ n

i+1, Y
l−1
k (i), Ỹ M

l+1(i))− I(Wk; Ỹl(i)|Y i−1
k , Ỹ n

i+1, Y
l−1
k (i), Ỹ M

l+1(i)) ≤ 0

(3.172)

because Ỹl(i) is the observation of the strongest user in the lth sub-channel, i.e.,

its channel is less noisy with respect to all other users in the lth sub-channel. This

concludes the proof of the lemma. 2

This lemma implies that

H(Wk|Ỹ n) ≤ H(Wk|Y n
k ) ≤ εn (3.173)

where the second inequality is due to Fano’s lemma. Using (3.173), we get

H(W1, . . . ,WK |Ỹ n) ≤
K∑

k=1

H(Wk|Ỹ n) ≤ Kεn (3.174)

where the first inequality follows from the fact that conditioning cannot increase

entropy.
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We now start the converse proof.

H(W1, . . . ,WK |Zn) ≤ I(W1, . . . ,WK ; Ỹ n)− I(W1, . . . ,WK ;Zn) +Kεn (3.175)

=
n∑

i=1

M∑

l=1

[
I(W1, . . . ,WK ; Ỹl(i)|Zi−1, Ỹ n

i+1, Z
l−1(i), Ỹ M

l+1(i))

−I(W1, . . . ,WK ;Zl(i)|Zi−1, Ỹ n
i+1, Z

l−1(i), Ỹ M
l+1(i))

]
+Kεn (3.176)

where (3.175) is a consequence of (3.174) and (3.176) is obtained via consecutive

uses of the Csiszar-Korner identity [3] as we did in Appendix 3.7.2. We define the

set of indices S such that for all l ∈ S, the strongest user in the lth sub-channel has

a less noisy channel with respect to the eavesdropper, i.e., we have

I(U ; Ỹl(i)) ≥ I(U ;Zl(i)) (3.177)

for all U → Xl(i) → (Ỹl(i), Zl(i)) and any l ∈ S. Thus, we can further bound

(3.176) as follows,

H(W1, . . . ,WK |Zn)

≤
n∑

i=1

∑

l∈S

[
I(W1, . . . ,WK ; Ỹl(i)|Zi−1, Ỹ n

i+1, Z
l−1(i), Ỹ M

l+1(i))

−I(W1, . . . ,WK ;Zl(i)|Zi−1, Ỹ n
i+1, Z

l−1(i), Ỹ M
l+1(i))

]
+Kεn (3.178)

≤
n∑

i=1

∑

l∈S

[
I(W1, . . . ,WK , Z

i−1, Ỹ n
i+1, Z

l−1(i), Ỹ M
l+1(i); Ỹl(i))

−I(W1, . . . ,WK , Z
i−1, Ỹ n

i+1, Z
l−1(i), Ỹ M

l+1(i);Zl(i))
]

+Kεn (3.179)
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≤
n∑

i=1

∑

l∈S

[
I(Xl(i),W1, . . . ,WK , Z

i−1, Ỹ n
i+1, Z

l−1(i), Ỹ M
l+1(i); Ỹl(i))

−I(Xl(i),W1, . . . ,WK , Z
i−1, Ỹ n

i+1, Z
l−1(i), Ỹ M

l+1(i);Zl(i))
]

+Kεn (3.180)

=
n∑

i=1

∑

l∈S

[
I(Xl(i); Ỹl(i))− I(Xl(i);Zl(i))

]
+Kεn (3.181)

where (3.178) is obtained by dropping the negative terms, (3.179)-(3.180) are due

to the following inequalities

I(Zi−1, Ỹ n
i+1, Z

l−1(i), Ỹ M
l+1(i); Ỹl(i)) ≥ I(Zi−1, Ỹ n

i+1, Z
l−1(i), Ỹ M

l+1(i);Zl(i)) (3.182)

I(Xl(i); Ỹl(i)|W1, . . . ,WK , Z
i−1, Ỹ n

i+1, Z
l−1(i), Ỹ M

l+1(i)) ≥

I(Xl(i);Zl(i)|W1, . . . ,WK , Z
i−1, Ỹ n

i+1, Z
l−1(i), Ỹ M

l+1(i))

(3.183)

which come from the fact that for any l ∈ S, the strongest user in the lth sub-

channel has a less noisy channel with respect to the eavesdropper. Finally, we get

(3.181) using the following Markov chain

(W1, . . . ,WK , Z
i−1, Ỹ n

i+1, Z
l−1(i), Ỹ M

l+1(i))→ Xl(i)→ (Ỹl, Zl(i)) (3.184)

which is a consequence of the facts that channel is memoryless, and the sub-channels

are independent.
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3.7.4 Proof of Theorem 3.4

We prove Theorem 3.4 in two parts, first achievability and then converse. Through-

out the proof, we use the shorthand notations Y n
1 = (Y n

11, Y
n

12), Y n
2 = (Y n

21, Y
n

22),

Zn
1 = (Zn

1 , Z
n
2 ).

3.7.4.1 Achievability

To show the achievability of the region given by (3.30)-(3.35), first we need to note

that the boundary of this region can be decomposed into three surfaces as follows

[29].

• First surface:

R0 ≤ I(U2;Y12|Z2) (3.185)

R2 ≤ I(X2;Y22|U2, Z2) (3.186)

R0 +R1 ≤ I(X1;Y11|Z1) + I(U2;Y12|Z2), U1 = φ (3.187)

• Second surface:

R0 ≤ I(U1;Y21|Z1) (3.188)

R1 ≤ I(X1;Y11|U1, Z1) (3.189)

R0 +R2 ≤ I(X2;Y22|Z2) + I(U1;Y21|Z1), U2 = φ (3.190)
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• Third surface:

R0 ≤ I(U1;Y11|Z1) + I(U2;Y12|Z2) (3.191)

R0 ≤ I(U1;Y21|Z1) + I(U2;Y22|Z2) (3.192)

R1 ≤ I(X1;Y11|U1, Z1) (3.193)

R2 ≤ I(X2;Y22|U2, Z2) (3.194)

We now show the achievability of these regions separately. Start with the first region.

Proposition 3.1 The region defined by (3.185)-(3.187) is achievable.

Proof: Fix the probability distribution

p(x1)p(u2)p(x2|u2)p(y1, y2, z|x) (3.195)

Codebook generation:

• Split the private message rate of user 1 as R1 = R11 +R12.

• Generate 2n(R11+R̃11) length-n sequences x1 through p(x1) =
∏n

i=1 p(x1,i) and

index them as x1(w11, w̃11) where w11 ∈
{

1, . . . , 2nR11
}

and w̃11 ∈
{

1, . . . , 2nR̃11

}
.

• Generate 2n(R0+R12+R̃12) length-n sequences u2 through p(u2) =
∏n

i=1 p(u2,i)

and index them as u2(w0, w12, w̃12) where w0 ∈
{

1, . . . , 2nR0
}

,

w12 ∈
{

1, . . . , 2nR12
}

and w̃12 ∈
{

1, . . . , 2nR̃12

}
.
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• For each u2, generate 2n(R2+R̃2) length-n sequences x2 through p(x2|u2) =

∏n
i=1 p(x2,i|u2,i) and index them as x2(w2, w̃2, w0, w12, w̃12) where

w2 ∈
{

1, . . . , 2nR2
}

, w̃2 ∈
{

1, . . . , 2nR̃2

}
.

• Furthermore, set the confusion message rates as follows.

R̃11 = I(X1;Z1) (3.196)

R̃12 = I(U2;Z2) (3.197)

R̃2 = I(X2;Z2|U2) (3.198)

Encoding:

If (w0, w11, w12, w2) is the message to be transmitted, then the receiver ran-

domly picks (w̃11, w̃12, w̃2) and sends the corresponding codewords through each

channel.

Decoding:

It is straightforward to see that if the following conditions are satisfied, then

both users can decode the messages directed to themselves with vanishingly small
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error probability.

R0 + R̃12 +R12 ≤ I(U2;Y12) (3.199)

R11 + R̃11 ≤ I(X1;Y11) (3.200)

R2 + R̃2 ≤ I(X2;Y22|U2) (3.201)

After eliminating R11 and R12 and plugging the values of R̃11, R̃12, R̃2, we can reach

the following conditions,

R0 ≤ I(U2;Y12|Z2) (3.202)

R2 ≤ I(X2;Y22|U2, Z2) (3.203)

R0 +R1 ≤ I(X1;Y11|Z1) + I(U2;Y12|Z2) (3.204)

where we used the degradedness of the channel. Thus, we only need to show that

this coding scheme satisfies the secrecy constraints.

Equivocation computation:

As shown previously in Lemma 3.1 of Appendix 3.7.1, checking the sum rate

secrecy condition is sufficient.

H(W0,W1,W2|Zn) = H(W0,W1,W2, Z
n)−H(Zn)

= H(W0,W1,W2, U
n
2 , X

n
2 , X

n
1 , Z

n)−H(Un
2 , X

n
2 , X

n
1 |W0,W1,W2, Z

n)−H(Zn)

(3.205)
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= H(Un
2 , X

n
2 , X

n
1 ) +H(W0,W1,W2, Z

n|Un
2 , X

n
2 , X

n
1 )−H(Zn)

−H(Un
2 , X

n
2 , X

n
1 |W0,W1,W2, Z

n) (3.206)

≥ H(Un
2 , X

n
2 , X

n
1 ) +H(Zn|Un

2 , X
n
2 , X

n
1 )−H(Zn)−H(Un

2 , X
n
2 , X

n
1 |W0,W1,W2, Z

n)

(3.207)

We treat each term in (3.207) separately. The first term in (3.207) is

H(Un
2 , X

n
2 , X

n
1 ) = H(Un

2 , X
n
2 ) +H(Xn

1 ) (3.208)

= n(R0 +R11 +R2 +R12 + R̃11 + R̃12 + R̃2) (3.209)

where the first equality is due to the independence of (Un
2 , X

n
2 ) and Xn

1 , and the

second equality is due the fact that both messages and confusion codewords are

uniformly distributed. The second and the third terms in (3.207) are

H(Zn)−H(Zn|Un
2 , X

n
2 , X

n
1 ) = H(Zn

1 , Z
n
2 )−H(Zn|Un

2 , X
n
2 , X

n
1 ) (3.210)

≤ H(Zn
1 ) +H(Zn

2 )−H(Zn
1 , Z

n
2 |Un

2 , X
n
2 , X

n
1 ) (3.211)

= H(Zn
1 ) +H(Zn

2 )−H(Zn
1 , Z

n
2 |Xn

2 , X
n
1 ) (3.212)

= H(Zn
1 ) +H(Zn

2 )−H(Zn
1 |Xn

1 )−H(Zn
2 |Xn

2 ) (3.213)

= I(Xn
1 ;Zn

1 ) + I(Xn
2 ;Zn

2 ) (3.214)

≤ nI(X1;Z1) + nI(X2;Z2) + γ1,n + γ2,n (3.215)
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where the equalities in (3.212) and (3.213) are due to the following Markov chains

Un
2 → Xn

2 → (Xn
1 , Z

n
1 , Z

n
2 ) (3.216)

Zn
2 → Xn

2 → Xn
1 → Zn

1 (3.217)

respectively, and the last inequality in (3.215) can be shown using the technique

devised in [2]. To bound the last term in (3.207), assume that the eavesdropper tries

to decode (Un
2 , X

n
2 , X

n
1 ) using the side information W0,W1,W2 and its observation.

Since the rates of the confusion codewords are selected such that the eavesdropper

can decode them given W0 = w0,W1 = w1,W2 = w2 (see (3.196)-(3.198)), using

Fano’s lemma, we get

H(Un
2 , X

n
2 , X

n
1 |W0,W1,W2, Z

n) ≤ εn (3.218)

for the third term in (3.207). Plugging (3.209), (3.215) and (3.218) into (3.207), we

get

H(W0,W1,W2|Zn) ≥ n(R0 +R1 +R2)− εn − γ1,n − γ2,n (3.219)

which completes the proof. 2

Achievability of the region defined by (3.188)-(3.190) follows due to symmetry.

We now show the achievability of the region defined by (3.191)-(3.194).

Proposition 3.2 The region described by (3.191)-(3.194) is achievable.
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Proof: Fix the probability distribution as follows,

p(u1)p(x1|u1)p(u2)p(x2|u2)p(y1, y2, z|x) (3.220)

Codebook generation:

• Generate 2n(R0+R̃01) length-n sequences u1 through p(u1) =
∏n

i=1 p(u1,i) and

index them as u1(w0, w̃01) where w0 ∈
{

1, . . . , 2nR0
}

, w̃01 ∈
{

1, . . . , 2nR̃01

}
.

• For each u1, generate 2n(R1+R̃1) x1(w0, w̃01, w1, w̃1) length-n sequences x1 through

p(x1) =
∏n

i=1 p(x1,i|u1,i) where w1 ∈
{

1, . . . , 2nR1
}

, w̃1 ∈
{

1, . . . , 2nR̃1

}
.

• Generate 2n(R0+R̃02) length-n sequences u2 through p(u2) =
∏n

i=1 p(u2,i) and

index them as u2(w0, w̃02) where w0 ∈
{

1, . . . , 2nR0
}

, w̃02 ∈
{

1, . . . , 2nR̃02

}
.

• For each u2, generate 2n(R2+R̃2) x2(w0, w̃02, w2, w̃2) length-n sequences x2 through

p(x2) =
∏n

i=1 p(x2,i|u2,i) where w2 ∈
{

1, . . . , 2nR2
}

, w̃2 ∈
{

1, . . . , 2nR̃2

}
.

• Moreover, set the rates of confusion messages as follows,

R̃01 = I(U1;Z1) (3.221)

R̃02 = I(U2;Z2) (3.222)

R̃1 = I(X1;Z1|U1) (3.223)

R̃2 = I(X2;Z2|U2) (3.224)

Encoding:
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Assume that the messages to be transmitted are (w0, w1, w2). Then, after

randomly picking the tuple (w̃01, w̃02, w̃1, w̃2), corresponding codewords are sent.

Decoding:

Users decode w0 using their both observations. If w0 is the only message that

satisfies

Ew0
i1 = {∃w̃01 : (u1(w0, w̃01),yi1) ∈ Anε } (3.225)

Ew0
i2 = {∃w̃02 : (u2(w0, w̃02),yi2) ∈ Anε } (3.226)

simultaneously for user i, w0 is declared to be transmitted. Assume w0 = 1 is

transmitted. The error probability for user i can be bounded as

Pr (Ei) ≤ Pr
((
E1
i1, E

1
i2

)c)
+

2nR0∑

j=2

Pr
(
Ej
i1, E

j
i2

)
(3.227)

using the union bound. Let us consider the following

Pr
(
Ej
i1

)
= Pr (∃w̃01 : (u1(j, w̃01),yi1) ∈ Anε ) (3.228)

≤
∑

∀w̃01

Pr ((u1(j, w̃01),yi1) ∈ Anε ) (3.229)

≤ 2nR̃012−n(I(U1;Yi1)−εn) (3.230)

= 2n(R̃01−I(U1;Yi1)+εn) (3.231)
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Similarly, we have

Pr
(
Ej
i2

)
≤ 2n(R̃02−I(U2;Yi2)+εn) (3.232)

Thus, the probability of declaring that the jth message was transmitted can be

bounded as

Pr
(
Ej
i1, E

j
i2

)
= Pr

(
Ej
i1

)
× Pr

(
Ej
i2

)
(3.233)

≤ 2n(R̃01−I(U1;Yi1)+εn) × 2n(R̃02−I(U2;Yi2)+εn) (3.234)

= 2n(R̃01−I(U1;Yi1)+R̃02−I(U2;Yi2)+2εn) (3.235)

where the first equality is due to the independence of sub-channels and codebooks

used for each channel. Therefore, error probability can be bounded as

Pr (Ei) ≤ εn +
2nR0∑

j=2

2n(R̃01−I(U1;Yi1)+R̃02−I(U2;Yi2)+2εn) (3.236)

= εn + 2n(R0+R̃01−I(U1;Yi1)+R̃02−I(U2;Yi2)+2εn) (3.237)

which vanishes if the following are satisfied,

R0 + R̃01 + R̃02 ≤ I(U1;Yi1) + I(U2;Yi2), i = 1, 2 (3.238)
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After decoding the common message, both users decode their private messages if

the rates satisfy

R1 + R̃1 ≤ I(X1;Y11|U1) (3.239)

R2 + R̃2 ≤ I(X2;Y22|U2) (3.240)

After plugging the values of R̃01, R̃02, R̃1, R̃2 given by (3.221)-(3.224) into (3.238)-

(3.240), one can recover the region described by (3.191)-(3.194) using the degraded-

ness of the channel.

Equivocation calculation:

It is sufficient to check the sum rate constraint,

H(W0,W1,W2|Zn) = H(W0,W1,W2, Z
n)−H(Zn) (3.241)

= H(Un
1 , U

n
2 , X

n
1 , X

n
2 ,W0,W1,W2, Z

n)−H(Un
1 , U

n
2 , X

n
1 , X

n
2 |W0,W1,W2, Z

n)

−H(Zn) (3.242)

= H(Un
1 , U

n
2 , X

n
1 , X

n
2 ) +H(W0,W1,W2, Z

n|Un
1 , U

n
2 , X

n
1 , X

n
2 )−H(Zn)

−H(Un
1 , U

n
2 , X

n
1 , X

n
2 |W0,W1,W2, Z

n) (3.243)

≥ H(Un
1 , U

n
2 , X

n
1 , X

n
2 ) +H(Zn|Un

1 , U
n
2 , X

n
1 , X

n
2 )−H(Zn)

−H(Un
1 , U

n
2 , X

n
1 , X

n
2 |W0,W1,W2, Z

n) (3.244)

122



where each term will be treated separately. The first term is

H(Un
1 , U

n
2 , X

n
1 , X

n
2 ) = H(Un

1 , U
n
2 ) +H(Xn

1 |Un
1 , U

n
2 ) +H(Xn

1 |Un
1 , U

n
2 ) (3.245)

= n(R0 +R1 +R2 + R̃01 + R̃02 + R̃1 + R̃2) (3.246)

where we first use the fact that Xn
1 and Xn

2 are independent given (Un
1 , U

n
2 ) and

secondly, we use the fact that messages are uniformly distributed. The second and

third term of (3.244) are

H(Zn)−H(Zn|Un
1 , U

n
2 ,X

n
1 , X

n
2 ) = H(Zn

1 , Z
n
2 )−H(Zn

1 |Xn
1 )−H(Zn

1 |Xn
2 ) (3.247)

≤ H(Zn
1 ) +H(Zn

2 )−H(Zn
1 |Xn

1 )−H(Zn
1 |Xn

2 ) (3.248)

= I(Xn
1 ;Zn

1 ) + I(Xn
2 ;Zn

2 ) (3.249)

≤ nI(X1;Z1) + nI(X2;Z2) + γ1,n + γ2,n (3.250)

where the first equality is due to the independence of the sub-channels. We now

consider the last term of (3.244) for which assume that eavesdropper tries to decode

(Un
1 , U

n
2 , X

n
1 , X

n
2 ) using the side information (W0,W1,W2) and its observation. Since

the rates of the confusion messages are selected to ensure that the eavesdropper can

decode (Un
1 , U

n
2 , X

n
1 , X

n
2 ) given (W0 = w0,W1 = w1,W2 = w2) (see (3.221)-(3.224)),

using Fano’s lemma we have

H(Un
1 , U

n
2 , X

n
1 , X

n
2 |W0,W1,W2, Z

n) ≤ εn (3.251)
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Plugging (3.246), (3.250) and (3.251) into (3.244), we have

H(W0,W1,W2|Zn) ≥ n(R0 +R1 +R2)− εn − γ1,n − γ2,n (3.252)

which concludes the proof. 2

3.7.4.2 Converse

First let us define the following auxiliary random variables,

U1,i = W0W2Y
n

12Y
i−1

11 Zn
1,i+1 (3.253)

U2,i = W0W1Y
n

21Y
i−1

22 Zn
2,i+1 (3.254)

which satisfy the following Markov chains

U1,i → X1,i → (Y11,i, Y21,i, Z1,i) (3.255)

U2,i → X2,i → (Y12,i, Y22,i, Z2,i) (3.256)

We remark that although U1,i and U2,i are correlated, at the end of the proof, it will

turn out that selection of them as independent will yield the same region. We start

with the common message rate,

H(W0|Zn) = H(W0)− I(W0;Zn) (3.257)

≤ I(W0;Y n
1 )− I(W0;Zn) + εn (3.258)
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= I(W0;Y n
1 |Zn) + εn (3.259)

= I(W0;Y n
12|Zn) + I(W0;Y n

11|Y n
12, Z

n) + εn (3.260)

≤ I(W0,W1;Y n
12|Zn) + I(W0,W2;Y n

11|Y n
12, Z

n) + εn (3.261)

where (3.258) is due to Fano’s lemma, equality in (3.259) is due to the fact that

the eavesdropper’s channel is degraded with respect to the first user’s channel. We

bound each term in (3.261) separately. First term is

I(W0,W1;Y n
12|Zn) =

n∑

i=1

I(W0,W1;Y12,i|Y i−1
12 , Zn

1 , Z
n
2 ) (3.262)

=
n∑

i=1

H(Y12,i|Y i−1
12 , Zn

1 , Z
n
2 )−H(Y12,i|Y i−1

12 , Zn
1 , Z

n
2 ,W0,W1) (3.263)

≤
n∑

i=1

H(Y12,i|Z2,i)−H(Y12,i|Y i−1
12 , Zn

1 , Z
n
2 ,W0,W1, Y

n
21, Y

i−1
22 ) (3.264)

=
n∑

i=1

H(Y12,i|Z2,i)−H(Y12,i|W0,W1, Y
n

21, Y
i−1

22 , Zn
2,i+1, Z2,i) (3.265)

=
n∑

i=1

I(U2,i;Y12,i|Z2,i) (3.266)

where (3.264) follows from the fact that conditioning cannot increase entropy and

the equality in (3.265) is due to the following Markov chains

Zn
1 → Y n

21 → (W0,W1, Y
n

22, Z
n
2 , Y

n
12) (3.267)

Y i−1
12 Zi−1

2 → Y i−1
22 →

(
W0,W1, Y

n
21, Y12,i, Z

n
2,i, Z

n
1

)
(3.268)
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both of which are due to the fact that sub-channels are independent, memoryless

and degraded. We now consider the second term in (3.261),

I(W0,W2;Y n
11|Y n

12, Z
n) =

n∑

i=1

I(W0,W2;Y11,i|Y n
12, Z

n
1 , Z

n
2 , Y

i−1
11 ) (3.269)

=
n∑

i=1

I(W0,W2;Y11,i|Y n
12, Y

i−1
11 , Zn

1,i+1, Z1,i) (3.270)

≤
n∑

i=1

I(W0,W2, Y
n

12, Y
i−1

11 , Zn
1,i+1;Y11,i|Z1,i) (3.271)

=
n∑

i=1

I(U1,i;Y11,i|Z1,i) (3.272)

where (3.270) follows from the following Markov chains

Zn
2 → Y n

12 →
(
W0,W2, Y

i−1
11 , Zn

1 , Y11,i

)
(3.273)

Zi−1
1 → Y i−1

11 → (W0,W2, Y
n

12, Z
n
1,i+1, Z1,i, Y11,i) (3.274)

both of which are due to the fact that sub-channels are independent, memoryless

and degraded. Plugging (3.266) and (3.272) into (3.261), we get the following outer

bound on the common rate.

H(W0|Zn) ≤
n∑

i=1

I(U2,i;Y12,i|Z2,i) +
n∑

i=1

I(U1,i;Y11,i|Z1,i) + εn (3.275)
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Using the same analysis on the second user, we can obtain the following outer bound

on the common rate as well.

H(W0|Zn) ≤
n∑

i=1

I(U2,i;Y22,i|Z2,i) +
n∑

i=1

I(U1,i;Y21,i|Z1,i) + εn (3.276)

We now bound the sum of independent and common message rates for each user,

H(W0,W1|Zn) ≤ I(W0,W1;Y n
1 )− I(W0,W1;Zn) + εn (3.277)

= I(W0,W1;Y n
1 |Zn) + εn (3.278)

= I(W0,W1;Y n
11, Y

n
12|Zn) + εn (3.279)

= I(W0,W1;Y n
12|Zn) + I(W0,W1;Y n

11|Y n
12, Z

n) + εn (3.280)

where (3.277) is due to Fano’s lemma, (3.278) is due to the fact that the eavesdrop-

per’s channel is degraded with respect to the first user’s channel. Using (3.266), the

first term in (3.280) can be bounded as

I(W0,W1;Y n
12|Zn) ≤

n∑

i=1

I(U2,i;Y12,i|Z2,i) (3.281)

Thus, we only need to bound the second term of (3.280),

I(W0,W1;Y n
11|Y n

12, Z
n) = H(Y n

11|Y n
12, Z

n
1 , Z

n
2 )−H(Y n

11|Y n
12, Z

n
1 , Z

n
2 ,W0,W1) (3.282)

≤ H(Y n
11|Zn

1 )−H(Y n
11|Y n

12, Z
n
1 , Z

n
2 ,W0,W1, X

n
1 ) (3.283)

= H(Y n
11|Zn

1 )−H(Y n
11|Zn

1 , X
n
1 ) (3.284)
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= I(Xn
1 ;Y n

11|Zn
1 ) (3.285)

≤
n∑

i=1

H(Y11,i|Z1,i)−H(Y11,i|Zn
1 , X

n
1 , Y

i−1
11 ) (3.286)

=
n∑

i=1

H(Y11,i|Z1,i)−H(Y11,i|Z1,i, X1,i) (3.287)

=
n∑

i=1

I(X1,i;Y11,i|Z1,i) (3.288)

where (3.283) is due to the fact that conditioning cannot increase entropy, (3.284)

is due to the following Markov chain

(Y n
11, Z

n
1 )→ Xn

1 → (Y n
12, Z

n
2 ,W0,W1) (3.289)

and (3.286) follows from the fact that conditioning cannot increase entropy. Finally,

(3.287) is due to the fact that each sub-channel is memoryless. Hence, plugging

(3.281) and (3.288) into (3.280), we get the following outer bound.

H(W0,W1|Zn) ≤
n∑

i=1

I(X1,i;Y11,i|Z1,i) +
n∑

i=1

I(U2,i;Y12,i|Z2,i) + εn (3.290)

Similarly, for the second user, we can get the following outer bound,

H(W0,W2|Zn) ≤
n∑

i=1

I(X2,i;Y22,i|Z2,i) +
n∑

i=1

I(U1,i;Y21,i|Z1,i) + εn (3.291)
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We now bound the sum rates to conclude the converse,

H(W0,W1,W2|Zn) = H(W0,W1,W2)− I(W0,W1,W2;Zn) (3.292)

≤ I(W0,W1;Y n
1 ) + I(W2;Y n

2 |W0,W1)− I(W0,W1,W2;Zn) + εn (3.293)

= I(W0,W1;Y n
1 |Zn) + I(W2;Y n

2 |W0,W1, Z
n) + εn (3.294)

= I(W0,W1;Y n
12|Zn) + I(W0,W1;Y n

11|Zn, Y n
12) + I(W2;Y n

21|W0,W1, Z
n)

+ I(W2;Y n
22|W0,W1, Z

n, Y n
21) + εn (3.295)

= I(W0,W1, Y
n

21;Y n
12|Zn)− I(Y n

21;Y n
12|W0,W1, Z

n) + I(W0,W1;Y n
11|Zn, Y n

12)

+ I(W2;Y n
21|W0,W1, Z

n) + I(W2;Y n
22|W0,W1, Z

n, Y n
21) + εn (3.296)

= S1 − S2 + S3 + S4 + S5 (3.297)

where (3.293) follows from Fano’s lemma, (3.294) is due to the fact that the eaves-

dropper’s channel is degraded with respect to both users’ channels, (3.296) is ob-

tained by adding and subtracting S2 from the first term of (3.295). Now, we proceed

as follows.

S4 − S2 = I(W2;Y n
21|W0,W1, Z

n)− I(Y n
21;Y n

12|W0,W1, Z
n) (3.298)

≤ I(W2, Y
n

12;Y n
21|W0,W1, Z

n)− I(Y n
21;Y n

12|W0,W1, Z
n) (3.299)

= I(W2;Y n
21|W0,W1, Z

n, Y n
12) (3.300)
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Adding S3 to (3.300), we get

S3 + S4 − S2 ≤ I(W0,W1;Y n
11|Zn, Y n

12) + I(W2;Y n
21|W0,W1, Z

n, Y n
12) (3.301)

≤ I(W0,W1;Y n
11|Zn, Y n

12) + I(W2;Y n
11, Y

n
21|W0,W1, Z

n, Y n
12) (3.302)

= I(W0,W1;Y n
11|Zn, Y n

12) + I(W2;Y n
11|W0,W1, Z

n, Y n
12)

+ I(W2;Y n
21|W0,W1, Z

n, Y n
12, Y

n
11) (3.303)

= I(W0,W1,W2;Y n
11|Zn, Y n

12) + I(W2;Y n
21|W0,W1, Z

n, Y n
12, Y

n
11)

(3.304)

where the second term is zero as we show next,

I(W2;Y n
21|W0,W1, Z

n, Y n
12, Y

n
11)

= H(W2|W0,W1, Z
n
1 , Z

n
2 , Y

n
12, Y

n
11)−H(W2|W0,W1, Z

n
1 , Z

n
2 , Y

n
12, Y

n
11, Y

n
21) (3.305)

= H(W2|W0,W1, Y
n

12, Y
n

11)−H(W2|W0,W1, Y
n

12, Y
n

11) = 0 (3.306)

where we used the following Markov chain

(W0,W1,W2)→ (Y n
11, Y

n
12)→ (Y n

21, Z
n
1 , Z

n
2 ) (3.307)
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which is a consequence of the degradation orders that sub-channels exhibit. Thus,

(3.304) can be expressed as

S3 + S4 − S2 ≤ I(W0,W1,W2;Y n
11|Zn, Y n

12) (3.308)

= I(W0,W1,W2;Y n
11|Zn

1 , Y
n

12) (3.309)

≤ I(Xn
1 ,W0,W1,W2;Y n

11|Zn
1 , Y

n
12) (3.310)

= I(Xn
1 ;Y n

11|Zn
1 , Y

n
12) + I(W0,W1,W2;Y n

11|Zn
1 , Y

n
12, X

n
1 ) (3.311)

where (3.309) follows from the following Markov chain

Zn
2 → Y n

12 → (W0,W1,W2, Y
n

11, Z
n
1 ) (3.312)

which is due to the degradedness of the channel. Moreover, the second term in

(3.311) is zero as we show next,

I(W0,W1,W2;Y n
11|Zn

1 , Y
n

12, X
n
1 )

= H(W0,W1,W2|Zn
1 , Y

n
12, X

n
1 )−H(W0,W1,W2|Zn

1 , Y
n

12, X
n
1 , Y

n
11) (3.313)

= H(W0,W1,W2|Y n
12, X

n
1 )−H(W0,W1,W2|Y n

12, X
n
1 ) = 0 (3.314)

where (3.314) follows from the following Markov chain

(Y n
11, Z

n
1 )→ Xn

1 → (W0,W1,W2, Y
n

12) (3.315)
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Thus, (3.311) turns out to be

S3 + S4 − S2 ≤ I(Xn
1 ;Y n

11|Zn
1 , Y

n
12) (3.316)

which can be further bounded as follows,

S3 + S4 − S2 ≤ H(Y n
11|Zn

1 , Y
n

12)−H(Y n
11|Zn

1 , Y
n

12, X
n
1 ) (3.317)

≤ H(Y n
11|Zn

1 )−H(Y n
11|Zn

1 , Y
n

12, X
n
1 ) (3.318)

= H(Y n
11|Zn

1 )−H(Y n
11|Zn

1 , X
n
1 ) (3.319)

≤
n∑

i=1

I(X1,i;Y11,i|Z1,i) (3.320)

where (3.318) is due to the fact that conditioning cannot increase entropy, (3.319)

is due to the following Markov chain

(Y n
11, Z

n
1 )→ Xn

1 → Y n
12 (3.321)
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Finally, (3.320) is due to our previous result in (3.288). We keep bounding terms in

(3.297),

S5 = I(W2;Y n
22|W0,W1, Y

n
21, Z

n
1 , Z

n
2 ) (3.322)

= I(W2;Y n
22|W0,W1, Y

n
21, Z

n
2 ) (3.323)

=
n∑

i=1

I(W2;Y22,i|W0,W1, Y
n

21, Z
n
2 , Y

i−1
22 ) (3.324)

=
n∑

i=1

I(W2;Y22,i|W0,W1, Y
n

21, Z
n
2,i+1, Y

i−1
22 , Z2,i) (3.325)

=
n∑

i=1

I(W2;Y22,i|U2,i, Z2,i) (3.326)

≤
n∑

i=1

H(Y22,i|U2,i, Z2,i)−H(Y22,i|U2,i, Z2,i,W2, X2,i) (3.327)

≤
n∑

i=1

I(X2,i;Y22,i|U2,i, Z2,i) (3.328)

where (3.323) and (3.325) are due to the following Markov chains

Zn
1 → Y n

21 → (W0,W1,W2, Y
n

22, Z
n
2 ) (3.329)

Zi−1
2 → Y i−1

22 →
(
W0,W1,W2, Y

n
21, Z

n
2,i, Y22,i

)
(3.330)

respectively, (3.327) follows from that conditioning cannot increase entropy and

(3.328) is due to the following Markov chain

(Y22,i, Z2,i)→ X2,i → (W2, U2,i) (3.331)
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which is a consequence of the fact that each sub-channel is memoryless. Thus, we

only need to bound S1 in (3.297) to reach the outer bound for the sum secrecy rate,

S1 = I(W0,W1, Y
n

21;Y n
12|Zn) (3.332)

=
n∑

i=1

I(W0,W1, Y
n

21;Y12,i|Zn
1 , Z

n
2 , Y

i−1
12 ) (3.333)

≤
n∑

i=1

H(Y12,i|Z2,i)−H(Y12,i|Zn
1 , Z

n
2 , Y

i−1
12 ,W0,W1, Y

n
21, Y

i−1
22 ) (3.334)

=
n∑

i=1

H(Y12,i|Z2,i)−H(Y12,i|Zn
2 , Y

i−1
12 ,W0,W1, Y

n
21, Y

i−1
22 ) (3.335)

=
n∑

i=1

H(Y12,i|Z2,i)−H(Y12,i|W0,W1, Y
n

21, Y
i−1

22 , Zn
2,i+1, Z2,i) (3.336)

=
n∑

i=1

I(U2,i;Y12,i|Z2,i) (3.337)

where (3.334) is due to the fact that conditioning cannot increase entropy, (3.335)

and (3.336) follow from the following Markov chains

Zn
1 → Y n

21 →
(
W0,W1, Y

i−1
22 , Y n

12, Z
n
2

)
(3.338)

(
Y i−1

12 , Zi−1
2

)
→ Y i−1

22 →
(
W0,W1,W2, Y

n
21, Z

n
2,i, Y12,i

)
(3.339)

respectively. Thus, plugging (3.320), (3.328) and (3.337) into (3.297), we get the

following outer bound on the sum secrecy rate.

H(W0,W1,W2|Zn) ≤
n∑

i=1

I(X1,i;Y11,i|Z1,i) + I(X2,i;Y22,i|U2,i, Z2,i)

+ I(U2,i;Y12,i|Z2,i) + εn (3.340)
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Following similar steps, we can also get the following one

H(W0,W1,W2|Zn) ≤
n∑

i=1

I(X2,i;Y22,i|Z2,i) + I(X1,i;Y11,i|U1,i, Z1,i)

+ I(U1,i;Y21,i|Z1,i) + εn (3.341)

So far, we derived outer bounds, (3.275), (3.276), (3.290), (3.291), (3.340), (3.341),

on the capacity region which match the achievable region provided. The only dif-

ference can be on the joint distribution that they need to satisfy. However, the

outer bounds depend on either p(u1, x1) or p(u2, x2) but not on the joint distribu-

tion p(u1, u2, x1, x2). Hence, for the outer bound, it is sufficient to consider the joint

distributions having the form p(u1, u2, x1, x2) = p(u1, x1)p(u2, x2). Thus, the outer

bounds derived and the achievable region coincide yielding the capacity region.

3.7.5 Proof of Theorem 3.5

3.7.5.1 Achievability

To show the achievability of the region given in Theorem 3.5, we use Theorem 3.4.

First, we group sub-channels into two sets Sj, j = 1, 2, where Sj, j = 1, 2, contains

the sub-channels in which user j has the best observation. In other words, we have

the Markov chain

Xl → Y1l → Y2l → Zl (3.342)
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for l ∈ S1, and we have this Markov chain

Xl → Y2l → Y1l → Zl (3.343)

for l ∈ S2.

We replace Uj with {Ul}l∈Sj , Xj with {Xl}l∈Sj , Yj1 with {Yjl}l∈S1 , Yj2 with

{Yjl}l∈S2 , and Zj with {Zl}l∈Sj , j = 1, 2, in Theorem 3.4. Moreover, if we select the

pairs {(Ul, Xl)}Ml=1 to be mutually independent, we get the following joint distribu-

tion

p
(
{ul, xl, y1l, y2l, zl}Ml=1

)
=

M∏

l=1

p(ul, xl)p(y1l, y2l, zl|xl) (3.344)

which implies that random variable tuples {(ul, xl, y1l, y2l, zl)}Ml=1 are mutually inde-

pendent. Using this fact, one can reach the expressions given in Theorem 3.5.

3.7.5.2 Converse

For the converse part, we again use the proof of Theorem 3.4. First, without loss of

generality, we assume S1 = {1, . . . , L1}, and S2 = {L1 + 1, . . . ,M}. We define the

following auxiliary random variables

U1,i = W0W2Y
n

1[L1+1:M ]Y
i−1

1[1:L1]Z
n
[1:L1],i+1 (3.345)

U2,i = W0W1Y
n

2[1:L1]Y
i−1

2[L1+1:M ]Z
n
[L1+1:M ],i+1 (3.346)
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which satisfy the Markov chains

U1,i → Xl,i → (Y1l,i, Y2l,i, Zl,i), l = 1, . . . , L1 (3.347)

U2,i → Xl,i → (Y1l,i, Y2l,i, Zl,i), l = L1 + 1, . . . ,M (3.348)

Using the analysis carried out for the proof of Theorem 3.4, we get

nR0 ≤
n∑

i=1

I(U1,i;Y1[1:L1],i|Z[1:L1],i) +
n∑

i=1

I(U2,i;Y1[L1+1:M ],i|Z[L1+1:M ],i) + εn (3.349)

where each term will be treated separately. The first term can be bounded as follows

I(U1,i;Y1[1:L1],i|Z[1:L1],i) =

L1∑

l=1

I(U1,i;Y1l,i|Y1[1:l−1],i, Z[1:L1],i) (3.350)

=

L1∑

l=1

I(U1,i;Y1l,i|Y1[1:l−1],i, Z[l:L1],i) (3.351)

≤
L1∑

l=1

I(U1,i, Y1[1:l−1],i, Z[l+1:L1],i;Y1l,i|Zl,i) (3.352)

where (3.351) follows from the Markov chain

Z[1:l−1],i → Y1[1:l−1],i → (U1,i, Y1l,i, Z[l:L1],i) (3.353)

which is due to the degradedness of the sub-channels. To this end, we define the

following auxiliary random variables

Vl,i = Y1[1:l−1],iZ[l+1:L1],iU1,i, l = 1, . . . , L1 (3.354)
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which satisfy the Markov chains

Vl,i → Xl,i → (Y1l,i, Y2l,i, Zl,i), l = 1, . . . , L1 (3.355)

Thus, using these new auxiliary random variables in (3.352), we get

I(U1,i;Y1[1:L1],i|Z[1:L1],i) ≤
L1∑

l=1

I(Vl,i;Y1l,i|Zl,i) (3.356)

We now bound the second term in (3.349) as follows,

I(U2,i;Y1[L1+1:M ],i|Z[L1+1:M ],i)

=
M∑

l=L1+1

I(U2,i;Y1l,i|Z[L1+1:M ],i, Y1[L1+1:l−1],i) (3.357)

=
M∑

l=L1+1

I(U2,i;Y1l,i|Z[l:M ],i, Y1[L1+1:l−1],i) (3.358)

≤
M∑

l=L1+1

H(Y1l,i|Zl,i)−H(Y1l,i|Z[l:M ],i, Y1[L1+1:l−1],i, U2,i) (3.359)

≤
M∑

l=L1+1

H(Y1l,i|Zl,i)−H(Y1l,i|Z[l:M ],i, Y1[L1+1:l−1],i, U2,i, Y2[L1+1:l−1],i) (3.360)

=
M∑

l=L1+1

H(Y1l,i|Zl,i)−H(Y1l,i|Z[l:M ],i, U2,i, Y2[L1+1:l−1],i) (3.361)

=
M∑

l=L1+1

I(Z[l+1:M ],i, U2,i, Y2[L1+1:l−1],i;Y1l,i|Zl,i) (3.362)

where (3.358) follows from the Markov chain

Z[L1+1:l−1],i → Y1[L1+1:l−1],i → (U2,i, Z[l:M ],i, Y1l,i) (3.363)
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which is a consequence of the degradedness of the sub-channels, (3.359) and (3.360)

follow from the fact that conditioning cannot increase entropy, and (3.361) is due

to the Markov chain

Y1[L1+1:l−1],i → Y2[L1+1:l−1],i → (U2,i, Z[l:M ],i, Y1l,i) (3.364)

which is again a consequence of the degradedness of the sub-channels. To this end,

we define the following auxiliary random variables

Vl,i = Y2[L1+1:l−1],iZ[l+1:M ],iU2,i, l = L1 + 1, . . . ,M (3.365)

which satisfy the Markov chains

Vl,i → Xl,i → (Y1l,i, Y2l,i, Zl,i), l = L1 + 1, . . . ,M (3.366)

Thus, using these new auxiliary random variables in (3.362), we get

I(U2,i;Y1[L1+1:M ],i|Z[L1+1:M ],i) ≤
M∑

l=L1+1

I(Vl,i;Y1l,i|Zl,i) (3.367)

Finally, using (3.356) and (3.367) in (3.349), we obtain

nR0 ≤
n∑

i=1

M∑

l=1

I(Vl,i;Y1l,i|Zl,i) + εn (3.368)
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Due to symmetry, we also have

nR0 ≤
n∑

i=1

M∑

l=1

I(Vl,i;Y2l,i|Zl,i) + εn (3.369)

We now bound the sum of common and independent message rates. Using the

converse proof of Theorem 3.4, we get

n(R0 +R1) ≤
n∑

i=1

I(X[1:L1],i;Y1[1:L1],i|Z[1:L1],i) +
n∑

i=1

I(U2,i;Y1[L1+1:M ],i|Z[L1+M ],i) + εn

(3.370)

where, for the second term we already obtained an outer bound given in (3.367).

We now bound the first term,

I(X[1:L1],i;Y1[1:L1],i|Z[1:L1],i) =

L1∑

l=1

I(X[1:L1],i;Y1l,i|Z[1:L1],i, Y1[1:l−1],i) (3.371)

≤
L1∑

l=1

H(Y1l,i|Zl,i)−H(Y1l,i|Z[1:L1],i, Y1[1:l−1],i, X[1:L1],i)

(3.372)

=

L1∑

l=1

H(Y1l,i|Zl,i)−H(Y1l,i|Zl,i, Xl,i) (3.373)

=

L1∑

l=1

I(Xl,i;Y1l,i|Zl,i) (3.374)

where (3.372) follows from the fact that conditioning cannot increase entropy, and
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(3.373) is due to the following Markov chain

(Y1l,i, Zl,i)→ Xl,i → (X[1:l−1],i, X[l+1:L1],i, Y1[1:l−1],iZ[1:l−1],i, Z[l+1:L1],i) (3.375)

which follows from the facts that channel is memoryless and sub-channels are inde-

pendent. Thus, plugging (3.367) and (3.374) into (3.370), we obtain

n(R0 +R1) ≤
n∑

i=1

∑

l∈S1

I(Xl,i;Y1l,i|Zl,i) +
n∑

i=1

∑

l∈S2

I(Vl,i;Y1l,i|Zl,i) + εn (3.376)

Due to symmetry, we also have

n(R0 +R1) ≤
n∑

i=1

∑

l∈S2

I(Xl,i;Y2l,i|Zl,i) +
n∑

i=1

∑

l∈S1

I(Vl,i;Y2l,i|Zl,i) + εn (3.377)

We now bound the sum secrecy rate. We first borrow the following outer

bound from the converse proof of Theorem 3.4,

n(R0 +R1 +R2) ≤
n∑

i=1

I(X[1:L1],i;Y1[1:L1],i|Z[1:L1],i) (3.378)

+
n∑

i=1

I(X[L1+1:M ],i;Y2[L1+1:M ],i|U2,i, Z[L1+1:M ],i) +
n∑

i=1

I(U2,i;Y1[L1+1:M ],i|Z[L1+1:M ],i)

(3.379)

where, for the first and third terms we already obtained outer bounds given in

141



(3.374) and (3.367), respectively. We now bound the second term as follows,

I(X[L1+1:M ],i;Y2[L1+1:M ],i|U2,i, Z[L1+1:M ],i)

=
M∑

l=L1+1

I(X[L1+1:M ],i;Y2l,i|U2,i, Z[L1+1:M ],i, Y2[L1+1:l−1],i) (3.380)

=
M∑

l=L1+1

I(X[L1+1:M ],i;Y2l,i|U2,i, Z[l:M ],i, Y2[L1+1:l−1],i) (3.381)

=
M∑

l=L1+1

I(X[L1+1:M ],i;Y2l,i|Vl,i, Zl,i) (3.382)

=
M∑

l=L1+1

H(Y2l,i|Vl,i, Zl,i)−H(Y2l,i|Vl,i, Zl,i, X[L1+1:M ],i) (3.383)

=
M∑

l=L1+1

H(Y2l,i|Vl,i, Zl,i)−H(Y2l,i|Vl,i, Zl,i, Xl,i) (3.384)

=
M∑

l=L1+1

I(Xl,i;Y2l,i|Vl,i, Zl,i) (3.385)

where (3.381) follows from the Markov chain

Z[L1+1:l−1],i → Y2[L1+1:l−1],i → U2,i, Z[l:M ],i, X[L1+1:M ],i, Y2l,i (3.386)

which is a consequence of the degradedness of the sub-channels, (3.382) is obtained

via using the definition of V2,i given in (3.365), and (3.384) follows from the Markov

chain

(Zl,i, Y2l,i)→ Xl,i → (Vl,i, X[L1+1:l−1],i, X[l+1:M ]) (3.387)

which is due to the facts that channel is memoryless and sub-channels are indepen-
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dent. Thus, plugging (3.367), (3.374) and (3.385) into (3.379), we get

n(R0 +R1 +R2) ≤
n∑

i=1

∑

l∈S1

I(Xl,i;Y1l,i|Zl,i) +
n∑

i=1

∑

l∈S2

I(Xl,i;Y2l,i|Vl,i, Zl,i)

+
n∑

i=1

∑

l∈S2

I(Vl,i;Y1l,i|Zl,i) + εn (3.388)

Due to symmetry, we also have

n(R0 +R1 +R2) ≤
n∑

i=1

∑

l∈S2

I(Xl,i;Y2l,i|Zl,i) +
n∑

i=1

∑

l∈S1

I(Xl,i;Y1l,i|Vl,i, Zl,i)

+
n∑

i=1

∑

l∈S1

I(Vl,i;Y2l,i|Zl,i) + εn (3.389)

Finally, we note that all outer bounds depend on the distributions

p(vl,i, xl,i, y1l,i, y2l,i, zl,i) = p(vl,i, xl,i)p(y1l,i, y2l,i, zl,i|xl,i) (3.390)

but not on any joint distributions of the tuples (vl,i, xl,i, y1l,i, y2l,i, zl,i) implying that

selection of the pairs (vl,i, xl,i) to be mutually independent is optimum.

3.7.6 Proof of Theorem 3.6

We prove Theorem 3.6 in two parts; first, we show achievability, and then we prove

the converse.
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3.7.6.1 Achievability

Similar to what we have done to show the achievability of Theorem 3.4, we first note

that boundary of the capacity region can be decomposed into three surfaces [29].

• First surface:

R0 ≤ ᾱI(U2;Y12|Z2) (3.391)

R2 ≤ ᾱI(X2;Y22|U2, Z2) (3.392)

R0 +R1 ≤ αI(X1;Y11|Z1) + ᾱI(U2;Y12|Z2), U1 = φ (3.393)

• Second surface:

R0 ≤ αI(U1;Y21|Z1) (3.394)

R1 ≤ αI(X1;Y11|U1, Z1) (3.395)

R0 +R2 ≤ αI(U1;Y21|Z1) + ᾱI(X2;Y22|Z2), U2 = φ (3.396)

• Third surface:

R1 ≤ αI(X1;Y11|U1, Z1) (3.397)

R2 ≤ ᾱI(X2;Y22|U2, Z2) (3.398)

R0 ≤ αI(U1;Y11|Z1) + ᾱI(U2;Y12|Z2) (3.399)

R0 ≤ αI(U1;Y21|Z1) + ᾱI(U2;Y22|Z2) (3.400)
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To show the achievability of each surface, we first introduce a codebook structure.

Codebook generation:

Fix the probability distribution as,

p(u1, x1)p(u2, x2)p(y1, y2, z|x) (3.401)

• Generate 2n(R01+R11+R̃11) length-n1 sequences u1 through p(u1) =
∏n1

i=1 p(u1,i)

and index them as u1(w01, w11, w̃11) where w01 ∈ {1, . . . , 2nR01}, w11 ∈ {1, . . . ,

2nR11} and w̃11 ∈ {1, . . . , 2nR̃11}.

• For each u1, generate 2n(R12+R̃12) length-n1 sequences x1 through p(x1) =

∏n1

i=1 p(x1,i|u1,i) and index them as x1(w01, w11, w̃11, w12, w̃12) where w12 ∈

{1, . . . , 2nR12}, w̃12 ∈ {1, . . . , 2nR̃12}.

• Generate 2n(R02+R21+R̃21) length-(n − n1) sequences u2 through p(u2)

=
∏n−n1

i=1 p(u2,i) and index them as u2(w02, w21, w̃21) where w02 ∈ {1, . . . , 2nR02},

w21 ∈ {1, . . . , 2nR21} and w̃21 ∈ {1, . . . , 2nR̃21}.

• For each u2, generate 2n(R22+R̃22) length-(n−n1) sequences x2 through p(x2) =

∏n−n1

i=1 p(x2,i|u2,i) and index them as x2(w02, w21, w̃21, w22, w̃22) where w22 ∈

{1, . . . , 2nR22}, w̃22 ∈ {1, . . . , 2nR̃22}.

• We remark that this codebook uses first channel n1 times and the other one
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(n− n1) times. We define

α =
n1

n
(3.402)

and ᾱ = 1− α.

• Furthermore, we set

R̃11 = αI(U1;Z1) (3.403)

R̃12 = αI(X1;Z1|U1) (3.404)

R̃21 = ᾱI(U2;Z2) (3.405)

R̃22 = ᾱI(X2;Z2|U2) (3.406)

R1 = R11 +R12 (3.407)

R2 = R21 +R22 (3.408)

Encoding:

When the transmitted messages are (w01, w02, w11, w12, w21, w22), we randomly

pick (w̃11, w̃12, w̃21, w̃22) and send corresponding codewords.

Decoding:

Using this codebook structure, we can show that all three surfaces which

determine the boundary of the capacity region are achievable. For example, if we

set U1 = φ (that implies R01 = R11 = R̃11 = 0) and R21 = 0, then we achieve the
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following rates with vanishingly small error probability.

R1 ≤ αI(X1;Y11|Z1) (3.409)

R0 ≤ ᾱI(U2;Y12|Z2) (3.410)

R2 ≤ ᾱI(X2;Y22|U2, Z2) (3.411)

Exchanging common message rate with user 1’s independent message rate, one can

obtain the first surface. Second surface follows from symmetry. For the third surface,

we first set R11 = R21 = 0. Moreover, we send common message in its entirety, i.e.,

we do not use a rate splitting for the common message, hence we set R01 = R02 = R0,

w01 = w02 = w0. In this case, each user, say the jth one, decodes the common

message by looking for a unique w0 which satisfies

Ew0
j1 = {∃w̃01 : (u1(w0, w̃01),yj1) ∈ Anε } (3.412)

Ew0
j2 = {∃w̃02 : (u2(w0, w̃02),yj2) ∈ Anε } (3.413)

Following the analysis carried out in (3.227)-(3.238), the sufficient conditions for the

common message to be decodable by both users can be found as

R0 ≤ αI(U1;Yj1|Z1) + ᾱI(U2;Yj2|Z2), j = 1, 2 (3.414)
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After decoding the common message, each user can decode its independent message

if

R1 ≤ αI(X1;Y11|U1, Z1) (3.415)

R2 ≤ ᾱI(X2;Y22|U2, Z2) (3.416)

Thus, the third surface can be achieved with vanishingly small error probability. As

of now, we showed that all rates in the so-called capacity region are achievable with

vanishingly small error probability, however we did not claim anything about the

secrecy conditions which will be considered next.

Equivocation computation:

To complete the achievability part of the proof, we need to show that this

codebook structure also satisfies the secrecy conditions. For that purpose, it is

sufficient to consider the sum rate secrecy condition.

H(W0,W1,W2|Zn1
1 , Zn−n1

2 ) = H(W0,W1,W2, Z
n1
1 , Zn−n1

2 )−H(Zn1
1 , Zn−n1

2 ) (3.417)

= H(W0,W1,W2, U
n1
1 , Un−n1

2 , Xn1
1 , Xn−n1

2 , Zn1
1 , Zn−n1

2 )−H(Zn1
1 , Zn−n1

2 )

−H(Un1
1 , Un−n1

2 , Xn1
1 , Xn−n1

2 |W0,W1,W2, Z
n1
1 , Zn−n1

2 ) (3.418)

= H(Un1
1 , Un−n1

2 , Xn1
1 , Xn−n1

2 ) +H(W0,W1,W2, Z
n1
1 , Zn−n1

2 |Un1
1 , Un−n1

2 , Xn1
1 , Xn−n1

2 )

−H(Zn1
1 , Zn−n1

2 )−H(Un1
1 , Un−n1

2 , Xn1
1 , Xn−n1

2 |W0,W1,W2, Z
n1
1 , Zn−n1

2 ) (3.419)

≥ H(Un1
1 , Un−n1

2 , Xn1
1 , Xn−n1

2 ) +H(Zn1
1 , Zn−n1

2 |Un1
1 , Un−n1

2 , Xn1
1 , Xn−n1

2 )

−H(Zn1
1 , Zn−n1

2 )−H(Un1
1 , Un−n1

2 , Xn1
1 , Xn−n1

2 |W0,W1,W2, Z
n1
1 , Zn−n1

2 ) (3.420)
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where each term will be treated separately. The first term is

H(Un1
1 , Un−n1

2 , Xn1
1 , Xn−n1

2 )

= H(Un1
1 , Un−n1

2 ) +H(Xn1
1 |Un1

1 ) +H(Xn−n1
2 |Un−n1

2 ) (3.421)

= n(R0 +R11 + R̃11 +R21 + R̃21) + n(R12 + R̃12) + n(R22 + R̃22) (3.422)

= n(R0 +R1 +R2) + n1I(X1;Z1) + (n− n1)I(X2;Z2) (3.423)

where the first equality is due to the Markov chain

Xn1
1 → Un1

1 → Un−n1
2 → Xn−n1

2 (3.424)

The equality in (3.422) is due to the fact that (Un1
1 , Un−n1

2 ) can take

2n(R0+R11+R̃11+R21+R̃21) values uniformly, and given Un1
1 (resp. Un−n1

2 ), Xn1
1 (resp.

Xn−n1
2 ) can take 2n(R12+R̃12) (resp. 2n(R22+R̃22)) values with equal probability. To

reach (3.423), we use the definitions in (3.403)-(3.408). We consider the second and

third terms in (3.420).

H(Zn1
1 , Zn−n1

2 )−H(Zn1
1 , Zn−n1

2 |Un1
1 , Un−n1

2 , Xn1
1 , Xn−n1

2 )

≤ H(Zn1
1 ) +H(Zn−n1

2 )−H(Zn1
1 , Zn−n1

2 |Un1
1 , Un−n1

2 , Xn1
1 , Xn−n1

2 ) (3.425)

= H(Zn1
1 ) +H(Zn−n1

2 )−H(Zn1
1 |Xn1

1 ) +H(Zn−n1
2 |Xn−n1

2 ) (3.426)

= I(Xn1
1 ;Zn1

1 ) + I(Xn−n1
2 ;Zn−n1

2 ) (3.427)

≤ n1I(X1;Z1) + (n− n1)I(X2;Z2) + γ1,n + γ2,n (3.428)
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where (3.425) is due to the fact that conditioning cannot increase entropy, (3.426)

follows from the Markov chain

Zn1
1 → Xn1

1 → Un1
1 → Un−n1

2 → Xn−n1
2 → Zn−n1

2 (3.429)

and (3.428) can be shown using the technique devised in [2]. We bound the fourth

term of (3.420). To this end, we assume that, given the side information (W0 =

w0,W1 = w1,W2 = w2), the eavesdropper tries to decode

(Un1
1 , Xn1

1 , Un−n1
2 , Xn−n1

2 ) (3.430)

Since the confusion message rates are selected to ensure that (see (3.403)-(3.406)) the

eavesdropper can decode them as long as side information is available. Consequently,

use of Fano’s lemma yields

H(Un1
1 , Un−n1

2 , Xn1
1 , Xn−n1

2 |W0,W1,W2, Z
n1
1 , Zn−n1

2 ) < εn (3.431)

Finally, plugging (3.423),(3.428) and (3.431) into (3.420), we get

H(W0,W1,W2|Zn1
1 , Zn−n1

2 ) ≥ n(R0 +R1 +R2)− εn − γ1,n − γ2,n (3.432)

which completes the achievability part of the proof.
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3.7.6.2 Converse

First, let us define the following auxiliary random variables,

U1,i = W0W2Y
n−n1

12 Y i−1
11 Zn1

1,i+1, i = 1, . . . , n1 (3.433)

U2,i = W0W1Y
n1

21 Y
i−1

22 Zn−n1
2,i+1 , i = 1, . . . , n− n1 (3.434)

where we assume that first channel is used n1 times. We again define

α =
n1

n
(3.435)

We note that auxiliary random variables, U1,i, U2,i satisfy the Markov chains

U1,i → X1,i → (Y11,i, Y21,i, Z1,i) (3.436)

U2,i → X2,i → (Y21,i, Y22,i, Z2,i) (3.437)

Similar to the converse of Theorem 3.4, here again, U1,i and U2,i can be arbitrarily

correlated. However, at the end of converse, it will be clear that selection of them
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as independent would yield the same region. Start with the common message rate,

H(W0|Zn1
1 , Zn−n1

2 ) (3.438)

≤ I(W0;Y n1
11 , Y

n−n1
12 )− I(W0;Zn1

1 , Zn−n1
2 ) + εn (3.439)

= I(W0;Y n1
11 , Y

n−n1
12 |Zn1

1 , Zn−n1
2 ) + εn (3.440)

= I(W0;Y n−n1
12 |Zn1

1 , Zn−n1
2 ) + I(W0;Y n1

11 |Zn1
1 , Zn−n1

2 , Y n−n1
12 ) + εn (3.441)

≤ I(W0,W1;Y n−n1
12 |Zn1

1 , Zn−n1
2 ) + I(W0,W2;Y n1

11 |Zn1
1 , Zn−n1

2 , Y n−n1
12 ) + εn (3.442)

where (3.439) is due to Fano’s lemma, (3.440) is due to the fact that the eavesdrop-

per’s channel is degraded with respect to the first user’s channel. Once we obtain

(3.442), using the analysis carried out in the proof of Theorem 3.4, we can obtain

the following bounds.

I(W0,W1;Y n−n1
12 |Zn1

1 , Zn−n1
2 ) ≤

n−n1∑

i=1

I(U2,i;Y12,i|Z2,i) (3.443)

I(W0,W2;Y n1
11 |Zn1

1 , Zn−n1
2 , Y n−n1

12 ) ≤
n1∑

i=1

I(U1,i;Y11,i|Z1,i) (3.444)

where (3.443) (resp. (3.444)) can be derived following the lines from (3.262) (resp.

(3.269)) to (3.266) (resp. (3.272)). Thus, we have

H(W0|Zn1
1 , Zn−n1

2 ) ≤
n−n1∑

i=1

I(U2,i;Y12,i|Z2,i) +

n1∑

i=1

I(U1,i;Y11,i|Z1,i) + εn (3.445)
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and similarly, we can get

H(W0|Zn1
1 , Zn−n1

2 ) ≤
n−n1∑

i=1

I(U2,i;Y22,i|Z2,i) +

n1∑

i=1

I(U1,i;Y21,i|Z1,i) + εn (3.446)

We now consider the sum of common and independent message rates,

H(W0,W1|Zn1
1 , Zn−n1

2 )

≤ I(W0,W1;Y n1
11 , Y

n−n1
12 )− I(W0,W1;Zn1

1 , Zn−n1
2 ) + εn (3.447)

= I(W0,W1;Y n1
11 , Y

n−n1
12 |Zn1

1 , Zn−n1
2 ) + εn (3.448)

= I(W0,W1;Y n−n1
12 |Zn1

1 , Zn−n1
2 ) + I(W0,W1;Y n1

11 |Zn1
1 , Zn−n1

2 , Y n−n1
12 ) + εn (3.449)

where (3.447) is due to Fano’s lemma, (3.448) follows from the fact that the eaves-

dropper’s channel is degraded with respect to the first user’s channel. The first term

of (3.449) is already bounded in (3.443). The second term can be bounded as

I(W0,W1;Y n1
11 |Zn1

1 , Zn−n1
2 , Y n−n1

12 ) ≤
n1∑

i=1

I(X1,i;Y11,i|Z1,i) (3.450)

which can be obtained following the lines from (3.282) to (3.288). Hence, plugging

(3.443) and (3.450) into (3.449), we get

H(W0,W1|Zn1
1 , Zn−n1

2 ) ≤
n−n1∑

i=1

I(U2,i;Y12,i|Z2,i) +

n1∑

i=1

I(X1,i;Y11,i|Z1,i) + εn (3.451)
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Similarly, we can obtain

H(W0,W2|Zn1
1 , Zn−n1

2 ) ≤
n−n1∑

i=1

I(X2,i;Y22,i|Z2,i) +

n1∑

i=1

I(U1,i;Y21,i|Z1,i) + εn (3.452)

Finally, we derive the outer bounds for the sum secrecy rate,

H(W0,W1,W2|Zn1
1 , Zn−n1

2 ) ≤ I(W0,W1;Y n1
11 , Y

n−n1
12 ) + I(W2;Y n1

21 , Y
n−n1

22 |W0,W1)

− I(W0,W1,W2;Zn1
1 , Zn−n1

2 ) + εn (3.453)

= I(W0,W1;Y n1
11 , Y

n−n1
12 |Zn1

1 , Zn−n1
2 ) + I(W2;Y n1

21 , Y
n−n1

22 |W0,W1, Z
n1
1 , Zn−n1

2 ) + εn

(3.454)

= I(W0,W1;Y n−n1
12 |Zn1

1 , Zn−n1
2 ) + I(W0,W1;Y n1

11 |Zn1
1 , Zn−n1

2 , Y n−n1
12 )

+ I(W2;Y n1
21 |W0,W1, Z

n1
1 , Zn−n1

2 ) + I(W2;Y n−n1
22 |W0,W1, Z

n1
1 , Zn−n1

2 , Y n1
21 ) + εn

(3.455)

= I(W0,W1, Y
n1

21 ;Y n−n1
12 |Zn1

1 , Zn−n1
2 )− I(Y n1

21 ;Y n−n1
12 |Zn1

1 , Zn−n1
2 ,W0,W1)

+ I(W0,W1;Y n1
11 |Zn1

1 , Zn−n1
2 , Y n−n1

12 ) + I(W2;Y n1
21 |W0,W1, Z

n1
1 , Zn−n1

2 )

+ I(W2;Y n−n1
22 |W0,W1, Z

n1
1 , Zn−n1

2 , Y n1
21 ) + εn (3.456)

= S1 − S2 + S3 + S4 + S5 + εn (3.457)

where in (3.453), we used Fano’s lemma and (3.454) follows from the fact that the

eavesdropper’s channel is degraded with respect to both users’ channels. We can

again use the analysis carried out in the converse proof of Theorem 3.4 to bound
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(3.457). For example, following lines from (3.298) to (3.320), we can obtain

S4 + S3 − S2 ≤
n1∑

i=1

I(X1,i;Y11,i|Z1,i) (3.458)

Similarly, if we follow the analysis from (3.322) to (3.328), we can get

S5 ≤
n−n1∑

i=1

I(X2,i;Y22,i|U2,i, Z2,i) (3.459)

and if we follow the lines from (3.332) to (3.337), we can get

S1 ≤
n−n1∑

i=1

I(U2,i;Y12,i|Z2,i) (3.460)

Thus, plugging (3.458), (3.459) and (3.460) into (3.457), we get

H(W0,W1,W2|Zn1
1 , Zn−n1

2 ) ≤
n1∑

i=1

I(X1,i;Y11,i|Z1,i) +

n−n1∑

i=1

I(U2,i;Y12,i|Z2,i)

+

n−n1∑

i=1

I(X2,i;Y22,i|U2,i, Z2,i) + εn (3.461)

Similarly, it can be shown that

H(W0,W1,W2|Zn1
1 , Zn−n1

2 ) ≤
n1∑

i=1

I(U1,i, Y21,i|Z2,i) +

n1∑

i=1

I(X1,i;Y11,i|U1,i, Z1,i)

+

n−n1∑

i=1

I(X2,i;Y22,i|Z2,i) (3.462)

155



So far, we derived outer bounds on the secrecy capacity region which match the

achievable region. Hence, to claim that this is indeed the capacity region, we

need to show that computing the outer bounds over all distributions of the form

p(u1, x1)p(u2, x2) yields the same region which we would obtain by computing over

all p(u1, u2, x1, x2). Since all the expressions involved in the outer bounds depend

on either p(u1, x1) or p(u2, x2) but not on the joint distribution p(u1, u2, x1, x2), this

argument follows, establishing the secrecy capacity region.

156



Chapter 4

Capacity Region of the Gaussian MIMO Broadcast Channel with

Common and Confidential Messages

4.1 Introduction

In this chapter, we consider the two-user Gaussian MIMO broadcast channel with

common and confidential messages, where the transmitter sends a confidential mes-

sage to each user which needs to be kept perfectly secret from the other user in

addition to a common message directed to both users (see Figure 4.1). In other

words, in this channel model, there are three messages W0,W1,W2, where W0 de-

notes the common message sent to both users, W1 denotes the first user’s confidential

message that needs to be kept hidden from the second user, and W2 denotes the

second user’s confidential message that needs to be kept hidden from the first user.

The Gaussian MIMO broadcast channel with common and confidential mes-

sages subsumes several other channel models as special cases. These special cases can

be obtained from our channel model by disabling some of the messages W0,W1,W2.

The first such channel model is the Gaussian MIMO wiretap channel, where the

transmitter has only one confidential message for one (legitimate) user, which is

kept perfectly secret from the other user (eavesdropper). This channel model can

be obtained from our channel model by setting W0 = W2 = φ. The secrecy capacity
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X
Transmitter

User 1

H1 N1

User 2

Ŵ0, Ŵ1,W2

Ŵ0, Ŵ2,W1

N2H2

W0,W1,W2

Y1

Y2

Figure 4.1: Gaussian MIMO broadcast channel with common and confidential mes-
sages.

of the Gaussian MIMO wiretap channel is obtained in [15, 16] for the general case,

in [17] for the 2-2-1 case. The second such channel model is the Gaussian MIMO

wiretap channel with common message [18], in which the transmitter sends a com-

mon message to both the legitimate user and the eavesdropper, and a confidential

message to the legitimate user that is kept perfectly secret from the eavesdropper.

This channel model can be obtained from our channel model by setting W2 = φ.

The capacity region of the Gaussian MIMO wiretap channel with common message

is obtained in [18]. The third such channel model is the Gaussian MIMO broadcast

channel with confidential messages [8], where the transmitter sends a confidential

message to each user which is kept perfectly secret from the other user. This channel

model can be obtained from our channel model by setting W0 = φ. The capacity

region of the Gaussian MIMO broadcast channel with confidential messages is es-

tablished in [8].

Here, we obtain the capacity region of the Gaussian MIMO broadcast channel
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with common and confidential messages1. In particular, we show that a variant of

the secret dirty-paper coding (S-DPC) scheme proposed in [8] is capacity-achieving.

Since the S-DPC scheme proposed in [8] is for the transmission of only two confi-

dential messages, it is modified here to incorporate the transmission of a common

message as well. Similar to [8], we also notice an invariance property of this achiev-

able scheme with respect to the encoding order used in the S-DPC scheme. In other

words, two achievable rate regions arising from two possible encoding orders used

in the S-DPC scheme are identical, and equal to the capacity region. We provide

the proof of this statement as well as the converse proof for the capacity region by

using the channel enhancement technique [4] and an extremal inequality [5].

We also explore the connections between our channel model and its non-

confidential counterpart, i.e., the (two-user) Gaussian MIMO broadcast channel

with common and private messages. In the Gaussian MIMO broadcast channel

with common and private messages, the transmitter again sends a common message

to both users, and a private message to each user, for which there is no secrecy

constraint now, i.e., private message of each user does not need to be kept secret

from the other user. Thus, the channel model we study here can be viewed as a

constrained version of the Gaussian MIMO broadcast channel with common and

private messages, where the constraint comes through forcing the private messages

to be confidential. We note that although there are partial results for the Gaussian

MIMO broadcast channel with common and private messages [9, 10], its capacity

1The same result is obtained independently and concurrently in [31, 32]. The conference ver-
sion [31] and the conference version of the work in this chapter [33] appeared concurrently at the
IEEE ISIT 2010 as well as at [arXiv: 1001.2806] and [arXiv:1001:3297].
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region is not known completely. However, here, we are able to obtain the entire

capacity region for a constrained version of the Gaussian MIMO broadcast channel

with common and private messages. We provide an intuitive explanation of this at-

first-sight surprising point as well as the invariance property of the achievable rate

region with respect to the encoding orders that can be used in the S-DPC scheme,

by using a result from [10]. In particular, we use the following result from [10]: For a

given common message rate, the private message sum rate capacity of the Gaussian

MIMO broadcast channel with common and private messages is achieved by the

dirty-paper coding (DPC) scheme in [34], and any one of the two possible encoding

orders that can be used in DPC gives the private message sum rate capacity. Using

this result, we show that there is a one-to-one correspondence between the points on

the boundary of the achievable rate region of the Gaussian MIMO broadcast channel

with common and confidential messages that are obtained by using a specific en-

coding order in the S-DPC scheme, and those points which are private message sum

rate capacity achieving for the Gaussian MIMO broadcast channel with common

and private messages. This correspondence intuitively explains why the achievable

rate regions arising from the use of different encoding orders in S-DPC are the same,

and also why we can obtain the entire capacity region of the Gaussian MIMO broad-

cast channel with common and confidential messages although the capacity region

of its non-confidential counterpart is not known completely.

160



4.2 Channel Model and Main Result

We study the two-user Gaussian MIMO broadcast channel (see Figure 4.1) which is

defined by

Y1 = H1X + N1 (4.1)

Y2 = H2X + N2 (4.2)

where the channel input X is a t × 1 vector, Hj is the channel gain matrix of size

rj × t, the channel output of the jth user Yj is a rj × 1 vector, and the Gaussian

random vector Nj is of size rj × 1 with a covariance matrix Σj which is assumed

to be strictly positive-definite, i.e., Σj � 0. We consider a covariance constraint on

the channel input as follows

E
[
XX>

]
� S (4.3)

where S � 0.

We study the following scenario for the Gaussian MIMO broadcast channel:

There are three independent messages (W0,W1,W2) with rates (R0, R1, R2), respec-

tively, where W0 is the common message that needs to be delivered to both users, W1

is the confidential message of the first user which needs to be kept perfectly secret

from the second user, and similarly, W2 is the confidential message of the second

user which needs to be kept perfectly secret from the first user. The secrecy of the

confidential messages is measured by the normalized mutual information rates [2, 3],
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i.e, we require

1

n
I(W1;W0,W2,Y

n
2 )→ 0 and

1

n
I(W2;W0,W1,Y

n
1 )→ 0 (4.4)

as n→∞, where n denotes the number of channel uses. The closure of all achievable

rate triples (R0, R1, R2) is defined to be the capacity region, and will be denoted by

C(S). We next define the following shorthand notations

R0j(K1,K2) =
1

2
log

|HjSH>j + Σj|
|Hj(K1 + K2)H>j + Σj|

, j = 1, 2 (4.5)

R1(K1,K2) =
1

2
log
|H1(K1 + K2)H>1 + Σ1|
|H1K2H>1 + Σ1|

− 1

2
log
|H2(K1 + K2)H>2 + Σ2|
|H2K2H>2 + Σ2|

(4.6)

R2(K2) =
1

2
log
|H2K2H

>
2 + Σ2|

|Σ2|
− 1

2
log
|H1K2H

>
1 + Σ1|

|Σ1|
(4.7)

using which, our main result can be stated as follows.

Theorem 4.1 The capacity region of the Gaussian MIMO broadcast channel with

common and confidential messages C(S) is given by

C(S) = RS−DPC
12 (S) = RS−DPC

21 (S) (4.8)
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where RS−DPC
12 (S) is given by the union of rate triples (R0, R1, R2) satisfying

R0 ≤ min{R01(K1,K2), R02(K1,K2)} (4.9)

R1 ≤ R1(K1,K2) (4.10)

R2 ≤ R2(K2) (4.11)

for some positive semi-definite matrices K1,K2 such that K1+K2 � S, andRS−DPC
21 (S)

can be obtained from RS−DPC
12 (S) by swapping the subscripts 1 and 2.

Theorem 4.1 states that the common message, for which a covariance matrix

S−K1−K2 is allotted, should be encoded by using a standard Gaussian codebook,

and the confidential messages, for which covariance matrices K1,K2 are allotted,

need to be encoded by using the S-DPC scheme proposed in [8]. S-DPC is a modified

version of DPC [12] to meet the secrecy requirements. The receivers first decode

the common message by treating the confidential messages as noise, and then each

receiver decodes the confidential message intended to itself. Depending on the en-

coding order used in S-DPC, one of the users gets a clean link for the transmission

of its confidential message, where there is no interference originating from the other

user’s confidential message. Although one might expect that the two achievable

regions arising from two possible encoding orders that can be used in S-DPC could

be different, i.e., RS−DPC
12 (S) 6= RS−DPC

21 (S), and taking a convex closure of these

two regions would yield a larger achievable rate region, Theorem 4.1 states that

RS−DPC
12 (S) = RS−DPC

21 (S), i.e., the achievable rate region is invariant with respect

to the encoding order used in S-DPC. This invariance property of S-DPC was first
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noticed in [8] for the case where there was no common message to be transmitted.

We acknowledge [31, 32], where the authors obtain Theorem 4.1 (capacity

region of the Gaussian MIMO broadcast channel with common and confidential

messages) independently and concurrently. Their proof is identical to the one we

present here.

4.2.1 Aligned Channel

We define a sub-class of Gaussian MIMO broadcast channels called the aligned Gaus-

sian MIMO broadcast channel, which can be obtained from (4.1)-(4.2) by setting

H1 = H2 = I, i.e.,

Y1 = X + N1 (4.12)

Y2 = X + N2 (4.13)

To distinguish the notation used for the aligned Gaussian MIMO broadcast chan-

nel from the one used for the general model in (4.1)-(4.2), we denote the capac-

ity region of the aligned channel by CAL(S), the rate expressions in (4.5)-(4.7)

for the special case H1 = H2 = I by {RAL
0j (K1,K2)}2

j=1, R
AL
1 (K1,K2), RAL

2 (K2),

and the regions RS−DPC
12 (S),RS−DPC

21 (S) for the special case H1 = H2 = I by

RS−DPC−AL
12 (S),RS−DPC−AL

21 (S).

In this work, we first prove Theorem 4.1 for the aligned Gaussian MIMO

broadcast channel. Then, we establish the capacity region for the general channel

model in (4.1)-(4.2) by following the analysis in Section V.B of [4] and Section 7.1
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of [19] in conjunction with the capacity result we obtain for the aligned channel.

4.2.2 Capacity Region under a Power Constraint

We note that the covariance constraint on the channel input in (4.3) is a rather

general constraint that subsumes the power constraint

E
[
X>X

]
= tr

(
E
[
XX>

])
≤ P (4.14)

as a special case, see Lemma 1 and Corollary 1 of [4]. Therefore, using Theorem 4.1,

the capacity region arising from the average power constraint in (4.14), C(P ), can

be found as follows.

Corollary 4.1 The capacity region of the Gaussian MIMO broadcast channel with

common and confidential messages subject to a power constraint P , C(P ), is given

by

C(P ) = RS−DPC
12 (P ) = RS−DPC

21 (P ) (4.15)

where RS−DPC
12 (P ) is given by the union of rate triples (R0, R1, R2) satisfying

R0 ≤ min{R01(K1,K2,Kc), R02(K1,K2,Kc)} (4.16)

R1 ≤ R1(K1,K2) (4.17)

R2 ≤ R2(K2) (4.18)
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for some positive semi-definite matrices K1,K2,Kc such that tr(K1+K2+Kc) ≤ P ,

and {R0j(K1,K2,Kc)}2
j=1 are defined as

R0j(K1,K2,Kc) =
1

2
log
|Hj(K1 + K2 + Kc)H

>
j + Σj|

|Hj(K1 + K2)H>j + Σj|
, j = 1, 2 (4.19)

Moreover, RS−DPC
21 (P ) can be obtained from RS−DPC

12 (P ) by swapping the subscripts

1 and 2.

4.3 Proof of Theorem 4.1 for the Aligned Case

4.3.1 Achievability

Here, we prove the achievability of the regions RS−DPC−AL
12 (S) and RS−DPC−AL

21 (S).

To this end, we consider the two-user discrete memoryless channel with common

and confidential messages. For this case, we have the following achievable rate

region [35].

Lemma 4.1 ([35, Theorem 1]) The rate triples (R0, R1, R2) satisfying

R0 ≤ min{I(U ;Y1), I(U ;Y2)} (4.20)

R1 ≤ [I(V1;Y1|U)− I(V1;Y2, V2|U)]+ (4.21)

R2 ≤ [I(V2;Y2|U)− I(V2;Y1, V1|U)]+ (4.22)

for some (U, V1, V2) such that (U, V1, V2)→ X → (Y1, Y2)2 are achievable.

2In [35], the necessary Markov chain that (U, V1, V2, X, Y1, Y2) needs to satisfy is given by
U → (V1, V2)→ X → (Y1, Y2). However, their achievable rate region is valid for the looser Markov
chain (U, V1, V2)→ X → (Y1, Y2) as well, which we use here.
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We now use Lemma 4.1 to show the achievability of the region RS−DPC−AL
12 (S).

We first introduce three independent Gaussian random vectors U0,U1,U2 with

covariance matrices S−K1−K2,K1,K2, respectively. Using these Gaussian random

vectors, we set the auxiliary random variables in Lemma 4.1 as follows

U = U0 (4.23)

V1 = U1 + U0 (4.24)

V2 = U2 + AU1 + U0 (4.25)

where A = K2 [K2 + Σ2]−1 is the precoding matrix for the second user to suppress

the interference originating from U1 [12]. Furthermore, we set the channel input X

as follows

X = U0 + U1 + U2 (4.26)

Using the definitions in (4.23)-(4.26) for the common message rate given in Lemma 4.1,

we get

R0 = min

{
1

2
log

|S + Σ1|
|K1 + K2 + Σ1|

,
1

2
log

|S + Σ2|
|K1 + K2 + Σ2|

}
(4.27)
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Next, we compute the confidential message rates. To this end, we note the following

identity

I(V2; Y2|U)− I(V2;V1|U) =
1

2
log
|K2 + Σ2|
|Σ2|

(4.28)

which is due to Theorem 1 in [12]. Now, we compute the second user’s confidential

message rate as follows

R2 = I(V2; Y2|U)− I(V2; Y1, V1|U) (4.29)

= I(V2; Y2|U)− I(V2;V1|U)− I(V2; Y1|U, V1) (4.30)

=
1

2
log
|K2 + Σ2|
|Σ2|

− I(V2; Y1|U, V1) (4.31)

=
1

2
log
|K2 + Σ2|
|Σ2|

− 1

2
log
|K2 + Σ1|
|Σ1|

(4.32)

where (4.31) is due to (4.28). Next, we compute the first user’s confidential message

rate as follows

R1 = I(V1; Y1|U)− I(V1; Y2, V2|U) (4.33)

= I(V1; Y1|U)− I(V1; Y2|U, V2)− I(V1;V2|U) (4.34)

= I(V1; Y1|U)− I(V1, V2; Y2|U) + I(V2; Y2|U)− I(V1;V2|U) (4.35)

= I(V1; Y1|U)− I(V1, V2; Y2|U) +
1

2
log
|K2 + Σ2|
|Σ2|

(4.36)

=
1

2
log
|K1 + K2 + Σ1|
|K2 + Σ1|

− 1

2
log
|K1 + K2 + Σ2|

|Σ2|
+

1

2
log
|K2 + Σ2|
|Σ2|

(4.37)

=
1

2
log
|K1 + K2 + Σ1|
|K2 + Σ1|

− 1

2
log
|K1 + K2 + Σ2|
|K2 + Σ2|

(4.38)
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where (4.36) is due to (4.28). Hence, we show the achievability of the region

RS−DPC−AL
12 (S). Due to the symmetry, achievability of RS−DPC−AL

21 (S) follows.

4.3.2 Converse

Since the capacity region CAL(S) is convex due to time-sharing, it can be character-

ized by the tangent planes to it, i.e., by the solution of

max
(R0,R1,R2)∈CAL(S)

µ0R0 + µ1R1 + µ2R2 (4.39)

for µj ∈ [0,∞), j = 0, 1, 2. We already have

max
(R0,R1,R2)∈RS−DPC−AL(S)

µ0R0 + µ1R1 + µ2R2 ≤ max
(R0,R1,R2)∈CAL(S)

µ0R0 + µ1R1 + µ2R2

(4.40)

due to achievability of RS−DPC−AL
12 (S) and RS−DPC−AL

21 (S), where RS−DPC−AL(S) is

given by

RS−DPC−AL(S) = conv
(
RS−DPC−AL

12 (S)
⋃
RS−DPC−AL

21 (S)
)

(4.41)
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and conv is the convex hull operator. Here, we show that

max
(R0,R1,R2)∈CAL(S)

µ0R0 + µ1R1 + µ2R2 ≤ max
(R0,R1,R2)∈RS−DPC−AL

12 (S)
µ0R0 + µ1R1 + µ2R2

(4.42)

= max
(R0,R1,R2)∈RS−DPC−AL

21 (S)
µ0R0 + µ1R1 + µ2R2

(4.43)

to provide the converse proof. We first characterize the boundary of RS−DPC−AL
12 (S)

by studying the following optimization problem

max
(R0,R1,R2)∈RS−DPC−AL

12 (S)
µ0R0 + µ1R1 + µ2R2 (4.44)

which can be written as

max
0�Kj , j=1,2
K1+K2�S

µ0 min{RAL
01 (K1,K2), RAL

02 (K1,K2)}+ µ1R
AL
1 (K1,K2) + µ2R

AL
2 (K2)

(4.45)

Let K∗1,K
∗
2 be the maximizer of (4.45). The necessary KKT conditions that K∗1,K

∗
2

need to satisfy are given in the following lemma.
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Lemma 4.2 K∗1,K
∗
2 need to satisfy

(µ1 + µ2)(K∗1 + K∗2 + Σ1)−1 + M1 = (µ0λ+ µ2)(K∗1 + K∗2 + Σ1)−1

+ (µ0λ̄+ µ1)(K∗1 + K∗2 + Σ2)−1 + MS (4.46)

(µ1 + µ2)(K∗2 + Σ2)−1 + M2 = (µ1 + µ2)(K∗2 + Σ1)−1 + M1 (4.47)

for some positive semi-definite matrices M1,M2,MS such that

K∗1M1 = M1K
∗
1 = 0 (4.48)

K∗2M2 = M2K
∗
2 = 0 (4.49)

(S−K∗1 −K∗2)MS = MS(S−K∗1 −K∗2) = 0 (4.50)

and for some λ = 1− λ̄ such that it satisfies 0 ≤ λ ≤ 1 and

λ





= 0 if RAL
01 (K∗1,K

∗
2) > RAL

02 (K∗1,K
∗
2)

= 1 if RAL
01 (K∗1,K

∗
2) < RAL

02 (K∗1,K
∗
2)

6= 0, 1 if RAL
01 (K∗1,K

∗
2) = RAL

02 (K∗1,K
∗
2)

(4.51)

The proof of Lemma 4.2 is given in Appendix 4.7.1.

We now use channel enhancement [4] to define a new noise covariance matrix

Σ̃ as follows

(µ1 + µ2)(K∗2 + Σ̃)−1 = (µ1 + µ2)(K∗2 + Σ2)−1 + M2 (4.52)

171



This new noise covariance matrix Σ̃ has useful properties which are listed in the

following lemma.

Lemma 4.3 We have the following facts.

• 0 ≺ Σ̃

• Σ̃ � Σ1, Σ̃ � Σ2

• (µ1 + µ2)(K∗1 + K∗2 + Σ̃)−1 = (µ1 + µ2)(K∗1 + K∗2 + Σ1)−1 + M1

• (K∗2 + Σ̃)−1Σ̃ = (K∗2 + Σ2)−1Σ2

• (K∗1 + K∗2 + Σ̃)−1(K∗2 + Σ̃) = (K∗1 + K∗2 + Σ1)−1(K∗2 + Σ1)

The proof of Lemma 4.3 is given in Appendix 4.7.2. We now construct an enhanced

channel using the new covariance matrix Σ̃ as follows

Ỹ1 = X + Ñ (4.53)

Ỹ2 = X + Ñ (4.54)

Y1 = X + N1 (4.55)

Y2 = X + N2 (4.56)

where Ñ is a Gaussian random vector with a covariance matrix Σ̃. In the en-

hanced channel defined by (4.53)-(4.56), the enhanced first and second users have

the same observation, i.e., Pr[Ỹ1 = Ỹ2] = 1. From now on, we denote the obser-

vations of the enhanced first and second users by a single random vector Ỹ. We

now consider the following scenario for the enhanced channel in (4.53)-(4.56): There
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are three independent messages (W0,W1,W2) with rates (R0, R1, R2), respectively,

where the common message W0 is directed to all users, i.e., the users with obser-

vations Ỹ1, Ỹ2,Y1,Y2; W1 is the confidential message of the enhanced first user,

i.e., the one with observation Ỹ, which needs to be kept perfectly secret from the

second user, i.e., the one with observation Y2; and W2 is the confidential message of

the enhanced second user, i.e., the one with observation Ỹ, which needs to be kept

perfectly secret from the first user, i.e., the one with observation Y1. Here also, we

measure the secrecy of the confidential messages by normalized equivocation rates,

i.e., we require

lim
n→∞

1

n
I(W1; Yn

2 ,W0) = 0 and lim
n→∞

1

n
I(W2; Yn

1 ,W0) = 0 (4.57)

We define the capacity region of the enhanced channel in (4.53)-(4.56) arising from

this scenario as the convex closure of all achievable rate pairs (R0, R1, R2) and denote

it by C̃(S).

We note that the process of obtaining a new enhanced channel from the original

one by means of channel enhancement can be visualized as shown in Figure 4.2 and

Figure 4.3. First, we provide an alternative view of the original channel model as

depicted in Figure 4.2. In this alternative view, each user is split into two identical

users where one of them (user 11 for the first user and user 22 for the second user)

gets a confidential message, and the other one (user 10 for the first user and user 20

for the second user) gets the common message and eavesdrops the other confidential

message. Second, we enhance the users who are getting the confidential messages,
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User 22
N2H2

W0,W1,W2

X

Ŵ1

Y1

Ŵ0,W2

Ŵ2

Ŵ0,W1

H1 N1

Transmitter

Y2

User 11

User 10

User 20

Figure 4.2: An alternative view of the Gaussian MIMO broadcast channel with
common and confidential messages.

i.e., user 11 and user 22, to improve their observations as shown in Figure 4.3.

This idea of splitting users and then enhancing them is also used in [18]. Since in

the enhanced channel, the receivers to which only the common message is sent are

identical to the receivers in the original channel in (4.12)-(4.13), and the receivers

to which confidential messages are sent have better observations with respect to the

receivers in the original channel in (4.12)-(4.13), we have CAL(S) ⊆ C̃(S). We next

introduce an outer bound on C̃(S) in the following lemma.

Lemma 4.4 The capacity region of the enhanced channel in (4.53)-(4.56), C̃(S),

is contained in the union of rate triples (R0, R1, R2) satisfying

R0 ≤ min{I(U ; Y1), I(U ; Y2)} (4.58)

R1 ≤ I(X; Ỹ|U)− I(X; Y2|U) (4.59)

R2 ≤ I(X; Ỹ|U)− I(X; Y1|U) (4.60)

for some (U,X) such that U → X→ Ỹ → (Y1,Y2) and E
[
XX>

]
� S.
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H2

Enh. User 1

Enh. User 2

N̄1

User 10 Ŵ0,W2

Ŵ0,W1

X
TransmitterW0,W1,W2

Ỹ1

H1 Ñ

Y1

Ŵ1

Ỹ2

Ŵ2 N̄2

User 20

Ñ

Y2

Figure 4.3: The new Gaussian MIMO broadcast channel obtained by channel en-
hancement.

The proof of this lemma is given in Appendix 4.7.3. We also introduce the following

extremal inequality from [5]:

Lemma 4.5 ([5, Corollary 4]) Let (U,X) be an arbitrarily correlated random vec-

tor, where X has a covariance constraint E
[
XX>

]
� S and S � 0. Let Ñ,N1,N2

be Gaussian random vectors with covariance matrices Σ̃,Σ1,Σ2, respectively. They

are independent of (U,X). Furthermore, Σ̃,Σ1,Σ2 satisfy Σ̃ � Σj, j = 1, 2. As-

sume that there exists a covariance matrix K∗ such that K∗ � S and

β(K∗ + Σ̃)−1 =
2∑

j=1

γj(K
∗ + Σj)

−1 + MS (4.61)

where β ≥ 0, γj ≥ 0, j = 1, 2 and MS is positive semi-definite matrix such that

(S−K∗)MS = 0. Then, for any (U,X), we have

βh(X + Ñ|U)−
2∑

j=1

γjh(X + Nj|U) ≤ β

2
log |(2πe)(K∗ + Σ̃)|

−
2∑

j=1

γj
2

log |(2πe)(K∗ + Σj)| (4.62)
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We now use this lemma. For that purpose, we note that using the second

statement of Lemma 4.3 in (4.46) yields

(µ1 + µ2)(K∗1 + K∗2 + Σ̃)−1 = (µ0λ+ µ2)(K∗1 + K∗2 + Σ1)−1

+ (µ0λ̄+ µ1)(K∗1 + K∗2 + Σ2)−1 + MS (4.63)

using which in conjunction with Lemma 4.5, we get

(µ1 + µ2)h(Ỹ|U)− (µ0λ+ µ2)h(Y1|U)− (µ0λ̄+ µ1)h(Y2|U)

≤ µ1 + µ2

2
log |(2πe)(K∗1 + K∗2 + Σ̃)| − µ0λ+ µ2

2
log |(2πe)(K∗1 + K∗2 + Σ1)|

− µ0λ̄+ µ1

2
log |(2πe)(K∗1 + K∗2 + Σ2)| (4.64)

which will be used subsequently.

We are now ready to complete the converse proof as follows:

max
(R0,R1,R2)∈CAL(S)

µ0R0 + µ1R1 + µ2R2 ≤ max
(R0,R1,R2)∈C̃(S)

µ0R0 + µ1R1 + µ2R2 (4.65)

≤ max
U→X→Ỹ→Y1,Y2

E[XX>]�S

µ0 min{I(U ; Y1), I(U ; Y2)}+ µ1

[
I(X; Ỹ|U)− I(X; Y2|U)

]

+ µ2

[
I(X; Ỹ|U)− I(X; Y1|U)

]
(4.66)

≤ max
U→X→Ỹ→Y1,Y2

E[XX>]�S

µ0λI(U ; Y1) + µ0λ̄I(U ; Y2) + µ1

[
I(X; Ỹ|U)− I(X; Y2|U)

]

+ µ2

[
I(X; Ỹ|U)− I(X; Y1|U)

]
(4.67)
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= max
U→X→Ỹ→Y1,Y2

E[XX>]�S

µ0λh(Y1) + µ0λ̄h(Y2) + (µ1 + µ2)h(Ỹ|U)− (µ0λ+ µ2)h(Y1|U)

− (µ0λ̄+ µ1)h(Y2|U)− µ1

2
log
|Σ̃|
|Σ2|

− µ2

2
log
|Σ̃|
|Σ1|

(4.68)

≤ µ0λ

2
log |(2πe)(S + Σ1)|+ µ0λ̄

2
log |(2πe)(S + Σ2)|

+ max
U→X→Ỹ→Y1,Y2

E[XX>]�S

(µ1 + µ2)h(Ỹ|U)− (µ0λ+ µ2)h(Y1|U)− (µ0λ̄+ µ1)h(Y2|U)

− µ1

2
log
|Σ̃|
|Σ2|

− µ2

2
log
|Σ̃|
|Σ1|

(4.69)

≤ µ0λ

2
log |(2πe)(S + Σ1)|+ µ0λ̄

2
log |(2πe)(S + Σ2)|

+
(µ1 + µ2)

2
log |(2πe)(K∗1 + K∗2 + Σ̃)| − (µ0λ+ µ2)

2
log |(2πe)(K∗1 + K∗2 + Σ1)|

− (µ0λ̄+ µ1)

2
log |(2πe)(K∗1 + K∗2 + Σ2)| − µ1

2
log
|Σ̃|
|Σ2|

− µ2

2
log
|Σ̃|
|Σ1|

(4.70)

=
µ0λ

2
log

|S + Σ1|
|K∗1 + K∗2 + Σ1|

+
µ0λ̄

2
log

|S + Σ2|
|K∗1 + K∗2 + Σ2|

+
µ1

2
log
|(K∗1 + K∗2 + Σ̃)Σ2|
|(K∗1 + K∗2 + Σ2)Σ̃|

+
µ2

2
log
|(K∗1 + K∗2 + Σ̃)Σ1|
|(K∗1 + K∗2 + Σ1)Σ̃|

(4.71)

= µ0 min{RAL
01 (K∗1,K

∗
2), RAL

02 (K∗1,K
∗
2)}+

µ1

2
log
|(K∗1 + K∗2 + Σ̃)Σ2|
|(K∗1 + K∗2 + Σ2)Σ̃|

+
µ2

2
log
|(K∗1 + K∗2 + Σ̃)Σ1|
|(K∗1 + K∗2 + Σ1)Σ̃|

(4.72)

= µ0 min{RAL
01 (K∗1,K

∗
2), RAL

02 (K∗1,K
∗
2)}+ µ1R

AL
1 (K∗1,K

∗
2) + µ2R

AL
2 (K∗2) (4.73)

where (4.65) comes from the fact that CAL(S) ⊆ C̃(S), (4.66) is due to Lemma 4.4,

(4.67) results from the fact that 0 ≤ λ = 1− λ̄ ≤ 1, (4.69) is due to the maximum

entropy theorem, (4.70) comes from (4.64), (4.72) results from

λRAL
01 (K∗1,K

∗
2) + λ̄RAL

02 (K∗1,K
∗
2) = min{RAL

01 (K∗1,K
∗
2), RAL

02 (K∗1,K
∗
2)} (4.74)
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and (4.73) will be shown next. We first note the following

RAL
1 (K∗1,K

∗
2) =

1

2
log
|K∗1 + K∗2 + Σ1|
|K∗2 + Σ1|

− 1

2
log
|K∗1 + K∗2 + Σ2|
|K∗2 + Σ2|

(4.75)

=
1

2
log
|K∗1 + K∗2 + Σ̃|
|K∗2 + Σ̃|

− 1

2
log
|K∗1 + K∗2 + Σ2|
|K∗2 + Σ2|

(4.76)

=
1

2
log
|(K∗1 + K∗2 + Σ̃)Σ2|
|(K∗1 + K∗2 + Σ2)Σ̃|

(4.77)

where (4.76) is due to the fourth statement of Lemma 4.3 and (4.77) comes from

the third statement of Lemma 4.3. We next note the following identity

RAL
2 (K∗2) =

1

2
log
|K∗2 + Σ2|
|Σ2|

− 1

2
log
|K∗2 + Σ1|
|Σ1|

(4.78)

=
1

2
log
|K∗2 + Σ̃|
|Σ̃|

− 1

2
log
|K∗2 + Σ1|
|Σ1|

(4.79)

=
1

2
log
|(K∗1 + K∗2 + Σ̃)Σ1|
|(K∗1 + K∗2 + Σ1)Σ̃|

(4.80)

where (4.79) is due to the third statement of Lemma 4.3, and (4.80) comes from the

fourth statement of Lemma 4.3. Identities in (4.77) and (4.80) give (4.73).

Thus, in the view of (4.73), we have shown that

max
(R0,R1,R2)∈CAL(S)

µ0R0 + µ1R1 + µ2R2 = max
(R0,R1,R2)∈RS−DPC−AL

12 (S)
µ0R0 + µ1R1 + µ2R2

(4.81)
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Similarly, we can show the following

max
(R0,R1,R2)∈CAL(S)

µ0R0 + µ1R1 + µ2R2 = max
(R0,R1,R2)∈RS−DPC−AL

21 (S)
µ0R0 + µ1R1 + µ2R2

(4.82)

completing the converse proof.

4.4 Proof of Theorem 4.1 for the General Case

We now prove Theorem 4.1 for the general channel model in (4.1)-(4.2). Achiev-

ability of Theorem 4.1 for the general channel model in (4.1)-(4.2) can be shown

as we did for the aligned case in the previous section. In particular, the only dif-

ference of the achievability proof for the general channel model in (4.1)-(4.2) from

the achievability proof for the aligned case will be the selection of the precoding

matrix A, which needs to be chosen as A = K2H
>
2 (Σ2 + H2K2H

>
2 )−1H2 in this

general case. Thus, in the rest of this section, we consider the converse proof. For

that purpose, we follow the analysis in Section V.B of [4] and Section 7.1 of [19] in

conjunction with the capacity result obtained for the aligned case in the previous

section. To this end, we first note that, following the approaches in Section V.B

of [4] and Section 7.1 of [19], it can be shown that a new channel can be constructed

from any channel described by (4.1)-(4.2), such that the new channel has the same

capacity region as the original one, and in the new channel, both receivers have the

same number of antennas as the transmitter, i.e., r1 = r2 = t. Thus, without loss of

generality, we assume that r1 = r2 = t. We next apply singular-value decomposition
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to the channel gain matrices H1,H2 as follows

Hj = UjΛjV
>
j , j = 1, 2 (4.83)

where Uj,Vj are t × t orthogonal matrices, and Λj is a diagonal matrix. We now

define a new Gaussian MIMO broadcast channel as follows

Y1 = H1X + N1 (4.84)

Y2 = H2X + N2 (4.85)

where Hj is defined as

Hj = Uj(Λj + αI)V>j (4.86)

for some α > 0. We denote the capacity region of the channel defined in (4.84)-(4.85)

by Cα(S), and achievable rate regions for this channel by RS−DPC
12,α (S),RS−DPC

21,α (S).

Since H1,H2 are invertible, the capacity region of the channel in (4.84)-(4.85) is

equal to the capacity region of the following aligned channel

Y1 = X + H
−1

1 N1 (4.87)

Y2 = X + H
−1

2 N2 (4.88)
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Thus, using the capacity result for the aligned case, which was proved in the previous

section, we get

Cα(S) = RS−DPC
12,α (S) = RS−DPC

21,α (S) (4.89)

We next show the following inclusion

C(S) ⊆ lim
α→0
Cα(S) (4.90)

To this end, assume that (R0, R1, R2) is achievable in the channel given by (4.1)-

(4.2), i.e., (R0, R1, R2) ∈ C(S). To prove the inclusion in (4.90), we need to show

that (R0, R1, R2) ∈ limα→0 Cα(S). To this end, we note the following Markov chains

X→ Yj → Yj, j = 1, 2 (4.91)

which imply that if the message triple (W0,W1,W2) with rates (R0, R1, R2) is trans-

mitted with a vanishingly small probability of error in the original channel given

by (4.1)-(4.2), they will be transmitted with a vanishingly small probability of error

in the channel given by (4.84)-(4.85) as well. In other words, each receiver in the

channel given by (4.84)-(4.85) will decode the messages intended to itself. However,

we still need to check the secrecy requirements on the confidential messages W1,W2.
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We first check the secrecy of the first user’s confidential message as follows

lim
n→∞

1

n
I(W1; Y

n

2 ,W0,W2) = lim
n→∞

1

n
I(W1; Y

n

2 ,W0,W2)− 1

n
I(W1; Yn

2 ,W0,W2)

(4.92)

where we used the fact that since (R0, R1, R2) ∈ C(S), we have

lim
n→∞

1

n
I(W1; Yn

2 ,W0,W2) = 0 (4.93)

182



We now bound the term on the right hand-side of as follows (4.92)

I(W1; Y
n

2 ,W0,W2)− I(W1; Yn
2 ,W0,W2)

= I(W1; Y
n

2 |W0,W2)− I(W1; Yn
2 |W0,W2) (4.94)

= I(W1; Y
n

2 |W0,W2,Y
n
2 ) (4.95)

=
n∑

i=1

I(W1; Y2,i|W0,W2,Y
n
2 ,Y

i−1

2 ) (4.96)

≤
n∑

i=1

h(Y2,i|Y2,i)− h(Y2,i|W0,W2,Y
n
2 ,Y

i−1

2 ,W1,Xi) (4.97)

=
n∑

i=1

I(Xi; Y2,i|Y2,i) (4.98)

=
n∑

i=1

I(Xi; Y2,i)− I(Xi; Y2,i) (4.99)

=
n∑

i=1

h(Y2,i)− h(Y2,i) (4.100)

≤
n∑

i=1

1

2
log

∣∣∣H2E
[
XiX

>
i

]
H
>
2 + Σ2

∣∣∣
∣∣H2E

[
XiX>i

]
H>2 + Σ2

∣∣ (4.101)

≤ n

2
log

∣∣∣H2

(∑n
i=1

1
n
E
[
XiX

>
i

])
H
>
2 + Σ2

∣∣∣
∣∣H2

(∑n
i=1

1
n
E
[
XiX>i

])
H>2 + Σ2

∣∣ (4.102)

≤ n

2
log

∣∣∣H2SH
>
2 + Σ2

∣∣∣
∣∣H2SH>2 + Σ2

∣∣ (4.103)

where (4.95) is due to the Markov chain in (4.91), (4.97) comes from the fact that

conditioning cannot increase entropy, (4.98) is due to the fact that the channel is

memoryless, (4.99) results from the Markov chain in (4.91), and (4.101) can be

shown by using the worst additive noise lemma in [36, 37]. Before showing the steps
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in (4.102) and (4.103), we note that the following function

log

∣∣∣H2KH
>
2 + Σ2

∣∣∣
∣∣H2KH>2 + Σ2

∣∣ (4.104)

is concave and monotonically increasing in positive semi-definite matrices K, see

Lemma 4 in [38]. Thus, (4.102) follows from the Jensen’s inequality by noting the

concavity of the function in (4.104) and (4.103) comes from the monotonicity of the

function in (4.104) and the covariance constraint on the channel input. Hence, using

(4.103) in (4.92), we have

lim
n→∞

1

n
I(W1; Y

n

2 ,W0,W2) ≤ 1

2
log

∣∣∣H2SH
>
2 + Σ2

∣∣∣
∣∣H2SH>2 + Σ2

∣∣ (4.105)

where the right hand-side vanishes as α→ 0, i.e.,

lim
α→0

1

2
log

∣∣∣H2SH
>
2 + Σ2

∣∣∣
∣∣H2SH>2 + Σ2

∣∣ = 0 (4.106)

due to the continuity of log | · | in positive semi-definite matrices and limα→0 H2 =

H2. Thus, we have shown that if a confidential message W1 with rate R1 can be

transmitted in perfect secrecy in the original channel given by (4.1)-(4.2), we have

lim
α→0

lim
n→∞

1

n
I(W1; Y

n

2 ,W0,W2) = 0 (4.107)
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Similarly, if a confidential message W2 with rate R2 can be transmitted in perfect

secrecy in the original channel given by (4.1)-(4.2), we have

lim
α→0

lim
n→∞

1

n
I(W2; Y

n

1 ,W0,W1) = 0 (4.108)

These two conditions in (4.107) and (4.108) enable us to conclude that if (R0, R1, R2) ∈

C(S), we also have (R0, R1, R2) ∈ limα→0 Cα(S). Thus, we have shown that

C(S) ⊆ lim
α→0
Cα(S) = lim

α→0
RS−DPC

12,α (S) = lim
α→0
RS−DPC

21,α (S) (4.109)

where we have

lim
α→0
RS−DPC

12,α (S) = RS−DPC
12 (S) (4.110)

lim
α→0
RS−DPC

21,α (S) = RS−DPC
21 (S) (4.111)

due to the continuity of the rate expressions in RS−DPC
12,α (S) and RS−DPC

21,α (S) in α.

Since RS−DPC
12 (S) and RS−DPC

21 (S) are achievable in the channel defined by (4.1)-

(4.2), we have

C(S) = RS−DPC
12 (S) = RS−DPC

21 (S) (4.112)

in the view of (4.109)-(4.111); completing the proof.
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4.5 Connections to the Gaussian MIMO Broadcast Channel with

Common and Private Messages

Here, we provide intuitive explanations for the two facts that Theorem 4.1 reveals:

i) The achievable rate region does not depend on the encoding order used in S-

DPC, i.e., RS−DPC
12 (S) = RS−DPC

21 (S); and ii) the capacity region of the Gaussian

MIMO broadcast channel with common and confidential messages can be completely

characterized, although the capacity region of the its non-confidential counterpart,

i.e., the Gaussian MIMO broadcast channel with common and private messages, is

not known completely.

In the Gaussian MIMO broadcast channel with common and private messages,

there are again three messages W0,W1,W2 with rates R0, R1, R2, respectively, such

that W0 is again sent to both users, W1 (resp. W2) is again directed to only the

first (resp. second) user, however, there are no secrecy constraints on W1,W2. The

capacity region of the Gaussian MIMO broadcast channel with common and private

messages will be denoted by CNS(S). The achievable rate region for the Gaussian

MIMO broadcast channel with common and private messages that can be obtained

by using DPC will be denoted by RNS−DPC
12 (S),RNS−DPC

21 (S) (depending on the en-

coding order), where RNS−DPC
12 (S) is given by the rate triples (R0, R1, R2) satisfying

R0 ≤ min{RNS
01 (K1,K2), RNS

02 (K1,K2)} (4.113)

R1 ≤ RNS
1 (K1,K2) (4.114)

R2 ≤ RNS
2 (K2) (4.115)
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for some positive semi-definite matrices K1,K2 such that K1 + K2 � S, and

{RNS
0j (K1,K2)}2

j=1,

RNS
1 (K1,K2), RNS

2 (K1,K2) are defined as

RNS
0j (K1,K2) =

1

2
log

|S + Σj|
|K1 + K2 + Σj|

, j = 1, 2 (4.116)

RNS
1 (K1,K2) =

1

2
log
|K1 + K2 + Σ1|
|K2 + Σ1|

(4.117)

RNS
2 (K1,K2) =

1

2
log
|K2 + Σ2|
|Σ2|

(4.118)

Moreover, RNS−DPC
21 (S) can be obtained from RNS−DPC

12 (S) by swapping the sub-

scripts 2 and 1. We now state a result of [10] on the capacity region of the Gaussian

MIMO broadcast channel with common and private messages: For a given common

message rate R0, the private message sum rate capacity, i.e., R1 + R2, is achieved

by both RNS
12 (S) and RNS

21 (S). This result can also be stated as follows

max
(R0,R1,R2)∈CNS(S)

µ′0R0 + µ′1R1 + µ′2R2 = max
(R0,R1,R2)∈RNS−DPC

12 (S)
µ′0R0 + µ′1R1 + µ′2R2

(4.119)

= max
(R0,R1,R2)∈RNS−DPC

21 (S)
µ′0R0 + µ′1R1 + µ′2R2

(4.120)

for µ′1 = µ′2 = µ′. This result is crucial to understand the aforementioned two points

suggested by Theorem 4.1, which will be explained next using (4.119)-(4.120).

In the proof of Theorem 4.1, first, we characterize the boundary of RS−DPC
12 (S)

by finding the properties of the covariance matrices that achieve the boundary of
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RS−DPC
12 (S), see Lemma 4.2. According to Lemma 4.2, the boundary of RS−DPC

12 (S)

can be achieved by using the covariance matrices K∗1,K
∗
2 satisfying

(µ1 + µ2)(K∗1 + K∗2 + Σ1)−1 + M1 = (µ0λ+ µ2)(K∗1 + K∗2 + Σ1)−1

+ (µ0λ̄+ µ1)(K∗1 + K∗2 + Σ2)−1 + MS

(4.121)

(µ1 + µ2)(K∗2 + Σ2)−1 + M2 = (µ1 + µ2)(K∗2 + Σ1)−1 + M1 (4.122)

On the other hand, using these covariance matrices, we can also achieve the bound-

ary points ofRNS−DPC
12 (S), which are actually on the boundary of the capacity region

CNS(S) as well, and are the private message sum rate capacity points for a given

common message rate. To see this point, we define µ′ = µ1 + µ2, µ
′
0 = µ0 + µ1 + µ2

and γ = µ0λ+µ2
µ0+µ1+µ2

, i.e., γ̄ = 1−γ = µ0λ̄+µ1
µ0+µ1+µ2

. Thus, the conditions in (4.121)-(4.122)

can be written as

µ′(K∗1 + K∗2 + Σ1)−1 + M1 = µ′0γ(K∗1 + K∗2 + Σ1)−1 + µ′0γ̄(K∗1 + K∗2 + Σ2)−1

+ MS (4.123)

µ′(K∗2 + Σ2)−1 + M2 = µ′(K∗2 + Σ1)−1 + M1 (4.124)

which are the necessary conditions that the following problem needs to satisfy

max
(R0,R1,R2)∈RNS−DPC

12 (S)
µ′0R0 + µ′(R1 +R2) (4.125)
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On the other hand, due to (4.119)-(4.120), we know that the solution of (4.125) gives

us the private message sum rate capacity for a given common message rate, i.e., the

points that achieve the maximum in (4.125) are on the boundary of the capacity

region CNS(S). Furthermore, the maximum value in (4.125) can also be achieved by

using the other possible encoding order, i.e.,

max
(R0,R1,R2)∈RNS−DPC

12 (S)
µ′0R0 + µ′(R1 +R2) = max

(R0,R1,R2)∈RNS−DPC
21 (S)

µ′0R0 + µ′(R1 +R2)

(4.126)

Thus, this discussion reveals that there is a one-to-one correspondence between any

rate triple on the boundary ofRS−DPC
12 (S) and the private message sum rate capacity

points on CNS(S). Hence, the boundary of RS−DPC
12 (S), similarly RS−DPC

21 (S), can

be constructed by considering the private message sum rate capacity points on

CNS(S). This connection between the private message sum rate capacity points

and the boundaries of RS−DPC
12 (S), RS−DPC

21 (S) intuitively explains the two facts

suggested by Theorem 4.1: i) The achievable rate region for the Gaussian MIMO

broadcast channel with common and confidential messages is invariant with respect

to the encoding order, i.e.,RS−DPC
12 (S) = RS−DPC

21 (S) because the boundaries of these

two regions correspond to those points on the DPC region for the Gaussian MIMO

broadcast channel with common and private messages, for which encoding order does

not matter either; and ii) we can obtain the entire capacity region of the Gaussian

MIMO broadcast channel with common and confidential messages, although the

capacity region of its non-confidential counterpart is not known completely. The
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reason is that the boundary of the capacity region of the Gaussian MIMO broadcast

channel with common and confidential messages comes from those points on the

boundary of the DPC region of its non-confidential counterpart, which are known

to be tight, i.e., which are known to be on the boundary of the capacity region of

the Gaussian MIMO broadcast channel with common and private messages.

4.6 Conclusions

In this chapter, we study the Gaussian MIMO broadcast channel with common

and confidential messages, and obtain its entire capacity region. We show that

a combination of superposition coding and the S-DPC scheme proposed in [8] is

capacity-achieving. We provide the converse proof by using channel enhancement [4]

and an extremal inequality from [5]. We also uncover the connections between the

Gaussian MIMO broadcast channel with common and confidential messages and

its non-confidential counterpart, i.e., the Gaussian MIMO broadcast channel with

common and private messages, to provide further insight into the capacity result we

obtained.

190



4.7 Appendix

4.7.1 Proof of Lemma 4.2

Since the program in (4.45) is not necessarily convex, the KKT conditions are nec-

essary but not sufficient. We first rewrite the program in (4.45) as follows

max
0�Kj , j=1,2
K1+K2�S

a

µ0a+ µ1R
AL
1 (K1,K2) + µ2R

AL
2 (K2)

s.t. RAL
01 (K1,K2) ≥ a

RAL
02 (K1,K2) ≥ a (4.127)

where we introduce an additional variable a. Thus, the optimization in (4.127) is

over three variables a,K1,K2. The Lagrangian of (4.127) is given by

L = µ0a+ µ1R
AL
1 (K1,K2) + µ2R

AL
2 (K2) + µ0

2∑

j=1

λj(R
AL
0j (K1,K2)− a) + tr(K1M1)

+ tr(K2M2) + tr((S−K1 −K2)MS) (4.128)

where M1,M2,MS are positive semi-definite matrices and λj ≥ 0, j = 1, 2. Let

(a∗,K∗1,K
∗
2) be the maximizer for (4.127). The necessary KKT conditions that they
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need to satisfy are given as follows

∂L
∂a
|a=a∗ = 0 (4.129)

∇K1L |K1=K∗1
= 0 (4.130)

∇K2L |K2=K∗2
= 0 (4.131)

tr(K∗1M1) = 0 (4.132)

tr(K∗2M2) = 0 (4.133)

tr((S−K∗1 −K∗2)MS) = 0 (4.134)

λj(R
AL
0j (K∗1,K

∗
2)− a∗) = 0, j = 1, 2 (4.135)

The first KKT condition in (4.129) implies λ1 + λ2 = 1. We define λ = λ1 and

consequently λ̄ = 1− λ = λ2. The second KKT condition in (4.130) implies

µ1(K∗1 + K∗2 + Σ1)−1 + M1 = µ0λ(K∗1 + K∗2 + Σ1)−1 + (µ0λ̄+ µ1)(K∗1 + K∗2 + Σ2)−1

+ MS (4.136)

Adding µ2(K∗1 + K∗2 + Σ1)−1 to both sides yields (4.50). Subtracting (4.130) from

(4.131) yields (4.47). Since tr(AB) = tr(BA) and tr(AB) ≥ 0 for A � 0,B � 0,

(4.132)-(4.134) imply (4.48)-(4.50). Furthermore, (4.135) states the conditions if

RAL
01 (K∗1,K

∗
2) > RAL

02 (K∗1,K
∗
2), λ = 0, if RAL

01 (K∗1,K
∗
2) < RAL

02 (K∗1,K
∗
2), λ = 1, and if

RAL
01 (K∗1,K

∗
2) = RAL

02 (K∗1,K
∗
2), λ is arbitrary, i.e., 0 < λ < 1.
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4.7.2 Proof of Lemma 4.3

We first note the following identities

(µ1 + µ2)(K∗2 + Σ̃)−1 = (µ1 + µ2)(K∗2 + Σ2)−1 + M2 (4.137)

(µ1 + µ2)(K∗2 + Σ̃)−1 = (µ1 + µ2)(K∗2 + Σ1)−1 + M1 (4.138)

where (4.137) is the definition of the new noise covariance matrix in (4.52) and

(4.138) comes from plugging (4.52) in (4.47). Using the fact that for A � 0, B � 0,

if A � B, then A−1 � B−1 in (4.137)-(4.138) yields the second statement of the

lemma.

Now, we prove the first statement of the lemma as follows

Σ̃ =

[
(K∗2 + Σ2)−1 +

1

µ1 + µ2

M2

]−1

−K∗2 (4.139)

=

[
I +

1

µ1 + µ2

(K∗2 + Σ2)M2

]−1

(K∗2 + Σ2)−K∗2 (4.140)

=

[
I +

1

µ1 + µ2

Σ2M2

]−1

(K∗2 + Σ2)−K∗2 (4.141)

=

[
Σ−1

2 +
1

µ1 + µ2

M2

]−1

Σ−1
2 (K∗2 + Σ2)−K∗2 (4.142)

=

[
Σ−1

2 +
1

µ1 + µ2

M2

]−1

+

[
Σ−1

2 +
1

µ1 + µ2

M2

]−1

Σ−1
2 K∗2 −K∗2 (4.143)

=

[
Σ−1

2 +
1

µ1 + µ2

M2

]−1

+

[
Σ−1

2 +
1

µ1 + µ2

M2

]−1 [
Σ−1

2 +
1

µ1 + µ2

M2

]
K∗2

−K∗2 (4.144)

=

[
Σ−1

2 +
1

µ1 + µ2

M2

]−1

(4.145)

� 0 (4.146)
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where (4.139) is due to (4.137), and (4.141) and (4.144) follow from (4.49).

We next show the third statement of the lemma as follows

K∗1 + K∗2 + Σ̃ = K∗1 +

[
(K∗2 + Σ1)−1 +

1

µ1 + µ2

M1

]−1

(4.147)

= K∗1 +

[
I +

1

µ1 + µ2

(K∗2 + Σ1)M1

]−1

(K∗2 + Σ1) (4.148)

= K∗1 +

[
I +

1

µ1 + µ2

(K∗1 + K∗2 + Σ1)M1

]−1

(K∗2 + Σ1) (4.149)

= K∗1 +

[
(K∗1 + K∗2 + Σ1)−1 +

1

µ1 + µ2

M1

]−1

(K∗1 + K∗2 + Σ1)−1(K∗2 + Σ1)

(4.150)

= K∗1 +

[
(K∗1 + K∗2 + Σ1)−1 +

1

µ1 + µ2

M1

]−1

(K∗1 + K∗2 + Σ1)−1

× (K∗1 + K∗2 + Σ1 −K∗1) (4.151)

= K∗1 +

[
(K∗1 + K∗2 + Σ1)−1 +

1

µ1 + µ2

M1

]−1

−
[
(K∗1 + K∗2 + Σ1)−1 +

1

µ1 + µ2

M1

]−1

(K∗1 + K∗2 + Σ1)−1K∗1 (4.152)

= K∗1 +

[
(K∗1 + K∗2 + Σ1)−1 +

1

µ1 + µ2

M1

]−1

−
[
(K∗1 + K∗2 + Σ1)−1 +

1

µ1 + µ2

M1

]−1 [
(K∗1 + K∗2 + Σ1)−1 +

1

µ1 + µ2

M1

]
K∗1

(4.153)

=

[
(K∗1 + K∗2 + Σ1)−1 +

1

µ1 + µ2

M1

]−1

(4.154)

where (4.147) is due to (4.138), (4.149) and (4.153) come from (4.48).
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We now show the fourth statement of the lemma as follows

(K∗2 + Σ̃)−1Σ̃ = I− (K∗2 + Σ̃)−1K∗2 (4.155)

= I−
[
(K∗2 + Σ2)−1 +

1

µ1 + µ2

M2

]
K∗2 (4.156)

= I− (K∗2 + Σ2)−1K∗2 (4.157)

= (K∗2 + Σ2)−1Σ2 (4.158)

where (4.156) comes from (4.137), and (4.157) is due to (4.49).

We finally show the last, i.e., fifth, statement of the lemma as follows

(K∗1 + K∗2 + Σ̃)−1(K∗2 + Σ̃) = I− (K∗1 + K∗2 + Σ̃)−1K∗1 (4.159)

= I−
[
(K∗1 + K∗2 + Σ1)−1 +

1

µ1 + µ2

M1

]
K∗1 (4.160)

= I− (K∗1 + K∗2 + Σ1)−1K∗1 (4.161)

= (K∗1 + K∗2 + Σ1)−1(K∗2 + Σ1) (4.162)

where (4.160) comes from the second statement of this lemma, and (4.161) is due

to (4.48).
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4.7.3 Proof of Lemma 4.4

We prove this lemma for a discrete memoryless broadcast channel with a transition

probability p(ỹ1, ỹ2, y1, y2|x) which satisfies p(ỹ1|x) = p(ỹ2|x) = p(ỹ|x) and

X → Ỹ → (Y1, Y2) (4.163)

Consequently, Lemma 4.4 can be concluded from the proof for this discrete memo-

ryless broadcast channel. We note that if (R0, R1, R2) is achievable, we need to have

εn, γn such that both εn and γn vanish as n→∞, and

H(W0|Y n
j ) ≤ nεn, j = 1, 2 (4.164)

H(Wj|Ỹ n,W0) ≤ nεn, j = 1, 2 (4.165)

I(W1;Y n
2 ,W0) ≤ nγn (4.166)

I(W2;Y n
1 ,W0) ≤ nγn (4.167)

where (4.164)-(4.165) are due to Fano’s lemma, and (4.166)-(4.167) comes from

the perfect secrecy conditions in (4.57). We define the following auxiliary random

variables

Ui = W0Ỹ
i−1, i = 1, . . . , n (4.168)
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which satisfy the following Markov chains for all i,

Ui → Xi → Ỹi → (Y1i, Y2i) (4.169)

since the channel is memoryless, and degraded, i.e., satisfies the Markov chain in

(4.163).

We first bound the common message rate R0 as follows

nR0 = H(W0) (4.170)

≤ I(W0;Y n
1 ) + nεn (4.171)

=
n∑

i=1

I(W0;Y1i|Y i−1
1 ) + nεn (4.172)

≤
n∑

i=1

I(W0, Ỹ
i−1, Y i−1

1 ;Y1i) + nεn (4.173)

=
n∑

i=1

I(W0, Ỹ
i−1;Y1i) + nεn (4.174)

=
n∑

i=1

I(Ui;Y1i) + nεn (4.175)

where (4.174) comes from the Markov chain

Y i−1
1 → Ỹ i−1 → (W0, Y1i) (4.176)

which is a consequence of the fact that the channel is degraded, i.e., satisfies the
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Markov chain in (4.163). Similarly, we can get

nR0 ≤
n∑

i=1

I(Ui;Y2i) + nεn (4.177)

We next bound the confidential message rate of the enhanced first user, i.e.,

R1, as follows

nR1 = H(W1|W0) (4.178)

≤ I(W1; Ỹ n|W0)− I(W1;Y n
2 |W0) + n(εn + γn) (4.179)

≤ I(W1; Ỹ n|W0, Y
n

2 ) + n(εn + γn) (4.180)

=
n∑

i=1

I(W1; Ỹi|W0, Y
n

2 , Ỹ
i−1) + n(εn + γn) (4.181)

=
n∑

i=1

I(W1; Ỹi|W0, Y
n

2i , Ỹ
i−1) + n(εn + γn) (4.182)

≤
n∑

i=1

I(W1, Xi; Ỹi|W0, Y
n

2i , Ỹ
i−1) + n(εn + γn) (4.183)

=
n∑

i=1

I(Xi; Ỹi|W0, Y
n

2i , Ỹ
i−1) + n(εn + γn) (4.184)

=
n∑

i=1

H(Ỹi|W0, Y
n

2i , Ỹ
i−1)−H(Ỹi|W0, Y

n
2i , Ỹ

i−1, Xi) + n(εn + γn) (4.185)

≤
n∑

i=1

H(Ỹi|W0, Y2i, Ỹ
i−1)−H(Ỹi|W0, Y

n
2i , Ỹ

i−1, Xi) + n(εn + γn) (4.186)

=
n∑

i=1

H(Ỹi|W0, Y2i, Ỹ
i−1)−H(Ỹi|W0, Y2i, Ỹ

i−1, Xi) + n(εn + γn) (4.187)

=
n∑

i=1

I(Xi; Ỹi|Ui, Y2i) + n(εn + γn) (4.188)

=
n∑

i=1

I(Xi; Ỹi|Ui)− I(Xi;Y2i|Ui) + n(εn + γn) (4.189)
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where (4.182) comes from the Markov chain

W0,W1, Y
n

2i → Ỹ i−1 → Y i−1
2 (4.190)

which is a consequence of the fact that the channel is degraded, i.e., satisfies the

Markov chain in (4.163), (4.184) comes from the Markov chain

W0,W1, Ỹ
i−1, Y n

2(i+1) → Xi → Ỹi, Y2i (4.191)

which is due to the fact that the channel is memoryless, (4.186) comes from the fact

that conditioning cannot increase entropy, (4.187) results from the Markov chain in

(4.191), and (4.189) stems from the Markov chain in (4.169). Similarly, we can get

the following bound on the confidential message rate of the enhanced second user

R2

nR2 ≤
n∑

i=1

I(Xi; Ỹi|Ui)− I(Xi;Y2,i|Ui) + n(εn + γn) (4.192)

The bounds in (4.175), (4.177), (4.189) and (4.192) can be single-letterized

yielding the following bounds

R0 ≤ min{I(U ;Y1), I(U ;Y2)} (4.193)

R1 ≤ I(X; Ỹ |U)− I(X;Y2|U) (4.194)

R2 ≤ I(X; Ỹ |U)− I(X;Y1|U) (4.195)
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from which, Lemma 4.4 can be concluded.
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Chapter 5

Secrecy Capacity Region of the Gaussian MIMO Multi-receiver

Wiretap Channel

5.1 Introduction

In this chapter, we study the Gaussian MIMO multi-receiver wiretap channel where

the transmitter wants to have confidential communication with an arbitrary num-

ber of legitimate users in the presence of an external eavesdropper. We obtain

the secrecy capacity region of the Gaussian MIMO multi-receiver wiretap channel

for the most general case. Toward that end, we first consider the Gaussian scalar

multi-receiver wiretap channel, and find its secrecy capacity region. There are two

reasons for the presentation of the scalar case separately. The first one is to show

that, existing converse techniques for the Gaussian scalar broadcast channel, i.e.,

the converse proofs of Bergmans [39] and El Gamal [40], cannot be extended in a

straightforward manner to provide a converse proof for the Gaussian scalar multi-

receiver wiretap channel. We explicitly show that the main ingredient of these two

converses in [39, 40], which is the entropy-power inequality [41–43]1, is insufficient

to conclude a converse for the secrecy capacity region. The second reason for the

1Throughout this chapter, the entropy-power inequality refers to the original form of this in-
equality that was proposed by Shannon [41], but not its subsequent variants such as Costa’s
entropy-power inequality [44]. Indeed, the shortcoming of the entropy-power inequality [41–43]
to prove the secrecy capacity region of the Gaussian scalar multi-receiver wiretap channel can be
alleviated by using Costa’s entropy-power inequality as shown in [45].
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separate presentation is to present the main ingredients of the technique that we

will use to provide a converse proof for the general MIMO channel in an isolated

manner in a simpler context. We provide two converse proofs for the Gaussian

scalar multi-receiver wiretap channel. The first one uses the connection between

the minimum-mean-square-error (MMSE) and the mutual information along with

the properties of the MMSE [46, 47]. In additive Gaussian channels, the Fisher

information, another important quantity in estimation theory, and the MMSE have

a one-to-one relationship in the sense that one of them determines the other one,

and vice versa [48]. Thus, the converse proof relying on the MMSE has a counter-

part which replaces the MMSE with the Fisher information in the corresponding

converse proof. Hence, the second converse uses the connection between the Fisher

information and the differential entropy via the de Bruijn identity [41–43] along

with the properties of the Fisher information. This reveals that the Fisher informa-

tion matrix or equivalently the MMSE matrix should play an important role in the

converse proof of the MIMO case.

Keeping this motivation in mind, we consider the Gaussian MIMO multi-

receiver wiretap channel next. Instead of directly tackling the most general case

in which each receiver has an arbitrary number of antennas and an arbitrary noise

covariance matrix, we first consider two sub-classes of MIMO channels. In the first

sub-class, all receivers have the same number of antennas and the noise covariance

matrices exhibit a positive semi-definite order, which implies the degradedness of

these channels. Hereafter, we call this channel model the degraded Gaussian MIMO

multi-receiver wiretap channel. In the second sub-class, although all receivers still
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have the same number of antennas as in the degraded case, the noise covariance

matrices do not have to satisfy any positive semi-definite order. Hereafter, we call

this channel model the aligned Gaussian MIMO multi-receiver wiretap channel. Our

approach will be to first find the secrecy capacity region of the degraded case,

then to generalize this result to the aligned case by using the channel enhancement

technique [4]. Once we obtain the secrecy capacity region of the aligned case, we

use this result to find the secrecy capacity region of the most general case by some

limiting arguments as in [4, 21].

The main contribution and the novelty of our work in this chapter is the way

we prove the secrecy capacity region of the degraded Gaussian MIMO multi-receiver

wiretap channel, since the remaining steps from then on are mainly adaptations of

the existing proof techniques [4, 21] to an eavesdropper and/or multi-user setting.

Moreover, the technique we use to obtain the secrecy capacity region of the de-

graded Gaussian MIMO multi-receiver wiretap channel can be useful to evaluate

the single-letter descriptions of other (vector) Gaussian models. In particular, using

the same technique, we are able to provide an alternative proof for the capacity

region of the degraded Gaussian MIMO broadcast channel and an outer bound for

the rate-distortion region of the vector Gaussian CEO problem. We provide these

applications of our new proof technique in Appendices 5.9.7 and 5.9.8.

The single-user version of the Gaussian MIMO multi-receiver wiretap channel

we study here, i.e., the Gaussian MIMO wiretap channel, was solved by [15, 16] for

the general case and by [17] for the 2-2-1 case. Their common proof technique was

to derive a Sato-type outer bound on the secrecy capacity, and then to tighten this
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outer bound by searching over all possible correlation structures among the noise

vectors of the legitimate user and the eavesdropper. Later, [21] gave an alternative,

simpler proof by using the channel enhancement technique.

5.2 Degraded Multi-receiver Wiretap Channels

In this section, we revisit the degraded multi-receiver wiretap channel (see Fig-

ure 5.1) that we consider in Chapter 3, since it will be needed in the proof of

the secrecy capacity region for the degraded Gaussian MIMO multi-receiver wiretap

channel. The general multi-receiver wiretap channel consists of one transmitter with

an input alphabet X , K legitimate receivers with output alphabets Yk, k = 1, . . . , K,

and an eavesdropper with output alphabet Z. The transmitter sends a confidential

message to each user, say wk ∈ Wk to the kth user, and all messages are to be

kept secret from the eavesdropper. The channel is memoryless with a transition

probability p(y1, y2, . . . , yK , z|x).

A (2nR1 , . . . , 2nRK , n) code for this channel consists of K message sets, Wk =

{1, . . . , 2nRk}, k = 1, . . . , K, an encoder f :W1 × . . .×WK → X n, K decoders, one

at each legitimate receiver, gk : Yk →Wk, k = 1, . . . , K. The probability of error is

defined as P n
e = maxk=1,...,K Pr [gk(Y

n
k ) 6= Wk], where Wk is a uniformly distributed

random variable in Wk, k = 1, . . . , K. A rate tuple (R1, . . . , RK) is said to be

achievable if there exists a code with limn→∞ P
n
e = 0 and

lim
n→∞

1

n
H(S(W )|Zn) ≥

∑

k∈S(W )

Rk, ∀ S(W ) (5.1)
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p(y1|x)
X

p(z|y2)

User 1 User 2

Transmitter p(y2|y1)
Y1 Y2 Z

W1 ,W2

Eavesdropper

W1 ,W2

Ŵ2Ŵ1

Figure 5.1: Degraded multi-receiver wiretap channel for K = 2.

where S(W ) denotes any subset of {W1, . . . ,WK}. The degraded multi-receiver

wiretap channel exhibits the following Markov chain

X → Y1 → . . .→ YK → Z (5.2)

for which, we already obtain the secrecy capacity region in Chapter 3.

Theorem 5.1 (Chapter 3, Corollary 3.1) The secrecy capacity region of the

degraded multi-receiver wiretap channel is given by the union of the rate tuples

(R1, . . . , RK) satisfying2

Rk ≤ I(Uk;Yk|Uk+1, Z), k = 1, . . . , K (5.3)

where U1 = X,UK+1 = ∅, and the union is over all probability distributions of the

2Although in Corollary 3.1 of Chapter 3, this secrecy capacity region is expressed in a different
form, the equivalence of the two expressions can be shown.
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form

p(uK)p(uK−1|uK) . . . p(u2|u3)p(x|u2) (5.4)

We remark here that since the channel is degraded, i.e., we have the Markov

chain in (5.2), the capacity expressions in (5.3) are equivalent to

Rk ≤ I(Uk;Yk|Uk+1)− I(Uk;Z|Uk+1), k = 1, . . . , K (5.5)

We will use this equivalent expression frequently hereafter. For the case of two users

and one eavesdropper, i.e., K = 2, the expressions in (5.5) reduce to:

R1 ≤ I(X;Y1|U2)− I(X;Z|U2) (5.6)

R2 ≤ I(U2;Y2)− I(U2;Z) (5.7)

Finding the secrecy capacity region of the two-user degraded multi-receiver wiretap

channel is tantamount to finding the optimal joint distributions of (X,U2) that

trace the boundary of the secrecy capacity region given in (5.6)-(5.7). For the K-

user degraded multi-receiver wiretap channel, we need to find the optimal joint

distributions of (X,U2, . . . , UK) in the form given in (5.4) that trace the boundary

of the region expressed in (5.3).
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5.3 Gaussian MIMO Multi-receiver Wiretap Channel

5.3.1 Degraded Gaussian MIMO Multi-receiver Wiretap Channel

In this chapter, we first consider the degraded Gaussian MIMO multi-receiver wire-

tap channel, see Figure 5.2, which is defined through

Yk = X + Nk, k = 1, . . . , K (5.8)

Z = X + NZ (5.9)

where the channel input X is subject to a covariance constraint

E
[
XX>

]
� S (5.10)

where S � 0, and {Nk}Kk=1,NZ are zero-mean Gaussian random vectors with co-

variance matrices {Σk}Kk=1,ΣZ which satisfy the following ordering

0 ≺ Σ1 � Σ2 � . . . � ΣK � ΣZ (5.11)

In a multi-receiver wiretap channel, since the capacity-equivocation rate region

depends only on the conditional marginal distributions of the transmitter-receiver

links, but not on the entire joint distribution of the channel, the correlations among

{Nk}Kk=1,NZ have no consequence on the capacity-equivocation rate region. Thus,

without changing the corresponding secrecy capacity region, we can adjust the cor-

relation structure among these noise vectors to ensure that they satisfy the following
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User 1 User 2

N1

Transmitter
X Y1

Ñ2 ÑZ

ZY2

Eavesdropper

Figure 5.2: Degraded Gaussian MIMO multi-receiver wiretap channel for K = 2.

Markov chain

X→ Y1 → . . .→ YK → Z (5.12)

which is always possible because of our assumption regarding the covariance matrices

in (5.11). Moreover, the Markov chain in (5.12) implies that any Gaussian MIMO

multi-receiver wiretap channel satisfying the semi-definite ordering in (5.11) can

be treated as a degraded multi-receiver wiretap channel, hence Theorem 5.1 gives

its capacity region. Hereafter, we will assume that the degraded Gaussian MIMO

wiretap channel satisfies the Markov chain in (5.12).

In Section 5.5, we obtain the secrecy capacity region of the degraded Gaussian

MIMO multi-receiver wiretap channel, which is stated in the following theorem.

Theorem 5.2 The secrecy capacity region of the degraded Gaussian MIMO multi-

receiver wiretap channel is given by the union of the rate tuples R1, . . . , RK satisfying

Rk ≤
1

2
log

∣∣∣
∑k

i=1 Ki + Σk

∣∣∣
∣∣∣
∑k−1

i=1 Ki + Σk

∣∣∣
− 1

2
log

∣∣∣
∑k

i=1 Ki + ΣZ

∣∣∣
∣∣∣
∑k−1

i=1 Ki + ΣZ

∣∣∣
, k = 1, . . . , K (5.13)
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where the union is over all positive semi-definite matrices {Ki}Ki=1 that satisfy

K∑

i=1

Ki = S (5.14)

We prove Theorem 5.2 by showing that jointly Gaussian (X, U2, . . . , UK) are

sufficient to evaluate the region given in Theorem 5.1 for the degraded Gaussian

MIMO multi-receiver wiretap channel. The details of the proof of Theorem 5.2 are

deferred to Section 5.5. We acknowledge an independent and concurrent work in [45],

where the secrecy capacity region of the degraded Gaussian MIMO multi-receiver

wiretap channel is found for K = 2. Their proof is different than ours in the sense

that it first provides a vector generalization of Costa’s entropy-power inequality [44],

and next uses this generalized inequality to establish the secrecy capacity region of

the two-user degraded Gaussian MIMO multi-receiver wiretap channel.

5.3.2 Aligned Gaussian MIMO Multi-receiver Wiretap Channel

Next, we consider the aligned Gaussian MIMO multi-receiver wiretap channel which

is again defined by (5.8)-(5.9), and the input is again subject to a covariance con-

straint as in (5.10) with S � 0. However, for the aligned Gaussian MIMO multi-

receiver wiretap channel, noise covariance matrices do not have any semi-definite

ordering, as opposed to the degraded case which exhibits the ordering in (5.11).

For the aligned Gaussian MIMO multi-receiver wiretap channel, the only assump-

tion on the noise covariance matrices is that they are strictly positive-definite, i.e.,

Σi � 0, i = 1, . . . , K and ΣZ � 0. Since this channel does not have any ordering
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among the noise covariance matrices, it cannot be considered as a degraded channel,

thus there is no single-letter formula for its secrecy capacity region. Moreover, we

do not expect superposition coding with stochastic encoding to be optimal, as it

was optimal for the degraded channel. Indeed, we will show that dirty-paper coding

with stochastic encoding is optimal in this case.

In Section 5.6, we obtain the secrecy capacity region of the aligned Gaussian

MIMO multi-receiver wiretap channel, which will be stated next. To this end, we

introduce some notation which is necessary to express the secrecy capacity region of

the aligned Gaussian MIMO multi-receiver wiretap channel. Given the covariance

matrices {Ki}Ki=1 such that
∑K

i=1 Ki � S, let us define the following rates,

RDPC
k

(
π, {Ki}Ki=1 , {Σi}Ki=1 ,ΣZ

)
=

1

2
log

∣∣∣
∑k

i=1 Kπ(i) + Σπ(k)

∣∣∣
∣∣∣
∑k−1

i=1 Kπ(i) + Σπ(k)

∣∣∣

− 1

2
log

∣∣∣
∑k

i=1 Kπ(i) + ΣZ

∣∣∣
∣∣∣
∑k−1

i=1 Kπ(i) + ΣZ

∣∣∣
, k = 1, . . . , K

(5.15)

where π(·) is a one-to-one permutation on {1, . . . , K}. We also note that the sub-

script of RDPC
k

(
π, {Ki}Ki=1 , {Σi}Ki=1 ,ΣZ

)
does not denote the kth user, instead it

denotes the (K − k + 1)th user in line to be encoded. Rather, the secrecy rate of

the kth user is given by

RDPC
π−1(k)

(
π, {Ki}Ki=1 , {Σi}Ki=1 ,ΣZ

)
(5.16)
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when dirty-paper coding with stochastic encoding is used with an encoding order of

π. We define the following region:

RDPC
(
π,S, {Σi}Ki=1 ,ΣZ

)

=





(R1, . . . , RK)

∣∣∣∣∣∣∣∣∣∣∣∣

Rk ≤ RDPC
π−1(k)

(
π, {Ki}Ki=1 , {Σi}Ki=1 ,ΣZ

)
, k = 1, . . . , K,

for some {Ki}Ki=1 such that Ki � 0, i = 1, . . . , K,

and
∑K

i=1 Ki � S





(5.17)

The secrecy capacity region of the aligned Gaussian MIMO broadcast channel is

given by the following theorem.

Theorem 5.3 The secrecy capacity region of the aligned Gaussian MIMO multi-

receiver wiretap channel is given by the convex closure of the following union

⋃

π∈Π

RDPC
(
π,S, {Σi}Ki=1 ,ΣZ

)
(5.18)

where Π is the set of all possible one-to-one permutations on {1, . . . , K}.

We show the achievability of the region in Theorem 5.3 by using dirty-paper

coding with stochastic encoding. We provide the converse proof of Theorem 5.3

by using our capacity result for the degraded Gaussian MIMO multi-receiver wire-

tap channel given in Theorem 5.2 in conjunction with the channel enhancement

technique [4]. The details of the proof of Theorem 5.3 are deferred to Section 5.6.
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5.3.3 General Gaussian MIMO Multi-receiver Wiretap Channel

Finally, we consider the most general form of the Gaussian MIMO multi-receiver

wiretap channel, see Figure 5.3 which is given by

Yk = HkX + Nk, k = 1, . . . , K (5.19)

Z = HZX + NZ (5.20)

where the channel input X, which is a t × 1 column vector, is again subject to

a covariance constraint as in (5.10) with S � 0. The channel output for the kth

user is denoted by Yk which is a column vector of size rk × 1, k = 1, . . . , K. The

eavesdropper’s observation Z is of size rZ × 1. The covariance matrices of the

Gaussian random vectors {Nk}Kk=1 ,NZ are denoted by {Σk}Kk=1 ,ΣZ
3, which are

assumed to be strictly positive definite. The channel gain matrices {Hk}Kk=1 ,HZ

are of sizes {rk × t}Kk=1 , rZ × t, respectively, and they are known to the transmitter,

all legitimate users and the eavesdropper.

Similar to the aligned Gaussian MIMO multi-receiver wiretap channel, we

obtain the secrecy capacity region of the general Gaussian MIMO multi-receiver

wiretap channel by showing the optimality of the dirty-paper coding with stochastic

encoding. Next, we state the secrecy capacity region of the general Gaussian MIMO

multi-receiver wiretap channel. To this end, we introduce some notation which is

necessary to express the secrecy capacity region of the general Gaussian MIMO

3Although, for the general Gaussian MIMO multi-receiver wiretap channel, there is no loss
of generality to assume that the noise covariance matrices are identity matrices, we let them be
arbitrary for the consistency of our presentation.
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Transmitter User 2

H2 N2

Y2X

Eavesdropper

HZ NZ

Z

User 1

H1 N1

Y1

Figure 5.3: General Gaussian MIMO multi-receiver wiretap channel for K = 2.

multi-receiver wiretap channel. Given the covariance matrices {Kk}Kk=1 such that

∑K
k=1 Kk � S, we define the following rates

RDPC
k

(
π, {Ki}Ki=1 , {Σi}Ki=1 ,ΣZ , {Hi}Ki=1 ,HZ

)

=
1

2
log

∣∣∣Hπ(k)

(∑k
i=1 Kπ(i)

)
H>π(k) + Σπ(k)

∣∣∣
∣∣∣Hπ(k)

(∑k−1
i=1 Kπ(i)

)
H>π(k) + Σπ(k)

∣∣∣
− 1

2
log

∣∣∣HZ

(∑k
i=1 Kπ(i)

)
H>Z + ΣZ

∣∣∣
∣∣∣HZ

(∑k−1
i=1 Kπ(i)

)
H>Z + ΣZ

∣∣∣
,

k = 1, . . . , K

(5.21)

where π(·) is a one-to-one permutation on {1, . . . , K}. We also note that the sub-

script of RDPC
k

(
π, {Ki}Ki=1 , {Σi}Ki=1 ,ΣZ , {Hi}Ki=1 ,HZ

)
does not denote the kth

user, instead it denotes the (K − k + 1)th user in line to be encoded. Rather,
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the secrecy rate of the kth user is given by

RDPC
π−1(k)

(
π, {Ki}Ki=1 , {Σi}Ki=1 ,ΣZ , {Hi}Ki=1 ,HZ

)
(5.22)

when dirty-paper coding with stochastic encoding is used with an encoding order of

π.

We define the following region.

RDPC
(
π,S, {Σi}Ki=1 ,ΣZ , {Hi}Ki=1 ,HZ

)

=





(R1, . . . , RK)

∣∣∣∣∣∣∣∣∣∣∣∣

Rk ≤ RDPC
π−1(k)

(
π, {Ki}Ki=1 , {Σi}Ki=1 ,ΣZ , {Hi}Ki=1 ,HZ

)
,

k = 1, . . . , K, for some {Ki}Ki=1 such that Ki � 0,

i = 1, . . . , K, and
∑K

i=1 Ki � S





(5.23)

The secrecy capacity region of the general Gaussian MIMO broadcast channel is

given by the following theorem.

Theorem 5.4 The secrecy capacity region of the general Gaussian MIMO multi-

receiver wiretap channel is given by the convex closure of the following union

⋃

π∈Π

RDPC
(
π,S, {Σi}Ki=1 ,ΣZ , {Hi}Ki=1 ,HZ

)
(5.24)

where Π is the set of all possible one-to-one permutations on {1, . . . , K}.

We prove Theorem 5.4 by using some limiting arguments in conjunction with
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our capacity result for the aligned Gaussian MIMO multi-receiver wiretap channel

given in Theorem 5.3. The details of the proof of Theorem 5.4 are deferred to

Section 5.7.

5.3.4 A Comment on the Covariance Constraint

In the literature, it is more common to define capacity regions under a total power

constraint, i.e., tr
(
E
[
XX>

])
≤ P , instead of the covariance constraint that we

imposed, i.e., E
[
XX>

]
� S. However, as shown in [4], once the capacity region

is obtained under a covariance constraint, then the capacity region under more

lenient constraints on the channel inputs can be obtained, if these constraints can be

expressed as compact sets defined over the input covariance matrices. For example,

the total power constraint and the per-antenna power constraint can be described

by compact sets of input covariance matrices as follows

Stotal = {S � 0 : tr(S) ≤ P} (5.25)

Sper−ant = {S � 0 : Sii ≤ Pi, i = 1, . . . , t} (5.26)

respectively, where Sii is the ith diagonal entry of S, and t denotes the number of

transmit antennas. Thus, if the secrecy capacity region under a covariance constraint

E
[
XX>

]
� S is found and denoted by C(S), then the secrecy capacity regions under

the total power constraint and the per-antenna power constraint can be expressed
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as

Ctotal =
⋃

S∈Stotal
C(S) (5.27)

Cper−ant =
⋃

S∈Sper−ant

C(S) (5.28)

respectively.

One other comment about the covariance constraint on the channel input is

regarding the positive definiteness of S. Following Lemma 2 of [4], it can be shown

that, for any degraded (resp. aligned) Gaussian MIMO multi-receiver channel under

a covariance constraint E
[
XX>

]
� S where S is a non-invertible positive semi-

definite matrix, i.e., S � 0 and |S| = 0, we can find another equivalent degraded

(resp. aligned) channel with fewer transmit and receive antennas under a covariance

constraint E
[
X̂X̂>

]
� S′ such that S′ � 0. Here the equivalence refers to the fact

that both of these channels will have the same secrecy capacity region. Thus, as

long as a degraded or an aligned channel is considered, there is no loss of generality

in imposing a covariance constraint with a strictly positive definite matrix S, and

this is why we assumed that S is strictly positive definite for the degraded and the

aligned channels.

5.4 Gaussian SISO Multi-receiver Wiretap Channel

We first visit the Gaussian SISO multi-receiver wiretap channel. The aims of this

section are to show that a straightforward extension of existing converse techniques

216



for the Gaussian scalar broadcast channel fails to provide a converse proof for the

Gaussian SISO multi-receiver wiretap channel, and to provide an alternative proof

technique using either the MMSE or the Fisher information along with their connec-

tions with the differential entropy. To this end, we first define the Gaussian SISO

multi-receiver wiretap channel

Yk = X +Nk, k = 1, 2 (5.29)

Z = X +NZ (5.30)

where we also restrict our attention to the two-user case for simplicity of the pre-

sentation. The channel input X is subject to a power constraint E [X2] ≤ P .

The variances of the zero-mean Gaussian random variables N1, N2, NZ are given by

σ2
1, σ

2
2, σ

2
Z , respectively, and satisfy the following order

σ2
1 ≤ σ2

2 ≤ σ2
Z (5.31)

Since the correlations among N1, N2, NZ have no effect on the secrecy capacity re-

gion, we can adjust the correlation structure to ensure the following Markov chain

X → Y1 → Y2 → Z (5.32)

Thus, this channel can be considered as a degraded channel, and its secrecy capacity

region is given by Theorem 5.1, in particular, by (5.6) and (5.7). Hence, to compute
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the secrecy capacity region explicitly, we need to find the optimal joint distributions

of (X,U2) in (5.6) and (5.7). The corresponding secrecy capacity region is given by

the following theorem.

Theorem 5.5 The secrecy capacity region of the two-user Gaussian SISO wiretap

channel is given by the union of the rate pairs (R1, R2) satisfying

R1 ≤
1

2
log

(
1 +

αP

σ2
1

)
− 1

2
log

(
1 +

αP

σ2
Z

)
(5.33)

R2 ≤
1

2
log

(
1 +

ᾱP

αP + σ2
2

)
− 1

2
log

(
1 +

ᾱP

αP + σ2
Z

)
(5.34)

where the union is over all α ∈ [0, 1], and ᾱ denotes 1− α.

The achievability of this region can be shown by selecting (X,U2) to be jointly

Gaussian in Theorem 5.1. We focus on the converse proof.

5.4.1 Revisiting Converse Proofs for the Gaussian Scalar Broadcast

Channel

As a natural approach, one might try to adopt the converse proofs of the scalar

Gaussian broadcast channel for the converse proof of Theorem 5.5. In the literature,

there are two converses for the Gaussian scalar broadcast channel which share some

main principles. The first converse was given by Bergmans [39] who used Fano’s

lemma in conjunction with the entropy-power inequality [41–43] to find the capacity

region. Later, El Gamal gave a relatively simple proof [40] which does not recourse to

Fano’s lemma. Rather, he started from the single-letter expression for the capacity
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region and used entropy-power inequality [41–43] to evaluate this region. Thus, the

entropy-power inequality [41–43] is the main ingredient of these converses4.

We now attempt to extend these converses to our secrecy context, i.e., to pro-

vide the converse proof of Theorem 5.5, and show where the argument breaks. In

particular, what we will show in the following discussion is that a stand-alone use of

the entropy-power inequality [41–43] falls short of proving the optimality of Gaus-

sian signalling in this secrecy context, as opposed to the Gaussian scalar broadcast

channel. For that purpose, we consider El Gamal’s converse for the Gaussian scalar

broadcast channel. However, since the entropy-power inequality is in a central role

for both El Gamal’s and Bergmans’ converse, the upcoming discussion can be carried

out by using Bergmans’ proof as well.

First, we consider the bound on the second user’s secrecy rate. Using (5.7),

we have

I(U2;Y2)− I(U2;Z) =
[
I(X;Y2)− I(X;Z)

]
−
[
I(X;Y2|U2)− I(X;Z|U2)

]
(5.35)

where the right-hand side is obtained by using the chain rule, and the Markov chain

U2 → X → (Y1, Y2, Z). The expression in the first bracket is maximized by Gaussian

4We again note that, in this chapter, the entropy-power inequality refers to the original form
of this inequality which was proposed by Shannon [41], but not the subsequent variants of this
inequality such as Costa’s entropy-power inequality [44]. Indeed, using Costa’s entropy-power
inequality, it is possible to provide a converse proof for the secrecy capacity region of the Gaussian
scalar multi-receiver wiretap channel [45].
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X [49] yielding

I(X;Y2)− I(X;Z) ≤ 1

2
log

(
1 +

P

σ2
2

)
− 1

2
log

(
1 +

P

σ2
Z

)
(5.36)

Moreover, using the Markov chain U2 → X → Y2 → Z, we can bound the expression

in the second bracket as

0 ≤ I(X;Y2|U2)− I(X;Z|U2) (5.37)

≤ I(X;Y2)− I(X;Z) (5.38)

≤ 1

2
log

(
1 +

P

σ2
2

)
− 1

2
log

(
1 +

P

σ2
Z

)
(5.39)

which implies that for any (X,U2) pair, there exists an α ∈ [0, 1] such that

I(X;Y2|U2)− I(X;Z|U2) =
1

2
log

(
1 +

αP

σ2
2

)
− 1

2
log

(
1 +

αP

σ2
Z

)
(5.40)

Combining (5.36) and (5.40) in (5.35) yields the desired bound on R2 given in (5.34).

From now on, we focus on obtaining the bound given in (5.33) on the first user’s
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secrecy rate. To this end, one needs to solve the following optimization problem5

max I(X;Y1|U2)− I(X;Z|U2) (5.41)

s.t. I(X;Y2|U2)− I(X;Z|U2) =
1

2
log

(
1 +

αP

σ2
2

)
− 1

2
log

(
1 +

αP

σ2
Z

)
(5.42)

When the term I(X;Z|U2) is absent in both the objective function and the con-

straint, as in the case of the Gaussian scalar broadcast channel, the entropy-power

inequality [41–43] can be used to solve this optimization problem. However, the

presence of this term complicates the situation, and a stand-alone use of the entropy-

power inequality [41–43] does not seem to be sufficient. To substantiate this claim,

let us consider the objective function in (5.41)

I(X;Y1|U2)− I(X;Z|U2) = h(Y1|U2)− h(Z|U2)− 1

2
log

σ2
1

σ2
Z

(5.43)

≤ 1

2
log
(
e2h(Z|U2) − 2πe

(
σ2
Z − σ2

1

) )
− h(Z|U2)− 1

2
log

σ2
1

σ2
Z

(5.44)

where the inequality is obtained by using the entropy-power inequality [41–43]. Since

the right-hand side of (5.44) is monotonically increasing in h(Z|U2), to show the

optimality of Gaussian signalling, we need

h(Z|U2) ≤ 1

2
log 2πe(αP + σ2

Z) (5.45)

5Equivalently, one can consider the following optimization problem

max I(X;Y1|U2)− I(X;Y2|U2)

s.t. I(X;Y2|U2)− I(X;Z|U2) =
1

2
log

(
1 +

αP

σ2
2

)
− 1

2
log

(
1 +

αP

σ2
Z

)

which, in turn, would yield a similar contradiction.
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which will result in the desired bound on (5.41), i.e., the desired end-result in (5.33).

We now check whether (5.45) holds under the constraint given in (5.42). To

this end, consider the difference of mutual informations in (5.42)

I(X;Y2|U2)− I(X;Z|U2) = h(Y2|U2)− h(Z|U2)− 1

2
log

σ2
2

σ2
Z

(5.46)

≤ 1

2
log
(
e2h(Z|U2) − 2πe

(
σ2
Z − σ2

2

) )
− h(Z|U2)− 1

2
log

σ2
2

σ2
Z

(5.47)

where the inequality is obtained by using the entropy-power inequality [41–43]. Now,

using the constraint given in (5.42) in (5.47), we get

1

2
log

(
αP + σ2

2

αP + σ2
Z

)
≤ 1

2
log
(
e2h(Z|U2) − 2πe

(
σ2
Z − σ2

2

) )
− h(Z|U2) (5.48)

which implies

1

2
log 2πe(αP + σ2

Z) ≤ h(Z|U2) (5.49)

Thus, as opposed to the inequality that we need to show the optimality of Gaussian

signalling via the entropy-power inequality [41–43], i.e., the bound in (5.45), we have

an opposite inequality. This discussion reveals that if Gaussian signalling is optimal,

then its proof cannot be deduced from a straightforward extension of the converse

proofs for the Gaussian scalar broadcast channel in [39, 40]. Thus, we need a new

technique to provide the converse for Theorem 5.5. We now present two different

proofs. The first proof relies on the relationship between the MMSE and the mutual
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information along with the properties of the MMSE, and the second proof replaces

the MMSE with the Fisher information.

5.4.2 Converse for Theorem 5.5 Using the MMSE

We now provide a converse which uses the connection between the MMSE and

the mutual information established in [46, 47]. In [47], the authors also give an

alternative converse for the scalar Gaussian broadcast channel. Our proof will follow

this converse, and generalize it to the context where there are secrecy constraints.

First, we briefly state the necessary background information. Let N be a zero-

mean unit-variance Gaussian random variable, and (U,X) be a pair of arbitrarily

correlated random variables which are independent of N . The MMSE of X when it

is observed through U and
√
tX +N is

mmse(X, t|U) = E

[(
X − E

[
X|
√
tX +N,U

])2
]

(5.50)

As shown in [46, 47], the MMSE and the conditional mutual information are related

through

I(X;
√
tX +N |U) =

1

2

∫ t

0

mmse(X, t|U)dt (5.51)

For our converse, we need the following proposition which was proved in [47].

Proposition 5.1 ([47, Proposition 12]) Let U,X,N be as specified above. The
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function

f(t) =
σ2

σ2t+ 1
−mmse(X, t|U) (5.52)

has at most one zero in [0,∞) unless X is Gaussian conditioned on U with variance

σ2, in which case the function is identically zero on [0,∞). In particular, if t0 <∞

is the unique zero, then f(t) is strictly increasing on [0, t0], and strictly positive on

(t0,∞).

We now give the converse. We use exactly the same steps from (5.35) to (5.40)

to establish the bound on the secrecy rate of the second user given in (5.34). To

bound the secrecy rate of the first user, we first restate (5.40) as

I(X;Y2|U2)− I(X;Z|U2)

= I(X; (1/σ2)X +N |U2)− I(X; (1/σZ)X +N |U2) (5.53)

=
1

2
log

(
1 +

αP

σ2
2

)
− 1

2
log

(
1 +

αP

σ2
Z

)
(5.54)

=
1

2

∫ 1/σ2
2

1/σ2
Z

αP

tαP + 1
dt (5.55)

Furthermore, due to (5.51), we also have

I(X;Y2|U2)− I(X;Z|U2) =
1

2

∫ 1/σ2
2

1/σ2
Z

mmse(X, t|U2)dt (5.56)
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Comparing (5.55) and (5.56) reveals that either we have

mmse(X, t|U2) =
αP

tαP + 1
(5.57)

for all t ∈ [1/σ2
Z , 1/σ

2
2], or there exists a unique t0 ∈ (1/σ2

Z , 1/σ
2
2) such that

mmse(X, t0|U2) =
αP

t0αP + 1
(5.58)

and

mmse(X, t|U2) ≤ αP

tαP + 1
(5.59)

for t > t0, because of Proposition 5.1. The former case occurs if X is Gaussian

conditioned on U2 with variance αP , in which case we arrive at the desired bound

on the secrecy rate of the first user given in (5.33). If we assume that the latter

case in (5.58)-(5.59) occurs, then, we can use the following sequence of derivations

225



to bound the first user’s secrecy rate

I(X;Y1|U2)− I(X;Z|U2)

= I(X; (1/
√
σ1)X +N |U2)− I(X; (1/

√
σZ)X +N |U2) (5.60)

=
1

2

∫ 1/σ2
1

1/σ2
Z

mmse(X, t|U2)dt (5.61)

=
1

2

∫ 1/σ2
2

1/σ2
Z

mmse(X, t|U2)dt+
1

2

∫ 1/σ2
1

1/σ2
2

mmse(X, t|U2)dt (5.62)

=
1

2
log

(
1 +

αP

σ2
2

)
− 1

2
log

(
1 +

αP

σ2
Z

)

+
1

2

∫ 1/σ2
1

1/σ2
2

mmse(X, t|U2)dt (5.63)

≤ 1

2
log

(
1 +

αP

σ2
2

)
− 1

2
log

(
1 +

αP

σ2
Z

)
+

1

2

∫ 1/σ2
1

1/σ2
2

αP

tαP + 1
dt (5.64)

=
1

2
log

(
1 +

αP

σ2
1

)
− 1

2
log

(
1 +

αP

σ2
Z

)
(5.65)

where (5.63) follows from (5.55) and (5.56), and (5.64) is due to (5.59). Since

(5.65) is the desired bound on the secrecy rate of the first user given in (5.33), this

completes the converse proof.

5.4.3 Converse for Theorem 5.5 Using the Fisher Information

We now provide an alternative converse which replaces the MMSE with the Fisher

information in the above proof. We first provide some basic definitions. The un-

conditional versions of the following definition and the upcoming results regarding

the Fisher information can be found in standard detection-estimation texts; to note

one, [50] is a good reference for a detailed treatment of the subject.
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Definition 5.1 Let X,U be arbitrarily correlated random variables with well-defined

densities, and f(x|u) be the corresponding conditional density. The conditional

Fisher information of X is defined by

J(X|U) = E

[(
∂ log f(x|u)

∂x

)2
]

(5.66)

where the expectation is over (U,X).

The vector generalization of the following conditional form of the Fisher in-

formation inequality will be given in Lemma 5.15 in Section 5.5.4, thus its proof is

omitted here.

Lemma 5.1 Let U,X, Y be random variables, and let the density for any combina-

tion of them exist. Moreover, let us assume that given U , X and Y are independent.

Then, we have

J(X + Y |U) ≤ β2J(X|U) + (1− β)2J(Y |U) (5.67)

for any β ∈ [0, 1].

Corollary 5.1 Let X, Y, U be as specified above. Then, we have

1

J(X + Y |U)
≥ 1

J(X|U)
+

1

J(Y |U)
(5.68)
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Proof: Select

β =
J(Y |U)

J(X|U) + J(Y |U)
(5.69)

in the previous lemma. 2

Similarly, the vector generalization of the following conditional form of the

Cramer-Rao inequality will be given in Lemma 5.13 in Section 5.5.4, and hence, its

proof is omitted here.

Lemma 5.2 Let X,U be arbitrarily correlated random variables with well-defined

densities. Then, we have

J(X|U) ≥ 1

Var(X|U)
(5.70)

with equality if (U,X) is jointly Gaussian.

We now provide the conditional form of the De Bruijn identity [41–43]. The

vector generalization of this lemma will be provided in Lemma 5.17 in Section 5.5.4,

and hence, its proof is omitted here.

Lemma 5.3 Let X,U be arbitrarily correlated random variables with finite second

order moments. Moreover, assume that they are independent of N which is a zero-

mean unit-variance Gaussian random variable. Then, we have

dh(X +
√
tN |U)

dt
=

1

2
J(X +

√
tN |U) (5.71)
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We now note the following complementary relationship between the MMSE

and the Fisher information [46, 48]

J(
√
tX +N) = 1− t ·mmse(X, t) (5.72)

which itself suggests the existence of an alternative converse which uses the Fisher

information instead of the MMSE. We now provide the alternative converse based

on the Fisher information. We first bound the secrecy rate of the second user as in

the previous section, by following the exact steps from (5.35) to (5.40). To bound

the secrecy rate of the first user, we first rewrite (5.40) as follows

I(X;Y2|U2)− I(X;Z|U2)

= h(X + σ2N |U2)− h(X + σZN |U2)− 1

2
log

σ2
2

σ2
Z

(5.73)

= −1

2

∫ σ2
Z

σ2
2

J(X +
√
tN |U2)dt− 1

2
log

σ2
2

σ2
Z

(5.74)

= −1

2

∫ σ2
Z

σ2
2

J(X +
√
t− t∗N ′ +

√
t∗N ′′|U2)dt− 1

2
log

σ2
2

σ2
Z

(5.75)

where (5.74) follows from Lemma 5.3, and in (5.75), we used the stability of Gaus-

sian random variables where, N ′, N ′′ are two independent zero-mean unit-variance

Gaussian random variables. Moreover, t∗ is selected in the range of (0, σ2
2). We now
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use Corollary 5.1 to bound the conditional Fisher information in (5.75) as follows

1

J(X +
√
t− t∗N ′ +

√
t∗N ′′|U2)

≥ 1

J(X +
√
t∗N ′′|U2)

+
1

J(
√
t− t∗N ′|U2)

(5.76)

=
1

J(X +
√
t∗N ′′|U2)

+ (t− t∗) (5.77)

where the equality follows from Lemma 5.2. The inequality in (5.77) is equivalent

to

J(X +
√
t− t∗N ′ +

√
t∗N ′′|U2) ≤ J(X +

√
t∗N ′′|U2)

1 + J(X +
√
t∗N ′′|U2)(t− t∗)

(5.78)

using which in (5.75) yields

I(X;Y2|U2)− I(X;Z|U2)

≥ −1

2

∫ σ2
Z

σ2
2

J(X +
√
t∗N ′′|U2)

1 + J(X +
√
t∗N ′′|U2)(t− t∗)

dt− 1

2
log

σ2
2

σ2
Z

(5.79)

= −1

2
log

1 + J(X +
√
t∗N ′′|U2)(σ2

Z − t∗)
1 + J(X +

√
t∗N ′′|U2)(σ2

2 − t∗)
− 1

2
log

σ2
2

σ2
Z

(5.80)

We remind that we had already fixed the left-hand side of this inequality as

I(X;Y2|U2)− I(X;Z|U2) =
1

2
log

(
1 +

αP

σ2
2

)
− 1

2
log

(
1 +

αP

σ2
Z

)
(5.81)

in (5.40). Comparison of (5.80) and (5.81) results in

J(X +
√
t∗N ′′|U2) ≥ 1

αP + t∗
, 0 < t∗ ≤ σ2

2 (5.82)

230



At this point, we compare the inequalities in (5.59) and (5.82). These two inequal-

ities imply each other through the complementary relationship between the MMSE

and the Fisher information given in (5.72) after appropriate change of variables and

by noting that J(aX) = (1/a2)J(X) [50]. We now find the desired bound on the

secrecy rate of the first user via using the inequality in (5.82)

I(X;Y1|U2)− I(X;Z|U2)

= h(X + σ1N |U2)− h(X + σZN |U2)− 1

2
log

σ2
1

σ2
Z

(5.83)

= −1

2

∫ σ2
Z

σ2
1

J(X +
√
tN |U2)dt− 1

2
log

σ2
1

σ2
Z

(5.84)

= −1

2

∫ σ2
2

σ2
1

J(X +
√
tN |U2)dt− 1

2

∫ σ2
Z

σ2
2

J(X +
√
tN |U2)dt

− 1

2
log

σ2
1

σ2
Z

(5.85)

= −1

2

∫ σ2
2

σ2
1

J(X +
√
tN |U2)dt− 1

2
log

(
αP + σ2

Z

αP + σ2
2

)

− 1

2
log

σ2
1

σ2
Z

(5.86)

≤ −1

2

∫ σ2
2

σ2
1

1

αP + t
dt− 1

2
log

(
αP + σ2

Z

αP + σ2
2

)
− 1

2
log

σ2
1

σ2
Z

(5.87)

= −1

2
log

(
αP + σ2

2

αP + σ2
1

)
− 1

2
log

(
αP + σ2

Z

αP + σ2
2

)
− 1

2
log

σ2
1

σ2
Z

(5.88)

=
1

2
log

(
1 +

αP

σ2
1

)
− 1

2
log

(
1 +

αP

σ2
Z

)
(5.89)

where (5.86) follows from (5.74) and (5.81), and (5.87) is due to (5.82). Since (5.89)

provides the desired bound on the secrecy rate of the first user given in (5.33), this

completes the converse proof.
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5.4.4 Summary of the SISO Case, Outlook for the MIMO Case

In this section, we first revisited the standard converse proofs [39, 40] of the Gaus-

sian scalar broadcast channel, and showed that a straightforward extension of these

proofs will not be able to provide a converse proof for the Gaussian SISO multi-

receiver wiretap channel. Basically, a stand-alone use of the entropy-power inequal-

ity [41–43] falls short of resolving the ambiguity on the auxiliary random variables.

We showed that, in this secrecy context, either the connection between the mutual

information and the MMSE or equivalently the connection between the differential

entropy and the Fisher information can be used, along with their properties, to come

up with a converse.

In the next section, we will generalize this converse proof technique to the

degraded MIMO channel. One way of generalizing this converse technique to the

MIMO case might be to use the channel enhancement technique, which was success-

fully used in extending Bergmans’ converse proof from the Gaussian scalar broad-

cast channel to the degraded vector Gaussian broadcast channel. In the degraded

Gaussian MIMO broadcast channel, the non-trivial part of the converse proof was

to extend Bergmans’ converse to a vector case, and this was accomplished by the

invention of the channel enhancement technique. However, as we have shown in Sec-

tion 5.4.1, even in the Gaussian SISO multi-receiver wiretap channel, a Bergmans

type converse does not work. Thus, we do not expect that the channel enhance-

ment technique will be sufficient to extend our converse proof from the SISO case

to the MIMO case, similar to [5], where the channel enhancement technique alone
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was not sufficient for the extension of a converse proof technique from the scalar

Gaussian case to the vector Gaussian case. Consequently, we will not pursue a

channel enhancement approach to extend our proof from the SISO channel to the

degraded MIMO channel. Instead, we will use the connections between the Fisher

information and the differential entropy, as we did in Section 5.4.3, to come up with

a converse proof for the degraded MIMO channel. We will then use the channel

enhancement technique to extend our converse proof to the aligned MIMO channel

from the degraded MIMO channel. Finally, we will use some limiting arguments, as

in [4, 21], to come up with a converse proof for the most general MIMO channel.

5.5 Degraded Gaussian MIMO Multi-receiver Wiretap Channel

In this section, we establish the secrecy capacity region of the degraded Gaussian

MIMO multi-receiver wiretap channel, which was stated in Theorem 5.2. The

achievability of the rates in Theorem 5.2 follows from Theorem 5.1 by selecting

(X, U2, . . . , UK) to be jointly Gaussian. Thus, to prove Theorem 5.2, we only need

to provide a converse. Since the converse proof is rather long and involves techni-

cal digressions, we first present the converse proof for K = 2. In this process, we

will develop all necessary tools which we will use to provide the converse proof for

arbitrary K in Section 5.5.5.

The secrecy capacity region of the two-user degraded MIMO channel, from

233



(5.13), is the union of the rate pairs (R1, R2) satisfying

R1 ≤
1

2
log
|K1 + Σ1|
|Σ1|

− 1

2
log
|K1 + ΣZ |
|ΣZ |

(5.90)

R2 ≤
1

2
log
|S + Σ2|
|K1 + Σ2|

− 1

2
log
|S + ΣZ |
|K1 + ΣZ |

(5.91)

where the union is over all selections of K1 that satisfies 0 � K1 � S. We note that

these rates are achievable by choosing X = U2 + V in Theorem 5.1, where U2 and

V are independent Gaussian random vectors with covariance matrices S−K1 and

K1, respectively. Next, we prove that the union of the rate pairs in (5.90) and (5.91)

constitute the secrecy capacity region of the two-user degraded MIMO channel.

5.5.1 Proof of Theorem 5.2 for K = 2

To prove that (5.90) and (5.91) give the secrecy capacity region, we need the results

of some intermediate optimization problems. The first one is the so-called worst

additive noise lemma [36, 37].

Lemma 5.4 ([36, Lemma II.2]) Let N be a Gaussian random vector with covari-

ance matrix Σ, and KX be a positive semi-definite matrix. Consider the following

optimization problem,

min
p(x)

I(N; N + X)

s.t. Cov(X) = KX (5.92)
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where X and N are independent. A Gaussian X is the minimizer of this optimization

problem.

The second optimization problem that will be useful in the upcoming proof is

the conditional version of the following theorem.

Theorem 5.6 Let X,N1,N2,NZ be independent random vectors, where N1,N2,NZ

are zero-mean Gaussian random vectors with covariance matrices 0 ≺ Σ1 � Σ2 �

ΣZ, respectively. Moreover, assume that the second moment of X is constrained as

E
[
XX>

]
� S (5.93)

where S is a positive definite matrix. Then, for any admissible X, there exists a

matrix K∗ such that 0 � K∗ � S, and

h(X + NZ)− h(X + N2) =
1

2
log
|K∗ + ΣZ |
|K∗ + Σ2|

(5.94)

h(X + NZ)− h(X + N1) ≥ 1

2
log
|K∗ + ΣZ |
|K∗ + Σ1|

(5.95)

The conditional version of Theorem 5.6 is given as follows.

Theorem 5.7 Let U,X be arbitrarily correlated random vectors which are indepen-

dent of N1,N2,NZ, where N1,N2,NZ are zero-mean Gaussian random vectors with

covariance matrices 0 ≺ Σ1 � Σ2 � ΣZ, respectively. Moreover, assume that the
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second moment of X is constrained as

E
[
XX>

]
� S (5.96)

where S is a positive definite matrix. Then, for any admissible (U,X) pair, there

exists a matrix K∗ such that 0 � K∗ � S, and

h(X + NZ |U)− h(X + N2|U) =
1

2
log
|K∗ + ΣZ |
|K∗ + Σ2|

(5.97)

h(X + NZ |U)− h(X + N1|U) ≥ 1

2
log
|K∗ + ΣZ |
|K∗ + Σ1|

(5.98)

Theorem 5.6 serves as a step towards the proof of Theorem 5.7. Proofs of these two

theorems are deferred to Sections 5.5.3 and 5.5.4.

We are now ready to show that the secrecy capacity region of the two-user

degraded MIMO channel is given by (5.90)-(5.91). We first consider R2, and bound

it using Theorem 5.1 as follows

R2 ≤ I(U2; Y2)− I(U2; Z) (5.99)

= [I(X; Y2)− I(X; Z)]− [I(X; Y2|U2)− I(X; Z|U2)] (5.100)
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where the equality is obtained by using the chain rule and the Markov chain U2 →

X→ (Y2,Z). We now consider the expression in the first bracket of (5.100)

I(X; Y2)− I(X; Z) = h(Y2)− h(Y2|X)− h(Z) + h(Z|X) (5.101)

= h(Y2)− h(Z)− 1

2
log
|Σ2|
|ΣZ |

(5.102)

where the second equality follows from the facts that h(Y2|X) = h(N2) and h(Z|X) =

h(NZ). We now consider the difference of differential entropies in (5.102). To

this end, let us introduce the Gaussian random vector Ñ2 with covariance matrix

ΣZ −Σ2, which is independent of X,N2. Then, we have

h(Y2)− h(Z) = h(Y2)− h(Y2 + Ñ2) (5.103)

= −I(Ñ2; Y2 + Ñ2) (5.104)

≤ max
0�K�S

1

2
log
|K + Σ2|
|K + ΣZ |

(5.105)

=
1

2
log
|S + Σ2|
|S + ΣZ |

(5.106)

where (5.103) follows from the fact that the difference of entropies depends only

on the marginal distributions of Y2 and Z, and the stability of Gaussian random

vectors6, (5.105) follows from Lemma 5.4, and (5.106) is a consequence of the fact

6Stability of Gaussian random vectors refers to the fact that the sum of two independent
Gaussian random vectors is Gaussian, and the corresponding covariance matrix is the sum of the
covariance matrices of the independent Gaussian random vectors.
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that

|B|
|A + B| ≤

|B + ∆|
|A + B + ∆| (5.107)

when A,B,∆ � 0, and A + B � 0 [4]. Plugging (5.106) into (5.102) yields

I(X; Y2)− I(X; Z) ≤ 1

2
log
|S + Σ2|
|Σ2|

− 1

2
log
|S + ΣZ |
|ΣZ |

(5.108)

We now consider the expression in the second bracket of (5.100). For that purpose,

we use Theorem 5.7. According to Theorem 5.7, for any admissible pair (U2,X),

there exists a K∗ such that

h(X + NZ |U2)− h(X + N2|U2) =
1

2
log
|K∗ + ΣZ |
|K∗ + Σ2|

(5.109)

which is equivalent to

I(X; Z|U2)− I(X; Y2|U2) =
1

2
log
|K∗ + ΣZ |
|ΣZ |

− 1

2
log
|K∗ + Σ2|
|Σ2|

(5.110)

Thus, using (5.108) and (5.110) in (5.100), we get

R2 ≤
1

2
log
|S + Σ2|
|K∗ + Σ2|

− |S + ΣZ |
|K∗ + ΣZ |

(5.111)
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which is the desired bound on R2 given in (5.91). We now obtain the desired bound

on R1 given in (5.90). To this end, we first bound R1 using Theorem 5.1

R1 ≤ I(X; Y1|U2)− I(X; Z|U2) (5.112)

= h(Y1|U2)− h(Y1|U2,X)− h(Z|U2) + h(Z|U2,X) (5.113)

= h(Y1|U2)− h(Z|U2)− 1

2
log
|Σ1|
|ΣZ |

(5.114)

where the second equality follows from the facts that h(Y1|U2,X) = h(N1) and

h(Z|U2,X) = h(NZ). To bound the difference of conditional differential entropies

in (5.114), we use Theorem 5.7. Theorem 5.7 states that for any admissible pair

(U2,X), there exists a matrix K∗ such that it satisfies (5.109) and also

h(Z|U2)− h(Y1|U2) ≥ 1

2
log
|K∗ + ΣZ |
|K∗ + Σ1|

(5.115)

Thus, using (5.115) in (5.114), we get

R1 ≤
1

2
log
|K∗ + Σ1|
|Σ1|

− 1

2
log
|K∗ + ΣZ |
|ΣZ |

(5.116)

which is the desired bound on R1 given in (5.90), completing the converse proof for

K = 2.

As we have seen, the main ingredient in the above proof was Theorem 5.7.

Therefore, to complete the converse proof for the degraded channel for K = 2, from

this point on, we will focus on the proof of Theorem 5.7. We will give the proof
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of Theorem 5.7 in Section 5.5.4. In preparation to that, we will give the proof of

Theorem 5.6, which is the unconditional version of Theorem 5.7, in Section 5.5.3.

The proof of Theorem 5.6 involves the use of properties of the Fisher information,

and its connection to the differential entropy, which are provided next.

5.5.2 The Fisher Information Matrix

We start with the definition [50].

Definition 5.2 Let U be a length-n random vector with differentiable density fU(u).

The Fisher information matrix of U, J(U), is defined as

J(U) = E
[
ρ(U)ρ(U)>

]
(5.117)

where ρ(u) is the score function which is given by

ρ(u) = ∇ log fU(u) =

[
∂ log fU(u)

∂u1

. . .
∂ log fU(u)

∂un

]>
(5.118)

Since we are mainly interested in the additive Gaussian channel, how the Fisher

information matrix behaves under the addition of two independent random vectors

is crucial. Regarding this, we have the following lemma which is due to [51].

Lemma 5.5 ([51, Lemma 3]) Let U be a random vector with differentiable den-

sity, and let ΣU � 0 be its covariance matrix. Moreover, let V be another random

vector with differentiable density, and be independent of U. Then, we have the

following facts:
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1. Matrix form of the Cramer-Rao inequality

J(U) � Σ−1
U (5.119)

which is satisfied with equality if U is Gaussian.

2. For any square matrix A,

J(U + V) � AJ(U)A> + (I−A)J(V)(I−A)> (5.120)

We will use the following consequences of this lemma.

Corollary 5.2 Let U,V be as specified before. Then,

1. J(U + V) � J(U)

2. J(U + V) �
[
J(U)−1 + J(V)−1

]−1

Proof: The first part of the corollary is obtained by choosing A = I, and the

second part is obtained by choosing

A =
[
J(U)−1 + J(V)−1

]−1
J(U)−1 (5.121)

and also by noting that J(·) is always a symmetric matrix. 2

The following lemma regarding the Fisher information matrix is also useful in

the proof of Theorem 5.6.
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Lemma 5.6 Let U,V1,V2 be random vectors such that U and (V1,V2) are inde-

pendent. Moreover, let V1,V2 be Gaussian random vectors with covariance matrices

0 ≺ Σ1 � Σ2. Then, we have

J(U + V2)−1 −Σ2 � J(U + V1)−1 −Σ1 (5.122)

Proof: Without loss of generality, let V2 = V1 + Ṽ1 such that Ṽ1 is a

Gaussian random vector with covariance matrix Σ2 −Σ1, and independent of V1.

Due to the second part of Corollary 5.2, we have

J(U + V2) = J(U + V1 + Ṽ1) �
[
J(U + V1)−1 + J(Ṽ1)−1

]−1
(5.123)

=
[
J(U + V1)−1 + Σ2 −Σ1

]−1
(5.124)

which is equivalent to

J(U + V2)−1 � J(U + V1)−1 + Σ2 −Σ1 (5.125)

which proves the lemma. 2

Moreover, we need the relationship between the Fisher information matrix and

the differential entropy, which is due to [52].

Lemma 5.7 ([52, Theorem 4] Let X and N be independent random vectors,

where N is zero-mean Gaussian with covariance matrix ΣN � 0, and X has a finite
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second order moment. Then, we have

∇ΣN
h(X + N) =

1

2
J(X + N) (5.126)

5.5.3 Proof of Theorem 5.6

To prove Theorem 5.6, we first consider the following expression

h(X + NZ)− h(X + N2) (5.127)

and show that (5.127) is bounded and finite due to the covariance constraint on X.

In particular, we have

1

2
log
|S + ΣZ |
|S + Σ2|

≤ h(X + NZ)− h(X + N2) ≤ 1

2
log
|ΣZ |
|Σ2|

(5.128)

where the lower bound can be shown by following the analysis given in (5.103)-

(5.106). To show the upper bound in (5.128), first, we define Ñ which is Gaussian

with covariance matrix ΣZ −Σ2, and is independent of N2 and X. Thus, without

loss of generality, we can assume Z = X+N2 +Ñ by noting the stability of Gaussian
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random vectors. Then, the right-hand side of (5.128) follows from

h(X + NZ)− h(X + N2) = I(Ñ; X + NZ) (5.129)

= h(Ñ)− h(Ñ|X + NZ) (5.130)

≤ h(Ñ)− h(Ñ|X + NZ ,X) (5.131)

= h(Ñ)− h(Ñ|NZ) (5.132)

= I(Ñ; NZ) (5.133)

=
1

2
log
|ΣZ |
|Σ2|

(5.134)

where (5.131) comes from the fact that conditioning cannot increase entropy, and

(5.132) is due to the fact that X and (N2, Ñ) are independent. Thus, we can fix the

difference of the differential entropies in (5.128) to an α in this range, i.e., we can

set

h(X + NZ)− h(X + N2) = α (5.135)

where α ∈
[

1
2

log |S + ΣZ |/|S + Σ2|, 1
2

log |ΣZ |/|Σ2|
]
. We now would like to under-

stand how the constraint in (5.135) affects the set of admissible random vectors.

For that purpose, we use Lemma 5.7, and express this difference of entropies as an
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integral of the Fisher information matrix7

α = h(X + NZ)− h(X + N2) =
1

2

∫ ΣZ

Σ2

J(X + N)dΣN (5.136)

Using the stability of Gaussian random vectors, we can express J(X + N) as

J(X + N) = J(X + N2 + Ñ) (5.137)

where Ñ is a zero-mean Gaussian random vector with covariance matrix ΣN−Σ2 �

0, and is independent of N2. Using the second part of Corollary 5.2 in (5.137), we

get

J(X + N) = J(X + N2 + Ñ) �
[
J(X + N2)−1 + J(Ñ)−1

]−1
(5.138)

=
[
J(X + N2)−1 + ΣN −Σ2

]−1
(5.139)

where we used the fact that J(Ñ) = (ΣN − Σ2)−1 which is a consequence of the

first part of Lemma 5.5 by noting that Ñ is Gaussian. We now bound the integral

in (5.136) by using (5.139). For that purpose, we introduce the following lemma.

Lemma 5.8 Let K1,K2 be positive semi-definite matrices satisfying 0 � K1 � K2,

and f(K) be a matrix-valued function such that f(K) � 0 for K1 � K � K2.

7The integration in (5.136), i.e.,
∫ΣZ

Σ2
J(·)dΣ, is a line integral of the vector-valued function

J(·). Moreover, since J(·) is the gradient of a scalar field, the integration expressed in
∫ΣZ

Σ2
J(·)dΣ

is path-free, i.e., it yields the same value for any path from Σ2 to ΣZ . This remark applies to all
upcoming integrals of J(·).
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Moreover, f(K) is assumed to be the gradient of some scalar field. Then, we have

∫ K2

K1

f(K)dK ≥ 0 (5.140)

Proof: Since f(K) is the gradient of some scalar field, the integral in (5.140)

is path-free. Thus, this integral is equivalent to

∫ K2

K1

f(K)dK =

∫ 1

0

1>
[
f
(
K1 + t(K2 −K1)

)
� (K2 −K1)

]
1dt (5.141)

where � denotes the Schur (Hadamard) product, and 1 = [1 . . . 1]> with appropri-

ate size. Since the Schur product of two positive semi-definite matrices is positive

semi-definite [53], the integrand is non-negative implying the non-negativity of the

integral. 2

In light of this lemma, using (5.139) in (5.136), we get

α ≤ 1

2

∫ ΣZ

Σ2

[
J(X + N2)−1 + ΣN −Σ2

]−1
dΣN (5.142)

=
1

2
log
|J(X + N2)−1 + ΣZ −Σ2|

|J(X + N2)−1| (5.143)

where we used the well-known fact that ∇Σ log |Σ| = Σ−> for Σ � 0. We also note

that the denominator in (5.143) is strictly positive because

J(X + N2)−1 � J(N2)−1 = Σ2 � 0 (5.144)

which implies |J(X + N2)−1| > 0.
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Following similar steps, we can also find a lower bound on α. Again, using the

stability of Gaussian random vectors, we have

J(X + NZ) = J(X + N + Ñ) (5.145)

where N, Ñ are zero-mean Gaussian random vectors with covariance matrices ΣN ,ΣZ−

ΣN , respectively, Σ2 � ΣN � ΣZ , and they are independent. Using the second part

of Corollary 5.2 in (5.145) yields

J(X + NZ) = J(X + N + Ñ) �
[
J(X + N)−1 + J(Ñ)−1

]−1
(5.146)

=
[
J(X + N)−1 + ΣZ −ΣN

]−1
(5.147)

where we used the fact that J(Ñ) = (ΣZ −ΣN)−1 which follows from the first part

of Lemma 5.5 due to the Gaussianity of Ñ. Then, (5.147) is equivalent to

J(X + NZ)−1 � J(X + N)−1 + ΣZ −ΣN (5.148)

and that implies

[
J(X + NZ)−1 + ΣN −ΣZ

]−1 � J(X + N) (5.149)
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Use of Lemma 5.8 and (5.149) in (5.136) yields

α ≥
∫ ΣZ

Σ2

[
J(X + NZ)−1 + ΣN −ΣZ

]−1
dΣN (5.150)

=
1

2
log

|J(X + NZ)−1|
|J(X + NZ)−1 + Σ2 −ΣZ |

(5.151)

where we again used ∇Σ log |Σ| = Σ−> for Σ � 0. Here also, the denominator is

strictly positive because

J(X + NZ)−1 + Σ2 −ΣZ � J(NZ)−1 + Σ2 −ΣZ = Σ2 � 0 (5.152)

which implies |J(X+NZ)−1 +Σ2−ΣZ | > 0. Combining the two bounds on α given

in (5.143) and (5.151) yields

1

2
log

|J(X + NZ)−1|
|J(X + NZ)−1 + Σ2 −ΣZ |

≤ α ≤ 1

2
log
|J(X + N2)−1 + ΣZ −Σ2|

|J(X + N2)−1| (5.153)

Next, we will discuss the implications of (5.153). First, we have a digression

of technical nature to provide the necessary information for such a discussion. We

present the following lemma from [53].

Lemma 5.9 ([53, Theorem 7.6.4]) Let A,B ∈ Mn, where Mn is the set of all

square matrices of size n× n over the complex numbers, be two Hermitian matrices

and suppose that there is a real linear combination of A and B that is positive

definite. Then there exists a non-singular matrix C such that both CHAC and

CHBC are diagonal, where (·)H denotes the conjugate transpose.
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Lemma 5.10 Consider the function

r(t) =
1

2
log
|A + B + t∆|
|A + t∆| , 0 ≤ t ≤ 1 (5.154)

where A,B,∆ are real, symmetric matrices, and A � 0, B � 0,∆ � 0. The

function r(t) is continuous and monotonically decreasing in t.

Proof: We first define the function inside the log(·) as

f(t) =
|A + B + t∆|
|A + t∆| , 0 ≤ t ≤ 1 (5.155)

We first prove the continuity of r(t). To this end, consider the function

g(t) = |E + t∆|, 0 ≤ t ≤ 1 (5.156)

where E � 0 is a real, symmetric matrix. By Lemma 5.9, there exists a non-singular

matrix C such that both C>EC and C>∆C are diagonal. Thus, using this fact,

we get

g(t) =
∣∣C−>C>ECC−1 + tC−>C>∆CC−1

∣∣ (5.157)

=
∣∣C−>

∣∣ ∣∣C>EC + tC>∆C
∣∣ ∣∣C−1

∣∣ (5.158)

=
1

|C|2
∣∣C>EC + tC>∆C

∣∣ (5.159)

=
1

|C|2 |DE + tD∆| (5.160)
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where (5.158) follows from the fact that |AB| = |A||B|, (5.159) comes from the

fact that
∣∣C−>

∣∣ = |C−1| = 1/|C|, and in (5.160), we defined the diagonal matrices

DE = C>EC, D∆ = C>∆C. Let the diagonal elements of DE and D∆ be {dE,i}ni=1

and {d∆,i}ni=1, respectively. Then, g(t) can be expressed as

g(t) =
1

|C|2
n∏

i=1

(dE,i + td∆,i) (5.161)

which is polynomial in t, thus g(t) is continuous in t. Being the ratio of two non-

zero continuous functions, f(t) is continuous as well. Then, continuity of r(t) follows

from the fact that composition of two continuous functions is also continuous.

We now show the monotonicity of r(t). To this end, consider the derivative of

r(t)

dr(t)

dt
=

1

2f(t)

df(t)

dt
(5.162)

where we have f(t) > 0 because of the facts that A � 0, B � 0,∆ � 0, and

0 ≤ t ≤ 1. Moreover, f(t) is monotonically decreasing in t, which can be deduced

from (5.107), implying df(t)/dt ≤ 0. Thus, we have dr(t)/dt ≤ 0, completing the

proof. 2
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After this digression, we are ready to investigate the implications of (5.153).

For that purpose, let us select A,B,∆ in r(t) in Lemma 5.10 as follows

A = J(X + N2)−1 (5.163)

B = ΣZ −Σ2 (5.164)

∆ = J(X + NZ)−1 + Σ2 −ΣZ − J(X + N2)−1 (5.165)

where clearly A � 0, B � 0, and also ∆ � 0 due to Lemma 5.6. With these

selections, we have

r(0) =
1

2
log
|J(X + N2)−1 + ΣZ −Σ2|

|J(X + N2)−1| (5.166)

r(1) =
1

2
log

|J(X + NZ)−1|
|J(X + NZ)−1 + Σ2 −ΣZ |

(5.167)

Thus, (5.153) can be expressed as

r(1) ≤ α ≤ r(0) (5.168)

We know from Lemma 5.10 that r(t) is continuous in t. Then, from the intermediate

value theorem, there exists a t∗ such that r(t∗) = α. Thus, we have

α = r(t∗) =
1

2
log
|A + t∗∆ + ΣZ −Σ2|

|A + t∗∆| (5.169)

=
1

2
log
|K∗ + ΣZ |
|K∗ + Σ2|

(5.170)
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where K∗ = A + t∗∆−Σ2. Since 0 ≤ t∗ ≤ 1, K∗ satisfies the following orderings,

J(X + N2)−1 −Σ2 � K∗ � J(X + NZ)−1 −ΣZ (5.171)

which in turn, by using Lemma 5.5 and Corollary 5.2, imply the following orderings,

K∗ � J(X + N2)−1 −Σ2 � J(N2)−1 −Σ2 = Σ2 −Σ2 = 0 (5.172)

K? � J(X + NZ)−1 −ΣZ � Cov(X) + ΣZ −ΣZ = Cov(X) � S (5.173)

which can be summarized as follows,

0 � K? � S (5.174)

In addition, using Lemma 5.6 in (5.171), we get

K∗ � J(X + N)−1 −ΣN (5.175)

for any Gaussian random vector N such that its covariance matrix satisfies ΣN � Σ2.

The inequality in (5.175) is equivalent to

J(X + N) � (K∗ + ΣN)−1 , for ΣN � Σ2 (5.176)

where N is a Gaussian random vector with covariance matrix ΣN .
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Returning to the proof of Theorem 5.6, we now lower bound

h(X + NZ)− (X + N1) (5.177)

while keeping

h(X + NZ)− (X + N2) = α =
1

2
log
|K∗ + ΣZ |
|K∗ + Σ2|

(5.178)

The lower bound on (5.177) can be obtained as follows

h(X + NZ)− h(X + N1) =
1

2

∫ ΣZ

Σ1

J(X + N)dΣN (5.179)

=
1

2

∫ Σ2

Σ1

J(X + N)dΣN +
1

2

∫ ΣZ

Σ2

J(X + N)dΣN

(5.180)

=
1

2

∫ Σ2

Σ1

J(X + N)dΣN +
1

2
log
|K∗ + ΣZ |
|K∗ + Σ2|

(5.181)

≥ 1

2

∫ Σ2

Σ1

(K∗ + ΣN)−1dΣN +
1

2
log
|K? + ΣZ |
|K∗ + Σ2|

(5.182)

=
1

2
log
|K∗ + Σ2|
|K∗ + Σ1|

+
1

2
log
|K∗ + ΣZ |
|K∗ + Σ2|

(5.183)

=
1

2
log
|K∗ + ΣZ |
|K? + Σ1|

(5.184)

where (5.180) follows from the fact that the integral in (5.179) is path-independent,

and (5.182) is due to Lemma 5.8 and (5.176).
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Thus, we have shown the following: For any admissible random vector X, we

can find a positive semi-definite matrix K∗ such that 0 � K∗ � S, and

h(X + NZ)− (X + N2) =
1

2
log
|K∗ + ΣZ |
|K∗ + Σ2|

(5.185)

and

h(X + NZ)− h(X + N1) ≥ 1

2
log
|K∗ + ΣZ |
|K∗ + Σ1|

(5.186)

which completes the proof of Theorem 5.6.

5.5.4 Proof of Theorem 5.7

We now adapt the proof of Theorem 5.6 to the setting of Theorem 5.7 by providing

the conditional versions of the tools we have used in the proof of Theorem 5.6. Main

ingredients of the proof of Theorem 5.6 are: the relationship between the differential

entropy and the Fisher information matrix given in Lemma 5.7, and the properties

of the Fisher information matrix given in Lemmas 5.5, 5.6 and Corollary 5.2. Thus,

in this section, we basically provide the extensions of Lemmas 5.5, 5.6, 5.7 and

Corollary 5.2 to the conditional setting. From another point of view, the material

that we present in this section can be regarded as extending some well-known results

on the Fisher information matrix [50, 51] to a conditional setting.

We start with the definition of the conditional Fisher information matrix.

Definition 5.3 Let (U,X) be an arbitrarily correlated length-n random vector pair
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with well-defined densities. The conditional Fisher information matrix of X given

U is defined as

J(X|U) = E
[
ρ(X|U)ρ(X|U)>

]
(5.187)

where the expectation is over the joint density f(u,x), and the conditional score

function ρ(x|u) is

ρ(x|u) = ∇ log f(x|u) =

[
∂ log f(x|u)

∂x1

. . .
∂ log f(x|u)

∂xn

]>
(5.188)

The following lemma extends Stein identity [50, 51] to a conditional setting.

We provide its proof in Appendix 5.9.1.

Lemma 5.11 (Conditional Stein Identity) Let U,X be as specified above. Con-

sider a smooth scalar-valued function of x, g(x), which well-behaves at infinity in

the sense that

lim
xi→±∞

g(x)f(x|u) = 0, i = 1, . . . , n (5.189)

For such a g(x), we have

E [g(X)ρ(X|U)] = −E [∇g(X)] (5.190)

The following implications of this lemma are important for the upcoming

proofs.
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Corollary 5.3 Let U,X be as specified above.

1. E [ρ(X|U)] = 0

2. E
[
Xρ(X|U)>

]
= −I

Proof: The first and the second parts of the corollary follow from the previous

lemma by selecting g(x) = 1 and g(x) = xi, respectively. 2

We also need the following variation of this corollary whose proof is given in

Appendix 5.9.2.

Lemma 5.12 Let U,X be as specified above. Then, we have

1. E [ρ(X|U)|U] = 0.

2. Let g(u) be a finite, scalar-valued function of u. For such a g(u), we have

E [g(U)ρ(X|U)] = 0 (5.191)

3. Let E [X|U] be finite, then we have

E
[
E [X|U]ρ(X|U)>

]
= 0 (5.192)

We are now ready to prove the conditional version of the Cramer-Rao inequal-

ity, i.e., the generalization of the first part of Lemma 5.5 to a conditional setting.

Lemma 5.13 (Conditional Cramer-Rao Inequality) Let U,X be arbitrarily cor-

related random vectors with well-defined densities. Let the conditional covariance
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matrix of X be Cov(X|U) � 0, then we have

J(X|U) � Cov(X|U)−1 (5.193)

which is satisfied with equality if (U,X) is jointly Gaussian with conditional covari-

ance matrix Cov(X|U).

Proof: We first prove the inequality in (5.193), and next show that jointly

Gaussian (U,X) with conditional covariance matrix Cov(X|U) satisfies the inequal-

ity in (5.193) with equality. To this end, we consider

0 � E

[(
ρ(X|U) + Cov(X|U)−1

(
X− E [X|U]

))

(
ρ(X|U) + Cov(X|U)−1

(
X− E [X|U]

))>]
(5.194)

= E
[
ρ(X|U)ρ(X|U)>

]
+ E

[
ρ(X|U)

(
X− E [X|U]

)>]
Cov(X|U)−1

+ Cov(X|U)−1E
[(

X− E [X|U]
)
ρ(X|U)>

]

+ Cov(X|U)−1E
[(

X− E [X|U]
)(

X− E [X|U]
)>]

Cov(X|U)−1 (5.195)

= J(X|U) + E
[
ρ(X|U)

(
X− E [X|U]

)>]
Cov(X|U)−1

+ Cov(X|U)−1E
[(

X− E [X|U]
)
ρ(X|U)>

]
+ Cov(X|U)−1 (5.196)

where for the second equality, we used the definition of the conditional Fisher infor-
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mation matrix, and the conditional covariance matrix. We note that

(
E
[(

X− E [X|U]
)
ρ(X|U)>

])>
= E

[
ρ(X|U)

(
X− E [X|U]

)>]
(5.197)

= E
[
ρ(X|U)X>

]
− E

[
ρ(X|U)E [X|U]>

]

(5.198)

= E
[
ρ(X|U)X>

]
(5.199)

= −I (5.200)

where (5.199) is due to the third part of Lemma 5.12, and (5.200) is a result of the

second part of Corollary 5.3. Using (5.200) in (5.196) gives

0 � J(X|U)− Cov(X|U)−1 − Cov(X|U)−1 + Cov(X|U)−1 (5.201)

which concludes the proof.

For the equality case, consider the conditional Gaussian distribution

f(x|u) = C exp

(
−1

2

(
x− E [X|U = u]

)>
Cov(X|U)−1

(
x− E [X|U = u]

))

(5.202)

where C is the normalizing factor. The conditional score function is

ρ(x|u) = −Cov(X|U)−1
(
x− E [X|U = u]

)
(5.203)

which implies J(X|U) = Cov(X|U)−1. 2
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We now present the conditional convolution identity which is crucial to extend

the second part of Lemma 5.5 to a conditional setting.

Lemma 5.14 (Conditional Convolution Identity) Let X,Y,U be length-n ran-

dom vectors and let the density for any combination of these random vectors exist.

Moreover, let X and Y be conditionally independent given U, and let W be defined

as W = X + Y. Then, we have

ρ(w|u) = E [ρ(X|U = u)|W = w,U = u] = E [ρ(Y|U = u)|W = w,U = u]

(5.204)

The proof of this lemma is given in Appendix 5.9.3. We will use this lemma to

prove the conditional Fisher information matrix inequality, i.e., the generalization

of the second part of Lemma 5.5.

Lemma 5.15 (Conditional Fisher Information Matrix Inequality) Let X,

Y,U be as specified in the previous lemma. For any square matrix A, we have

J(X + Y|U) � AJ(X|U)A> + (I−A) J(Y|U) (I−A)> (5.205)

The proof of this lemma is given in Appendix 5.9.4. The following implications

of Lemma 5.15 correspond to the conditional version of Corollary 5.2.

Corollary 5.4 Let X,Y,U be as specified in the previous lemma. Then, we have

1. J(X + Y|U) � J(X|U)
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2. J(X + Y|U) � [J(X|U)−1 + J(Y|U)−1]
−1

Proof: The first part of the corollary can be obtained by setting A = I in

the previous lemma. For the second part, the selection

A =
[
J(X|U)−1 + J(Y|U)−1

]−1
J(X|U)−1 (5.206)

yields the desired result. 2

Using this corollary, one can prove the conditional version of Lemma 5.6 as

well:

Lemma 5.16 Let T,U,V1,V2 be random vectors such that (T,U) and

(V1,V2) are independent. Moreover, let V1,V2 be Gaussian random vectors with

covariance matrices Σ1,Σ2 such that 0 ≺ Σ1 � Σ2. Then, we have

J−1(U + V2|T)−Σ2 � J−1(U + V1|T)−Σ1 (5.207)

So far, we have proved the conditional versions of the inequalities related to the

Fisher information matrix, that were used in the proof of Theorem 5.6. To claim

that the proof of Theorem 5.6 can be adapted for Theorem 5.7, we only need the

conditional version of Lemma 5.7. In [52], the following result is implicity present.

Lemma 5.17 Let (U,X) be an arbitrarily correlated random vector pair with finite

second order moments, and be independent of the random vector N which is zero-
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mean Gaussian with covariance matrix ΣN � 0. Then, we have

∇ΣN
h(X + N|U) =

1

2
J(X + N|U) (5.208)

Proof: Let FU(u) be the cumulative distribution function of U, and f(x +

n|U = u) be the conditional density of X + N which is guaranteed to exist because

N is Gaussian. We have

∇ΣN
h(X + N|U)

= ∇ΣN

∫
h(X + N|U = u)dFU(u) (5.209)

=

∫
∇ΣN

h(X + N|U = u)dFU(u) (5.210)

=
1

2

∫
E
[
∇ log f(X + N|U = u)∇ log f(X + N|U = u)>

]
dFU(u) (5.211)

=
1

2
E
[
∇ log f(X + N|U)∇ log f(X + N|U)>

]
(5.212)

=
1

2
J(X + N|U) (5.213)

where in (5.210), we changed the order of integration and differentiation, which can

be done due to the finiteness of the conditional differential entropy, which in turn

is ensured by the finite second-order moments of (U,X), (5.211) is a consequence

of Lemma 5.7, and (5.213) follows from the definition of the conditional Fisher

information matrix. 2

Since we have derived all necessary tools, namely conditional counterparts of

Lemmas 5.5, 5.6, 5.7 and Corollary 5.2, the proof Theorem 5.6 can be adapted to
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prove Theorem 5.7.

5.5.5 Proof of Theorem 5.2 for Arbitrary K

We now prove Theorem 5.2 for arbitrary K. To this end, we will mainly use the

intuition gained in the proof of Theorem 5.6 and the tools developed in the previous

section. The only new ingredient that is needed is the following lemma whose proof

is given in Appendix 5.9.5.

Lemma 5.18 Let (V,U,X) be length-n random vectors with well-defined densities.

Moreover, assume that the partial derivatives of f(u|v,x) with respect to xi, i =

1, . . . , n, exist and satisfy

max
1≤i≤n

∣∣∣∣
∂f(u|x,v)

∂xi

∣∣∣∣ ≤ g(u) (5.214)

for some integrable function g(u). Then, if (V,U,X) satisfy the Markov chain

V→ U→ X, we have

J(X|U) � J(X|V) (5.215)
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We now start the proof of Theorem 5.2 for arbitrary K. First, we rewrite the

bound given in Theorem 5.1 for the Kth user’s secrecy rate as follows

I(UK ; YK)− I(UK ; Z)

= I(X; YK)− I(X; Z)− [I(X; YK |UK)− I(X; Z|UK)] (5.216)

≤ 1

2
log
|S + ΣK |
|ΣK |

− 1

2
log
|S + ΣZ |
|ΣZ |

− [I(X; YK |UK)− I(X; Z|UK)] (5.217)

where in (5.216), we used the Markov chain UK → X → (YK ,Z), and obtained

(5.217) using the worst additive noise lemma given in Lemma 5.4. Moreover, using

the Markov chain UK → X→ YK → Z, the other difference term in (5.217) can be

bounded as follows.

0 ≤ I(X; YK |UK)− I(X; Z|UK) ≤ I(X; YK)− I(X; Z) (5.218)

≤ 1

2
log
|S + ΣK |
|ΣK |

− 1

2
log
|S + ΣZ |
|ΣZ |

(5.219)

The proofs of Theorems 5.6 and 5.7 reveal that for any value of I(X; YK |UK) −

I(X; Z|UK) in the range given in (5.219), there exists positive semi-definite matrix

K̃K such that

J(X + NK |UK)−1 −ΣK � K̃K � S (5.220)
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and

I(X; YK |UK)− I(X; Z|UK) =
1

2
log
|K̃K + ΣK |
|ΣK |

− 1

2
log
|K̃K + ΣZ |
|ΣZ |

(5.221)

I(X; YK−1|UK)− I(X; Z|UK) ≤ 1

2
log
|K̃K + ΣK−1|
|ΣK−1|

− 1

2
log
|K̃K + ΣZ |
|ΣZ |

(5.222)

Using (5.221) in (5.217) yields the desired bound on the Kth user’s secrecy rate as

follows

RK ≤
1

2
log

|S + ΣK |
|K̃K + ΣK |

− 1

2
log

|S + ΣZ |
|K̃K + ΣZ |

(5.223)

We now bound the (K − 1)th user’s secrecy rate. To this end, first note that

RK−1 ≤ I(UK−1; YK−1|UK)− I(UK−1; Z|UK) (5.224)

= I(X; YK−1|UK)− I(X; Z|UK)− [I(X; YK−1|UK−1)− I(X; Z|UK−1)] (5.225)

≤ 1

2
log
|K̃K + ΣK−1|
|ΣK−1|

− 1

2
log
|K̃K + ΣZ |
|ΣZ |

− [I(X; YK−1|UK−1)− I(X; Z|UK−1)]

(5.226)

where in order to obtain (5.225), we used the Markov chain UK → UK−1 → X →

(YK−1,Z), and (5.226) comes from (5.222). Using the Markov chain UK → UK−1 →
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X→ YK−1 → Z, the mutual information difference in (5.226) is bounded as

0 ≤ I(X; YK−1|UK−1)− I(X; Z|UK−1) (5.227)

≤ I(X; YK−1|UK)− I(X; Z|UK) (5.228)

≤ 1

2
log
|K̃K + ΣK−1|
|ΣK−1|

− 1

2
log
|K̃K + ΣZ |
|ΣZ |

(5.229)

Using the analysis carried out in the proof of Theorem 5.6, we can get a more refined

lower bound as follows

I(X; YK−1|UK−1)− I(X; Z|UK−1)

≥ 1

2
log
|J(X + NK−1|UK−1)−1|

|ΣK−1|
− 1

2
log
|J(X + NK−1|UK−1)−1 + ΣZ −ΣK−1|

|ΣZ |

(5.230)

Combining (5.229) and (5.230) yields

1

2
log

|J(X + NK−1|UK−1)−1|
|J(X + NK−1|UK−1)−1 + ΣZ −ΣK−1|

≤ I(X; YK−1|UK−1)− I(X; Z|UK−1) +
1

2
log
|ΣK−1|
|ΣZ |

≤ 1

2
log
|K̃K + ΣK−1|
|K̃K + ΣZ |

(5.231)

Now, using the lower bound on K̃K given in (5.220), we get

K̃K � J(X + NK |UK)−1 −ΣK (5.232)

� J(X + NK−1|UK)−1 −ΣK−1 (5.233)
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where (5.233) is obtained using Lemma 5.6. Moreover, since we have UK → UK−1 →

X + NK−1, the following order exists

J(X + NK−1|UK−1) � J(X + NK−1|UK) (5.234)

due to Lemma 5.18. Equation (5.234) is equivalent to

J(X + NK−1|UK−1)−1 � J(X + NK−1|UK)−1 (5.235)

using which in (5.233), we get

K̃K � J(X + NK−1|UK−1)−1 −ΣK−1 (5.236)

We now consider the function

r(t) =
1

2
log
|A + B + t∆|
|A + t∆| , 0 ≤ t ≤ 1 (5.237)

with the following parameters

A = J(X + NK−1|UK−1)−1 (5.238)

B = ΣZ −ΣK−1 (5.239)

∆ = K̃K + ΣK−1 − J(X + NK−1|UK−1)−1 (5.240)
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where ∆ � 0 due to (5.236). Using this function, we can paraphrase the bound in

(5.231) as

−r(0) ≤ I(X; YK−1|UK−1)− I(X; Z|UK−1) +
1

2
log
|ΣK−1|
|ΣZ |

≤ −r(1) (5.241)

As shown in Lemma 5.10, r(t) is continuous and monotonically decreasing in t.

Thus, there exists a t∗ such that

−r(t∗) = I(X; YK−1|UK−1)− I(X; Z|UK−1) +
1

2
log
|ΣK−1|
|ΣZ |

(5.242)

due to the intermediate value theorem. Let K̃K−1 = A + t∗∆−ΣK−1, then we get

I(X; YK−1|UK−1)− I(X; Z|UK−1) =
1

2
log
|K̃K−1 + ΣK−1|
|ΣK−1|

− 1

2
log
|K̃K−1 + ΣZ |
|ΣZ |

(5.243)

We note that using (5.243) in (5.226) yields the desired bound on the (K − 1)th

user’s secrecy rate as follows

RK−1 ≤
1

2
log
|K̃K + ΣK−1|
|K̃K−1 + ΣK−1|

− 1

2
log
|K̃K + ΣZ |
|K̃K−1 + ΣZ |

(5.244)

Moreover, since ∆ � 0 and 0 ≤ t ≤ 1, K̃K−1 = A + t∗∆ − ΣK−1 satisfies the

following orderings

J(X + NK−1|UK−1)−1 −ΣK−1 � K̃K−1 � K̃K (5.245)
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Furthermore, the lower bound in (5.245) implies the following order

K̃K−1 � J(X + N|UK−1)−1 −ΣN (5.246)

for any Gaussian random vector N such that ΣN � ΣK−1, and is independent of

UK−1,X, which is a consequence of Lemma 5.6. Using (5.246), and following the

proof of Theorem 5.6, we can show that

I(X; YK−2|UK−1)− I(X; Z|UK−1) ≤ 1

2
log
|K̃K−1 + ΣK−2|
|ΣK−2|

− 1

2
log
|K̃K−1 + ΣZ |
|ΣZ |

(5.247)

Thus, as a recap, we have showed that there exists K̃K−1 such that

J(X + NK−1|UK−1)−1 −ΣK−1 � K̃K−1 � K̃K (5.248)

and

I(X; YK−1|UK−1)− I(X; Z|UK−1) =
1

2
log
|K̃K−1 + ΣK−1|
|ΣK−1|

− 1

2
log
|K̃K−1 + ΣZ |
|ΣZ |

(5.249)

I(X; YK−2|UK−1)− I(X; Z|UK−1) ≤ 1

2
log
|K̃K−1 + ΣK−2|
|ΣK−2|

− 1

2
log
|K̃K−1 + ΣZ |
|ΣZ |

(5.250)

which are analogous to (5.220), (5.221), (5.222). Thus, proceeding in the same

manner, for any selection of the joint distribution p(uK)p(uK−1|uK) . . . p(x|u2), we
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can show the existence of matrices
{
K̃k

}K+1

k=1
such that

0 = K̃1 � K̃2 � . . . � K̃K � K̃K+1 = S (5.251)

and

I(X; Yk|Uk)− I(X; Z|Uk) =
1

2
log
|K̃k + Σk|
|Σk|

− 1

2
log
|K̃k + ΣZ |
|ΣZ |

, k = 2, . . . , K

(5.252)

I(X; Yk−1|Uk)− I(X; Z|Uk) ≤
1

2
log
|K̃k + Σk−1|
|Σk−1|

− 1

2
log
|K̃k + ΣZ |
|ΣZ |

, k = 2, . . . , K + 1 (5.253)

where UK+1 = φ. We now define Kk = K̃k+1 − K̃k, k = 1, . . . , K, which yields

K̃k+1 =
∑k

i=1 Ki, and in particular, S =
∑K

i=1 Ki. Using these new variables in

conjunction with (5.252) and (5.253) results in

Rk ≤ I(Uk; Yk|Uk+1)− I(Uk; Z|Uk+1) (5.254)

= I(X; Yk|Uk+1)− I(X; Z|Uk+1)− [I(X; Yk|Uk)− I(X; Z|Uk)] (5.255)

≤ 1

2
log

∣∣K̃k+1 + Σk

∣∣
|Σk|

− 1

2
log

∣∣K̃k+1 + ΣZ

∣∣
|ΣZ |

− 1

2
log

∣∣K̃k + Σk

∣∣
|Σk|

+
1

2
log

∣∣K̃k + ΣZ

∣∣
|ΣZ |

(5.256)

=
1

2
log

∣∣K̃k+1 + Σk

∣∣
∣∣K̃k + Σk

∣∣ −
1

2
log

∣∣K̃k+1 + ΣZ

∣∣
∣∣K̃k + ΣZ

∣∣ (5.257)

=
1

2
log

∣∣∑k
i=1 Ki + Σk

∣∣
∣∣∑k−1

i=1 Ki + Σk

∣∣ −
1

2
log

∣∣∑k
i=1 Ki + ΣZ

∣∣
∣∣∑k−1

i=1 Ki + ΣZ

∣∣ (5.258)
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for k = 2, . . . , K. For k = 1, the bound in (5.253), by setting k = 2 in the

corresponding expression, yields the desired bound on the first user’s secrecy rate

R1 ≤ I(X; Y1|U2)− I(X; Z|U2) (5.259)

≤ 1

2
log
|K1 + Σ1|
|Σ1|

− 1

2
log
|K1 + ΣZ |
|ΣZ |

(5.260)

Since for any selection of the joint distribution p(uK)p(uK−1|uK) . . . p(x|u2), we can

establish the bounds in (5.258) and (5.260) with positive semi-definite matrices

{Ki}Ki=1 such that S =
∑K

i=1 Ki, the union of these bounds over such matrices

would be an outer bound for the secrecy capacity region, completing the converse

proof of Theorem 5.2 for an arbitrary K.

5.6 Aligned Gaussian MIMO Multi-receiver Wiretap Channel

We now consider the aligned Gaussian MIMO multi-receiver wiretap channel, and

obtain its secrecy capacity region given in Theorem 5.3. First, we will show the

achievability of the secrecy rates in Theorem 5.3 by extending Marton’s achievable

scheme for broadcast channels [11] to multi-receiver wiretap channels. For that

purpose, we will use Theorem 1 of [12], where the authors provided an achievable

rate region for Gaussian vector broadcast channels using Marton’s achievable scheme

in [11]. While using this result, we will combine it with a stochastic encoding scheme

for secrecy purposes.

Next, we will provide a converse proof for Theorem 5.3 by using our capacity

result for the degraded Gaussian MIMO multi-receiver wiretap channel in Section 5.5

270



in conjunction with the channel enhancement technique [4]. In particular, to provide

a converse proof for Theorem 5.3, we will show that for any point on the boundary

of the secrecy capacity region, there exists a degraded channel such that its secrecy

capacity region includes the secrecy capacity region of the original channel, and

furthermore, the boundaries of these two regions intersect at this specific point.

The channel enhancement technique comes into the picture to show the existence

of such a degraded channel by explicitly constructing it, and our capacity result for

the degraded case is used to obtain the secrecy capacity region of this constructed

degraded channel.

5.6.1 Achievability

To show the achievability of the secrecy rates in Theorem 5.3, we mostly rely on

the derivation of the dirty-paper coding region for the Gaussian MIMO broadcast

channel in [12, Theorem 1]. We employ the achievable scheme in [12] in conjunc-

tion with a stochastic encoding scheme due to secrecy concerns. Without loss of

generality, we consider the identity permutation, i.e., π(k) = k, k = 1, . . . , K. Let

(V1, . . . ,VK) be arbitrarily correlated random vectors such that

(V1, . . . ,VK)→ X→ (Y1, . . . ,YK ,Z) (5.261)

Using these correlated random vectors, we can construct codebooks

{
Vn
k,1(Wk, W̃k)

}K
k=1

(5.262)
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where Wk ∈
{

1, . . . , 2nRk
}

, W̃k ∈
{

1, . . . , 2nR̃k
}
, k = 1, . . . , K, such that each

legitimate receiver can decode the following rates

Rk + R̃k =
1

2
log

∣∣∣
∑k

i=1 Ki + Σk

∣∣∣
∣∣∣
∑k−1

i=1 Ki + Σk

∣∣∣
, k = 1, . . . , K (5.263)

for some positive semi-definite matrices {Ki}Ki=1 such that
∑K

k=1 Kk � S [12]. The

messages
{
W̃k

}K
k=1

do not carry any information, and their sole purpose is to confuse

the eavesdropper. In other words, the purpose of these messages is to make the

eavesdropper spend its decoding capability on them, preventing the eavesdropper

to decode the confidential messages {Wk}Kk=1. Thus, we need to select the rates of

these dummy messages
{
R̃k

}K
k=1

as follows

R̃k =
1

2
log

∣∣∣
∑k

i=1 Ki + ΣZ

∣∣∣
∣∣∣
∑k−1

i=1 Ki + ΣZ

∣∣∣
, k = 1, . . . , K (5.264)

To achieve the rates given in (5.263), {Vk}Kk=1 should be taken as jointly Gaussian

with appropriate covariance matrices. Moreover, it is sufficient to choose X as a

deterministic function of {Vk}Kk=1, and the resulting unconditional distribution of

X is also Gaussian with covariance matrix
∑K

k=1 Kk [12].

To complete the proof, we need to show that the above codebook structure

fulfills all of the secrecy constraints in (5.1). To this end, we take a shortcut, by
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using the fact that, if a codebook satisfies

lim
n→∞

1

n
H(W1, . . . ,WK |Zn) ≥

K∑

k=1

Rk (5.265)

then it also satisfies all of the remaining secrecy constraints in (5.1) [54]. Thus, we

only check (5.265)

1

n
H(W1, . . . ,WK |Zn) =

1

n
H(W1, . . . ,WK ,Z

n)− 1

n
H(Zn) (5.266)

=
1

n
H(Vn

1,1, . . . ,V
n
K,1,W1, . . . ,WK ,Z

n)− 1

n
H(Vn

1,1, . . . ,V
n
K,1|W1, . . . ,WK ,Z

n)

− 1

n
H(Zn) (5.267)

=
1

n
H(Vn

1,1, . . . ,V
n
K,1) +

1

n
H(W1, . . . ,WK ,Z

n|Vn
1,1, . . . ,V

n
K,1)

− 1

n
H(Vn

1,1, . . . ,V
n
K,1|W1, . . . ,WK ,Z

n)− 1

n
H(Zn) (5.268)

≥ 1

n
H(Vn

1,1, . . . ,V
n
K,1)− 1

n
I(Vn

1,1, . . . ,V
n
K,1; Zn)

− 1

n
H(Vn

1,1, . . . ,V
n
K,1|W1, . . . ,WK ,Z

n) (5.269)

We will treat each of the three terms in (5.269) separately. Since (Vn
1,1, . . . ,V

n
K,1)

can take 2n
∑K
k=1

(
Rk+R̃k

)
values uniformly, for the first term in (5.269), we have

1

n
H(Vn

1,1, . . . ,V
n
K,1) =

K∑

k=1

Rk +
K∑

k=1

R̃k (5.270)
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The second term in (5.269) can be bounded as

1

n
I(Vn

1,1, . . . ,V
n
K,1; Zn) ≤ I(V1,1, . . . ,VK,1; Z) + εn (5.271)

≤ I(X; Z) + εn (5.272)

=
1

2
log

∣∣∣
∑K

k=1 Kk + ΣZ

∣∣∣
|ΣZ |

+ εn (5.273)

where εn → 0 as n → ∞. The first inequality can be shown following [2, Lemma

8], the second inequality follows from the Markov chain in (5.261), and the equality

in (5.273) comes from our choice of X, which is Gaussian with covariance ma-

trix
∑K

k=1 Kk. We now consider the third term in (5.269). First, we note that

given (W1 = w1, . . . ,WK = wK),
(
Vn

1,1, . . . ,V
n
K,1

)
can take 2n

∑K
k=1 R̃k values, where

∑K
k=1 R̃k is given by

K∑

k=1

R̃k =
1

2
log

∣∣∣
∑K

k=1 Kk + ΣZ

∣∣∣
|ΣZ |

(5.274)

using our selection in (5.264). Thus, (5.274) implies that given (W1 = w1, . . . ,WK =

wK), the eavesdropper can decode
(
Vn

1,1, . . . ,V
n
K,1

)
with vanishingly small proba-

bility of error. Hence, using Fano’s lemma, we get

1

n
H(Vn

1,1, . . . ,V
n
K,1|W1, . . . ,WK ,Z

n) ≤ 1

n

[
1 + γn

(
K∑

k=1

R̃k

)]
(5.275)

where γn → 0 as n → ∞. Thus, plugging (5.270), (5.273) and (5.275) into (5.269)
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yields

lim
n→∞

1

n
H(W1, . . . ,WK |Zn) ≥

K∑

k=1

Rk (5.276)

which ensures that the rates

Rk =
1

2
log

∣∣∣
∑k

i=1 Ki + Σk

∣∣∣
∣∣∣
∑k−1

i=1 Ki + Σk

∣∣∣
− 1

2
log

∣∣∣
∑k

i=1 Ki + ΣZ

∣∣∣
∣∣∣
∑k−1

i=1 Ki + ΣZ

∣∣∣
, k = 1, . . . , K (5.277)

can be transmitted in perfect secrecy.

5.6.2 Converse

To show the converse, we consider the maximization of the following expression

K∑

k=1

µkRk (5.278)

where µk ≥ 0, k = 1, . . . , K. We note that the maximum value of (5.278) traces

the boundary of the secrecy capacity region, i.e., its maximum value for any non-

negative vector [µ1 . . . µK ] will give us a point on the boundary of the secrecy

capacity region. Let us define π(·) to be a one-to-one permutation on {1, . . . , K}

such that

0 ≤ µπ(1) ≤ . . . ≤ µπ(K) (5.279)
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Furthermore, let 0 < m ≤ K of {µk}Kk=1 be strictly positive, i.e., µπ(1) = . . . =

µπ(K−m) = 0, and µπ(K−m+1) > 0. We now define another permutation π′(·) on the

strictly positive elements of {µk}Kk=1 such that π′(l) = π(K −m + l), l = 1, . . . ,m.

Then, (5.278) can be expressed as

K∑

k=1

µkRk =
K∑

k=1

µπ(k)Rπ(k) =
m∑

k=1

µπ′(k)Rπ′(k) (5.280)

We will show that

max
K∑

k=1

µkRk = max
m∑

k=1

µπ′(k)Rπ′(k) (5.281)

≤ max
m∑

k=1

µπ′(k)

2
log

∣∣∣
∑k

i=1 Kπ′(i) + Σπ′(k)

∣∣∣
∣∣∣
∑k−1

i=1 Kπ′(i) + Σπ′(k)

∣∣∣

−
m∑

k=1

µπ′(k)

2
log

∣∣∣
∑k

i=1 Kπ′(i) + ΣZ

∣∣∣
∣∣∣
∑k−1

i=1 Kπ′(i) + ΣZ

∣∣∣
(5.282)

where the last maximization is over all positive semi-definite matrices
{
Kπ′(k)

}m
k=1

such that
∑m

k=1 Kπ′(k) � S. Since the right hand side of (5.282) is achievable,

if we can show that (5.282) holds for any non-negative vector [µ1 . . . µK ], this

will complete the proof of Theorem 5.3. To simplify the notation, without loss of

generality, we assume that π′(k) = k, k = 1, . . . ,m. This assumption is equivalent

to the assumption that 0 < µ1 ≤ . . . ≤ µm, and µk = 0, k = m+ 1, . . . , K.

We now investigate the maximization in (5.282). The objective function in

(5.282) is generally non-convex in the covariance matrices
{
Kπ′(k)

}m
k=1

implying

that the KKT conditions for this problem are necessary, but not sufficient. Let us
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construct the Lagrangian for this optimization problem

L ({Mi}mi=1 ,MZ) =
m∑

k=1

µkR
G
k +

m∑

k=1

tr(KkMk) + tr

((
S−

m∑

k=1

Kk

)
MZ

)

(5.283)

where the Lagrange multipliers {Mi}mi=1 ,MZ are positive semi-definite matrices,

and we defined
{
RG
k

}m
k=1

as follows,

RG
k =

1

2
log

∣∣∣
∑k

i=1 Ki + Σk

∣∣∣
∣∣∣
∑k−1

i=1 Ki + Σk

∣∣∣
− 1

2
log

∣∣∣
∑k

i=1 Ki + ΣZ

∣∣∣
∣∣∣
∑k−1

i=1 Ki + ΣZ

∣∣∣
, k = 1, . . . ,m (5.284)

The gradient of L ({Mi}mi=1 ,MZ) with respect to Kj for any j = 1, . . . ,m − 1, is

given by

∇Kj
L ({Mi}mi=1 ,MZ) =

m∑

k=j

µk
2

(
k∑

i=1

Ki + Σk

)−1

−
m∑

k=j+1

µk
2

(
k−1∑

i=1

Ki + Σk

)−1

−
m∑

k=j

µk
2

(
k∑

i=1

Ki + ΣZ

)−1

+
m∑

k=j+1

µk
2

(
k−1∑

i=1

Ki + ΣZ

)−1

+ Mj −MZ (5.285)

and the gradient of L ({Mi}mi=1 ,MZ) with respect to Km is given by

∇KmL ({Mi}mi=1 ,MZ) =
µm
2

(
m∑

i=1

Ki + Σm

)−1

− µm
2

(
m∑

i=1

Ki + ΣZ

)−1

+ Mm −MZ (5.286)
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The KKT conditions are given by

∇Kj
L ({Mi}mi=1 ,MZ) = 0, j = 1, . . . ,m (5.287)

tr(KjMj) = 0, j = 1, . . . ,m (5.288)

tr

((
S−

m∑

k=1

Kk

)
MZ

)
= 0 (5.289)

We note that since tr(KjMj) = tr(MjKj), and Mj � 0,Kj � 0, we have MjKj =

KjMj = 0. Thus, the KKT conditions in (5.288) are equivalent to

MjKj = KjMj = 0, j = 1, . . . ,m (5.290)

Similarly, we also have

MZ

(
S−

m∑

k=1

Kk

)
=

(
S−

m∑

k=1

Kk

)
MZ = 0 (5.291)

Subtracting the gradient of the Lagrangian with respect to Kj+1 from the one with

respect to Kj, for j = 1, . . . ,m− 1, we get

∇Kj
L ({Mi}mi=1 ,MZ)−∇Kj+1

L ({Mi}mi=1 ,MZ)

=
µj
2

(
j∑

i=1

Ki + Σj

)−1

− µj+1

2

(
j∑

i=1

Ki + Σj+1

)−1

− µj
2

(
j∑

i=1

Ki + ΣZ

)−1

+
µj+1

2

(
j∑

i=1

Ki + ΣZ

)−1

+ Mj −Mj+1 (5.292)

Thus, using (5.290), (5.291), (5.292), we can express the KKT conditions in (5.287),
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(5.288), (5.289) as follows

µj

(
j∑

i=1

Ki + Σj

)−1

+ (µj+1 − µj)
(

j∑

i=1

Ki + ΣZ

)−1

+ Mj

= µj+1

(
j∑

i=1

Ki + Σj+1

)−1

+ Mj+1, j = 1, . . . ,m− 1 (5.293)

and

µm

(
m∑

i=1

Ki + Σm

)−1

+ Mm = µm

(
m∑

i=1

Ki + ΣZ

)−1

+ MZ (5.294)

KjMj = MjKj = 0, j = 1, . . . ,m (5.295)

MZ

(
S−

m∑

k=1

Kk

)
=

(
S−

m∑

k=1

Kk

)
MZ = 0 (5.296)

where we also embed the multiplications by 2 into the Lagrange multipliers.

We now present a lemma which will be instrumental in constructing a degraded

Gaussian MIMO multi-receiver wiretap channel, such that the secrecy capacity re-

gion of the constructed channel includes the secrecy capacity region of the original

channel, and the boundary of the secrecy capacity region of this constructed channel

coincides with the boundary of the secrecy capacity region of the original channel

at a certain point for a given non-negative vector [µ1 . . . µK ].

Lemma 5.19 Given the covariance matrices {Kj}mj=1 satisfying the KKT condi-

tions given in (5.293)-(5.296), there exist noise covariance matrices
{
Σ̃j

}m
j=1

such

that

1. Σ̃j � Σj, j = 1, . . . ,m.
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2. 0 ≺ Σ̃1 � . . . � Σ̃m � ΣZ

3. µj

(∑j
i=1 Ki + Σ̃j

)−1

+ (µj+1 − µj)
(∑j

i=1 Ki + ΣZ

)−1

= µj+1

(∑j
i=1 Ki + Σ̃j+1

)−1

, for j = 1, . . . ,m− 1,

and

µm

(∑m
i=1 Ki + Σ̃m

)−1

= µm
(∑m

i=1 Ki + ΣZ

)−1
+ MZ

4.
(∑j

i=1 Ki + Σ̃j

)−1 (∑j−1
i=1 Ki + Σ̃j

)
=
(∑j

i=1 Ki + Σj

)−1 (∑j−1
i=1 Ki + Σj

)

for j = 1, . . . ,m

5.
(
S + Σ̃m

)(∑m
i=1 Ki + Σ̃m

)−1

= (S + ΣZ) (
∑m

i=1 Ki + ΣZ)
−1

The proof of this lemma is given in Appendix 5.9.6.

Without loss of generality, we have already fixed [µ1 . . . µK ] such that 0 <

µ1 ≤ . . . ≤ µm, and µk = 0, k = m + 1, . . . , K for some 0 < m ≤ K. For this fixed

[µ1 . . . µK ], assume that {K∗k}mk=1 achieves the maximum of (5.282). Since these

covariance matrices need to satisfy the KKT conditions given in (5.293)-(5.296),

Lemma 5.19 ensures the existence of the covariance matrices
{
Σ̃j

}m
j=1

that have the

properties listed in Lemma 5.19. Thus, we can define a degraded Gaussian MIMO

multi-receiver wiretap channel that has the following noise covariance matrices

Σ̂k =





Σ̃k, 1 ≤ k ≤ m

αk−mΣ̃1, m+ 1 ≤ k ≤ K

(5.297)

where 0 < αk−m ≤ 1 are chosen to satisfy αk−mΣ̃1 � Σk for k = m + 1, . . . , K,

where the existence of such {αk−m}Kk=m+1 are ensured by the positive definiteness
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of {Σk}Kk=1. The noise covariance matrix of the eavesdropper is the same as in the

original channel, i.e., ΣZ . Since this channel is degraded, its secrecy capacity region

is given by Theorem 5.2. Moreover, since Σ̂k � Σk, k = 1, . . . , K, and the noise

covariance matrices in the constructed degraded channel and the original channel

are the same, the secrecy capacity region of this degraded channel outer bounds

that of the original channel. Next, we show that for the so-far fixed [µ1 . . . µK ], the

boundaries of these two regions intersect at this point. For this purpose, reconsider

the maximization problem in (5.278)

max
K∑

k=1

µkRk = max
m∑

k=1

µkRk (5.298)

≤ max
Ki�0, i=1,...,K∑K

i=1 Ki�S

m∑

k=1

µk
2


log

∣∣∣
∑k

i=1 Ki +
∑K

i=m+1 Ki + Σ̃k

∣∣∣
∣∣∣
∑k−1

i=1 Ki +
∑K

i=m+1 Ki + Σ̃k

∣∣∣

− log

∣∣∣
∑k

i=1 Ki +
∑K

i=m+1 Ki + ΣZ

∣∣∣
∣∣∣
∑k−1

i=1 Ki +
∑K

i=m+1 Ki + ΣZ

∣∣∣




(5.299)

= max
Ki�0, i=1,...,m∑m

i=1 Ki�S

m∑

k=1

µk
2


log

∣∣∣
∑k

i=1 Ki + Σ̃k

∣∣∣
∣∣∣
∑k−1

i=1 Ki + Σ̃k

∣∣∣
− log

∣∣∣
∑k

i=1 Ki + ΣZ

∣∣∣
∣∣∣
∑k−1

i=1 Ki + ΣZ

∣∣∣




(5.300)

where (5.298) is implied by the fact that for the fixed [µ1 . . . µK ], we assumed

that µk = 0, k = m + 1, . . . , K and 0 < µ1 ≤ . . . ≤ µm, (5.299) follows from the

facts that the constructed degraded channel includes the secrecy capacity region

of the original channel, and the secrecy capacity region of the degraded channel

is given by Theorem 5.2. The last equation, i.e., (5.300), comes from the fact
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that, since µk = 0, k = m + 1, . . . , K, there is no loss of optimality in choosing

Kk = 0, k = m+ 1, . . . , K. We now claim that the maximum in (5.300) is achieved

by {K∗k}mk=1. To prove this claim, we first define

R∗k =
1

2
log

∣∣∣
∑k

i=1 K∗i + Σ̃k

∣∣∣
∣∣∣
∑k−1

i=1 K∗i + Σ̃k

∣∣∣
− 1

2
log

∣∣∣
∑k

i=1 K∗i + ΣZ

∣∣∣
∣∣∣
∑k−1

i=1 K∗i + ΣZ

∣∣∣
, k = 1, . . . ,m (5.301)

and

R̂k =
1

2
log

∣∣∣
∑k

i=1 Ki + Σ̃k

∣∣∣
∣∣∣
∑k−1

i=1 Ki + Σ̃k

∣∣∣
− 1

2
log

∣∣∣
∑k

i=1 Ki + ΣZ

∣∣∣
∣∣∣
∑k−1

i=1 Ki + ΣZ

∣∣∣
, k = 1, . . . ,m (5.302)

for some arbitrary positive semi-definite matrices {Ki}mi=1 such that
∑m

i=1 Ki � S.

To prove that the maximum in (5.300) is achieved by {K∗k}mk=1, we will show that

m∑

k=1

µkR
∗
k −

m∑

k=1

µkR̂k ≥ 0 (5.303)
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To this end, consider the first summation in (5.303)

m∑

k=1

µkR
∗
k =

m∑

k=1

µk
2

(
log

∣∣∣∣∣
k∑

i=1

K∗i + Σ̃k

∣∣∣∣∣− log

∣∣∣∣∣
k∑

i=1

K∗i + ΣZ

∣∣∣∣∣

)

−
m∑

k=2

µk
2

(
log

∣∣∣∣∣
k−1∑

i=1

K∗i + Σ̃k

∣∣∣∣∣− log

∣∣∣∣∣
k−1∑

i=1

K∗i + ΣZ

∣∣∣∣∣

)

− µ1

2
log

∣∣Σ̃1

∣∣
|ΣZ |

(5.304)

=
m∑

k=1

µk
2

(
log

∣∣∣∣∣
k∑

i=1

K∗i + Σ̃k

∣∣∣∣∣− log

∣∣∣∣∣
k∑

i=1

K∗i + ΣZ

∣∣∣∣∣

)

−
m−1∑

k=1

µk+1

2

(
log

∣∣∣∣∣
k∑

i=1

K∗i + Σ̃k+1

∣∣∣∣∣− log

∣∣∣∣∣
k∑

i=1

K∗i + ΣZ

∣∣∣∣∣

)

− µ1

2
log

∣∣Σ̃1

∣∣
|ΣZ |

(5.305)

=
µm
2

log

∣∣∣
∑m

i=1 K∗i + Σ̃m

∣∣∣
|∑m

i=1 K∗i + ΣZ |

+
m−1∑

k=1

µk
2

(
log

∣∣∣∣∣
k∑

i=1

K∗i + Σ̃k

∣∣∣∣∣− log

∣∣∣∣∣
k∑

i=1

K∗i + ΣZ

∣∣∣∣∣

)

−
m−1∑

k=1

µk+1

2

(
log

∣∣∣∣∣
k∑

i=1

K∗i + Σ̃k+1

∣∣∣∣∣− log

∣∣∣∣∣
k∑

i=1

K∗i + ΣZ

∣∣∣∣∣

)

− µ1

2
log

∣∣Σ̃1

∣∣
|ΣZ |

(5.306)

=
µm
2

log

∣∣∣
∑m

i=1 K∗i + Σ̃m

∣∣∣
|∑m

i=1 K∗i + ΣZ |
+

m−1∑

k=1

µk
2

log

∣∣∣∣∣
k∑

i=1

K∗i + Σ̃k

∣∣∣∣∣

+
m−1∑

k=1

µk+1 − µk
2

log

∣∣∣∣∣
k∑

i=1

K∗i + ΣZ

∣∣∣∣∣−
m−1∑

k=1

µk+1

2
log

∣∣∣∣∣
k∑

i=1

K∗i + Σ̃k+1

∣∣∣∣∣

− µ1

2
log

∣∣Σ̃1

∣∣
|ΣZ |

(5.307)
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Similarly, we have

m∑

k=1

µkR̂k =
µm
2

log

∣∣∣
∑m

i=1 Ki + Σ̃m

∣∣∣
|∑m

i=1 Ki + ΣZ |
+

m−1∑

k=1

µk
2

log

∣∣∣∣∣
k∑

i=1

Ki + Σ̃k

∣∣∣∣∣

+
m−1∑

k=1

µk+1 − µk
2

log

∣∣∣∣∣
k∑

i=1

Ki + ΣZ

∣∣∣∣∣−
m−1∑

k=1

µk+1

2
log

∣∣∣∣∣
k∑

i=1

Ki + Σ̃k+1

∣∣∣∣∣

− µ1

2
log

∣∣Σ̃1

∣∣
|ΣZ |

(5.308)

We define the following matrices

∆k =
k∑

i=1

Ki −
k∑

i=1

K∗i , k = 1, . . . ,m (5.309)

Using (5.307), (5.308) and (5.309), the difference in (5.303) can be expressed as

m∑

k=1

µkR
∗
k −

m∑

k=1

µkR̂k =
µm
2

log

∣∣∣
∑m

i=1 K∗i + Σ̃m

∣∣∣
|∑m

i=1 K∗i + ΣZ |
− µm

2
log

∣∣∣
∑m

i=1 Ki + Σ̃m

∣∣∣
|∑m

i=1 Ki + ΣZ |

−
m−1∑

k=1

µk
2

log

∣∣∣∣∣∣
I +

(
k∑

i=1

K∗i + Σ̃k

)−1

∆k

∣∣∣∣∣∣

−
m−1∑

k=1

µk+1 − µk
2

log

∣∣∣∣∣∣
I +

(
k∑

i=1

K∗i + ΣZ

)−1

∆k

∣∣∣∣∣∣

+
m−1∑

k=1

µk+1

2
log

∣∣∣∣∣∣
I +

(
k∑

i=1

K∗i + Σ̃k+1

)−1

∆k

∣∣∣∣∣∣
(5.310)

We first note that

∣∣∣
∑m

i=1 K∗i + Σ̃m

∣∣∣
|∑m

i=1 K∗i + ΣZ |
=

∣∣∣S + Σ̃m

∣∣∣
|S + ΣZ |

≥

∣∣∣
∑m

i=1 Ki + Σ̃m

∣∣∣
|∑m

i=1 Ki + ΣZ |
(5.311)
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where the equality is due to the fifth part of Lemma 5.19, and the inequality follows

from the fact that the function

∣∣A + Σ̃m

∣∣
|A + ΣZ |

(5.312)

is monotonically increasing in the positive semi-definite matrix A as can be deduced

from (5.107), and that
∑m

i=1 Ki � S. Furthermore, we have

µk
µk+1

log

∣∣∣∣∣∣
I +

(
k∑

i=1

K∗i + Σ̃k

)−1

∆k

∣∣∣∣∣∣
+
µk+1 − µk
µk+1

log

∣∣∣∣∣∣
I +

(
k∑

i=1

K∗i + ΣZ

)−1

∆k

∣∣∣∣∣∣

≤ log

∣∣∣∣∣∣
I +

µk
µk+1

(
k∑

i=1

K∗i + Σ̃k

)−1

∆k +
µk+1 − µk
µk+1

(
k∑

i=1

K∗i + ΣZ

)−1

∆k

∣∣∣∣∣∣

(5.313)

= log

∣∣∣∣∣∣
I +

(
k∑

i=1

K∗i + Σ̃k+1

)−1

∆k

∣∣∣∣∣∣
(5.314)

where the inequality in (5.313) follows from the concavity of log | · | in positive semi-

definite matrices, and (5.314) follows from the third part of Lemma 5.19. Using

(5.311) and (5.314) in (5.310) yields

m∑

k=1

µkR
∗
k −

m∑

k=1

µkR̂k ≥ 0 (5.315)

which implies that the maximum in (5.300) is achieved by {K∗k}mk=1. Thus, using
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this fact in (5.300), we get

max
K∑

k=1

µkRk ≤
m∑

k=1

µk
2


log

∣∣∣
∑k

i=1 K∗i + Σ̃k

∣∣∣
∣∣∣
∑k−1

i=1 K∗i + Σ̃k

∣∣∣
− log

∣∣∣
∑k

i=1 K∗i + ΣZ

∣∣∣
∣∣∣
∑k−1

i=1 K∗i + ΣZ

∣∣∣


 (5.316)

=
m∑

k=1

µk
2


log

∣∣∣
∑k

i=1 K∗i + Σk

∣∣∣
∣∣∣
∑k−1

i=1 K∗i + Σk

∣∣∣
− log

∣∣∣
∑k

i=1 K∗i + ΣZ

∣∣∣
∣∣∣
∑k−1

i=1 K∗i + ΣZ

∣∣∣


 (5.317)

where the equality follows from the fourth part of Lemma 5.19. Since the right

hand side of (5.317) is achievable, and we can get a similar outer bound for any

non-negative vector [µ1 . . . µK ], this completes the converse proof for the aligned

Gaussian MIMO channel.

5.7 General Gaussian MIMO Multi-receiver Wiretap Channel

In this final part of the chapter, we consider the general Gaussian multi-receiver

wiretap channel and obtain its secrecy capacity region given in Theorem 5.4. The

main idea in this section is to construct an aligned channel that is indexed by

a scalar variable, and then show that this aligned channel has the same secrecy

capacity region as the original channel in the limit of this indexing parameter on

the constructed aligned channel. This argument was previously used in [4, 21]. The

way we use this argument here is different from [4] because there are no secrecy

constraints in [4], and it is different from [21] because there are multiple legitimate

receivers here.

Achievability of the region given in Theorem 5.4 can be shown by following the

achievability proof of Theorem 5.3 given in Section 5.6.1, hence it is omitted. For
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the converse, we basically use the ideas presented in [4, 21]. Following Section V-B

of [4], we can construct an equivalent channel which has the same secrecy capacity

region as the original channel defined in (5.19)-(5.20). In this constructed equivalent

channel, all receivers, including the eavesdropper, and the transmitter have the same

number of antennas, which is t,

Ŷk = ĤkX + N̂k, k = 1, . . . , K (5.318)

Ẑ = ĤZX + N̂Z (5.319)

where Ĥk = Λ̂kVk, Vk is a t × t orthonormal matrix, and Λ̂k is a t × t diagonal

matrix whose first (t − r̂k) diagonal entries are zero, and the rest of the diagonal

entries are strictly positive. Here, r̂k is the rank of the original channel gain matrix,

Hk. The noise covariance matrix of the Gaussian random vector N̂k is given by Σ̂k

which has the following block diagonal form

Σ̂k =




Σ̂A
k 0

0 Σ̂B
k


 (5.320)

where Σ̂A
k is of size (t− r̂k)× (t− r̂k), and Σ̂B

k is of size r̂k × r̂k.

Similar notations hold for the eavesdropper’s observation Ẑ as well. In partic-

ular, ĤZ = Λ̂ZVZ where VZ is a t×t orthonormal matrix, and Λ̂Z is a t×t diagonal

matrix whose first (t − r̂Z) diagonal entries are zero, and the rest of the diagonal

entries are strictly positive. Here, r̂Z is the rank of the original channel gain matrix

of the eavesdropper, HZ . The covariance matrix of the Gaussian random vector N̂Z
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is given by Σ̂Z which has the following block diagonal form

Σ̂Z =




Σ̂A
Z 0

0 Σ̂B
Z


 (5.321)

where Σ̂A
Z is of size (t − r̂Z) × (t − r̂Z) and Σ̂B

Z is of size r̂Z × r̂Z . Since this new

channel in (5.318)-(5.319) can be constructed from the original channel in (5.19)-

(5.20) through invertible transformations [4], both have the same secrecy capacity

region. Moreover, these transformations preserve the dirty-paper coding region as

well, i.e.,

RDPC
k

(
π, {Ki}Ki=1 , {Σi}Ki=1 ,ΣZ , {Hi}Ki=1 ,HZ

)

=
1

2
log

∣∣∣Hπ(k)

(∑k
i=1 Kπ(i)

)
H>π(k) + Σπ(k)

∣∣∣
∣∣∣Hπ(k)

(∑k−1
i=1 Kπ(i)

)
H>π(k) + Σπ(k)

∣∣∣
− 1

2
log

∣∣∣HZ

(∑k
i=1 Kπ(i)

)
H>Z + ΣZ

∣∣∣
∣∣∣HZ

(∑k−1
i=1 Kπ(i)

)
H>Z + ΣZ

∣∣∣

=
1

2
log

∣∣∣Ĥπ(k)

(∑k
i=1 Kπ(i)

)
Ĥ>π(k) + Σ̂π(k)

∣∣∣
∣∣∣Ĥπ(k)

(∑k−1
i=1 Kπ(i)

)
Ĥ>π(k) + Σ̂π(k)

∣∣∣
− 1

2
log

∣∣∣ĤZ

(∑k
i=1 Kπ(i)

)
Ĥ>Z + Σ̂Z

∣∣∣
∣∣∣ĤZ

(∑k−1
i=1 Kπ(i)

)
Ĥ>Z + Σ̂Z

∣∣∣
,

k = 1, . . . , K

(5.322)

We now define another channel which does not have the same secrecy capacity

region or the dirty paper coding region as the original channel:

Ȳk = H̄kX + N̂k, k = 1, . . . , K (5.323)

Z̄ = H̄ZX + N̂Z (5.324)
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where H̄k =
(
Λ̂k + αÎk

)
Vk and α > 0, and Îk is a t × t diagonal matrix whose

first (t − r̂k) diagonal entries are 1, and the rest of the diagonal entries are zero.

Similarly, H̄Z =
(
Λ̂Z + αÎZ

)
VZ , where ÎZ is a t × t diagonal matrix whose first

(t − r̂Z) diagonal entries are 1, and the rest are zero. We note that {H̄k}Kk=1, H̄Z

are invertible, hence the channel defined by (5.323)-(5.324) can be considered as an

aligned Gaussian MIMO multi-receiver wiretap channel. Thus, since it is an aligned

Gaussian MIMO multi-receiver wiretap channel, its secrecy capacity region is given

by Theorem 5.3.

We now show that as α → 0, the secrecy capacity region of the channel

described by (5.323)-(5.324) converges to a region that includes the secrecy capacity

region of the original channel in (5.19)-(5.20). Since the original channel in (5.19)-

(5.20) and the channel in (5.318)-(5.319) have the same secrecy capacity region

and the dirty-paper coding region, checking that the secrecy capacity region of the

channel described by (5.323)-(5.324) converges, as α→ 0, to a region that includes

the secrecy capacity region of the channel described by (5.318)-(5.319), is sufficient.

To this end, consider an arbitrary (2nR1 , . . . , 2nRK , n) code which can be transmitted

with vanishingly small probability of error and in perfect secrecy when it is used in

the channel given in (5.318)-(5.319). We will show that the same code can also be

transmitted with vanishingly small probability of error and in perfect secrecy when

it is used in the channel given in (5.323)-(5.324) as α→ 0. This will imply that the

secrecy capacity region of the channel given in (5.323)-(5.324) converges to a region

that includes the secrecy capacity region of the channel given in (5.318)-(5.319). We
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first note that

Ȳk =
(
Λ̂k + αÎk

)
VkX + N̂k (5.325)

=



αÎAk VkX

Λ̂B
k VkX


+




N̂A
k

N̂B
k


 (5.326)

=




ȲA
k

ȲB
k


 , k = 1, . . . , K (5.327)

where ÎAk contains the first (t − r̂k) rows of Îk, and Λ̂B
k contains the last r̂k rows

of Λ̂k. N̂A
k is a Gaussian random vector that contains the first (t − r̂k) entries of

N̂k, and N̂B
k is a vector that contains the last r̂k entries. The covariance matrices

of N̂A
k , N̂

B
k are Σ̂A

k , Σ̂
B
k , respectively, and N̂A

k and N̂B
k are independent as can be

observed through (5.320). Similarly, we can write

Ŷk = Λ̂kVkX + N̂k (5.328)

=




0

Λ̂B
k VkX


+




N̂A
k

N̂B
k


 (5.329)

=




ŶA
k

ŶB
k


 , k = 1, . . . , K (5.330)

We note that ȲB
k = ŶB

k , k = 1, . . . , K, thus we have

X→ Ȳk → Ŷk, k = 1, . . . , K (5.331)
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which ensures the any message rate that is decodable by the kth user of the channel

given in (5.318)-(5.319) is also decodable by the kth user of the channel given in

(5.323)-(5.324). Thus, any (2nR1 , . . . , 2nRK , n) code which can be transmitted with

vanishingly small probability of error in the channel defined by (5.318)-(5.319) can

be transmitted with vanishingly small probability of error in the channel defined by

(5.323)-(5.324) as well.

We now check the secrecy constraints. To this end, we note that

Z̄ =
(
Λ̂Z + αÎZ

)
VZX + N̂Z (5.332)

=



αÎAZVZX

Λ̂B
ZVZX


+




N̂A
Z

N̂B
Z


 (5.333)

=




Z̄A

Z̄B


 (5.334)

where ÎAZ contains the first (t − r̂Z) rows of ÎZ , and Λ̂B
Z contains the last r̂Z rows

of Λ̂Z . N̂A
Z is a Gaussian random vector that contains the first t − r̂Z entries of

N̂Z , and N̂B
Z is a vector that contains the last r̂Z entries. The covariance matrices

of N̂A
Z , N̂

B
Z are Σ̂A

Z , Σ̂
B
Z , respectively, and N̂A

Z and N̂B
Z are independent as can be
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observed through (5.321). Similarly, we can write

Ẑ = Λ̂ZVZX + N̂Z (5.335)

=




0

Λ̂B
ZVZX


+




N̂A
Z

N̂B
Z


 (5.336)

=




ẐA

ẐB


 (5.337)

We note that Z̄B = ẐB, and thus we have

X→ Z̄→ Ẑ (5.338)

We now show that any (2nR1 , . . . , 2nRK ) code that achieves the perfect secrecy rates

(R1, . . . ,

RK) in the channel given in (5.318)-(5.319) also achieves the same perfect secrecy

rates in the channel given in (5.323)-(5.324) when α → 0. To this end, let S be a

non-empty subset of {1, . . . , K}. We consider the following equivocation

H(WS |Z̄n) = H(WS)− I(WS ; Z̄n) (5.339)

= H(WS |Ẑn) + I(WS ; Ẑn)− I(WS ; Z̄n) (5.340)

= H(WS |ẐA,n, ẐB,n) + I(WS ; ẐA,n, ẐB,n)− I(WS ; Z̄A,n, Z̄B,n) (5.341)

= H(WS |ẐA,n, ẐB,n) + I(WS ; ẐB,n)− I(WS ; Z̄A,n, ẐB,n) (5.342)

= H(WS |ẐA,n, ẐB,n)− I(WS ; Z̄A,n|ẐB,n) (5.343)
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where (5.342) follows from the facts that WS and ẐA,n = N̂A,n are independent, and

Z̄B,n = ẐB,n. We now bound the mutual information term in (5.343)

I(WS ; Z̄A,n|ẐB,n) ≤ I(Xn; Z̄A,n|ẐB,n) (5.344)

= h(Z̄A,n|ẐB,n)− h(Z̄A,n|ẐB,n,Xn) (5.345)

= h(Z̄A,n|ẐB,n)− h(Z̄A,n|Xn) (5.346)

≤ h(Z̄A,n)− h(Z̄A,n|Xn) (5.347)

= I(Xn; Z̄A,n) (5.348)

≤
n∑

i=1

I(Xi; Z̄
A
i ) (5.349)

≤
n∑

i=1

max
E[XiX>i ]�S

I(Xi; Z̄
A
i ) (5.350)

≤
n∑

i=1

1

2
log

∣∣∣α2ÎAZVZSV>Z (ÎAZ)> + Σ̂A
Z

∣∣∣
∣∣∣Σ̂A

Z

∣∣∣
(5.351)

=
n

2
log

∣∣∣α2ÎAZVZSV>Z (ÎAZ)> + Σ̂A
Z

∣∣∣
∣∣∣Σ̂A

Z

∣∣∣
(5.352)

where (5.344) follows from the Markov chain WS → Xn → (Z̄A,n, ẐB,n), (5.346) is

due to the Markov chain Z̄A,n → Xn → ẐB,n, (5.347) comes from the fact that con-

ditioning cannot increase entropy, (5.349) is a consequence of the fact that channel

is memoryless, (5.351) is due to the fact that subject to a covariance constraint,

Gaussian distribution maximizes the differential entropy. Thus, plugging (5.352)
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into (5.343) yields

1

n
H(WS |Z̄n) ≥ 1

n
H(WS |Ẑn)− 1

2
log

∣∣∣α2ÎAZVZSV>Z (ÎAZ)> + Σ̂A
Z

∣∣∣
∣∣∣Σ̂A

Z

∣∣∣
(5.353)

which implies that

lim
n→∞

1

n
H(WS |Z̄n) ≥ lim

n→∞

1

n
H(WS |Ẑn)− lim

α→0

1

2
log

∣∣∣α2ÎAZVZSV>Z (ÎAZ)> + Σ̂A
Z

∣∣∣
∣∣∣Σ̂A

Z

∣∣∣

(5.354)

= lim
n→∞

1

n
H(WS |Ẑn) (5.355)

≥
∑

k∈S

Rk (5.356)

where (5.355) follows from the fact that log |α2A + B| is continuous in α for posi-

tive definite matrices A,B, and (5.356) comes from our assumption that the code-

book under consideration achieves perfect secrecy in the channel given in (5.318)-

(5.319). Thus, we have shown that if a codebook achieves the perfect secrecy rates

(R1, . . . , RK) in the channel defined by (5.318)-(5.319), then it also achieves the same

perfect secrecy rates in the channel defined by (5.323)-(5.324) as α→ 0. Thus, the

secrecy capacity region of the latter channel converges to a region that includes

the secrecy capacity region of the channel in (5.318)-(5.319), and also the secrecy

capacity region of the original channel in (5.19)-(5.20). Since the channel in (5.323)-

(5.324) is an aligned channel, its secrecy capacity region is given by Theorem 5.3,

and it is equal to the dirty-paper coding region. Thus, to find the region that the
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secrecy capacity region of the channel in (5.323)-(5.324) converges to as α → 0, it

is sufficient to consider the region which the dirty-paper coding region converges to

as α→ 0. For that purpose, pick the kth user, and the identity encoding order, i.e.,

π(k) = k, k = 1, . . . , K. The corresponding secrecy rate is

1

2
log

∣∣∣H̄π(k)

(∑k
i=1 Kπ(i)

)
H̄>π(k) + Σ̂π(k)

∣∣∣
∣∣∣H̄π(k)

(∑k−1
i=1 Kπ(i)

)
H̄>π(k) + Σ̂π(k)

∣∣∣
− 1

2
log

∣∣∣H̄Z

(∑k
i=1 Kπ(i)

)
H̄>Z + Σ̂Z

∣∣∣
∣∣∣H̄Z

(∑k−1
i=1 Kπ(i)

)
H̄>Z + Σ̂Z

∣∣∣

=
1

2
log

∣∣∣∣
(
Ĥπ(k) + αÎπ(k)Vπ(k)

)(∑k
i=1 Kπ(i)

)(
Ĥπ(k) + αÎπ(k)Vπ(k)

)>
+ Σ̂π(k)

∣∣∣∣
∣∣∣∣
(
Ĥπ(k) + αÎπ(k)Vπ(k)

)(∑k−1
i=1 Kπ(i)

)(
Ĥπ(k) + αÎπ(k)Vπ(k)

)>
+ Σ̂π(k)

∣∣∣∣

− 1

2
log

∣∣∣∣
(
ĤZ + αÎZVZ

)(∑k
i=1 Kπ(i)

)(
ĤZ + αÎZVZ

)>
+ Σ̂Z

∣∣∣∣
∣∣∣∣
(
ĤZ + αÎZVZ

)(∑k−1
i=1 Kπ(i)

)(
ĤZ + αÎZVZ

)>
+ Σ̂Z

∣∣∣∣
(5.357)

which converges to

1

2
log

∣∣∣Ĥπ(k)

(∑k
i=1 Kπ(i)

)
Ĥ>π(k) + Σ̂π(k)

∣∣∣
∣∣∣Ĥπ(k)

(∑k−1
i=1 Kπ(i)

)
Ĥ>π(k) + Σ̂π(k)

∣∣∣
− 1

2
log

∣∣∣ĤZ

(∑k
i=1 Kπ(i)

)
Ĥ>Z + Σ̂Z

∣∣∣
∣∣∣ĤZ

(∑k−1
i=1 Kπ(i)

)
Ĥ>Z + Σ̂Z

∣∣∣

(5.358)

as α→ 0 due to the continuity of log |·| in positive semi-definite matrices. Moreover,

(5.358) is equal to

1

2
log

∣∣∣Hπ(k)

(∑k
i=1 Kπ(i)

)
H>π(k) + Σπ(k)

∣∣∣
∣∣∣Hπ(k)

(∑k−1
i=1 Kπ(i)

)
H>π(k) + Σπ(k)

∣∣∣
− 1

2
log

∣∣∣HZ

(∑k
i=1 Kπ(i)

)
H>Z + ΣZ

∣∣∣
∣∣∣HZ

(∑k−1
i=1 Kπ(i)

)
H>Z + ΣZ

∣∣∣

(5.359)

which implies that the secrecy capacity region of the general Gaussian MIMO multi-
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receiver wiretap channel is given by the dirty-paper coding region, completing the

proof.

5.8 Conclusions

In this chapter, we study the Gaussian MIMO multi-receiver wiretap channel and

obtain its secrecy capacity region. We show that the secrecy capacity region of

the Gaussian MIMO multi-receiver wiretap channel can be attained by a variant

of dirty-paper coding with Gaussian signals. To able to prove this, we develop a

new methodology to evaluate certain single-letter capacity expressions for (vector)

Gaussian models, which we use to obtain the secrecy capacity region of the degraded

case, which admits a single-letter description for its secrecy capacity region. Once

we obtain the secrecy capacity region of the degraded MIMO channel, we generalize

it to arbitrary, not necessarily degraded, channels by using the channel enhancement

technique and some limiting arguments as in [4, 21].

Furthermore, we note that our new methodology to evaluate the single-letter

descriptions for vector Gaussian models can be used in other network information

theory problems. In particular, using this new methodology, we provide an alterna-

tive proof for the capacity region of the degraded Gaussian MIMO broadcast channel

and an outer bound for rate-distortion region of the vector Gaussian CEO problem.

A summary of how our new methodology can be applied to these problems can be

found in Appendices 5.9.7 and 5.9.8.
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5.9 Appendix

5.9.1 Proof of Lemma 5.11

Let ρi(x|u) = ∂ log f(x|u)
∂xi

, i.e., the ith component of ρ(x|u). Then, we have

E [g(X)ρi(X|U)] =

∫
g(x)

∂f(x|u)
∂xi

f(x|u)
f(x,u) dx du (5.360)

=

∫
g(x)

∂f(x|u)

∂xi
f(u) dx du (5.361)

=

∫ [∫ +∞

−∞
g(x)

∂f(x|u)

∂xi
dxi

]
f(u) dx− du (5.362)

where dx− = dx1 . . . dxi−1dxi+1 . . . dxn. The inner integral can be evaluated using

integration by parts as

∫ +∞

−∞
g(x)

∂f(x|u)

∂xi
dxi =

[
g(x)f(x|u)

]∣∣∣
+∞

xi=−∞
−
∫ +∞

−∞
f(x|u)

∂g(x)

∂xi
dxi (5.363)

= −
∫ +∞

−∞
f(x|u)

∂g(x)

∂xi
dxi (5.364)

where (5.364) comes from the assumption in (5.189). Plugging (5.364) into (5.362)

yields

E [g(X)ρi(X|U)] = −
∫
∂g(x)

∂xi
f(x,u) dx du (5.365)

= −E
[
∂g(x)

∂xi

]
(5.366)

which concludes the proof.
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5.9.2 Proof of Lemma 5.12

Let ρi(x|u) = ∂ log f(x|u)
∂xi

, i.e., the ith component of ρ(x|u). Then, we have

E [ρ(X|U)|U = u] =

∫ ∂f(x|u)
∂xi

f(x|u)
f(x|u)dx (5.367)

=

∫ [∫ +∞

−∞

∂f(x|u)

∂xi
dxi

]
dx− (5.368)

where dx− = dx1 . . . dxi−1dxi+1 . . . dxn. The inner integral is

∫ +∞

−∞

∂f(x|u)

∂xi
dxi = f(x|u)

∣∣∣
+∞

xi=−∞
= 0 (5.369)

since f(x|u) is a valid probability density function. This completes the proof of the

first part. For the second part, we have

E [g(U)ρ(X|U)] = E
[
g(U)E

[
ρ(X|U)|U = u

]]
= 0 (5.370)

where the second equality follows from the fact that the inner expectation is zero as

the first part of this lemma states. The last part of the lemma follows by selecting

g(U) = E [X|U] in the second part of this lemma.

5.9.3 Proof of Lemma 5.14

Throughout this proof, the subscript of f will denote the random vector for which f

is the density. For example, fX(x|u) is the conditional density of X. We first note
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that

fW (w|u) =

∫
fX,W (x,w|u)dx =

∫
fX(x|u)fY (w − x|u)dx (5.371)

where the second equality is due to the conditional independence of X and Y given

U. Differentiating both sides of (5.371), we get

∂fW (w|u)

∂wi
=

∫
fX(x|u)

∂fY (w − x|u)

∂wi
dx (5.372)

= −
∫
fX(x|u)

∂fY (w − x|u)

∂xi
dx (5.373)

=
[
− fX(x|u)fY (w − x|u)

]∣∣∣
∞

xi=−∞
+

∫
fY (w − x|u)

∂fX(x|u)

∂xi
dx (5.374)

=

∫
fY (w − x|u)

∂fX(x|u)

∂xi
dx (5.375)

where (5.373) is due to

∂fY (w − x|u)

∂wi
=
∂fY (w − x|u)

∂(wi − xi)
∂(wi − xi)

∂wi
(5.376)

= −∂fY (w − x|u)

∂(wi − xi)
∂(wi − xi)

∂xi
(5.377)

= −∂fY (w − x|u)

∂xi
(5.378)
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and (5.374) follows from the fact that fX(x|u), fY (w− x|u) vanish at infinity since

they are probability density functions. Using (5.375), we get

ρi(w|u) =

∂fW (w|u)
∂wi

fW (w|u)
=

∫
fY (w − x|u)

fW (w|u)

∂fX(x|u)

∂xi
dx (5.379)

=

∫
fX(x|u)fY (w − x|u)

fW (w|u)

∂fX(x|u)
∂xi

fX(x|u)
dx (5.380)

=

∫
fX(x|u,w)

∂fX(x|u)
∂xi

fX(x|u)
dx (5.381)

= E

[
1

fX(x|u)

∂fX(x|u)

∂xi

∣∣∣∣∣W = w,U = u

]
(5.382)

where (5.381) follows from the fact that

fX(x|u,w) =
fX,W (x,w|u)

fW (w|u)
=
fX(x|u)fY (w − x|u)

fW (w|u)
(5.383)

Equation (5.382) implies

ρ(w|u) = E [ρ(X|U = u)|W = w,U = u] (5.384)

and due to symmetry, we also have

ρ(w|u) = E [ρ(Y|U = u)|W = w,U = u] (5.385)

which completes the proof.
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5.9.4 Proof of Lemma 5.15

Let W = X + Y. We have

0 � E
[(

Aρ(X|U) + (I−A)ρ(Y|U)− ρ(W|U)
)

(
Aρ(X|U) + (I−A)ρ(Y|U)− ρ(W|U)

)>]
(5.386)

= AE
[
ρ(X|U)ρ(X|U)>

]
A> + AE

[
ρ(X|U)ρ(Y|U)>

]
(I−A)>

−AE
[
ρ(X|U)ρ(W|U)>

]
+ (I−A)E

[
ρ(Y|U)ρ(X|U)>

]
A>

+ (I−A)E
[
ρ(Y|U)ρ(Y|U)>

]
(I−A)> − (I−A)E

[
ρ(Y|U)ρ(W|U)>

]

− E
[
ρ(W|U)ρ(X|U)>

]
A> − E

[
ρ(W|U)ρ(Y|U)>

]
(I−A)>

+ E
[
ρ(W|U)ρ(W|U)>

]
(5.387)

We note that, from the definition of the conditional Fisher information matrix, we

have

E
[
ρ(X|U)ρ(X|U)>

]
= J(X|U) (5.388)

E
[
ρ(Y|U)ρ(Y|U)>

]
= J(Y|U) (5.389)

E
[
ρ(W|U)ρ(W|U)>

]
= J(W|U) (5.390)
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Moreover, we have

E
[
ρ(X|U)ρ(Y|U)>

]
=
(
E
[
ρ(Y|U)ρ(X|U)>

])>
(5.391)

=
(
E
[
E
[
ρ(X|U)

∣∣U = u
]
E
[
ρ(Y|U)

∣∣U = u
]])>

(5.392)

= 0 (5.393)

where (5.392) comes from the fact that given U = u, X and Y are conditionally

independent, and (5.393) follows from the first part of Lemma 5.12, namely

E
[
ρ(X|U)

∣∣U = u
]

= E
[
ρ(Y|U)

∣∣U = u
]

= 0 (5.394)

Furthermore, we have

E
[
ρ(X|U)ρ(W|U)>

]
= E

[
E
[
ρ(X|U = u)

∣∣W = w,U = u
]
ρ(W|U)>

]
(5.395)

= E
[
ρ(W|U)ρ(W|U)>

]
(5.396)

= J(W|U) (5.397)

where (5.396) follows from Lemma 5.14, and (5.397) comes from the definition of

the conditional Fisher information matrix. Similarly, we also have

E
[
ρ(Y|U)ρ(W|U)>

]
= E

[
ρ(W|U)ρ(X|U)>

]
= E

[
ρ(W|U)ρ(Y|U)>

]
= J(W|U)

(5.398)
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Thus, using (5.388)-(5.390), (5.393), (5.397)-(5.398) in (5.387), we get

0 � AJ(X|U)A> −AJ(W|U) + (I−A)J(Y|U)(I−A)> − (I−A)J(W|U)

− J(W|U)A> − J(W|U)(I−A)> + J(W|U) (5.399)

= AJ(X|U)A> + (I−A)J(Y|U)(I−A)> − J(W|U) (5.400)

which completes the proof.

5.9.5 Proof of Lemma 5.18

Consider J(X|U)

J(X|U) = J(X|U,V) (5.401)

= E
[
∇x log f(X|U,V)∇x log f(X|U,V)>

]
(5.402)

= E
[
∇x log f(X,U,V)∇x log f(X,U,V)>

]
(5.403)

= E
[(
∇x log f(X,V) +∇x log f(U|X,V)

)

(
∇x log f(X,V) +∇x log f(U|X,V)

)>]
(5.404)

= E
[
∇x log f(X,V)∇x log f(X,V)>

]

+ E
[
∇x log f(X,V)∇x log f(U|X,V)>

]

+ E
[
∇x log f(U|X,V)∇x log f(X,V)>

]

+ E
[
∇x log f(U|X,V)∇x log f(U|X,V)>

]
(5.405)
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where (5.401) is due to the Markov chain V→ U→ X, (5.403) comes from the fact

that

∇x log f(x|u,v) = ∇x

(
log f(x,u,v)− log f(u,v)

)
(5.406)

= ∇x log f(x,u,v) (5.407)

and (5.404) is due to the fact that f(x,u,v) = f(x,v)f(u|x,v). We note that

J(X|V) = E
[
∇x log f(X,V)∇x log f(X,V)>

]
(5.408)

and

E
[
∇x log f(U|X,V)∇x log f(U|X,V)>

]
� 0 (5.409)

Using (5.408) and (5.409) in (5.405), we get

J(X|U) � J(X|V) + E
[
∇x log f(X,V)∇x log f(U|X,V)>

]

+ E
[
∇x log f(U|X,V)∇x log f(X,V)>

]
(5.410)
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We now show that the cross-terms in (5.410) vanish. To this end, consider the

(i, j)th entry of the first cross-term

E
[
∇x log f(X,V)∇x log f(U|X,V)>

]
ij

= E

[
∂ log f(X,V)

∂xi

∂ log f(U|X,V)

∂xj

]
(5.411)

=

∫ ∂f(x,v)
∂xi

f(x,v)

∂f(u|x,v)
∂xj

f(u|x,v)
f(x,u,v) du dv dx (5.412)

=

∫
∂f(x,v)

∂xi

∂f(u|x,v)

∂xj
du dv dx (5.413)

=

∫
∂f(x,v)

∂xi

[∫
∂f(u|x,v)

∂xj
du

]
dv dx (5.414)

where the inner integral can be evaluated as

∫
∂f(u|x,v)

∂xj
du =

∂

∂xj

[∫
f(u|x,v) du

]
=
∂(1)

∂xj
= 0 (5.415)

where the interchange of the differentiation and the integration is justified by the

assumption given in (5.214). Thus, using (5.415) in (5.414) implies that

E
[
∇x log f(X,V)∇x log f(U|X,V)>

]
= 0 (5.416)

Thus, using (5.416) in (5.410), we get

J(X|U) � J(X|V) (5.417)

which completes the proof.
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5.9.6 Proof of Lemma 5.19

Since we assumed µj > 0, j = 1, . . . ,m, we can select

Σ̃j+1 =



(

j∑

i=1

Ki + Σj+1

)−1

+
1

µj+1

Mj+1



−1

−
j∑

i=1

Ki, j = 0, 1 . . . ,m− 1

(5.418)

which is equivalent to

µj+1

(
j∑

i=1

Ki + Σ̃j+1

)−1

= µj+1

(
j∑

i=1

Ki + Σj+1

)−1

+ Mj+1, j = 0, 1 . . . ,m− 1

(5.419)

and that implies 0 � Σ̃j � Σj, j = 1, . . . ,m. Furthermore, for j = 0, . . . ,m − 1,

we have

j+1∑

i=1

Ki + Σ̃j+1 = Kj+1 +

(
j∑

i=1

Ki + Σ̃j+1

)
(5.420)

= Kj+1 +



(

j∑

i=1

Ki + Σj+1

)−1

+
1

µj+1

Mj+1



−1

(5.421)

= Kj+1 +

[
I +

1

µj+1

(
j∑

i=1

Ki + Σj+1

)
Mj+1

]−1( j∑

i=1

Ki + Σj+1

)
(5.422)

= Kj+1 +

[
I +

1

µj+1

(
j+1∑

i=1

Ki + Σj+1

)
Mj+1

]−1( j∑

i=1

Ki + Σj+1

)
(5.423)
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= Kj+1

+



(
j+1∑

i=1

Ki + Σj+1

)−1

+
1

µj+1

Mj+1



−1(

j+1∑

i=1

Ki + Σj+1

)−1( j∑

i=1

Ki + Σj+1

)

(5.424)

= Kj+1 +



(
j+1∑

i=1

Ki + Σj+1

)−1

+
1

µj+1

Mj+1



−1(

j+1∑

i=1

Ki + Σj+1

)−1

×
(
j+1∑

i=1

Ki + Σj+1 −Kj+1

)
(5.425)

= Kj+1 +



(
j+1∑

i=1

Ki + Σj+1

)−1

+
1

µj+1

Mj+1



−1

−



(
j+1∑

i=1

Ki + Σj+1

)−1

+
1

µj+1

Mj+1



−1(

j+1∑

i=1

Ki + Σj+1

)−1

Kj+1 (5.426)

= Kj+1 +



(
j+1∑

i=1

Ki + Σj+1

)−1

+
1

µj+1

Mj+1



−1

−







(
j+1∑

i=1

Ki + Σj+1

)−1

+
1

µj+1

Mj+1



−1

×



(
j+1∑

i=1

Ki + Σj+1

)−1

+
1

µj+1

Mj+1


Kj+1



 (5.427)

= Kj+1 +



(
j+1∑

i=1

Ki + Σj+1

)−1

+
1

µj+1

Mj+1



−1

−Kj+1 (5.428)

=



(
j+1∑

i=1

Ki + Σj+1

)−1

+
1

µj+1

Mj+1



−1

(5.429)
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where (5.421) follows from (5.419), (5.423) and (5.427) are consequences of the KKT

conditions MjKj = KjMj = 0, j = 1, . . . ,m. Finally, (5.429) is equivalent to

µj+1

(
j+1∑

i=1

Ki + Σ̃j+1

)−1

= µj+1

(
j+1∑

i=1

Ki + Σj+1

)−1

+ Mj+1, j = 0, . . . ,m− 1

(5.430)

Plugging (5.419) and (5.430) into the KKT conditions in (5.293) and (5.294) yields

the third part of the lemma.

We now prove the second part of the lemma. To this end, consider the second

equation of the third part of the lemma, i.e., the following

µm

(
m∑

i=1

Ki + Σ̃m

)−1

= µm

(
m∑

i=1

Ki + ΣZ

)−1

+ MZ (5.431)

which implies Σ̃m � ΣZ . Now, consider the first equation of the third part of the

lemma for j = m− 1, i.e., the following

µm−1

(
m−1∑

i=1

Ki + Σ̃m−1

)−1

− µm−1

(
m−1∑

i=1

Ki + ΣZ

)−1

= µm

(
m−1∑

i=1

Ki + Σ̃m

)−1

− µm
(
m−1∑

i=1

Ki + ΣZ

)−1

(5.432)

Since the matrix on the right hand side of the equation is positive semi-definite due
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to the fact that Σ̃m � ΣZ , and we assume that µm ≥ µm−1, (5.432) implies

(
m−1∑

i=1

Ki + Σ̃m−1

)−1

�
(
m−1∑

i=1

Ki + Σ̃m

)−1

(5.433)

which in turn implies Σ̃m−1 � Σ̃m � ΣZ . Similarly, if one keeps checking the first

equation of the third part of the lemma in the reverse order, one can get

Σ̃1 � . . . � Σ̃m � ΣZ (5.434)

Moreover, the definition of Σ̃1, i.e., (5.419) for j = 0,

Σ̃1 =

[
Σ−1

1 +
1

µ1

M1

]−1

(5.435)

implies that Σ̃1 � 0 completing the proof of the second part of the lemma.
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We now show the fourth part of the lemma

(
j+1∑

i=1

Ki + Σ̃j+1

)−1( j∑

i=1

Ki + Σ̃j+1

)

=

(
j+1∑

i=1

Ki + Σ̃j+1

)−1( j+1∑

i=1

Ki + Σ̃j+1 −Kj+1

)
(5.436)

= I−
(
j+1∑

i=1

Ki + Σ̃j+1

)−1

Kj+1 (5.437)

= I−



(
j+1∑

i=1

Ki + Σj+1

)−1

+
1

µj+1

Mj+1


Kj+1 (5.438)

= I−
(
j+1∑

i=1

Ki + Σj+1

)−1

Kj+1 (5.439)

=

(
j+1∑

i=1

Ki + Σj+1

)−1( j+1∑

i=1

Ki + Σj+1

)
−
(
j+1∑

i=1

Ki + Σj+1

)−1

Kj+1 (5.440)

=

(
j+1∑

i=1

Ki + Σj+1

)−1( j∑

i=1

Ki + Σj+1

)
, j = 0, . . . ,m− 1 (5.441)

where (5.438) follows from (5.430) and (5.439) is a consequence of the KKT condi-

tions KjMj = MjKj = 0, j = 1, . . . ,m.
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The proof of the fifth part of the lemma follows similarly

(
S + Σ̃m

)( m∑

i=1

Ki + Σ̃m

)−1

=

(
S−

m∑

i=1

Ki +
m∑

i=1

Ki + Σ̃m

)(
m∑

i=1

Ki + Σ̃m

)−1

=

(
S−

m∑

i=1

Ki

)(
m∑

i=1

Ki + Σ̃m

)−1

+ I (5.442)

=

(
S−

m∑

i=1

Ki

)

(

m∑

i=1

Ki + ΣZ

)−1

+
1

µm
MZ


+ I (5.443)

=

(
S−

m∑

i=1

Ki

)(
m∑

i=1

Ki + ΣZ

)−1

+ I (5.444)

=

(
S−

m∑

i=1

Ki

)(
m∑

i=1

Ki + ΣZ

)−1

+

(
m∑

i=1

Ki + ΣZ

)(
m∑

i=1

Ki + ΣZ

)−1

(5.445)

= (S + ΣZ)

(
m∑

i=1

Ki + ΣZ

)−1

(5.446)

where (5.443) follows from the second equation of the third part of the lemma, and

(5.444) is a consequence of the KKT condition in (5.291), completing the proof.

5.9.7 An Alternative Proof for the Capacity Region of the Degraded

Gaussian MIMO Broadcast Channel

In this appendix8, we provide an alternative proof for the capacity region of the

degraded Gaussian MIMO broadcast channel. Our aim is to demonstrate how our

technique, developed in this chapter to evaluate the single-letter description for

8This appendix provides a short summary of the work published in [55].
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the secrecy capacity region of the degraded Gaussian MIMO multi-receiver wiretap

channel, can be used for other problems involving vector Gaussian models.

The Gaussian MIMO broadcast channel consists of one transmitter and an

arbitrary number of receivers, where the transmitter and receivers are equipped

with multiple antennas. In general, the Gaussian MIMO broadcast channel is non-

degraded, thus, we do not have a single-letter description of the capacity region.

Despite this lack of a single-letter description, the capacity region of the Gaussian

MIMO broadcast channel is successfully obtained in [4]. Subsequently, an alternative

proof is given in [51]. In both proofs, the channel enhancement technique [4] is the

main tool. We note that although both of these previous proofs are for general, not

necessarily degraded, channels, when they are adapted to the degraded case, they

still need channel enhancement.

In this appendix, we revisit the degraded Gaussian MIMO broadcast channel

and provide an alternative proof for the capacity region of this degraded channel,

without using the channel enhancement technique. Though channel enhancement is

an elegant technique that finds itself diverse applications, we believe that our proof

is more direct. On the other hand, our proof is limited to the degraded case and

does not seem to be extendable for the general case. In other words, to obtain the

capacity region for the general case after finding the capacity region for the degraded

case through our proof, one needs to use the channel enhancement technique [4].

Our proof starts with the single-letter description of the capacity region of the

degraded broadcast channel, and by using it, obtains a tight (i.e., achievable) outer

bound for the capacity region of the degraded Gaussian MIMO broadcast channel.
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In this proof, we use the tools that we already introduced in this chapter to obtain

the secrecy capacity region of the degraded Gaussian MIMO multi-receiver wiretap

channel. The only new tool is an inequality due to [56, 57] that gives a lower bound

for the differential entropy in terms of the Fisher information matrix.

5.9.7.1 Channel Model and Main Result

The (aligned) degraded K-user Gaussian MIMO broadcast channel is defined by

Yk = X + Nk, k = 1, . . . , K (5.447)

where Nk is Gaussian with covariance matrix Σk, k = 1, . . . , K, and the channel

input X and outputs {Yk}Kk=1 satisfy the Markov chain

X→ Y1 → . . .→ YK (5.448)

which is equivalent to the covariance matrices {Σk}Kk=1 satisfying the following order

0 ≺ Σ1 � . . . � ΣK (5.449)

The channel input is subject to a covariance constraint

E
[
XX>

]
� S (5.450)
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where we assume S � 0. The covariance constraint in (5.450) is more general than

many other constraints including the trace constraint, in the sense that, once the

capacity region is found for the constraint in (5.450), capacity regions arising from

the use of other constraints subsumed by (5.450) can be obtained by using this

capacity region [4].

We next note that the definition of degradedness can be generalized to the

case where receivers get arbitrary linear combinations of the channel inputs, i.e.,

Yk = HkX + Nk, k = 1, . . . , K (5.451)

The broadcast channel defined in (5.451) is said to be degraded, i.e., satisfies the

Markov chain in (5.448), if there exist matrices {Dk}K−1
k=1 such that DkHk = Hk+1

and DkD
>
k � I [5]. However, once the capacity region of the aligned degraded

Gaussian MIMO broadcast channel defined by (5.447) is obtained, the capacity

region of the general degraded Gaussian MIMO broadcast channel defined by (5.451)

can be obtained by following the analysis given in Section 5 of [5], which essentially

relies on some limiting arguments. Since the key step to obtain the capacity region

of the general degraded Gaussian MIMO broadcast channel defined by (5.451) is

to establish the capacity region of the aligned degraded Gaussian MIMO broadcast

channel defined by (5.447), here we consider only the latter channel model.

The capacity region of the Gaussian MIMO broadcast channel is established

in [4] for the most general case. For the degraded case, it is given as follows.

Theorem 5.8 ([4, Theorem 2] The capacity region of the K-user degraded Gaus-
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sian MIMO broadcast channel is given by the union of rate tuples (R1, . . . , RK)

satisfying

Rk ≤
1

2
log
|∑k

i=1 Ki + Σk|
|∑k−1

i=1 Ki + Σk|
(5.452)

where the union is over all positive semi-definite matrices {Ki}Ki=1 such that
∑K

i=1 Ki =

S.

In the next section, we provide an alternative proof for this theorem for K = 2.

The proof for an arbitrary case can be found in [55]. In our proof, we use the capacity

region of the degraded broadcast channel which is stated in the following theorem,

for the Gaussian MIMO channel at hand.

Theorem 5.9 ([22, Theorem 15.6.2] The capacity region of the degraded broad-

cast channel is given by the union of rate tuples (R1, . . . , RK) satisfying

Rk ≤ I(Uk;Yk|Uk+1), k = 1, . . . , K (5.453)

where UK+1 = φ, U1 = X, and the union is over all {Uk}Kk=2, X such that

UK → . . .→ U2 → X → Y1 → . . .→ YK (5.454)

5.9.7.2 Proof of Theorem 5.8 for K = 2

The following lemma is due to [56, 57] which lower bounds the differential entropy

in terms of the Fisher information matrix.
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Lemma 5.20 ([56, 57]) Let (U,X) be an (n+1)-dimensional random vector, where

the conditional Fisher information matrix of X, conditioned on U , exists. Then, we

have

h(X|U) ≥ 1

2
log(2πe)n|J−1(X|U)| (5.455)

In [56, 57], the unconditional version of this lemma, i.e., U = φ, is provided. A

proof for its generalization to this conditional form is given in Appendix 5.9.9.

5.9.7.3 Proof for K = 2

We first rewrite the capacity region of the degraded broadcast channel given in

Theorem 5.9 for two users as a union of rate pairs (R1, R2) satisfying

R1 ≤ I(X;Y1|U) (5.456)

R2 ≤ I(U ;Y2) (5.457)

where we dropped the subscript of the auxiliary random variable U2 and denoted it

simply as U . The involved random variables satisfy the Markov chain U → X →

Y1 → Y2. To obtain the capacity region of the degraded Gaussian MIMO broadcast

channel, we need to evaluate this region. In particular, we will show that the optimal

random vector (U,X) that exhausts this region is Gaussian, and the corresponding
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capacity region is given by the union of rate pairs (R1, R2) satisfying

R1 ≤
1

2
log
|K + Σ1|
|Σ1|

(5.458)

R2 ≤
1

2
log
|S + Σ2|
|K + Σ2|

(5.459)

where the union is over all K such that 0 � K � S. We note that the region

described by (5.458)-(5.459) comes from Theorem 5.8 by dropping the subscript of

K1 and denoting it simply as K.

We begin with the bound on R2. Starting from (5.457), we get

R2 ≤ I(U ; Y2) (5.460)

= h(Y2)− h(Y2|U) (5.461)

≤ 1

2
log(2πe)n|S + Σ2| − h(Y2|U) (5.462)

where the inequality in (5.462) comes from the maximum entropy theorem [22]. We

now bound h(Y2|U) in (5.462). We first get an upper bound as

h(Y2|U) ≤ h(Y2) ≤ 1

2
log(2πe)n|S + Σ2| (5.463)

where the first inequality comes from the fact that conditioning cannot increase

entropy, and the second inequality is due to the maximum entropy theorem [22].
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Furthermore, using Lemma 5.20, we can get the following lower bound for h(Y2|U)

h(Y2|U) ≥ 1

2
log(2πe)n|J−1(X + N2|U)| (5.464)

We next define the following function

r(t) =
1

2
log(2πe)n|A(t) + Σ2|, 0 ≤ t ≤ 1 (5.465)

where A(t) is given as

A(t) = (1− t)
[
J−1(X + N2|U)−Σ2

]
+ tS (5.466)

We first note that

J−1(X + N2|U)−Σ2 � Cov(X + N2|U)−Σ2 (5.467)

= Cov(X|U) (5.468)

� Cov(X) (5.469)

� S (5.470)

where (5.467) is a consequence of Lemma 5.13, and (5.469) comes from the fact

that the conditional covariance matrix is smaller than the unconditional one in the

positive semi-definite ordering sense. This implies that for any 0 ≤ t ≤ 1, A(t)
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satisfies

J−1(X + N2|U)−Σ2 � A(t) � S (5.471)

Using r(t), bounds in (5.463) and (5.464) can be rewritten as

r(0) ≤ h(Y2|U) ≤ r(1) (5.472)

As shown in Lemma 5.10, r(t) is continuous in t. Hence, due to the intermediate

value theorem, there exists a t∗ such that

r(t∗) = h(Y2|U) =
1

2
log(2πe)n|A(t∗) + Σ2| (5.473)

where A(t∗) satisfies (5.471). Plugging (5.473) into (5.462) yields

R2 ≤
1

2
log

|S + Σ2|
|A(t∗) + Σ2|

(5.474)

which is the desired bound on R2 given in (5.459).

We now obtain the desired bound on R1. To this end, using (5.471) and

Lemma 5.16, we get

A(t∗) � J−1(X + N2|U)−Σ2 (5.475)

� J−1(X + N|U)−ΣN (5.476)
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for any Gaussian random vector N with covariance matrix ΣN where ΣN � Σ2.

The order in (5.476) is equivalent to

(A(t∗) + ΣN)−1 � J(X + N|U) (5.477)

Next, we consider the bound on R1 given by (5.456). To this end, we first find an

upper bound for the differential entropy term h(Y1|U) which will be subsequently

used to obtain the desired bound on R1.

h(Y1|U) = h(Y1|U)− h(Y2|U) + h(Y2|U) (5.478)

= h(Y1|U)− h(Y2|U) +
1

2
log(2πe)n|A(t∗) + Σ2| (5.479)

= −1

2

∫ Σ2

Σ1

J(X + N|U)dΣN +
1

2
log(2πe)n|A(t∗) + Σ2| (5.480)

≤ −1

2

∫ Σ2

Σ1

(A(t∗) + ΣN)−1dΣN +
1

2
log(2πe)n|A(t∗) + Σ2| (5.481)

=
1

2
log
|A(t∗) + Σ1|
|A(t∗) + Σ2|

+
1

2
log(2πe)n|A(t∗) + Σ2| (5.482)

=
1

2
log(2πe)n|A(t∗) + Σ1| (5.483)

where (5.479) is due to (5.473), (5.480) is obtained by using Lemma 5.17, and (5.481)

is due to (5.477) and Lemma 5.8. Using (5.483) in (5.456), we get

R1 ≤ I(X; Y1|U) (5.484)

= h(Y1|U)− 1

2
log(2πe)n|Σ1| (5.485)

≤ 1

2
log
|A(t∗) + Σ1|
|Σ1|

(5.486)
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which is the desired bound on R1 given in (5.458); completing the proof. The proof

for an arbitrary K can be found in [55].

5.9.8 An Outer Bound for the Vector Gaussian CEO Problem

Similar to the previous appendix, here also9, we want to demonstrate how our

technique, developed in this chapter to evaluate the single-letter description for

the secrecy capacity region of the degraded Gaussian MIMO multi-receiver wiretap

channel, can be used for other problems involving vector Gaussian models. To this

end, we consider the vector Gaussian CEO problem and obtain an outer bound for

its rate-distortion region.

5.9.8.1 Problem Statement and the Main Result

In the CEO problem, there are L sensors, each of which getting a noisy observation

of a source. The goal of the sensors is to describe their observations to the CEO such

that it can reconstruct the source within a given distortion. In the vector Gaussian

CEO problem (see Figure 5.4), there is an i.i.d. vector Gaussian source {Xi}ni=1 with

zero-mean and covariance KX . Each sensor gets a noisy version of this Gaussian

source

Y`,i = Xi + N`,i, ` = 1, . . . , L (5.487)

9This appendix provides a short summary of the work reported in [58].
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Figure 5.4: The vector Gaussian CEO problem.

where {N`,i}ni=1 is an i.i.d. sequence of Gaussian random vectors with zero-mean

and covariance Σ`. Moreover, {N`,i}L` are independent ∀i. The distortion of the

reconstructed vector is measured by its mean square error matrix

D̂n =
1

n

n∑

i=1

E
[(

Xi − X̂i

)(
Xi − X̂i

)>]
(5.488)

where X̂n denotes the reconstructed vector.

An (n,R1, . . . , RL) code for the CEO problem consists of an encoding function

at each sensor fn` : RM×n → Bn` = {1, . . . , 2nR`}, i.e., Bn
` = fn` (Yn

` ) where Bn
` ∈

Bn` , ` = 1, . . . , L, and a decoding function at the CEO gn : Bn1 × . . .×BnL → RM×n,

i.e., X̂n = gn(Bn
1 , . . . , B

n
L), where M denotes the size of the vector Gaussian source

X.

Since the MMSE estimator, which is the conditional mean, minimizes the

mean square error, the decoding function gn can be chosen as the MMSE estimator.
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Hence, we have X̂i = E
[
Xi|{Bn

` }L`=1

]
using which in (5.488), we get

D̂n =
1

n

n∑

i=1

mmse(Xi|Bn
1 , . . . , B

n
L) (5.489)

Hence, a rate tuple (R1, . . . , RL) is said to achieve the distortion D if there exists

an (n,R1, . . . , RL) code such that

lim
n→∞

1

n

n∑

i=1

mmse(Xi|Bn
1 , . . . , B

n
L) � D (5.490)

where D is a strictly positive definite matrix. Throughout the paper, we assume

that the distortion matrix D satisfies

(
K−1
X +

L∑

`=1

Σ−1
`

)−1

� D � KX (5.491)

where the lower bound on the distortion constraint D corresponds to the MMSE

matrix obtained when the CEO has direct access to the observations of the agents

{Y`}L`=1. In [58, Appendix A.2], we show that imposing the lower bound on D in

(5.491) does not incur any loss of generality, while imposing the upper bound on D

in (5.491) might incur some loss of generality.

The rate-distortion region R(D) of the vector Gaussian CEO problem is de-

fined as the closure of all rate tuples (R1, . . . , RL) that can achieve the distortion

D.

We note that the rate-distortion region of the scalar Gaussian CEO problem

is obtained in [59, 60]. However, the rate-distortion region of the vector case is a
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largely open problem.

The main result we present in this Appendix is the following outer bound on

the rate-distortion region R(D):

Theorem 5.10 The rate-distortion region of the Gaussian CEO problem R(D) is

contained in the region Ro(D) which is given by the union of rate tuples (R1, . . . , RL)

satisfying

∑

`∈A

R` ≥
1

2
log+

∣∣∣
(
K−1
X +

∑
`∈Ac Σ−1

` (Σ` −D`) Σ−1
`

)−1
∣∣∣

|D| +
∑

`∈A

1

2
log
|Σ`|
|D`|

(5.492)

for all A ⊆ {1, . . . , L}, where the union is over all positive semi-definite matrices

{D`}L`=1 ∈ D, and D contains all {D`}L`=1 matrices satisfying the following con-

straints

(
K−1
X +

L∑

`=1

Σ−1
` (Σ` −D`) Σ−1

`

)−1

� D (5.493)

0 � D` � Σ`, ∀` (5.494)

and log+ x = max(log x, 0).

We obtain this outer bound by evaluating the outer bound given in [61]. This

evaluation is carried out by using the technique we devised in this chapter to obtain

the secrecy capacity region of the degraded Gaussian MIMO multi-receiver wiretap

channel.

Next, we provide the following inner bound for the rate-distortion regionR(D).
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Theorem 5.11 An inner bound for the rate-distortion region of the vector Gaussian

CEO problem is given by the region Ri(D) which is described by the union of rate

tuples (R1, . . . , RL) satisfying

∑

`∈A

R` ≥
1

2
log

∣∣∣
(
K−1
X +

∑
`∈Ac Σ−1

` (Σ` −D`) Σ−1
`

)−1
∣∣∣

∣∣∣∣
(
K−1
X +

∑L
`=1 Σ−1

` (Σ` −D`) Σ−1
`

)−1
∣∣∣∣

+
∑

`∈A

1

2
log
|Σ`|
|D`|

(5.495)

for all A ⊆ {1, . . . , L}, where the union is over all positive semi-definite matrices

{D`}L`=1 ∈ D.

This inner bound is obtained by evaluating the Berger-Tung inner bound [62]

by jointly Gaussian auxiliary random variables.

We note that for both the outer bound in Theorem 5.10 and the inner bound

in Theorem 5.11, the feasible sets to which {D`}L`=1 belong are identical and given

by D. On the other hand, rate bounds differ as seen through (5.492) and (5.495).

Despite this difference, there are cases where the outer and inner bounds match,

providing a complete characterization of the rate-distortion region. Here, we note a

general sufficient condition under which the outer and inner bounds coincide. If the

boundary of the outer bound in Theorem 5.10 can be attained by {D∗`}L`=1 matrices

which achieve the distortion constraint in (5.493) with equality, then the outer and

inner bounds match, giving the rate-distortion region. For example, the outer and

inner bounds match for the scalar Gaussian model [58].
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5.9.8.2 Proof of Theorem 5.10

Here, we provide a sketch of the proof of Theorem 5.10 for L = 2. The proof of

Theorem 5.10 for an arbitrary L can be found in [58]. We first state the following

outer bound for the rate-distortion region of the CEO problem.

Theorem 5.12 ([61, Theorem 1]) The rate-distortion region of the CEO problem

R(D) is contained in the union of rate tuples (R1, R2) satisfying

R1 ≥ I(X;U1|U2) + I(Y1;U1|X,W ) (5.496)

R2 ≥ I(X;U2|U1) + I(Y2;U2|X,W ) (5.497)

2∑

`=1

R` ≥ I(X;U1, U2) +
2∑

`=1

I(Y`;U`|X,W ) (5.498)

where the union is over all joint distributions

p(x, {y`, u`}2
`=1, w) = p(x)p(w)

2∏

`=1

p(y`|x)p(u`|y`, w) (5.499)

satisfying

mmse(X|U1, U2) � D (5.500)

We evaluate this outer bound to obtain the outer bound in Theorem 5.10 for

L = 2.
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First, we consider the following mutual information terms

I(Y`;U`|X,W ) = h(Y`|X,W )− h(Y`|X,W, U`) (5.501)

=
1

2
log |(2πe)Σ`| − h(Y`|X,W, U`) (5.502)

Using Lemma 5.20 and the fact that jointly Gaussian (X,W, U`,Y`) maximizes

h(Y`|X,W, U`), we have the following bounds for the second term in (5.502)

1

2
log |(2πe)J−1(Y`|X,W, U`)| ≤ h(Y`|X,W, U`) ≤

1

2
log |(2πe)mmse(Y`|X,W, U`)|

(5.503)

where J(·|·) denotes the conditional Fisher information matrix.

Since log | · | is continuous in positive semi-definite matrices, there exists a

matrix D` in the following form

D` = α`J
−1(Y`|X,W, U`) + ᾱ`mmse(Y`|X,W, U`) (5.504)

with α` = 1− ᾱ` ∈ [0, 1], which satisfies

h(Y`|X,W, U`) =
1

2
log |(2πe)D`| (5.505)

Hence, using (5.505) in (5.502), we have

I(Y`;U`|X,W ) =
1

2
log
|Σ`|
|D`|

, ` = 1, 2 (5.506)
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Moreover, using Lemma 5.13 and the fact that conditioning reduces MMSE, the

following bounds on D` can be obtained

0 � D` � mmse(Y`|X,W, U`) (5.507)

� Σ` (5.508)

which is the desired order on D` stated in Theorem 5.10.

Next, we consider the following mutual information term

I(X;U1|U2) = h(X|U2)− h(X|U1, U2) (5.509)

≥ h(X|U2)− 1

2
log |(2πe)mmse(X|U1, U2)| (5.510)

≥ h(X|U2)− 1

2
log |(2πe)D| (5.511)

≥ h(X|U2,W )− 1

2
log |(2πe)D| (5.512)

≥ 1

2
log |(2πe)J−1(X|U2,W )| − 1

2
log |(2πe)D| (5.513)

where (5.510) comes from the fact that h(X|U1, U2) is maximized by jointly Gaussian

(X, U1, U2), (5.511) follows from the monotonicity of log |·| function in positive semi-

definite matrices in conjunction with the distortion constraint in (5.500), (5.512)

comes from the fact that conditioning cannot increase entropy, and (5.513) is due

to Lemma 5.20.

Next, we obtain a lower bound for J−1(X|U2,W ), which, in turn, will yield a

lower bound for h(X|U2,W ). To obtain a lower bound for h(X|U2,W ), we will use

an identity between the Fisher information matrix and the MMSE matrix, which
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holds for additive Gaussian models as we have here. This identity is stated in the

following lemma.

Lemma 5.21 ([52]) Let (V1,V2) be an arbitrary random vector with finite sec-

ond moments, and N be a zero-mean Gaussian random vector with covariance ΣN .

Assume (V1,V2) and N are independent. We have

mmse(V2|V1,V2 + N) = ΣN −ΣNJ(V2 + N|V1)ΣN (5.514)

Before using this lemma to get a lower bound for J−1(X|U2,W ), we also need

to rewrite X as follows

X = A2Y2 + Ñ2 (5.515)

where A2 = KX(KX + Σ2)−1, and Ñ2 is a zero-mean Gaussian random vector

with covariance matrix
(
K−1
X + Σ−1

2

)−1
, and is independent of Y2. We note that

(5.515) follows from the fact that (X,Y2) are jointly Gaussian. In view of (5.515),

Lemma 5.21 implies

mmse(Y2|X,W, U2) = A−1
2 mmse(A2Y2|A2Y2 + Ñ2,W, U2)A−>2 (5.516)

= A−1
2

(
Σ̃2 − Σ̃2J(X|U2,W )Σ̃2

)
A−>2 (5.517)
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using the definition of A2 and Σ̃2 in which, we get

J−1(X|U2,W ) =
(
K−1
X + Σ−1

2 −Σ−1
2 mmse(Y2|X,W, U2)Σ−1

2

)−1
(5.518)

Using the order in (5.507) in (5.518), we get

J−1(X|U2,W ) �
(
K−1
X + Σ−1

2 −Σ−1
2 D2Σ

−1
2

)−1
(5.519)

Moreover, in view of the monotonicity of log | · | in positive semi-definite matrices,

using (5.519) in (5.513), we can get

I(X;U1|U2) ≥ 1

2
log+

∣∣∣
(
K−1
X + Σ−1

2 −Σ−1
2 D2Σ

−1
2

)−1
∣∣∣

|D| (5.520)

where the positivity operator comes from the non-negativity of the mutual informa-

tion. Using (5.506) and (5.520) in (5.496), we can get

R1 ≥
1

2
log+

∣∣∣
(
K−1
X + Σ−1

2 −Σ−1
2 D2Σ

−1
2

)−1
∣∣∣

|D| +
1

2
log
|Σ1|
|D1|

(5.521)

which is the desired bound on R1 given in Theorem 5.10. Similarly one can get the

desired bound on R2 as well.

Next, we consider the sum-rate R1 + R2. To this end, we note that using the

maximum entropy theorem and the distortion constraint in (5.500), one can get

I(X;U1, U2) ≥ 1

2
log
|KX |
|D| (5.522)
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using which, and the identities in (5.506) for the sum-rate bound in (5.498), we have

R1 +R2 ≥
1

2
log
|KX |
|D| +

2∑

`=1

1

2
log
|Σ`|
|D`|

(5.523)

which is the desired bound on the sum-rate given in Theorem 5.10.

Finally, we establish a connection between D and (D1,D2), which will com-

plete the proof of Theorem 5.10. To this end, we note that similar to (5.519), one

can obtain the following lower bound for J−1(X|U1, U2,W )

(
K−1
X +

2∑

`=1

Σ−1
` −

2∑

`=1

Σ−1
` D`Σ

−1
`

)−1

� J−1(X|U1, U2,W ) (5.524)

� mmse(X|U1, U2,W ) (5.525)

� mmse(X|U1, U2) (5.526)

� D (5.527)

where (5.525) is due to Lemma 5.13, (5.526) comes from the fact that conditioning

reduces MMSE, and (5.527) follows from the distortion constraint in (5.500). The

order in (5.527) gives us the desired order among D` and D; completing the proof.

The proof for an arbitrary L can be found in [58].
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5.9.9 Proof of Lemma 5.20

We define the function f(ε) as follows

f(ε) = h(X +
√
εN|U)− 1

2
log
∣∣(2πe)

(
J−1(X|U) + εΣ

)∣∣ , ε ≥ 0 (5.528)

We need to prove that f(0) ≥ 0. We will show that f(ε) is monotonically decreasing

in ε, and that limε→∞ f(ε) = 0. This will prove f(0) ≥ 0.

Fix ε1, ε2 such that 0 < ε1 ≤ ε2. Using Lemma 5.17, we have

h(X +
√
ε2N|U)− h(X +

√
ε1N|U) =

1

2

∫ ε2Σ

ε1Σ

J(X + T|U)dΣT (5.529)

where T is a Gaussian random vector with covariance matrix ΣT such that ε1Σ �

ΣT � ε2Σ, and independent of (U,X). Using Corollary 5.4 in conjunction with

Lemma 5.13, we get

J(X + T|U) �
[
J−1(X|U) + ΣT

]−1
(5.530)

Plugging (5.530) into (5.529) and invoking Lemma 5.8, we get

h(X +
√
ε2N|U)− h(X +

√
ε1N|U) ≤ 1

2
log
|(2πe) (J−1(X|U) + ε2Σ)|
|(2πe) (J−1(X|U) + ε1Σ)| (5.531)
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Rearranging (5.531) yields

f(ε2) ≤ f(ε1), ε1 ≤ ε2 (5.532)

which proves that f(ε) is monotonically decreasing in ε.

We now consider upper and lower bounds on f(ε). We have the following

upper bound on f(ε)

f(ε) = h(X +
√
εN|U)− 1

2
log
∣∣(2πe)

(
J−1(X|U) + εΣ

)∣∣ (5.533)

≤ 1

2
log

|K + εΣ|
|J−1(X|U) + εΣ| (5.534)

=
1

2
log

|Σ−1/2KΣ−1/2 + εI|
|Σ−1/2J−1(X|U)Σ−1/2 + εI| (5.535)

=
1

2
log

n∏

i=1

λ̃i + ε

λi + ε
(5.536)

where (5.534) comes from the maximum entropy theorem [22] and K denotes the

covariance matrix of X. In (5.536), we denote the eigenvalues of Σ−1/2KΣ−1/2

with {λ̃i}ni=1, and of Σ−1/2J−1(X|U)Σ−1/2 with {λi}ni=1. Furthermore, we have the

following lower bound on f(ε)

f(ε) = h(X +
√
εN|U)− 1

2
log
∣∣(2πe)

(
J−1(X|U) + εΣ

)∣∣ (5.537)

≥ 1

2
log

|εΣ|
|J−1(X|U) + εΣ| (5.538)

=
1

2
log

εn

|Σ−1/2J−1(X|U)Σ−1/2 + εI| (5.539)

=
1

2
log

n∏

i=1

ε

λi + ε
(5.540)
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where (5.538) comes from the fact that conditioning cannot increase entropy, and

in (5.540), we denote the eigenvalues of Σ−1/2J−1(X|U)Σ−1/2 with {λi}ni=1. Com-

parison of (5.536) and (5.540) yields

1

2
log

n∏

i=1

ε

λi + ε
≤ f(ε) ≤ 1

2
log

n∏

i=1

λ̃i + ε

λi + ε
(5.541)

Taking the limit as ε → ∞ yields limε→∞ f(ε) = 0. Combining this with the fact

that f(ε) decreases monotonically in ε yields f(0) ≥ 0, and consequently,

h(X|U) ≥ 1

2
log(2πe)n|J−1(X|U)| (5.542)

completing the proof.
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Chapter 6

Multi-receiver Wiretap Channel with Public and Confidential

Messages

6.1 Introduction

In this chapter, we study the multi-receiver wiretap channel (see Figure 6.1) with

public and confidential messages which generalizes the scenario we study in Chap-

ters 3 and 5 by incorporating public messages in addition to confidential messages.

In this model, confidential messages should be transmitted in perfect secrecy, while

there are no secrecy constraints on the public messages.

First, we consider the degraded discrete memoryless multi-receiver wiretap

channel (see Figure 6.2), and propose inner and outer bounds for its capacity region.

Although these inner and outer bounds do not match in general, there are cases

where they match, and hence, provide the capacity region. In particular, these inner

and outer bounds match when: the public message rate of the second legitimate

user (weak user) is zero, the confidential message rate of the first legitimate user

(strong user) is zero, and the rates of both of the public messages are zero. We note

that the last case corresponds to the secrecy capacity region of the degraded discrete

memoryless multi-receiver wiretap channel which was already obtained in Chapter 3.

Second, we consider the general, not necessarily degraded, discrete memoryless
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Figure 6.1: Multi-receiver wiretap channel.
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Ŵs1, Ŵp1 Ŵs2, Ŵp2 Ws1,Ws2

Eavesdropper

Figure 6.2: Degraded multi-receiver wiretap channel.

multi-receiver wiretap channel, and propose an inner bound for its capacity region by

using Marton’s inner bound [11], superposition coding, rate-splitting and binning.

This inner bound generalizes the inner bound we proposed for the degraded case by

using Marton’s coding.

Third, we consider the degraded Gaussian MIMO instance of this channel

model, and evaluate the inner and outer bounds we proposed for the degraded dis-

crete memoryless case. In particular, we show the sufficiency of jointly Gaussian

auxiliary random variables and channel input to exhaust the inner and outer bounds,

by using our methodology proposed in Chapter 5 to evaluate the single-letter ex-

pressions for vector Gaussian models. Similar to the degraded discrete memoryless

case, under the conditions listed for the degraded discrete memoryless case, these
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inner and outer bounds match for the degraded MIMO channel as well, providing

the capacity region.

Finally, we consider the general, not necessarily degraded, Gaussian MIMO

multi-receiver wiretap channel. We evaluate the achievable scheme we proposed for

the general discrete memoryless channel by using dirty-paper coding [12], and obtain

an inner bound for the capacity region of the general Gaussian MIMO channel.

6.2 Discrete Memoryless Multi-receiver Wiretap Channels

Discrete memoryless multi-receiver wiretap channels consist of a transmitter, two

legitimate users, and an eavesdropper. The channel is memoryless with a transition

probability p(y1, y2, z|x), where X ∈ X is the channel input, and Y1 ∈ Y1, Y2 ∈

Y2, Z ∈ Z denote the channel outputs of the first legitimate user, the second legit-

imate user, and the eavesdropper, respectively. We consider the scenario in which,

the transmitter sends a pair of public and confidential messages to each legitimate

user. While there are no secrecy constraints on the public messages, the confidential

messages need to be transmitted in perfect secrecy. We call the channel model aris-

ing from this scenario the multi-receiver wiretap channel with public and confidential

messages.

An (n, 2nRp1 , 2nRs1 , 2nRp2 , 2nRs2) code for this channel consists of four message

sets, Wp1 = {1, . . . , 2nRp1}, Ws1 = {1, . . . , 2nRs1}, Wp2 = {1, . . . , 2nRp2}, Ws2 =

{1, . . . , 2nRs2}, one encoder at the transmitter f : Wp1 ×Ws1 ×Wp2 ×Ws2 → X n,

and one decoder at each legitimate user gj : Ynj → Wpj ×Wsj, for j = 1, 2. The
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probability of error is defined as P n
e = max{P n

e,1, P
n
e,2}, where P n

e,j = Pr[gj(Y
n
j ) 6=

(Wpj,Wsj)], for j = 1, 2, and Wp1,Ws1,Wp2,Ws2 are uniformly distributed random

variables inWp1,Ws1,Wp2,Ws2, respectively. A rate tuple (Rp1, Rs1, Rp2, Rs2) is said

to be achievable if there exists an (n, 2nRp1 , 2nRs1 , 2nRp2 , 2nRs2) code which satisfies

limn→∞ P
n
e = 0 and1

lim
n→∞

1

n
I(Ws1,Ws2;Zn) = 0 (6.1)

The capacity region of the multi-receiver wiretap channel with public and

confidential messages, C, is defined as the convex closure of all achievable rate tuples

(Rp1, Rs1, Rp2, Rs2).

6.2.1 Degraded Channels

The degraded multi-receiver wiretap channel satisfies the following Markov chain

X → Y1 → Y2 → Z (6.2)

We first present an inner bound for C in the following theorem.

Theorem 6.1 An achievable rate region, denoted by Rin, for the multi-receiver

wiretap channel with public and confidential messages is given by the union of rate

1We note that (6.1) implies limn→∞(1/n)I(Wsj ;Z
n) = 0, j = 1, 2.

338



tuples (Rp1, Rs1, Rp2, Rs2) satisfying

Rs2 ≤ I(U ;Y2)− I(U ;Z) (6.3)

Rs1 +Rs2 ≤ I(U ;Y2) + I(X;Y1|U)− I(X;Z) (6.4)

Rp2 +Rs2 ≤ I(U ;Y2) (6.5)

Rs1 +Rp2 +Rs2 ≤ I(U ;Y2) + I(X;Y1|U)− I(X;Z|U) (6.6)

Rp1 +Rs1 +Rp2 +Rs2 ≤ I(U ;Y2) + I(X;Y1|U) (6.7)

where (U,X) satisfy the following Markov chain

U → X → Y1 → Y2 → Z (6.8)

The achievable rate region given by Theorem 6.1 can be obtained from The-

orem 6.3, which will be introduced in the next section. The achievable rate region

in Theorem 6.1 can be shown by using superposition coding and binning. Superpo-

sition coding enables us to transmit messages of each user at a different layer, and

binning enables us to ensure the protection of the confidential messages from the

eavesdropper.

Now, we introduce the following outer bound for the capacity region of the

degraded discrete memoryless multi-receiver wiretap channel with public and confi-

dential messages.

Theorem 6.2 The capacity region of the degraded multi-receiver wiretap channel

with public and confidential messages is contained in Rout that is composed of rate
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tuples (Rp1, Rs1, Rp2, Rs2) satisfying

Rs2 ≤ I(U ;Y2)− I(U ;Z) (6.9)

Rs1 +Rs2 ≤ I(U ;Y2) + I(X;Y1|U)− I(X;Z) (6.10)

Rp2 +Rs2 ≤ I(U ;Y2) (6.11)

Rp1 +Rs1 +Rp2 +Rs2 ≤ I(U ;Y2) + I(X;Y1|U) (6.12)

for some (U,X) such that U,X exhibit the following Markov chain

U → X → Y1 → Y2 → Z (6.13)

The proof of Theorem 6.2 is given in Appendix 6.5.1.

We note that the inner bound in Theorem 6.1 and the outer bound in Theo-

rem 6.2 do not match in general. In fact, in Section 6.3.1, we provide an example

where the outer bound strictly includes the inner bound, i.e., there are rate tuples

which are included in Rout, but not in Rin. However, there are cases for which the

exact capacity region can be obtained. First, we note that the inner bound in The-

orem 6.1 and the outer bound in Theorem 6.2 match when the confidential message

rate of the first legitimate user is zero, i.e., Rs1 = 0.

Corollary 6.1 The capacity region of the degraded multi-receiver wiretap channel

without the first legitimate user’s confidential message is given by the union of rate
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triples (Rp1, Rp2, Rs2) satisfying

Rs2 ≤ I(U ;Y2)− I(U ;Z) (6.14)

Rs2 +Rp2 ≤ I(U ;Y2) (6.15)

Rp1 +Rp2 +Rs2 ≤ I(U ;Y2) + I(X;Y1|U) (6.16)

where U,X exhibit the following Markov chain

U → X → Y1 → Y2 → Z (6.17)

Corollary 6.1 can be proved by setting Rs1 = 0 in both Theorem 6.1 and

Theorem 6.2 and eliminating the redundant bounds.

Next, we note that the inner bound in Theorem 6.1 and the outer bound in

Theorem 6.2 match when the public message rate of the second legitimate user is

zero, i.e., Rp2 = 0.

Corollary 6.2 The capacity region of the degraded multi-receiver wiretap channel

without the second legitimate user’s public message is given by the union of rate

triples (Rp1, Rs1, Rs2) satisfying

Rs2 ≤ I(U ;Y2)− I(U ;Z) (6.18)

Rs1 +Rs2 ≤ I(U ;Y2) + I(X;Y1|U)− I(X;Z) (6.19)

Rp1 +Rs1 +Rs2 ≤ I(U ;Y2) + I(X;Y1|U) (6.20)
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where U,X exhibit the following Markov chain

U → X → Y1 → Y2 → Z (6.21)

Corollary 6.2 can be proved by setting Rp2 = 0 in both Theorem 6.1 and

Theorem 6.2 and eliminating the redundant bounds.

Corollary 6.2 also implies that the inner bound in Theorem 6.1 and the outer

bound in Theorem 6.2 match on the secrecy capacity region of the degraded multi-

receiver wiretap channel (that was obtained in Corollary 3.1 of Chapter 3, and in

[23]), i.e., when the rates of both public messages Rp1, Rp2 are set to zero:

Corollary 6.3 The secrecy capacity region of the degraded multi-receiver wiretap

channel is given by the union of rate pairs (Rs1, Rs2) satisfying

Rs2 ≤ I(U ;Y2)− I(U ;Z) (6.22)

Rs1 +Rs2 ≤ I(U ;Y2) + I(X;Y1|U)− I(X;Z) (6.23)

where U,X exhibit the following Markov chain

U → X → Y1 → Y2 → Z (6.24)

So far, we provided examples where the inner and outer bounds match when

one of the rates is zero. Next, we provide an example where the inner and outer

bounds match when none of the rates is zero. To this end, we express the inner and

342



the outer bounds by using hyperplanes that are tangent to them:

Lin = max
(Rp1,Rs1,Rp2,Rs2)∈Rin

µp1Rp1 + µs1Rs1 + µp2Rp2 + µs2Rs2 (6.25)

Lout = max
(Rp1,Rs1,Rp2,Rs2)∈Rout

µp1Rp1 + µs1Rs1 + µp2Rp2 + µs2Rs2 (6.26)

Assume that the following condition holds:

µs2 > max(µs1, µp2) ≥ min(µs1, µp2) > µp1 (6.27)

µs2 + µp1 > µs1 + µp2 (6.28)

Under these conditions, we have

Lout = max
(Rp1,Rs1,Rp2,Rs2)∈Rout

µp1(Rp1 +Rs1 +Rp2 +Rs2) + (µs1 − µp1)(Rs1 +Rs2)

+ (µp2 − µp1)(Rp2 +Rs2) + (µs2 + µp1 − µs1 − µp2)Rs2 (6.29)

= max
(U,X)∈F

µp1
[
I(U ;Y2) + I(X;Y1|U)

]

+ (µs1 − µp1)
[
I(U ;Y2) + I(X;Y1|U)− I(X;Z)

]

+ (µp2 − µp1)I(U ;Y2) + (µs2 + µp1 − µs1 − µp2)
[
I(U ;Y2)− I(U ;Z)

]

(6.30)

= max
(U,X)∈F

µp1I(X;Z|U) + µs1
[
I(X;Y1|U)− I(X;Z|U)

]
+ µp2I(U ;Z)

+ µs2
[
I(U ;Y2)− I(U ;Z)

]
(6.31)

= Lin (6.32)
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where the set F is given by the union of (U,X) pairs that satisfy the Markov chain

in (6.13), and (6.31) follows from the fact (R∗p1, R
∗
s1, R

∗
p2, R

∗
s2) ∈ Rin attains (6.32),

and (R∗p1, R
∗
s1, R

∗
p2, R

∗
s2) is given by

(R∗p1, R
∗
s1) =

(
I(X;Z|U), I(X;Y1|U)− I(X;Z|U)

)
(6.33)

(R∗p2, R
∗
s2) =

(
I(U ;Z), I(U ;Y2)− I(U ;Z)

)
(6.34)

Hence, this example shows that there are parts of the capacity region where none

of the rates is zero, and the inner and outer bounds match.

Next, we provide an example where the inner bound is strictly contained in

the outer bound, i.e., there are rate tuples that are inside the outer bound, but

outside the inner bound. To provide such an example, we again use the alternative

descriptions of the inner and outer bounds by means of tangent hyperplanes as given

by (6.25) and (6.26), respectively. We assume that the following condition holds

µs1 > µp2 > µp1 > µs2 (6.35)

Under this condition, we have

Lout ≥ max
(U,X)∈F

µp1
[
I(X;Z)−min(I(U ;Y2), I(X;Z))

]
+ µp2 min(I(U ;Y2), I(X;Z))

+ µs1
[
I(U ;Y2) + I(X;Y1|U)− I(X;Z)

]
(6.36)

Lin = max
(U,X)∈F

µp1I(X;Z|U) + µp2I(U ;Z) + µs1
[
I(U ;Y2) + I(X;Y1|U)− I(X;Z)

]

(6.37)
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which can be shown by following the analysis in (6.29)-(6.32). The set F contains

(U,X) pairs that satisfy the Markov chain in (6.13). Using (6.36) and (6.37), we

have

Lout − Lin ≥ (µp2 − µp1) min(I(U ;Y2|Z), I(X;Z|U)) (6.38)

where the right hand-side of (6.38) can be strictly positive for certain channel models.

In particular, for the degraded Gaussian model we consider in Section 6.3.1, one

can find (U,X) such that the right hand-side of (6.38) is strictly positive. This

observation implies that the outer bound strictly contains the inner bound.

6.2.2 General Channels

We now consider the general, not necessarily degraded, discrete memoryless multi-

receiver wiretap channel with public and confidential messages. We propose an

inner bound for the capacity region of the general discrete memoryless multi-receiver

wiretap channel as follows.

Theorem 6.3 An achievable rate region for the discrete memoryless multi-receiver

wiretap channel with public and confidential messages is given by the union of rate

tuples (Rp1, Rs1, Rp2, Rs2) satisfying

Rs1 ≤ min
j=1,2

I(U ;Yj|Q) + I(V1;Y1|U)− I(U, V1;Z|Q) (6.39)

Rs2 ≤ min
j=1,2

I(U ;Yj|Q) + I(V2;Y2|U)− I(U, V2;Z|Q) (6.40)
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Rs1 +Rs2 ≤ min
j=1,2

I(U ;Yj|Q) + I(V1;Y1|U) + I(V2;Y2|U)− I(V1;V2|U)

− I(U, V1, V2;Z|Q) (6.41)

Rs1 +Rp1 ≤ min
j=1,2

I(U ;Yj) + I(V1;Y1|U) (6.42)

Rs2 +Rp2 ≤ min
j=1,2

I(U ;Yj) + I(V2;Y2|U) (6.43)

Rs1 +Rp1 +Rs2 ≤ min
j=1,2

I(U ;Yj) + I(V1;Y1|U) + I(V2;Y2|U)− I(V2;Z|U)

(6.44)

Rs1 +Rp1 +Rs2 ≤ min
j=1,2

I(U ;Yj) + 2I(V1;Y1|U) + I(V2;Y2|U)− I(V1;V2|U)

− I(V1, V2;Z|U) (6.45)

Rs1 +Rs2 +Rp2 ≤ min
j=1,2

I(U ;Yj) + I(V1;Y1|U) + I(V2;Y2|U)

− I(V1;Z|U) (6.46)

Rs1 +Rs2 +Rp2 ≤ min
j=1,2

I(U ;Yj) + I(V1;Y1|U) + 2I(V2;Y2|U)

− I(V1;V2|U)− I(V1, V2;Z|U) (6.47)

Rs1 +Rp1 +Rs2 +Rp2 ≤ min
j=1,2

I(U ;Yj) + I(V1;Y1|U) + I(V2;Y2|U)

− I(V1;V2|U) (6.48)

0 ≤ min
j=1,2

I(U ;Yj|Q)− I(U ;Z|Q) (6.49)

0 ≤ I(V1;Y1|U)− I(V1;Z|U) (6.50)

0 ≤ I(V2;Y2|U)− I(V2;Z|U) (6.51)

0 ≤ I(V1;Y1|U) + I(V2;Y2|U)− I(V1;V2|U)

− I(V1, V2;Z|U) (6.52)
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for some Q,U, V1, V2 such that

p(q, u, v1, v2, x, y1, y2, z) = p(q, u)p(v1, v2, x|u)p(y1, y2, z|x) (6.53)

The proof of Theorem 6.3 is given in Appendix 6.5.2. We note that if one sets

Q = φ, V2 = U, V1 = X in Theorem 6.3, the achievable rate region in Theorem 6.3

reduces to the one provided in Theorem 6.1. Thus, the achievable scheme in The-

orem 6.3 can be seen as a generalization of the achievable scheme in Theorem 6.1,

where we achieve this generalization by using Marton’s coding and rate-splitting

in addition to the superposition coding and binning that were already used for the

achievable scheme in Theorem 6.1.

Next, we provide an outline of the achievable scheme in Theorem 6.3. In

this achievable scheme, we first divide each public message Wpj into three parts as

W 1
pj,W

2
pj,W

3
pj, where the rates of the messagesW 1

pj,W
2
pj,W

3
pj are given byR1

pj, R
2
pj, R

3
pj,

respectively, and Rpj = R1
pj +R2

pj +R3
pj. Similarly, we divide each confidential mes-

sage Wsj into two parts as W 1
sj,W

2
sj, where the rates of the messages W 1

sj,W
2
sj are

given by R1
sj, R

2
sj, respectively, and Rsj = R1

sj + R2
sj. The first parts of the public

messages, i.e., W 1
p1 and W 1

p2, are sent through the sequences generated by Q. The

second parts of the public messages, i.e., W 2
p1 and W 2

p2, and the first parts of the

confidential messages, i.e., W 1
s1 and W 1

s2, are sent through the sequences generated

by U . Both legitimate receivers decode these sequences, and hence, each legitimate

receiver decodes the parts of the other legitimate user’s public and confidential mes-

sages. The last parts of each public message and each confidential message, i.e.,
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W 3
pj and W 2

sj, are encoded by the sequences generated through Vj. This encoding

is performed by using Marton’s coding [11]. Each legitimate receiver, after decod-

ing Qn and Un, decodes the sequences V n
j . The details of the proof is given in

Appendix 6.5.2.

6.3 Gaussian MIMO Multi-receiver Wiretap Channels

Here, we consider the Gaussian MIMO multi-receiver wiretap channel which is de-

fined by

Yj = X + Nj, j = 1, 2 (6.54)

Z = X + NZ (6.55)

where the channel input X is subject to a covariance constraint

E
[
XX>

]
� S (6.56)

where S � 0 and N1,N2,NZ are zero-mean Gaussian random vectors with covari-

ance matrices Σ1,Σ2,ΣZ , respectively.

In Section 6.3.1, we consider degraded Gaussian MIMO multi-receiver wiretap

channels for which the noise covariance matrices Σ1,Σ2,ΣZ satisfy the following

order

0 ≺ Σ1 � Σ2 � ΣZ (6.57)

348



In a multi-receiver wiretap channel, since the capacity region depends only on the

conditional marginal distributions of the transmitter-receiver links, but not on the

entire joint distribution of the channel, the correlations among N1,N2,NZ do not

affect the capacity region. Thus, without changing the corresponding capacity re-

gion, we can adjust the correlation structure among these noise vectors to ensure

that they satisfy the Markov chain

X→ Y1 → Y2 → Z (6.58)

which is always possible because of our assumption about the covariance matrices

in (6.57).

6.3.1 Degraded Channels

We first provide an inner bound for the capacity region of the degraded Gaussian

MIMO multi-receiver wiretap channel with public and confidential messages by using

Theorem 6.1. The corresponding achievable rate region is stated in the following

theorem.

Theorem 6.4 An achievable rate region for the degraded Gaussian MIMO multi-

receiver wiretap channel with public and confidential messages is given by the union

of rate tuples (Rp1, Rs1, Rp2, Rs2) satisfying

Rs2 ≤
1

2
log
|S + Σ2|
|K + Σ2|

− 1

2
log
|S + ΣZ |
|K + ΣZ |

(6.59)
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Rs1 +Rs2 ≤
1

2
log
|S + Σ2|
|K + Σ2|

+
1

2
log
|K + Σ1|
|Σ1|

− 1

2
log
|S + ΣZ |
|ΣZ |

(6.60)

Rs2 +Rp2 ≤
1

2
log
|S + Σ2|
|K + Σ2|

(6.61)

Rs1 +Rs2 +Rp2 ≤
1

2
log
|S + Σ2|
|K + Σ2|

+
1

2
log
|K + Σ1|
|Σ1|

− 1

2
log
|K + ΣZ |
|ΣZ |

(6.62)

Rs1 +Rs2 +Rp1 +Rp2 ≤
1

2
log
|S + Σ2|
|K + Σ2|

+
1

2
log
|K + Σ1|
|Σ1|

(6.63)

where K is a positive semi-definite matrix satisfying K � S.

This achievable rate region given in Theorem 6.4 can be obtained by evaluating

the achievable rate region in Theorem 6.1 for the degraded Gaussian MIMO multi-

receiver wiretap channel by using the following selection for U,X: i) U is a zero-mean

Gaussian random vector with covariance matrix S−K, ii) X = U+U ′ where U ′ is a

zero-mean Gaussian random vector with covariance matrix K, and is independent of

U . We note that besides this jointly Gaussian (U,X) selection, there might be other

possible (U,X) selections which may yield a larger region than the one obtained

by using jointly Gaussian (U,X). However, we show that jointly Gaussian (U,X)

selection is sufficient to evaluate the achievable rate region in Theorem 6.1 for the

degraded Gaussian MIMO multi-receiver wiretap channel. In other words, jointly

Gaussian (U,X) selection exhausts the achievable rate region in Theorem 6.1 for the

degraded Gaussian MIMO multi-receiver wiretap channel. This sufficiency result is

stated in the following theorem.
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Theorem 6.5 For the degraded Gaussian MIMO multi-receiver wiretap channel,

the achievable rate region in Theorem 6.1 is exhausted by jointly Gaussian (U,X).

In particular, for any non-Gaussian (U,X), there exists a Gaussian (UG,XG) which

yields a larger region than the one obtained by using the non-Gaussian (U,X).

Next, we provide an outer bound for the capacity region of the degraded

Gaussian MIMO multi-receiver wiretap channel. This outer bound can be obtained

by evaluating the outer bound given in Theorem 6.2 for the degraded Gaussian

MIMO multi-receiver wiretap channel. This evaluation is tantamount to finding the

optimal (U,X) which exhausts the outer bound in Theorem 6.2 for the degraded

Gaussian MIMO multi-receiver wiretap channel. We show that jointly Gaussian

(U,X) is sufficient to exhaust the outer bound in Theorem 6.2 for the degraded

Gaussian MIMO channel. The corresponding outer bound is stated in the following

theorem.

Theorem 6.6 The capacity region of the degraded Gaussian MIMO multi-receiver

wiretap channel is contained in the union of rate tuples (Rp1, Rs1, Rp2, Rs2) satisfying

Rs2 ≤
1

2
log
|S + Σ2|
|K + Σ2|

− 1

2
log
|S + ΣZ |
|K + ΣZ |

(6.64)

Rs1 +Rs2 ≤
1

2
log
|S + Σ2|
|K + Σ2|

+
1

2
log
|K + Σ1|
|Σ1|

− 1

2
log
|S + ΣZ |
|ΣZ |

(6.65)

Rs2 +Rp2 ≤
1

2
log
|S + Σ2|
|K + Σ2|

(6.66)

Rs1 +Rs2 +Rp1 +Rp2 ≤
1

2
log
|S + Σ2|
|K + Σ2|

+
1

2
log
|K + Σ1|
|Σ1|

(6.67)
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where K is a positive semi-definite matrix satisfying K � S.

The proofs of Theorem 6.5 and Theorem 6.6 are given in Appendix 6.5.4. We

prove Theorem 6.5 and Theorem 6.6 by using our methodology that was proposed

in Chapter 5 to evaluate single-letter expressions for vector Gaussian models. In

particular, to prove Theorem 6.5, we consider the region in Theorem 6.1, and show

that for any non-Gaussian (U,X), there exists a Gaussian (UG,XG) which yields a

larger region than the one that is obtained by evaluating the region in Theorem 6.1

with the non-Gaussian (U,X). We note that this proof of Theorem 6.5 implies

the proof of Theorem 6.6. In particular, since the region in Theorem 6.1 includes

all the constraints involved in the outer bound given in Theorem 6.2, the proof

of Theorem 6.5 reveals that for any non-Gaussian (U,X), there exists a Gaussian

(UG,XG) which yields a larger region than the one that is obtained by evaluating

the region in Theorem 6.2 with the non-Gaussian (U,X).

The inner bound in Theorem 6.4 and the outer bound in Theorem 6.6 do not

match in general. However, similar to the discrete memoryless case in Section 6.2.1,

here also we can specialize the inner and outer bounds for the cases i) Rs1 = 0, ii)

Rp2 = 0, and iii) Rp1 = Rp2 = 0, where they match; yielding the capacity region.

These three cases correspond to the extension of Corollaries 6.1, 6.2, 6.3 to the

degraded Gaussian MIMO model. Finally, we note that the case Rp1 = Rp2 = 0

gives us the secrecy capacity region of the degraded Gaussian MIMO model, and in

fact, the secrecy capacity region of the general, not necessarily degraded, Gaussian

MIMO model was already obtained in Chapter 5.
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6.3.2 General Channels

Here we consider the general, i.e., not necessarily degraded, Gaussian MIMO multi-

receiver wiretap channel with public and confidential messages, and propose an inner

bound for the capacity region of the general Gaussian MIMO multi-receiver wiretap

channel as follows.

Theorem 6.7 An achievable rate region for the general Gaussian MIMO multi-

receiver wiretap channel with public and confidential messages is given by

conv (R12(K0,K1,K2) ∪R21(K0,K1,K2)) (6.68)

where R21(K0,K1,K2) is given by the union of rate tuples (Rp1, Rs1, Rp2, Rs2) sat-

isfying

Rs1 ≤ min
j=1,2

1

2
log
|K0 + K1 + K2 + Σj|
|K1 + K2 + Σj|

+
1

2
log
|K1 + Σ1|
|Σ1|

− 1

2
log
|K0 + K1 + K2 + ΣZ |
|K1 + K2 + ΣZ |

− 1

2
log
|K1 + ΣZ |
|ΣZ |

(6.69)

Rs2 ≤ min
j=1,2

1

2
log
|K0 + K1 + K2 + Σj|
|K1 + K2 + Σj|

+
1

2
log
|K1 + K2 + Σ2|
|K1 + Σ2|

− 1

2
log
|K0 + K1 + K2 + ΣZ |

|K1 + ΣZ |
(6.70)

Rs1 +Rs2 ≤ min
j=1,2

1

2
log
|K0 + K1 + K2 + Σj|
|K1 + K2 + Σj|

+
1

2
log
|K1 + K2 + Σ2|
|K1 + Σ2|

+
1

2
log
|K1 + Σ1|
|Σ1|

− 1

2
log
|K0 + K1 + K2 + ΣZ |

|ΣZ |
(6.71)

Rs1 +Rp1 ≤ min
j=1,2

1

2
log

|S + Σj|
|K1 + K2 + Σj|

+
1

2
log
|K1 + Σ1|
|Σ1|

(6.72)
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Rs2 +Rp2 ≤ min
j=1,2

1

2
log

|S + Σj|
|K1 + K2 + Σj|

+
1

2
log
|K1 + K2 + Σ2|
|K1 + Σ2|

(6.73)

Rs1 +Rp1 +Rs2 ≤ min
j=1,2

1

2
log

|S + Σj|
|K1 + K2 + Σj|

+
1

2
log
|K1 + Σ1|
|Σ1|

+
1

2
log
|K1 + K2 + Σ2|
|K1 + Σ2|

− 1

2
log
|K1 + K2 + ΣZ |
|K1 + ΣZ |

(6.74)

Rs1 +Rs2 +Rp2 ≤ min
j=1,2

1

2
log

|S + Σj|
|K1 + K2 + Σj|

+
1

2
log
|K1 + K2 + Σ2|
|K1 + Σ2|

+
1

2
log
|K1 + Σ1|
|Σ1|

− 1

2
log
|K1 + ΣZ |
|ΣZ |

(6.75)

Rs1 +Rp1 +Rs2 +Rp2 ≤ min
j=1,2

1

2
log

|S + Σj|
|K1 + K2 + Σj|

+
1

2
log
|K1 + K2 + Σ2|
|K1 + Σ2|

+
1

2
log
|K1 + Σ1|
|Σ1|

(6.76)

for some positive semi-definite matrices K0,K1,K2 satisfying K0 + K1 + K2 � S.

R12(K0,K1,K2) can be obtained from R21(K0,K1,K2) by swapping the subscripts

1 and 2.

The proof of Theorem 6.7 is given in Appendix 6.5.5. We obtain Theorem 6.7

by evaluating the achievable rate region given in Theorem 6.3 with jointly Gaus-

sian (Q,U, V1, V2,X) having a specific correlation structure. In particular, Q,U are

selected in accordance with superposition coding, and V1, V2 are encoded by using

dirty-paper encoding [12].

We note that the achievable rate region in Theorem 6.4 can be obtained from

Theorem 6.7 by considering the region R21(K0,K1,K2) with K2 = φ,K1 = K,S =

K0 + K1, and eliminating the redundant bounds from the corresponding region.
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6.4 Conclusions

In this chapter, we study the multi-receiver wiretap channel with public and confi-

dential messages. First, we consider the degraded discrete memoryless case as well as

its MIMO instance. For the degraded case, we obtain inner and outer bounds which

match under certain conditions providing the capacity region. Second, we study the

general, not necessarily degraded, channels (both discrete memoryless channel and

its MIMO instance), and obtain an inner bound for their capacity region.

6.5 Appendix

6.5.1 Proof of Theorem 6.2

We define the following auxiliary random variables

Ui = Ws2Wp2Y
i−1

1 Zn
i+1, i = 1, . . . , n (6.77)

which satisfy the Markov chains Ui → Xi → Y1i → Y2i → Zi,∀i, since the channel is

degraded and memoryless. For any (n, 2nRp1 , 2nRs1 , 2nRp2 , 2nRs2) code achieving the

rate tuple (Rp1, Rs1, Rp2, Rs2), we have

H(Wsj,Wpj|Y n
j ) ≤ nεn, j = 1, 2 (6.78)

I(Ws1,Ws2;Zn) ≤ nγn (6.79)
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where εn → 0, γn → 0 as n → ∞. Equation (6.78) is due to Fano’s lemma, and

(6.79) is due to the perfect secrecy requirement in (6.1). We note that (6.79) implies

the following

H(Ws1,Ws2) ≤ H(Ws1,Ws2,Wp1,Wp2|Zn) + nγn (6.80)

We introduce the following lemma which follows from Csiszar-Korner sum iden-

tity [3, Lemma 7].

Lemma 6.1

I(W ;T n1 |Q)− (W ;T n2 |Q)

=
n∑

i=1

I(W ;T1i|Q, T i−1
1 , T n2,i+1)− I(W ;T2i|Q, T i−1

1 , T n2,i+1) (6.81)

First, we obtain an outer bound for Rs2 as follows

nRs2 ≤
n∑

i=1

I(Ws2;Y2i|Y i−1
2 , Zn

i+1)− I(Ws2;Zi|Y i−1
2 , Zn

i+1) + n(εn + γn) (6.82)

≤
n∑

i=1

I(Ws2,Wp2, Y
i−1

2 , Zn
i+1, Y

i−1
1 ;Y2i)− I(Ws2,Wp2, Y

i−1
2 , Zn

i+1, Y
i−1

1 ;Zi)

+ n(εn + γn) (6.83)

=
n∑

i=1

I(Ui;Y2i)− I(Ui;Zi) + n(γn + εn) (6.84)
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where (6.82) comes from the converse proof for the secrecy capacity of wiretap

channels in [3], and (6.83)-(6.84) come from the following Markov chains

Ws2,Wp2, Y
i−1

2 , Zn
i+1, Y

i−1
1 → Y2i →Zi (6.85)

Ws2,Wp2, Z
n
i , Y2i → Y i−1

1 →Y i−1
2 (6.86)

respectively, which follow from the fact that the channel is degraded and memoryless.

Next, we obtain an outer bound for Rs1 +Rs2 as follows

n(Rs1 +Rs2) ≤ H(Ws1,Wp1,Ws2,Wp2|Zn) + nγn (6.87)

≤ I(Ws1,Wp1;Y n
1 |Ws2,Wp2)− I(Ws1,Wp1;Zn|Ws2,Wp2) + I(Ws2,Wp2;Y n

2 )

− I(Ws2,Wp2;Zn) + n(γn + 2εn) (6.88)

≤ I(Ws1,Wp1;Y n
1 |Ws2,Wp2)− I(Ws1,Wp1;Zn|Ws2,Wp2)

+
n∑

i=1

I(Ui;Y2i)− I(Ui;Zi) + n(γn + 2εn) (6.89)

=
n∑

i=1

I(Ws1,Wp1;Y1i|Ui)− I(Ws1,Wp1;Zi|Ui) + I(Ui;Y2i)− I(Ui;Zi)

+ n(γn + 2εn) (6.90)

≤
n∑

i=1

I(Xi;Y1i|Ui) + I(Ui;Y2i)− I(Xi;Zi) + n(γn + 2εn) (6.91)

where (6.87) comes from (6.80), (6.89) is due to (6.84), (6.90) comes from Lemma 6.1,

(6.91) is a consequence of the fact that the channel is memoryless and degraded.
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Next, we obtain an outer bound for Rp2 +Rs2 as follows

n(Rp2 +Rs2) ≤ I(Ws2,Wp2;Y n
2 ) + nεn (6.92)

=
n∑

i=1

I(Ws2,Wp2;Y2i|Y i−1
2 ) + nεn (6.93)

=
n∑

i=1

I(Ws2,Wp2, Y
i−1

1 , Zn
i+1;Y2i|Y i−1

2 )− I(Y i−1
1 , Zn

i+1;Y2i|Ws2,Wp2, Y
i−1

2 )

+ nεn (6.94)

≤
n∑

i=1

I(Ws2,Wp2, Y
i−1

1 , Y i−1
2 , Zn

i+1;Y2i)− I(Y i−1
1 , Zn

i+1;Y2i|Ws2,Wp2, Y
i−1

2 )

+ nεn (6.95)

=
n∑

i=1

I(Ui;Y2i)− I(Y i−1
1 , Zn

i+1;Y2i|Ws2,Wp2, Y
i−1

2 ) + nεn (6.96)

≤
n∑

i=1

I(Ui;Y2i) + nεn (6.97)

where (6.96) comes from the Markov chain in (6.86).

Finally, we obtain an outer bound for the sum rate Rp1 +Rs1 +Rp2 +Rs2. To

this end, we consider the following

n(Rp1 +Rs1) ≤ I(Wp1,Ws1;Y n
1 |Wp2,Ws2) + nεn (6.98)

=
n∑

i=1

I(Wp1,Ws1;Y1i|Wp2,Ws2, Y
i−1

1 ) + nεn (6.99)

≤
n∑

i=1

I(Wp1,Ws1, Z
n
i+1;Y1i|Wp2,Ws2, Y

i−1
1 ) + nεn (6.100)

=
n∑

i=1

I(Zn
i+1;Y1i|Wp2,Ws2, Y

i−1
1 ) + I(Wp1,Ws1;Y1i|Ui) + nεn (6.101)

≤
n∑

i=1

I(Zn
i+1;Y1i|Wp2,Ws2, Y

i−1
1 ) + I(Xi;Y1i|Ui) + nεn (6.102)
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using which and (6.96), we have

n(Rp1 +Rs1 +Rp2 +Rs2)

≤
n∑

i=1

I(Ui;Y2i)− I(Y i−1
1 , Zn

i+1;Y2i|Y i−1
2 ,Ws2,Wp2)

+ I(Zn
i+1;Y1i|Wp2,Ws2, Y

i−1
1 ) + I(Xi;Y1i|Ui) + 2nεn (6.103)

=
n∑

i=1

I(Ui;Y2i)− I(Zn
i+1;Y2i|Y i−1

2 ,Ws2,Wp2)− I(Y i−1
1 ;Y2i|Y i−1

2 ,Ws2,Wp2, Z
n
i+1)

+ I(Zn
i+1;Y1i|Wp2,Ws2, Y

i−1
1 ) + I(Xi;Y1i|Ui) + 2nεn (6.104)

=
n∑

i=1

I(Ui;Y2i)− I(Y i−1
2 ;Zi|Ws2,Wp2, Z

n
i+1)− I(Y i−1

1 ;Y2i|Y i−1
2 ,Ws2,Wp2, Z

n
i+1)

+ I(Y i−1
1 ;Zi|Wp2,Ws2, Z

n
i+1) + I(Xi;Y1i|Ui) + 2nεn (6.105)

=
n∑

i=1

I(Ui;Y2i)− I(Y i−1
2 ;Zi|Ws2,Wp2, Z

n
i+1)− I(Y i−1

1 ;Y2i|Y i−1
2 ,Ws2,Wp2, Z

n
i+1)

+ I(Y i−1
2 , Y i−1

1 ;Zi|Wp2,Ws2, Z
n
i+1) + I(Xi;Y1i|Ui) + 2nεn (6.106)

=
n∑

i=1

I(Ui;Y2i)− I(Y i−1
1 ;Y2i|Y i−1

2 ,Ws2,Wp2, Z
n
i+1)

+ I(Y i−1
1 ;Zi|Wp2,Ws2, Z

n
i+1, Y

i−1
2 ) + I(Xi;Y1i|Ui) + 2nεn (6.107)

=
n∑

i=1

I(Ui;Y2i)− I(Y i−1
1 ;Y2i, Zi|Y i−1

2 ,Ws2,Wp2, Z
n
i+1)

+ I(Y i−1
1 ;Zi|Wp2,Ws2, Z

n
i+1, Y

i−1
2 ) + I(Xi;Y1i|Ui) + 2nεn (6.108)

=
n∑

i=1

I(Ui;Y2i)− I(Y i−1
1 ;Y2i|Y i−1

2 ,Ws2,Wp2, Z
n
i+1, Zi) + I(Xi;Y1i|Ui) + 2nεn

(6.109)

where (6.105) comes from Csiszar-Korner sum identity [3, Lemma 7], (6.106) is due

to the Markov chain in (6.86), and (6.108) is a consequence of the Markov chain in

359



(6.85). Equation (6.109) implies

n(Rp1 +Rs1 +Rp2 +Rs2) ≤
n∑

i=1

I(Ui;Y2i) + I(Xi;Y1i|Ui) + 2nεn (6.110)

Using (6.84), (6.91), (6.97) and (6.110), Theorem 6.2 can be concluded.

6.5.2 Proof of Theorem 6.3

We first consider a more general scenario than the scenario introduced in Sec-

tion 6.2.2, where the transmitter sends a pair of common public and confidential

messages to the legitimate users in addition to a pair of public and confidential mes-

sages intended to each legitimate user. Thus, in this case, the transmitter has the

message tuple (Wp0,Ws0,Wp1,Ws1,Wp2,Ws2), where the common public message

Wp0 and the common confidential message Ws0 are sent to both legitimate users,

and a pair of public and confidential messages (Wpj,Wsj) are sent to the jth legiti-

mate user, j = 1, 22. There is no secrecy concern on the public messages {Wpj}2
j=0

while the confidential messages {Wsj}2
j=0 need to be transmitted in perfect secrecy:

lim
n→∞

1

n
I(Ws0,Ws1,Ws2;Zn) = 0 (6.111)

Next, we prove an achievable rate region for the more general scenario we just

introduced.

2The inner bound in Theorem 6.3 can also be obtained by using rate-splitting for {Wpj ,Wsj}2j=1

as mentioned in Section 6.2.2. Here, we introduce a pair of common messages {Wp0,Ws0}, because
the corresponding scenario results in an achievable scheme that encompasses the one obtained by
using rate-splitting.

360



We fix the joint distribution

p(q, u, v1, v2, x, y1, y2, z) = p(q, u)p(v1, v2, x|u)p(y1, y2, z|x) (6.112)

Next, we divide the common public message Wp0 into two parts as Wp0 = (W̃p0,
˜̃Wp0),

where the rate of W̃p0 is R̃p0, and the rate of ˜̃Wp0 is ˜̃Rp0. We use rate-splitting for

the common public message because due to [3], we know that rate-splitting might

enhance the achievable public and confidential message rate pairs even for the single

legitimate user case.

Codebook generation:

• Generate 2nR̃p0 length-n sequences qn through p(qn) =
∏n

i=1 p(qi), and index

them as qn(w̃p0), where w̃p0 ∈ {1, . . . , 2nR̃p0}.

• For each qn(w̃p0) sequence, generate 2n( ˜̃Rp0+Rs0+∆0) length-n sequences un through

p(un|qn) =
∏n

i=1 p(ui|qi), and index them as un(w̃p0, ˜̃wp0, ws0, d0), where ˜̃wp0 ∈

{1, . . . , 2n ˜̃Rp0}, ws0 ∈ {1, . . . , 2nRs0}, d0 ∈ {1, . . . , 2n∆0}.

• For each un(w̃p0, ˜̃wp0, ws0, d0) sequence, generate 2n(Rpj+Rsj+∆j+Lj) length-n se-

quences vnj through p(vnj |un) =
∏n

i=1 p(vji|ui), and index them as

vnj (w̃p0, ˜̃wp0, ws0, d0, wpj, wsj, dj, lj) (6.113)

where wpj ∈ {1, . . . , 2nRpj}, wsj ∈ {1, . . . , 2nRsj}, dj ∈ {1, . . . , 2n∆j}, lj ∈

{1, . . . , 2nLj}.

361



Encoding:

Assume (wp0, ws0, wp1, ws1, wp2, ws2) is the message to be transmitted. Ran-

domly pick d0, d1, d2. Next, we find an (l1, l2) pair such that the corresponding

sequence tuple (qn, un, vn1 , v
n
2 ) is jointly typical. Due to mutual covering lemma [63],

if L1, L2 satisfy

L1 + L2 ≥ I(V1;V2|U) (6.114)

with high probability, there will be at least one such l1, l2 pair.

Decoding:

The jth legitimate user decodes (wp0, ws0, d0, wpj, wsj, dj) in two steps. In the

first step, it decodes (wp0, ws0, d0) by looking for the unique (qn, un) pair such that

(qn, un, ynj ) is jointly typical. In the second step, given that (wp0, ws0, d0) is decoded

correctly in the first step, the jth legitimate user decodes (wsj, wpj, dj) by looking

for the unique (qn, un, vnj ) tuple such that (qn, un, vnj , y
n
j ) is jointly typical. If the

following conditions are satisfied,

Rp0 +Rs0 + ∆0 ≤ min
j=1,2

I(U ;Yj) (6.115)

˜̃Rp0 +Rs0 + ∆0 ≤ I(U ;Y1|Q) (6.116)

Rp1 +Rs1 + ∆1 + L1 ≤ I(V1;Y1|U) (6.117)

˜̃Rp0 +Rs0 + ∆0 ≤ I(U ;Y2|Q) (6.118)

Rp2 +Rs2 + ∆2 + L2 ≤ I(V2;Y2|U) (6.119)
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both legitimate users decode their messages with vanishingly small probability of

error.

Equivocation computation:

We now show that the proposed coding scheme satisfies the perfect secrecy

requirement on the confidential messages given by (6.111). We start as follows.

H(Ws0,Ws1,Ws2|Zn) ≥ H(Ws0,Ws1,Ws2|Zn, Qn)

= H(Ws0,Ws1,Ws2,
˜̃Wp0,Wp1,Wp2, D0, D1, D2|Zn, Qn)

−H( ˜̃Wp0,Wp1,Wp2, D0, D1, D2|Zn, Qn,Ws0,Ws1,Ws2) (6.120)

= H(Ws0,Ws1,Ws2,
˜̃Wp0,Wp1,Wp2, D0, D1, D2|Qn)

− I(Ws0,Ws1,Ws2,
˜̃Wp0,Wp1,Wp2, D0, D1, D2;Zn|Qn)

−H( ˜̃Wp0,Wp1,Wp2, D0, D1, D2|Zn, Qn,Ws0,Ws1,Ws2) (6.121)

= H(Ws0,Ws1,Ws2) +H( ˜̃Wp0,Wp1,Wp2, D0, D1, D2)

− I(Ws0,Ws1,Ws2,
˜̃Wp0,Wp1,Wp2, D0, D1, D2;Zn|Qn)

−H( ˜̃Wp0,Wp1,Wp2, D0, D1, D2|Zn, Qn,Ws0,Ws1,Ws2) (6.122)

= H(Ws0,Ws1,Ws2) + n( ˜̃Rp0 +Rp1 +Rp2 + ∆0 + ∆1 + ∆2)

− I(Ws0,Ws1,Ws2,
˜̃Wp0,Wp1,Wp2, D0, D1, D2;Zn|Qn)

−H( ˜̃Wp0,Wp1,Wp2, D0, D1, D2|Zn, Qn,Ws0,Ws1,Ws2) (6.123)

≥ H(Ws0,Ws1,Ws2) + n( ˜̃Rp0 +Rp1 +Rp2 + ∆0 + ∆1 + ∆2)

− I(Ws0,Ws1,Ws2,
˜̃Wp0,Wp1,Wp2, D0, D1, D2, U

n, V n
1 , V

n
2 ;Zn|Qn)

−H( ˜̃Wp0,Wp1,Wp2, D0, D1, D2|Zn, Qn,Ws0,Ws1,Ws2) (6.124)
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= H(Ws0,Ws1,Ws2) + n( ˜̃Rp0 +Rp1 +Rp2 + ∆0 + ∆1 + ∆2)

− I(Un, V n
1 , V

n
2 ;Zn|Qn)−H( ˜̃Wp0,Wp1,Wp2, D0, D1, D2|Zn, Qn,Ws0,Ws1,Ws2)

(6.125)

≥ H(Ws0,Ws1,Ws2) + n( ˜̃Rp0 +Rp1 +Rp2 + ∆0 + ∆1 + ∆2)

− n(I(U, V1, V2;Z|Q) + γ1n)

−H( ˜̃Wp0,Wp1,Wp2, D0, D1, D2|Zn, Qn,Ws0,Ws1,Ws2) (6.126)

where (6.122)-(6.123) follow from the facts that the messages

Ws0,Ws1,Ws2,
˜̃Wp0,Wp1,Wp2, D0, D1, D2 (6.127)

are independent among themselves, uniformly distributed, and also are indepen-

dent of Qn, (6.125) stems from the fact that given the codewords (Qn, Un, V n
1 , V

n
2 ),

(Ws0,Ws1,Ws2,
˜̃Wp0,Wp1,Wp2, D0, D1, D2) and Zn are independent, (6.126) comes

from the fact that

I(Un, V n
1 , V

n
2 ;Zn|Qn) ≤ nI(U, V1, V2;Z|Q) + nγ1n (6.128)

where γ1n → 0 as n → ∞. The bound in (6.128) can be shown by following the

analysis in [64]. Next, we consider the conditional entropy term in (6.126). To this

end, we introduce the following lemma.
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Lemma 6.2 We have

H(Wp1,Wp2, D1, D2|Zn, Qn,Ws0,Ws1,Ws2,
˜̃Wp0, D0) ≤ nγ2n (6.129)

where γ2n → 0 as n→∞, if the following conditions are satisfied.

Rp1 + ∆1 + L1 +Rp2 + ∆2 + L2 ≤ I(V1, V2;Z|U) + I(V1;V2|U) (6.130)

Rp1 + ∆1 + L1 ≤ I(V1;Z, V2|U) (6.131)

Rp2 + ∆2 + L2 ≤ I(V2;Z, V1|U) (6.132)

The proof of Lemma 6.2 is given in Appendix 6.5.3. This lemma implies the follow-

ing.

Corollary 6.4 We have

H( ˜̃Wp0, D0|Zn, Qn,Ws0,Ws1,Ws2) ≤ nγ3n (6.133)

where γ3n → 0 as n→∞, if the following condition is satisfied.

˜̃Rp0 + ∆0 ≤ I(U ;Z|Q) (6.134)
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Now, we set the rates ˜̃Rp0,∆0, Rp1,∆1, L1, Rp2,∆2, L2 as follows.

˜̃Rp0 + ∆0 = I(U ;Z|Q)− ε (6.135)

L1 + L2 = I(V1;V2|U) +
ε

2
(6.136)

Rp1 + ∆1 +Rp2 + ∆2 = I(V1, V2;Z|U)− ε (6.137)

Rp1 + ∆1 + L1 < I(V1;Z, V2|U) (6.138)

Rp2 + ∆2 + L2 < I(V2;Z, V1|U) (6.139)

In view of Lemma 6.2 and Corollary 6.4, the selections of ˜̃Rp0,∆0, Rp1,∆1, L1, Rp2,

∆2, L2 in (6.135)-(6.139) imply that

H( ˜̃Wp0,Wp1,Wp2, D0, D1, D2|Zn, Qn,Ws0,Ws1,Ws2) ≤ nγ2n (6.140)

using which and (6.135)-(6.137) in (6.126), we get

H(Ws0,Ws1,Ws2|Zn) ≥ H(Ws0,Ws1,Ws2) + n( ˜̃Rp0 +Rp1 +Rp2 + ∆0 + ∆1 + ∆2)

− n(I(U, V1, V2;Z|Q) + γ1n)− nγ2n (6.141)

= H(Ws0,Ws1,Ws2)− n3ε

2
− n(γ1n + γ2n + γ3n) (6.142)

which implies that the proposed coding scheme satisfies the perfect secrecy require-

ment on the confidential messages; completing the equivocation computation.
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Hence, we show that rate tuples (Rp0, Rs0, Rp1, Rs1, Rp2, Rs2) satisfying

L1 + L2 = I(V1;V2|U) (6.143)

Rp0 +Rs0 + ∆0 ≤ min
j=1,2

I(U ;Yj) (6.144)

˜̃Rp0 +Rs0 + ∆0 ≤ min
j=1,2

I(U ;Yj|Q) (6.145)

Rp1 +Rs1 + ∆1 + L1 ≤ I(V1;Y1|U) (6.146)

Rp2 +Rs2 + ∆2 + L2 ≤ I(V2;Y2|U) (6.147)

˜̃Rp0 + ∆0 = I(U ;Z|Q) (6.148)

Rp1 + ∆1 +Rp2 + ∆2 = I(V1, V2;Z|U) (6.149)

Rp1 + ∆1 + L1 ≤ I(V1;Z, V2|U) (6.150)

Rp2 + ∆2 + L2 ≤ I(V2;Z, V1|U) (6.151)

are achievable. Next, one can obtain the achievable rate region in Theorem 6.3

by using Fourier-Motzkin elimination in conjunction with the fact that since the

common public and confidential messages Wp0,Ws0 are decoded by both users, they

can be converted into public and confidential messages (Wp1,Ws1,Wp2,Ws2) of the

legitimate users.

6.5.3 Proof of Lemma 6.2

Assume that, given (Ws0 = ws0,Ws1 = ws1,Ws2 = ws1,Wp0 = wp0), the eavesdrop-

per tries to decode Wp1, D1, L1,Wp2, D2, L2 by looking for the unique (V n
1 , V

n
2 ) such

that (qn, un, vn1 , v
n
2 , z

n) is jointly typical. There are four possible error events:
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• Ee0 = {(qn, un, vn1 , vn2 , zn) is not jointly typical for the transmitted (qn, un, vn1 , v
n
2 )},

• Eei = {(Wp1, D1, L1) = (1, 1, 1), (Wp2, D2, L2) 6= (1, 1, 1), and the correspond-

ing tuple (qn, un, vn1 , v
n
2 , z

n) is jointly typical},

• Eeii = {(Wp1, D1, L1) 6= (1, 1, 1), (Wp2, D2, L2) = (1, 1, 1), and the correspond-

ing tuple (qn, un, vn1 , v
n
2 , z

n) is jointly typical},

• Eeiii = {(Wp1, D1, L1) 6= (1, 1, 1), (Wp2, D2, L2) 6= (1, 1, 1), and the correspond-

ing tuple (qn, un, vn1 , v
n
2 , z

n) is jointly typical},

Thus, the probability of decoding error at the eavesdropper is given by

Pr[Ee] ≤ Pr[Ee0 ] + Pr[Eei ] + Pr[Eeii] + Pr[Eeiii] (6.152)

≤ ε1n + Pr[Eei ] + Pr[Eeii] + Pr[Eeiii] (6.153)

where we first use the union bound, and next the fact that Pr[Ee0 ] ≤ ε1n for some

ε1n satisfying ε1n → 0 as n → ∞, which follows from the properties of the jointly

typical sequences [22]. Next, we consider Pr[Eei ] as follows

Pr[Eei ] ≤
∑

(wp2,d2,l2) 6=(1,1,1)

Pr[(qn, un, vn1 , V
n

2 , Z
n) ∈ Anε ] (6.154)

≤
∑

(wp2,d2,l2) 6=(1,1,1)

∑

(vn2 ,z
n)∈Anε

p(vn2 |un)p(zn|un, vn1 ) (6.155)

≤
∑

(wp2,d2,l2) 6=(1,1,1)

∑

(vn2 ,z
n)∈Anε

2−n(H(V2|U)−γε)2−n(H(Z|U,V1)−γε) (6.156)

=
∑

(wp2,d2,l2) 6=(1,1,1)

|Anε |2−n(H(V2|U)−γε)2−n(H(Z|U,V1)−γε) (6.157)
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≤
∑

(wp2,d2,l2)6=(1,1,1)

2n(H(V2,Z|U,V1)+γε)2−n(H(V2|U)−γε)2−n(H(Z|U,V1)−γε) (6.158)

≤ 2n(Rp2+∆2+L2)2−n(I(V2;Z,V1|U)−3γε) (6.159)

where Anε denotes the typical set, γε is a constant that is a function of ε, and satisfies

γε → 0 as ε → 0, (6.155) is due to the joint distribution of (qn, un, vn1 , v
n
2 ), (6.156)

is due to the properties of the typical sequences [22], and (6.158) comes from the

bounds on the size of Anε [22]. Equation (6.159) implies that Pr[Eei ]→ 0 as n→∞

if the following condition is satisfied.

Rp2 + ∆2 + L2 < I(V2;Z, V1|U)− 3γε (6.160)

Similarly, we can show that Pr[Eeii] → 0 as n → ∞ if the following condition is

satisfied.

Rp1 + ∆1 + L1 < I(V1;Z, V2|U)− 3γε (6.161)

Next, we consider Pr[Eeiii] as follows

Pr[Eeiii] ≤
∑

(wp1,d1,l1)6=(1,1,1)
(wp2,d2,l2)6=(1,1,1)

Pr[(qn, un, V n
1 , V

n
2 , Z

n) ∈ Anε ] (6.162)

≤
∑

(wp1,d1,l1)6=(1,1,1)
(wp2,d2,l2)6=(1,1,1)

∑

(vn1 ,v
n
2 ,z

n)∈Anε

p(vn1 |un)p(vn2 |un)p(zn|un) (6.163)
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≤
∑

(wp1,d1,l1)6=(1,1,1)
(wp2,d2,l2)6=(1,1,1)

∑

(vn1 ,v
n
2 ,z

n)∈Anε

2−n(H(V1|U)−γε)2−n(H(V2|U)−γε)2−n(H(Z|U)−γε) (6.164)

=
∑

(wp1,d1,l1)6=(1,1,1)
(wp2,d2,l2)6=(1,1,1)

|Anε |2−n(H(V1|U)+H(V2|U)+H(Z|U)−3γε) (6.165)

≤
∑

(wp1,d1,l1)6=(1,1,1)
(wp2,d2,l2)6=(1,1,1)

2n(H(V1,V2,Z|U)+γε)2−n(H(V1|U)+H(V2|U)+H(Z|U)−3γε) (6.166)

≤ 2n(Rp1+∆1+L1+Rp2+∆2+L2)2−n(I(V1,V2;Z|U)+I(V2;V1|U)−4γε) (6.167)

where (6.163) is due to the joint distribution of (qn, un, vn1 , v
n
2 ), (6.164) stems from

the properties of the typical sequences [22], and (6.166) comes from the bounds on

the size of Anε [22]. Equation (6.167) implies that Pr[Eeiii] vanishes as n→∞ if the

following condition is satisfied.

Rp1 + ∆1 + L1 +Rp2 + ∆2 +Rp2 < I(V1, V2;Z|U) + I(V2;V1|U)− 4γε (6.168)

Thus, we show that if the rates (Rp1,∆1, L1, Rp2,∆2, L2) satisfy (6.160), (6.161),(6.168),

the eavesdropper can decode Wp1, D1, L1,Wp2, D2, L2 by using its knowledge of

(Ws0,Ws1,Ws2,Wp0), i.e., Pr[Ee] vanishes as n → ∞. In view of this fact, using

Fano’s lemma, we get

H(Wp1, D1, L1,Wp2, D2, L2|Zn, Qn,Ws0,Ws1,Ws2,Wp0, D0) ≤ nγ2n (6.169)

where γ2n → 0 as n→∞; completing the proof.
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6.5.4 Proofs of Theorems 6.5 and 6.6

First, we prove Theorem 6.5 by showing that for any (U, V,X), there exists a Gaus-

sian (UG, V G,XG) which provides a larger region. Essentially, this proof will also

yield a proof for Theorem 6.6 because the outer bound in Theorem 6.2 is defined

by the same inequalities that define the inner bound given in Theorem 6.1 except

for the inequality in (6.6). Thus, we only provide the proof of Theorem 6.5. We

also note that in this proof, we will use the methodology we devised in Chapter 5

to evaluate single-letter expressions for vector Gaussian models.

First step: We consider the bound on Rs2 given in (6.3) as follows

Rs2 ≤ I(U ; Y2)− I(U ; Z) (6.170)

= [h(Y2)− h(Z)] + [h(Z|U)− h(Y2|U)] (6.171)

≤ 1

2
log
|S + Σ2|
|S + ΣZ |

+ [h(Z|U)− h(Y2|U)] (6.172)

where (6.172) follows from the worst additive noise lemma [36, Lemma II.2]. Next,

we consider the remaining terms in (6.172) as follows

h(Z|U)− h(Y2|U) =
1

2

∫ ΣZ

Σ2

J(X + N|U)dΣN (6.173)

which follows from Lemma 5.17, and N is a Gaussian random vector with covariance

matrix ΣN satisfying Σ2 � ΣN � ΣZ . Using Lemma 5.16, we have

J−1(X + N2|U)−Σ2 � J−1(X + N|U)−ΣN � J−1(X + NZ |U)−ΣZ (6.174)
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for any ΣN satisfying Σ2 � ΣN � ΣZ , which imply

[
J−1(X + NZ |U)−ΣZ + ΣN

]−1 � J(X + N|U) �
[
J−1(X + N2|U)−Σ2 + ΣN

]−1

(6.175)

Using these inequalities in (6.173) in conjunction with Lemma 5.8, we get

1

2
log

|J−1(X + NZ |U)|
|J−1(X + NZ)−ΣZ + Σ2|

≤ h(Z|U)− h(Y2|U)

≤ 1

2
log
|J−1(X + N2|U)−Σ2 + ΣZ |

|J−1(X + N2)| (6.176)

which can be expressed as

f(0) ≤ h(Z|U)− h(Y2|U) ≤ f(1) (6.177)

where f(t) is defined as

f(t) =
1

2
log
|K1(t) + ΣZ |
|K1(t) + Σ2|

, 0 ≤ t ≤ 1 (6.178)

and K1(t) is given by

K1(t) = (1− t)
[
J−1(X + NZ |U)−ΣZ

]
+ t
[
J−1(X + N2|U)−Σ2

]
(6.179)

Since f(t) is continuous in t, due to the intermediate value theorem, there exists a
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t∗1 such that 0 ≤ t∗1 ≤ 1, and

f(t∗1) = h(Z|U)− h(Y2|U) =
1

2
log
|K1 + ΣZ |
|K1 + Σ2|

(6.180)

where K1 = K1(t∗1). Since 0 ≤ t∗1 ≤ 1, K1 satisfies

J−1(X + N2|U)−Σ2 � K1 � J−1(X + NZ |U)−ΣZ (6.181)

in view of (6.179). Moreover, we have

K1 � J−1(X + NZ |U)−ΣZ (6.182)

� Cov(X + NZ |U)−ΣZ (6.183)

� Cov(X + NZ)−ΣZ (6.184)

� S (6.185)

where (6.183) comes from Lemma 5.13 and (6.184) is due to the fact that condi-

tioning reduces the MMSE matrix in a positive semi-definite ordering sense. Thus,

in view of (6.181) and (6.185), K1 satisfies

J−1(X + N2|U)−Σ2 � K1 � S (6.186)
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Now, using (6.180) in (6.172), we get the following bound on Rs2

Rs2 ≤
1

2
log
|S + Σ2|
|K1 + Σ2|

− 1

2
log
|S + ΣZ |
|K1 + ΣZ |

(6.187)

which completes the first step of the proof.

Second step: We consider the bound on Rs1 +Rs2 given in (6.4) as follows

Rs1 +Rs2 ≤ I(U ; Y2) + I(X; Y1|U)− I(X; Z) (6.188)

= [h(Y2)− h(Z)] + [h(Y1|U)− h(Y2|U)]− 1

2
log
|Σ1|
|ΣZ |

(6.189)

≤ 1

2
log
|S + Σ2|
|S + ΣZ |

+ [h(Y1|U)− h(Y2|U)]− 1

2
log
|Σ1|
|ΣZ |

(6.190)

where (6.190) comes from the worst additive noise lemma [36, Lemma II.2]. Next,

we consider the remaining term in (6.190) as follows

h(Y2|U)− h(Y1|U) =
1

2

∫ Σ2

Σ1

J(X + N|U)dΣN (6.191)

which follows from Lemma 5.17, and N is a Gaussian random vector with covariance

matrix ΣN satisfying Σ1 � ΣN � Σ2. For any Gaussian random vector N with

ΣN � Σ2, we have

J−1(X + N|U)−ΣN � J−1(X + N2|U)−Σ2 (6.192)

� K1 (6.193)
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where (6.192) is due to Lemma 5.16, and (6.193) comes from (6.186). Equation

(6.193) implies

J(X + N|U) � (K1 + ΣN)−1, ΣN � Σ2 (6.194)

Using (6.194) in (6.191) in conjunction with Lemma 5.8, we have

h(Y2|U)− h(Y1|U) ≥ 1

2

∫ Σ2

Σ1

(K1 + ΣN)−1dΣN (6.195)

=
1

2
log
|K1 + Σ2|
|K1 + Σ1|

(6.196)

Using (6.196) in (6.190), we get

Rs1 +Rs2 ≤
1

2
log
|S + Σ2|
|K1 + Σ2|

+
1

2
log
|K1 + Σ1|
|Σ1|

− 1

2
log
|S + ΣZ |
|ΣZ |

(6.197)

which completes the second step of the proof.

Third step: We consider the bound on Rs2 +Rp2 given in (6.5) as follows

Rp2 +Rs2 ≤ I(U ; Y2) (6.198)

≤ 1

2
log |(2πe)(S + Σ2)| − h(Y2|U) (6.199)

where (6.199) comes from the maximum entropy theorem [22]. Next, we consider
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the remaining term in (6.199). Using (6.180), we have

h(Y2|U) = h(Z|U)− 1

2
log
|K1 + ΣZ |
|K1 + Σ2|

(6.200)

≥ 1

2
log |(2πe)J−1(X + NZ |U)| − 1

2
log
|K1 + ΣZ |
|K1 + Σ2|

(6.201)

≥ 1

2
log |(2πe)(K1 + ΣZ)| − 1

2
log
|K1 + ΣZ |
|K1 + Σ2|

(6.202)

=
1

2
log |(2πe)(K1 + Σ2)| (6.203)

where (6.201) is due to Lemma 5.20, and (6.202) comes from (6.182) and mono-

tonicity of | · | in positive semi-definite matrices. Using (6.203) in (6.199), we get

Rp2 +Rs2 ≤
1

2
log
|S + Σ2|
|K1 + Σ2|

(6.204)

which completes the third step of the proof.

Fourth step: We consider the bound in (6.6) as follows

Rs1 +Rp2 +Rs2 ≤ I(U ; Y2) + I(X; Y1|U)− I(X; Z|U) (6.205)

= h(Y2)− h(Y2|U) + [h(Y1|U)− h(Z|U)]− 1

2
log
|Σ1|
|ΣZ |

(6.206)

≤ 1

2
log |(2πe)(S + Σ2)| − h(Y2|U) + [h(Y1|U)− h(Z|U)]− 1

2
log
|Σ1|
|ΣZ |

(6.207)

≤ 1

2
log |(2πe)(S + Σ2)| − 1

2
log |(2πe)(K1 + Σ2)|+ [h(Y1|U)− h(Z|U)]

− 1

2
log
|Σ1|
|ΣZ |

(6.208)
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=
1

2
log
|S + Σ2|
|K1 + Σ2|

+ [h(Y1|U)− h(Y2|U)] + [h(Y2|U)− h(Z|U)]

− 1

2
log
|Σ1|
|ΣZ |

(6.209)

=
1

2
log
|S + Σ2|
|K1 + Σ2|

+ [h(Y1|U)− h(Y2|U)] +
1

2
log
|K1 + Σ2|
|K1 + ΣZ |

− 1

2
log
|Σ1|
|ΣZ |

(6.210)

≤ 1

2
log
|S + Σ2|
|K1 + Σ2|

+
1

2
log
|K1 + Σ1|
|K1 + Σ2|

+
1

2
log
|K1 + Σ2|
|K1 + ΣZ |

− 1

2
log
|Σ1|
|ΣZ |

(6.211)

=
1

2
log
|S + Σ2|
|K1 + Σ2|

+
1

2
log
|K1 + Σ1|
|Σ1|

− 1

2
log
|K1 + ΣZ |
|ΣZ |

(6.212)

where (6.207) comes from the maximum entropy theorem [22], (6.208) comes from

(6.203), (6.210) is due to (6.180), and (6.211) comes from (6.196).

Fifth step: We consider the bound in (6.7) as follows

Rp1 +Rs1 +Rp2 +Rs2 ≤ I(U ; Y2) + I(X; Y1|U) (6.213)

= h(Y2) + [h(Y1|U)− h(Y2|U)]− 1

2
log |(2πe)Σ1| (6.214)

≤ 1

2
log |(2πe)(S + Σ2)|+ [h(Y1|U)− h(Y2|U)]− 1

2
log |(2πe)Σ1| (6.215)

≤ 1

2
log |(2πe)(S + Σ2)|+ 1

2
log
|K1 + Σ1|
|K1 + Σ2|

− 1

2
log |(2πe)Σ1| (6.216)

=
1

2
log
|S + Σ2|
|K1 + Σ2|

+
1

2
log
|K1 + Σ1|
|Σ1|

(6.217)

where (6.215) comes from the maximum entropy theorem [22], and (6.216) comes

from (6.196).

Hence, we have shown that for any feasible (U,X), there exists a Gaussian

(UG,XG) which yields a larger rate region. This completes the proof.
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6.5.5 Proof of Theorem 6.7

We now obtain an alternative rate region by using the one given in Theorem 6.3,

which is more amenable for evaluation for the Gaussian MIMO channel. We note

that the following region is included in the one given by Theorem 6.3

Rs1 ≤ min
j=1,2

I(U ;Yj|Q) + I(V1;Y1|U)− I(U ;Z|Q)− I(V1;Z, V2|U)

(6.218)

Rs2 ≤ min
j=1,2

I(U ;Yj|Q) + I(V2;Y2|U)− I(U, V2;Z|Q) (6.219)

2∑

j=1

Rsj ≤ min
j=1,2

I(U ;Yj|Q) +
2∑

j=1

I(Vj;Yj|U)− I(V1;V2|U)

− I(U, V1, V2;Z|Q) (6.220)

Rs1 +Rp1 ≤ min
j=1,2

I(U ;Yj) + I(V1;Y1|U)− I(V1;V2|U) (6.221)

Rs2 +Rp2 ≤ min
j=1,2

I(U ;Yj) + I(V2;Y2|U) (6.222)

2∑

j=1

Rsj +Rp1 ≤ min
j=1,2

I(U ;Yj) +
2∑

j=1

I(Vj;Yj|U)− I(V1;V2|U)− I(V2;Z|U) (6.223)

2∑

j=1

Rsj +Rp2 ≤ min
j=1,2

I(U ;Yj) +
2∑

j=1

I(Vj;Yj|U)

− I(V1;V2|U)− I(V1;Z|U, V2) (6.224)

2∑

j=1

Rsj +Rpj ≤ min
j=1,2

I(U ;Yj) + I(V1;Y1|U) + I(V2;Y2|U)− I(V1;V2|U) (6.225)

0 ≤ min
j=1,2

I(U ;Yj|Q)− I(U ;Z|Q) (6.226)

0 ≤ min{I(V1;Y1|U)− I(V1;Z, V2|U), I(V2;Y2|U)− I(V2;Z|U)}

(6.227)
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where we can remove the constraints given by (6.226)-(6.227) without enlarging the

region given by (6.218)-(6.225). We denote the region defined by (6.218)-(6.225) by

R21. R12 can be obtained by swapping the subscripts 1 and 2 in R12. Hence, we

obtain the achievable rate region R:

R = conv (R12 ∪R21) (6.228)

We note that for the achievable rate region R21, the transmitter first encodes V n
2 ,

and then, next using the non-causal knowledge of V n
2 , encodes V n

1 , i.e., uses Gelfand-

Pinsker encoding for V n
2 .

Next, we obtain an achievable rate region for the Gaussian MIMO multi-

receiver wiretap channel with public and confidential messages. We provide this

achievable rate region by evaluating the regions R12 and R21 with a specific choice

of Q,U, V1, V2,X. In particular, to evaluate R21, we use the following selection for

Q,U, V1, V2,X:

• Q is a zero-mean Gaussian random vector with covariance matrix S −K0 −

K1−K2, where K0,K1,K2 are positive semi-definite matrices satisfying K0 +

K1 + K2 � S,

• U = Q+Q′, where Q′ is a zero-mean Gaussian random vector with covariance

matrix K0, and is independent of Q,

• V2 = U+U2, where U2 is a zero-mean Gaussian random vector with covariance

matrix K2, and is independent of Q,Q′,
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• V1 = U1 + AU2 + U , where U1 is a zero-mean Gaussian random vector with

covariance matrix K1, is independent of Q,Q′, U2, and A = K1 [K1 + Σ1]−1,

• X = Q+Q′ + U2 + U1.

We note that we use dirty-paper coding [12] to encode V1, which leads to the fol-

lowing.

I(V1; Y1|U)− I(V1;V2|U) =
1

2
log
|K1 + Σ1|
|Σ1|

(6.229)

The other mutual information terms in the region R21 can be computed straight-

forwardly, which leads to the achievable rate region R21(K0,K1,K2) given in The-

orem 6.7. Moreover, R12(K0,K1,K2) can be obtained from R21(K0,K1,K2) by

swapping the subscripts 1 and 2.
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Chapter 7

On the Secrecy of Multiple Access Wiretap Channel

7.1 Introduction

The multiple access wiretap channel (MAC-WT), which is introduced in [65, 66],

consists of an eavesdropper in addition to the ordinary MAC (see Figure 7.1), where

the users would like to send confidential messages to the legitimate receiver in the

presence of an external eavesdropper. For this channel, an achievable scheme is

proposed in [65], where also the sum secrecy capacity of the degraded Gaussian

channel is found. In [66], a general, not necessarily degraded, Gaussian MAC-WT

is considered, and achievable sum secrecy rate maximization problems are studied.

In this chapter, we consider a class of MAC-WT where each user’s link to

the legitimate receiver is stronger than its link to the eavesdropper. We call this

class of MAC-WT the weak eavesdropper class. We develop an n-letter outer bound

for this class, which partially matches the achievable rate region. Even though the

matching achievable region and the outer bound give us the capacity, unfortunately,

the capacity expressions are in n-letter form, and are not amenable for an efficient

computation. Despite this, we show that a loosened version of our outer bound can

be evaluated for the weak eavesdropper Gaussian MAC-WT to yield close approx-

imations to the capacity region along the individual rate axes. In particular, we

show that the gap between our inner and outer bounds is independent of the chan-
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(
Ŵ1, Ŵ2

)

Figure 7.1: The multiple access wiretap channel (MAC-WT).

nel parameters, and is less than 0.5 bits/channel use. Moreover, the entire secrecy

capacity region can be obtained to within 0.5 bits/channel use if the users’ links to

the legitimate user are orthogonal to each other.

In the final part of this chapter, we discuss the implications of our results

on the degraded MAC-WT which, by definition, belongs to the weak eavesdropper

class studied in this paper. Moreover, we consider the IC-WT which consists of an

ordinary IC and an eavesdropper listening to the ongoing communication in the IC.

The similarity between the IC-WT with very strong interference among the users

and the weak eavesdropper Gaussian MAC-WT with orthogonal components is also

discussed.

7.2 Channel Model

The MAC-WT (Figure 7.1) consists of two input alphabets, X1,X2, and two output

alphabets, Y ,Z. The channel is assumed to be memoryless with conditional distribu-

tion p(y, z|x1, x2). The inputs can be selected from product distributions on X1×X2.

A
(
2nR1 , 2nR2 , n

)
code for this channel consists of two independent message sets

W1 =
{

1, . . . , 2nR1
}
,W2 =

{
1, . . . , 2nR2

}
, two encoders fi :Wi → X n

i , i = 1, 2, and
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a decoder g : Yn →W1×W2. The error probability is P n
e = Pr (g(Y n) 6= (W1,W2)).

The secrecy of the users is measured by the equivocation rates at the eavesdropper

which are 1
n
H(W1|Zn), 1

n
H(W2|Zn) and 1

n
H(W1,W2|Zn). A rate pair, (R1, R2),

is said to be achievable with perfect secrecy if there exists a
(
2nR1 , 2nR2 , n

)
code

satisfying limn→∞ P
n
e = 0 and

lim
n→∞

1

n
H(W1|Zn) ≥ R1 (7.1)

lim
n→∞

1

n
H(W2|Zn) ≥ R2 (7.2)

lim
n→∞

1

n
H(W1,W2|Zn) ≥ R1 +R2 (7.3)

Thus, we only consider perfect secrecy in this chapter.

The Gaussian MAC-WT is given by

Y = X1 +X2 +Ny (7.4)

Z =
√
h1X1 +

√
h2X2 +Nz (7.5)

where Ny and Nz are i.i.d. Gaussian random variables with zero-mean and unit-

variance. We have average power constraints on the channel inputs: E
[
X2
j

]
≤

Pj, j = 1, 2.
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7.3 MAC-WT with Weak Eavesdropper

We define the weak eavesdropper MAC-WT channels as those that satisfy

I(X1;Y |X2) ≥ I(X1;Z|X2) (7.6)

I(X2;Y |X1) ≥ I(X2;Z|X1) (7.7)

for all joint input distributions of the form p(x1, x2) = p(x1)p(x2). This condition

can be interpreted as requiring each user to have a more capable channel to its

legitimate receiver in the absence of the other user.

We first state an achievable region for the general MAC-WT in the following

theorem.

Theorem 7.1 The rate pairs (R1, R2) satisfying

R1 ≤ lim
n→∞

1

n
[I(Xn

1 ;Y n|Xn
2 )− I(Xn

1 ;Zn)]+ (7.8)

R2 ≤ lim
n→∞

1

n
[I(Xn

2 ;Y n|Xn
1 )− I(Xn

2 ;Zn)]+ (7.9)

R1 +R2 ≤ lim
n→∞

1

n
[I(Xn

1 , X
n
2 ;Y n)− I(Xn

1 , X
n
2 ;Zn)]+ (7.10)

are achievable with perfect secrecy for any distribution of the form p(xn1 , x
n
2 ) =

p(xn1 )p(xn2 ).

In Theorem 7.1, (·)+ denotes the positivity operator, i.e., (x)+ = max(0, x).

This theorem is an extension of the achievable region provided in [65], hence its

proof is omitted.
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For a MAC-WT channel satisfying (7.6)-(7.7), the rates in (7.8)-(7.9) are al-

ways positive [67]. Thus, as long as we consider channels that satisfy (7.6)-(7.7),

we do not need the positivity operators in (7.8)-(7.9). However, we note that the

conditions in (7.6)-(7.7) do not imply the positivity of the achievable sum secrecy

rate in (7.10). Therefore, even in the weak eavesdropper MAC-WT, we do need

the positivity operator in (7.10). The following corollary states these observations

formally.

Corollary 7.1 For weak eavesdropper MAC-WT, the rate pairs (R1, R2) satisfying

R1 ≤ lim
n→∞

1

n
[I(Xn

1 ;Y n|Xn
2 )− I(Xn

1 ;Zn)] (7.11)

R2 ≤ lim
n→∞

1

n
[I(Xn

2 ;Y n|Xn
1 )− I(Xn

2 ;Zn)] (7.12)

R1 +R2 ≤ lim
n→∞

1

n
[I(Xn

1 , X
n
2 ;Y n)− I(Xn

1 , X
n
2 ;Zn)]+ (7.13)

are achievable with perfect secrecy for any distribution of the form p(xn1 , x
n
2 ) =

p(xn1 )p(xn2 ).

Next, we provide our outer bound on the secrecy capacity of the weak eaves-

dropper MAC-WT.

Theorem 7.2 The secrecy capacity region of a weak eavesdropper MAC-WT lies in
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the union of the rates satisfying

R1 ≤ lim
n→∞

1

n
[I(Xn

1 ;Y n|Xn
2 )− I(Xn

1 ;Zn)] (7.14)

R2 ≤ lim
n→∞

1

n
[I(Xn

2 ;Y n|Xn
1 )− I(Xn

2 ;Zn)] (7.15)

R1 +R2 ≤ lim
n→∞

1

n

[
I(Xn

1 ;Y n|Xn
2 ) + I(Xn

2 ;Y n|Xn
1 )− I(Xn

1 , X
n
2 ;Zn)

]
(7.16)

where the union is taken over all p(xn1 , x
n
2 ) = p(xn1 )p(xn2 ).

This theorem is proved in Appendix 7.8.1. The difference between our inner

and outer bounds for the weak eavesdropper MAC-WT is in the sum secrecy rate

expressions in (7.13) and (7.16). Apart from these, the individual achievable secrecy

rate terms in (7.11)-(7.12) and the individual secrecy rate upper bounds in (7.14)-

(7.15) match, yielding a partial characterization of the secrecy capacity region in an

n-letter form.

7.4 Gaussian MAC-WT with Weak Eavesdropper

Gaussian MAC-WT channels that satisfy the weak eavesdropper conditions in (7.6)-

(7.7) have h1, h2 < 1; see Appendix 7.8.2 for a proof. For the weak eavesdropper

Gaussian MAC-WT (as for any weak eavesdropper MAC-WT), the identical inequal-

ities in (7.11)-(7.12) and (7.14)-(7.15) give the secrecy capacity along the individual

rate axes. However, the difficulty is, even for Gaussian channels, finding the optimal

input distributions p(xn1 ), p(xn2 ) and evaluating the boundary of (7.11)-(7.12) and

(7.14)-(7.15) seems to be intractable for now. Consequently, we loosen our outer
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bound to obtain computable expressions. We show however that even the loosened

outer bound is within 0.5 bits/channel use of the achievable region along the indi-

vidual rate dimensions. We give our loosened outer bound in the following theorem,

which we prove in Appendix 7.8.2.

Theorem 7.3 The secrecy capacity region of Gaussian MAC-WT with h1, h2 < 1

is contained in the following region.

R1 ≤
1

2
log (1 + P1)− 1

2
log

(
2 + h1P1 + h2P2

2(1 + h2P2)

)
(7.17)

R2 ≤
1

2
log (1 + P2)− 1

2
log

(
2 + h1P1 + h2P2

2(1 + h1P1)

)
(7.18)

Next, we compare our outer bound in Theorem 7.3 with our achievable rates

in Corollary 7.1. The optimum set of achievable rates that Corollary 7.1 gives is

not known. However, we can always obtain potentially sub-optimal achievable rates

by using i.i.d. (in time) Gaussian signalling. We note that the ultimate achievable

rates thus calculated may yield either a pentagon, a triangle or a trapezoid, as the

sum rate expression in (7.13) may dominate the individual rates in (7.11) and (7.12).

Since our aim is to investigate how far our outer bound is from the achievable region

along the individual rate axes, we will choose our parameters to guarantee that we

do not have a triangle as an achievable region. Thus, let us assume that h1, h2, P1, P2
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are such that at least one of the inequalities

h1 ≤
1

1 + P2

, h2 ≤
1

1 + P1

(7.19)

is satisfied so that we have either a trapezoid or a pentagon as an achievable region;

see Figure 7.2. Then, we have the following achievable rates expressed in four

different possible cases.

Corollary 7.2 Without loss of generality, we assume h1 < h2 < 1. The following

secrecy regions are achievable.

• Case I: h1 ≤ 1
1+P2

, h2 ≤ 1
1+P1

R1 ≤
1

2
log (1 + P1)− 1

2
log

(
1 +

h1P1

1 + h2P2

)
(7.20)

R2 ≤
1

2
log (1 + P2)− 1

2
log

(
1 +

h2P2

1 + h1P1

)
(7.21)

R1 +R2 ≤
1

2
log (1 + P1 + P2)− 1

2
log (1 + h1P1 + h2P2) (7.22)

• Case II: h1 ≤ 1
1+P2

, 1
1+P1

≤ h2 ≤ 1+h1P1

1+P1

R2 ≤
1

2
log (1 + P2)− 1

2
log

(
1 +

h2P2

1 + h1P1

)
(7.23)

R1 +R2 ≤
1

2
log (1 + P1 + P2)− 1

2
log (1 + h1P1 + h2P2) (7.24)
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≤ 0.5 bits/use

≤ 0.5 bits/use

Figure 7.2: Illustration of outer and inner bounds for different h1, h2 values.

• Case III: h1 ≤ 1
1+P2

, 1+h1P1

1+P1
≤ h2

R2 ≤
1

2
log (1 + P2)− 1

2
log

(
1 +

h2P2

1 + h1P1

)
(7.25)

R1 +R2 ≤
1

2
log (1 + P1)− 1

2
log (1 + h1P1) (7.26)

• Case IV: 1
1+P2

≤ h1, h2 ≤ 1
1+P1

R1 ≤
1

2
log (1 + P1)− 1

2
log

(
1 +

h1P1

1 + h2P2

)
(7.27)

R1 +R2 ≤
1

2
log (1 + P1 + P2)− 1

2
log (1 + h1P1 + h2P2) (7.28)
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The achievable regions in Corollary 7.2 are obtained by using i.i.d. (in time)

Gaussian signalling in Corollary 7.1. We now check the gap between our inner and

outer bounds on the individual rates. Here, as an example, we evaluate the difference

between the achievable rate and the outer bound for user 1, i.e., the difference of

(7.20) and (7.27) with (7.17); such difference for the rate of user 2 can be calculated

similarly. For user 1, this difference is:

1

2
log

(
1 +

h1P1

1 + h2P2

)
− 1

2
log

(
2 + h1P1 + h2P2

2(1 + h2P2)

)
=

1

2
log

(
2(1 + h1P1 + h2P2)

2 + h1P1 + h2P2

)

(7.29)

which is always less than 0.5 bits/channel use. Thus, if the first (resp. second)

inequality in (7.19) is satisfied, then the secrecy rate achievable for the second (resp.

first) user via i.i.d. Gaussian signalling and without pre-processing is within half bit

of the maximum possible secrecy rate for that user. A graphical illustration of our

inner and outer bounds is given in Figure 7.2.

7.5 A Special Class: Orthogonal Components

We now consider a special sub-class of weak eavesdropper Gaussian MAC-WT class

where each user has an orthogonal link to the legitimate receiver while the links
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from the users to the eavesdropper form a general Gaussian MAC:

Y1 = X1 +Ny1 (7.30)

Y2 = X2 +Ny2 (7.31)

Z =
√
h1X1 +

√
h2X2 +Nz (7.32)

whereNy1, Ny2 andNz are i.i.d. zero-mean unit-variance Gaussian random variables.

Here again we have h1, h2 < 1. We have the following achievable region.

Corollary 7.3 The following region is achievable for the orthogonal-component weak

eavesdropper Gaussian MAC-WT

R1 ≤
1

2
log (1 + P1)− 1

2
log

(
1 +

h1P1

1 + h2P2

)
(7.33)

R2 ≤
1

2
log (1 + P2)− 1

2
log

(
1 +

h2P2

1 + h1P1

)
(7.34)

R1 +R2 ≤
1

2
log (1 + P1) +

1

2
log (1 + P2)− 1

2
log (1 + h1P1 + h2P2) (7.35)

This achievable region is obtained by using i.i.d. (in time) Gaussian signalling

in Corollary 7.1. We have the following outer bound on the secrecy capacity region

of this channel.

Theorem 7.4 The secrecy capacity region of the orthogonal-component weak eaves-
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dropper Gaussian MAC-WT is contained in the following region.

R1 ≤
1

2
log (1 + P1)− 1

2
log

(
2 + h1P1 + h2P2

2(1 + h2P2)

)
(7.36)

R2 ≤
1

2
log (1 + P2)− 1

2
log

(
2 + h1P1 + h2P2

2(1 + h1P1)

)
(7.37)

R1 +R2 ≤
1

2
log(1 + P1) +

1

2
log(1 + P2)− 1

2
log

(
2 + h1P1 + h2P2

2

)
(7.38)

This theorem is proved in Appendix 7.8.3. Thus, for this special class of

channels, using a calculation similar to that in (7.29), we can show that the difference

between the sum secrecy rate expressions on the right hand sides of (7.35) and (7.38)

is less than 0.5 bits/channel use. The situation in this special weak eavesdropper

Gaussian MAC-WT is illustrated in Figure 7.3.

Moreover, if we restrict the channel gains to h1+h2 < 1, then we can determine

the sum secrecy capacity of this channel as stated in the next theorem, which we

prove in Appendix 7.8.4.

Theorem 7.5 If h1 +h2 < 1, then the sum secrecy capacity of this channel is given

by

R1 +R2 ≤
1

2
log(1 + P1) +

1

2
log(1 + P2)− 1

2
log(1 + h1P1 + h2P2) (7.39)
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≤ 0.5 bits/use

≤ 0.5 bits/use

≤ 0.5 bits/use

Figure 7.3: Illustration of outer and inner bounds for MAC-WT with orthogonal
components.

7.6 Further Remarks

We now discuss the implications of our results on the secrecy capacity of the de-

graded MAC-WT. Degraded MAC-WT satisfies the Markov chain

(X1, X2)→ Y → Z (7.40)

and consequently, satisfies the conditions given in (7.6)-(7.7). Thus, our outer bound

in Theorem 7.2 holds for these channels as well. Indeed, our Theorem 7.2 can be

improved to give the entire capacity region in an n-letter form as given in the

following theorem.

Theorem 7.6 The secrecy capacity region of a degraded MAC-WT is given by the

union of the following rates

R1 ≤ lim
n→∞

1

n
[I(Xn

1 ;Y n|Xn
2 )− I(Xn

1 ;Zn)] (7.41)

R2 ≤ lim
n→∞

1

n
[I(Xn

2 ;Y n|Xn
1 )− I(Xn

2 ;Zn)] (7.42)

R1 +R2 ≤ lim
n→∞

1

n
[I(Xn

1 , X
n
2 ;Y n)− I(Xn

1 , X
n
2 ;Zn)] (7.43)
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where the union is taken over all p(xn1 , x
n
2 ) = p(xn1 )p(xn2 ).

The proof of Theorem 7.6 is given in Appendix 7.8.5. We further remark that

the sum secrecy capacity of the degraded MAC-WT can be put into a single-letter

form as I(X1, X2;Y |Z).

As a result of Theorem 7.6, we establish the secrecy capacity region of the

degraded MAC-WT in n-letter form. Prior to our result here, only the sum secrecy

capacity of the degraded Gaussian MAC-WT was known due to [65], where the

degraded Gaussian MAC-WT is defined by (7.4)-(7.5) with h1 = h2 = h < 1.

Hence, using our outer bound in Theorem 7.3, and with the sum rate capacity

result of [65], we have the following corollary for the degraded Gaussian MAC-WT.

Corollary 7.4 The achievable region described by (7.20)-(7.22) coincides with the

sum secrecy rate points of the degraded Gaussian MAC-WT. Moreover, this region

is within half bit of the straight lines of the pentagon corresponding to the capacity

region if h ≤ min (1/(1 + P1), 1/(1 + P2)).

In Corollary 7.4, the claim regarding the sum secrecy capacity is due to [65].

The other claim can be proved by simply setting h1 = h2 = h in Theorem 7.3 and

in Corollary 7.2, and checking the gap between these rates as it is done in (7.29).

A further remark is about IC-WT when the interference among the users is

very strong. We now show that the results obtained for the Gaussian MAC-WT with

orthogonal components in Section 7.5 hold for IC-WT with very strong interference
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as well. The Gaussian IC-WT is defined by

Y1 = X1 +
√
αX2 +Ny1 (7.44)

Y2 = X2 +
√
βX1 +Ny2 (7.45)

Z =
√
h1X1 +

√
h2X2 +Nz (7.46)

where Y1, Y2 and Z denote the users’ and the eavesdropper’s observation, respec-

tively. We have power constraints on the channel inputs as E
[
X2
j

]
≤ Pj, j = 1, 2

and the channel inputs should be independent. All of the definitions in Section 7.2

regarding the codes and the achievability hold for IC-WT with appropriate modifica-

tions. Since there are now two receivers, we have two decoders, each one associated

with one receiver. Consequently, each decoder has its own probability of error that

needs to decay to zero. Similar to MAC-WT, each transmitter uses a codebook that

is independent of the other user’s codebook and the secrecy is measured through

1
n
H(W1|Zn), 1

n
H(W2|Zn), 1

n
H(W1,W2|Zn).

If α and β satisfy

α ≥ 1 + P1, β ≥ 1 + P2 (7.47)

interference at each terminal becomes very strong which can be eliminated entirely

leaving each user a clean, single-user channel [68]. Consequently, the resulting chan-

nel becomes equivalent to the channel in (7.30)-(7.32). Thus, in light of the results

obtained in Section 7.5, we find the secrecy capacity region of this channel to within
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half bit. This is stated in the next theorem which is proved in Appendix 7.8.6.

Theorem 7.7 The achievable secrecy region given in Corollary 7.3 is within half bit

of the secrecy capacity region of the IC-WT if α and β satisfy (7.47) and h1, h2 < 1.

Moreover, if h1 + h2 < 1, then the sum secrecy capacity is given by (7.39).

7.7 Conclusions

In this chapter, we focus on a special class of MAC-WT which we call the weak

eavesdropper MAC-WT for which we provide an n-letter outer bound. Evaluation

of this outer bound for the weak eavesdropper Gaussian MAC-WT provides us with

close approximations of the secrecy capacity region. In particular, the results of

this chapter imply that plain i.i.d. Gaussian signaling is close to optimal in the low

power regime for the weak eavesdropper Gaussian MAC-WT.

However, in general, it has been shown that plain i.i.d. Gaussian signaling is

not optimal for Gaussian MAC-WT channel. In particular, for the Gaussian MAC-

WT, [69, 70] use structured coding (by means of lattice codes [69] and interference

alignment [70]) instead of plain i.i.d. Gaussian signalling, and show that secrecy

rates attainable by structured coding scale with the available power, i.e., they attain

non-zero secure degrees of freedom, while plain i.i.d. Gaussian signalling cannot

provide any non-zero secure degrees of freedom [65, 66, 71].
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7.8 Appendix

7.8.1 Proof of Theorem 7.2

First, we note that for channels satisfying (7.6)-(7.7), we also have

I(Xn
1 ;Y n|Xn

2 , U) ≥ I(Xn
1 ;Zn|Xn

2 , U) (7.48)

I(Xn
2 ;Y n|Xn

1 , U) ≥ I(Xn
2 ;Zn|Xn

1 , U) (7.49)

for all p(xn1 , x
n
2 ) = p(xn1 )p(xn2 ) and any random variable U such that U → (Xn

1 , X
n
2 )→

(Y n, Zn), Xn
1 → U → Xn

2 [67]. Thus, using this result, we can obtain

I(Xn
1 ;Y n|Xn

2 ,W1) ≥ I(Xn
1 ;Zn|Xn

2 ,W1) (7.50)

≥ I(Xn
1 ;Zn|W1) (7.51)

where in the second inequality, we use the fact that (Xn
1 ,W1) and Xn

2 are indepen-

dent, and that conditioning decreases entropy. Similarly, we have

I(Xn
2 ;Y n|Xn

1 ,W2) ≥ I(Xn
2 ;Zn|Xn

1 ,W2) (7.52)

≥ I(Xn
2 ;Zn|W2) (7.53)
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Furthermore, starting with (7.48), we get

I(Xn
1 ;Y n|Xn

2 ,W1) ≥ I(Xn
1 ;Zn|Xn

2 ,W1) (7.54)

= I(Xn
1 ;Zn|Xn

2 ,W1,W2) (7.55)

≥ I(Xn
1 ;Zn|W1,W2) (7.56)

where the equality is due to the fact that given Xn
2 , W2 is independent of everything

else and the last inequality follows from the fact that (Xn
1 ,W1) and (Xn

2 ,W2) are

independent and that conditioning decreases entropy. If we combine (7.56) with

I(Xn
2 ;Y n|Xn

1 ,W2) ≥ I(Xn
2 ;Zn|Xn

1 ,W2,W1) (7.57)

which follows from (7.55) due to symmetry, we get

I(Xn
1 ;Y n|Xn

2 ,W1) + I(Xn
2 ;Y n|Xn

1 ,W2) ≥ I(Xn
1 , X

n
2 ;Zn|W1,W2) (7.58)

which will be used in the derivation of our outer bound on the sum secrecy rate.

Hence, we have all the necessary inequalities, i.e., (7.51), (7.53), (7.58), for the

remaining part of the proof.
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We start with the derivation of our outer bound on R1,

nR1 ≤ H(W1|Zn) ≤ I(W1;Y n)− I(W1;Zn) + εn (7.59)

≤ I(W1;Y n|Xn
2 )− I(W1;Zn) + εn (7.60)

≤ I(W1;Y n|Xn
2 )− I(W1;Zn) + I(Xn

1 ;Y n|Xn
2 ,W1)

− I(X1;Zn|W1) + εn (7.61)

= I(W1, X
n
1 ;Y n|Xn

2 )− I(W1, X
n
1 ;Zn) + εn (7.62)

= I(Xn
1 ;Y n|Xn

2 )− I(Xn
1 ;Zn) + εn (7.63)

where (7.59) is due to Fano’s lemma [22], (7.60) is due to the fact that W1 and

Xn
2 are independent and that conditioning decreases entropy, (7.61) is obtained by

using (7.51), and (7.63) follows from the fact that given Xn
1 , W1 is independent of

everything else. This gives us (7.14). Similarly, one can get (7.15).

We next prove our outer bound on the sum secrecy rate.

n(R1 +R2) ≤ H(W1,W2|Zn) (7.64)

≤ I(W1,W2;Y n)− I(W1,W2;Zn) + εn (7.65)

≤ I(W1;Y n|Xn
2 ) + I(W2;Y n|Xn

1 )− I(W1,W2;Zn) + εn (7.66)

≤ I(W1;Y n|Xn
2 ) + I(W2;Y n|Xn

1 )− I(W1,W2;Zn) + I(Xn
1 ;Y n|Xn

2 ,W1)

+ I(Xn
2 ;Y n|Xn

1 ,W2)− I(Xn
1 , X

n
2 ;Zn|W1,W2) + εn (7.67)

= I(Xn
1 ;Y n|Xn

2 ) + I(Xn
2 ;Y n|Xn

1 )− I(Xn
1 , X

n
2 ;Zn) + εn (7.68)
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where (7.65) is due to Fano’s lemma [22], (7.66) follows from the fact that W1 (resp.

W2) and Xn
2 (resp. Xn

1 ) are independent and that conditioning decreases entropy,

(7.67) follows by using (7.58) and (7.68) comes from the fact that given Xn
1 (resp.

Xn
2 )), W1 (resp. W2) is independent of everything else. This gives us (7.16).

7.8.2 Proof of Theorem 7.3

First, we show that Gaussian MAC-WT with h1, h2 < 1 satisfies (7.6)-(7.7), hence

Theorem 7.2 is applicable. To this end, define the following random variables

Ỹ1 = Y −X2 = X1 +Ny (7.69)

Z̃1 =
√
h1(X1 +Ny) +

√
1− h1Ñ (7.70)

where Ñ ∼ N (0, 1) and is independent of everything else. Note that Ỹ1 and Z̃1

satisfy

I(X1;Y |X2) = I(X1; Ỹ1) = I(X1; Ỹ1, Z̃1) (7.71)

I(X1;Z|X2) = I(X1; Z̃1) (7.72)
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where the second equality of (7.71) is due to the Markov chain X1 → Ỹ1 → Z̃1.

Thus, we have

I(X1;Y |X2)− I(X1;Z|X2) = I(X1; Ỹ1, Z̃1)− I(X1; Z̃1) (7.73)

= I(X1; Ỹ1|Z̃1) (7.74)

≥ 0 (7.75)

proving that Gaussian MAC-WT with h1, h2 < 1 satisfies (7.6)-(7.7).

We now bound the following term

I(Xn
1 ;Y n|Xn

2 )− I(Xn
1 ;Zn) = H(Xn

1 +Nn
y ) +H(

√
h2X

n
2 +Nn

z )

−H(
√
h1X

n
1 +

√
h2X

n
2 +Nn

z )−H(Nn
y ) (7.76)

where we use H(·) to denote the differential entropy of a continuous random variable.

We will use a variant of the entropy-power inequality given in [72]. Let {Un
i }Ni=1 be

independent length-n random vectors. If C denotes an arbitrary collection of subsets

of {1, . . . , N}, then we have

exp

(
2

n
H

(
N∑

i=1

Un
i

))
≥ 1

r

∑

S∈C

exp

(
2

n
H

(∑

i∈S

Un
i

))
(7.77)

where r denotes the maximum number of subsets in C in which any one index, i,

appears, and S denotes a subset of {1, . . . , n} that is in the collection C.

401



Before using this inequality, first decompose Nn
z as follows

Nn
z =

√
h1N

n
y +

√
1− h1Ñ

n (7.78)

where Ñn ∼ N (0, I) and is independent of everything else. Furthermore, let us

define

t1 = H(Xn
1 +Nn

y ) (7.79)

= H(
√
h1X

n
1 +

√
h1N

n
y )− n

2
log(h1) (7.80)

and

t2 = H(
√
h2X2 +Nn

z ) (7.81)

= H(
√
h2X

n
2 +

√
h1N

n
y +

√
1− h1Ñ

n) (7.82)

Using the inequality in (7.77), we have the following lower bound

H(
√
h1X

n
1 +

√
h2X

n
2 +Nn

z ) ≥ n

2
log

(
h1

2
exp

(
2t1
n

)
+

1

2
exp

(
2t2
n

)
+ 2πe

1− h1

2

)

(7.83)

Using (7.76) and (7.83), we obtain the following upper bound

I(Xn
1 ;Y n|Xn

2 )− I(Xn
1 ;Zn) ≤ max

t1,t2
f(t1, t2) (7.84)
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where f(t1, t2) is

f(t1, t2) = t1 + t2 −
n

2
log

(
h1

2
exp

(
2t1
n

)
+

1

2
exp

(
2t2
n

)
+ 2πe

1− h1

2

)

− n

2
log(2πe) (7.85)

Note that f(t1, t2) is monotonically increasing in both t1 and t2. Since t1 and t2

are maximized when Xn
1 ∼ N (0, P1I) and Xn

2 ∼ N (0, P2I), the maximum value of

f(t1, t2) is

1

2
log (1 + P1)− 1

2
log

(
2 + h1P1 + h2P2

2(1 + h2P2)

)
(7.86)

This completes the proof of the upper bound on R1 given in (7.17). The upper

bound on R2 given in (7.18) follows from symmetry.

7.8.3 Proof of Theorem 7.4

We define Y n = (Y n
1 , Y

n
2 ). Using the facts that Xn

1 (resp. Xn
2 ) and Y n

2 (resp. Xn
1 )

are independent, we get

I(Xn
1 ;Y n|Xn

2 ) = I(Xn
1 ;Y n

1 ) (7.87)

I(Xn
2 ;Y n|Xn

1 ) = I(Xn
2 ;Y n

2 ) (7.88)

I(Xn
1 , X

n
2 ;Y n) = I(Xn

1 ;Y n
1 ) + I(Xn

2 ;Y n
2 ) (7.89)
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Moreover, following the analysis carried out in the proof of Theorem 7.3 in Ap-

pendix 7.8.2, we can show that this channel satisfies (7.6)-(7.7). Thus, our outer

bound in Theorem 7.2 can be applied to this channel as well. Hence, plugging the

expressions in (7.87)-(7.89) into Corollary 7.1 and Theorem 7.2, we get the secrecy

capacity region of this channel as follows.

R1 ≤ lim
n→∞

1

n
[I(Xn

1 ;Y n
1 )− I(Xn

1 ;Zn)] (7.90)

R2 ≤ lim
n→∞

1

n
[I(Xn

2 ;Y n
2 )− I(Xn

2 ;Zn)] (7.91)

R1 +R2 ≤ lim
n→∞

1

n

[
I(Xn

1 ;Y n
1 ) + I(Xn

2 ;Y n
2 )− I(Xn

1 , X
n
2 ;Zn)

]
(7.92)

As opposed to the general weak eavesdropper MAC-WT class, for this sub-

class, we are able to obtain the entire secrecy capacity region in an n-letter form,

because the expression in (7.13) is guaranteed to be positive, and the expressions

in (7.13) and (7.16) become identical, due to (7.87)-(7.89). The two bounds on

the individual secrecy rate terms are identical to those in the proof of Theorem 7.3

given in Appendix 7.8.2, and hence the bounds in Theorem 7.3 directly apply for

this channel as well. Hence, we only need to consider the sum secrecy rate term

which is

I(Xn
1 ;Y n

1 ) + I(Xn
2 ;Y n

2 )− I(Xn
1 , X

n
2 ;Zn)

= H(Xn
1 +Nn

y1) +H(Xn
2 +Nn

y2)−H(
√
h1X

n
1 +

√
h2X

n
2 +Nn

z )− n

2
log(2πe)

(7.93)
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We decompose the noise of the eavesdropper as

Nn
z =

√
h1Ñ

n
1 +

√
h2 − h1Ñ

n
2 +

√
1− h2Ñ

n
3 (7.94)

where Ñn
1 , Ñ

n
2 , Ñ

n
3 are independent Gaussian random vectors with zero-mean and

identity covariance matrices. We also define

t1 = H(Xn
1 +Nn

y1) (7.95)

= H(
√
h1X

n
1 +
√
h1Ñ

n
1 )− n

2
log h1 (7.96)

and

t2 = H(Xn
2 +Nn

y2) (7.97)

= H(
√
h2X

n
2 +

√
h2 − h1Ñ

n
2 +
√
h1Ñ

n
1 )− n

2
log h2 (7.98)

Using the entropy power inequality of [72] given in (7.77), we get

2

n
H(
√
h1X

n
1 +

√
h2X

n
2 +Nn

z ) ≥ g(t1, t2) (7.99)

where g(t1, t2) is

log

(
h1

2
exp

(
2t1
n

)
+
h2

2
exp

(
2t2
n

)
+ 2πe

2− h2 − h1

2

)
(7.100)
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Thus, the sum secrecy rate can be upper bounded as

I(Xn
1 ;Y n

1 ) + I(Xn
2 ;Y n

2 )− I(Xn
1 , X

n
2 ;Zn) ≤ max

t1,t2
f(t1, t2) (7.101)

where f(t1, t2) is

2

n
f(t1, t2) =

2

n
(t1 + t2) + log(2πe)− g(t1, t2) (7.102)

which is monotonically increasing in both t1 and t2. Since t1 and t2 are maximized

when Xn
1 ∼ N (0, P1I) and Xn

2 ∼ N (0, P2I), the maximum value of f(t1, t2) is

1

2
log(1 + P1) +

1

2
log(1 + P2)− 1

2
log

(
2 + h1P1 + h2P2

2

)
(7.103)

This completes the proof of the upper bound on the sum secrecy rate given in (7.38).

7.8.4 Proof of Theorem 7.5

The proof of Theorem 7.5 is similar to the proof of the sum rate secrecy bound

in Theorem 7.4. The differences are in the way we decompose the eavesdropper

noise and apply the entropy power inequality. Here, the classical entropy power

inequality [41, 43] is sufficient to get the result, i.e, we do not make use of the

additional properties of the one in (7.77) [72]. Instead of decomposing the noise as
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in (7.94), we will use

Nn
z =

√
h1N

n
y1 +

√
h2N

n
y2 + Ñn (7.104)

where Ñn is i.i.d. Gaussian noise sequence with zero-mean and variance of 1−h1−h2.

Consequently, using entropy power inequality, we get

2

n
I(Xn

1 , X
n
2 ;Zn) =

2

n
H(
√
h1X

n
1 +

√
h2X

n
2 +Nn

z )− log(2πe) (7.105)

≥ g(t1, t2) (7.106)

where g(t1, t2) is

log

(
h1

2πe
exp

(
2t1
n

)
+

h2

2πe
exp

(
2t2
n

)
+ 1− h1 − h2

)
(7.107)

and t1, t2 are

t1 = H
(
Xn

1 +Nn
y1

)
(7.108)

t2 = H
(
Xn

2 +Nn
y2

)
(7.109)

Therefore, the sum secrecy rate can be upper bounded as

I(Xn
1 ;Y n

1 ) + I(Xn
2 ;Y n

2 )− I(Xn
1 , X

n
2 ;Zn) ≤ max

t1,t2
f(t1, t2) (7.110)
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where f(t1, t2) is

2

n
f(t1, t2) =

2

n
(t1 + t2)− 2 log(2πe)− g(t1, t2) (7.111)

which is monotonically increasing in both t1 and t2. Since t1 and t2 are maximized

when Xn
1 , X

n
2 are selected as Gaussian with zero-mean and covariance matrices of

P1I, P2I, we get

I(Xn
1 ;Y n

1 ) + I(Xn
2 ;Y n

2 )− I(Xn
1 , X

n
2 ;Zn) ≤ n

2
log(1 + P1) +

n

2
log(1 + P2)

− n

2
log(1 + h1P1 + h2P2) (7.112)

which completes the proof.

7.8.5 Proof of Theorem 7.6

Since degraded channels already satisfy the conditions in (7.6)-(7.7), the outer bound

in Theorem 7.2 is valid for them. Thus, to prove Theorem 7.6, we only need to

consider the sum secrecy rate. First, note that for degraded channels

I(Xn
1 , X

n
2 ;Y n|W1,W2)− I(Xn

1 , X
n
2 ;Zn|W1,W2)

= I(Xn
1 , X

n
2 ;Y n, Zn|W1,W2)− I(Xn

1 , X
n
2 ;Zn|W1,W2) (7.113)

= I(Xn
1 , X

n
2 ;Y n|W1,W2, Z

n) (7.114)

≥ 0 (7.115)
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where the first equality is due to the degradedness. We now bound sum secrecy rate

of the degraded channels.

H(W1,W2|Zn) ≤ I(W1,W2;Y n)− I(W1,W2;Zn) + εn (7.116)

≤ I(W1,W2;Y n)− I(W1,W2;Zn) + εn

+ I(Xn
1 , X

n
2 ;Y n|W1,W2)− I(Xn

1 , X
n
2 ;Zn|W1,W2) (7.117)

= I(Xn
1 , X

n
2 ;Y n)− I(Xn

1 , X
n
2 ;Zn) + εn (7.118)

where (7.116) is due to Fano’s lemma [22], (7.117) is obtained by using (7.115), and

(7.118) is a consequence of the fact that given (Xn
1 , X

n
2 ), (W1,W2) is independent

of the channel outputs.

7.8.6 Proof of Theorem 7.7

We prove Theorem 7.7 in two parts, starting with achievability. User i (i = 1, 2) gen-

erates 2n(Ri+R̃i) length-n codewords Xi throughN (0, PiI) and labels them Xi(wi, w̃i)

where wi ∈ {1, . . . , 2nRi}, w̃i ∈ {1, . . . , 2nR̃i}. Here, Ri denotes the rate of the

information-carrying messages and R̃i is the rate sacrificed to confuse the eaves-

dropper to achieve secrecy for user i = 1, 2. For example, if wi is the message to be

transmitted, user i selects a W̃i randomly and transmits xi(wi, w̃i). Furthermore,
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these rates satisfy

Ri + R̃i ≤
1

2
log(1 + Pi), i = 1, 2 (7.119)

R̃i ≤
1

2
log(1 + hiPi), i = 1, 2 (7.120)

R̃1 + R̃2 =
1

2
log(1 + h1P1 + h2P2) (7.121)

Since interference gains, α, β, satisfy (7.47), each user can decode both other user’s

messages and its own message with vanishingly small probability of error [68]. Hence,

we only need to show that this scheme yields perfect secrecy. To this end, we consider

joint secrecy condition which is sufficient to ensure that secrecy constraints on the

individual messages are satisfied [65]. We have,

H(W1,W2|Zn) = H(W1,W2, Z
n)−H(Zn) (7.122)

= H(W1,W2, X
n
1 , X

n
2 , Z

n)−H(Xn
1 , X

n
2 |W1,W2, Z

n)

−H(Zn) (7.123)

= H(W1,W2) +H(Xn
1 , X

n
2 |W1,W2) +H(Zn|Xn

1 , X
n
2 )

−H(Xn
1 , X

n
2 |W1,W2, Z

n)−H(Zn) (7.124)

= H(W1,W2) +H(Xn
1 , X

n
2 |W1,W2)− I(Xn

1 , X
n
2 ;Zn)

−H(Xn
1 , X

n
2 |W1,W2, Z

n) (7.125)

where (7.124) is obtained by using the chain rule and the fact that given (Xn
1 , X

n
2 ),

(W1,W2) and Zn are independent. We now consider each term of (7.125) separately.
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Since given (W1,W2), (Xn
1 , X

n
2 ) can take 2n(R̃1+R̃2) different values uniformly, we have

H(Xn
1 , X

n
2 |W1,W2) = n(R̃1 + R̃2) (7.126)

=
n

2
log(1 + h1P1 + h2P2) (7.127)

The third term of (7.125) is bounded as

I(Xn
1 , X

n
2 ;Zn) ≤ n

2
log(1 + h1P1 + h2P2) (7.128)

due to the fact that i.i.d. Gaussian signalling achieves the capacity of a memory-

less Gaussian channel. Finally, we bound the last term of (7.125). To this end,

assume that eavesdropper is decoding (Xn
1 , X

n
2 ) given (W1,W2). Since R̃1 and R̃2

are selected to lie in the capacity region of the MAC between the users and the

eavesdropper, the error probability of this decoding is vanishingly small, implying

H(Xn
1 , X

n
2 |W1,W2, Z

n) ≤ εn (7.129)

due to Fano’s lemma. Plugging (7.127), (7.128), (7.129) into (7.125), we get

H(W1,W2|Zn) ≥ H(W1,W2)− εn (7.130)

Thus, this scheme yields perfect secrecy. After eliminating R̃1 and R̃2 from (7.119),

(7.120) and (7.121), one can get the achievable region of Corollary 7.3. Hence, we

complete the achievability part.
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For the outer bound, we note that this channel satisfies the conditions in (7.6)-

(7.7) and consequently, following similar lines as in the proof of Theorem 7.4, one

can get the outer bound given in this theorem. Moreover, we can show the sum

secrecy capacity for the case h1 +h2 < 1 by using the proof technique developed for

Theorem 7.5 in Appendix 7.8.4.
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Chapter 8

Cooperative Secrecy in Relay Broadcast Channels

8.1 Introduction

In this chapter, we study the effects of cooperation on the secrecy of multiple users

where secrecy refers to simultaneous individual confidentiality of all users against

each other. For that purpose, we consider the cooperative relay broadcast channel

(CRBC), where there is a single transmitter and two receivers, and each receiver

wants to keep its message secret from the other user; see Figures 8.1 and 8.2. In this

model, in order to incorporate the effects of cooperation, there is either a single-

sided (Figure 8.1) or double-sided (Figure 8.2) cooperative link between the users.

We note that the CRBC is the simplest model (except perhaps for the “dual” model

of cooperating transmitters in a MAC with per-user secrecy constraints that will be

considered in the next chapter) that allows us to study the effects of user cooperation

on secrecy.

Although, in the literature, there have been some work focusing on the effects

of cooperation on secrecy [73–79], none of these works consider the effects of coop-

eration on the simultaneous secrecy of multiple users. In particular, [73–79] consider

secrecy in relay channels, where in [73–76], the relay is the eavesdropper, while in

[77, 78] there is an external eavesdropper. In [79], the relay helps the transmitter to

improve its rate while it receives confidential messages that should be kept hidden
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User 2

User 1

CRBC

Encoder

Xn
1

Y n
1

p(y1, y2|x, x1)
Y n
2

Ŵ1

Ŵ2

Xn(W1,W2)

Figure 8.1: Cooperative relay broadcast channel (CRBC) with single-sided cooper-
ation link.

User 2

User 1

CRBC

Encoder

Xn
1

Y n
1

Ŵ1

Ŵ2

Xn(W1,W2)

Y n
2

Xn
2

p(y1, y2|x, x1, x2)

Figure 8.2: Cooperative relay broadcast channel (CRBC) with a two-sided cooper-
ation link.

from the main receiver. Hence, our model is the first to consider the interactions

between user cooperation and simultaneous secrecy of multiple users.

We note that, in the CRBC, each user eavesdrops as well as helps the other

user. That is, the users are untrusted but non-malicious. There can be such com-

munication scenarios. For instance, there can be military or other organizational

networks, where even though multiple users are valid members of a network (hence

are non-malicious), they may have different clearance levels with respect to the

transmitted information. In this scenario also, users would want to (or be required

to) help each other, but would not be allowed to decode each other’s message.

In this chapter, we first propose an achievable scheme that combines Marton’s
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coding scheme for broadcast channels [11] and Cover and El Gamal’s CAF scheme

for relay channels [80]. A similar achievable scheme appeared in [74–76], where CAF

is applied to a relay channel to provide improved secrecy for the main transmitter.

A relay channel can be considered as a special case of the single-sided CRBC where

the rate of the first user is set to zero.

To visualize the effects of cooperation on secrecy, we consider a Gaussian

CRBC and show that both users can have positive secrecy rates through user co-

operation. To obtain positive secrecy rates for both users, we provide different

assignments for the auxiliary random variables appearing in the achievable rates.

These auxiliary random variable assignments have dirty paper coding (DPC) inter-

pretations [81]. In addition, we combine jamming and relaying to provide secrecy

for both users when the relaying user is weak. Finally, we consider the CRBC with

a two-sided cooperation link and provide an achievable scheme for this channel.

The aforementioned Gaussian CRBC example demonstrates that by means

of cooperation, both users can have simultaneous secure communication with the

transmitter, although this is not possible without cooperation. Hence, this example

shows that, in fact, there can be synergy between cooperation and secrecy, and this

synergy can be created by using CAF as the cooperative strategy.

8.2 Channel Model and Definitions

From here until the beginning of Section 8.8, we will focus on a single-sided CRBC,

and refer to it simply as CRBC. The CRBC can be viewed as a relay channel
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where the transmitter sends messages both to the relay node and the destination.

Therefore, one of the users, user 1 in our case, in a CRBC both decodes its own

message and also helps the other user. A CRBC consists of two message sets w1 ∈

W1, w2 ∈ W2, two input alphabets, one at the transmitter x ∈ X and one at user

1 x1 ∈ X1, and two output alphabets y1 ∈ Y1, y2 ∈ Y2, where the former is for user

1 and the latter is for user 2. The channel is assumed to be memoryless and its

transition probability distribution is p(y1, y2|x, x1).

A
(
2nR1 , 2nR2 , n

)
code for this channel consists of two message sets as W1 =

{
1, . . . , 2nR1

}
andW2 =

{
1, . . . , 2nR2

}
, an encoder at the transmitter with mapping

W1 × W2 → X n, a set of relay functions at user 1, x1,i = fi(y1,1, . . . , y1,i−1) for

1 ≤ i ≤ n, two decoders, one at each user with the mappings g1 : Yn1 → W1

and g2 : Yn2 → W2. The probability of error is defined as P n
e = max

{
P n
e,1, P

n
e,2

}

where P n
e,1 = Pr (g1(Y n

1 ) 6= W1) , P n
e,2 = Pr (g2(Y n

2 ) 6= W2). The secrecy of the users

is measured by the equivocation rates which are 1
n
H(W1|Y n

2 ) and 1
n
H(W2|Y n

1 , X
n
1 ).

Since user 1 has its own channel input, we condition the entropy rate of user 2’s

messages on this channel input.

A rate tuple (R1, R2, Re,1, Re,2) is said to be achievable if there exists a (2nR1 , 2nR2 ,

n) code with limn→∞ P
n
e = 0 and

lim
n→∞

1

n
H(W1|Y n

2 ) ≥ Re,1, lim
n→∞

1

n
H(W2|Y n

1 , X
n
1 ) ≥ Re,2 (8.1)
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8.3 An Achievable Scheme

We now provide an achievable scheme which combines Marton’s coding scheme for

broadcast channels [11], the random binning scheme of [2, 3] for wiretap channels,

and Cover and El Gamal’s CAF scheme for relay channels [80]. The corresponding

achievable rate-equivocation region is given by the following theorem.

Theorem 8.1 The rate tuples (R1, R2, Re,1, Re,2) satisfying

R1 ≤ I(V1;Y1|X1) (8.2)

R2 ≤ I(V2;Y2, Ŷ1|X1) (8.3)

R1 +R2 ≤ I(V1;Y1|X1) + I(V2;Y2, Ŷ1|X1)− I(V1;V2) (8.4)

Re,1 ≤ R1 (8.5)

Re,1 ≤
[
I(V1;Y1|X1)− I(V1;Y2, Ŷ1|V2, X1)− I(V1;V2)

]+

(8.6)

Re,2 ≤ R2 (8.7)

Re,2 ≤
[
I(V2;Y2, Ŷ1|X1)− I(V2;Y1|V1, X1)− I(V1;V2)

]+

(8.8)

are achievable for any distribution of the form

p(v1, v2)p(x|v1, v2)p(x1)p(ŷ1|x1, v1, y1)p(y1, y2|x, x1) (8.9)

subject to the constraint

I(Ŷ1;Y1|X1, V1) ≤ I(Ŷ1, X1;Y2) (8.10)
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This theorem is a special case of Theorem 8.4 and obtained from the latter by setting

U = X1. Therefore, we will omit the proof of Theorem 8.1 here and will provide the

proof of Theorem 8.4 in Appendix 8.11.4. In (8.6) and (8.8), (x)+ is the positivity

operator, i.e., (x)+ = max(0, x).

In the achievable scheme given in Theorem 8.1, the transmitter uses a coding

scheme that blends Marton’s coding scheme and the random binning scheme of

[2, 3]. Intuitively, the transmitter divides each user’s message into two parts as

the confidential and non-confidential parts, where the confidential part needs to be

transmitted in perfect secrecy whereas there is no secrecy constraint on the non-

confidential part. The division of each message into two parts forms the basis of the

random binning scheme used in [2, 3] to provide confidentiality. In particular, the

non-confidential message can be viewed as the necessary randomness to protect the

confidential message. The transmitter encodes all these messages by using Marton’s

coding scheme, where the messages of one user, say user 1, are first encoded by using

a standard single-user codebook, and the messages of the other user, say user 2, are

encoded by using Gelfand-Pinsker’s scheme [82]. While using Gelfand-Pinsker’s

scheme [82] for user 2’s messages, the knowledge of user 1’s codeword is exploited

to improve the rate of user 2. Furthermore, to enlarge the achievable region, the

transmitter can reverse the order of encoding, i.e., first encode user 2’s messages,

next encode user 1’s messages by using the knowledge of user 2’s codeword, and

also use time-sharing between the two possible encoding orders. In the achievable

scheme given in Theorem 8.1, user 1 first decodes its own message, and next uses the

CAF scheme to help user 2, i.e., forms a compressed version of its own observation
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and sends it to user 2. However, there are slight differences between the CAF used

in the achievable scheme given in Theorem 8.1 and the original form of the CAF

scheme in [80]. These differences originate from the secrecy concerns in our model,

and are outlined in the following remark.

Remark 8.1 We note that both the form of the probability distribution in (8.9) and

the constraint in (8.10) in Theorem 8.1 are somewhat different than those of the clas-

sical CAF scheme in [80]. First, we condition the distribution of Ŷ1 on V1 to prevent

the compressed version of Y1 to leak any additional information regarding user 1’s

message on top of what user 2 already has through its own observation. The con-

straint in (8.10) also reflects this concern. Similar constraints on the distribution of

Ŷ1 and on the compression rate have appeared in [83], where these modifications are

not due to secrecy constraints contrary to here. In [83], these are imposed to obtain

higher rates for user 2 by removing user 1’s private message from the compressed

signal, whereas here, they are imposed not to let Ŷ1 leak any additional information

regarding user 1’s message. Moreover, if we let user 1 compress its observation with-

out erasing its own message from the observation, i.e., if we change the conditional

distribution of Ŷ1 to p(ŷ1|x1, y1), we can recover the constraint in [80] (see equations

(29)-(31) in [83]).

Remark 8.2 If we disable the assistance of user 1 to user 2 by setting X1 = Ŷ1 = φ,

the channel model reduces to the broadcast channel with secrecy constraints, and the
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achievable equivocation region becomes

RBC
e,1 ≤ I(V1;Y1)− I(V1;Y2|V2)− I(V1;V2) (8.11)

RBC
e,2 ≤ I(V2;Y2)− I(V2;Y1|V1)− I(V1;V2) (8.12)

where we require the Markov chain (V1, V2)→ X → (Y1, Y2). This result was derived

in [64].

Remark 8.3 If we disable both cooperation between receivers by setting X1 = Ŷ1 =

φ, and also the confidential messages sent to user 1 by setting V1 = φ, the channel

model reduces to the single-user eavesdropper channel, and the achievable equivoca-

tion rate for the second user becomes

Re,2 ≤ I(V2;Y2)− I(V2;Y1) (8.13)

and the Markov chain V2 → X → (Y1, Y2) is required by the probability distribution

in (8.9). This is exactly the secrecy capacity of the single-user eavesdropper channel

given in [3].

Remark 8.4 If we disable the confidential messages sent to user 1 by setting V1 =

φ, the channel model reduces to a relay channel with secrecy constraints, and the

achievable equivocation rate for the second user becomes

Re,2 ≤ I(V2;Y2, Ŷ1|X1)− I(V2;Y1|X1) (8.14)
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subject to

I(Ŷ1;Y1|X1) ≤ I(Ŷ1, X1;Y2) (8.15)

and the corresponding joint distribution reduces to

p(v2, x)p(x1)p(ŷ1|x1, y1)p(y1, y2|x, x1) (8.16)

Further, if we make the potentially suboptimal selection of V2 = X, the corresponding

achievable secrecy rate and the constraint coincide with their counterparts found in

[74, 76] for the relay channel.

Remark 8.5 By comparing the equivocation rates of the users in (8.6) and (8.8)

and the equivocation rates of the users in the corresponding broadcast channel given

in (8.11) and (8.12), we observe that the equivocation rate of user 1 may decrease

depending on the information contained in Ŷ1 and the equivocation rate of user 2

may increase depending on the channel conditions.

Remark 8.6 We will show in the next section, where we develop outer bounds for

the rate-equivocation region, that if the channel of user 2 is degraded with respect to

the channel of user 1 then Re,2 = 0 (see Remark 8.8), where degradedness is defined

through the Markov chain X → (X1, Y1) → Y2. Here, we show, as an interesting

evaluation, that this achievable scheme cannot yield any positive secrecy rates in this
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case, as expected.

I(V2;Y2, Ŷ1|X1)− I(V2;Y1|V1, X1)− I(V1;V2)

≤ I(V2;Y2, Ŷ1, V1|X1)− I(V2;Y1|V1, X1)− I(V1;V2) (8.17)

= I(V2;Y2, Ŷ1|V1, X1) + I(V2;V1|X1)− I(V2;Y1|V1, X1)− I(V1;V2) (8.18)

= I(V2;Y2, Ŷ1|V1, X1)− I(V2;Y1|V1, X1) (8.19)

≤ I(V2;Y2, Ŷ1, Y1|V1, X1)− I(V2;Y1|V1, X1) (8.20)

= I(V2;Y2, Y1|V1, X1) + I(V2; Ŷ1|V1, X1, Y1, Y2)− I(V2;Y1|V1, X1) (8.21)

= I(V2;Y2, Y1|V1, X1)− I(V2;Y1|V1, X1) (8.22)

= I(V2;Y2|V1, X1, Y1) (8.23)

= 0 (8.24)

where in (8.19), we used the fact that X1 and (V1, V2) are independent in (8.22), we

used the Markov chain (V2, Y2)→ (V1, X1, Y1)→ Ŷ1 which implies

I(V2; Ŷ1|V1, X1, Y1, Y2) = 0 (8.25)

and in (8.24), we used the Markov chain (V1, V2) → X → (X1, Y1) → Y2 which is

due to the assumed degradedness.
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8.4 An Outer Bound

We now provide an outer bound for the rate-equivocation region. Our first outer

bound in Theorem 8.2 uses auxiliary random variables. Next, in Theorem 8.3, we

provide a simpler outer bound for user 2 using only the channel inputs and outputs,

without employing any auxiliary random variables.

Theorem 8.2 The rate-equivocation region of the CRBC lies in the union of the

following rate tuples

R1 ≤ I(V1;Y1|X1) (8.26)

R2 ≤ I(V2;Y2) (8.27)

Re,1 ≤ min
{
R̃e,1, R̄e,1, R1

}
(8.28)

Re,2 ≤ min
{
R̃e,2, R̄e,2, R2

}
(8.29)

where

R̃e,1 = I(V1;Y1|U)− I(V1;Y2|U) (8.30)

R̃e,2 = I(V2;Y2|U)− I(V2;Y1|U) (8.31)

R̄e,1 = I(V1;Y1|V2)− I(V1;Y2|V2) (8.32)

R̄e,2 = I(V2;Y2|V1)− I(V2;Y1|V1) (8.33)
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where the union is taken over all joint distributions satisfying the Markov chain

U → (V1, V2)→ (X,X1, Y1)→ Y2 (8.34)

The proof of this theorem is given in Appendix 8.11.1.

The outer bounds on the equivocation rates given in Theorem 8.2 are reminis-

cent of the outer bound for the secrecy capacity of the discrete memoryless wiretap

channel obtained in [3]. While the outer bound in [3] is tight for the wiretap channel,

the outer bounds here for the CRBC are generally not tight. However, our outer

bounds can be interpreted by referring to the outer bound in [3]. For example, user

1’s equivocation rate is bounded by the minimum of three terms, see (8.28), where

the first term, see (8.30), can be viewed as an outer bound for the secrecy capacity

of the wiretap channel between the transmitter, user 1 (main receiver) and user 2

(eavesdropper), when one ignores the message sent to user 2, because this outer

bound does not involve V2. The second term, see (8.32), can be viewed similarly.

This outer bound now considers the message sent to user 2, however, eliminates it

by conditioning both mutual information terms in (8.32) on V2.

Remark 8.7 The bounds on the equivocation rates in Theorem 8.2 and those in

[64], where the outer bounds are for the equivocation rates in a two-user broadcast

channel with per-user secrecy constraints as in here, have the same expressions. The

only difference between the two outer bounds is in the Markov chain over which the
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union is taken. The Markov chain in (8.34) contains the one in [64], which is

U → (V1, V2)→ X → (Y1, Y2) (8.35)

which means that our outer bound here evaluates to a larger region than the one in

[64]. This should be expected since the achievable rate-equivocation region here in

our CRBC contains the achievable region in the broadcast channel.

We also provide a simpler outer bound for the equivocation rate of user 2

which does not involve any auxiliary random variables.

Theorem 8.3 The equivocation rate of user 2 is bounded as follows

Re,2 ≤ max
p(x,x1)

I(X;Y2|X1, Y1) (8.36)

The proof of this theorem is given in Appendix 8.11.2.

This outer bound is obtained by providing extra (i.e., side) information to

user 2. In particular, to obtain the outer bound in Theorem 8.3, we consider a new

channel where user 2 has access to user 1’s observation. Thus, in this new channel,

user 2’s observation is improved as compared to the original channel. Consequently,

an outer bound for the new channel also serves as an outer bound for the original

channel.

Remark 8.8 If the channel is degraded, then the equivocation rate of user 2 is zero,
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since

I(X;Y2|X1, Y1) = 0 (8.37)

which follows from the Markov chain X → (X1, Y1)→ Y2 which is a consequence of

the degradedness.

Remark 8.9 We generally expect the outer bound in Theorem 8.3 to be loose be-

cause it essentially assumes that user 2 has a complete access to user 1’s observation1

whereas, in reality, user 2 has only limited information about user 1’s observation,

which it obtains through the cooperative link. However, if the link from user 1 to user

2 is strong enough, user 1 may be able to convey its observation to user 2 precisely

in which case the outer bound in Theorem 8.3 can be close to the achievable rate

obtained via the CAF scheme. For example, such a situation arises if the channel

satisfies the following Markov chain

X → (X1, Y2)→ Y1 (8.38)

For such channels, by selecting V2 = X, V1 = Ŷ1 = φ in the achievable scheme, we

1In fact, this Sato-type [84] upper-bounding technique is used as a first step (before introducing
noise correlation to tighten the upper bound) in finding the secrecy capacity of the MIMO wiretap
channel [15–17, 21].
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get the following equivocation rate for user 2

I(X;Y2|X1)− I(X;Y1|X1) = I(X;Y2, Y1|X1)− I(X;Y1|X1) = I(X;Y2|X1, Y1)

(8.39)

where the first equality is due to the Markov chain in (8.38). Hence, the outer bound

in (8.36) gives the secrecy capacity for channels satisfying (8.38).

Remark 8.10 Although we are able to provide a simple outer bound for the equiv-

ocation rate of user 2, that depends only on the channel inputs and outputs, finding

such a simple outer bound for the equivocation rate of user 1 does not seem to be

possible. One reason for this is that, user 1 can use its observation, i.e., Y1, for

encoding its input, i.e., X1, and create correlation between its channel inputs and

outputs across time. Consequently, this correlation cannot be accounted for without

using auxiliary random variables. Another reason will be discussed in Remark 8.13.

8.5 An Example: Gaussian CRBC

We now provide an example to show how the proposed achievable scheme can enlarge

the secrecy region for a Gaussian broadcast channel. The channel outputs of a

Gaussian CRBC are

Y1 = X + Z1 (8.40)

Y2 = X +X1 + Z2 (8.41)
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where Z1 ∼ N (0, N1), Z2 ∼ N (0, N2) and are independent, E [X2] ≤ P,E [X2
1 ] ≤

aP . In this section, we assume that N2 > N1, i.e., user 1 has a stronger channel in

the corresponding broadcast channel. Note that, in this case, if user 1 does not help

user 2, e.g., in the corresponding broadcast channel, Re,2 = 0. We present two differ-

ent achievable schemes for this channel where each one corresponds to a particular

selection of the underlying random variables in Theorem 8.1 satisfying the proba-

bility distribution condition in (8.9). Proposition 8.1 assigns independent channel

inputs for each user, whereas Proposition 8.2 uses a DPC scheme. For simplicity,

we provide only the achievable equivocation region in the following propositions.

Proposition 8.1 The following equivocation rates are achievable for all α ∈ [0, 1]

Re,1 ≤
1

2
log

(
1 +

αP

ᾱP +N1

)
− 1

2
log

(
1 +

αP

N2

)
(8.42)

Re,2 ≤
1

2
log

(
1 + ᾱP

(
1

αP +N2

+
1

N1 +Nc

))
− 1

2
log

(
1 +

ᾱP

N1

)
(8.43)

where ᾱ = 1− α and Nc is subject to

Nc ≥
N2(ᾱP +N1) + P (αᾱP +N1)

aP
(8.44)

Proof: This achievable region can be obtained by selecting V1 ∼ N (0, αP ), V2 ∼

N (0, ᾱP ), X = V1 + V2, X1 ∼ N (0, aP ), Ŷ1 = Y1 − V1 + Zc = V2 + Z1 + Zc and

Zc ∼ N (0, Nc), where V1, V2, X1 and Zc are independent. The rates are found by

direct calculation of the expressions in Theorem 8.1 using the above selection of

random variables. 2
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This achievable region can be enlarged by introducing correlation between

V1, V2. Since a joint encoding is performed at the transmitter, one of the users’

signals can be treated as a non-causally known interference, and DPC [81] can be

used. In the following proposition, the transmitter treats user 2’s signal as a non-

causally known interference.

Proposition 8.2 The following equivocation rates are achievable for any γ and all

α ∈ [0, 1]

Re,1 ≤
1

2
log

(
1 +

(ᾱγ + α)2P

(α + γ2ᾱ)N1 + (γ − 1)2αᾱP

)
− 1

2
log

(
1 +

αP

N2

)

− 1

2
log
(

1 + γ2 ᾱ

α

)
(8.45)

Re,2 ≤
1

2
log

(
1 +

ᾱP (N1 +Nc) + ᾱ(1− γ)2P (αP +N2)

(αP +N2)(N1 +Nc)

)

− 1

2
log

(
1 +

αᾱ(γ − 1)2P

(α + γ2ᾱ)N1

)
− 1

2
log
(

1 + γ2 ᾱ

α

)
(8.46)

where ᾱ = 1− α and Nc is subject to

Nc ≥
−η +

√
η2 + 4θω

2θ
(8.47)
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where

θ = a(α + ᾱγ2)P (8.48)

η =
(
α + γ2ᾱ

)
P
[
aN1 + (1− γ)2ᾱP (a+ ᾱ)

]

− (P +N2)
[
N1(α + γ2ᾱ) + αᾱ(γ − 1)2P

]
(8.49)

ω =
{

(P +N2)
[
(1− γ)2ᾱP +N1

]
− (1− γ)2ᾱ2P 2

}

×
{
N1

(
α + γ2ᾱ

)
+ Pαᾱ(γ − 1)2

}
(8.50)

Proof: These equivocation rates are obtained by applying DPC for user 1.

Let the channel input of the transmitter be X = U1+U2 where U1 ∼ N (0, αP ), U2 ∼

N (0, ᾱP ) and are independent. The auxiliary random variables are selected as

V2 = U2, V1 = U1 + γU2, where for user 1, the signal of user 2 is treated as non-

casually known interference at the transmitter. The channel output of user 1 is

compressed as Ŷ1 = Y1 − V1 +Zc = (1− γ)U2 +Z1 +Zc where Zc ∼ N (0, Nc) is the

compression noise. The channel input of user 1 is selected as X1 ∼ N (0, aP ). Here,

again, U1, U2, Zc and X1 are all independent. The rates are then found by direct

calculation of the expressions in Theorem 8.1 using the above selection of random

variables. 2

We note that, in both of the propositions above, Re,2 is a monotonically de-

creasing function of Nc. Consequently, achievable Re,2 depends on the quality of the

cooperative link between the users. If this link gets better allowing user 1 to convey

its observation in a finer form, user 2’s secrecy increases. For illustrative purposes,
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the rate regions given by Propositions 8.1 and 8.2 are evaluated for the parameters

P = 8, N1 = 1, N2 = 2, and the corresponding plots are given in Figures 8.3 and

8.4. Note that since N2 > N1, if there was no cooperation between the users, user 2

could not have a positive secrecy rate. We observe from these figures that, thanks

to the cooperation of the users, both users enjoy positive secrecy rates. However,

we observe that a positive secrecy for user 2 comes at the expense of a decrease in

the secrecy of user 1. In particular, for both propositions, maximum secrecy rate for

user 2 is achieved when user 1 does not have any message itself and acts as a pure

relay for user 2. Similarly, user 1 achieves the maximum secrecy rate when user 2

does not have any message.

We also note that the achievable secrecy rate regions for both Proposition 8.1

and Proposition 8.2 are monotonically increasing in a, i.e., the available power at

user 1. In fact, for any given (P,N1, N2), there exist threshold values for a, denoted

by a∗1(P,N1, N2) and a∗2(P,N1, N2), for Propositions 8.1 and 8.2, respectively, such

that if a ≤ a∗1(P,N1, N2) (resp. a ≤ a∗2(P,N1, N2)), Proposition 8.1 (resp. Proposi-

tion 8.2) cannot provide any positive secrecy rate for user 2, and if a > a∗1(P,N1, N2)

(resp. a > a∗2(P,N1, N2)), Proposition 8.1 (resp. Proposition 8.2) can provide a

positive secrecy rate for user 2. Since the rate expressions involved in Proposi-

tions 8.1 and 8.2 are rather complicated, it does not seem that a∗j(P,N1, N2) admits

a simple closed form expression. However, we numerically evaluated the thresh-

old values for (P = 8, N1 = 1, N2 = 2) (which is the parameter set that we use

to obtain Figures 8.3 and 8.4) as a∗1(8, 1, 2) ≈ 3.25 and a∗2(8, 1, 2) ≈ 1.25. Thus,

for (P = 8, N1 = 1, N2 = 2), the minimum power required at user 1 to provide a
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Figure 8.3: Achievable equivocation rate region for single-sided CRBC using Propo-
sition 8.1 where V1 and V2 are independent. P = 8, N1 = 1, N2 = 2, i.e, user 2 has
no secrecy rate in the underlying broadcast channel.
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Figure 8.4: Achievable equivocation region for single-sided CRBC using Proposi-
tion 8.2 where V1, V2 are correlated, admitting a DPC interpretation. P = 8, N1 =
1, N2 = 2, i.e., user 2 has no secrecy rate in the underlying broadcast channel.
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positive secrecy rate for user 2 by Proposition 8.2 is less than the minimum power

required by Proposition 8.1. In fact, since Proposition 8.1 corresponds to a special

case of Proposition 8.2, i.e., Proposition 8.1 can be recovered from Proposition 8.2

by setting γ = 0, in general, we have a∗2(P,N1, N2) ≤ a∗1(P,N1, N2).

Next, we note that, for both achievable schemes, as a→∞, the equivocation

rate of user 2 approaches a limit. This is due to the fact that, as a → ∞, the

achievable equivocation rates are limited by the link between the transmitter and

user 1. Moreover, as a → ∞, user 1 can send its observation to user 2 perfectly.

Thus, in this case, user 2 can be assumed to have a channel output of (Y1, Y2),

which makes the channel of user 1 degraded with respect to the channel of user

2. Consequently, following the analysis carried out in Remark 8.9, we expect the

outer bound in Theorem 8.3 to become tight as a→∞, which is stated in the next

corollary.

Corollary 8.1 As a → ∞, the maximum achievable equivocation rate for user 2

becomes

Re,2 =
1

2
log

(
1 + P

(
1

N1

+
1

N2

))
− 1

2
log

(
1 +

P

N1

)
(8.51)

The proof of this corollary is given in Appendix 8.11.3.
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8.6 Joint Jamming and Relaying

The proposed achievability scheme and its application to Gaussian CRBC show us

that user cooperation can enlarge the secrecy region. However, this achievability

scheme and the Gaussian example provide us with only a limited picture of what

can be achieved. In particular, the achievability scheme proposed in Section 8.3

is designed with the cooperating user (user 1) being the stronger of the two users

in mind. Next, we want to explore what can be done when the cooperating user

(user 1) is the weaker of the two users. In this case, without the cooperative link,

user 1 cannot have a positive secrecy rate. Therefore, the first question to ask is,

whether user 1 can have a positive secrecy rate by utilizing the cooperative link.

The answer to this question is positive if user 1 uses the cooperative link to send

a jamming signal to user 2. However, a more interesting question is whether both

users can achieve positive secrecy simultaneously. The following theorem provides

an achievable scheme, where user 1 performs a combination of jamming and relaying,

to provide both users with positive secrecy rates.
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Theorem 8.4 The rate quadruples (R1, R2, Re,1, Re,2) satisfying

R1 ≤ I(V1;Y1|X1) (8.52)

R2 ≤ I(V2;Y2, Ŷ1|U) (8.53)

R1 +R2 ≤ I(V1;Y1|X1) + I(V2;Y2, Ŷ1|U)− I(V1;V2) (8.54)

Re,1 ≤ R1 (8.55)

Re,1 ≤
[
I(V1;Y1|X1)− I(V1;Y2, Ŷ1|V2, U)− I(V1;V2)

]+

(8.56)

Re,2 ≤ R2 (8.57)

Re,2 ≤
[
I(V2;Y2, Ŷ1|U)− I(V2;Y1|V1, X1)− I(V1;V2)

]+

(8.58)

are achievable for any distribution of the form

p(v1, v2)p(x|v1, v2)p(u)p(x1|u)p(ŷ1|u, v1, y1)p(y1, y2|x, x1) (8.59)

subject to the following constraint

I(Ŷ1;Y1|X1, V1, U) ≤ I(Ŷ1, U ;Y2) (8.60)

The proof of this theorem is given in Appendix 8.11.4.

We note that the achievable scheme given in Theorem 8.4 corresponds to the

generalization of the achievable scheme given in Theorem 8.1 by using channel pre-

fixing [3] at user 1. Channel pre-fixing refers to the construction of a hypothetical

channel between the encoding scheme used at user 1 and the channel input of user
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1. By means of this hypothetical channel, additional randomness can be introduced,

and this randomness might be useful to improve the equivocation rates [3]. Besides

channel pre-fixing, both achievable schemes use the same techniques, namely Mar-

ton’s achievable scheme and random binning at the transmitter, and CAF scheme

at user 1.

Remark 8.11 In Theorem 8.4, U denotes the actual help signal, while the channel

input X1, which is correlated with U , may include an additional jamming attack.

The intuition behind this achievable scheme is that, although user 2 should be able

to decode U , it cannot decode the entire X1. Therefore, since user 2 cannot decode

and eliminate X1 from Y2, its channel becomes an attacked one, where decoding V1

may be impossible. Therefore, in this scheme, user 1 first attacks user 2 to make

its channel worse by associating U with many X1s (hence, it confuses user 2), and

then helps it to improve its secrecy rate.

Remark 8.12 We note that this achievable scheme is reminiscent of “cooperative

jamming” [65]. In [65], the focus is on a two user MAC with an external eavesdrop-

per, where one of the users attacks both the legitimate receiver and the eavesdropper,

with the hope that it hurts the eavesdropper more than it hurts the legitimate re-

ceiver, and improves the secrecy of the legitimate receiver. In contrast, in our work,

the relay (user 1) attacks user 2 to improve its own secrecy.
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8.7 Gaussian Example Revisited

Consider again the Gaussian CRBC, now with N1 > N2. The scheme proposed in

Theorem 8.4 works as follows: user 1 divides X1 into two parts. The first part carries

the noise and the second part carries the bin index of Ŷ1. Although Theorem 8.4 is

valid for all cases, assume here that user 1 has large enough power. Then, the first

part makes user 2’s channel noisier than user 1’s channel. This brings the situation

to the case studied in Section 8.5. Consequently, we can now have a positive secrecy

rate for user 1, and also provide a positive secrecy rate to user 2, by sending a

compressed version of Y1 to it, as in Section 8.5.

Proposition 8.3 The following equivocation rates are achievable for all (α, β) ∈

[0, 1]× [0, 1]

Re,1 ≤
1

2
log

(
1 +

αP

ᾱP +N1

)
− 1

2
log

(
1 +

αP

aβ̄P +N2

)
(8.61)

Re,2 ≤
1

2
log

(
1 + ᾱP

(
1

N1 +Nc

+
1

αP +N2 + aβ̄P

))

− 1

2
log

(
1 +

ᾱP

N1

)
(8.62)

where ᾱ = 1− α, β̄ = 1− β, and Nc is subject to

Nc ≥
ᾱP (αP +N2 + aβ̄P ) +N1(P +N2 + aβ̄P )

aβP
(8.63)

Proof: This achievable region is obtained by selecting the random variables

in Theorem 8.4 as X = V1 + V2 where V1 ∼ N (0, αP ), V2 ∼ N (0, ᾱP ), X1 = U +Zj
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where U ∼ N (0, aβP ), Zj ∼ N (0, aβ̄P ), Ŷ1 = Y1 − V1 + Zc = V2 + Z1 + Zc where

Zc ∼ N (0, Nc). Moreover, V1, V2, U, Zj, Zc are all independent. Here, Zj serves as

the jamming signal, and U serves as the helper signal. User 1 first jams user 2 and

makes its channel noisier than its own by using Zj and then helps user 2 through

sending a compressed version of its observation by using U . The rates are then found

by direct calculation of the expressions in Theorem 8.4 using the above selection of

random variables. 2

Moreover, as in Section 8.5, we can use DPC based schemes in this case also.

The following proposition characterizes the DPC scheme for Theorem 8.4.

Proposition 8.4 The following equivocation rates are achievable for any γ and for

all (α, β) ∈ [0, 1]× [0, 1]

Re,1 ≤
1

2
log

(
1 +

(ᾱγ + α)2P

(α + γ2ᾱ)N1 + (γ − 1)2αᾱP

)
− 1

2
log

(
1 +

αP

(aβ̄P +N2)

)

− 1

2
log
(

1 + γ2 ᾱ

α

)
(8.64)

Re,2 ≤
1

2
log

(
1 +

ᾱP (N1 +Nc) + ᾱ(1− γ)2P (αP + aβ̄P +N2)

(αP + aβ̄P +N2)(N1 +Nc)

)

− 1

2
log

(
1 +

αᾱ(γ − 1)2P

(α + γ2ᾱ)N1

)
− 1

2
log
(

1 + γ2 ᾱ

α

)
(8.65)

where ᾱ = 1− α, β̄ = 1− β and Nc is subject to

Nc ≥
−η +

√
η2 + 4θω

2θ
(8.66)
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where

θ = aβ(α + ᾱγ2)P (8.67)

η =
(
α + γ2ᾱ

)
P
[
aβN1 + (1− γ)2ᾱP (aβ + ᾱ)

]

− (P + aβ̄P +N2)
[
N1(α + γ2ᾱ) + αᾱ(γ − 1)2P

]
(8.68)

ω =
[
(P + aβ̄ +N2)

[
(1− γ)2ᾱP +N1

]
− (1− γ)2ᾱ2P 2

]

×
[
N1

(
α + γ2ᾱ

)
+ Pαᾱ(γ − 1)2

]
(8.69)

Proof: All random variable selections are the same as in Proposition 8.2 ex-

cept for X1, U . Here, we choose X1 = Zj +U and U ∼ N (0, aβP ), Zj ∼ N (0, aβ̄P ).

U,Zj are independent. 2

We first note that Propositions 8.3, 8.4 reduce to Propositions 8.1, 8.2, respec-

tively, by simply selecting β = 0, i.e., no jamming. We provide a numerical example

in Figures 8.5 and 8.6 for P = 8, N1 = 2, N2 = 1. Since N1 > N2, a positive secrecy

rate for user 1 would not be possible if the cooperative link did not exist. However,

if user 1 has enough power to make user 2’s channel noisier by injecting Gaussian

noise to it, user 1 can provide secrecy for itself. For user 1 to have positive secrecy,

we need

a ≥ N1 −N2

P
(8.70)

Otherwise, user 1 cannot have positive secrecy by using strategies employed in

Propositions 8.3, 8.4. In addition, contrary to Section 8.5, we observe from Fig-
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ures 8.5 and 8.6 that here DPC based schemes do not provide any gain with respect

to the independent selection of V1, V2. Furthermore, we also apply Propositions 8.3

and 8.4 to the case where user 1 is stronger than user 2 by selecting the noise vari-

ances as N1 = 1, N2 = 2 as in Section 8.5 to show that propositions presented in

this section cover the ones in Section 8.5.

We provide the corresponding graphs in Figures 8.7 and 8.8. Comparing Fig-

ures 8.3 (resp. 8.4) and 8.7 (resp. 8.8), we observe that even though the maximum

secrecy rate of user 2 remains the same, the maximum secrecy rate of user 1 is

improved significantly. This improvement comes, because through Propositions 8.3

and 8.4, user 1 jams the receiver of user 2.

Next, we examine Figures 8.3 and 8.7 in more detail. In Figure 8.3, for instance

when a = 100, the largest Re,2, which is about 0.25 bits/channel use, is obtained

when Re,1 = 0. This corresponds to the case where user 1’s rate and secrecy rate are

set to zero. In this case, user 1 serves as a pure relay for user 2. The secrecy rate

we obtain at this extreme is the same as [74–76]. At the other extreme, the largest

Re,1, which is about 0.42 bits/channel use, is obtained when Re,2 = 0. In this case,

user 2 is just an eavesdropper in a single-user channel from the transmitter to user

1. The secrecy rate we obtain at this extreme is the same as [2, 3, 49]. Moreover,

as we see from Figure 8.3, whenever user 1 helps user 2 to have positive secrecy,

it needs to deviate from this extreme point. Thus, user 2’s positive secrecy rates

come at the expense of a decrease in user 1’s secrecy rate. If we consider Figure 8.7,

the largest Re,2 is the same as that in Figure 8.3, which is again achieved when

Re,1 = 0, i.e., when user 1 acts as a pure relay for user 2. However, in Figure 8.7,
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Figure 8.5: Achievable equivocation rate region using Proposition 8.3 where user 1
jams and relays, and V1, V2 are independent. P = 8, N1 = 2, N2 = 1, i.e., user 1
cannot have any positive secrecy in the underlying broadcast channel.
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Figure 8.6: Achievable equivocation rate region using Proposition 8.4 where user 1
jams and relays, and V1, V2 are correlated, admitting a DPC interpretation. P =
8, N1 = 2, N2 = 1, i.e., user 1 cannot have any positive secrecy in the underlying
broadcast channel.
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Figure 8.7: Achievable equivocation rate region using Proposition 8.3 where user 1
jams and relays, and V1, V2 are independent. P = 8, N1 = 1, N2 = 2, i.e., user 1’s
channel is stronger than user 2.
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Figure 8.8: Achievable equivocation rate region using Proposition 8.4 where user 1
jams and relays, and V1, V2 are correlated, admitting a DPC interpretation. P =
8, N1 = 1, N2 = 2, i.e., user 1’s channel is stronger than user 2.
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user 1’s maximum secrecy rate increases dramatically due to its jamming capabilities

in Proposition 8.3. In Figure 8.7, user 1 achieves its maximum secrecy rate, which

is about 1.58 bits/channel use, when it uses all of its power for jamming user 2’s

receiver and when the rate of user 2 is set to zero. We note that this rate is

larger than that is achievable in the corresponding single-user eavesdropper channel

from the transmitter to user 1, while user 2 is an eavesdropper. We observe from

Figure 8.7 that when user 1 is able to jam and relay jointly, it can provide secrecy

for user 2 while its own secrecy rate is still larger than that of the corresponding

single-user eavesdropper channel. Thus, as opposed to the case where it can only

relay, i.e., Proposition 8.1, both users enjoy secrecy in Proposition 8.3, while user

1 does not have to compromise from its own secrecy rate that is achievable in the

underlying eavesdropper channel.

At first sight, this result may seem counterintuitive, because although user 1

spends some of its available power to jam user 2, user 2 still gets the same equivo-

cation rate as if user 1 helps user 2 by using all its available power. However, this

surprising result can be better understood by noting the fact that jamming and

helping do not occur simultaneously, i.e., user 1 does not jam and help at the same

time, instead, it uses time-sharing between jamming and relaying. In particular,

Figure 8.7 clearly demonstrates the fact that user 1 uses time-sharing between two

extreme operating points of Proposition 8.3 in order to provide a larger achievable

secrecy rate region than the one in Figure 8.3. At one extreme operating point,

user 1, to which no message is sent, acts as a pure relay for user 2, and at the

other extreme operating point, user 1 acts as a pure jammer for user 2, to which no
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message is sent. The same conclusion holds for Figure 8.8, i.e., Proposition 8.4, as

well. However, in this case, at the extreme point where the maximum equivocation

rate of user 2 is obtained, the equivocation rate of user 1 is not always zero, see

the cases a = 5, 10 in Figures 8.4 and 8.8. In particular, Figure 8.9 shows the fact

that user 1 employs time-sharing between two extreme operating points, where two

extreme points, points A and B, are also noted.

Remark 8.13 We are now ready to discuss why we could not find an outer bound

for the equivocation rate of user 1 that relies only on the channel inputs and outputs.

To understand this, we first examine the outer bound we found on the equivocation

rate of user 2 in Theorem 8.3. This outer bound is obtained by giving the entire

observation of user 1 to user 2 (i.e., Nc = 0). Hence, this is the best possible

scenario as far as the channel of user 2 is concerned, and thus, it yields an outer

bound. However, a similar approach cannot work for user 1, because although user

1 can have access to the observation of user 2, user 1 still has additional freedom

(and opportunities) to increase its own secrecy rate by sending jamming signals over

the cooperative link, as shown in this section. This is the main reason why we

could not find a simple outer bound for user 1’s secrecy rate using only the channel

inputs/outputs.

8.8 Two-sided Cooperation

In this section, we provide an achievable scheme for the CRBC with two-sided

cooperation. In this case, each user can act as a relay for the other one; see Fig-
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Figure 8.9: Achievable equivocation rate regions using Propositions 8.2 and 8.4
where user 1 jams and relays, and V1, V2 are correlated, admitting a DPC interpre-
tation. a = 5, P = 8, N1 = 1, N2 = 2, i.e., user 1’s channel is stronger than user
2.

ure 8.2. The corresponding channel consists of two message sets w1 ∈ W1, w2 ∈ W2,

three input alphabets, one at the transmitter x ∈ X , one at user 1 x1 ∈ X1 and

one at user 2 x2 ∈ X2. The channel consists of two output alphabets denoted by

y1 ∈ Y1, y2 ∈ Y2 at the two users. The channel is assumed to be memoryless and its

transition probability distribution is p(y1, y2|x, x1, x2).

A
(
2nR1 , 2nR2 , n

)
code for this channel consists of two message sets as W1 =

{
1, . . . , 2nR1

}
and W2 =

{
1, . . . , 2nR2

}
, an encoder at the transmitter which maps

each pair (w1, w2) ∈ (W1 ×W2) to a codeword xn ∈ X n, a set of relay functions at

user 1, x1,i = f1,i(y1,1, . . . , y1,i−1),

1 ≤ i ≤ n, and a set of relay functions at user 2, x2,i = f2,i(y2,1, . . . , y2,i−1), 1 ≤
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i ≤ n, two decoders, one at user 1 and one at user 2 with the mappings g1 : Yn1 →

W1, g2 : Yn2 → W2. Definitions for the error probability for this two-sided case are

the same as in the single-sided case. The secrecy of the users is again measured

by the equivocation rates which are 1
n
H(W1|Y n

2 , X
n
2 ) and 1

n
H(W2|Y n

1 , X
n
1 ). In this

case, since user 2 has a channel input also, we condition the entropy rate of user 1’s

messages on this channel input.

A rate tuple (R1, R2, Re,1, Re,2) is said to be achievable if there exists a (2nR1 , 2nR2 ,

n) code with limn→∞ P
n
e = 0, and

lim
n→∞

1

n
H(W1|Y n

2 , X
n
2 ) ≥ Re,1, lim

n→∞

1

n
H(W2|Y n

1 , X
n
1 ) ≥ Re,2 (8.71)

The following theorem characterizes an achievable region for this channel

model.

Theorem 8.5 The rate tuples (R1, R2, Re,1, Re,2) satisfying

R1 ≤ I(V1;Y1, Ŷ2|X1, U2) (8.72)

R2 ≤ I(V2;Y2, Ŷ1|X2, U1) (8.73)

R1 +R2 ≤ I(V1;Y1, Ŷ2|X1, U2) + I(V2;Y2, Ŷ1|X2, U1)− I(V1;V2) (8.74)

Re,1 ≤ R1 (8.75)

Re,1 ≤
[
I(V1;Y1, Ŷ2|X1, U2)− I(V1;Y2, Ŷ1|V2, X2, U1)− I(V1;V2)

]+

(8.76)

Re,2 ≤ R2 (8.77)

Re,2 ≤
[
I(V2;Y2, Ŷ1|X2, U1)− I(V2;Y1, Ŷ2|V1, X1, U2)− I(V1;V2)

]+

(8.78)
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are achievable for any distribution of the form

p(v1, v2)p(x|v1, v2)p(u1, x1)p(ŷ1|u1, y1)p(u2, x2)p(ŷ2|u2, y2)p(y1, y2|x, x1, x2) (8.79)

subject to the following constraints

I(Ŷ1;Y1|U1, X1, U2) ≤ I(Ŷ1, U1;Y2|X2) (8.80)

I(Ŷ2;Y2|U2, X2, U1) ≤ I(Ŷ2, U2;Y1|X1) (8.81)

The proof of this theorem is given in Appendix 8.11.5.

Similar to the achievable schemes given in Theorems 8.1 and 8.4, the achiev-

able scheme in Theorem 8.5 also blends Marton’s achievable scheme for broadcast

channels [11], the random binning scheme of [3] to provide confidentiality, and the

CAF scheme [80]. In particular, the transmitter uses Marton’s achievable scheme

and random binning, and each user employs a CAF-based cooperation scheme to

help the other user. Similar to Theorem 8.4, in Theorem 8.5, channel pre-fixing

is used as well. The main difference between the previous achievable schemes in

Theorems 8.1, 8.4 and the achievable scheme in Theorem 8.5 comes from how CAF

is performed as a cooperation strategy, and in particular, how compression is per-

formed. Contrary to the previous achievable schemes given in Theorem 8.1 and 8.4,

here users do not compress their observations after erasing their codewords from the

observations; this is why we did not condition Ŷ1 (resp. Ŷ2) on V1 (resp. V2) in (8.79).

In fact, they cannot remove their own codewords from their observations because
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each user employs a sliding-window type decoding scheme, i.e., they should wait

until the next block to decode their own codewords, whereas compression should be

performed right after the reception of the previous block, at which time they have

not yet decoded their own messages. However, we note that this achievable scheme

also provides opportunities for jamming as did the achievable scheme provided in

Section 8.6.

8.9 Gaussian Example for Two-sided Cooperation

The channel outputs of a Gaussian CRBC with two-sided cooperation are

Y1 = X +X2 + Z1 (8.82)

Y2 = X +X1 + Z2 (8.83)

where Z1 ∼ N (0, N1), Z2 ∼ N (0, N2) and are independent, E [X2] ≤ P , E [X2
1 ] ≤

a1P , E [X2
2 ] ≤ a2P .

We present the following proposition which characterizes an achievable equiv-

ocation region.

Proposition 8.5 The following equivocation rates are achievable for all (α, β1, β2) ∈
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[0, 1]3

Re,1 ≤
1

2
log

(
1 +

αP (N1 + a2β̄2P +N2 +Nc,2)

ᾱP (N1 + a2β̄2P +N2 +Nc,2) + (N1 + a2β̄2P )(N2 +Nc,2)

)

− 1

2
log

(
1 + αP

(
1

a1β̄1P +N2

+
1

N1 +Nc,1

))
(8.84)

Re,2 ≤
1

2
log

(
1 +

ᾱP (N2 + a1β̄1P +N2 +Nc,1)

αP (N2 + a1β̄1P +N1 +Nc,1) + (N2 + a1β̄1P )(N1 +Nc,1)

)

− 1

2
log

(
1 + αP

(
1

a2β̄2P +N1

+
1

N2 +Nc,2

))
(8.85)

where ᾱ = 1− α, β̄1 = 1− β1, β̄2 = 1− β2, and Nc,1, Nc,2 are subject to

Nc,1 ≥
−b11 +

√
b2

11 + 4a11c11

2a11

(8.86)

Nc,2 ≥
−b22 +

√
b2

22 + 4a22c22

2a22

(8.87)

and

a11 = a1β1P (8.88)

b11 = P
(
P + a1β1(P +N1)

)
− (P +N1 + a2β̄2P )(P +N2 + a1β̄1P ) (8.89)

c11 = (P +N1 + a2β̄2P )
(
PN1 + (P +N1)(N2 + a1β̄1P )

)
(8.90)

a22 = a2β2P (8.91)

b22 = P
(
P + a2β2(P +N2)

)
− (P +N1 + a2β̄2P )(P +N2 + a1β̄1P ) (8.92)

c22 = (P +N2 + a1β̄1P )
(
PN2 + (P +N2)(N1 + a2β̄2P )

)
(8.93)

Proof: This achievable region is obtained by selecting X = V1 + V2 where
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V1 ∼ N (0, αP ), V2 ∼ N (0, ᾱP ) and are independent, Xi = Ui + Z̃i where Ui ∼

N (0, aiβiP ), Z̃i ∼ N (0, aiβ̄iP ), i = 1, 2 and independent, and Ŷi = Yi + Zc,i where

Zc,i ∼ N (0, Nc,i), i = 1, 2 and are independent of all other random variables. Direct

calculation of rates in Theorem 8.5 with these random variable selections yields the

achievable region. 2

A numerical example is given in Figure 8.10 for the case P = 8, N1 = 1, N2 = 2.

Comparing Figure 8.10 with Figures 8.7 and 8.8, we observe that user 2’s secrecy

rate improves significantly because now user 2 can jam user 1 to improve its own

secrecy rate. We also observe that user 1’s secrecy rate improves as well, compared

to Section 8.7. The increase in user 1’s secrecy in this two-sided case is due to the

fact that user 2 now acts as a relay for user 1. However, when user 1 jams user 2

using all of its power, it limits the help that comes from user 2, hence Theorem 8.5

provides only a modest secrecy rate increase for user 1 on top of what Theorem 8.4

already provides.

8.10 Conclusions

In this chapter, we study the effects of cooperation on secrecy by considering the

CRBC. We propose an achievable scheme relying on the CAF scheme and evaluate it

for the Gaussian CRBC. This evaluation reveals that there is a synergy between user

cooperation and secrecy, since both users can have secrecy in a Gaussian CRBC,

although this is not possible when we remove the links between the receivers, i.e.,

without cooperation. It is worth noting that the synergy between user cooperation
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Figure 8.10: Achievable equivocation rate region using Proposition 8.5 where each
user can jointly jam and relay. P = 8, N1 = 1, N2 = 2, i.e., user 2 cannot have any
positive secrecy in the underlying broadcast channel.

and secrecy depends on the cooperative strategy used.

8.11 Appendix

8.11.1 Proof of Theorem 8.2

Here we prove the outer bound on the capacity-equivocation region of the CRBC

given in Theorem 8.2 which closely follows the converse given in [3] and the outer
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bound in [64]. First, define the following random variables

Ui = Y i−1
1 Y n

2,i+1 (8.94)

V1,i = W1Ui (8.95)

V2,i = W2Ui (8.96)

which satisfy the following Markov chain

Ui → (V1,i, V2,i)→ (Xi, X1,i, Y1,i)→ Y2,i (8.97)

but do not satisfy the following one

Ui → (V1,i, V2,i)→ (Xi, X1,i)→ (Y1,i, Y2,i) (8.98)

because of the encoding function employed at user 1 which can generate correlation

between Y1,i and
(
Y n

1,i+1, Y
n

2,i+1

)
through X1,i+1 that cannot be resolved by condi-

tioning on (Xi, X1,i). For a similar discussion, the reader can refer to [85].
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We start with the achievable rate of user 1.

nR1 = H(W1) = I(W1;Y n
1 ) +H(W1|Y n

1 ) (8.99)

≤ I(W1;Y n
1 ) + εn (8.100)

=
n∑

i=1

I(W1;Y1,i|Y i−1
1 ) + εn (8.101)

=
n∑

i=1

H(W1|Y i−1
1 )−H(W1|Y i−1

1 , Y1,i) + εn (8.102)

=
n∑

i=1

H(W1|Y i−1
1 , X1,i)−H(W1|Y i−1

1 , Y1,i) + εn (8.103)

≤
n∑

i=1

H(W1|Y i−1
1 , X1,i)−H(W1|Y i−1

1 , Y1,i, X1,i) + εn (8.104)

=
n∑

i=1

I(W1;Y1,i|Y i−1
1 , X1,i) + εn (8.105)

≤
n∑

i=1

H(Y1,i|X1,i)−H(Y1,i|Y i−1
1 , X1,i,W1) + εn (8.106)

≤
n∑

i=1

H(Y1,i|X1,i)−H(Y1,i|Y i−1
1 , X1,i,W1, Y

n
2,i+1) + εn (8.107)

=
n∑

i=1

I(V1,i;Y1,i|X1,i) + εn (8.108)

where (8.100) is due to Fano’s lemma, (8.103) follows from the Markov chain W1 →

Y i−1
1 → X1,i, (8.104), (8.106) and (8.107) are due to the fact that conditioning

cannot increase entropy, and (8.108) follows from the definition of V1,i in (8.95).
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Similarly, for the achievable rate of user 2, we have

nR2 ≤ I(W2;Y n
2 ) + εn (8.109)

=
n∑

i=1

I(W2;Y2,i|Y n
2,i+1) + εn (8.110)

=
n∑

i=1

H(Y2,i|Y n
2,i+1)−H(Y2,i|Y n

2,i+1,W2) + εn (8.111)

≤
n∑

i=1

H(Y2,i)−H(Y2,i|Y n
2,i+1,W2, Y

i−1
1 ) + εn (8.112)

≤
n∑

i=1

I(V2,i;Y2,i) + εn (8.113)

where (8.109) is due to Fano’s lemma, (8.112) is due to the fact that conditioning

cannot increase entropy, and (8.113) follows from the definition of V2,i given in (8.96).

We now derive the outer bounds on the equivocation rates starting with user

1.

nRe,1 = H(W1|Y n
2 ) = H(W1)− I(W1;Y n

2 ) (8.114)

= I(W1;Y n
1 )− I(W1;Y n

2 ) +H(W1|Y n
1 ) (8.115)

≤ I(W1;Y n
1 )− I(W1;Y n

2 ) + εn (8.116)

=
n∑

i=1

I(W1;Y1,i|Y i−1
1 )− I(W1;Y2,i|Y n

2,i+1) + εn (8.117)

=
n∑

i=1

I(W1, Y
n

2,i+1;Y1,i|Y i−1
1 )− I(Y n

2,i+1;Y1,i|Y i−1
1 ,W1)

− I(W1, Y
i−1

1 ;Y2,i|Y n
2,i+1) + I(Y i−1

1 ;Y2,i|Y n
2,i+1,W1) + εn (8.118)
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where (8.116) is due to Fano’s lemma. Using [3]

n∑

i=1

I(Y n
2,i+1;Y1,i|Y i−1

1 ,W1) =
n∑

i=1

I(Y i−1
1 ;Y2,i|Y n

2,i+1,W1) (8.119)

in (8.118), we obtain

nRe,1 ≤
n∑

i=1

I(W1, Y
n

2,i+1;Y1,i|Y i−1
1 )− I(W1, Y

i−1
1 ;Y2,i|Y n

2,i+1) + εn (8.120)

=
n∑

i=1

I(W1;Y1,i|Y i−1
1 , Y n

2,i+1) + I(Y n
2,i+1;Y1,i|Y i−1

1 )

− I(W1;Y2,i|Y n
2,i+1, , Y

i−1
1 )− I(Y i−1

1 ;Y2,i|Y n
2,i+1) + εn (8.121)

Now, using [3]

n∑

i=1

I(Y n
2,i+1;Y1,i|Y i−1

1 ) =
n∑

i=1

I(Y i−1
1 ;Y2,i|Y n

2,i+1) (8.122)

in (8.121), we obtain

nRe,1 ≤
n∑

i=1

I(W1;Y1,i|Y i−1
1 , Y n

2,i+1)− I(W1;Y2,i|Y n
2,i+1, Y

i−1
1 ) + εn (8.123)

=
n∑

i=1

I(W1;Y1,i|Ui)− I(W1;Y2,i|Ui) + εn (8.124)

=
n∑

i=1

I(W1, Ui;Y1,i|Ui)− I(W1, Ui;Y2,i|Ui) + εn (8.125)

=
n∑

i=1

I(V1,i;Y1,i|Ui)− I(V1,i;Y2,i|Ui) + εn (8.126)

where (8.124) and (8.126) follow from the definitions of Ui and V1,i given in (8.94)
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and (8.95), respectively. Similarly, we can use the preceding technique for user 2’s

equivocation rate as well after noting that

nRe,2 ≤ H(W2|Y n
1 , X

n
1 ) ≤ H(W2|Y n

1 ) (8.127)

which leads to

nRe,2 ≤
n∑

i=1

I(V2,i;Y2,i|Ui)− I(V2,i;Y1,i|Ui) + εn (8.128)
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The other bounds on the equivocation rates can be derived as follows.

nRe,1 = H(W1|Y n
2 ) ≤ H(W1,W2|Y n

2 ) (8.129)

= H(W1|W2, Y
n

2 ) +H(W2|Y n
2 ) (8.130)

≤ H(W1|W2, Y
n

2 ) + εn (8.131)

= I(W1;Y n
1 |W2)− I(W1;Y n

2 |W2) +H(W1|W2, Y
n

1 ) + εn (8.132)

≤ I(W1;Y n
1 |W2)− I(W1;Y n

2 |W2) + ε′n (8.133)

=
n∑

i=1

I(W1;Y1,i|W2, Y
i−1

1 )− I(W1;Y2,i|W2, Y
n

2,i+1) + ε′n (8.134)

=
n∑

i=1

I(W1, Y
n

2,i+1;Y1,i|W2, Y
i−1

1 )− I(W1, Y
i−1

1 ;Y2,i|W2, Y
n

2,i+1) + ε′n (8.135)

=
n∑

i=1

I(W1;Y1,i|W2, Y
i−1

1 , Y n
2,i+1)− I(W1;Y2,i|W2, Y

n
2,i+1, Y

i−1
1 ) + ε′n (8.136)

=
n∑

i=1

I(W1;Y1,i|W2, Ui)− I(W1;Y2,i|W2, Ui) + ε′n (8.137)

=
n∑

i=1

I(W1, Ui;Y1,i|W2, Ui)− I(W1, Ui;Y2,i|W2, Ui) + ε′n (8.138)

=
n∑

i=1

I(V1,i;Y1,i|V2,i)− I(V1,i;Y2,i|V2,i) + ε′n (8.139)

where (8.131) and (8.133) are due to Fano’s lemma, and (8.135) and (8.136) are due

to the following identities [3]

n∑

i=1

I(Y n
2,i+1;Y1,i|W1,W2, Y

i−1
1 ) =

n∑

i=1

I(Y i−1
1 ;Y2,i|W1,W2, Y

n
2,i+1) (8.140)

n∑

i=1

I(Y n
2,i+1;Y1,i|W2, Y

i−1
1 ) =

n∑

i=1

I(Y i−1
1 ;Y2,i|W2, Y

n
2,i+1) (8.141)

respectively. Finally, (8.137) and (8.139) follow from the definitions of Ui, V1,i and V2,i
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given in (8.94), (8.95) and (8.96), respectively. Similarly, we can use this technique

to bound user 2’s equivocation rate after noting that H(W2|Y n
1 , X

n
1 ) ≤ H(W2|Y n

1 ),

which leads to

nRe,2 ≤ H(W2|Y n
1 , X

n
1 ) ≤ H(W2|Y n

1 ) ≤
n∑

i=1

I(V2,i;Y2,i|V1,i)− I(V2,i;Y2,i|V1,i) + ε′n

(8.142)

To express the outer bounds obtained above in a single-letter form, we define

U = JUJ , V1 = V1,J , V2 = V2,J , X = XJ , X1 = X1,J , Y1 = Y1,J , Y2 = Y2,J where J is

a random variable which is uniformly distributed over {1, . . . , n}. Using these new

definitions, we can reach the single-letter expressions given in Theorem 8.2, hence

completing the proof.
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8.11.2 Proof of Theorem 8.3

The proof is as follows.

Re,2 ≤ H(W2|Y n
1 , X

n
1 ) (8.143)

≤ I(W2;Y n
2 |Xn

1 )− I(W2;Y n
1 |Xn

1 ) +H(W2|Y n
2 , X

n
1 ) (8.144)

≤ I(W2;Y n
2 |Xn

1 )− I(W2;Y n
1 |Xn

1 ) + εn (8.145)

≤ I(W2;Y n
2 |Xn

1 , Y
n

1 ) + εn (8.146)

≤ I(Xn,W2;Y n
2 |Xn

1 , Y
n

1 ) + εn (8.147)

= I(Xn;Y n
2 |Xn

1 , Y
n

1 ) + εn (8.148)

=
n∑

i=1

I(Xn;Y2,i|Xn
1 , Y

n
1 , Y

i−1
2 ) + εn (8.149)

≤
n∑

i=1

H(Y2,i|X1,i, Y1,i)−H(Y2,i|Xn
1 , Y

n
1 , Y

i−1
2 , Xn) + εn (8.150)

=
n∑

i=1

H(Y2,i|X1,i, Y1,i)−H(Y2,i|X1,i, Y1,i, Xi) + εn (8.151)

=
n∑

i=1

I(Xi;Y2,i|X1,i, Y1,i) + εn (8.152)

where (8.145) is due to Fano’s lemma, (8.148) follows from the fact that given Xn,

W2 is independent of all other random variables, (8.150) is due to the fact that

conditioning cannot increase entropy, and (8.151) follows from the Markov chains

(Y1,i, Y2,i)→ (Xi, X1,i)→ (Y i−1
1 , Y i−1

2 , X i−1, X i−1
1 ) (8.153)

Y2,i → (Xi, X1,i, Y1,i)→ (Y n
1,i+1, X

n
i+1, X

n
1,i+1) (8.154)
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Thus, after defining an independent random variable J , that is uniformly distributed

over {1, . . . , n}, and X = XJ , X1 = X1,J , Y1 = Y1,J , Y2 = Y2,J , we can obtain the

single-letter expression in Theorem 8.3, completing the proof.

8.11.3 Proof of Corollary 8.1

In Propositions 8.1 and 8.2, if we take a → ∞, then the secrecy rate in (8.51) can

be shown to be achievable. As a notational remark, H(·) denotes the differential

entropy in this section. We now compute an outer bound for Re,2 using Theorem 8.3,

Re,2 ≤ I(X;Y2|X1, Y1) (8.155)

= H(Y2|X1, Y1)−H(Z2|Z1) (8.156)

≤ H(X + Z2|Y1)−H(Z2) (8.157)

≤ H(X + Z2 − αY1)− 1

2
log(2πeN2) (8.158)

≤ 1

2
log(2πe)E

[
(X + Z2 − αY1)2

]
− 1

2
log(2πeN2) (8.159)

≤ 1

2
log
(
(1− α)2P + α2N1 +N2

)
− 1

2
log(N2) (8.160)

where in (8.157), we used the fact that conditioning cannot increase entropy and

that H(Z2|Z1) = H(Z2) due to the independence of Z1 and Z2. Equation (8.158) is

again due to the fact that conditioning cannot increase entropy, (8.159) comes from

the fact that Gaussian distribution maximizes entropy subject to a power constraint,

and (8.160) is obtained by using the power constraint on X. Finally, we note that
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(8.160) is a valid outer bound for every α and if we select α as

α =
P

P +N1

(8.161)

we get (8.51), completing the proof.

8.11.4 Proof of Theorem 8.4

The transmitter uses the joint encoding scheme of Marton [11] and user 1 uses

a CAF scheme [80]. User 2 employs list decoding to find which Ŷ1 is sent. Let

Anε (V1) and Anε (V2) denote the sets of strongly typical i.i.d. length-n sequences of

v1 and v2, respectively. Let Anε (V1|v2) (resp. Anε (V2|v1)) denote the set of length-

n sequences V1 (resp. V2) that are jointly typical with v2 (resp. v1). Further-

more, let Snε (v1) (resp. Snε (v2)) denote the set of v1 (resp. v2) sequences for which

Anε (V2|v1) (resp. Anε (V1|v2)) are non-empty. Fix the probability distribution as

p(v1, v2)p(x|v1, v2)p(u, x1)p(ŷ1|u, v1, y1) (8.162)

Codebook generation:

1. Select 2nR(Vi) vi sequences through

p(vi) =





1
||Snε (vi)|| , if vi ∈ Snε (vi)

0, otherwise

(8.163)

in an i.i.d. manner and index them as vi(wi, w̃i, li) where wi ∈
{

1, . . . , 2nRi
}

,
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w̃i ∈ {1, . . . , 2nR̃i} and li ∈
{

1, . . . , 2nLi
}

for i = 1, 2. Ri, R̃i, Li and R(Vi) are

related through

R(Vi) = Ri + R̃i + Li, i = 1, 2 (8.164)

Furthermore, we set

L1 + L2 = I(V1;V2) + ε (8.165)

to ensure that for given pairs (w1, w̃1) and (w2, w̃2), we can find a jointly typical

pair (v1(w1, w̃1, l1),v2(w2, w̃2, l2)) for some l1, l2.

2. For each (w1, w2), the transmitter randomly picks (w̃1, w̃2) and finds a pair

(v1(w1, w̃1, l1),

v2(w2, w̃2, l2)) that is jointly typical. Such a pair exists with high probability

due to (8.165). Then, given this pair of (v1,v2), the transmitter generates its

channel inputs through
∏n

i=1 p(xi|v1,i, v2,i).

3. User 1 generates 2nR0 length-n sequences u through p(u) =
∏n

i=1 p(ui) and

labels them as u(si) where si ∈ {1, . . . , 2nR0}.

4. For each u(si), user 1 generates 2nR̂ length-n sequences ŷ1 through p(ŷ1|u) =

∏n
i=1 p(ŷ1,i|ui) and indexes them as ŷ1(zi|si) where zi ∈ {1, . . . , 2nR̂}.

5. For each u(si), user 1 generates 2nR
′
0 length-n sequences x1 through p(x1|u) =

∏n
i=1 p(x1,i|ui) and indexes them as x1(ti|si) where ti ∈ {1, . . . , 2nR′0}.
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Partitioning:

• Partition 2nR̂ into cells Ssi where si ∈ {1, . . . , 2nR0}.

Encoding:

The transmitter sends x corresponding to the pair (w1, w2). User 1 (relay)

sends x1(ti|si) if the estimate of y1(i − 1), i.e., ẑi−1, falls into Ssi and ti is chosen

randomly from {1, . . . , 2nR′0}. The use of many x1(ti|si) for actual help signal u(si)

aims to confuse user 2 and to decrease its decoding capability.

Decoding:

a. Decoding at user 1:

1. User 1 seeks a unique typical pair of (y1(i),v1(w1,i, w̃1,i, li),x1(ti|si)) which

can be achieved with vanishingly small error probability if

R(V1) ≤ I(V1;Y1|X1) (8.166)

2. User 1 decides that zi is received if there exists a jointly typical pair (ŷ1(zi|si),

y1(i),v1(w1,i, w̃1,i, li),x1(ti|si)) which can be guaranteed to occur if

R̂ ≥ I(Ŷ1;Y1|U,X1, V1) (8.167)

b. Decoding at user 2:

1. User 2 seeks a unique jointly typical pair of (y2(i),u(si)) which can be found
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with vanishingly small error probability if

R0 ≤ I(U ;Y2) (8.168)

2. User 2 employs list decoding to decode ŷ1(zi−1|si−1). It first calculates its

ambiguity set as

L (ŷ1(zi−1|ŝi−1)) = {ŷ1(zi−1|ŝi−1) : (ŷ1(zi−1|ŝi−1),y2(i− 1)) is jointly typical}

(8.169)

and takes its intersection with Sŝi which results in a unique and correct inter-

section point if

R̂ ≤ I(Ŷ1;Y2|U) +R0 ≤ I(Ŷ1, U ;Y2) (8.170)

Equations (8.167) and (8.170) lead to the compression constraint in (8.60).

3. User 2 decides that v2(w2,i−1, w̃2,i−1, l2,i−1) is received if there exists a unique

jointly typical pair (v2(w2,i−1, w̃2,i−1, l2,i−1),y2(i− 1), ŷ1(ẑi−1|ŝi−1)), which can

be found with vanishingly small error probability if

R(V2) ≤ I(V2;Y2, Ŷ1|U) (8.171)

Equivocation computation:

We now show that Re,1 and Re,2 satisfying (8.55)-(8.56) and (8.57)-(8.58) are

achievable with the coding scheme presented. To this end, we treat several possible
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cases separately. First, assume that

R1 ≥ I(V1;Y1|X1)− I(V1;Y2, Ŷ1|V2, U)− I(V1;V2) (8.172)

R2 ≥ I(V2;Y2, Ŷ1|U)− I(V2;Y1|V1, X1)− I(V1;V2) (8.173)

For this case, we select the total number of codewords, i.e., R(Vi), i = 1, 2, as

R(V1) = I(V1;Y1|X1) (8.174)

R(V2) = I(V2;Y2, Ŷ1|U) (8.175)

With this selection, we have

R̃1 + L1 ≤ I(V1;Y2, Ŷ1|V2, U) + I(V1;V2) (8.176)

R̃2 + L2 ≤ I(V2;Y1|V1, X1) + I(V1;V2) (8.177)
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We start with user 1’s equivocation rate,

H(W1|Y n
2 ) ≥ H(W1|Y n

2 , V
n

2 , U
n, Ŷ n

1 ) (8.178)

= H(W1, Y
n

2 , V
n

2 , Ŷ
n

1 |Un)−H(Y n
2 , V

n
2 , Ŷ

n
1 |Un) (8.179)

= H(V n
1 ,W1, Y

n
2 , V

n
2 , Ŷ

n
1 |Un)−H(V n

1 |W1, Y
n

2 , V
n

2 , Ŷ
n

1 , U
n)

−H(Y n
2 , V

n
2 , Ŷ

n
1 |Un) (8.180)

= H(V n
1 |Un) +H(W1, Y

n
2 , V

n
2 , Ŷ

n
1 |Un, V n

1 )−H(V n
1 |W1, Y

n
2 , V

n
2 , Ŷ

n
1 , U

n)

−H(Y n
2 , V

n
2 , Ŷ

n
1 |Un) (8.181)

≥ H(V n
1 |Un)− I(V n

1 ;Y n
2 , V

n
2 , Ŷ

n
1 |Un)−H(V n

1 |W1, Y
n

2 , V
n

2 , Ŷ
n

1 , U
n) (8.182)

where each term will be treated separately. First term is

H(V n
1 |Un) = H(V n

1 ) = nR(V1) = nI(V1;Y1|X1) (8.183)

where the first equality is due to the independence of Un and V n
1 . The second

equality follows from the fact that V n
1 can take 2nR(V1) values with equal probability.

The third equality comes from our selection in (8.174). The second term of (8.182)

can be bounded as

I(V n
1 ;Y n

2 , V
n

2 , Ŷ
n

1 |Un) ≤ nI(V1;Y2, V2, Ŷ1|U) + nεn (8.184)

using the approach devised in Lemma 3 of [64]. To bound the last term in (8.182), we

assume that user 2 is trying to decode V n
1 given the side information W1 = w1. Since
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V n
1 can take less than 2n(I(V1;Y2,Ŷ1|U,V2)+I(V1;V2)) values (see (8.176)) given W1 = w1,

user 2 can decode V n
1 with vanishingly small error probability as long as W1 = w1

is given. Consequently, the use of Fano’s lemma yields

H(V n
1 |W1, Y

n
2 , V

n
2 , Ŷ

n
1 , U

n) ≤ εn (8.185)

Plugging (8.183), (8.184) and (8.185) into (8.182), we get

H(W1|Y n
2 ) ≥ nI(V1;Y1|X1)− nI(V1;Y2, Ŷ1, V2|U)− nεn (8.186)

= nI(V1;Y1|X1)− nI(V1;Y2, Ŷ1|V2, U)− nI(V1;V2)− nεn (8.187)

where (8.187) follows from the independence of (V1, V2) and U , i.e., I(V1;V2|U) =

I(V1;V2). Similarly, we can bound equivocation of user 2 as follows,

H(W2|Y n
1 , X

n
1 ) ≥ H(W2|Y n

1 , X
n
1 , V

n
1 ) (8.188)

= H(W2, Y
n

1 , V
n

1 |Xn
1 )−H(Y n

1 , V
n

1 |Xn
1 ) (8.189)

= H(W2, V
n

2 , Y
n

1 , V
n

1 |Xn
1 )−H(V n

2 |W2, Y
n

1 , V
n

1 , X
n
1 )−H(Y n

1 , V
n

1 |Xn
1 ) (8.190)

= H(V n
2 |Xn

1 ) +H(W2, Y
n

1 , V
n

1 |Xn
1 , V

n
2 )−H(V n

2 |W2, Y
n

1 , V
n

1 , X
n
1 )

−H(Y n
1 , V

n
1 |Xn

1 ) (8.191)

≥ H(V n
2 |Xn

1 )− I(V n
2 ;Y n

1 , V
n

1 |Xn
1 )−H(V n

2 |W2, Y
n

1 , V
n

1 , X
n
1 ) (8.192)
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where the first term is

H(V n
2 |Xn

1 ) = H(V n
2 ) = nR(V2) = nI(V2;Y2, Ŷ1|U) (8.193)

where the first equality is due to the independence of V n
2 and Xn

1 , the second equality

comes from the fact that V n
2 can take 2nR(V2) values with equal probability and the

last equality is a consequence of our choice in (8.175). The second term of (8.192)

can be bounded as

I(V n
2 ;Y n

1 , V
n

1 |Xn
1 ) ≤ nI(V2;Y1, V1|X1) + nεn (8.194)

following the approach of Lemma 3 of [64]. To bound the last term of (8.192),

we assume that user 1 is trying to decode V n
2 given the side information W2 = w2.

Since V n
2 can take at most 2n(I(V2;Y1|V1,X1)+I(V2;V1)) values (see (8.177)) given W2 = w2,

user 1 can decode V n
2 with vanishingly small error probability as long as this side

information is available. Consequently, the use of Fano’s lemma yields

H(V n
2 |W2, Y

n
1 , V

n
1 , X

n
1 ) ≤ εn (8.195)

Plugging (8.193), (8.194) and (8.195) into (8.192), we get

H(W2|Y n
1 , X

n
1 ) ≥ nI(V2;Y2, Ŷ1|U)− nI(V2;Y1, V1|X1)− nεn (8.196)

= nI(V2;Y2, Ŷ1|U)− nI(V2;Y1|V1, X1)− nI(V1;V2)− nεn (8.197)
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where (8.197) follows from the independence of (V1, V2) and X1, i.e., I(V1;V2|X1) =

I(V1;V2).

We have completed the equivocation calculation for the case described by

(8.172)-(8.173). The proofs of other cases involve no different arguments besides

decreasing the total number codewords in (8.174)-(8.175). For example, if

R1 ≤ I(V1;Y1|X1)− I(V1;Y2, Ŷ1|V2, U)− I(V1;V2) (8.198)

then we select the total number of codewords for user 1 as

R(V1) = R1 + I(V1;Y2, Ŷ1|V2, U) + I(V1;V2) (8.199)

which is equivalent to saying that

R̃1 + L1 = I(V1;Y2, Ŷ1|V2, U) + I(V1;V2) (8.200)

In this case, following the steps from (8.178) to (8.182), we can bound the equivo-

cation of user 1 as follows,

H(W1|Y n
2 ) ≥ H(V n

1 |Un)− I(V n
1 ;Y n

2 , V
n

2 , Ŷ
n

1 |Un)−H(V n
1 |W1, Y

n
2 , V

n
2 , Ŷ

n
1 , U

n)

(8.201)
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where the first term is now

H(V n
1 |Un) = H(V n

1 ) = nR(V1) = n(R1 + I(V1;Y2, Ŷ1|V2, U) + I(V1;V2)) (8.202)

where the first equality is due to the independence of V n
1 and Un, the second equality

is due to the fact that V n
1 can take at most 2nR(V1) values with equal probability and

the last equality is a consequence of our choice in (8.199). An upper bound on the

second term was already obtained in (8.184). The third term can also be shown to

decay to zero as n goes to infinity considering the case that user 2 is decoding V n
1

using side information W1 = w1. Since V n
1 can take 2n(I(V1;Y2,Ŷ1|V2,U)+I(V1;V2)) values

given W1 = w1, user 2 can decode V n
2 with vanishingly small error probability as

long as this side information is available. Therefore, the use of Fano’s lemma implies

H(V n
1 |W1, Y

n
2 , V

n
2 , Ŷ

n
1 , U

n) ≤ εn (8.203)

Plugging (8.184),(8.202), (8.203) into (8.201), we get

H(W1|Y n
2 ) ≥ n(R1 + I(V1;Y2, Ŷ1|V2, U) + I(V1;V2))− I(V1;Y2, V2, Ŷ1|U)

− nεn (8.204)

= nR1 − nεn (8.205)

where we used the fact that U and (V1, V2) are independent, i.e., I(V1;V2|U) =

I(V1;V2). The other cases leading to different equivocation rates can be proved
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similarly, hence omitted.

8.11.5 Proof of Theorem 8.5

Fix the probability distribution as

p(v1, v2)p(x|v1, v2)p(u1, x1)p(ŷ1|u1, y1)p(u2, x2)p(ŷ2|u2, y2) (8.206)

Codebook generation:

1. Select 2nR(Vi) vi sequences through

p(vi) =





1
||Snε (vi)|| , if vi ∈ Snε (vi)

0, otherwise

(8.207)

in an i.i.d. manner and index them as vi(wi, w̃i, li) where wi ∈
{

1, . . . , 2nRi
}

,

w̃i ∈ {1, . . . , 2nR̃i} and li ∈
{

1, . . . , 2nLi
}

for i = 1, 2. Ri, R̃i, Li and R(Vi) are

related through

R(Vi) = Ri + R̃i + Li, i = 1, 2 (8.208)

Furthermore, we set

L1 + L2 = I(V1;V2) + ε (8.209)

to ensure that for given pairs (w1, w̃1) and (w2, w̃2), we can find a jointly typical
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pair (v1(w1, w̃1, l1),v2(w2, w̃2, l2)) for some l1, l2.

2. For each (w1, w2), the transmitter randomly picks (w̃1, w̃2) and finds a pair

(v1(w1, w̃1, l1),v2(w2, w̃2, l2)) that is jointly typical. Such a pair exists with

high probability due to (8.209). Then, given this pair of (v1,v2), the trans-

mitter generates its channel inputs through
∏n

i=1 p(xi|v1,i, v2,i).

3. User j generates 2nR0,j length-n sequences uj through p(uj) =
∏n

i=1 p(uj,i) and

labels them as uj(sj,i) where sj,i ∈ {1, . . . , 2nR0,j} where j = 1, 2.

4. For each uj(sj,i), user j generates 2nR̂j length-n sequences ŷj through p(ŷj|uj)

=
∏n

i=1 p(ŷj,i|uj,i) and indexes them as ŷj(zj,i|sj,i) where zj,i ∈ {1, . . . , 2nR̂j},

j = 1, 2.

5. For each uj(sj,i), user j generates 2nR
′
0,j length-n sequences xj through p(xj|uj)

=
∏n

i=1 p(xj,i|uj,i) and indexes them as xj(tj,i|sj,i) where tj,i ∈ {1, . . . , 2nR
′
0,j},

j = 1, 2.

Partitioning:

• Partition 2nR̂j into cells Ssj,i where sj,i ∈ {1, . . . , 2nR0,j}, j = 1, 2.

Encoding:

The transmitter sends x corresponding to the pair (w1, w2). User j sends

xj(tj,i|sj,i) if the estimate of yj(i − 1), i.e., ẑj,i−1, falls into Ssj,i and tj,i is chosen

randomly from {1, . . . , 2nR′0,j}. The use of many xj(tj,i|sj,i) for actual help signal

uj(sj,i) aims to confuse the other user and to decrease its decoding capability.
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Decoding:

We only consider decoding at user 1. Final expressions regarding user 2 will

follow due to symmetry.

1. User 1 seeks a unique jointly typical pair of (y1(i),u2(s2,i)) which can be found

with vanishingly small error probability if

R0,2 ≤ I(U2;Y1|X1) (8.210)

2. User 1 decides on ŷ1(z1,i|s1,i) by looking for a jointly typical pair (ŷ1(z1,i|s1,i),

y1(i),u2(s2,i),x1(t1,i|s1,i)) which can be ensured to exist if

R̂1 ≥ I(Ŷ1;Y1|U1, U2, X1) (8.211)

3. User 1 employs list decoding to decode ŷ2(z2,i−1|s2,i−1). It first calculates its

ambiguity set as

L (ŷ2(z2,i−1|ŝ2,i−1))

= {ŷ2(z2,i−1|ŝ2,i−1) : (ŷ2(z2,i−1|ŝ2,i−1),y1(i− 1)) is jointly typical} (8.212)

and then takes its intersection with Sŝ2,i which results in a unique and correct

intersection point if

R̂2 ≤ I(Ŷ2;Y1|U2, X1) +R0,2 ≤ I(Ŷ2, U2;Y1|X1) (8.213)
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4. User 1 decides that v1(w1,i−1, w̃1,i−1, l1,i−1) is received if there exists a unique

jointly typical pair (v1(w1,i−1, w̃1,i−1, l1,i−1),y1(i− 1), ŷ2(ẑ2,i−1|ŝ2,i−1)) which

can be found with vanishingly small error probability if

R(V1) ≤ I(V1;Y1, Ŷ2|X1, U2) (8.214)

Equivocation computation:

Similar to the previous proofs, we treat each case separately. Due to symmetry,

we only consider user 1. If the rate of user 1 is such that

R1 ≥ I(V1;Y1, Ŷ2|X1, U2)− I(V1;Y2, Ŷ1|X2, V2, U1)− I(V1;V2) (8.215)

then we select the total number of codewords as

R(V1) = I(V1;Y1, Ŷ2|X1, U2) (8.216)

which implies that

R̃1 + L1 ≤ I(V1;Y2, Ŷ1|X2, V2, U1) + I(V1;V2) (8.217)
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The equivocation rate can be bounded as follows,

H(W1|Y n
2 , X

n
2 ) ≥ H(W1|Y n

2 , X
n
2 , Ŷ

n
1 , V

n
2 , U

n
1 ) (8.218)

= H(W1, Y
n

2 , Ŷ
n

1 , V
n

2 |Xn
2 , U

n
1 )−H(Y n

2 , Ŷ
n

1 , V
n

2 |Xn
2 , U

n
1 ) (8.219)

= H(W1, V
n

1 , Y
n

2 , Ŷ
n

1 , V
n

2 |Xn
2 , U

n
1 )−H(V n

1 |W1, Y
n

2 , Ŷ
n

1 , V
n

2 , X
n
2 , U

n
1 )

−H(Y n
2 , Ŷ

n
1 , V

n
2 |Xn

2 , U
n
1 ) (8.220)

= H(V n
1 |Xn

2 , U
n
1 ) +H(W1, Y

n
2 , Ŷ

n
1 , V

n
2 |Xn

2 , U
n
1 , V

n
1 )

−H(V n
1 |W1, Y

n
2 , Ŷ

n
1 , V

n
2 , X

n
2 , U

n
1 )−H(Y n

2 , Ŷ
n

1 , V
n

2 |Xn
2 , U

n
1 ) (8.221)

≥ H(V n
1 |Xn

2 , U
n
1 )− I(V n

1 ;Y n
2 , Ŷ

n
1 , V

n
2 |Xn

2 , U
n
1 )

−H(V n
1 |W1, Y

n
2 , Ŷ

n
1 , V

n
2 , X

n
2 , U

n
1 ) (8.222)

We treat each term in (8.222) separately. The first term is

H(V n
1 |Xn

2 , U
n
1 ) = H(V n

1 ) = nR(V1) = nI(V1;Y1, Ŷ2|X1, U2) (8.223)

where the first equality is due to the independence of V n
1 and (Xn

2 , U
n
1 ), the second

equality follows from the fact that V n
1 can take 2nR(V1) values with equal probability

and the last equality is due to our choice in (8.216). The second term of (8.222) can

be bounded as

I(V n
1 ;Y n

2 , Ŷ
n

1 , V
n

2 |Xn
2 , U

n
1 ) ≤ nI(V1;Y2, Ŷ1, V2|X2, U1) + nεn (8.224)

following Lemma 3 of [64]. To bound the last term of (8.222), we consider the case
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that user 2 is trying to decode V n
1 given the side information W1 = w1. Since V n

1

can take 2n(I(V1;Y2,Ŷ1|X2,V2,U1)+I(V1;V2)) values at most, user 2 can decode V n
1 with

vanishingly small error probability as long as this side information is available.

Hence, the use of Fano’s lemma yields

H(V n
1 |W1, Y

n
2 , Ŷ

n
1 , V

n
2 , X

n
2 , U

n
1 ) ≤ εn (8.225)

Plugging (8.223), (8.224), (8.225) into (8.222), we get

H(W1|Y n
2 , X

n
2 ) ≥ nI(V1;Y1, Ŷ2|X1, U2)− nI(V1;Y2, Ŷ1, V2|X2, U1)− nεn (8.226)

= nI(V1;Y1, Ŷ2|X1, U2)− nI(V1;Y2, Ŷ1|X2, V2, U1)− nI(V1;V2)− nεn (8.227)

where (8.227) follows from the independence of (X2, U1) and (V1, V2).

For the other case, i.e., if the rate of user 1 is such that

R1 ≤ I(V1;Y1, Ŷ2|X1, U2)− I(V1;Y2, Ŷ1|X2, V2, U1)− I(V1;V2) (8.228)

we select the total number of codewords as

R(V1) = R1 + I(V1;Y2, Ŷ1|X2, V2, U1) + I(V1;V2) (8.229)

and following the same lines of computation, we can show that

H(W1|Y n
2 , X

n
2 ) ≥ nR1 − nεn (8.230)
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completing the proof.
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Chapter 9

Cooperative Secrecy in Multiple Access Channels with Generalized

Feedback

9.1 Introduction

In this chapter, we consider the effects of user cooperation on the simultaneous

secrecy of multiple users against each other, in a multiple access channel with gen-

eralized feedback (MAC-GF), where users can cooperate via the feedback signals

(see Figure 9.1). Similar to the CRBC, in the MAC-GF also, users cooperate, al-

though, they do not trust each other and consider each other as an eavesdropper.

Our goal is to understand how cooperation and secrecy interact within this channel

model.

We note that MAC-GF has been studied from a secrecy perspective in [86,

87], however, our work differs significantly from these previous works. In [86, 87]

feedback signals, which are available at the transmitters, are not used in the encoding

functions, i.e., the users are not allowed to cooperate. In this work, we allow users to

utilize their overheard information in their encoding functions, and study the effects

of this cooperation on secrecy.

In this chapter, we present two achievable schemes which are based on the

CAF strategy [80]. CAF has been used before in the context of increasing rates
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Xn
1

Xn
2

Y n
1

Y n
2

W1

W2

(
Ŵ1, Ŵ2

)
Y n

p(y, y1, y2|x1, x2)
Receiver

Encoder 1
MAC-GF

Encoder 2

Figure 9.1: The MAC-GF channel model.

in MAC-GF [88, 89]; here we use CAF to provide secrecy to cooperating users,

and determine achievable equivocation rates. We also present outer bounds on the

achievable equivocation rates. The outer bounds we derive depend only on the

channel inputs and outputs, and hence are easily computable. Finally, we present

numerical results for Gaussian MAC-GF.

9.2 Channel Model and Definitions

The two-user MAC-GF (see Figure 9.1) consists of two input alphabets X1,X2 and

three output alphabets Y ,Y1,Y2. The channel is memoryless and is characterized

by p(y, y1, y2|x1, x2).

A
(
2nR1 , 2nR2 , n

)
code for this channel consists of two message sets W1 =

{
1, . . . , 2nR1

}
,W2 =

{
1, . . . , 2nR2

}
, two encoder functions

x1,i = f1 (w1, y1,1, . . . , y1,i−1) , i = 1, . . . , n

x2,i = f2 (w2, y2,1, . . . , y2,i−1) , i = 1, . . . , n

and a decoder function g : Y → W1 ×W2. The probability of error is defined as
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P n
e = Pr (g(Y n) 6= (W1,W2)).

The secrecy of each user is measured by the normalized entropy of its message

conditioned on the random variables available at the other user, the other user’s

observation, channel input and message, i.e.,

1

n
H(W1|Y n

2 , X
n
2 ,W2) and

1

n
H(W2|Y n

1 , X
n
1 ,W1)

which will hereafter be called equivocation rates. A rate tuple (R1, R2, Re,1, Re,2) is

said to be achievable if there exists a
(
2nR1 , 2nR2 , n

)
code with limn→∞ P

n
e = 0 and

lim
n→∞

1

n
H(W1|Y n

2 , X
n
2 ,W2) ≥ Re,1 (9.1)

lim
n→∞

1

n
H(W2|Y n

1 , X
n
1 ,W1) ≥ Re,2 (9.2)

Remark 9.1 We note that our coding scheme is different than those in previous

works [86, 87], which also considered secrecy in MAC-GF. In [86, 87], the encoding

functions are restricted to be of the form

fi :Wi → X n
i , i = 1, 2

i.e., the feedback signals that are available at the transmitters are not utilized in the

encoding functions.
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9.3 Achievable Schemes

We present our first achievable scheme in the following theorem. In this achievable

scheme, even though both users receive feedback signals in the MAC-GF, only one

of them, user 1, utilizes the feedback signal in its encoding function and sends a

compressed version of its observation to the main receiver. This achievable scheme

is based on CAF strategy [80].

Theorem 9.1 Rate tuples (R1, R2, Re,1, Re,2) satisfying

R1 ≤ I(X1;Y, Ŷ1|U,X2) (9.3)

R2 ≤ I(X2;Y, Ŷ1|U,X1) (9.4)

R1 +R2 ≤ I(X1, X2;Y, Ŷ1|U) (9.5)

Re,1 ≤ min
{
R′1 − I(X1;Y2, Ŷ1|U,X2), R1

}
(9.6)

Re,2 ≤ min {R′2 − I(X2;Y1|U,X1), R2} (9.7)

where the pairs (R′1, R
′
2) belong to

C1 (R1, R2) =





R1 ≤ R′1

R2 ≤ R′2

R′1 ≤ I(X1;Y, Ŷ1|U,X2)

R′2 ≤ I(X2;Y, Ŷ1|U,X1)

R′1 +R′2 ≤ I(X1, X2;Y, Ŷ1|U)





(9.8)
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are achievable for any distribution of the form

p(u)p(x1|u)p(ŷ1|u, x1, y1)p(x2)p(y, y1, y2|x1, x2) (9.9)

subject to the constraint

I(Ŷ1;Y1|U,X1) ≤ I(U, Ŷ1;Y ) (9.10)

The achievable scheme in Theorem 9.1 corresponds to a special case of the

achievable scheme given in Theorem 9.2.

Remark 9.2 The achievable region given in Theorem 9.1 can be enlarged by using

the channel prefixing technique introduced in [3]. In Theorem 9.1, we did not use

channel prefixing for the clarity of presentation. If we want to use it, we need to

replace all occurrences of X1 (resp. X2) with V1 (resp. V2), and change the joint dis-

tribution in (9.9) to p(u)p(v1|u)p(x1|v1)p(ŷ1|u, v1, y1)p(v2)p(x2|v2) p(y, y1, y2|x1, x2).

Remark 9.3 In (9.9), we condition Ŷ1 on X1 because user 1’s feedback signal can be

correlated with X1. The conditioning on X1 in (9.10) is for the same reason as well.

By these conditionings, we implicitly assume that, if the feedback signal of user 1 has

a self-interference term, user 1 cancels it out. If user 1 does not want to cancel it

out hoping that this may increase the achievable region, then the pdf in (9.9) and the

constraint in (9.10) should be replaced with p(ŷ1|u, y1) and I(Ŷ1;Y1|U) ≤ I(U, Ŷ1;Y ),

respectively. Both choices are optional, and neither of them provides an achievable

region that includes the one provided by the other. For a similar discussion, please
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see Remark 2 of [83].

Remark 9.4 If we disable user cooperation via setting U = Ŷ1 = φ, the achievable

rate region for the pairs (R1, R2) reduce to the capacity region of the MAC [22].

Remark 9.5 If we set U = X1 = Ŷ1 = Y2 = φ, then the channel becomes a wire-tap

channel, and the achievable rate region reduces to

R2 ≤ I(X2;Y ) (9.11)

Re,2 ≤ min {I(X2;Y )− I(X2;Y1), R2} (9.12)

which, after channel prefixing, becomes the same as the one in [3].

Remark 9.6 If we disable the assistance of user 1 by setting U = Ŷ1 = φ, then we

have the following achievable region

R1 ≤ I(X1;Y |X2) (9.13)

R2 ≤ I(X2;Y |X1) (9.14)

R1 +R2 ≤ I(X1, X2;Y ) (9.15)

Re,1 ≤ min {R′1 − I(X1;Y2|X2), R1} (9.16)

Re,2 ≤ min {R′2 − I(X2;Y1|X1), R2} (9.17)
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where the pairs (R′1, R
′
2) belong to





R1 ≤ R′1

R2 ≤ R′2

R′1 ≤ I(X1;Y |X2)

R′2 ≤ I(X2;Y |X1)

R′1 +R′2 ≤ I(X1, X2;Y )





(9.18)

for any distribution of the form

p(x1)p(x2)p(y, y1, y2|x1, x2) (9.19)

which, after channel prefixing, becomes the same as the one in [86], where feedback

signals are not utilized in the encoding functions.

Remark 9.7 If we disable the confidential messages of user 1 by setting U = X1, the

channel model becomes a relay channel with secrecy constraints, and the achievable

region reduces to

R2 ≤ I(X2;Y, Ŷ1|X1) (9.20)

Re,2 ≤ min
{
I(X2;Y, Ŷ1|X1)− I(X2;Y1|X1), R2

}
(9.21)

for any distribution

p(x1)p(ŷ1|x1, y1)p(x2)p(y, y1, y2|x1, x2) (9.22)
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subject to the constraint

I(Ŷ1;Y1|X1) ≤ I(X1, Ŷ1;Y ) (9.23)

which was proposed in [74].

We state our second achievable scheme in the following theorem. In this achiev-

able scheme, both users utilize the feedback signals they receive in their encoding

functions, and send compressed versions of their observations to the main receiver.

Theorem 9.2 Rate tuples (R1, R2, Re,1, Re,2) satisfying

R1 ≤ I(X1;Y, Ŷ1, Ŷ2|U1, U2, X2) (9.24)

R2 ≤ I(X2;Y, Ŷ1, Ŷ2|U1, U2, X1) (9.25)

R1 +R2 ≤ I(X1, X2;Y, Ŷ1, Ŷ2|U1, U2) (9.26)

Re,1 ≤ min
{
R′1 − I(X1;Y2, Ŷ1|U1, U2, X2), R1

}
(9.27)

Re,2 ≤ min
{
R′2 − I(X2;Y1, Ŷ2|U1, U2, X1), R2

}
(9.28)

where the pairs (R′1, R
′
2) belong to

C2 (R1, R2) =





R1 ≤ R′1

R2 ≤ R′2

R′1 ≤ I(X1;Y, Ŷ1, Ŷ2|U1, U2, X2)

R′2 ≤ I(X2;Y, Ŷ1, Ŷ2|U1, U2, X1)

R′1 +R′2 ≤ I(X1, X2;Y, Ŷ1, Ŷ2|U1, U2)





(9.29)
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are achievable for any distribution of the form

p(u1)p(x1|u1)p(ŷ1|u1, x1, y1)p(u2)p(x2|u2)p(ŷ2|u2, x2, y2)p(y, y1, y2|x1, x2) (9.30)

subject to the constraints

I(Ŷ1;Y1|U1, X1) ≤ I(U1, Ŷ1;Y |U2) (9.31)

I(Ŷ2;Y2|U2, X2) ≤ I(U2, Ŷ2;Y |U1) (9.32)

I(Ŷ1;Y1|U1, X1) + I(Ŷ2;Y2|U2, X2) ≤ I(U1, U2;Y ) + I(Ŷ1;Y |U1, U2)

+ I(Ŷ2;Y |U1, U2) (9.33)

The proof of Theorem 9.2 is given in Appendix 9.7.1.

Remark 9.8 Remarks 9.2 and 9.3 apply to Theorem 9.2, as well. As in Remark 9.3,

if users do not want to cancel their own signals out from their observations while

compressing, the conditioning of Ŷ1 (resp. Ŷ2) on X1 (resp. X2) and conditionings

on the left hand sides of inequalities (9.31), (9.32), (9.33) on X1, X2 should be

removed.

Remark 9.9 In Theorem 9.2, the receiver jointly decodes U1, U2 which, as seen in

(9.33), results in a sum constraint on the qualities of the observations sent to the

receiver.

Remark 9.10 If we set U2 = Ŷ2 = φ in Theorem 9.2, we recover Theorem 9.1.
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9.4 Outer Bound

We now present an outer bound on the equivocation rates. This outer bound de-

pends only on the channel inputs and outputs, and hence is computable.

Theorem 9.3 The equivocation rate pairs (Re,1, Re,2) are contained in the union of

Re,1 ≤ I(X1, Y1;Y |X2, Y2) (9.34)

Re,2 ≤ I(X2, Y2;Y |X1, Y1) (9.35)

where the union is over all p(x1, x2).

This bound is obtained by considering the best possible scenario for each user, e.g.,

the bound for user 1 assumes that user 2’s observation is made available to the main

receiver. The proof of Theorem 9.3 is given in Appendix 9.7.2.

9.5 Gaussian Channels

A Gaussian MAC-GF may be described by [86]:

Y1,i = X1,i +X2,i + Z1,i (9.36)

Y2,i = X1,i +X2,i + Z2,i (9.37)

Yi = X1,i +X2,i + Zi (9.38)
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where Z1,i ∼ N (0, N1) , Z2,i ∼ N (0, N2) , Zi ∼ N (0, N) and are all i.i.d. In addi-

tion, we have the following power constraints

1

n

n∑

i=1

E[X2
1,i] ≤ P1 (9.39)

1

n

n∑

i=1

E[X2
2,i] ≤ P2 (9.40)

In Section 9.5.1, we present results on degraded channels. This section is

designed to identify cases where the use of feedback signals in the encoding, i.e., co-

operation, is needed for positive secrecy rates. In Section 9.5.2, we present achievable

regions for Gaussian channels with some particular selections for random variables

involved in Theorems 9.1, 9.2.

9.5.1 Degraded Channels and Implications

We first note that, for a given channel p(y, y1, y2|x1, x2), depending on whether the

feedback signals are used in the encoding or not, we obtain different n-letter joint

distributions p(w1, w2, x
n
1 , x

n
2 , y

n
1 , y

n
2 , y

n), and observe different characteristics. In

this section, we focus on MAC-GFs where the feedback signals are not used in the

encoding functions, e.g., [86, 87]. For such channels, we have the following outer

bound.

Theorem 9.4 The equivocation rate pairs (Re,1, Re,2) of MAC-GFs where feedback
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signals are not used in the encoding functions, are contained in the union of

Re,1 ≤ I(X1;Y |X2, Y2) (9.41)

Re,2 ≤ I(X2;Y |X1, Y1) (9.42)

where the union is over all p(x1, x2) = p(x1)p(x2).

The proof of this theorem is similar to the proof of Theorem 9.3, and hence, is

omitted. Motivated with this outer bound, we define degradedness.

Definition 9.1 If the channel satisfies the Markov chain X1 → (X2, Y2) → Y

(resp. X2 → (X1, Y1)→ Y ), then it is said to be type-I (resp. type-II) degraded.

Theorem 9.4 together with Definition 9.1 implies the following.

Corollary 9.1 If the channel is type-I (resp. type-II) degraded, then we have Re,1 =

0 (resp. Re,2 = 0).

Corollary 9.1 can be specialized to degraded Gaussian channels.

Corollary 9.2 For Gaussian channels with Z = Z1 + Z ′ (resp. Z = Z2 + Z ′), we

have Re,2 = 0 (resp. Re,1 = 0) where Z ′ ∼ N (0, N ′) and independent of Z1, Z2.

The following lemma is from [86].

Lemma 9.1 All channels having the same marginal distributions

p(y1|x1, x2), p(y2|x1, x2), p(y|x1, x2) (9.43)
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as the original channel have the same capacity-equivocation regions.

We are now ready to consider the broader class of stochastically degraded channels.

Definition 9.2 A channel is said to be stochastically type-I degraded, if its con-

ditional marginal distribution p(y|x1, x2) is the same as that of a type-I degraded

channel, i.e., there exists a distribution p′(y|y2, x2) which satisfies

p(y|x1, x2) =
∑

y2

p(y2|x1, x2)p′(y|y2, x2) (9.44)

Stochastically type-II degradedness is defined similarly.

Using Lemma 9.1, we have the following corollary.

Corollary 9.3 If a channel is stochastically type-I (resp. type-II) degraded, then

we have Re,1 = 0 (resp. Re,2 = 0).

In Gaussian MAC-GFs, stochastically degradedness is characterized by receiver

noise variances, as stated next.

Corollary 9.4 For Gaussian channels, if N1 < N (resp. N2 < N), then Re,2 = 0

(resp. Re,1 = 0).

This corollary follows from Lemma 9.1 and Theorem 9.4.

To sum up, in this section we showed that, for Gaussian MAC-GF, if the

feedback signals are not utilized in the encoding functions and if N1 < N (resp.

N2 < N), then Re,1 = 0 (resp. Re,2 = 0). However, if the feedback signals are

utilized in the encoding functions, then we may have positive secrecy rates for both

users as will be shown next.
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9.5.2 Achievable Schemes for Gaussian Channels

We now provide achievable regions for Gaussian MAC-GF. The following proposi-

tions characterize achievable regions using Theorems 9.1, 9.2 with certain selections

for the involved random variables. We define C(x) = 1
2

log(1 + x).

Proposition 9.1 For any ᾱ = 1−α ∈ [0, 1], rate tuples (R1, R2, Re,1, Re,2) satisfy-

ing

R1 ≤ R′1 ≤ C

(
ᾱ
P1

N

)
(9.45)

R2 ≤ R′2 ≤ C

(
P2
N +N1 +Nc

N (N1 +Nc)

)
(9.46)

R′1 +R′2 ≤ C

(
ᾱ
P1

N
+ P2

N +N1 +Nc

N (N1 +Nc)
+

ᾱP1P2

N(N1 +Nc)

)
(9.47)

Re,1 ≤ min

{
R′1 − C

(
ᾱ
P1

N2

)
, R1

}
(9.48)

Re,2 ≤ min

{
R′2 − C

(
P2

N1

)
, R2

}
(9.49)

are achievable, subject to the constraint

Nc ≥
−β +

√
β2 + 4θγ

2θ
(9.50)

where

θ = αP1

β = P2 [(2α− 1)P1 −N −N1]−N1 [(1− 2α)P1 +N ]

γ = (P2 +N1) [N1 (ᾱP1 + P2 +N) + P2 (ᾱP1 +N)]
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Proof: This region is obtained via direct calculation of the rates in Theo-

rem 9.1 with the following selection of the random variables: X2 ∼ N (0, P2), U ∼

N (0, αP1), U ′ ∼ N (0, ᾱP1) and X1 = U + U ′. Ŷ1 = Y1 −X1 + Zc = X2 + Z1 + Zc

where Zc is the compression noise with distribution Zc ∼ N (0, Nc). X2, U
′, Zc are

all independent. 2

Proposition 9.2 For any
(
ᾱ = 1− α, β̄ = 1− β

)
∈ [0, 1]×[0, 1], rate tuples (R1, R2,

Re,1, Re,2) satisfying

R1 ≤ R′1 ≤ C

(
ᾱP1

N +N2 +Nc,2

N (N2 +Nc,2)

)
(9.51)

R2 ≤ R′2 ≤ C

(
β̄P2

N +N1 +Nc,1

N(N1 +Nc,1)

)
(9.52)

R′1 +R′2 ≤ C

(
ᾱP1

N +N2 +Nc,2

N(N2 +Nc,2)
+ β̄P2

N +N1 +Nc,1

N(N1 +Nc,1)

+ ᾱβ̄P1P2
N +N1 +Nc,1 +N2 +Nc,2

N(N1 +Nc,1)(N2 +Nc,2)

)
(9.53)

Re,1 ≤ min

{
R′1 − C

(
ᾱ
P1

N2

)
, R1

}
(9.54)

Re,2 ≤ min

{
R′2 − C

(
β̄
P2

N1

)
, R2

}
(9.55)

are achievable, subject to the constraints

−β1 +
√
β2

1 + 4θ1γ1

2θ1

≤ Nc,1 (9.56)

−β2 +
√
β2

2 + 4θ2γ2

2θ2

≤ Nc,2 (9.57)

(
1 +

P2 +N1

Nc,1

)(
1 +

P1 +N2

Nc,2

)
≤ (1 + ω1) (1 + ω2)

(
1 +

αP1 + βP2

ᾱP1 + β̄P2 +N

)

(9.58)
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where

θ1 = αP1

θ2 = βP2

β1 = αP1(β̄P2 +N1) + (β̄P2)2 − (P2 +N1)(β̄P2 + ᾱP1 +N)

β2 = βP2(ᾱP1 +N2) + (ᾱP1)2 − (P1 +N2)(ᾱP1 + β̄P2 +N)

γ1 = (P2 +N1)
(
(ᾱP1 +N)(β̄P2 +N1) + β̄P2N1

)

γ2 = (P1 +N2)
(
(β̄P2 +N)(ᾱP1 +N2) + ᾱP1N2

)

ω1 =
(ᾱP1)2

ᾱP1(β̄P2 +N +N2 +Nc,2) + (β̄P2 +N)(N2 +Nc,2)

ω2 =

(
β̄P2

)2

β̄P2(ᾱP1 +N +N1 +Nc,1) + (ᾱP1 +N)(N1 +Nc,1)

Proof: This region is obtained via direct calculation of the rates in Theo-

rem 9.2 with the following selection of the random variables: X2 = U2+U ′2 where U2 ∼

N (0, βP2), U ′2 ∼ N (0, β̄P2);X1 = U1 + U ′1 where U1 ∼ N (0, αP1), U ′1 ∼ N (0, ᾱP1);

Ŷ1 = Y1 − X1 + Zc,1 = X2 + Z1 + Zc,1 where Zc,1 is the compression noise with

distribution Zc,1 ∼ N (0, Nc,1) Ŷ2 = Y2−X2 +Zc,2 = X1 +Z2 +Zc,2 where Zc,2 is the

compression noise with distribution Zc,2 ∼ N (0, Nc,2); and U1, U
′
1, U2, U

′
2, Zc,1, Zc,2

are all independent. 2

Graphical illustrations of Propositions 9.1, 9.2 are given in Figures 9.2, 9.3,

9.4. In all these figures, we use P1 = P2 = 50. In Figure 9.2, equivocation regions

are plotted for N1 = 0.75, N2 = 1.25, N = 1. Since N1 < N , if cooperation is not

allowed for this channel, we have Re,2 = 0. Due to user cooperation, we have a
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Figure 9.2: The equivocation regions given in Propositions 9.1,9.2.
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Figure 9.3: The equivocation region given in Proposition 9.2.
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positive secrecy rate for user 2. If Proposition 9.1 (i.e., one-sided cooperation) is

used, then we provide a positive secrecy rate for user 2 at the expense of the secrecy

of user 1. However, if Proposition 9.2 (i.e., two-sided cooperation) is used, then

user 2 can have positive secrecy without any cost, i.e., without any decrease in the

secrecy of user 1. For both propositions, maximum secrecy rate for user 2 is achieved

if user 1 does not transmit any confidential messages and acts as a relay for user 2.

In Proposition 9.1, the maximum secrecy for user 1 is achieved when user 1 does

not help user 2, and in Proposition 9.2, the maximum secrecy for user 1 is achieved

when user 2 does not transmit any confidential messages and acts as a relay for user

1.

Secondly, we consider a case where neither user can achieve positive secrecy

rates without cooperation, i.e., N1 < N,N2 < N . We select the parameters as

N1 = 0.75, N2 = 0.75, N = 1. As we see in Figure 9.3, both users are able to have

positive secrecy rates through cooperation. Again, in this case as well, the maximum

secrecy rate for each user is obtained when the other user acts as a pure relay.

Finally, we consider a system with N1 = 1.25, N2 = 1.25, N = 1, where we can

have positive secrecy rates for both users without cooperation. We observe from

Figure 9.4 that user cooperation increases the achievable secrecy rates.

9.6 Conclusions

In this chapter, we consider MAC-GF to study the effects of cooperation on secrecy.

In particular, we provide an achievable secrecy rate region by using a CAF-scheme
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Figure 9.4: Comparison of equivocation regions with and without cooperation.

and evaluate this achievable scheme for some Gaussian channels. Through numerical

illustrations, we show that, thanks to cooperation, both users can have secure com-

munication with the receiver, although this is not possible if users are not allowed to

cooperate. Hence, similar to the broadcast setting we study in the previous chapter,

for the multiple access setting also, there is a synergy between user cooperation and

secrecy in the sense that user cooperation can improve secrecy. We finally note that

this synergy can be created only by using an appropriate cooperation strategy.

9.7 Appendix

9.7.1 Proof of Theorem 9.2

We now prove Theorem 9.2. We again show the achievability in two parts. First, we

show that any rate pair (R1, R2) satisfying (9.24)-(9.26) subject to the constraints in
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(9.31)-(9.33) are achievable. Then we show that for any rate pair (R1, R2), equivo-

cation rates (R′1, R
′
2) in (9.27)-(9.28) are achievable. Fix the probability distribution

p(u1)p(x1|u1)p(ŷ1|u1, x1, y1)p(u2)p(x2|u2)p(ŷ2|u2, x2, y2)p(y, y1, y2|x1, x2) (9.59)

Codebook generation:

User 1:

• Generate 2nR0,1 u1 through p(u1) =
∏n

i=1 p(u1,i) and index them as u1(s1,i)

where s1,i ∈
{

1, . . . , 2nR0,1
}

.

• For each u1(s1,i), generate 2nR1 x1 through p(x1|u1) =
∏n

i=1 p(x1,i|u1,i) and

index them as x1(w1,i|s1,i) where w1,i ∈
{

1, . . . , 2nR1
}

.

• For each u1(s1,i), generate 2nR̂1 ŷ1 through p(ŷ1|u1) =
∏n

i=1 p(ŷ1,i|u1,i) and

index them as ŷ1(z1,i|s1,i) where z1,i ∈
{

1, . . . , 2nR̂1

}
.

User 2:

User 2 generates its own codebook through the same steps wasuser 1, only

difference is that all of the subscripts 1 should be replaced with 2.

Partitioning:

User 1 partitions 2nR̂1 into 2nR0,1 cells and user 2 partitions 2nR̂2 into 2nR0,2

cells.

Encoding:
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• User 1, upon receiving y1(i− 1), decides on which z1,i−1 is received by looking

for a jointly typical pair (ŷ1(z1,i−1|s1,i−1),y1(i− 1),x1(w1,i−1|s1,i−1),u1(s1,i−1))

which is ensured to occur if the constraint

I(Ŷ1;Y1|X1, U1) ≤ R̂1 (9.60)

is satisfied. Assume ẑ1,i−1 falls into Ss1,i , then user 1 sends x1(w1,i|s1,i).

• User 2, upon receiving y2(i− 1), decides on which z2,i−1 is received by looking

for a jointly typical pair (ŷ2(z2,i−1|s2,i−1),y2(i− 1),x2(w2,i−1|s2,i−1),u2(s2,i−1))

which is ensured to occur if the constraint

I(Ŷ2;Y2|X2, U2) ≤ R̂2 (9.61)

is satisfied. Assume ẑ2,i−1 falls into Ss2,i , then user 2 sends x2(w2,i|s2,i).

Decoding:

• Receiver first decodes (u1(s1,i),u2(s2,i)) jointly which can be done with van-

ishingly small error probability if

R0,1 ≤ I(U1;Y |U2) (9.62)

R0,2 ≤ I(U2;Y |U1) (9.63)

R0,1 +R0,2 ≤ I(U1, U2;Y ) (9.64)
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• Receiver list decodes ŷ1(z1,i−1) and ŷ2(z2,i−1), separately. It first forms its

ambiguity set for z1,i−1 as

L(z1,i−1)

= {z1,i−1 : (ŷ1(z1,i−1|s1,i−1),y(i),u1(s1,i−1),u2(s2,i−1)) is jointly typical}

(9.65)

and intersects with Ss1,i which has the correct and unique intersection point if

R̂1 ≤ R0,1 + I(Ŷ1;Y |U1, U2) (9.66)

Similarly, to decode z2,i−1 reliably, we need the following condition

R̂2 ≤ R0,2 + I(Ŷ2;Y |U1, U2) (9.67)

• Receiver finally decodes w1,i−1 and w2,i−1 jointly which can be done with van-

ishingly small error probability if

R1 ≤ I(X1;Y, Ŷ1, Ŷ2|U1, U2, X2) (9.68)

R2 ≤ I(X2;Y, Ŷ1, Ŷ2|U1, U2, X1) (9.69)

R1 +R2 ≤ I(X1, X2;Y, Ŷ1, Ŷ2|U1, U2) (9.70)

Compression constraints:
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As of now, we described encoding and decoding procedures. Before starting

the equivocation calculations, we derive the compression constraints given in (9.31),

(9.32) and (9.33). First, using (9.60) (resp. (9.61)) in (9.66) (resp. 9.67), we get

I(Ŷ1;Y1|X1, U1) ≤ R0,1 + I(Ŷ1;Y |U1, U2) (9.71)

I(Ŷ2;Y2|X2, U2) ≤ R0,2 + I(Ŷ2;Y |U1, U2) (9.72)

Next, using (9.62) and (9.63) in the equations above, we get

I(Ŷ1;Y1|X1, U1) ≤ I(U1, Ŷ1;Y |U2) (9.73)

I(Ŷ2;Y2|X2, U2) ≤ I(U2, Ŷ2;Y |U1) (9.74)

Finally, the last constraint in (9.33) can be obtained as follows

I(Ŷ1;Y1|X1, U1) + I(Ŷ2;Y2|X2, U2)

≤ R0,1 +R0,2 + I(Ŷ1;Y |U1, U2) + I(Ŷ2;Y |U1, U2) (9.75)

≤ I(U1, U2;Y ) + I(Ŷ1;Y |U1, U2) + I(Ŷ2;Y |U1, U2) (9.76)

where we used (9.64).

Equivocation computation:

We now compute the equivocation rates. Since the computation of user 2’s

equivocation rate follows from the symmetry, we only present the computation for
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user 1. We assume that the following

R′1 − I(X1;Y2, Ŷ1|U1, U2, X2) ≥ 0 (9.77)

otherwise the equivocation rate is zero. The cases

R′1 − I(X1;Y2, Ŷ1|U1, U2, X2) ≤ R1 and R′1 − I(X1;Y2, Ŷ1|U1, U2, X2) ≥ R1

(9.78)

will be treated separately. First assume that

R′1 − I(X1;Y2, Ŷ1|U1, U2, X2) ≤ R1 (9.79)

is satisfied for any admissible R′1. In this case, we expand the codebook as follows:

Generate 2nR
′
1 x1 for each u1(s1,i) and index them as x1(w̃1,i|s1,i) where

w̃1,i = (w1,i, li) (9.80)
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and w1,i ∈
{

1, . . . , 2nR1
}
, li ∈

{
1, . . . , 2n(R′1−R1)

}
. Start with the definition

nRe,1 ≥ H(W1|Y n
2 , X

n
2 ,W2) (9.81)

= H(W1|Y n
2 , X

n
2 ) (9.82)

≥ H(W1|Y n
2 , U

n
1 , U

n
2 , X

n
2 , Ŷ

n
1 ) (9.83)

= H(W1, Y
n

2 , Ŷ
n

1 |Un
1 , U

n
2 , X

n
2 )−H(Y n

2 , Ŷ
n

1 |Un
1 , U

n
2 , X

n
2 ) (9.84)

= H(Xn
1 ,W1, Y

n
2 , Ŷ

n
1 |Un

1 , U
n
2 , X

n
2 )−H(Xn

1 |W1, Y
n

2 , Ŷ
n

1 , U
n
1 , U

n
2 , X

n
2 )

−H(Y n
2 , Ŷ

n
1 |Un

1 , U
n
2 , X

n
2 ) (9.85)

= H(Xn
1 |Un

1 , U
n
2 , X

n
2 ) +H(W1, Y

n
2 , Ŷ

n
1 |Un

1 , U
n
2 , X

n
2 , X

n
1 )

−H(Xn
1 |W1, Y

n
2 , Ŷ

n
1 , U

n
1 , U

n
2 , X

n
2 )−H(Y n

2 , Ŷ
n

1 |Un
1 , U

n
2 , X

n
2 ) (9.86)

≥ H(Xn
1 |Un

1 , U
n
2 , X

n
2 )− I(Xn

1 ;Y n
2 , Ŷ

n
1 |Un

1 , U
n
2 , X

n
2 )

−H(Xn
1 |W1, Y

n
2 , Ŷ

n
1 , U

n
1 , U

n
2 , X

n
2 ) (9.87)

where (9.82) is due to the Markov chain W2 → (Xn
2 , Y

n
2 ) → W1 and (9.83) follows

from the fact that conditioning cannot increase entropy. Each term in (9.87) will be

treated separately. The first term in (9.87) can be expressed as

H(Xn
1 |Un

1 , U
n
2 , X

n
2 ) = H(Xn

1 |Un
1 ) = nR′1 (9.88)

where the first equality is due to the fact that Xn
1 and (Xn

2 , U
n
2 ) are independent,

and the second one follows from the fact that given Un
1 = u1, Xn

1 can take 2nR
′
1
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values with equal probability. The second term in (9.87) can be bounded as

I(Xn
1 ;Y n

2 , Ŷ
n

1 |Un
1 , U

n
2 , X

n
2 ) ≤ nI(X1;Y2, Ŷ1|U1, U2, X2) + εn (9.89)

because of the fact that the channel is memoryless and the codewords are generated

in an i.i.d. manner. To bound the last term in (9.87), assume that user 2 is trying

to decode Xn
1 using Y n

2 , Ŷ
n

1 ,W1 as side information. Since given W1 = w1, Xn
1 can

take 2n(R′1−R1) ≤ 2nI(X1;Y2,Ŷ1|U1,U2,X2) values, user 1 can reliably decode Xn
1 , hence we

have

H(Xn
1 |W1, Y

n
2 , Ŷ

n
1 , U

n
1 , U

n
2 , X

n
2 ) ≤ εn (9.90)

due to Fano’s lemma. Therefore, we have

Re,1 ≤ R′1 − I(X1;Y2, Ŷ1|U1, U2, X2) (9.91)

as an achievable equivocation rate if (9.79) is satisfied.

Now assume that there exists at least one R′1 in the achievable region such

that

R′1 − I(X1;Y2, Ŷ1|U1, U2, X2) ≥ R1 (9.92)

is satisfied. In this case, generate 2n(R1+I(X1;Y2,Ŷ1|U1,U2,X2)) x1 for each u1(s1,i) and
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index them as x1(w̃1,i|s1,i) where

w̃1,i = (w1,i, li) (9.93)

and w1,i ∈
{

1, . . . , 2nR1
}
, li ∈

{
1, . . . , 2n(I(X1;Y2|U1,U2,X2)

}
. Using previous analysis,

we have

nRe,1 ≥ H(Xn
1 |Un

1 , U
n
2 , X

n
2 )− I(Xn

1 ;Y n
2 , Ŷ

n
1 |Un

1 , U
n
2 , X

n
2 )

−H(Xn
1 |W1, Y

n
2 , Ŷ

n
1 , U

n
1 , U

n
2 , X

n
2 ) (9.94)

where the first term is

H(Xn
1 |Un

1 , U
n
2 , X

n
2 ) = H(Xn

1 |Un
1 ) = nR1 + nI(X1;Y2, Ŷ1|U1, U2, X2) (9.95)

where the first equality is due to the fact that Xn
1 is independent of (Un

2 , X
n
2 )

and the second equality is due to the fact that given Un
1 = u1, Xn

1 can take

2n(R1+I(X1;Y2,Ŷ1|U1,U2,X2)) values with equal probability. Moreover, the last term in

(9.94) can be bounded as

H(Xn
1 |W1, Y

n
2 , Ŷ

n
1 , U

n
1 , U

n
2 , X

n
2 ) ≤ εn (9.96)

because user 2 can decode Xn
1 using its observation and side information W1 due to

the fact that given W2 = w2, Xn
1 can take 2nI(X1;Y2,Ŷ1|U1,U2,X2) values. Therefore, we
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have

Re,1 ≤ R1 + I(X1;Y2, Ŷ1|U1, U2, X2)− I(X1;Y2, Ŷ1|U1, U2, X2) = R1 (9.97)

as an achievable equivocation rate if (9.92) is satisfied.

9.7.2 Proof of Theorem 9.3

We now prove Theorem 9.3. We start with the first user as follows

nRe,1 = H(W1|Y n
2 , X

n
2 ,W2) (9.98)

= H(W1|Y n
2 , X

n
2 ) (9.99)

= H(W1|Xn
2 )− I(W1;Y n

2 |Xn
2 ) (9.100)

= I(W1;Y n|Xn
2 )− I(W1;Y n

2 |Xn
2 ) +H(W1|Y n

2 , X
n
2 ) (9.101)

≤ I(W1;Y n|Xn
2 )− I(W1;Y n

2 |Xn
2 ) + εn (9.102)

≤ I(W1;Y n|Y n
2 , X

n
2 ) + εn (9.103)

≤ I(Xn
1 ,W1;Y n|Y n

2 , X
n
2 ) + εn (9.104)

= I(Xn
1 ;Y n|Y n

2 , X
n
2 ) + I(W1;Y n|Y n

2 , X
n
2 , X

n
1 ) + εn (9.105)

= I(Xn
1 ;Y n|Y n

2 , X
n
2 ) + εn (9.106)

=
n∑

i=1

I(Yi;X
n
1 |Y n

2 , X
n
2 , Y

i−1) + εn (9.107)

=
n∑

i=1

H(Yi|Y n
2 , X

n
2 , Y

i−1)−H(Yi|Y n
2 , X

n
2 , X

n
1 , Y

i−1) + εn (9.108)

≤
n∑

i=1

H(Yi|Y2,i, X2,i)−H(Yi|Y n
2 , X

n
2 , X

n
1 , Y

i−1, Y1,i) + εn (9.109)
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where (9.98) is due to the Markov chain W2 → (Xn
2 , Y

n
2 ) → W1, (9.102) is due

to Fano’s lemma, (9.106) is due to the fact that given Xn
1 , W1 is independent of

all other terms, and (9.109) follows from the fact that conditioning cannot increase

entropy. Now, consider the following Markov chains

(
Y i−1, X i−1

2 , X i−1
1

)
→ (X1,i, X2,i, Y1,i, Y2,i)→ Yi (9.110)

(
Y n
i+1, X

n
2,i+1, X

n
1,i+1

)
→ (X1,i, X2,i, Y1,i, Y2,i)→ Yi (9.111)

where the first one is due to the memoryless property of the channel and the second

one is due to the fact that correlation induced between current output, i.e., Yi, and

future inputs, i.e.,
(
Xn

2,i+1, X
n
1,i+1

)
can be resolved by conditioning on (Y1,i, Y2,i).

Hence, using these two Markov chains, we have

nRe,1 ≤
n∑

i=1

H(Yi|Y2,i, X2,i)−H(Yi|Y2,i, X2,i, X1,i, Y1,i) + εn (9.112)

=
n∑

i=1

I(X1,i, Y1,i;Yi|Y2,i, X2,i) + εn (9.113)

Similarly, we can obtain the following bound for the second user

nRe,2 ≤
n∑

i=1

I(X2,i, Y2,i;Yi|Y1,i, X1,i) + εn (9.114)

These bounds can be single-letterized to obtain the bounds in Theorem 9.3; com-

pleting the proof.
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Chapter 10

On Compound Wiretap Channels

10.1 Introduction

In this chapter, we study the compound wiretap channel. The compound wire-

tap channel can be defined in two alternative yet equivalent forms: The compound

wiretap channel consists of a user and an eavesdropper, where there are a finite

number of channel states determining the channel transition probability distribu-

tion, see Figure 10.1. The channel state is fixed during the entire transmission and

known at the receivers, but not at the transmitter. The goal of the transmitter

is to ensure a perfect secrecy rate irrespective of the channel state realization. In

the second equivalent description, see Figure 10.2, the compound wiretap channel

consists of a group of users and a group of eavesdroppers, where the transmitter

sends a common confidential message to the users while keeping all eavesdroppers

ignorant of this message. Regarding each channel state as a user and eavesdropper

pair, the equivalence of two definitions is clear. In this chapter, we adopt the second

interpretation.

The compound wiretap channel is first studied in [90, 91], which consider the

parallel wiretap channel with two sub-channels where each sub-channel is wiretapped

by a different eavesdropper. Recent works on compound wiretap channels are [24,

25, 38, 54, 92–94]. Reference [92] studies the fading wiretap channel with many
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Y n

Zn
pj(y, z|x)Xn

j ∈ {1, . . . ,S}

Figure 10.1: The compound wiretap channel defined in terms of channel uncertainty.

W

Legitimate users

Eavesdroppers

Figure 10.2: The compound wiretap channel defined in terms multicasting a common
confidential message.

receivers, [24, 25, 54] consider the transmission of a common confidential message

to many legitimate receivers in the presence of a single eavesdropper. Reference [38]

considers the general discrete memoryless compound wiretap channel and provides

inner and outer bounds for the secrecy capacity. Moreover, [38] establishes the

secrecy capacity of the degraded compound wiretap channel as well as its degraded

Gaussian MIMO instance. Another work on the compound wiretap channel is [94]

where the secrecy capacity of a class of non-degraded Gaussian parallel compound

wiretap channels is established.

A recent work [93] studies the two-user one-eavesdropper compound wiretap

channel, and obtains a lower bound for its secrecy capacity. The achievable scheme
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in [93] uses indirect decoding [13] and Marton’s inner bound for discrete memoryless

broadcast channels [11]. This lower bound is the best achievable secrecy rate for the

two-user one-eavesdropper case. In particular, it provides a strictly better achievable

secrecy rate than the previous achievable secrecy rate in [38], which corresponds to

an extension of the Csiszar-Korner achievable scheme in [3] to a compound setting.

Here, we first provide a new achievable scheme which is potentially better than

this best known lower bound in [93], i.e., the secrecy rate our scheme can provide is

always as large as the secrecy rate that the achievable scheme in [93] can provide.

Similar to [93], our achievable scheme also uses indirect decoding [13] and Marton’s

inner bound [11]. However, the difference between our achievable scheme and the

one in [93] comes from the equivocation computation. In particular, at a certain step

of the equivocation computation in [93], joint conditional entropy of two random

variables is upper bounded by conditional individual entropies, and the proof is

concluded. Here, we compute the equivocation rate without using this potentially

loose outer bound, which gives us a potentially better achievable scheme than the

one in [93].

We next consider the two-user one-eavesdropper Gaussian MIMO compound

wiretap channel and obtain an achievable secrecy rate for it by using DPC [12] in the

achievable scheme we already provided. We address the tightness of the resulting

achievable secrecy rate by showing that it can achieve at least half of the secrecy

capacity. We also consider a special class of two-user one-eavesdropper Gaussian

MIMO compound wiretap channels, where the eavesdropper is degraded with respect

to one of the two users. We obtain the secrecy capacity of these channels.
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10.2 Channel Model and Definitions

We study the two-user one-eavesdropper discrete memoryless compound wiretap

channel, see Figure 10.3, with a transition probability p(y1, y2, z|x) where x ∈ X

is the channel input, yj ∈ Yj is the jth user’s observation, and z ∈ Z is the

eavesdropper’s observation. We consider the scenario where the transmitter sends a

common confidential message to both users, which needs to be kept perfectly secret

from the eavesdropper.

An (n, 2nR) code for this channel consists of one message setW = {1, . . . , 2nR},

one encoder at the transmitter fn : W → X n, and one decoder at each user gj,n :

Ynj →W , j = 1, 2. The probability of error is defined as

Pe,n = max
j=1,2

Pr [gj,n(fn(W )) 6= W ] (10.1)

where W is a uniformly distributed random variable in W . We measure the secrecy

of the message W by its equivocation rate at the eavesdropper (1/n)H(W |Zn) [2, 3].

A perfect secrecy rate R is said to be achievable if there exists an (n, 2nR) code

which has limn→∞ Pe,n = 0, and

lim
n→∞

1

n
I(W ;Zn) = 0 (10.2)

The secrecy capacity CS is defined to be the supremum of all achievable perfect

secrecy rates.
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p(y1|x)

p(y2|x)

p(z|x)

X W

W

Figure 10.3: The compound wiretap channel with two legitimate users and a single
eavesdropper.

10.3 An Achievable Secrecy Rate

Here, we revisit the existing achievability results for two-user one-eavesdropper dis-

crete memoryless compound wiretap channels, and provide a potentially higher

achievable secrecy rate than the best known achievable secrecy rate given in [93].

The first achievable scheme for discrete memoryless compound wiretap channels is

proposed in [38]. This achievable scheme can be viewed as an extension of the

Csiszar-Korner achievable scheme for discrete memoryless wiretap channels [3] to

compound wiretap channels. The achievable secrecy rate in [38] is stated in the

following theorem.

Theorem 10.1 ([38, Theorem 1]) The secrecy capacity of the two-user one-

eavesdropper discrete memoryless compound wiretap channel is lower bounded as

follows

CS ≥ max
U→X→(Y1,Y2,Z)

min
j=1,2

I(U ;Yj)− I(U ;Z) (10.3)
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This inner bound is strictly improved in [93], where a new achievable scheme is

proposed by using indirect decoding [13] and Marton’s achievable scheme for discrete

memoryless broadcast channels [11]. This achievable secrecy rate is stated in the

following theorem.

Theorem 10.2 ([93, Theorem 1]) The secrecy capacity of the two-user one-

eavesdropper discrete memoryless compound wiretap channel is lower bounded by

the maximum of R satisfying

R ≤ I(V0, V1;Y1)− I(V0, V1;Z) (10.4)

R ≤ I(V0, V2;Y2)− I(V0, V2;Z) (10.5)

for some (V0, V1, V2) such that (V0, V1, V2)→ X → (Y1, Y2, Z), and

I(V1, V2;Z|V0) + I(V1;V2|V0) ≤ I(V1;Z|V0) + I(V2;Z|V0) (10.6)

We now provide a new achievable secrecy rate for two-user one-eavesdropper

discrete memoryless compound wiretap channels. This new achievable scheme is

similar to the achievable scheme given in Theorem 10.2 in terms of the techniques

used. In particular, this new achievable scheme also uses indirect decoding [13]

and Marton’s inner bound for discrete memoryless broadcast channels [11]. The

only new ingredient in the achievable scheme we provide here as compared to the

achievable scheme in Theorem 10.2 is the way we compute the equivocation rate.

In particular, while computing the equivocation rate in the proof of Theorem 10.2,
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one needs to show the following

lim
n→∞

1

n
H(V n

1 , V
n

2 |W,V n
0 , Z

n) = 0 (10.7)

To this end, [93] first considers the following bound

1

n
H(V n

1 , V
n

2 |W,V n
0 , Z

n) ≤ 1

n
H(V n

1 |W,V n
0 , Z

n) +
1

n
H(V n

2 |W,V n
0 , Z

n) (10.8)

and shows that each term on the right hand side of (10.8) vanishes as n → ∞.

The upper bound in (10.8) might result in potential suboptimality in the achievable

secrecy rate given in Theorem 10.2 as compared to the achievable secrecy rate that

can be obtained by directly showing (10.7) without any recourse to the bound in

(10.8). The corresponding new achievable secrecy rate, obtained by showing (10.7)

without using the bound in (10.8), is given in the following theorem.

Theorem 10.3 The secrecy capacity of the two-user one-eavesdropper discrete mem-

oryless compound wiretap channel is lower bounded by the maximum of R satisfying

R ≤ I(V0, V1;Y1)− I(V0, V1;Z) (10.9)

R ≤ I(V0, V2;Y2)− I(V0, V2;Z) (10.10)

2R ≤ I(V0, V1;Y1) + I(V0, V2;Y2)− 2I(V0;Z)− I(V1, V2;Z|V0)

− I(V1;V2|V0) (10.11)

for some (V0, V1, V2) such that (V0, V1, V2)→ X → (Y1, Y2, Z).

513



The proof of this theorem is given in Appendix 10.6.1. We note that the achievable

secrecy rate given in Theorem 10.3 has one more rate constraint than the achievable

secrecy rate given in Theorem 10.2, while both achievable secrecy rates have two rate

constraints (10.9)-(10.10) in common. On the other hand, the new achievable secrecy

rate in Theorem 10.3 does not have the constraint in (10.6) that Theorem 10.2

has. We next obtain a potentially looser version of the achievable secrecy rate

in Theorem 10.3, which will be useful to compare the achievable secrecy rates in

Theorems 10.2 and 10.3. This potentially looser version of the achievable secrecy

rate given in Theorem 10.3 is stated in the following corollary.

Corollary 10.1 The secrecy capacity of the two-user one-eavesdropper compound

wiretap channel is lower bounded as follows

CS ≥ max
{
R12
S , R

21
S

}
(10.12)

for some (V0, V1, V2) such that (V0, V1, V2) → X → (Y1, Y2, Z), and R12
S , R

21
S are

given by

R12
S = min{I(V0, V1;Y1)− I(V0, V1;Z), I(V0, V2;Y2)− I(V0;Z)− I(V2;Z, V1|V0)}

(10.13)

R21
S = min{I(V0, V1;Y1)− I(V0;Z)− I(V1;Z, V2|V0), I(V0, V2;Y2)− I(V0, V2;Z)}

(10.14)

The proof of Corollary 10.1 is given in Appendix 10.6.2. We now compare the

potentially looser version of Theorem 10.3 given in Corollary 10.1 with Theorem 10.2
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to show that the achievable secrecy rate in Theorem 10.3 is potentially higher than

the one in Theorem 10.2. We note that the constraint in (10.6) implies

0 ≤ I(V1;Z|V0) + I(V2;Z|V0)− I(V1;V2|V0)− I(V1, V2;Z|V0) (10.15)

= I(V2;Z|V0)− I(V1;V2|V0)− I(V2;Z|V0, V1) (10.16)

= I(V2;Z|V0)− I(V2;Z, V1|V0) (10.17)

= −I(V2;V1|V0, Z) (10.18)

which is equivalent to

I(V2;V1|V0, Z) = 0 (10.19)

Consider a random variable triple (V0, V1, V2) such that it satisfies (V0, V1, V2) →

X → (Y1, Y2, Z) and (10.6). Due to (10.19), we have

R12
S = R21

S = min{I(V0, V1;Y1)− I(V0, V1;Z), I(V0, V2;Y2)− I(V0, V2;Z)} (10.20)

which is the achievable secrecy rate in Theorem 10.2. Thus, for any random variable

triple (V0, V1, V2) satisfying (10.6), both the new achievable secrecy rate in Corol-

lary 10.1, hence in Theorem 10.3, and the achievable secrecy rate in Theorem 10.2

are equal. However, since the new achievable secrecy rate in Theorem 10.3 does

not have the constraint, i.e., restriction, in (10.6), it is potentially higher than the

achievable secrecy rate in Theorem 10.2.
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10.4 Gaussian MIMO Compound Wiretap Channel

We consider the two-user one-eavesdropper Gaussian MIMO compound wiretap

channel which is defined by

Y1 = X + N1 (10.21)

Y2 = X + N2 (10.22)

Z = X + NZ (10.23)

where the channel input X, a t× 1 vector, is subject to a covariance constraint as

E
[
XX>

]
� S (10.24)

and S is a positive semi-definite matrix, i.e., S � 0. The noise covariance ma-

trices of the Gaussian random vectors N1,N2,NZ , t × 1 vectors, are denoted by

Σ1,Σ2,ΣZ , respectively, where we assume Σ1 � 0,Σ2 � 0,ΣZ � 0. We remark

that the Gaussian MIMO compound wiretap channel defined in (10.21)-(10.23) ac-

tually corresponds to a special case of the more general form of the Gaussian MIMO

compound wiretap channel given by

Yj = HjX + Nj, j = 1, 2 (10.25)

Z = HZX + NZ (10.26)
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However, using the rather straightforward analysis given in Section 7.1 of [19], the

results we obtain for the channel model in (10.21)-(10.23) can be extended to the

most general form of the Gaussian MIMO compound wiretap channel in (10.25)-

(10.26). Thus, here, we restrict our attention to the channel model in (10.21)-(10.23).

Another remark about the channel model is the way we impose the power constraint

on the channel input X. We note that the covariance constraint in (10.24) subsumes

the more common total power constraint E
[
X>X

]
≤ P , in that both inner and

outer bounds proved for the covariance constraint in (10.24) can be extended to

the case where the channel input X is subject to a total power constraint; see

Lemma 1 and Corollary 1 in [4]. Thus, without loss of generality, we consider only

the covariance constraint in (10.24).

We now present an achievable secrecy rate for the two-user one-eavesdropper

Gaussian MIMO compound wiretap channel in (10.21)-(10.23) given in the following

theorem.

Theorem 10.4 The secrecy capacity of the two-user one-eavesdropper Gaussian

MIMO compound wiretap channel CS(S) is lower bounded by the maximum of R

satisfying

R = max
{
R12
S (K0,K1,K2), R21

S (K0,K1,K2)
}

(10.27)

for some positive semi-definite matrices K0,K1,K2 such that K0 + K1 + K2 � S,
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and R12
S (K0,K1,K2) is given by

R12
S (K0,K1,K2) = min{R12

S1(K0,K1,K2), R12
S2(K0,K1,K2)} (10.28)

where R12
S1(K0,K1,K2), R12

S2(K0,K1,K2) are

R12
S1(K0,K1,K2) =

1

2
log
|K0 + K1 + K2 + Σ1|

|K2 + Σ1|
− 1

2
log
|K0 + K1 + K2 + ΣZ |

|K2 + ΣZ |

(10.29)

R12
S2(K0,K1,K2) =

1

2
log
|K0 + K1 + K2 + Σ1|
|K1 + K2 + Σ2|

− 1

2
log
|K0 + K1 + K2 + ΣZ |
|K1 + K2 + ΣZ |

+
1

2
log
|K2 + Σ2|
|Σ2|

− 1

2
log
|K2 + ΣZ |
|ΣZ |

(10.30)

Moreover, R21
S (K0,K1,K2) can be obtained from R12

S (K0,K1,K2) by swapping the

indices 1 and 2.

Theorem 10.4 can be obtained from Corollary 10.1 by choosing (V0, V1, V2) to be

jointly Gaussian with a specific correlation structure. V0, to which the covariance

matrix K0 is allotted, can be viewed as the common part, and is decoded by both

users. V1 (resp. V2) can be thought of as a private message that is directed to only

the first (resp. second) user, the second (resp. first) user does not bother to decode.

V1, V2 are encoded using DPC [12]. Thus, depending on the encoding order used

in DPC, we get a different achievable secrecy rate. For example, R12
S (K0,K1,K2)

comes from encoding V1 first, then using DPC for V2. The details of the proof of

Theorem 10.4 can be found in Appendix 10.6.3.

We next note the following special case of Theorem 10.4.
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Corollary 10.2 The secrecy capacity of the two-user one-eavesdropper Gaussian

MIMO compound wiretap channel CS(S) is lower bounded by the maximum of R

satisfying

R = max
{
R12
S (K1,K2), R21

S (K1,K2)
}

(10.31)

for some positive semi-definite matrices K1,K2 such that

K1 + K2 � S (10.32)

and R12
S (K1,K2) is given by

R12
S (K1,K2) = min{R12

S1(K1,K2), R12
S2(K1,K2)} (10.33)

where R12
S1(K1,K2), R12

S2(K1,K2) are

R12
S1(K1,K2) =

1

2
log
|K1 + K2 + Σ1|
|K2 + Σ1|

− 1

2
log
|K1 + K2 + ΣZ |
|K2 + ΣZ |

(10.34)

R12
S2(K1,K2) =

1

2
log
|K2 + Σ2|
|Σ2|

− 1

2
log
|K2 + ΣZ |
|ΣZ |

(10.35)

Moreover, R21
S (K1,K2) can be obtained from R12

S (K1,K2) by swapping the indices 1

and 2.

This corollary can be obtained by setting K0 = φ in Theorem 10.4. We next assess

the tightness of the inner bound in Corollary 10.2. To this end, we introduce the fol-

lowing simple outer bound on the secrecy capacity of the two-user one-eavesdropper
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Gaussian MIMO compound wiretap channel.

Lemma 10.1 The secrecy capacity of the two-user one-eavesdropper Gaussian MIMO

compound wiretap channel is upper bounded as follows

CS(S) ≤ min{CS1(S), CS2(S)} (10.36)

where CSj(S), j = 1, 2, is given by

CSj(S) = max
0�K�S

1

2
log
|K + Σj|
|Σj|

− 1

2
log
|K + ΣZ |
|ΣZ |

(10.37)

We note that CSj(S) is the secrecy capacity of the Gaussian MIMO wiretap channel

between the jth user and the eavesdropper. If one wants to multicast a common

confidential message to both users, one cannot transmit at a higher rate than the

secrecy capacity of the wiretap channel between the jth user and the eavesdropper

for j = 1, 2. This observation proves Lemma 10.1. We now provide the following

theorem which assesses the tightness of the achievable secrecy rate in Corollary 10.2

in terms of the outer bound in Lemma 10.1.

Theorem 10.5 The secrecy capacity CS(S) of the two-user one-eavesdropper Gaus-

sian MIMO compound wiretap channel satisfies

1

2
min{CS1(S), CS2(S)} ≤ CS(S) ≤ min{CS1(S), CS2(S)} (10.38)

The proof of Theorem 10.5 is given in Appendix 10.6.4. In the proof of this theorem,
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we use the achievable secrecy rate in Corollary 10.2 and the channel enhancement

technique [4]. Hence, Theorem 10.5 states that using Corollary 10.2, one can get an

achievable secrecy rate R such that

min{CS1(S), CS2(S)} ≤ 2R (10.39)

which, in turn, implies that CS(S) ≤ 2R using Lemma 10.1. Thus, the achievable

secrecy rate given in Corollary 10.2 achieves at least half of the secrecy capacity. We

note that there are two possible directions that might improve this result. The first

one is to consider the more general form of Corollary 10.2 given in Theorem 10.4.

This might lead to higher achievable secrecy rates. The second possible improve-

ment is to find better outer bounds for the secrecy capacity of the Gaussian MIMO

compound wiretap channel. The outer bound in Lemma 10.1 seems to be loose. In

general, we do not expect the secrecy capacity of a Gaussian MIMO compound wire-

tap channel to be the minimum of the secrecy capacities of the underlying wiretap

channels. However, still, there might be cases that the outer bound in Lemma 10.1

is tight. To give an example, assume that the eavesdropper is degraded with respect

to the second user, i.e., we have X→ Y2 → Z, which is equivalent to

Σ2 � ΣZ (10.40)

The secrecy capacity of a Gaussian MIMO compound wiretap channel satisfying

(10.40) is given by the following theorem.
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Theorem 10.6 The secrecy capacity region of the two-user one-eavesdropper Gaus-

sian MIMO compound wiretap channel satisfying (10.40) is given by

CS(S) = min{CS1(S), CS2(S)} (10.41)

The proof of Theorem 10.6 is given in Appendix 10.7. Theorem 10.6 states that if the

eavesdropper is degraded with respect to one of the two users, the secrecy capacity of

the two-user one-eavesdropper Gaussian MIMO compound wiretap channel is equal

to the minimum of the secrecy capacities of the underlying two Gaussian MIMO

wiretap channels.

10.5 Conclusions

In this chapter, we study two-user one-eavesdropper compound wiretap channels

and obtain a lower bound for their secrecy capacity. We show that this lower bound

is potentially better than all existing lower bounds. We also study the two-user

one-eavesdropper Gaussian MIMO compound wiretap channel by providing a DPC-

based achievable secrecy rate. Finally, we discuss the tightness of this achievable

rate for the Gaussian MIMO channel.
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10.6 Appendix

10.6.1 Proof of Theorem 10.3

We fix a random variable tuple (V0, V1, V2, X) such that

p(v0, v1, v2, x, y1, y2, z) = p(v0, v1, v2)p(x|v0, v1, v2)p(y1, y2, z|x) (10.42)

Codebook generation:

• Generate 2n(R+R̃0) length-n v0 sequences through p(v0) =
∏n

i=1 p(v0,i). Index

them as v0(w, w̃0) where W ∈ {1, . . . , 2nR}, and W̃0 ∈ {1, . . . , 2nR̃0}.

• For each v0 sequence and j ∈ {1, 2}, generate 2n(R̃j+Lj) length-n vj sequences

through p(vj|v0) =
∏n

i=1 p(vj,i|v0,i). Index them as vj(w, w̃0, w̃j, lj) where

W̃j ∈ {1, . . . , 2nR̃j}, Lj ∈ {1, . . . , 2nLj}.

Encoding:

If W = w is to be transmitted, randomly pick (w̃0, w̃1, w̃2). Then, find an (l1, l2)

pair such that

(V n
0 (w, w̃0), V n

1 (w, w̃0, w̃1, l1), V n
2 (w, w̃0, w̃2, l2)) (10.43)

is jointly typical. Finally, generate the channel input Xn through
∏n

i=1 p(xi|v1,i, v2,i).

Selection of R̃0, R̃1, R̃2, L1, L2:

523



We select the rates R̃0, R̃1, R̃2, L2 as follows

R̃0 = I(V0;Z)− ε (10.44)

R̃1 + R̃2 = I(V1, V2;Z|V0)− 2ε (10.45)

L1 + L2 = I(V1;V2|V0) + ε (10.46)

R̃1 + L1 ≤ I(V1;Z, V2|V0) (10.47)

R̃2 + L2 ≤ I(V2;Z, V1|V0) (10.48)

Probability of error analysis:

• Since we have L1 + L2 > I(V1;V2|V0), encoding, i.e., to find an (l1, l2) pair

such that (10.43) is jointly typical, can be accomplished with vanishingly small

probability of error.

• The jth user decodes W through (V n
0 , V

n
j ), which can be accomplished with

vanishingly small probability of error if we have

R + R̃0 + R̃j + Lj < I(V0, Vj;Yj), j = 1, 2 (10.49)

Equivocation computation:

We now show that this coding scheme satisfies the perfect secrecy requirement in
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(10.2). To this end, consider the following

H(W |Zn) = H(W, W̃0, W̃1, W̃2|Zn)−H(W̃0, W̃1, W̃2|Zn,W ) (10.50)

= H(W, W̃0, W̃1, W̃2)− I(W, W̃0, W̃1, W̃2;Zn)

−H(W̃0, W̃1, W̃2|Zn,W ) (10.51)

The first term in (10.51) is

H(W, W̃0, W̃1, W̃2) = n(R + R̃0 + R̃1 + R̃2) (10.52)

where we used the fact that (W, W̃0, W̃1, W̃2) are independent and uniformly dis-

tributed random variables. The second term in (10.51) is

I(W, W̃0, W̃1, W̃2;Zn) ≤ I(V n
0 , V

n
1 , V

n
2 ;Zn) (10.53)

≤ nI(V0, V1, V2;Z) + nγ1n (10.54)

where γ1n → 0 as n→∞. Equation (10.53) is due to the Markov chain

(W, W̃0, W̃1, W̃2)→ (V n
0 , V

n
1 , V

n
2 )→ Zn (10.55)

and (10.54) can be proved by following Lemma 8 [2]. We next consider the third
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term in (10.51)

H(W̃0, W̃1, W̃2|Zn,W ) = H(W̃0|Zn,W ) +H(W̃1, W̃2|Zn,W, W̃0) (10.56)

= H(W̃0|Zn,W ) +H(W̃1, W̃2|Zn,W, W̃0, V
n

0 ) (10.57)

Since R̃0 < I(V0;Z), given W = w, the eavesdropper can decode W̃0 through V n
0 .

Thus, for the first term in (10.57), we have

H(W̃0|Zn,W ) ≤ nγ2n (10.58)

due to Fano’s lemma, where γ2n → 0 as n→∞. Since R̃1, R̃2, L1, L2 are selected to

satisfy (see (10.45)-(10.48))

R̃1 + L1 ≤ I(V1;Z, V2|V0) (10.59)

R̃2 + L2 ≤ I(V2;Z, V1|V0) (10.60)

R̃1 + R̃2 + L1 + L2 ≤ I(V1, V2;Z|V0) + I(V1;V2|V0) (10.61)

the eavesdropper can decode (W̃1, W̃2) by looking for the unique jointly typical tuple

(V n
0 (w0, w̃0), V n

1 (w0, w̃0, w̃1, l1), V n
2 (w0, w̃0, w̃2, l2), Zn) (10.62)
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Thus, for the second term in (10.57), we have

H(W̃1, W̃2|Zn,W, W̃0, V
n

0 ) ≤ nγ3n (10.63)

due to Fano’s lemma, where γ3n → 0 as n → ∞. Using (10.52), (10.54), (10.57)-

(10.63) in (10.51), we get

H(W |Zn) ≥ nR + n(R̃0 + R̃1 + R̃2)− nI(V0, V1, V2;Z)

− n(γ1n + γ2n + γ3n) (10.64)

= nR− n3ε− n(γ1n + γ2n + γ3n) (10.65)

where (10.65) follows from (10.44)-(10.45). Hence, taking ε→ 0, and n→∞ yields

lim
n→∞

1

n
I(W ;Zn) = 0 (10.66)

which completes the equivocation computation.

Thus, we have shown that for a given (V0, V1, V2, X) such that the Markov

chain (V0, V1, V2)→ X → (Y1, Y2, Z) holds, the perfect secrecy rate R is achievable

if the conditions in (10.44)-(10.49) are satisfied for some R̃1, R̃2, L1, L2. Finally,

Fourier-Motzkin elimination can be used to remove the terms R̃1, R̃2, L1, L2 from

the inequalities in (10.44)-(10.49), which results in the inequalities given in Theo-

rem 10.3.
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10.6.2 Proof of Corollary 10.1

We first show the achivability of R12
S for a given random variable triple (V0, V1, V2)

satisfying (V0, V1, V2)→ X → (Y1, Y2, Z). Let us define a, b as follows

a = I(V0, V1;Y1)− I(V0, V1;Z) (10.67)

b = I(V0, V2;Y2)− I(V0, V2;Z) (10.68)

Using (10.67)-(10.68) in (10.9)-(10.11), we have that

R = min

{
a, b,

a+ b− I(V1;V2|V0, Z)

2

}
(10.69)

is an achievable secrecy rate. Since we have

R ≥ min {a, b− I(V1;V2|V0, Z)} (10.70)

and

b− I(V1;V2|V0, Z) = I(V0, V2;Z)− I(V0;Z)− I(V2;Z, V1|V0) (10.71)

the achievability of R12
S follows. Using the symmetry, the achievability of R21

S for

the same given random variable triple (V0, V1, V2) can be shown as well; completing

the proof.
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10.6.3 Proof of Theorem 10.4

We first prove the achievability of the secrecy rate R12
S (K0,K1,K2) in Theorem 10.4

by computing the achievable secrecy rate R12
S given in Corollary 10.1 for a particular

selection of V0, V1, V2. As it will be clear soon, this specific selection corresponds

to the dirty-paper coding scheme proposed in [12]. We first define the independent

Gaussian random vectors U0,U1,U2 with covariance matrices K0,K1,K2, where

K0 + K1 + K2 � S. We set V0, V1, V2 as follows

V0 = U0 (10.72)

V1 = U1 + U0 (10.73)

V2 = U2 + AU1 + U0 (10.74)

where A = K2 [K2 + Σ2]−1 is the precoding matrix for the second user to suppress

the interference originating from U1 [12]. Furthermore, we set the channel input

X = U0 + U1 + U2. We first compute the first term in (10.13) as follows

R12
S1(K0,K1,K2) = I(V0, V1; Y1)− I(V0, V1; Z) (10.75)

= I(U0,U1; U0 + U1 + U2 + N1)− I(U0,U1; U0 + U1 + U2 + NZ) (10.76)

=
1

2
log
|K0 + K1 + K2 + Σ1|

|K2 + Σ1|
− 1

2
log
|K0 + K1 + K2 + ΣZ |

|K2 + ΣZ |
(10.77)
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where we used the definitions of U0,U1,U2 given in (10.72)-(10.74). We next com-

pute the second term in (10.13). To this end, we note the following identity

I(V2; Y2|V0)− I(V2; Z, V1|V0)

= I(U2 + AU1; U1 + U2 + N2)− I(U2 + AU1; U1 + U2 + NZ ,U1) (10.78)

= I(U2 + AU1; U1 + U2 + N2)− I(U2 + AU1; U1)− I(U2; U2 + NZ) (10.79)

=
1

2
log
|K2 + Σ2|
|Σ2|

− I(U2; U2 + NZ) (10.80)

=
1

2
log
|K2 + Σ2|
|Σ2|

− 1

2
log
|K2 + ΣZ |
|ΣZ |

(10.81)

where (10.80) is due to Theorem 1 of [12]. We now compute the second term in

(10.13)

R12
S2(K0,K1,K2) = I(V0, V2; Y2)− I(V0; Z)− I(V2; Z, V1|V0) (10.82)

= [I(V0; Y2)− I(V0; Z)] + [I(V2; Y2|V0)− I(V2; Z, V1|V0)] (10.83)

= [I(V0; Y2)− I(V0; Z)] +
1

2
log
|K2 + Σ2|
|Σ2|

− 1

2
log
|K2 + ΣZ |
|ΣZ |

(10.84)

=
1

2
log
|K0 + K1 + K2 + Σ2|
|K1 + K2 + Σ2|

− 1

2
log
|K0 + K1 + K2 + ΣZ |
|K1 + K2 + ΣZ |

+
1

2
log
|K2 + Σ2|
|Σ2|

− 1

2
log
|K2 + ΣZ |
|ΣZ |

(10.85)

where (10.84) comes from (10.81). Thus, we have shown the achievability of

R12
S (K0,K1,K2) for a given covariance matrix triple (K0,K1,K2). Following the

same analysis, we can show the achievability of R21
S (K0,K1,K2) for the same co-

variance matrices K0,K1,K2 as well. This completes the proof.
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10.6.4 Proof of Theorem 10.5

The upper bound in (10.38) comes from the upper bound in Theorem 10.1. Thus,

we need to prove the lower bound. For that purpose, we use Corollary 10.2. We

first consider the following maximization

max
0�Kj , j=1,2
K1+K2�S

R12
S (K1,K2) = max

0�Kj , j=1,2
K1+K2�S

min{R12
S1(K1,K2), R12

S2(K1,K2)} (10.86)

This maximization can be put into the following alternative form

max a

s.t. R12
S1(K1,K2) ≥ a

R12
S2(K1,K2) ≥ a (10.87)

where the maximization should be taken with respect to a,K1,K2, and K1,K2 are

positive semi-definite matrices such that K1 + K2 � S. The Lagrangian for the

maximization in (10.87) is given by

L(K1,K2) = a+ λ(R12
S1(K1,K2)− a) + µ(R12

S2(K1,K2)− a) + tr(K1M1)

+ tr(K2M2) + tr((S−K1 −K2)MS) (10.88)

where λ ≥ 0, µ ≥ 0, M1,M2,MS are positive semi-definite matrices. Let the max-

imizer of this optimization problem be a∗,K∗1,K
∗
2. The necessary KKT conditions
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are given by

∂L(K1,K2)

∂a

∣∣∣
a=a∗

= 0 (10.89)

∇K1L(K1,K2)
∣∣
K1=K∗1

= 0 (10.90)

∇K2L(K1,K2)
∣∣
K2=K∗2

= 0 (10.91)

λ(R12
S1(K∗1,K

∗
2)− a∗) = 0 (10.92)

µ(R12
S2(K∗1,K

∗
2)− a∗) = 0 (10.93)

tr(K∗1M1) = 0 (10.94)

tr(K∗2M2) = 0 (10.95)

tr((S−K∗1 −K∗2)MS) = 0 (10.96)

The first condition in (10.89) implies λ+µ = 1. From now on, we set µ = λ̄ = 1−λ.

The second and third KKT conditions in (10.90) and (10.91) yield

λ(K∗1 + K∗2 + Σ1)−1 + M1 = λ(K∗1 + K∗2 + ΣZ)−1 + MS (10.97)

λ̄(K∗2 + Σ2)−1 − λ̄(K∗2 + ΣZ)−1 + M2 = λ(K∗2 + Σ1)−1 − λ(K∗2 + ΣZ)−1 + M1

(10.98)

The KKT conditions in (10.94), (10.95), (10.96) yield

K∗1M1 = M1K
∗
1 = 0 (10.99)

K∗2M2 = M2K
∗
2 = 0 (10.100)
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(S−K∗1 −K∗2)MS = MS(S−K∗1 −K∗2) = 0 (10.101)

We treat cases λ = 0, λ = 1, 0 < λ < 1 separately.

λ = 0: In this case, the conditions in (10.97) and (10.98) reduce to

M1 = MS (10.102)

(K∗2 + Σ2)−1 + M2 = (K∗2 + ΣZ)−1 + M1 (10.103)

Furthermore, achievable secrecy rate is given by

R12
S (K∗1,K

∗
2) =

1

2
log
|K∗2 + Σ2|
|Σ2|

− 1

2
log
|K∗2 + ΣZ |
|ΣZ |

(10.104)

We now enhance the second user’s channel as

(K∗2 + Σ̃2)−1 = (K∗2 + Σ2)−1 + M2 (10.105)

This new noise covariance matrix Σ̃2 has some important properties which are given

in the following lemma.

Lemma 10.2 We have the following facts.

• Σ̃2 � Σ2

• Σ̃2 � ΣZ

• (S + Σ̃2)(K2 + Σ̃2)−1 = (S + ΣZ)(K2 + ΣZ)−1
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• (K2 + Σ̃2)−1Σ̃2 = (K2 + Σ2)−1Σ2

The proof of this lemma is given in Appendix 10.6.5. We are now ready to complete

the part of the proof for λ = 0. To this end, we consider the following Gaussian

MIMO wiretap channel

Ỹ2 = X + Ñ2 (10.106)

Z = X + NZ (10.107)

where the covariance matrix of the Gaussian noise vector Ñ2 is Σ̃2. We have Σ̃2 �

ΣZ , i.e., this wiretap channel is degraded, and its secrecy capacity C̃S2(S) is [21]

C̃S2 =
1

2
log
|S + Σ̃2|
|Σ̃2|

− 1

2
log
|S + ΣZ |
|ΣZ |

(10.108)

Furthermore, we have

min{CS1(S), CS2(S)} ≤ CS2(S) (10.109)

≤ C̃S2(S) (10.110)

=
1

2
log
|S + Σ̃2|
|Σ̃2|

− 1

2
log
|S + ΣZ |
|ΣZ |

(10.111)

=
1

2
log
|K2 + Σ̃2|
|Σ̃2|

− 1

2
log
|K2 + ΣZ |
|ΣZ |

(10.112)

=
1

2
log
|K2 + Σ2|
|Σ2|

− 1

2
log
|K2 + ΣZ |
|ΣZ |

(10.113)

= R12
S (K∗1,K

∗
2) (10.114)
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where (10.112) is due to the third part of Lemma 10.2, and (10.113) comes from the

fourth part of Lemma 10.2.

λ = 1: In this case, the conditions in (10.97) and (10.98) reduce to

(K∗1 + K∗2 + Σ1)−1 + M1 = (K∗1 + K∗2 + ΣZ)−1 + MS (10.115)

(K∗2 + Σ1)−1 + M1 = (K∗2 + ΣZ)−1 + M2 (10.116)

Furthermore, the achievable secrecy rate is given by

R12
S (K∗1,K

∗
2) =

1

2
log
|K∗1 + K∗2 + Σ1|
|K∗2 + Σ1|

− 1

2
log
|K∗1 + K∗2 + ΣZ |
|K∗2 + ΣZ |

(10.117)

We now enhance the first user’s channel as follows

(K∗2 + Σ̃1)−1 = (K∗2 + Σ1)−1 + M1 (10.118)

This new noise covariance matrix Σ̃1 has some important properties which are given

in the following lemma.

Lemma 10.3 We have the following facts.

• Σ̃1 � Σ1

• Σ̃1 � ΣZ

• (K∗1 + K∗2 + Σ̃1)−1 = (K∗1 + K∗2 + Σ1)−1 + M1

• (S + Σ̃1)(K∗1 + K∗2 + Σ̃1)−1 = (S + ΣZ)(K∗1 + K∗2 + ΣZ)−1
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• (K∗2 + Σ̃1)−1Σ̃1 = (K∗2 + ΣZ)−1ΣZ

• (K∗1 + K∗2 + Σ̃1)−1(K∗2 + Σ̃1) = (K∗1 + K∗2 + Σ1)−1(K∗2 + Σ1).

The proof of this lemma is given in Appendix 10.6.6. We are now ready to complete

the part of the proof for the case λ = 1. To this end, we consider the following

Gaussian MIMO wiretap channel

Ỹ1 = X + Ñ1 (10.119)

Z = X + NZ (10.120)

where the covariance matrix of the Gaussian random vector Ñ1 is Σ̃1. We have

Σ̃1 � ΣZ , i.e., the channel is degraded, and its secrecy capacity C̃S1(S) is [21]

C̃S1(S) =
1

2
log
|S + Σ̃1|
|Σ̃1|

− 1

2
log
|S + ΣZ |
|ΣZ |

(10.121)

We have

min{CS1(S), CS2(S)} ≤ CS1(S) (10.122)

≤ C̃S1(S) (10.123)

=
1

2
log
|S + Σ̃1|
|Σ̃1|

− 1

2
log
|S + ΣZ |
|ΣZ |

(10.124)

=
1

2
log
|K∗1 + K∗2 + Σ̃1|

|Σ̃1|
− 1

2
log
|K∗1 + K∗2 + ΣZ |

|ΣZ |
(10.125)

=
1

2
log
|K∗1 + K∗2 + Σ̃1|
|K∗2 + Σ̃1|

− 1

2
log
|K∗1 + K∗2 + ΣZ |
|K∗2 + ΣZ |

(10.126)
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=
1

2
log
|K∗1 + K∗2 + Σ1|
|K∗2 + Σ1|

− 1

2
log
|K∗1 + K∗2 + ΣZ |
|K∗2 + ΣZ |

(10.127)

= R12
S (K∗1,K

∗
2) (10.128)

where (10.125), (10.126) and (10.127) are due to the fourth, fifth and sixth parts of

Lemma 10.3, respectively.

0 < λ < 1: In this case, the KKT conditions in (10.97) and (10.98) remain to be the

same. The achievable secrecy rate in this case is given by

R12
S (K∗1,K

∗
2) = R12

S1(K∗1,K
∗
2) = R12

S2(K∗1,K
∗
2) (10.129)

We enhance both legitimate users’ channels as follows

λ(K∗2 + Σ̃1)−1 = λ(K∗2 + Σ1)−1 + M1 (10.130)

λ̄(K∗2 + Σ̃2)−1 = λ̄(K∗2 + Σ2)−1 + M2 (10.131)

We now present the following lemma which lists the important properties of these

new noise covariance matrices Σ̃1, Σ̃2.

Lemma 10.4 We have the following facts.

• Σ̃1 � Σ1, Σ̃2 � Σ2

• λ(K∗1 + K∗2 + Σ̃1)−1 = λ(K∗1 + K∗2 + Σ1)−1 + M1

• Σ̃1 � ΣZ , Σ̃2 � ΣZ
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•

Σ̃1





� Σ̃2 if λ < 0.5

= Σ̃2 if λ = 0.5

� Σ̃2 if λ > 0.5

• (S + Σ̃1)(K∗1 + K∗2 + Σ̃1)−1 = (S + ΣZ)(K∗1 + K∗2 + ΣZ)−1

• (K∗1 + K∗2 + Σ̃1)−1(K∗2 + Σ̃1) = (K∗1 + K∗2 + Σ1)−1(K∗2 + Σ1)

• (K∗2 + Σ̃2)−1Σ̃2 = (K∗2 + Σ2)−1Σ2

The proof of this lemma is given in Appendix 10.6.7. We are now ready to complete

the part of the proof for 0 < λ < 1. We first consider 0 < λ ≤ 0.5. We introduce

the following Gaussian MIMO wiretap channel

Ỹ2 = X + Ñ2 (10.132)

Z = X + NZ (10.133)

where the covariance matrix of the Gaussian random vector Ñ2 is Σ̃2. Since Σ̃2 �

ΣZ , i.e., the channel is degraded, its secrecy capacity C̃S2(S) is given by

C̃S2(S) =
1

2
log
|S + Σ̃2|
|Σ̃2|

− 1

2
log
|S + ΣZ |
|ΣZ |

(10.134)
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We have

min{CS1(S), CS2(S)} ≤ CS2(S) (10.135)

≤ C̃S2(S) (10.136)

=
1

2
log
|S + Σ̃2|
|Σ̃2|

− 1

2
log
|S + ΣZ |
|ΣZ |

(10.137)

=
1

2
log
|S + Σ̃2|
|K∗2 + Σ̃2|

+
1

2
log
|K∗2 + Σ̃2|
|Σ̃2|

− 1

2
log
|S + ΣZ |
|ΣZ |

(10.138)

≤ 1

2
log
|S + Σ̃1|
|K∗2 + Σ̃1|

+
1

2
log
|K∗2 + Σ̃2|
|Σ̃2|

− 1

2
log
|S + ΣZ |
|ΣZ |

(10.139)

=
1

2
log
|K∗1 + K∗2 + Σ̃1|
|K∗2 + Σ̃1|

+
1

2
log
|K∗2 + Σ̃2|
|Σ̃2|

− 1

2
log
|K∗1 + K∗2 + ΣZ |

|ΣZ |
(10.140)

=
1

2
log
|K∗1 + K∗2 + Σ1|
|K∗2 + Σ1|

+
1

2
log
|K∗2 + Σ2|
|Σ2|

− 1

2
log
|K∗1 + K∗2 + ΣZ |

|ΣZ |
(10.141)

=

[
1

2
log
|K∗1 + K∗2 + Σ1|
|K∗2 + Σ1|

− 1

2
log
|K∗1 + K∗2 + ΣZ |
|K∗2 + ΣZ |

]

+

[
1

2
log
|K∗2 + Σ2|
|Σ2|

− 1

2
log
|K∗2 + ΣZ |
|ΣZ |

]
(10.142)

= R12
S1(K∗1,K

∗
2) +R12

S2(K∗1,K
∗
2) (10.143)

= 2R12
S (K∗1,K

∗
2) (10.144)

where (10.139) comes from the fact that

|A + B|
|A| ≥ |A + B + ∆|

|A + ∆| (10.145)

for A � 0,B � 0,∆ � 0, and Σ̃1 � Σ̃2, (10.140) comes from the fifth part of

Lemma 10.4, (10.141) is due to the sixth and seventh parts of Lemma 10.4.

We now consider the case 0.5 > λ. To this end, we first introduce the following
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Gaussian MIMO wiretap channel

Ỹ1 = X + Ñ1 (10.146)

Z = X + NZ (10.147)

where the covariance matrix of the Gaussian random vector Ñ1 is Σ̃1. Since Σ̃1 �

ΣZ , i.e., the channel is degraded, its secrecy capacity C̃S1(S) is given by [21]

C̃S1(S) =
1

2
log
|S + Σ̃1|
|Σ̃1|

− 1

2
log
|S + ΣZ |
|ΣZ |

(10.148)

We have

min{CS1(S), CS2(S)} ≤ CS1(S) (10.149)

≤ C̃S1(S) (10.150)

=
1

2
log
|S + Σ̃1|
|Σ̃1|

− 1

2
log
|S + ΣZ |
|ΣZ |

(10.151)

=
1

2
log
|K∗1 + K∗2 + Σ̃1|

|Σ̃1|
− 1

2
log
|K∗1 + K∗2 + ΣZ |

|ΣZ |
(10.152)

=
1

2
log
|K∗1 + K∗2 + Σ̃1|
|K∗2 + Σ̃1|

+
1

2
log
|K∗2 + Σ̃1|
|Σ̃1|

− 1

2
log
|K∗1 + K∗2 + ΣZ |

|ΣZ |
(10.153)

≤ 1

2
log
|K∗1 + K∗2 + Σ̃1|
|K∗2 + Σ̃1|

+
1

2
log
|K∗2 + Σ̃2|
|Σ̃2|

− 1

2
log
|K∗1 + K∗2 + ΣZ |

|ΣZ |
(10.154)

=
1

2
log
|K∗1 + K∗2 + Σ1|
|K∗2 + Σ1|

+
1

2
log
|K∗2 + Σ2|
|Σ2|

− 1

2
log
|K∗1 + K∗2 + ΣZ |

|ΣZ |
(10.155)

=

[
1

2
log
|K∗1 + K∗2 + Σ1|
|K∗2 + Σ1|

− 1

2
log
|K∗1 + K∗2 + ΣZ |
|K∗2 + ΣZ |

]

+

[
1

2
log
|K∗2 + Σ2|
|Σ2|

− 1

2
log
|K∗2 + ΣZ |
|ΣZ |

]
(10.156)
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= R12
S1(K∗1,K

∗
2) +R12

S2(K∗1,K
∗
2) (10.157)

= 2R12
S (K∗1,K

∗
2) (10.158)

where (10.152) comes from the fifth part of Lemma 10.4, (10.154) comes from

(10.145) and the fact that Σ̃2 � Σ̃1, and (10.155) is due to the sixth and sev-

enth parts of Lemma 10.4. Thus, in view of (10.114), (10.128), (10.144), (10.158),

we showed that

min{CS1(S), CS2(S)} ≤ 2R12
S (K∗1,K

∗
2) (10.159)

which completes the proof of this theorem.

10.6.5 Proof of Lemma 10.2

The first two statements of Lemma 10.2 are rather straightforward to show. We

now show the third statement. For that purpose, we note that

(S−K2)M1 = (S−K1 −K2)M1 (10.160)

= (S−K1 −K2)MS (10.161)

= 0 (10.162)
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where (10.160) is due to (10.99), (10.161) comes from (10.102), and (10.162) is due

to (10.101). Furthermore, we note that the new noise covariance matrix satisfies

(K2 + Σ̃2)−1 = (K2 + ΣZ)−1 + M1 (10.163)

which is a consequence of (10.103) and (10.105). Equations (10.162) and (10.163)

imply

(S−K2)(K2 + Σ̃2)−1 = (S−K2)(K2 + ΣZ)−1 (10.164)

which implies which is the desired identity, i.e.,

(S + Σ2)(K2 + Σ̃2)−1 = (S + ΣZ)(K2 + Σ̃Z)−1 (10.165)

We now consider the fourth item in the lemma as follows

(K2 + Σ̃2)−1Σ̃2 = I− (K2 + Σ̃2)−1K2 (10.166)

= I−
[
(K2 + Σ2)−1 + M2

]
K2 (10.167)

= I− (K2 + Σ2)−1K2 (10.168)

= (K2 + Σ2)−1Σ2 (10.169)

where (10.167) is due to (10.105), (10.168) comes from (10.100).
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10.6.6 Proof of Lemma 10.3

The first two statements of this lemma are rather straightforward to show. We

consider the third statement as follows

K∗1 + K∗2 + Σ̃1 = K∗1 +
[
(K∗2 + Σ1)−1 + M1

]−1
(10.170)

= K∗1 + [I + (K∗2 + Σ1)M1]−1 (K∗2 + Σ1) (10.171)

= K∗1 + [I + (K∗1 + K∗2 + Σ1)M1]−1 (K∗2 + Σ1) (10.172)

= K∗1 +
[
(K∗1 + K∗2 + Σ1)−1 + M1

]−1
(K∗1 + K∗2 + Σ1)−1(K∗2 + Σ1) (10.173)

= K∗1 +
[
(K∗1 + K∗2 + Σ1)−1 + M1

]−1
(K∗1 + K∗2 + Σ1)−1(K∗1 + K∗2 + Σ1 −K∗1)

(10.174)

= K∗1 +
[
(K∗1 + K∗2 + Σ1)−1 + M1

]−1

−
[
(K∗1 + K∗2 + Σ1)−1 + M1

]−1
(K∗1 + K∗2 + Σ1)−1K∗1 (10.175)

= K∗1 +
[
(K∗1 + K∗2 + Σ1)−1 + M1

]−1

−
[
(K∗1 + K∗2 + Σ1)−1 + M1

]−1 [
(K∗1 + K∗2 + Σ1)−1 + M1

]
K∗1 (10.176)

=
[
(K∗1 + K∗2 + Σ1)−1 + M1

]−1
(10.177)

where (10.170) is due to (10.118), (10.172) and (10.176) comes from (10.99). We

now show the fourth statement of the lemma. To this end, we note that (10.115)

and the third part of the lemma implies

(K∗1 + K∗2 + Σ̃1)−1 = (K∗1 + K∗2 + ΣZ)−1 + MS (10.178)

543



which, in turn, implies

(S−K∗1 −K∗2)(K∗1 + K∗2 + Σ̃1)−1 = (S−K∗1 −K∗2)(K∗1 + K∗2 + ΣZ)−1 (10.179)

due to (10.101). Equation (10.179) implies the desired identity

(S + Σ̃1)(K∗1 + K∗2 + Σ̃1)−1 = (S + ΣZ)(K∗1 + K∗2 + ΣZ)−1 (10.180)

We now show the fifth statement of the lemma as follows

(K∗2 + Σ̃1)−1Σ̃1 = I− (K∗2 + Σ̃1)−1K2 (10.181)

= I−
[
(K∗2 + ΣZ)−1 + M2

]
K2 (10.182)

= I− (K∗2 + ΣZ)−1K2 (10.183)

= (K∗2 + ΣZ)−1ΣZ (10.184)

where (10.182) comes from (10.116) and (10.118), and (10.183) is due to (10.100).

We now show the last statement of the lemma as follows

(K∗1 + K∗2 + Σ̃1)−1(K∗2 + Σ̃1) = I− (K∗1 + K∗2 + Σ̃1)−1K∗1 (10.185)

= I−
[
(K∗1 + K∗2 + Σ1)−1 + M1

]
K∗1 (10.186)

= I− (K∗1 + K∗2 + Σ1)−1K∗1 (10.187)

= (K∗1 + K∗2 + Σ1)−1(K∗2 + Σ1) (10.188)
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where (10.186) comes from the third part of the lemma, and (10.187) is due to

(10.99).

10.6.7 Proof of Lemma 10.4

The first statement is straightforward to show. The proof of the second statement

goes as follows

K∗1 + K∗2 + Σ̃1 = K∗1 +

[
(K∗2 + Σ1)−1 +

1

λ
M1

]−1

(10.189)

= K∗1 +

[
I +

1

λ
(K∗2 + Σ1)M1

]−1

(K∗2 + Σ1) (10.190)

= K∗1 +

[
(K∗1 + K∗2 + Σ1)−1 +

1

λ
M1

]−1

(K∗1 + K∗2 + Σ1)−1(K∗2 + Σ1) (10.191)

= K∗1 +

[
(K∗1 + K∗2 + Σ1)−1 +

1

λ
M1

]−1

(K∗1 + K∗2 + Σ1)−1(K∗1 + K∗2 + Σ1 −K∗1)

(10.192)

= K∗1 +

[
(K∗1 + K∗2 + Σ1)−1 +

1

λ
M1

]−1

−
[
(K∗1 + K∗2 + Σ1)−1 +

1

λ
M1

]−1

(K∗1 + K∗2 + Σ1)−1K∗1 (10.193)

= K∗1 +

[
(K∗1 + K∗2 + Σ1)−1 +

1

λ
M1

]−1

−
[
(K∗1 + K∗2 + Σ1)−1 +

1

λ
M1

]−1 [
(K∗1 + K∗2 + Σ1)−1 +

1

λ
M1

]
K∗1 (10.194)

=

[
(K∗1 + K∗2 + Σ1)−1 +

1

λ
M1

]−1

(10.195)

where (10.189) comes from (10.130), and (10.191) and (10.194) are due to (10.99).

We now prove the third statement of the lemma. To this end, we note that using
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(10.130), (10.131) and the second part of this lemma in (10.97) and (10.98) yield

λ(K∗1 + K∗2 + Σ̃1)−1 = λ(K∗1 + K∗2 + ΣZ)−1 + MS (10.196)

λ̄(K∗2 + Σ̃2)−1 − λ̄(K∗2 + ΣZ)−1 = λ(K∗2 + Σ̃1)−1 − λ(K∗2 + ΣZ)−1 (10.197)

Equation (10.196) implies Σ̃1 � ΣZ . Since Σ̃1 � ΣZ , the right hand-side of (10.197)

is positive semi-definite. This implies the positive semi-definiteness of the left hand-

side of (10.197), which, in turn, implies Σ̃2 � ΣZ . We now show the fourth statement

of this lemma. If λ = 0.5, i.e., λ̄ = λ = 0.5, we have Σ̃1 = Σ̃2 due to (10.197). If

λ < 0.5, i.e., λ̄ > 0.5 > λ, (10.197) yields

λ(K∗2 + Σ̃2)−1 − λ(K∗2 + ΣZ)−1 � λ(K∗2 + Σ̃1)−1 − λ(K∗2 + ΣZ)−1 (10.198)

which implies Σ̃1 � Σ̃2. The other case λ > 0.5, i.e., λ > 0.5 > λ̄ yields Σ̃2 � Σ̃1,

and this can be shown similarly. We now show the fifth statement of the lemma.

Multiplying (10.196) with S−K∗1 −K∗2 yields

λ(S−K∗1 −K∗2)(K∗1 + K∗2 + Σ̃1)−1 = λ(S−K∗1 −K∗2)(K∗1 + K∗2 + ΣZ)−1

(10.199)

due to (10.101). Equation (10.199) implies the desired identity

(S + Σ̃1)(K∗1 + K∗2 + Σ̃1)−1 = (S + ΣZ)(K∗1 + K∗2 + ΣZ)−1 (10.200)
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We now prove the sixth statement of this lemma as follows

(K∗1 + K∗2 + Σ̃1)−1(K∗2 + Σ̃1) = I− (K∗1 + K∗2 + Σ̃1)−1K∗1 (10.201)

= I−
[
(K∗1 + K∗2 + Σ1)−1 +

1

λ
M1

]
K∗1 (10.202)

= I− (K∗1 + K∗2 + Σ1)−1K∗1 (10.203)

= (K∗1 + K∗2 + Σ1)−1(K∗2 + Σ1) (10.204)

where (10.202) is due to the second part of this lemma, and (10.203) comes from

(10.99). We now show the last statement of this lemma as follows

(K∗2 + Σ̃2)−1Σ̃2 = I− (K∗2 + Σ̃2)−1K∗2 (10.205)

= I−
[
(K∗2 + Σ2)−1 +

1

λ̄
M2

]
K∗2 (10.206)

= I− (K∗2 + Σ2)−1K∗2 (10.207)

= (K∗2 + Σ2)−1K∗2 (10.208)

where (10.206) is due to (10.131), and (10.207) comes from (10.100).

10.7 Proof of Theorem 10.6

We first note that since the eavesdropper is degraded with respect to the second user,

the secrecy capacity of the Gaussian MIMO wiretap channel between the second user
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and the eavesdropper is given by [21]

CS2(S) =
1

2
log
|S + Σ2|
|Σ2|

− 1

2
log
|S + ΣZ |
|ΣZ |

(10.209)

We next note that we can get the following achievable secrecy rate

R = min{I(V0; Y1)− I(V0; Z), I(X; Y2)− I(X; Z)} (10.210)

by setting V1 = φ, V2 = X in Corollary 10.1. Let V0 be a Gaussian random vector

with covariance matrix S−K, and X = V0+V ′0 where V ′0 is a Gaussian random vector

with covariance matrix K, is independent of V0. Computation of the achievable

secrecy rate in (10.210) for this particular choice of (V0,X) yields

R(K) = min

{
1

2
log
|S + Σ1|
|K + Σ1|

− 1

2
log
|S + ΣZ |
|K + ΣZ |

, CS2(S)

}
(10.211)

We now consider the maximization of (10.211) over all positive semi-definite matrices

K such that 0 � K � S. Since K is involved only in the first term of (10.211),

maximizing (10.211) over K is equivalent to the following maximization

max
0�K�S

1

2
log
|S + Σ1|
|K + Σ1|

− 1

2
log
|S + ΣZ |
|K + ΣZ |

(10.212)
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Using Theorem 2 in [8], we have

CS1(S) = max
0�K�S

1

2
log
|K + Σ1|
|Σ1|

− 1

2
log
|K + ΣZ |
|ΣZ |

(10.213)

= max
0�K�S

1

2
log
|S + Σ1|
|K + Σ1|

− 1

2
log
|S + ΣZ |
|K + ΣZ |

(10.214)

Thus, using (10.214), we get

max
0�K�S

R(K) = min{CS1(S), CS2(S)} (10.215)

as an achievable secrecy rate. Since (10.215) is equal to the upper bound on the

secrecy capacity of the Gaussian MIMO compound wiretap channel given in Theo-

rem 10.1, this completes the proof.
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Chapter 11

Degraded Compound Multi-receiver Wiretap Channels

11.1 Introduction

In this chapter, we generalize the compound wiretap channel we study in Chapter 10

to a multi-user setting by incorporating more than one group of legitimate users (and

hence, more than one confidential message) to the channel model.

In particular, we study the degraded compound multi-receiver wiretap channel

(DCMRWC) that consists of two groups of users and a group of eavesdroppers, as

shown in Figure 11.1. The degradedness of these channels is defined with respect to

two fictitious users (see Figure 11.1). In particular, we assume that the first fictitious

user is degraded with respect to any user from the first group, and any user from

the second group is degraded with respect to the first fictitious user. Similarly, we

also assume that the second fictitious user is degraded with respect to any user from

the second group, and any eavesdropper is degraded with respect to it. Without

eavesdroppers, this channel model reduces to the degraded compound broadcast

channel studied in [5].

The presence of these fictitious users brings a conditional independence struc-

ture to the channel model, which enables us to define appropriate auxiliary random

variables. In turn, these auxiliary random variables involving the fictitious users

enable us to obtain single-letter descriptions for the secrecy capacity regions.
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Figure 11.1: The degraded compound multi-receiver wiretap channel.

We study two communication scenarios for the DCMRWC. In the first sce-

nario, which is illustrated in Figure 11.2, the transmitter sends a confidential mes-

sage to each group of users where these messages should be kept hidden from the

eavesdropper. For this scenario, we assume that there exists only one eavesdrop-

per and obtain the secrecy capacity region in a single-letter form for the discrete

memoryless setting. Next, we specialize this result to the parallel DCMRWC as well

as its Gaussian instance. For the parallel Gaussian case, we use Costa’s entropy

power inequality [44] to evaluate the secrecy capacity region. Finally, we consider

the Gaussian MIMO DCMRWC and obtain its secrecy capacity region when there

is only one user in the second group. To obtain the secrecy capacity region for

the Gaussian MIMO case, we use our technique that we developed in Chapter 5 to

evaluate single-letter descriptions for vector Gaussian models.

In the second scenario illustrated in Figure 11.3, the transmitter sends a con-

fidential message to the users in the first group which needs to be kept confidential

from the users in the second group and the eavesdroppers. Moreover, the transmit-

ter sends a different confidential message to the users in the second group, which

needs to be kept confidential from the eavesdroppers. If there were only one user in

each group and one eavesdropper, this channel model would reduce to the channel
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Figure 11.2: The first scenario for the degraded compound multi-receiver wiretap
channel.

model that was studied in [45]. Hence, our model can be viewed as a generalization

of [45] to a compound setting. Adapting their terminology, we call this channel

model the degraded compound multi-receiver wiretap channel with layered messages

(DCMRWC with layered messages). For this scenario also, we obtain the secrecy

capacity region in a single-letter form for a general discrete memoryless setting.

Next, we specialize this result to the parallel DCMRWC with layered messages as

well as its Gaussian MIMO instance. For the parallel Gaussian case, we again use

Costa’s entropy power inequality [44] to obtain the secrecy capacity region. Finally,

we consider the Gaussian MIMO DCMRWC with layered messages, and evaluate

its secrecy capacity region when there is only one user in the second group. For the

Gaussian MIMO case, we again use our technique that we developed in Chapter 5.

11.2 System Model

In this chapter, we consider DCMRWC, see Figure 11.1, which consists of two groups

of users and a group of eavesdroppers. There are K1 users in the first group, K2

users in the second group, and KZ eavesdroppers. The channel is assumed to be
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Figure 11.3: The second scenario for the degraded compound multi-receiver wiretap
channel.

memoryless with a transition probability

p(y1
1, . . . , y

1
K1
, y2

1, . . . , y
2
K2
, z1, . . . , zKZ |x) (11.1)

where X ∈ X is the channel input, Y 1
j ∈ Y1

j is the channel output of the jth user

in the first group, j = 1, . . . , K1, Y 2
k ∈ Y2

k is the channel output of the kth user

in the second group, k = 1, . . . , K2, and Zt ∈ Zt is the channel output of the tth

eavesdropper, t = 1, . . . , KZ .

We assume that there exist two fictitious users with observations Y ∗ ∈ Y∗, Z∗ ∈

Z∗ such that they satisfy the Markov chain

X → Y 1
j → Y ∗ → Y 2

k → Z∗ → Zt, ∀(j, k, t) (11.2)

This Markov chain is the reason why we call the compound multi-receiver wiretap

channel we study the degraded compound multi-receiver wiretap channel. Actually,

there is a slight inexactness in the terminology here because the Markov chain in
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(11.2) is more restrictive than the Markov chain

X → Y 1
j → Y 2

k → Zt, ∀(j, k, t) (11.3)

and it might be more natural to define the degradedness of the compound multi-

receiver wiretap channel by the Markov chain in (11.3). However, in this work, we

adapt the terminology of the previous work on compound broadcast channels [5],

and call the channel satisfying (11.2) the degraded compound multi-receiver wiretap

channel. Finally, we note that when there are no eavesdroppers, this channel reduces

to the degraded compound broadcast channel that was studied in [5].

11.2.1 Parallel DCMRWC

The parallel DCMRWC, where each user’s and each eavesdropper’s channel consists

of L independent sub-channels, i.e.,

Y 1
j = (Y 1

j1, . . . , Y
1
jL), j = 1, . . . , K1 (11.4)

Y 2
k = (Y 2

k1, . . . , Y
2
kL), k = 1, . . . , K2 (11.5)

Zt = (Zt1, . . . , ZtL), t = 1, . . . , KZ (11.6)
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has the following overall transition probability

p(y1
1, . . . , y

1
K1
, y2

1, . . . , y
2
K2
, z1, . . . , zKZ |x)

=
L∏

`=1

p(y1
1`, . . . , y

1
K1`

, y2
1`, . . . , y

2
K2`

, z1`, . . . , zKZ`|x`) (11.7)

where X`, ` = 1, . . . , L, is the `th sub-channel’s input. We define the degradedness

of the parallel compound multi-receiver wiretap channel in a similar fashion. In

particular, we call a parallel compound multi-receiver wiretap channel degraded, if

there exist two sequences of random variables

Y ∗ = (Y ∗1 , . . . , Y
∗
L ) (11.8)

Z∗ = (Z∗1 , . . . , Z
∗
L) (11.9)

which satisfy Markov chains

X` → Y 1
j` → Y ∗` → Y 2

k` → Z∗` → Zt`, ∀(j, k, t, `) (11.10)
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11.2.2 Gaussian Parallel DCMRWC

The Gaussian parallel DCMRWC is defined by

Y1
j = X + N1

j , j = 1, . . . , K1 (11.11)

Y2
k = X + N2

k, k = 1, . . . , K2 (11.12)

Zt = X + NZ
t , t = 1, . . . , KZ (11.13)

where all column vectors {Y1
j}K1
j=1, {Y1

k}K2
k=1, {Zt}KZt=1,X, {N1

j}K1
j=1, {N2

k}K2
k=1, {NZ

t }KZt=1

are of dimensions L × 1. {N1
j}K1
j=1, {N2

k}K2
k=1, {NZ

t }KZt=1 are Gaussian random vec-

tors with diagonal covariance matrices {Λ1
j}K1
j=1, {Λ2

k}K2
j=1, {ΛZ

t }KZt=1, respectively. The

channel input X is subject to a trace constraint as

E
[
X>X

]
= tr

(
E
[
XX>

])
≤ P (11.14)

In this Chapter, we will be interested in Gaussian parallel degraded compound

multi-receiver wiretap channels which means that the covariance matrices satisfy

the following order

Λ1
j � Λ2

k � ΛZ
t , ∀(j, k, t) (11.15)

Since noise covariance matrices are diagonal, the order in (11.15) implies

Λ1
j,`` ≤ Λ2

k,`` ≤ ΛZ
t,``, ∀(j, k, t, `) (11.16)
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where Λ1
j,``,Λ

2
k,``,Λ

Z
t,`` denote the `th diagonal element of Λ1

j ,Λ
2
k,Λ

Z
t , respectively.

The diagonality of noise covariance matrices also ensures the existence of di-

agonal matrices Λ∗Y and Λ∗Z such that

Λ1
j � Λ∗Y � Λ2

k � Λ∗Z � ΛZ
t , ∀(k, j, t) (11.17)

For example, we can select Λ∗Y as Λ∗Y,`` = maxj=1,...,K1 Λ1
j,`` which already satisfies

(11.17) because of maxj=1,...,K1 Λ1
j,`` ≤ mink=1,...,K2 Λ2

k,`` which is due to (11.16).

Similarly, we can select Λ∗Z . Thus, for Gaussian parallel compound multi-receiver

channels, the two possible ways of defining degradedness, i.e., (11.2) and (11.3), are

equivalent due to the equivalence of (11.15) and (11.17).

11.2.3 Gaussian MIMO DCMRWC

The Gaussian MIMO DCMRWC is defined by

Y1
j = X + N1

j , j = 1, . . . , K1 (11.18)

Y2
k = X + N2

k, k = 1, . . . , K2 (11.19)

Zt = X + NZ
t , t = 1, . . . , KZ (11.20)

where all column vectors {Y1
j}K1
j=1, {Y2

k}K2
k=1, {Zt}KZt=1,X, {N1

j}K1
j=1, {N2

k}K2
k=1, {NZ

t }KZt=1

are of dimensions M × 1. {N1
j}K1
j=1, {N2

k}K2
k=1, {NZ

t }KZt=1 are Gaussian random vectors

with covariance matrices {Σ1
j}K1
j=1, {Σ2

k}K2
k=1, {ΣZ

t }KZt=1, respectively. Unlike in the

case of Gaussian parallel channels, these covariance matrices are not necessarily
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diagonal. The channel input X is subject to a covariance constraint

E
[
XX>

]
� S (11.21)

where S � 0.

In this Chapter, we study Gaussian MIMO degraded compound multi-receiver

wiretap channels for which there exist covariance matrices Σ∗Y and Σ∗Z such that

Σ1
j � Σ∗Y � Σ2

k � Σ∗Z � ΣZ
t , ∀(j, k, t) (11.22)

We note that the order in (11.22), by which we define the degradedness, is more

restrictive than the other possible order that can be used to define the degradedness,

i.e.,

Σ1
j � Σ2

k � ΣZ
t , ∀(j, k, t) (11.23)

In [5], a specific numerical example is provided to show that the order in (11.23)

strictly subsumes the one in (11.22).

11.2.4 Comments on Gaussian MIMO DCMRWC

We provide some comments about the way we define the Gaussian MIMO DCM-

RWC. The first one is about the covariance constraint in (11.21). Though it

is more common to define capacity regions under a total power constraint, i.e.,
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tr
(
E
[
XX>

])
≤ P , the covariance constraint in (11.21) is more general and it sub-

sumes the total power constraint as a special case [4]. In particular, if we denote the

secrecy capacity region under the constraint in (11.21) by C(S), then the secrecy

capacity region under the trace constraint, tr
(
E
[
XX>

])
≤ P , can be written as [4]

Ctrace(P ) =
⋃

S:tr(S)≤P

C(S) (11.24)

The second comment is about our assumption that S is strictly positive def-

inite. This assumption does not lead to any loss of generality because for any

Gaussian MIMO compound multi-receiver wiretap channel with a positive semi-

definite covariance constraint, i.e., S � 0 and |S| = 0, we can always construct an

equivalent channel with the constraint E
[
XX>

]
� S′ where S′ � 0 (see Lemma 2

of [4]), which has the same secrecy capacity region.

The last comment is about the assumption that the transmitter and all re-

ceivers have the same number of antennas. This assumption is implicit in the chan-

nel definition, see (11.18)-(11.20), and also in the definition of degradedness, see

(11.22). However, we can extend the definition of the Gaussian MIMO DCMRWC

to include the cases where the number of transmit antennas and the number of re-

ceive antennas at each receiver are not necessarily the same. To this end, we first
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introduce the following channel model

Y1
j = H1

jX + N1
j , j = 1, . . . , K1 (11.25)

Y2
k = H2

kX + N2
k, k = 1, . . . , K2 (11.26)

Zt = HZ
t X + NZ

t , t = 1, . . . , KZ (11.27)

where H1
j ,H

2
k,H

Z
t are the channel matrices of sizes r1

j × t, r2
k× t, rZt × t, respectively,

and X is of size t×1. The channel outputs Y1
j ,Y

2
k,Zt are of sizes r1

j×1, r2
k×1, rZt ×1,

respectively. The Gaussian noise vectors N1
j ,N

2
k,N

Z
t are assumed to have identity

covariance matrices.

To define degradedness for the channel model given in (11.25)-(11.27), we need

the following definition from [5]: A receive vector Ya = HaX + Na of size ra × 1 is

said to be degraded with respect to Yb = HbX + Nb of size rb × 1, if there exists a

matrix D of size ra × rb such that DHb = Ha and DD> � I. Using this equivalent

definition of degradedness, we now give the equivalent definition of degradedness for

the channel model in (11.25)-(11.27). To this end, we first introduce two fictitious

users with observations Y∗ and Z∗, which are given by

Y∗ = H∗Y X + N∗Y (11.28)

Z∗ = H∗ZX + N∗Z (11.29)

The Gaussian MIMO compound multi-receiver wiretap channel in (11.25)-(11.27)

is said to be degraded if the following two conditions hold: i) Y∗ is degraded with
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respect to any user from the first group, and any user from the second group is

degraded with respect to Y∗, and ii) Z∗ is degraded with respect to any user from

the second group, and any eavesdropper is degraded with respect to Z∗, where

degradedness here is with respect to the definition given above.

In the rest of this chapter, we consider the channel model given in (11.18)-

(11.20) instead of the channel model given in (11.25)-(11.27), which is more general.

However, if we establish the secrecy capacity region for the Gaussian MIMO DCM-

RWC defined by (11.18)-(11.20), we can also obtain the secrecy capacity region for

the general Gaussian MIMO DCMRWC defined by (11.25)-(11.27) using the anal-

ysis carried out in Section V of [5] and in Chapter 5.7. Since this analysis is quite

standard and can be found in other works cited above, whenever we have a capacity

result for the Gaussian MIMO DCMRWC defined by (11.18)-(11.20), we provide the

extension of this capacity result to the general Gaussian MIMO DCMRWC defined

by (11.25)-(11.27) without a proof.

11.3 Problem Statement and Main Results

In this chapter, we consider two different communication scenarios for the DCM-

RWC.

11.3.1 The First Scenario: External Eavesdroppers

In the first scenario, the transmitter wants to send a confidential message to users

in the first group and a different confidential message to users in the second group,
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where both messages need to be kept confidential from the eavesdroppers. In this

case, we assume that there is only one eavesdropper, i.e., KZ = 1. The graphical

illustration of the first scenario is given in Figure 11.2.

An (n, 2nR1 , 2nR2) code for the first scenario consists of two message setsW1 =

{1, . . . , 2nR1},W2 = {1, . . . , 2nR2}, an encoder f : W1 × W2 → X n, one decoder

for each legitimate user in the first group g1
j : Y1,n

j → W1, j = 1, . . . , K1, and one

decoder for each legitimate user in the second group g2
k : Y2,n

k →W2, k = 1, . . . , K2.

The probability of error is defined as P n
e = max {P 1,n

e , P 2,n
e } where P 1,n

e and P 2,n
e

are given by

P 1,n
e = max

j∈{1,...,K1}
Pr
[
g1
j

(
Y 1,n
j

)
6= W1

]
(11.30)

P 2,n
e = max

k∈{1,...,K2}
Pr
[
g2
k

(
Y 2,n
k

)
6= W2

]
(11.31)

A secrecy rate pair (R1, R2) is said to be achievable if there exists an (n, 2nR1 , 2nR2)

code which has limn→∞ P
n
e = 0 and

lim
n→∞

1

n
I(W1,W2;Zn) = 0 (11.32)

where we dropped the subscript of Zt since KZ = 1. We note that (11.32) implies

lim
n→∞

1

n
I(W1;Zn) = 0 and lim

n→∞

1

n
I(W2;Zn) = 0 (11.33)

From these definitions, it is clear that we are only interested in perfect secrecy rates
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of the channel. The secrecy capacity region is defined as the closure of all achievable

secrecy rate pairs. A single-letter characterization of the secrecy capacity region is

given as follows.

Theorem 11.1 The secrecy capacity region of the DCMRWC is given by the union

of rate pairs (R1, R2) satisfying

R1 ≤ min
j=1,...,K1

I(X;Y 1
j |U,Z) (11.34)

R2 ≤ min
k=1,...,K2

I(U ;Y 2
k |Z) (11.35)

where the union is over all (U,X) such that

U → X → Y 1
j → Y ∗ → Y 2

k → Z (11.36)

for any (j, k) pair.

Showing the achievability of this region is rather standard, thus is omitted here. We

provide the converse proof in Appendix 11.5.1. The presence of the fictitious user

with observation Y ∗ proves to be crucial in the converse proof. Essentially, it brings

a conditional independence structure to the channel, which enables us to define the

auxiliary random variable U , which, in turn, provides the converse proof.

As a side note, if we disable the eavesdropper by setting Z = φ, the region in

Theorem 11.1 reduces to the capacity region of the underlying degraded compound

broadcast channel which was established in [5].
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11.3.1.1 Parallel DCMRWC

In the upcoming section, we will consider the Gaussian parallel DCMRWC. For that

purpose, here, we provide the secrecy capacity region of the parallel DCMRWC in

a single-letter form.

Theorem 11.2 The secrecy capacity region of the parallel DCMRWC is given by

the union of rate pairs (R1, R2) satisfying

R1 ≤ min
j=1,...,K1

L∑

`=1

I(X`;Y
1
j`|U`, Z`) (11.37)

R2 ≤ min
k=1,...,K2

L∑

`=1

I(U`;Y
2
k`|Z`) (11.38)

where the union is over all distributions of the form
∏L

`=1 p(u`, x`) such that

U` → X` → Y 1
j` → Y ∗` → Y 2

k` → Z` (11.39)

for any (j, k, `) triple.

Though Theorem 11.1 provides the secrecy capacity region for a rather general

channel model including the parallel DCMRWC as a special case, we still need

a converse proof to show that the region in Theorem 11.1 reduces to the region

in Theorem 11.2 for parallel channels. In other words, we still need to show the

optimality of independent signalling on each sub-channel. This proof is provided in

Appendix 11.5.2.
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11.3.1.2 Gaussian Parallel DCMRWC

We now obtain the secrecy capacity region of the Gaussian parallel DCMRWC. To

that end, we need to evaluate the region given in Theorem 11.2, i.e., we need to

find the optimal joint distribution
∏L

`=1 p(u`, x`). We first introduce the following

theorem which will be instrumental in evaluating the region in Theorem 11.2 for

Gaussian parallel channels.

Theorem 11.3 Let N1, N
∗, N2, NZ be zero-mean Gaussian random variables with

variances σ2
1, σ

2
∗, σ

2
2, σ

2
Z , respectively, where

σ2
1 ≤ σ2

∗ ≤ σ2
2 ≤ σ2

Z (11.40)

Let (U,X) be an arbitrarily dependent random variable pair, which is independent of

(N1, N
∗, N2, NZ), and the second-moment of X be constrained as E [X2] ≤ P . Then,

for any feasible (U,X), we can find a P ∗ ≤ P such that

h(X +NZ |U)− h(X +N∗|U) =
1

2
log

P ∗ + σ2
Z

P ∗ + σ2
∗

(11.41)

and

h(X +NZ |U)− h(X +N1|U) ≥ 1

2
log

P ∗ + σ2
Z

P ∗ + σ2
1

(11.42)

h(X +NZ |U)− h(X +N2|U) ≤ 1

2
log

P ∗ + σ2
Z

P ∗ + σ2
2

(11.43)

for any (σ2
1, σ

2
2) satisfying the order in (11.40).
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The proof of this theorem is provided in Appendix 11.5.3. In this proof, Costa’s

entropy power inequality [44] plays a key role.

We now establish the secrecy capacity region of the Gaussian parallel DCM-

RWC.

Theorem 11.4 The secrecy capacity region of the Gaussian parallel DCMRWC is

given by the union of rate pairs (R1, R2) satisfying

R1 ≤ min
j=1,...,K1

L∑

`=1

1

2
log

(
1 +

β`P`
Λ1
j,``

)
− 1

2
log

(
1 +

β`P`
ΛZ,``

)
(11.44)

R2 ≤ min
k=1,...,K2

L∑

`=1

1

2
log

(
1 +

β̄`P`
β`P` + Λ2

k,``

)
− 1

2
log

(
1 +

β̄`P`
β`P` + ΛZ,``

)
(11.45)

where the union is over all {P`}L`=1 such that
∑L

`=1 P` = P and β̄` = 1 − β` ∈

[0, 1], ` = 1, . . . , L.

The proof of this theorem is provided in Appendix 11.5.4. Here, P` denotes the part

of the total available power P which is devoted to the transmission in the `th sub-

channel. Furthermore, β` denotes the fraction of the power P` of the `th sub-channel

spent for the transmission to users in the first group.

11.3.1.3 Gaussian MIMO DCMRWC

In this section, we first obtain the secrecy capacity region of the Gaussian MIMO

DCMRWC when K2 = 1. To that end, we need to evaluate the region given in

Theorem 11.1. In other words, we need to find the optimal random variable pair

(U,X). We are able to do this when there is only one user in the second group, i.e.,

566



K2 = 1. For this, we need the following theorem.

Theorem 11.5 ([Chapter 5, Theorem 5.7]) Let (N1,N
∗,NZ) be zero-mean

Gaussian random vectors with covariance matrices Σ1,Σ
∗,ΣZ, respectively, where

Σ1 � Σ∗ � ΣZ (11.46)

Let (U,X) be arbitrarily dependent random vector, which is independent of (N1,N
∗,

NZ), and let the second moment of X be constrained as E
[
XX>

]
� S. Then, for

any feasible (U,X), we can find a positive semi-definite matrix K∗ such that K∗ � S,

and it satisfies

h(X + NZ |U)− h(X + N∗|U) =
1

2
log
|K∗ + ΣZ |
|K∗ + Σ∗| (11.47)

and

h(X + NZ |U)− h(X + N1|U) ≥ 1

2
log
|K∗ + ΣZ |
|K∗ + Σ1|

(11.48)

for any Σ1 satisfying the order in (11.46).

Using this theorem, we can establish the secrecy capacity region of the Gaussian

MIMO DCMRWC when K2 = 1 as follows.

Theorem 11.6 The secrecy capacity region of the Gaussian MIMO DCMRWC
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when K2 = 1 is given by the union of rate pairs (R1, R2) satisfying

R1 ≤ min
j=1,...,K1

1

2
log
|K + Σ1

j |
|Σ1

j |
− 1

2
log
|K + ΣZ |
|ΣZ |

(11.49)

R2 ≤
1

2
log
|S + Σ2|
|K + Σ2| −

1

2
log
|S + ΣZ |
|K + ΣZ |

(11.50)

where we dropped the subscript of Σ2
k since K2 = 1, and the union is over all positive

semi-definite matrices K such that K � S.

The proof of this theorem is given in Appendix 11.5.5. Now, we would like to com-

ment about why we can obtain the secrecy capacity region of the Gaussian MIMO

DCMRWC only when K2 = 1. The reason is that we can extend Theorem 11.3,

which was used to obtain the secrecy capacity region of the Gaussian parallel DCM-

RWC, to vector case in Theorem 11.5 partially, i.e., not completely. In particular,

we could not show that the matrix K∗ in Theorem 11.5 also satisfies

h(X + NZ |U)− h(X + N2|U) ≤ 1

2
log
|K∗ + ΣZ |
|K∗ + Σ2|

(11.51)

for any Gaussian random vector N2 with covariance matrix satisfying Σ∗ � Σ2 �

ΣZ . If (11.51) can be shown, the secrecy capacity region of the Gaussian MIMO

DCMRWC can be obtained as the union of rate pairs (R1, R2) satisfying

R1 ≤ min
j=1,...,K1

1

2
log
|K + Σ1

j |
|Σ1

j |
− 1

2
log
|K + ΣZ |
|ΣZ |

(11.52)

R2 ≤ min
k=1,...,K2

1

2
log
|S + Σ2

k|
|K + Σ2

k|
− 1

2
log
|S + ΣZ |
|K + ΣZ |

(11.53)
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where the union is over all positive semi-definite matrices K such that K � S.

Finally we note that using the analysis carried out in Section V of [5] and

Chapter 5.7, the capacity result given in Theorem 11.6 can be extended to the

general Gaussian MIMO DCMRWC defined by (11.25)-(11.27) as follows.

Corollary 11.1 The secrecy capacity region of the general Gaussian MIMO DCM-

RWC, which is defined by (11.25)-(11.27), when K2 = 1, is given by the union of

rate pairs (R1, R2) satisfying

R1 ≤ min
j=1,...,K1

1

2
log
|H1

jK(H1
j)
> + Σ1

j |
|Σ1

j |
− 1

2
log
|HZKH>Z + ΣZ |

|ΣZ |
(11.54)

R2 ≤
1

2
log
|H2S(H2)> + Σ2|
|H2K(H2)> + Σ2| −

1

2
log
|HZSH>Z + ΣZ |
|HZKH>Z + ΣZ |

(11.55)

where we dropped the subscripts of Σ2
k,H

2
k since K2 = 1, and the union is over all

positive semi-definite matrices K such that K � S.

11.3.2 The Second Scenario: Layered Confidential Messages

In the second scenario, the transmitter wants to send a confidential message to

users in the first group which needs to be kept confidential from the second group of

users and eavesdroppers. The transmitter also wants to send a different confidential

message to users in the second group, which needs to be kept confidential from the

eavesdroppers. As opposed to the first scenario, in this case, we do not put any

restriction on the number of eavesdroppers. The graphical illustration of the second

scenario is given in Figure 11.3. The situation where there is only one user in each
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group and one eavesdropper was investigated in [45]. Hence, this second scenario

can be seen as a generalization of the model in [45] to a compound channel setting.

Following the terminology of [45], we call this channel model DCMRWC with layered

messages.

An (n, 2nR1 , 2nR2) code for DCMRWC with layered messages consists of two

message setsW1 = {1, . . . , 2nR1},W2 = {1, . . . , 2nR2} and an encoder f :W1×W2 →

X n, one decoder for each legitimate user in the first group g1
j : Y1,n

j → W1, j =

1, . . . , K1, and one decoder for each legitimate user in the second group g2
k : Y2,n

k →

W2, k = 1, . . . , K2. The probability of error is defined as P n
e = max{P 1,n

e , P 2,n
e }

where P 1,n
e and P 2,n

e are given by

P 1,n
e = max

j∈{1,...,K1}
Pr
[
g1
j (Y

1,n
j ) 6= W1

]
(11.56)

P 2,n
e = max

k∈{1,...,K2}
Pr
[
g2
k(Y

2,n
k ) 6= W2

]
(11.57)

A secrecy rate pair is said to be achievable if there exists an (n, 2nR1 , 2nR2) code

which has limn→∞ P
n
e = 0,

lim
n→∞

1

n
I(W2;Zn

t ) = 0, t = 1, . . . , KZ (11.58)

and

lim
n→∞

1

n
I(W1;Y 2,n

k |W2) = 0, k = 1, . . . , K2 (11.59)
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We note that these two secrecy conditions imply

lim
n→∞

1

n
I(W1,W2;Zn

t ) = 0, t = 1, . . . , KZ (11.60)

Furthermore, it is clear that we are only interested in perfect secrecy rates of the

channel. The secrecy capacity region is defined as the closure of all achievable

secrecy rate pairs. A single-letter characterization of the secrecy capacity region is

given as follows.

Theorem 11.7 The secrecy capacity region of the DCMRWC with layered messages

is given by the union of rate pairs (R1, R2) satisfying

R1 ≤ min
j=1,...,K1
k=1,...,K2

I(X;Y 1
j |U, Y 2

k ) (11.61)

R2 ≤ min
k=1,...,K2
t=1,...,KZ

I(U ;Y 2
k |Zt) (11.62)

where the union is over all random variable pairs (U,X) such that

U → X → Y 1
j → Y ∗ → Y 2

k → Z∗ → Zt (11.63)

for any triple (j, k, t).

The proof of this theorem is given in Appendix 11.5.6. Similar to the converse

proof of Theorem 11.1, the presence of the fictitious users Y ∗ and Z∗ plays an

important role here as well. In particular, these two random variables introduce

a conditional independence structure to the channel which enables us to define
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the auxiliary random variable U that yields a tight outer bound. Despite this

similarity in the role of fictitious users in converse proofs, there is a significant

difference between Theorems 11.1 and 11.7; in particular, it does not seem to be

possible to extend Theorem 11.1 to an arbitrary number of eavesdroppers, while

Theorem 11.7 holds for any number of eavesdroppers. This is due to the difference

of two communication scenarios. In the second scenario, since we assume that users

in the second group as well as the eavesdroppers wiretap users in the first group, we

are able to provide a converse proof for the general situation of arbitrary number of

eavesdroppers.

As an aside, if we set K1 = K2 = KZ = 1, then DCMRWC with layered mes-

sages reduces to the degraded multi-receiver wiretap channel with layered messages

of [45], the secrecy capacity region in Theorem 11.7 reduces to the secrecy capacity

region of the channel model in [45].

11.3.2.1 Parallel DCMRWC with Layered Messages

In the next section, we investigate the Gaussian parallel DCMRWC with layered

messages. To that end, here we obtain the secrecy capacity region of the parallel

DCMRWC with layered messages in a single-letter form as follows.

Theorem 11.8 The secrecy capacity region of the parallel DCMRWC with layered

572



messages is given by the union of rate pairs (R1, R2) satisfying

R1 ≤ min
j=1,...,K1
k=1,...,K2

L∑

`=1

I(X`;Y
1
j`|U`, Y 2

k`) (11.64)

R2 ≤ min
k=1,...,K2
t=1,...,KZ

L∑

`=1

I(U`;Y
2
k`|Zt`) (11.65)

where the union is over all
∏L

`=1 p(u`, x`) such that

U` → X` → Y 1
j` → Y ∗` → Y 2

k` → Z∗` → Zt` (11.66)

for any (`, j, k, t).

Since the parallel DCMRWC with layered messages is a special case of the

DCMRWC with layered messages, Theorem 11.7 implicitly gives the secrecy capacity

region of the parallel DCMRWC with layered messages. However, we still need to

show that the region in Theorem 11.7 is equivalent to the region in Theorem 11.8.

That is, we need to prove the optimality of independent signalling in each sub-

channel. The proof of Theorem 11.8 is provided in Appendix 11.5.7.

11.3.2.2 Gaussian Parallel DCMRWC with Layered Messages

We now obtain the secrecy capacity region of the Gaussian parallel DCMRWC with

layered messages. To that end, we need to evaluate the region given in Theorem 11.8,

i.e., we need to find the optimal distribution
∏L

`=1 p(u`, x`). We first introduce the

following theorem, which is an extension of Theorem 11.3.
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Theorem 11.9 Let N1, N
∗, N2, Ñ , NZ be zero-mean Gaussian random variables with

variances σ2
1, σ

2
∗, σ

2
2, σ̃

2, σ2
Z, respectively, where

σ2
1 ≤ σ2

∗ ≤ σ2
2 ≤ σ̃2 ≤ σ2

Z (11.67)

Let (U,X) be an arbitrarily dependent random variable pair, which is independent of

(N1, N
∗, N2, Ñ , NZ), and the second moment of X be constrained as E [X2] ≤ P .

Then, for any feasible (U,X), we can find a P ∗ ≤ P such that

h(X + Ñ |U)− h(X +N∗|U) =
1

2
log

P ∗ + σ̃2

P ∗ + σ2
∗

(11.68)

and

h(X +NZ |U)− h(X +N2|U) ≤ 1

2
log

P ∗ + σ2
Z

P ∗ + σ2
2

(11.69)

h(X +N2|U)− h(X +N1|U) ≥ 1

2
log

P ∗ + σ2
2

P ∗ + σ2
1

(11.70)

for any (σ2
1, σ

2
2, σ

2
Z) satisfying the order in (11.67).

The proof of this theorem is given in Appendix 11.5.8. The proof of this theorem

basically relies on Theorem 11.3 and Costa’s entropy power inequality [44].

Using this theorem, we can establish the secrecy capacity region of the Gaus-

sian parallel DCMRWC with layered messages as follows.

Theorem 11.10 The secrecy capacity region of the Gaussian parallel DCMRWC
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with layered messages is given by the union of rate pairs (R1, R2) satisfying

R1 ≤ min
j=1,...,K1
k=1,...,K2

L∑

`=1

1

2
log

(
1 +

β`P`
Λ1
j,``

)
− 1

2
log

(
1 +

β`P`
Λ2
k,``

)
(11.71)

R2 ≤ min
k=1,...,K2
t=1,...,KZ

L∑

`=1

1

2
log

(
1 +

β̄`P`
β`P` + Λ2

k,``

)
− 1

2
log

(
1 +

β̄`P`
β`P` + ΛZ

t,``

)
(11.72)

where β̄` = 1− β` ∈ [0, 1], ` = 1, . . . , L, and the union is over all {P`}L`=1 such that

∑L
`=1 P` = P .

The proof of this theorem is given in Appendix 11.5.9. Similar to Theorem 11.4,

here also, P` denotes the amount of power P devoted to the transmission in the

`th sub-channel. Similarly, β` is the fraction of the power P` of the `th sub-channel

spent for the transmission to users in the first group.

11.3.2.3 Gaussian MIMO DCMRWC with Layered Messages

We now obtain the secrecy capacity region of the Gaussian MIMO DCMRWC with

layered messages. To that end, we need to evaluate the region given in Theorem 11.7,

i.e., find the optimal random vector pair (U,X). We are able to find the optimal

random vector pair (U,X) when there is only one user in the second group, i.e., K2 =

1. To obtain that result, we first need the following generalization of Theorem 11.5.

Theorem 11.11 Let (N1,N2,N
∗,NZ) be Gaussian random vectors with covariance

matrices Σ1,Σ2,Σ
∗,ΣZ , respectively, where

Σ1 � Σ2 � Σ∗ � ΣZ (11.73)
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Let (U,X) be an arbitrarily dependent random vector pair, which is independent of

(N1,N2,N
∗,NZ), and the second moment of X be constrained as E

[
XX>

]
� S.

Then, for any feasible (U,X), there exists a positive semi-definite matrix K∗ such

that K∗ � S, and it satisfies

h(X + N∗|U)− h(X + N2|U) =
1

2
log
|K∗ + Σ∗|
|K∗ + Σ2|

(11.74)

and

h(X + NZ |U)− h(X + N2|U) ≤ 1

2
log
|K∗ + ΣZ |
|K∗ + Σ2|

(11.75)

h(X + N2|U)− h(X + N1|U) ≥ 1

2
log
|K∗ + Σ2|
|K∗ + Σ1|

(11.76)

for any (Σ1,ΣZ) satisfying the order in (11.73).

The proof of this theorem is given in Appendix 11.5.10. Using this theorem, we

can find the secrecy capacity region of the Gaussian MIMO DCMRWC with layered

messages when K2 = 1 as follows.

Theorem 11.12 The secrecy capacity region of the Gaussian MIMO DCMRWC

with layered messages when K2 = 1 is given by the union of rate pairs (R1, R2)

satisfying

R1 ≤ min
j=1,...,K1

1

2
log
|K + Σ1

j |
|Σ1

j |
− 1

2
log
|K + Σ2|
|Σ2| (11.77)

R2 ≤ min
t=1,...,KZ

1

2
log
|S + Σ2|
|K + Σ2| −

1

2
log
|S + ΣZ

t |
|K + ΣZ

t |
(11.78)
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where the union is over all positive semi-definite matrices K such that K � S.

The proof of this theorem is given in Appendix 11.5.11. As an aside, if we set

K1 = KZ = 1 in this theorem, we can recover the secrecy capacity region of the

degraded multi-receiver wiretap channel with layered messages that was established

in [45].

Finally we note that using the analysis carried out in Section V of [5] and

Chapter 5.7, the capacity result given in Theorem 11.12 can be extended to the

general Gaussian MIMO DCMRWC defined by (11.25)-(11.27) as follows.

Corollary 11.2 The secrecy capacity region of the general Gaussian MIMO DCM-

RWC, defined by (11.25)-(11.27), with layered messages when K2 = 1 is given by

the union of rate pairs (R1, R2) satisfying

R1 ≤ min
j=1,...,K1

1

2
log
|H1

jK(H1
j)
> + Σ1

j |
|Σ1

j |
− 1

2
log
|H2K(H2)> + Σ2|

|Σ2| (11.79)

R2 ≤ min
t=1,...,KZ

1

2
log
|H2S(H2)> + Σ2|
|H2K(H2)> + Σ2| −

1

2
log
|HZ

t S(HZ
t )> + ΣZ

t |
|HZ

t K(HZ
t )> + ΣZ

t |
(11.80)

where the union is over all positive semi-definite matrices K such that K � S.

11.4 Conclusions

In this chapter, we consider the DCMRWC for different communication scenarios,

and obtain the corresponding secrecy capacity regions for the discrete memoryless

case as well as its parallel and Gaussian parallel instances. We also consider MIMO

channels, and obtain the secrecy capacity region under certain conditions.
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11.5 Appendix

11.5.1 Proof of Theorem 11.1

Achievability is clear. We provide the converse proof. For an arbitrary code achiev-

ing the secrecy rates (R1, R2), there exist (ε1,n, ε2,n) and γn which vanish as n→∞

such that

H(W1|Y 1,n
j ) ≤ nε1,n, j = 1, . . . , K1 (11.81)

H(W2|Y 2,n
k ) ≤ nε2,n, k = 1, . . . , K2 (11.82)

I(W1,W2;Zn) ≤ nγn (11.83)

where (11.81) and (11.82) are due to Fano’s lemma, and (11.83) is due to the perfect

secrecy requirement stated in (11.32).

We define the following auxiliary random variables

Ui = W2Y
∗,i−1Zn

i+1, i = 1, . . . , n (11.84)

which satisfy the following Markov chain

Ui → Xi → Y 1
j,i → Y ∗i → Y 2

k,i → Zi, i = 1, . . . , n (11.85)

for any (j, k) pair. The Markov chain in (11.85) is a consequence of the fact that

the channel is memoryless and degraded.
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We first bound the rate of the second message:

nR2 = H(W2) (11.86)

≤ I(W2;Y 2,n
k ) + nε2,n (11.87)

≤ I(W2;Y 2,n
k )− I(W2;Zn) + n(ε2,n + γn) (11.88)

= I(W2;Y 2,n
k |Zn) + n(ε2,n + γn) (11.89)

=
n∑

i=1

I(W2;Y 2
k,i|Y 2,i−1

k , Zn) + n(ε2,n + γn) (11.90)

=
n∑

i=1

I(W2;Y 2
k,i|Y 2,i−1

k , Zn
i+1, Zi) + n(ε2,n + γn) (11.91)

≤
n∑

i=1

I(Y 2,i−1
k , Zn

i+1,W2;Y 2
k,i|Zi) + n(ε2,n + γn) (11.92)

≤
n∑

i=1

I(Y ∗,i−1, Y 2,i−1
k , Zn

i+1,W2;Y 2
k,i|Zi) + n(ε2,n + γn) (11.93)

=
n∑

i=1

I(Y ∗,i−1, Zn
i+1,W2;Y 2

k,i|Zi) + n(ε2,n + γn) (11.94)

=
n∑

i=1

I(Ui;Y
2
k,i|Zi) + n(ε2,n + γn) (11.95)

where (11.87) is due to (11.82), (11.88) is a consequence of (11.83), (11.89) comes

from the Markov chain

W2 → Y 2,n
k → Zn, k = 1, . . . , K2 (11.96)

which is a consequence of the fact that the channel is degraded, (11.91) comes from
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the Markov chain

Zi−1 → Y 2,i−1
k → (Y 2

k,i, Z
n
i ,W2), k = 1, . . . , K2 (11.97)

which is due to the fact that the channel is degraded and memoryless, and (11.94)

is a consequence of the Markov chain

Y 2,i−1
k → Y ∗,i−1 → (W2, Z

n
i , Y

2
k,i), k = 1, . . . , K2 (11.98)

which is due to the Markov chain in (11.2) and the fact that the channel is memo-

ryless.

Next we bound the rate of the first message:

nR1 = H(W1) (11.99)

= H(W1|W2) (11.100)

≤ I(W1;Y 1,n
j |W2) + nε1,n (11.101)

≤ I(W1;Y 1,n
j |W2)− I(W1;Zn|W2) + n(ε1,n + γn) (11.102)

= I(W1;Y 1,n
j |W2, Z

n) + n(ε1,n + γn) (11.103)

=
n∑

i=1

I(W1;Y 1
j,i|W2, Z

n, Y 1,i−1
j ) + n(ε1,n + γn) (11.104)

=
n∑

i=1

I(W1;Y 1
j,i|W2, Z

n
i+1, Y

1,i−1
j , Zi) + n(ε1,n + γn) (11.105)

=
n∑

i=1

I(W1;Y 1
j,i|W2, Z

n
i+1, Y

1,i−1
j , Y ∗,i−1, Zi) + n(ε1,n + γn) (11.106)
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≤
n∑

i=1

I(Xi,W1;Y 1
j,i|W2, Z

n
i+1, Y

1,i−1
j , Y ∗,i−1, Zi) + n(ε1,n + γn) (11.107)

=
n∑

i=1

I(Xi;Y
1
j,i|W2, Z

n
i+1, Y

1,i−1
j , Y ∗,i−1, Zi) + n(ε1,n + γn) (11.108)

=
n∑

i=1

H(Y 1
j,i|W2, Z

n
i+1, Y

1,i−1
j , Y ∗,i−1, Zi)−H(Y 1

j,i|W2, Z
n
i+1, Y

1,i−1
j , Y ∗,i−1, Zi, Xi)

+ n(ε1,n + γn) (11.109)

≤
n∑

i=1

H(Y 1
j,i|W2, Z

n
i+1, Y

∗,i−1, Zi)−H(Y 1
j,i|W2, Z

n
i+1, Y

1,i−1
j , Y ∗,i−1, Zi, Xi)

+ n(ε1,n + γn) (11.110)

=
n∑

i=1

H(Y 1
j,i|W2, Z

n
i+1, Y

∗,i−1, Zi)−H(Y 1
j,i|W2, Z

n
i+1, Y

∗,i−1, Zi, Xi)

+ n(ε1,n + γn) (11.111)

=
n∑

i=1

I(Xi;Y
1
j,i|W2, Z

n
i+1, Y

∗,i−1, Zi) + n(ε1,n + γn) (11.112)

=
n∑

i=1

I(Xi;Y
1
j,i|Ui, Zi) + n(ε1,n + γn) (11.113)

where (11.101) is due to (11.81), (11.102) is a consequence of (11.83), (11.103) comes

from the Markov chain

(W2,W1)→ Y 1,n
j → Zn, j = 1, . . . , K1 (11.114)

which is due to the fact that the channel is degraded, (11.105) comes from the

Markov chain

Zi−1 → Y 1,i−1
j → (W1,W2, Y

1
j,i, Z

n
i ), j = 1, . . . , K1 (11.115)
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which is a consequence of the fact that the channel is degraded and memoryless,

(11.106) follows from the Markov chain

Y ∗,i−1 → Y 1,i−1
j → (W1,W2, Y

1
j,i, Z

n
i ), j = 1, . . . , K1 (11.116)

which results from the Markov chain in (11.2) and the fact that the channel is

memoryless, (11.108) is a consequence of the Markov chain

(Y 1
j,i, Zi)→ Xi → (Y ∗,i−1, Y 1,i−1

j , Zn
i+1,W1,W2), j = 1, . . . , K1 (11.117)

which is due to the fact that the channel is memoryless, (11.110) comes from the fact

that conditioning cannot increase entropy, and (11.111) is again due to the Markov

chain in (11.117).

Next, we define a uniformly distributed random variable Q ∈ {1, . . . , n}, and

U = (Q,UQ), X = XQ, Y
1
j = Y 1

j,Q, Y
2
k = Y 2

k,Q, and Z = ZQ. Using these definitions

in (11.95) and (11.113), we obtain the single-letter expressions in Theorem 11.1.

11.5.2 Proof of Theorem 11.2

The achievability of this region follows from Theorem 11.1 by selecting (U,X) =

(U1, X1, . . . , UL, XL) with a joint distribution of the product form p(u, x) =

∏L
`=1 p(u`, x`). We next provide the converse proof. To that end, we define the
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following auxiliary random variables

U` = UY ∗[1:`−1]Z[`+1:L], ` = 1, . . . , L (11.118)

which satisfy the Markov chain

U` → X` → (Y 1
j`, Y

2
k`, Z`) (11.119)

for any (j, k, `) triple because of the facts that the channel is memoryless and sub-

channels are independent.

We bound the rate of the second message as follows

R2 ≤ min
k=1,...,K2

I(U ;Y 2
k[1:L]|Z[1:L]) (11.120)

= min
k=1,...,K2

L∑

`=1

I(U ;Y 2
k`|Y 2

k[1:`−1], Z[1:L]) (11.121)

= min
k=1,...,K2

L∑

`=1

I(U ;Y 2
k`|Y 2

k[1:`−1], Z[`:L]) (11.122)

≤ min
k=1,...,K2

L∑

`=1

I(U, Y 2
k[1:`−1], Z[`+1:L];Y

2
k`|Z`) (11.123)

≤ min
k=1,...,K2

L∑

`=1

I(U, Y ∗[1:`−1], Y
2
k[1:`−1], Z[`+1:L];Y

2
k`|Z`) (11.124)

= min
k=1,...,K2

L∑

`=1

I(U, Y ∗[1:`−1], Z[`+1:L];Y
2
k`|Z`) (11.125)

= min
k=1,...,K2

L∑

`=1

I(U`;Y
2
k`|Z`) (11.126)
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where (11.122) follows from the Markov chain

Z[1:`−1] → Y 2
k[1:`−1] → (U, Y 2

k`, Z[`:L]) (11.127)

which is a consequence of the facts that the channel is degraded and memoryless,

and sub-channels are independent, and (11.125) is due to the Markov chain

Y 2
k[1:`−1] → Y ∗[1:`−1] → U, Y 2

k`, Z[`:L] (11.128)

which is a consequence of the Markov chain in (11.10) and the facts that the channel

is memoryless and sub-channels are independent.

We next bound the rate of the first message as follows

R1 ≤ min
j=1,...,K1

I(X[1:L];Y
1
j[1:L]|U,Z[1:L]) (11.129)

= min
j=1,...,K1

L∑

`=1

I(X[1:L];Y
1
j`|U, Y 1

j[1:`−1], Z[1:L]) (11.130)

= min
j=1,...,K1

L∑

`=1

I(X[1:L];Y
1
j`|U, Y 1

j[1:`−1], Z[`:L]) (11.131)

= min
j=1,...,K1

L∑

`=1

I(X[1:L];Y
1
j`|U, Y 1

j[1:`−1], Y
∗

[1:`−1], Z[`:L]) (11.132)

= min
j=1,...,K1

L∑

`=1

I(X[1:L];Y
1
j`|U`, Y 1

j[1:`−1], Z`) (11.133)

= min
j=1,...,K1

L∑

`=1

H(Y 1
j`|U`, Y 1

j[1:`−1], Z`)−H(Y 1
j`|U`, Y 1

j[1:`−1], Z`, X[1:L]) (11.134)

≤ min
j=1,...,K1

L∑

`=1

H(Y 1
j`|U`, Z`)−H(Y 1

j`|U`, Y 1
j[1:`−1], Z`, X[1:L]) (11.135)
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= min
j=1,...,K1

L∑

`=1

H(Y 1
j`|U`, Z`)−H(Y 1

j`|U`, Z`, X`) (11.136)

= min
j=1,...,K1

L∑

`=1

I(X`;Y
1
j`|U`, Z`) (11.137)

where (11.131) and (11.132) follow from the Markov chain

Z[1:`−1] → Y ∗[1:`−1] → Y 1
j[1:`−1] → (U, Y 1

j`, Z[`:L], X[1:L]) (11.138)

which is due to the facts that the channel is degraded and memoryless, sub-channels

are independent, and the Markov chain in (11.10), (11.135) results from the fact that

conditioning cannot increase entropy, (11.136) comes from the Markov chain

(Y 1
j`, Z`)→ X` → (U`, Y

1
j[1:`−1], X[1:`−1], X[`+1:L]) (11.139)

which is a consequence of the facts that the channel is memoryless, and sub-channels

are independent.

In view of (11.126) and (11.137), we obtain the single-letter expressions in The-

orem 11.2. Finally, we note that each expression in the bounds given by (11.126) and

(11.137) depend on the the joint distribution p(u[1:L], x[1:L]) through its marginals

p(u`, x`). Thus, there is no loss of optimality to choose p(u[1:L], x[1:L]) =
∏L

`=1 p(u`, x`).

This completes the converse proof.
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11.5.3 Proof of Theorem 11.3

We first note that

1

2
log

σ2
∗
σ2
Z

≤ h(X +N∗|U)− h(X +NZ |U) ≤ 1

2
log

P + σ2
∗

P + σ2
Z

(11.140)

where the right-hand side can be shown via the entropy power inequality [42, 43]. To

show the left-hand side, let us define a Gaussian random variable Ñ with variance

σ2
Z − σ2

∗, and independent of (U,X,N∗). Thus, we can write down the difference of

differential entropy terms in (11.140) as

h(X +N∗|U)− h(X +NZ |U) = h(X +N∗|U)− h(X +N∗ + Ñ |U) (11.141)

= −I(Ñ ;X +N∗ + Ñ |U) (11.142)

= −h(Ñ |U) + h(Ñ |U,X +N∗ + Ñ) (11.143)

≥ −h(Ñ |U) + h(Ñ |U,X +N∗ + Ñ ,X) (11.144)

= −h(Ñ) + h(Ñ |N∗ + Ñ) (11.145)

=
1

2
log

σ2
∗
σ2
Z

(11.146)

where (11.144) is due to the fact that conditioning cannot increase entropy and

(11.145) is a consequence of the fact that (U,X) and (N∗, Ñ) are independent.

Equation (11.140) implies that there exists P ∗ such that P ∗ ≤ P and

h(X +N∗|U)− h(X +NZ |U) =
1

2
log

P ∗ + σ2
∗

P ∗ + σ2
Z

(11.147)
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which will be used frequently hereafter.

We now state Costa’s entropy power inequality [44] which will be used in the

upcoming proof1.

Lemma 11.1 ([44, Theorem 1]) Let (U,X) be an arbitrarily dependent random

variable pair, which is independent of N , where N is a Gaussian random variable.

Then, we have

e2h(X+
√
tN |U) ≥ (1− t)e2h(X|U) + te2h(X+N |U), 0 ≤ t ≤ 1 (11.148)

We now consider (11.42). We first note that we can write N∗ as

N∗ = N1 +
√
t1Ñ1 (11.149)

where Ñ1 is a Gaussian random variable with variance σ2
Z−σ2

1, which is independent

of (U,X,N1). t1 in (11.149) is given by

t1 =
σ2
∗ − σ2

1

σ2
Z − σ2

1

(11.150)

where it is clear that t1 ∈ [0, 1]. Using (11.149) and Costa’s entropy power inequal-

1Although, Theorem 1 of [44] states the inequality for a constant U , using Jensen’s inequality,
the current form of the inequality for an arbitrary U can be shown.
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ity [44], we get

e2h(X+N∗|U) = e2h(X+N1+
√
t1Ñ1|U) (11.151)

≥ (1− t1)e2h(X+N1|U) + t1e
2h(X+NZ |U) (11.152)

which is equivalent to

(1− t1)e2[h(X+N1|U)−h(X+NZ |U)] + t1 ≤ e2[h(X+N∗|U)−h(X+NZ |U)] (11.153)

=
P ∗ + σ2

∗
P ∗ + σ2

Z

(11.154)

where (11.154) is obtained by using (11.147). Equation (11.154) is equivalent to

h(X +N1|U)− h(X +NZ |U) ≤ 1

2
log

1

1− t1

(
P ∗ + σ2

∗
P ∗ + σ2

Z

− t1
)

(11.155)

=
1

2
log

(
P ∗

P ∗ + σ2
Z

+
1

1− t1
σ2
∗ − t1σ2

Z

P ∗ + σ2
Z

)
(11.156)

=
1

2
log

P ∗ + σ2
1

P ∗ + σ2
Z

(11.157)

where we used the definition of t1 given in (11.150) to obtain (11.157). Equation

(11.157) proves (11.42).

We now consider (11.43). First, we note that we can write N2

N2 = N∗ +
√
t2ÑZ (11.158)

where ÑZ is a Gaussian random variable with variance σ2
Z−σ2

∗, which is independent
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of (U,X,N∗). t2 in (11.158) is given by

t2 =
σ2

2 − σ2
∗

σ2
Z − σ2

∗
(11.159)

where it is clear that t2 ∈ [0, 1]. Using (11.158) and Costa’s entropy power inequal-

ity [44], we get

e2h(X+N2|U) = e2h(X+N∗+
√
t2ÑZ |U) (11.160)

≥ (1− t2)e2h(X+N∗|U) + t2e
2h(X+NZ |U) (11.161)

which is equivalent to

e2[h(X+N2|U)−h(X+NZ |U)] ≥ (1− t2)e2[h(X+N∗|U)−h(X+NZ |U)] + t2 (11.162)

= (1− t2)
P ∗ + σ2

∗
P ∗ + σ2

Z

+ t2 (11.163)

=
P ∗ + σ2

2

P ∗ + σ2
Z

(11.164)

where (11.164) is obtained by using the definition of t2 given in (11.159). Equation

(11.164) is equivalent to

h(X +NZ |U)− h(X +N2|U) ≤ 1

2
log

P ∗ + σ2
Z

P ∗ + σ2
2

(11.165)

which is (11.43). This completes the proof of Theorem 11.3.
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11.5.4 Proof of Theorem 11.4

Achievability is clear. We provide the converse proof. To this end, let us fix the

distribution
∏L

`=1 p(u`, x`) such that

E
[
X2
`

]
= P`, ` = 1, . . . , L (11.166)

and
∑L

`=1 P` ≤ P . We first establish the bound on R2 given in (11.45). To this end,

we start with (11.38). Using the Markov chain U` → Y 2
k` → Z`, we have

R2 ≤ min
k=1,...,K2

L∑

`=1

I(U`;Y
2
k`)− I(U`;Z`) (11.167)

= min
k=1,...,K2

L∑

`=1

[
h(Y 2

k`)− h(Z`)
]

+
[
h(Z`|U)− h(Y 2

k`|U)
]

(11.168)

≤ min
k=1,...,K2

L∑

`=1

1

2
log

P` + Λ2
k,``

P` + ΛZ,``

+
[
h(Z`|U)− h(Y 2

k`|U)
]

(11.169)

where (11.169) comes from the fact that Gaussian X` maximizes

h(Y 2
k`)− h(Z`) (11.170)

which can be shown via the entropy power inequality [42, 43]. We now use Theo-

rem 11.3. For that purpose, we introduce the diagonal covariance matrix Λ∗ which

satisfies

Λ1
j � Λ∗ � Λ2

k (11.171)
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for any (j, k) pair, and in particular, for the diagonal elements of these matrices, we

have

Λ1
j,`` ≤ Λ∗`` ≤ Λ2

k,`` (11.172)

for any triple (j, k, `). Thus, due to Theorem 11.3, for any selection of {(U`, X`)}L`=1,

there exists a P ∗` such that

P ∗` ≤ P` (11.173)

h(Z`|U`)− h(Y 1
j`|U`) ≥

1

2
log

P ∗` + ΛZ,``

P ∗` + Λ1
j,``

(11.174)

h(Z`|U`)− h(Y 2
k`|U`) ≤

1

2
log

P ∗` + ΛZ,``

P ∗` + Λ2
k,``

(11.175)

for any triple (j, k, `). Using (11.175) in (11.169), we get

R2 ≤ min
k=1,...,K2

L∑

`=1

1

2
log

P` + Λ2
k,``

P ∗` + Λ2
k,``

− 1

2
log

P` + ΛZ,``

P ∗` + ΛZ,``

(11.176)

We define P ∗` = β`P` and β̄` = 1−β`, ` = 1, . . . , L, where β` ∈ [0, 1] due to (11.173).

Thus, we have established the desired bound on R2 given in (11.45). We now bound
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R1. We start with (11.37). Using the Markov chain (U`, X`)→ Y 1
j` → Z`, we have

R1 ≤ min
j=1,...,K1

L∑

`=1

I(X`;Y
1
j`|U`)− I(X`;Z`|U`) (11.177)

= min
j=1,...,K1

L∑

`=1

h(Y 1
j`|U`)− h(Z`|U`)−

1

2
log

Λ1
j,``

ΛZ,``

(11.178)

≤ min
j=1,...,K1

L∑

`=1

1

2
log

P ∗` + Λ1
j,``

P ∗` + ΛZ,``

− 1

2
log

Λ1
j,``

ΛZ,``

(11.179)

where (11.179) comes from (11.174). Since we defined P ∗` = β`P`, (11.179) is the

desired bound on R1 given in (11.44), completing the proof.

11.5.5 Proof of Theorem 11.6

The main tools for the proof of Theorem 11.6 are Theorem 11.5, and the following

so-called worst additive noise lemma [36, 37].

Lemma 11.2 ([36, 37]) Let N be a Gaussian random vector with covariance ma-

trix Σ, and KX be a positive semi-definite matrix. Consider the following optimiza-

tion problem,

min
p(x)

I(N; N + X) s.t. Cov(X) = KX (11.180)

where X and N are independent. A Gaussian X is the minimizer of this optimization

problem.

592



We first bound R2. Assume we fixed the distribution of (U,X) such that

Cov(X) = KX . Then, we have

R2 ≤ I(U ; Y2)− I(U ; Z) (11.181)

= h(Y2)− h(Z) + [h(Z|U)− h(Y2|U)] (11.182)

≤ 1

2
log
|S + Σ2|
|S + ΣZ |

+ [h(Z|U)− h(Y2|U)] (11.183)

To show (11.183), consider Ñ which is a Gaussian random vector with covariance

matrix ΣZ −Σ2, and is independent of (U,X,N2). Thus, we can write

h(Y2)− h(Z) = h(Z|Ñ)− h(Z) (11.184)

= −I(Ñ; X + N2 + Ñ) (11.185)

≤ 1

2
log
|KX + Σ2|
|KX + ΣZ |

(11.186)

≤ 1

2
log
|S + Σ2|
|S + ΣZ |

(11.187)

where (11.186) is due to Lemma 11.2, and (11.187) follows from the fact that

|A|
|A + B| ≤

|A + ∆|
|A + B + ∆| (11.188)

for A � 0,B � 0,∆ � 0 [4, 19].
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For the rest of the proof, we need Theorem 11.5. According to Theorem 11.5,

for any (U,X), there exists a 0 � K � Cov(X|U) such that

h(Z|U)− h(Y2|U) =
1

2
log
|K + ΣZ |
|K + Σ2| (11.189)

h(Z|U)− h(Y1
j |U) ≥ 1

2
log
|K + ΣZ |
|K + Σ1

j |
, j = 1, . . . , K1 (11.190)

because Σ1
j � Σ2, j = 1, . . . , K1. Using (11.189) in (11.183) yields

R2 ≤
1

2
log
|S + Σ2|
|K + Σ2| −

1

2
log
|S + ΣZ |
|K + ΣZ |

(11.191)

which is the desired bound on R2.

The desired bound on R1 can be obtained as follows

R1 ≤ min
j=1,...,K1

I(X; Y1
j |U)− I(X; Z|U) (11.192)

= min
j=1,...,K1

h(Y1
j |U)− h(Z|U)− 1

2
log
|Σ1

j |
|ΣZ |

(11.193)

≤ min
j=1,...,K1

1

2
log
|K + Σ1

j |
|K + ΣZ |

− 1

2
log
|Σ1

j |
|ΣZ |

(11.194)

= min
j=1,...,K1

1

2
log
|K + Σ1

j |
|Σ1

j |
− 1

2
log
|K + ΣZ |
|ΣZ |

(11.195)

where (11.194) is due to (11.190). This completes the proof of Theorem 11.6.

11.5.6 Proof of Theorem 11.7

We first show the achievability of the region given in Theorem 11.7, then provide

the converse proof.
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11.5.6.1 Achievability

First, we present the following lemma which simplifies the achievability proof.

Lemma 11.3 ([38, Lemma A.1]) Let U,X,Z1, Z2, Y
2

1 , Y
2

2 be random variables

such that they satisfy the following Markov chains

U → X → Z1, Z2 (11.196)

U → X → Y 2
1 , Y

2
2 (11.197)

If I(U ;Z1) < I(U ;Z2), there exists a random variable Z̃ such that I(U ;Z1, Z̃) =

I(U ;Z2) and Z̃ satisfies the following Markov chain

U → X → (Z1, Z2)→ Z̃ (11.198)

Similarly, if I(X;Y 2
1 |U) < I(X;Y 2

2 |U), there exists a random variable Ỹ 2 such that

I(X;Y 2
1 , Ỹ

2|U) = I(X;Y 2
2 |U) and Ỹ 2 satisfies the following Markov chain

U → X → (Y 2
1 , Y

2
2 )→ Ỹ 2 (11.199)

We now show the achievability of the region given in Theorem 11.7. First, we

fix the distribution p(u, x).

Codebook generation:

• Generate 2n(R2+R̃2) length-n u sequences through p(u) =
∏n

i=1 p(ui) where
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R̃2 = maxt=1,...,KZ I(U ;Zt). We index u sequences as u(w2, w̃2) where w2 ∈

{1, . . . , 2nR2}, and w̃2 ∈ {1, . . . , 2nR̃2}.

• For each u, generate 2n(R1+R̃1) length-n x sequences through p(x|u) =

∏n
i=1 p(xi|ui) where R̃1 = maxk=1,...,K2 I(X;Y 2

k |U). We index x sequences as

x(w1, w̃1|w2) where w2 = (w2, w̃2), w1 ∈ {1, . . . , 2nR1}, and w̃1 ∈ {1, . . . , 2nR̃1}.

Encoding:

If (w1, w2) is the message to be transmitted, we pick w̃1, w̃2 independently and

uniformly, and send the corresponding x.

Decoding:

The legitimate users can decode the messages with vanishingly small proba-

bility of error, if the rates satisfy

R1 ≤ min
j=1,...,K1
k=1,...,K2

I(X;Y 1
j |U)− I(X;Y 2

k |U) (11.200)

R2 ≤ min
k=1,...,K2
t=1,...,KZ

I(U ;Y 2
k )− I(U ;Zt) (11.201)

which is the same as the region given in Theorem 11.7 because of the degradedness

of the channel.

Equivocation computation:

We now show that this coding scheme satisfies the secrecy requirements given

in (11.58) and (11.59). To this end, we will take a shortcut by using Lemma 11.3, as
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it is done in [38]. To show (11.58), we consider the enhanced eavesdroppers with ob-

servations (Zt, Z̃t) such that I(U ;Zt, Z̃t) = maxt=1,...,KZ I(U ;Zt), where the existence

of the random variable Z̃t is ensured by Lemma 11.3. Following the equivocation

computation in Appendix A of [45], one can get

lim
n→∞

1

n
I(W2;Zn

t , Z̃
n
t ) = 0 (11.202)

which implies that the secrecy requirement in (11.58) is satisfied.

Next we show that the proposed encoding scheme satisfies the secrecy require-

ment in (11.59) as well. Similar to what we did to show (11.58), we take a shortcut

by using Lemma 11.3. In particular, we consider the enhanced second group of users

with observations (Y 2
k , Ỹ

2
k ) such that I(X;Y 2

k , Ỹ
2
k |U) = maxk=1,...,K2 I(X;Y 2

k , Ỹ
2
k |U)

where the existence of the random variable Ỹ 2
k is ensured by Lemma 11.3. Following

the equivocation computation in Appendix A of [45], one can get

lim
n→∞

1

n
I(W1;Y 2,n

k , Ỹ 2,n
k |W2) = 0 (11.203)

which implies that the secrecy requirement in (11.59) is satisfied. This completes

the achievability proof of Theorem 11.7.
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11.5.6.2 Converse

First, we note that for an arbitrary code achieving the secrecy rate pairs (R1, R2),

there exist (ε1,n, ε2,n) and (γ1,n, γ2,n) which vanish as n→∞ such that

H(W1|Y 1,n
j ) ≤ nε1,n, j = 1, . . . , K1 (11.204)

H(W2|Y 2,n
k ) ≤ nε2,n, k = 1, . . . , K2 (11.205)

I(W2;Zn
t ) ≤ nγ2,n, t = 1, . . . , KZ (11.206)

I(W1;Y 2,n
k |W2) ≤ nγ1,n, k = 1, . . . , K2 (11.207)

where (11.204) and (11.205) are due to Fano’s lemma, and (11.206) and (11.207)

come from perfect secrecy requirements in (11.58) and (11.59).

We now define the following auxiliary random variables

Ui = W2Y
∗,i−1Z∗,ni+1, i = 1, . . . , n (11.208)

which satisfy the Markov chains

Ui → Xi → Y 1
j,i → Y ∗i → Y 2

k,i → Z∗i → Zt,i, i = 1, . . . , n (11.209)

for any (j, k, t) triple. The Markov chain in (11.209) is a consequence of the fact

that the channel is memoryless and degraded.
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We first establish the desired bound on R2 as follows

nR2 ≤ I(W2;Y 2
k,i|Zn

t,i+1, Y
2,i−1
k , Zt,i) + n(ε2,n + γ2,n) (11.210)

≤
n∑

i=1

I(Zn
t,i+1, Y

2,i−1
k ,W2;Y 2

k,i|Zt,i) + n(ε2,n + γ2,n) (11.211)

≤
n∑

i=1

I(Z∗,ni+1, Y
∗,i−1, Zn

t,i+1, Y
2,i−1
k ,W2;Y 2

k,i|Zt,i) + n(ε2,n + γ2,n) (11.212)

≤
n∑

i=1

I(Z∗,ni+1, Y
∗,i−1,W2;Y 2

k,i|Zt,i) + n(ε2,n + γ2,n) (11.213)

=
n∑

i=1

I(Ui;Y
2
k,i|Zt,i) + n(ε2,n + γ2,n) (11.214)

where (11.210) can be obtained by following the steps similar to (11.86)-(11.91) in

Appendix 11.5.1 and (11.213) is due to the Markov chain

(Zn
t,i+1, Y

2,i−1
k )→ (Z∗,ni+1, Y

∗,i−1)→ (W2, Y
2
k,i, Zt,i) (11.215)

which is a consequence of the Markov chain in (11.2).

We now establish the bound on R1 as follows

nR1 ≤
n∑

i=1

I(W1;Y 1
j,i|W2, Y

2,n
k,i+1, Y

1,i−1
j , Y 2

k,i) + n(ε1,n + γ1,n) (11.216)

=
n∑

i=1

I(W1;Y 1
j,i|W2, Y

2,n
k,i+1, Y

1,i−1
j , Z∗,ni+1, Y

∗,i−1, Y 2
k,i) + n(ε1,n + γ1,n) (11.217)

=
n∑

i=1

I(W1;Y 1
j,i|Ui, Y 2,n

k,i+1, Y
1,i−1
j , Y 2

k,i) + n(ε1,n + γ1,n) (11.218)

≤
n∑

i=1

I(Xi,W1;Y 1
j,i|Ui, Y 2,n

k,i+1, Y
1,i−1
j , Y 2

k,i) + n(ε1,n + γ1,n) (11.219)

599



=
n∑

i=1

I(Xi;Y
1
j,i|Ui, Y 2,n

k,i+1, Y
1,i−1
j , Y 2

k,i) + n(ε1,n + γ1,n) (11.220)

=
n∑

i=1

H(Y 1
j,i|Ui, Y 2,n

k,i+1, Y
1,i−1
j , Y 2

k,i)−H(Y 1
j,i|Ui, Y 2,n

k,i+1, Y
1,i−1
j , Y 2

k,i, Xi)

+ n(ε1,n + γ1,n) (11.221)

=
n∑

i=1

H(Y 1
j,i|Ui, Y 2,n

k,i+1, Y
1,i−1
j , Y 2

k,i)−H(Y 1
j,i|Ui, Y 2

k,i, Xi) + n(ε1,n + γ1,n) (11.222)

≤
n∑

i=1

H(Y 1
j,i|Ui, Y 2

k,i)−H(Y 1
j,i|Ui, Y 2

k,i, Xi) + n(ε1,n + γ1,n) (11.223)

=
n∑

i=1

I(Xi;Y
1
j,i|Ui, Y 2

k,i) + n(ε1,n + γ1,n) (11.224)

where (11.216) can be obtained by following the steps similar to (11.99)-(11.105) in

Appendix 11.5.1, (11.217) is a consequence of the Markov chain

(Z∗,ni+1, Y
∗,i−1)→ (Y 2,n

k,i+1, Y
1,i−1
j )→ (W2,W1, Y

1
j,i, Y

2
k,i) (11.225)

which results from the Markov chain in (11.2), (11.220) comes from the Markov

chain

(Y 2
k,i, Y

1
j,i)→ Xi → (W1,W2, Ui, Y

2,n
k,i+1, Y

1,i−1
j ) (11.226)

which is due to the fact that the channel is memoryless, (11.222) is also due to

the Markov chain in (11.226), and (11.223) comes from the fact that conditioning

cannot increase entropy.

Single-letterization can be accomplished as outlined in the proof of Theo-

rem 11.1, completing the converse proof.
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11.5.7 Proof of Theorem 11.8

The achievability of the region given in Theorem 11.8 can be shown by select-

ing (U,X) = (U1, X1, . . . , UL, XL) with a joint distribution of the form p(u, x) =

∏L
`=1 p(u`, x`). We next provide an outline of the converse proof. To that end, we

define the following auxiliary random variables

U` = UY ∗[1:`−1]Z
∗
[`+1:L],, ` = 1, . . . , L (11.227)

which satisfy the Markov chains

U` → X` → Y 1
j` → Y ∗` → Y 2

k` → Z∗` → Zt`, ` = 1, . . . , L (11.228)

for any (j, k, t) triple. These Markov chains are a consequence of the facts that the

channel is memoryless and degraded, and sub-channels are independent. Once the

auxiliary random variables {U`}L`=1 in (11.227) are identified, the rest of the converse

proof is similar to the converse proof of Theorem 11.2 given in Appendix 11.5.2. In

particular, to obtain the desired bound on R2, we start with

R2 ≤ min
k=1,...,K2
t=1,...,KZ

I(U ;Y 2
k[1:L]|Zt[1:L]) (11.229)
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which is a direct consequence of Theorem 11.7. Next, following the steps similar to

(11.121)-(11.126) in Appendix 11.5.2, one can reach the desired bound:

R2 ≤ min
k=1,...,K2
t=1,...,KZ

L∑

`=1

I(U`;Y
2
k`|Zt`) (11.230)

Similarly, to obtain the desired bound on R1, we start with

R1 ≤ min
j=1,...,K1
k=1,...,K2

I(X[1:L];Y
1
j[1:L]|U, Y 2

k[1:L]) (11.231)

which is also a direct consequence of Theorem 11.7. Next, following the steps similar

to (11.130)-(11.137) in Appendix 11.5.2, one can each the desired bound:

R1 ≤ min
j=1,...,K1
k=1,...,K2

L∑

`=1

I(X`;Y
1
j`|U`, Y 2

k`) (11.232)

To complete the converse proof, we note that each expression in the bounds given by

(11.230) and (11.232) depend on the the joint distribution p(u[1:L], x[1:L]) through its

marginals p(u`, x`). Thus, there is no loss of optimality to choose p(u[1:L], x[1:L]) =

∏L
`=1 p(u`, x`). This completes the converse proof.
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11.5.8 Proof of Theorem 11.9

According to Theorem 11.3, there exists a P ∗ ≤ P such that

h(X + Ñ |U)− h(X +N∗|U) =
1

2
log

P ∗ + σ̃2

P ∗ + σ2
∗

(11.233)

h(X + Ñ |U)− h(X +N2|U) ≤ 1

2
log

P ∗ + σ̃2

P ∗ + σ2
2

(11.234)

h(X + Ñ |U)− h(X +N1|U) ≥ 1

2
log

P ∗ + σ̃2

P ∗ + σ2
1

(11.235)

for any (σ2
1, σ

2
2) as long as they satisfy

σ2
1 ≤ σ2

∗ ≤ σ2
2 ≤ σ̃2 (11.236)

We first show (11.70). To this end, we note that (11.233) and (11.234) imply

h(X +N2|U)− h(X +N∗|U) ≥ 1

2
log

P ∗ + σ2
2

P ∗ + σ2
∗

(11.237)

Furthermore, (11.233) and (11.235) imply

h(X +N∗|U)− h(X +N1|U) ≥ 1

2
log

P ∗ + σ2
∗

P ∗ + σ2
1

(11.238)

Combining (11.237) and (11.238) yields

h(X +N2|U)− h(X +N1|U) ≥ 1

2
log

P ∗ + σ2
2

P ∗ + σ2
1

(11.239)

which is the desired result in (11.70).
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We now show (11.69). We first note that we can write Ñ as

Ñ = N2 +
√
tÑZ (11.240)

where ÑZ is a zero-mean Gaussian random variable with variance σ2
Z − σ2

2, and

independent of (U,X,N2). t ∈ [0, 1] in (11.240) is given by

t =
σ̃2 − σ2

2

σ2
Z − σ2

2

(11.241)

We now use Costa’s entropy power inequality [44] to arrive at (11.69)

e2h(X+Ñ |U) = e2h(X+N2+
√
tÑZ |U) ≥ (1− t)e2h(X+N2|U) + te2h(X+NZ |U) (11.242)

which is equivalent to

e2[h(X+Ñ |U)−h(X+N2|U)] ≥ (1− t) + te2[h(X+NZ |U)−h(X+N2|U)] (11.243)

which can be written as

h(X +NZ |U)− h(X +N2|U) ≤ 1

2
log

[
1

t
e2[h(X+Ñ |U)−h(X+N2|U)] − 1− t

t

]
(11.244)

≤ 1

2
log

[
1

t

P ∗ + σ̃2

P ∗ + σ2
2

− 1− t
t

]
(11.245)

=
1

2
log

[
P ∗

P ∗ + σ2
2

− 1

t

σ̃2 − (1− t)σ2
2

P ∗ + σ2
2

]
(11.246)

=
1

2
log

P ∗ + σ2
Z

P ∗ + σ2
2

(11.247)
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where (11.245) is due to (11.234) and (11.247) comes from (11.241). Since (11.247)

is the desired result in (11.69), this completes the proof.

11.5.9 Proof of Theorem 11.10

Achievability is clear. We provide the converse proof. We fix the distribution

∏L
`=1 p(u`, x`) such that

E
[
X2
`

]
= P`, ` = 1, . . . , L (11.248)

and
∑L

`=1 P` = P . We first establish the bound on R2 given in (11.72). To this end,

we start with (11.65). Using the Markov chain U` → Y 2
k` → Zt`, we have

R2 ≤ min
k=1,...,K2
t=1,...,KZ

L∑

`=1

I(U`;Y
2
k`)− I(U`;Zt`) (11.249)

= min
k=1,...,K2
t=1,...,KZ

L∑

`=1

h(Y 2
k`)− h(Zt`) +

[
h(Zt`|U`)− h(Y 2

k`|U`)
]

(11.250)

≤ min
k=1,...,K2
t=1,...,KZ

L∑

`=1

1

2
log

P` + Λ2
k,``

P` + ΛZ
t,``

+
[
h(Zt`|U`)− h(Y 2

k`|U`)
]

(11.251)

where (11.251) comes from the fact that

h(Y 2
k`)− h(Zt`) (11.252)

is maximized by Gaussian distribution which can be shown by using the entropy

power inequality [42, 43]. We now use Theorem 11.9. For that purpose, we introduce
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Λ∗Y and Λ∗Z which satisfy

Λ1
j � Λ∗Y � Λ2

k � Λ∗Z � ΛZ
t (11.253)

for any (j, k, t) triple, and in particular, for the diagonal, elements of these matrices,

we have

Λ1
j,`` ≤ Λ∗Y,`` ≤ Λ2

k,`` ≤ Λ∗Z,`` ≤ ΛZ
t,`` (11.254)

for any (j, k, t, `). Thus, due to Theorem 11.9, for any selection of {(U`, X`)}L`=1, we

have

P ∗` ≤ P` (11.255)

h(Zt`|U`)− h(Y 2
k`|U`) ≤

1

2
log

P ∗` + ΛZ
t,``

P ∗` + Λ2
k,``

(11.256)

h(Y 2
k`|U`)− h(Y 1

j`|U`) ≥
1

2
log

P ∗` + Λ2
k,``

P ∗` + Λ1
j,``

(11.257)

for any (k, j, t, `). Using (11.256) in (11.251) yields

R2 ≤ min
k=1,...,K2
t=1,...,KZ

L∑

`=1

1

2
log

P` + Λ2
k,``

P ∗` + Λ2
k,``

− 1

2
log

P` + ΛZ
t,``

P ∗` + ΛZ
t,``

(11.258)

By defining P ∗` = β`P` and β̄` = 1 − β`, ` = 1, . . . , L, where β` ∈ [0, 1] due to

(11.255), we get the desired bound on R2 given in (11.72).

We now bound R1. We start with (11.64). Using the Markov chain U` →
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X` → Y 1
j` → Y 2

k`, we have

R1 ≤ min
j=1,...,K1
k=1,...,K2

L∑

`=1

I(X`;Y
1
j`|U`)− I(X`;Y

2
k`|U`) (11.259)

= min
j=1,...,K1
k=1,...,K2

L∑

`=1

h(Y 1
j`|U`)− h(Y 2

k`|U`)−
1

2
log

Λ1
j,``

Λ2
k,``

(11.260)

≤ min
j=1,...,K1
k=1,...,K2

L∑

`=1

1

2
log

P ∗` + Λ1
j,``

P ∗` + Λ2
k,``

− 1

2
log

Λ1
j,``

Λ2
k,``

(11.261)

= min
j=1,...,K1
k=1,...,K2

L∑

`=1

1

2
log

(
1 +

β`P`
Λ1
j,``

)
− 1

2
log

(
1 +

β`P`
Λ2
k,``

)
(11.262)

where (11.261) is due to (11.257). Since (11.262) is the desired bound on R1 given

in (11.71), this completes the proof.

11.5.10 Proof of Theorem 11.11

According to Theorem 11.5, for any selection of (U,X), there exists a K∗ � S such

that

h(X + N∗|U)− h(X + N2|U) =
1

2
log
|K∗ + Σ∗|
|K∗ + Σ2|

(11.263)

h(X + N∗|U)− h(X + N1|U) ≥ 1

2
log
|K∗ + Σ∗|
|K∗ + Σ1|

(11.264)

for any Σ1 such that Σ1 � Σ2. Furthermore, K∗ satisfies [19]

K∗ � J−1(X + N∗|U)−Σ∗ (11.265)
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Equations (11.263) and (11.264) already imply

h(X + N2|U)− h(X + N1|U) ≥ 1

2
log
|K∗ + Σ2|
|K∗ + Σ1|

(11.266)

for any Σ1 such that Σ1 � Σ2, which is the desired inequality in (11.76).

We now prove (11.75). For that purpose, we note that (11.265) implies

K∗ � J−1(X + N|U)−ΣN (11.267)

for any Gaussian random vector N, independent of (U,X), with covariance matrix

ΣN such that ΣN � Σ∗ because of Lemma 5.16. The order in (11.267) is equivalent

to

J(X + N|U) � (K∗ + ΣN)−1, Σ∗ � ΣN (11.268)

Now, we can obtain (11.75) as follows

h(X + NZ |U)− h(X + N2|U)

= h(X + NZ |U)− h(X + N∗|U) + h(X + N∗|U)− h(X + N2|U) (11.269)

= h(X + NZ |U)− h(X + N∗|U) +
1

2
log
|K∗ + Σ∗|
|K∗ + Σ2|

(11.270)

=
1

2

∫ ΣZ

Σ∗
J(X + N|U) dΣN +

1

2
log
|K∗ + Σ∗|
|K∗ + Σ2|

(11.271)

≤ 1

2

∫ ΣZ

Σ∗
(K∗ + ΣN)−1dΣN +

1

2
log
|K∗ + Σ∗|
|K∗ + Σ2|

(11.272)
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≤ 1

2
log
|K∗ + ΣZ |
|K∗ + Σ2|

(11.273)

where (11.270) is due to (11.263), (11.271) is obtained by using Lemma 5.17, and

(11.272) comes from Lemma 5.8 by noting (11.268). Since (11.273) is the desired

inequality in (11.75), this completes the proof.

11.5.11 Proof of Theorem 11.12

We first establish the desired bound on R2 given in (11.78) as follows

R2 ≤ min
t=1,...,KZ

I(U ; Y2)− I(U ; Zt) (11.274)

= min
t=1,...,KZ

h(Y2)− h(Zt) +
[
h(Zt|U)− h(Y2|U)

]
(11.275)

≤ min
t=1,...,KZ

1

2
log
|S + Σ2|
|S + ΣZ

t |
+
[
h(Zt|U)− h(Y2|U)

]
(11.276)

where (11.274) comes from Theorem 11.7 by noting the Markov chain U → Y2 →

Zt, and (11.276) can be obtained by using the worst additive noise lemma, i.e.,

Lemma 11.2, as it is done in the proof of Theorem 11.6. We now use Theorem 11.11.

According to Theorem 11.11, for any selection of (U,X), there exists a positive semi-

definite matrix K such that K � S and

h(Zt|U)− h(Y2|U) ≤ 1

2
log
|K + ΣZ

t |
|K + Σ2| (11.277)

h(Y2|U)− h(Y1
j |U) ≥ 1

2
log
|K + Σ2|
|K + Σ1

j |
(11.278)
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for any (j, t) pair. Using (11.277) in (11.276) yields

R2 ≤ min
t=1,...,KZ

1

2
log
|S + Σ2|
|K + Σ2| −

1

2
log
|S + ΣZ

t |
|K + ΣZ

t |
(11.279)

which is the desired bound on R2 given in (11.78).

We now obtain the desired bound on R1 given in (11.77) as follows

R1 ≤ min
j=1,...,K1

I(X; Y1
j |U)− I(X; Y2|U) (11.280)

= min
j=1,...,K1

h(Y1
j |U)− h(Y2|U)− 1

2
log
|Σ1

j |
|Σ2| (11.281)

≤ min
j=1,...,K1

1

2
log
|K + Σ1

j |
|Σ1

j |
− 1

2
log
|K + Σ2|
|Σ2| (11.282)

where (11.280) comes from Theorem 11.7 by noting the Markov chain U → X →

Y1
j → Y2 and (11.282) is obtained by using (11.278). Since (11.282) is the desired

bound on R1 given in (11.77), this completes the proof.
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Chapter 12

Ergodic Secrecy Capacity Region of the Fading Broadcast Channel

12.1 Introduction

In this chapter, we study the two-user fading broadcast channel from a secrecy

point of view. Previous works on this subject are reported in [24, 26, 27, 95–98].

References [26, 27, 95] obtain the ergodic secrecy capacity for the fading wiretap

channel when the channel state information (CSI) of both the legitimate receiver

and the eavesdropper are available at all terminals. The ergodic secrecy capacity

gives the amount of confidential information that the transmitter can send to the

receiver, when the receiver can afford arbitrarily long delays, hence can average

its secrecy rate over all channel realizations. The case where the transmitter has

the CSI of only the legitimate receiver (but not the eavesdropper) is studied in

[24, 95, 96] from the ergodic secrecy perspective. Reference [95] obtains the ergodic

secrecy capacity for a slow-fading channel, and [24, 96] provide achievable rates for

a fast fading channel.

When the receiver is delay-intolerant, the related information theoretic mea-

sure for fading channels is the outage capacity (delay-limited capacity), which is

the amount of information that can be transmitted within a certain time [99]. The

outage probability, and hence, the outage capacity, of the fading wiretap channel is

derived in [26, 97, 98]. The outage probability denotes the fraction of time that the
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legitimate receiver cannot get a pre-specified target secrecy rate.

In this chapter, we study the two-user fading broadcast channel with confi-

dential messages, where the transmitter sends a confidential message to each user

that needs to be kept hidden from the other user. Hence, our work generalizes

[26, 27, 95], where only one of the receivers requires confidential communication, to

a symmetric setting, where both receivers want to have confidential communication

with the transmitter. Similar to [26, 27], we assume that the CSI is available to all

parties perfectly and instantaneously.

We first consider the parallel less noisy broadcast channel with confidential

messages, where, in each sub-channel, one user’s channel is less noisy than the other

user’s channel. We note that, in each sub-channel, the less noisiness order might

be different, hence, the overall channel is not less noisy. The parallel Gaussian

broadcast channel is inherently a parallel less noisy channel, and hence, using the

secrecy capacity region we find, we explicitly evaluate the secrecy capacity region of

the parallel Gaussian broadcast channel by finding the optimal input distribution.

We then consider the ergodic secrecy capacity region of the fading broadcast

channel by assuming that there are no delay constraints, i.e., each receiver can

wait arbitrarily long to decode its message enabling the codeword to experience all

possible channel realizations. Consequently, the achievable rate becomes an average

of the rates achievable at all channel states. Moreover, under this scenario, the entire

fading broadcast channel can be viewed as a parallel Gaussian broadcast channel;

each sub-channel corresponding to a particular realization of the channel state. This

observation enables us to obtain the secrecy capacity region of the fading broadcast
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channel by using the capacity results we obtain for parallel Gaussian broadcast

channels. We finally present some numerical results which demonstrate that fading

enables both users to have positive secrecy rates which is impossible for scalar non-

fading Gaussian broadcast channels.

12.2 Parallel Less Noisy Broadcast Channels with Confidential Mes-

sages

We consider the parallel less noisy broadcast channel, where in each sub-channel,

one user’s channel is less noisy with respect to the other user. However, the overall

channel is not less noisy for any one of the users, as discussed earlier. The transmitter

sends an individual confidential message to each user that needs to be kept hidden

from the other user, in addition to a common message that needs to be delivered to

both users.

This channel consists of one input alphabet x = (x1, . . . , xL) ∈ X = X1× . . .×

XL and two output alphabets yj = (yj1, . . . , yjL) ∈ Yj = Yj1 × . . . × YjL, j = 1, 2,

where x`, ` = 1, . . . , L, is the input to the `th sub-channel and yj`, j = 1, 2, ` ∈

{1, . . . , L}, is the output of the jth user’s `th sub-channel. The channel transition

probability is given by

p(yn11, y
n
21, . . . , y

n
1L,y

n
2L|xn1 , . . . , xnL) =

L∏

`=1

n∏

i=1

p(y1`,i, y2`,i|x`,i) (12.1)

which implies that the sub-channels are all independent and each sub-channel is
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memoryless. Furthermore, in each sub-channel, one user’s channel is less noisy with

respect to the other user, i.e., for any random variable U satisfying the Markov chain

U → X` → (Y1`, Y2`), we have [3]

I(U ;Y1`) > I(U ;Y2`), ` ∈ S1 (12.2)

I(U ;Y2`) > I(U ;Y1`), ` ∈ S2 (12.3)

where Sj, j = 1, 2, is the set of the sub-channel indices in which user j’s channel is

less noisy. We remark that as long as Sj 6= {1, . . . , L}, j = 1, 2, the overall channel

is not less noisy for any one of the users.

An (n, 2nR0 , 2nR1 , 2nR2) code for this channel consists of three message sets

W0 =
{

1, . . . , 2nR0
}

, Wj =
{

1, . . . , 2nRj
}
, j = 1, 2, one encoder f : W0 × W1 ×

W2 → X n
1 × . . . × X n

L and two decoders, one at each receiver, gj : Ynj1 × . . .YnjL →

W0 × Wj, j = 1, 2. The probability of error for the jth user is defined as P n
e,j =

Pr
[
(Ŵ0, Ŵj) 6= (W0,Wj)

]
, j = 1, 2, where (Ŵ0, Ŵj) is the output of the jth user’s

decoder. The secrecy of the code is measured through equivocation rates which are

1
n
H(W1|Y n

2 ), 1
n
H(W2|Y n

1 ).

A rate tuple (R0, R1, R2) is said to be achievable if there exist codes such that

limn→∞ P
n
e,j = 0, j = 1, 2, and

lim
n→∞

1

n
H(W1|Y n

2 ) ≥ R1, lim
n→∞

1

n
H(W2|Y n

1 ) ≥ R2 (12.4)

Thus, our focus will be on the perfect secrecy rates.
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The secrecy capacity region of this channel is given by the following theorem.

Theorem 12.1 The secrecy capacity region of the parallel less noisy broadcast chan-

nel is given by the union of the rate tuples (R0, R1, R2) satisfying

R0 ≤ min

[
L∑

`=1

I(U`;Y1`),
L∑

`=1

I(U`;Y2`)

]
(12.5)

R1 ≤
∑

`∈S1

[
I(X`;Y1`|U`)− I(X`;Y2`|U`)

]
(12.6)

R2 ≤
∑

`∈S2

[
I(X`;Y2`|U`)− I(X`;Y1`|U`)

]
(12.7)

where the union is over all distributions of the form
∏L

`=1 p(u`, x`).

The proof of this theorem is given in Appendix 12.7.1.

Remark 12.1 The capacity achieving scheme uses all of the sub-channels to trans-

mit the common message on which, of course, no secrecy constraint is imposed. The

confidential messages of user j are sent over the sub-channels where user j has a

less noisy observation with respect to the other user, i.e., over sub-channels in Sj.

Remark 12.2 The region given in Theorem 12.1 remains unchanged if we let ar-

bitrary correlation among {u`, x`}L`=1 because all of the expressions in Theorem 12.1

depend on one of the distributions {p(u`, x`, y1`, y2`)}L`=1, but not on any joint dis-

tributions across sub-channels. Thus, the use of independent inputs for each sub-

channel is capacity achieving.

We now consider a special instance of this channel, where in each sub-channel,

one of the users’ channel is degraded with respect to the other user. For this so-called
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parallel degraded broadcast channel, we have,

X` → Y1` → Y2`, ` ∈ S1 (12.8)

X` → Y2` → Y1`, ` ∈ S2 (12.9)

We note that the channels satisfying (12.8)-(12.9) satisfy (12.2)-(12.3). We also note

that since the user which has degraded channel can be different in each sub-channel,

the overall channel is not degraded for any one of the users. In other words, as

long as Sj 6= {1, . . . , L}, j = 1, 2, the overall channel is not degraded. The secrecy

capacity region of the parallel degraded broadcast channel is given as follows.

Corollary 12.1 The secrecy capacity region of the parallel degraded broadcast chan-

nel is given by the union of the rate tuples (R0, R1, R2) satisfying

R0 ≤ min

[
L∑

`=1

I(U`;Y1`),
L∑

`=1

I(U`;Y2`)

]
(12.10)

R1 ≤
∑

`∈S1

I(X`;Y1`|U`, Y2`) (12.11)

R2 ≤
∑

`∈S2

I(X`;Y2`|U`, Y1`) (12.12)

where the union is over all distributions of the form
∏L

`=1 p(u`, x`).

We now specialize the result in Corollary 12.1 to the case where there is no

common message to be transmitted.

Corollary 12.2 The secrecy capacity region of the parallel degraded broadcast chan-

nel without a common message is given by the union of the rate pairs (R1, R2) sat-
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isfying

R1 ≤
∑

`∈S1

I(X`;Y1`|Y2`) (12.13)

R2 ≤
∑

`∈S2

I(X`;Y2`|Y1`) (12.14)

where the union is over all distributions of the form
∏L

`=1 p(x`).

12.3 Parallel Gaussian Broadcast Channels

We now consider the two-user parallel Gaussian broadcast channel with L indepen-

dent sub-channels. The `th, ` ∈ {1, . . . , L}, sub-channel is described by

Y1`,i = h1`X`,i +N1`,i (12.15)

Y2`,i = h2`X`,i +N2`,i (12.16)

where for any given ` ∈ {1, . . . , L} and j = 1, 2, the noise process {Nj`,i}ni=1 has

components which are i.i.d. Gaussian with zero-mean and unit-variance. Moreover,

the noise processes of different sub-channels are independent implying the indepen-

dence of the sub-channels. We have an average power constraint on the input signal

as

1

n

n∑

i=1

L∑

`=1

x2
`,i ≤ P (12.17)

We want to obtain the secrecy capacity region of this channel. To this end, we
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first show that the parallel Gaussian broadcast channel is an instance of the parallel

degraded broadcast channel described in the previous section in Corollaries 12.1

and 12.2. To see this point, we argue that the secrecy capacity region of the parallel

Gaussian broadcast channel is invariant with respect to the correlation between

N1`,i and N2`,i. Since each user decodes its own message and gets information about

the other user’s message only through its own observation, the only probability

distribution that matters is the marginal distribution of the channel, i.e., p(y1`,i|x`,i)

and p(y2`,i|x`,i), but not the joint distribution p(y1`,i, y2`,i|x`,i). Hence, the correlation

between N1`,i and N2`,i for any given ` has no effect on the secrecy capacity region

of the parallel Gaussian broadcast channel [26]. Therefore, we can introduce an

equivalent Gaussian channel which is defined for ` ∈ S1 by

Y1`,i = h1`X`,i +N1`,i, Ỹ2`,i =
h2`

h1`

Y1`,i + Ñ2`,i (12.18)

and for ` ∈ S2 by

Y2`,i = h2`X`,i +N2`,i Ỹ1`,i =
h1`

h2`

Y2`,i + Ñ1`,i (12.19)

where the sets S1 and S2 are given by

S1 = {` : h1` > h2`} , S2 = {` : h2` > h1`} (12.20)

and Ñ1`,i, Ñ2`,i are Gaussian with zero-mean and variances 1 − (h1`/h2`)
2, 1 −

(h2`/h1`)
2, respectively, and they are independent of each other and the rest of
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the random variables. Since the channel described by (12.18)-(12.19) satisfies the

degradedness conditions in (12.8)-(12.9), it is a parallel degraded broadcast chan-

nel. Thus, the secrecy capacity region of the parallel Gaussian broadcast channel

is given by Corollaries 12.1 and 12.2. Moreover, since the channels described by

(12.15)-(12.16) and (12.18)-(12.19) have the same marginal distributions, they have

the same secrecy capacity region.

Theorem 12.2 The secrecy capacity region of the parallel Gaussian broadcast chan-

nel is given by the union of the rate pairs (R1, R2) satisfying

R1 ≤
1

2

∑

`∈S1

[
log(1 + α1`h

2
1`)− log(1 + α1`h

2
2`)
]

(12.21)

R2 ≤
1

2

∑

`∈S2

[
log(1 + α2`h

2
2`)− log(1 + α2`h

2
1`)
]

(12.22)

where the union is over all β ∈ [0, 1], and {αj`}`∈Sj , j = 1, 2, are defined by

α1` =


−1

2

(
1

h2
1`

+
1

h2
2`

)
+

1

2

√(
1

h2
1`

− 1

h2
2`

)2

+
2P

λ1

(
1

h2
2`

− 1

h2
1`

)


+

(12.23)

α2` =


−1

2

(
1

h2
1`

+
1

h2
2`

)
+

1

2

√(
1

h2
1`

− 1

h2
2`

)2

+
2P

λ2

(
1

h2
1`

− 1

h2
2`

)


+

(12.24)

where (x)+ = max(0, x), and λ1, λ2 are selected to satisfy

∑

`∈S1

α1` = βP,
∑

`∈S2

α2` = (1− β)P (12.25)

Remark 12.3 If we set one of the users’ secrecy rate to zero, we can recover the

619



secrecy capacity of the parallel Gaussian wiretap channel found in [26, 27].

The proof of this theorem is given in Appendix 12.7.2. The proof consists of

two steps. In the first step, we identify the input distribution maximizing the terms

in Corollary 12.2, which is Gaussian [49]. Secondly, we compute the optimal power

allocation to obtain the boundary of the capacity region. The resulting optimal

power allocation scheme is reminiscent of the water-filling solution, however, here

we use the difference of the noise levels in each sub-channel, as the “base of the tank”

on which we water-fill. More precisely, the water-filling solution here considers the

difference

∣∣∣∣
1

h2
1`

− 1

h2
2`

∣∣∣∣ (12.26)

which can be viewed as the difference between the effective noise levels of the two

users in sub-channel `, because h2
j` is the signal-to-noise ratio of the jth user in

the `th sub-channel. Consequently, if this difference is sufficiently large, then the

corresponding sub-channel is used, otherwise it is not used.
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12.4 Ergodic Secrecy Capacity Region of the Fading Broadcast Chan-

nel

We now consider the fading broadcast channel which is given by

Y1,i = h1,iXi +N1,i (12.27)

Y2,i = h2,iXi +N2,i (12.28)

where {Nj,i}ni=1, j = 1, 2, is an i.i.d. Gaussian random sequence with zero-mean

and unit-variance. We assume that the fading processes {hj,i}ni=1, j = 1, 2, are

ergodic and stationary. We have the power constraint on the channel input as

(1/n)
∑n

i=1 x
2
i ≤ P . The joint cumulative probability distribution of (h1,i, h2,i) is

denoted by F (h).

We want to obtain the secrecy capacity region of this fading broadcast chan-

nel. We assume that CSI of both users hi = (h1,i, h2,i) is instantaneously known by

all parties. We further assume that none of the users has a delay constraint on the

transmission, thus the notion of ergodic capacity can be used. To find the corre-

sponding secrecy capacity region, we invoke the equivalence of the fading broadcast

channel channel with the parallel Gaussian broadcast channel which was studied

in Section 12.3. Thus, we use the secrecy capacity region of the parallel Gaussian

broadcast channel given in Theorem 12.2 to obtain the ergodic secrecy capacity of

the fading broadcast channel.

Corollary 12.3 The ergodic secrecy capacity region of the fading broadcast channel
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is given by the union of the rate pairs (R1, R2) satisfying

R1 ≤
1

2

∫

H1

[
log
(
1 + α1(h)h2

1

)
− log

(
1 + α1(h)h2

2

)]
dF (h) (12.29)

R2 ≤
1

2

∫

H2

[
log
(
1 + α2(h)h2

2

)
− log

(
1 + α2(h)h2

1

)]
dF (h) (12.30)

where the union is over all β ∈ [0, 1], and the regions H1,H2 are defined by

H1 = {h : h1 > h2} , H2 = {h : h2 > h1} (12.31)

Here, {αj(h)}2
j=1 are also given by (12.23)-(12.24) and λ1, λ2 are selected to satisfy

∫

H1

α1(h)dF (h) = βP,

∫

H2

α2(h)dF (h) = (1− β)P (12.32)

Remark 12.4 If we set one of the users’ secrecy rate to zero, we can recover the

ergodic secrecy capacity of the fading wiretap channel found in [26, 27].

Remark 12.5 We only assumed that the fading processes {hj,i}ni=1, j = 1, 2, are

ergodic and stationary, and did not impose any restrictions on the correlation struc-

ture. Consequently, Corollary 12.3 gives the secrecy capacity region for any ergodic

and stationary fading process.

This corollary is a direct consequence of Theorem 12.2. To adopt the corre-

sponding result, we need to identify the channel states which are equivalent to the

sub-channels of a parallel Gaussian broadcast channel. Thus, we define the sets

Hj, j = 1, 2, which are similar to Sj, j = 1, 2. Consequently, when the first (resp.
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second) user has a stronger channel in the sense that h1 > h2 (resp. h2 > h1), first

(resp. second) user’s confidential message is transmitted. Moreover, using Theo-

rem 12.2, we also obtain the optimal power allocations α1(h) and α2(h) that give

the boundary of the secrecy capacity region.

12.5 Numerical Results

We now present some numerical illustrations for the ergodic secrecy capacity region.

We select h1, h2 to be independent Rayleigh random variables. Consequently, the

powers of the channel gains, i.e., h2
1 and h2

2, are exponential random variables with

mean values σ1 and σ2, respectively. The difference between these mean values can

be viewed as a measure of the relative strengths of the users’ channels on average.

Thus, we expect that the user that has a larger mean value would have larger secrecy

rates. In Figure 12.1, ergodic secrecy capacity region is given for two different sets

of {σ1, σ2}. For the first set, we have σ1 = σ2 = 1 which results in a symmetric

ergodic secrecy capacity region. For the second set, we select σ1 = 1, σ2 = 0.5. Since

user 2’s average signal-to-noise ratio is lower in this case, the maximum secrecy rate

of user 1 is larger while the maximum secrecy rate of user 2 is lower.

To observe the effect of optimal power allocation, we compute the achievable

secrecy region obtained by using a uniform power allocation, i.e., α1(h) (resp. α2(h))

is selected to be constant over H1 (resp. H2). The corresponding plot is given in

Figure 12.2. We note that the optimal power allocation offers a significant advantage

over the suboptimal uniform power allocation. This also implies that the availability
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Figure 12.1: Ergodic secrecy capacity region for different mean values of the fading
distribution. The average power, P , is 5 dB.
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Figure 12.2: Comparison of the ergodic secrecy capacity region and an achievable
secrecy region obtained by using a uniform power allocation. The average power,
P , is 5 dB.
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of the CSI at the transmitter results in a noticeable secrecy rate gain.

12.6 Conclusions

In this chapter, we study the two-user fading broadcast channel with confidential

messages. We first obtain the secrecy capacity region of the parallel less noisy

broadcast channel, where, in each sub-channel, one of the users is less noisy with

respect to the other user. This model subsumes the parallel Gaussian broadcast

channel, enabling us to obtain the secrecy capacity region of the parallel Gaussian

channel. Finally, using the equivalence between the parallel Gaussian broadcast

channel and the fading broadcast channel, we establish the ergodic secrecy capacity

region of the fading broadcast channel.

12.7 Appendix

12.7.1 Proof of Theorem 12.1

12.7.1.1 Achievability

We prove the achievability of the region given Theorem 12.1. We use an encoding

scheme where the common message is sent through all subchannels and the jth

user’s confidential messages is sent through the subchannels in Sj, j = 1, 2. Our

achievable scheme uses a stochastic encoder for each user’s confidential message.

This stochastic encoder associates each confidential message with many codewords
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in order to confuse the other user. Fix the probability distribution

L∏

`=1

p(u`, x`)p(y1`, y2`|x`) (12.33)

Codebook generation:

• Generate 2nR0 length-n sequences u` through p(u`) =
∏n

i=1 p(u`,i) and index

them as u`(w0) where w0 ∈
{

1, . . . , 2nR0
}

for ` = 1, . . . , L.

• For each ` ∈ S1 and corresponding u`, generate 2n(R1+R̃1`) length-n sequences

x` through p(x`|u`) =
∏n

i=1 p(x`,i|u`,i) and index them as x`(w1, w̃1`) where

w1 ∈
{

1, . . . , 2nR1
}

, w̃1` ∈
{

1, . . . , 2nR̃1`

}
.

• For each ` ∈ S2 and corresponding u`, generate 2n(R2+R̃2`) length-n sequences

x` through p(x`|u`) =
∏n

i=1 p(x`,i|u`,i) and index them as x`(w2, w̃2`) where

w2 ∈
{

1, . . . , 2nR2
}

, w̃2` ∈
{

1, . . . , 2nR̃2`

}
.

• Furthermore, we set the rates of dummy codewords as

R̃1` = I(X`;Y2`|U`), ` ∈ S1 (12.34)

R̃2` = I(X`;Y1`|U`), ` ∈ S2 (12.35)

Encoding:

If (w0, w1, w2) is the message tuple to be sent, then randomly pick the dummy

message indices {w̃1`}`∈S1 , {w̃2`}`∈S2 and transmit x`(w0, w1, w̃1`), x`(w0, w2, w̃2`)

through the subchannels in S1 and S2, respectively.
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Decoding:

• Each user decodes the common message using all its channel outputs and

employs joint typical decoding. Consider user 1. If w0 is the unique message

for which we have (u`(w0),y1`) ∈ Anε for all ` ∈ {1, . . . , L},where Anε is the

set of typical sequences, then it is decoded as w0. For the error analysis, we

define the events

E1
w0,`

= {(u`(w0),y1`) ∈ Anε } , ∀` ∈ 1, . . . , L (12.36)

E1
w0

=
⋂

`∈{1,...,L}

E1
w0,`

(12.37)

Assuming w0 = 1 is transmitted, error probability is given by

P n
e = Pr

[
E1,c

1 ∪ E1
2 ∪ . . . ∪ E1

2nR0

]
(12.38)

≤ Pr
[
E1,c

1

]
+

2nR0∑

j=1
j 6=1

Pr
[
E1
j

]
(12.39)

= Pr
[
E1,c

1

]
+

2nR0∑

j=1
j 6=1

L∏

`=1

Pr
[
E1
j,`

]
(12.40)

where (12.39) comes from the union bound and (12.40) is a consequence of

the independence of subchannels and the codebooks. Since w0 = 1, we have

Pr [(u`(1),y1`) /∈ Anε ] ≤ εn
L

for all ` ∈ {1, . . . , L} which implies

Pr
[
E1,c

1

]
= Pr

[(
∩L`=1E1

1,`

)c] ≤
L∑

`=1

Pr
[
E1,c

1,`

]
≤ εn (12.41)
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Furthermore, using (12.41) and the following bound

Pr
[
E1
j,`

]
≤ 2−n[I(U`;Y1`)−ε′n] (12.42)

in (12.40), we conclude that the rates satisfying

R0 ≤
L∑

`=1

I(U`;Y1`) (12.43)

can be decoded by user 1 with vanishingly small error probability. Similarly,

we can show that the common message rate needs to satisfy

R0 ≤
L∑

`=1

I(U`;Y2`) (12.44)

• User 1 decodes w1 using the subchannels in S1. Assume that it has decoded

w0 correctly. Then, if w1 is the unique message for which we have

{∃w̃1 : (x1`(w0, w1, w̃1),y1`) ∈ Anε } (12.45)

for all ` ∈ S1, then it is decoded as w1. We define the events

Ew1,` = {∃w̃1 : (x1`(w0, w1, w̃1),y1`) ∈ Anε } , ` ∈ S1 (12.46)

and Ew1 =
⋂
`∈S1 Ew1,`. Assume w1 = 1 is transmitted. The error probability
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is given by

P n
e = Pr [Ec1 ∪ E2 ∪ . . . ∪ E2nR1 ] (12.47)

≤ Pr [Ec1 ] +
2nR1∑

w1=2

Pr [Ew1 ] (12.48)

= Pr [Ec1 ] +
2nR1∑

w1=2

∏

`∈S1

Pr [Ew1,`] (12.49)

where (12.48) is obtained by using the union bound, (12.49) is due to the

independence of subchannels and the codebooks. Since w1 = 1, we have

Pr [∃w̃1 : (x1`(w0, 1, w̃1),y1`) ∈ Anε ] ≤ εn
|S1|

(12.50)

where |S1| denotes the cardinality of the set S1, and consequently, we have

Pr [Ec1 ] ≤ εn (12.51)

We now consider an arbitrary term in (12.49):

Pr [Ew1,`] = Pr [∃w̃1 : (x1`(w0, w1, w̃1),y1`) ∈ Anε ] (12.52)

≤
2nR̃1`∑

w̃1=1

Pr [(x1`(w0, w1, w̃1),y1`) ∈ Anε ] (12.53)

≤
2nR̃1`∑

w̃1=1

2−n[I(X`;Y1`|U`)−εn] (12.54)

= 2n[R̃1`−I(X`;Y1`|U`)+εn] (12.55)
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Therefore, using (12.51) and (12.55) in (12.49), we get

P n
e ≤ εn + 2nR12n

∑
`∈S1

[R̃1`−I(X`;Y1`|U`)+εn] (12.56)

from which we need the following condition for reliable communication,

R1 +
∑

`∈S1

R̃1` ≤
∑

`∈S1

I(X`;Y1`|U`) (12.57)

which, after using R̃1` s given in (12.34), is equivalent to

R1 ≤
∑

`∈S1

I(X`;Y1`|U`)−
∑

`∈S1

I(X`;Y2`|U`) (12.58)

Similarly, we can show that

R2 ≤
∑

`∈S2

I(X`;Y2`|U`)−
∑

`∈S2

I(X`;Y1`|U`) (12.59)

is required for reliable communication of user 2.

Equivocation computation:

We now show that the coding scheme described above ensures that the mes-

sages are transmitted in perfect secrecy. We compute the equivocation rate for user
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1:

H(W1|Y n
2 ) ≥ H(W1|Y n

2 , U
n) (12.60)

= H
(
W1| {Y n

2`, U
n
` }`∈S1

)
(12.61)

= H
(
W1, {Y n

2`}`∈S1 | {U
n
` }`∈S1

)
−H

(
{Y n

2`}`∈S1 | {U
n
` }`∈S1

)
(12.62)

= H
(
W1, {Xn

` }`∈S1 , {Y
n

2`}`∈S1 | {U
n
` }`∈S1

)
−H

(
{Y n

2`}`∈S1 | {U
n
` }`∈S1

)

−H
(
{Xn

` }`∈S1 |W1, {Y n
2`}`∈S1 , {U

n
` }`∈S1

)
(12.63)

= H
(
{Xn

` }`∈S1 | {U
n
` }`∈S1

)
+H

(
W1, {Y n

2`}`∈S1 | {U
n
` }`∈S1 , {X

n
` }`∈S1

)

−H
(
{Y n

2`}`∈S1 | {U
n
` }`∈S1

)
−H

(
{Xn

` }`∈S1 |W1, {Y n
2`}`∈S1 , {U

n
` }`∈S1

)
(12.64)

≥ H
(
{Xn

` }`∈S1 | {U
n
` }`∈S1

)
− I

(
{Xn

` }`∈S1 ; {Y n
2`}`∈S1 | {U

n
` }`∈S1

)

−H
(
{Xn

` }`∈S1 |W1, {Y n
2`}`∈S1 , {U

n
` }`∈S1

)
(12.65)

where (12.61) follows from the fact that W1 is transmitted through the subchan-

nels in S1, i.e., it is independent of {Y n
2`, U

n
` }`∈S2 . We treat each term of (12.65)

separately. For the first term, we have

H
(
{Xn

` }`∈S1 | {U
n
` }`∈S1

)
= nR1 + n

∑

`∈S1

R̃1` (12.66)

because given {Un
` }`∈S1 , {Xn

` }`∈S1 can take 2nR1+n
∑
`∈S1

R̃1` values with equal prob-
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ability. The second term of (12.65) can be bounded as

I
(
{Xn

` }`∈S1 ; {Y n
2`}`∈S1 | {U

n
` }`∈S1

)

≤
∑

`∈S1

H (Y n
2`|Un

` )−H
(
{Y n

2`}`∈S1 | {U
n
` }`∈S1 , {X

n
` }`∈S1

)
(12.67)

=
∑

`∈S1

H (Y n
2`|Un

` )−H (Y n
2`|Un

` , X
n
` ) (12.68)

=
∑

`∈S1

I (Xn
` ;Y n

2`|Un
` ) (12.69)

where (12.67) is due to the fact that conditioning cannot increase entropy and (12.68)

is due to the independence of the subchannels. More precisely, the latter follows

from the Markov chain

(
{Y n

2`}`∈{1,...,L}
6̀=j

, {Un
` }`∈{1,...,L} , {Xn

` }`∈{1,...,L}
`6=j

)
→ Xn

j → Y n
2j (12.70)

We can further bound each summand in (12.69) as

I (Xn
` ;Y n

2`|Un
` ) ≤ nI(X`;Y2`|U`) + εn (12.71)

using the approach in [2]. Consequently, (12.69) is bounded as

I
(
{Xn

` }`∈S1 ; {Y n
2`}`∈S1 | {U

n
` }`∈S1

)
≤ n

∑

`∈S1

I (X`;Y2`|U`) + εn (12.72)

We now bound the last term in (12.65). To this end, assume user 2 wants to decode

{Xn
` }`∈S1 using its observation over all subchannels in S1 and its side information
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W1. Since given W1 = w1, X` can take at most 2nI(X`;Y`|U`) values, user 2 can decode

them with vanishingly small error probability. Thus, using Fano’s lemma, we get

H
(
{Xn

` }`∈S1 |W1, {Y n
2`}`∈S1 , {U

n
` }`∈S1

)
≤ εn (12.73)

Plugging (12.66), (12.72) and (12.73) into (12.65), we get

H(W1|Y n
2 ) ≥ nR1 + n

∑

`∈S1

R̃1,` − n
∑

`∈S1

I (X`;Y2`|U`)− εn (12.74)

= nR1 − εn (12.75)

where in the last step we use (12.34). Hence, the proposed encoding scheme can

achieve perfect secrecy for user 1. Following similar lines, we can prove that the

same holds for user 2 as well, completing the proof.

12.7.1.2 Converse

We now provide the converse part of the proof. We first introduce some notation:

Y i−1
1 =

(
Y i−1

11 , . . . , Y i−1
1L

)
(12.76)

Y n
2,i+1 =

(
Y n

21,i+1, . . . , Y
n

2L,i+1

)
(12.77)

Y1[1:`−1],i =
(
Y11,i, . . . , Y1(`−1),i

)
(12.78)

Y2[`+1:L],i =
(
Y2(`+1),i, . . . , Y2L,i

)
(12.79)

(12.80)
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We define the following auxiliary random variables

U`,i = W0Y1[1:`−1],iY2[`+1:L],iY
i−1

1 Y n
2,i+1, ` = 1, . . . , L i = 1, . . . , n (12.81)

which satisfy the Markov chain

U`,i → X`,i → (Y1`,i, Y2`,i) (12.82)

We start with the common message rate

nR0 = H(W0) (12.83)

≤ I(W0;Y n
1 ) + εn (12.84)

=
n∑

i=1

I(W0;Y1,i|Y i−1
1 ) + εn (12.85)

=
n∑

i=1

L∑

`=1

I(W0;Y1`,i|Y i−1
1 , Y1[1:`−1],i) + εn (12.86)

≤
n∑

i=1

L∑

`=1

I(W0, Y
i−1

1 , Y1[1:`−1],i;Y1`,i) + εn (12.87)

≤
n∑

i=1

L∑

`=1

I(W0, Y
i−1

1 , Y1[1:`−1],i, Y
n

2,i+1, Y2[`+1:L],i;Y1`,i) + εn (12.88)

=
n∑

i=1

L∑

`=1

I(U`,i;Y1`,i) + εn (12.89)

where (12.84) follows from Fano’s lemma, (12.85) and (12.86) are due to the chain

rule, (12.87) comes from the inequality I(A;B|C) ≤ I(A,C;B), (12.88) follows from

the inequality I(A;B) ≤ I(A,C;B) and (12.89) comes from the definition of U`,i in
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(12.82). Similarly, we can obtain

nR0 ≤
n∑

i=1

L∑

`=1

I(U`,i;Y2`,i) + εn (12.90)

We now consider the secrecy rate of the first user as follows

nR1 ≤ H(W1|Y n
2 ) (12.91)

≤ H(W1,W0|Y n
2 ) (12.92)

= H(W1|Y n
2 ,W0) +H(W0|Y n

2 ) (12.93)

≤ H(W1|Y n
2 ,W0) + ε′n (12.94)

= H(W1|W0)− I(W1;Y n
2 |W0) + ε′n (12.95)

≤ I(W1;Y n
1 |W0)− I(W1;Y n

2 |W0) + εn (12.96)

=
n∑

i=1

I(W1;Y1,i|W0, Y
i−1

1 )−
n∑

i=1

I(W1;Y2,i|W0, Y
n

2,i+1) + εn (12.97)

=
n∑

i=1

I(W1, Y
n

2,i+1;Y1,i|W0, Y
i−1

1 )−
n∑

i=1

I(W1, Y
i−1

1 ;Y2,i|W0, Y
n

2,i+1) + εn (12.98)

=
n∑

i=1

I(W1;Y1,i|W0, Y
i−1

1 , Y n
2,i+1)−

n∑

i=1

I(W1;Y2,i|W0, Y
n

2,i+1, Y
i−1

1 ) + εn (12.99)

where (12.94) and (12.96) follow from Fano’s lemma, (12.97) is due to the chain rule

and (12.98) and (12.99) come from the following inequalities:

n∑

i=1

I(Y n
2,i+1;Y1,i|W0,W1, Y

i−1
1 ) =

n∑

i=1

I(Y i−1
1 ;Y2,i|W0,W1, Y

n
2,i+1) (12.100)

n∑

i=1

I(Y n
2,i+1;Y1,i|W0, Y

i−1
1 ) =

n∑

i=1

I(Y i−1
1 ;Y2,i|W0, Y

n
2,i+1) (12.101)
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respectively [3]. We now consider an arbitrary summand in (12.99)

I(W1;Y1,i|W0, Y
i−1

1 , Y n
2,i+1)− I(W1;Y2,i|W0, Y

n
2,i+1, Y

i−1
1 )

=
L∑

`=1

I(W1;Y1`,i|W0, Y
i−1

1 , Y n
2,i+1, Y1[1:`−1],i)

−
L∑

`=1

I(W1;Y2`,i|W0, Y
n

2,i+1, Y
i−1

1 , Y2[`+1:L],i) (12.102)

=
L∑

`=1

I(W1, Y2[`+1:L],i;Y1`,i|W0, Y
i−1

1 , Y n
2,i+1, Y1[1:`−1],i)

−
L∑

`=1

I(W1, Y1[1:`−1],i;Y2`,i|W0, Y
n

2,i+1, Y
i−1

1 , Y2[`+1:L],i) (12.103)

=
L∑

`=1

I(W1;Y1`,i|W0, Y
i−1

1 , Y n
2,i+1, Y1[1:`−1],i, Y2[`+1:L],i)

−
L∑

`=1

I(W1;Y2`,i|W0, Y
n

2,i+1, Y
i−1

1 , Y2[`+1:L],i, Y1[1:`−1],i) (12.104)

=
L∑

`=1

I(W1;Y1`,i|U`,i)−
L∑

`=1

I(W1;Y2`,i|U`,i) (12.105)

≤
∑

`∈S1

I(W1;Y1`,i|U`,i)−
∑

`∈S1

I(W1;Y2`,i|U`,i) (12.106)

≤
∑

`∈S1

I(W1;Y1`,i|U`,i)−
∑

`∈S1

I(W1;Y2`,i|U`,i)

+
∑

`∈S1

[
I(X`,i;Y1`,i|U`,i,W1)− I(X`,i;Y2`,i|U`,i,W1)

]
(12.107)

=
∑

`∈S1

[
I(X`,i;Y1`,i|U`,i)− I(X`,i;Y2`,i|U`,i)

]
(12.108)
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where (12.102) is due to the chain rule, (12.103) and (12.104) come from the iden-

tities

L∑

`=1

I(Y2[`+1:L],i;Y1`,i|W0,W1, Y
i−1

1 , Y n
2,i+1, Y1[1:`−1],i) =

L∑

`=1

I(Y1[1:`−1],i;Y2`,i|W0,W1, Y
n

2,i+1, Y
i−1

1 , Y2[`+1:L],i) (12.109)

L∑

`=1

I(Y2[`+1:L],i;Y1`,i|W0, Y
i−1

1 , Y n
2,i+1, Y1[1:`−1],i) =

L∑

`=1

I(Y1[1:`−1],i;Y2`,i|W0, Y
n

2,i+1, Y
i−1

1 , Y2[`+1:L],i) (12.110)

respectively [3], and in (12.105), we use the definition of U`,i which is given in (12.82).

Since we have

I(W1;Y1`,i|U`,i)− I(W1;Y2`,i|U`,i) < 0, ∀` ∈ S2 (12.111)

due to the Markov chain W1 → X`,i → (Y1`,i, Y2`,i) and the fact that subchannels of

user 2 in S2 are less noisy than those of user 1 (see (12.3)), dropping these negative

terms from the summation in (12.105) results in the loosened bound in (12.106).

Similarly, we have

I(X1`,i;Y1`,i|W1, U`,i)− I(X1`,i;Y2`,i|W1, U`,i) > 0, ∀` ∈ S1 (12.112)

due to the less noisiness condition given in (12.2). Thus, adding positive terms to

(12.106) results in the loosened bound in (12.107). Finally, in (12.108), we use the
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Markov chain W1 → X`,i → (Y1`,i, Y2`,i). Plugging (12.108) into (12.99), we get

nR1 ≤
n∑

i=1

∑

`∈S1

[
I(X`,i;Y1`,i|U`,i)− I(X`,i;Y2`,i|U`,i)

]
(12.113)

Similarly, we can show

nR2 ≤
n∑

i=1

∑

`∈S2

[
I(X`,i;Y2`,i|U`,i)− I(X`,i;Y2`,i|U`,i)

]
(12.114)

We define a uniformly distributed random variable J over {1, . . . , n} and U` = JU`,J ,

X` = X`,J , Y1` = Y1`,J , Y2` = Y2`,J for which we have the Markov chain

U` → X` → (Y1`, Y2`) (12.115)

Using these new definitions, the bounds in (12.89), (12.90), (12.113), (12.114) can

be expressed as

R0 ≤
L∑

`=1

I(U`,J ;Y1`,J |J) + εn ≤
L∑

`=1

I(U`;Y1`) + εn (12.116)

R0 ≤
L∑

`=1

I(U`,J ;Y2`,J |J) + εn ≤
L∑

`=1

I(U`;Y2`) + εn (12.117)

R1 ≤
∑

`∈S1

[
I(X`;Y1`|U`)− I(X`;Y2`|U`)

]
+ εn (12.118)

R2 ≤
∑

`∈S2

[
I(X`;Y2`|U`)− I(X`;Y2`|U`)

]
(12.119)

taking the union of which over all p(u[1:L], x[1:L], y1[1:L], y2[1:L]) gives the outer bound

on the capacity region. However, since each mutual information in these terms
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depends only on p(u`, x`, y1`, y2`) but not on the entire distribution

p(u[1:L], x[1:L], y1[1:L], y2[1:L]) (12.120)

there is no loss in considering the distributions of the form

p(u[1:L], x[1:L], y1[1:L], y2[1:L]) =
L∏

`=1

p(u`, x`, y1`, y2`) (12.121)

This concludes the converse part of the proof.

12.7.2 Proof of Theorem 12.2

We now prove Theorem 12.2. Since the Gaussian channel is an instance of degraded

channels, its capacity region is given by

R1 ≤
∑

`∈S1

I(X`;Y1`|Y2`) (12.122)

R2 ≤
∑

`∈S2

I(X`;Y2`|Y1`) (12.123)

which is due to Corollary 12.2. Maximizing these mutual information terms is

equivalent to maximizing H(Y1`|Y2`) or H(Y2`|Y1`) which happens when (Y1`, Y2`) are

jointly Gaussian. Consequently, the optimum input distribution is Gaussian. Hence,

we select X` ∼ N (0, αj`P ) for ` ∈ Sj (j = 1, 2) where
∑2

j=1

∑
`∈Sj αj` ≤ 1. Using

the equivalent description of the Gaussian channel in (12.18)-(12.19) in conjunction
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with this choice ofinput distributions for the rates (12.122)-(12.123), we get

R1 ≤
1

2

∑

`∈S1

[
log(1 + α1`h

2
1`P )− log(1 + α1`h

2
2`P )

]
(12.124)

R2 ≤
1

2

∑

`∈S2

[
log(1 + α2`h

2
2`P )− log(1 + α2`h

2
1`P )

]
(12.125)

Finally, we need to find the optimal values of {αj`}`∈Sj (j = 1, 2)to charac-

terize the boundary of the region. To this end, assume β (β ∈ [0, 1]) of the total

power is dedicated to user 1 and the rest of the power is dedicated to user 2. To find

the optimal power allocation, we can use the Lagrangian technique. Since the rate

expressions are concave and we have affine constraints, KKT conditions provide nec-

essary and sufficient conditions for the optimal power allocation. Moreover, we note

that since rate functions are monotonically increasing in {αj`}, power constraints

should be met with equality, i.e.,

∑

`∈S1

α1` = β and
∑

`∈S2

α2` = β̄ (12.126)

The corresponding Lagrangian function for user 1 is given by

1

2

∑

`∈S1

[
log
(
1 + α1`h

2
1`P
)
− log

(
1 + α1`h

2
2`P
) ]
− λ1

∑

`∈S1

α1` +
∑

`∈S1

ν`α1` (12.127)

where ν` ≥ 0. Inspection of KKT conditions reveals that for any non-zero α1`,

we have ν` = 0 and the derivative of the Lagrangian with respect to α` is zero.

Otherwise, we have νl > 0 and the derivative of the Lagrangian is negative. Thus,
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any non-zero α1` satisfies

1

2

[
h1`P

1 + α1`h1`P
− h2`P

1 + α1`h2`P

]
− λ1 = 0 (12.128)

which implies

α1` =


− 1

2P

(
1

h2
1`

+
1

h2
2`

)
+

1

2P

√(
1

h2
1`

− 1

h2
2`

)2

+
2P

λ1

(
1

h2
2`

− 1

h2
1`

)


+

(12.129)

Moreover, λ1 can be found through

∑

`∈S1

α1` = β (12.130)

The optimum power allocation for user 2 can be found by symmetry.
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Chapter 13

Secure Lossy Transmission of Vector Gaussian Sources

13.1 Introduction

In this chapter, we study the secure lossy source coding problem for a vector Gaus-

sian model, see Figure 13.1. Secure source coding problem has been studied for

both lossless and lossy reconstruction cases in [14, 100–112]. Secure lossless source

coding problem is studied in [100–106], where the common theme is that the le-

gitimate receiver wants to reconstruct the source in a lossless fashion by using the

information it gets from the transmitter in conjunction with its side information,

while keeping the eavesdropper ignorant of the source as much as possible. Secure

lossy source coding problem is studied in [14, 107–112], which differ from the works

on lossless case by letting the legitimate receiver reconstruct the source not perfectly,

but within a distortion level.

The most relevant works to our work here are [14, 112]. Reference [112] studies

the secure lossy transmission of a source over a degraded wiretap channel when both

the legitimate receiver and the eavesdropper have side information about the source.

In [112], in addition to the degradedness of the eavesdropper’s channel output with

respect to the legitimate user’s channel output, the eavesdropper’s side information

is also degraded with respect to the legitimate user’s side information. For this

setting, [112] provides a single-letter characterization of the distortion and equivo-

642



Legitimate User

Eavesdropper

Transmitter

Xn

Xn

Nn
Y

Nn
Z

M = fn(X
n)

Yn

Zn

X̂n

Figure 13.1: Secure lossy source coding problem for a vector Gaussian model.

cation region, where the separation principle (between source coding and channel

coding) holds. In [14], the setting of [112] is partially generalized by assuming that

there is no degradedness order between the side information of the legitimate user

and the eavesdropper. On the other hand, as opposed to the noisy wiretap channel

of [112], in [14], the channel between the transmitter and the receivers is assumed

to be noiseless. For this setting, [14] provides a single-letter characterization of the

rate, equivocation, and distortion region.

Here, we study the setting of [14] for jointly Gaussian source and side informa-

tion, where the transmitter has a vector Gaussian source which is jointly Gaussian

with the vector Gaussian side information of both the legitimate receiver and the

eavesdropper. As mentioned earlier, a single-letter characterization of the rate,

equivocation, and distortion region for this setting is given in [14]. By individu-

ally optimizing the rate and equivocation constraints of this single-letter description
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for the vector Gaussian model at hand, we obtain an outer bound for the rate-

equivocation region. On the other hand, we note that a joint optimization would

yield the exact rate-equivocation region. As a consequence of these individual op-

timizations, we obtain the maximum achievable equivocation at the eavesdropper

when there is no constraint on the transmission rate. We show that even hough there

is no rate constraint, the maximum equivocation cannot be attained by an uncoded

scheme. Moreover, using this maximum equivocation result, we show that, in gen-

eral, Wyner-Ziv coding is not optimal for the secure lossy source coding problem,

although it would be optimal in the absence of an eavesdropper.

13.2 Secure Lossy Source Coding

Here, we describe the secure lossy source coding problem and state the existing

results. Let {(Xi, Yi, Zi)}ni=1 denote i.i.d. tuples drawn from a distribution p(x, y, z).

The transmitter, the legitimate user and the eavesdropper observe Xn ∈ X n, Y n ∈

Yn, and Zn ∈ Zn, respectively. The transmitter wants to convey information to the

legitimate user in a way that the legitimate user can reconstruct the sourceXn within

a certain distortion, and meanwhile the eavesdropper is kept ignorant of the source

Xn as much as possible as measured by the equivocation. We note that if there

was no eavesdropper, this setting would reduce to the Wyner-Ziv problem [113],

for which a single-letter characterization for the minimum transmission rate of the

transmitter for each distortion level exists.

The distortion of the reconstructed sequence at the legitimate user is mea-
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sured by the function dn(Xn, X̂n) where X̂n ∈ X̂ n denotes the legitimate user’s

reconstruction of the source Xn. We consider the function dn(Xn, X̂n) that has the

following form

dn(Xn, X̂n) =
1

n

n∑

i=1

d(Xi, X̂i) (13.1)

where d(a, b) is a non-negative finite-valued function. The confusion of the eaves-

dropper is measured by the following equivocation term

1

n
H(Xn|Zn,M) (13.2)

where M ∈M, which is a function of the source Xn, denotes the signal sent by the

transmitter.

An (n,R) code for secure lossy source coding consists of an encoding function

fn : X n → M = {1, . . . , 2nR} at the transmitter and a decoding function at the

legitimate user gn : M × Yn → X̂ n. A rate, equivocation and distortion tuple

(R,Re, D) is achievable if there exists an (n,R) code satisfying

lim
n→∞

1

n
H(Xn|Zn,M) ≥ Re (13.3)

lim
n→∞

E[d(Xn, X̂n)] ≤ D (13.4)

The set of all achievable (R,Re, D) tuples is denoted by R∗ which is given by the

following theorem.
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Theorem 13.1 ([14, Theorem 1]) (R,Re, D) ∈ R∗ iff

R ≥ I(V ;X|Y ) (13.5)

Re ≤ H(X|V, Y ) + I(X;Y |U)− I(X;Z|U) (13.6)

D ≥ E[d(X, X̂(V, Y ))] (13.7)

for some U, V satisfying the Markov chain U → V → X → Y, Z, and a function

X̂(V, Y ).

The achievable scheme that attains the region R∗ has the same spirit as the

Wyner-Ziv scheme [113] in the sense that both achievable schemes use binning to

exploit the side information at the legitimate user, and consequently, to reduce the

rate requirement. The difference of the achievable scheme that attains R∗ comes

from the additional binning necessitated by the presence of an eavesdropper. In

particular, the transmitter generates sequences (Un, V n) and bins both sequences.

The transmitter sends these two bin indices. Using these bin indices, the legitimate

user identifies the right (Un, V n) sequences, and reconstructs Xn within the required

distortion. On the other hand, using the bin indices of (Un, V n), the eavesdropper

identifies only the right Un sequence, and consequently, U does not contribute to

the equivocation, see (13.6)1. Indeed, this achievable scheme can be viewed as if it is

using a rate-splitting technique to send the message M , since M has two coordinates,

one for the bin index of Un, and one for the bin index of V n. This perspective reveals

1The fact that the eavesdropper can decode Un sequence can be obtained by observing that for
a (U, V ) selection, if I(U ;Y ) ≥ I(U ;Z), there is no loss of optimality of setting U = φ which will
yield a larger region.
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the similarity of the achievable scheme that attains R∗ and the one that attains the

capacity-equivocation region of the wiretap channel [3] where also rate-splitting is

used. In particular, in the latter case, the message W is divided into two parts

Wne,We such that Wne is sent by the sequence Un and We is sent by the sequence

V n. The eavesdropper decodes Wne whereas the other message We contributes to

the secrecy.

We note that Theorem 13.1 holds for continuous (Xn, Y n, Zn) by replacing

the discrete entropy term H(X|V, Y ) with the differential entropy term h(X|V, Y ).

To avoid the negative equivocation that might arise because of the use of differen-

tial entropy, we replace equivocation with the mutual information leakage to the

eavesdropper Ie defined by

lim
n→∞

1

n
I(Xn;Zn,M) (13.8)

Once we are interested in the mutual information leakage to the eavesdropper, a rate,

mutual information leakage, and distortion (R, Ie, D) tuple is said to be achievable

if there exists an (n,R) code such that

lim
n→∞

1

n
I(Xn;Zn,M) ≤ Ie (13.9)

lim
n→∞

E[d(Xn, X̂n)] ≤ D (13.10)

The set of all achievable (R, Ie, D) tuples is denoted by R. Using Theorem 13.1, the

region R can be stated as follows.
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Theorem 13.2 ([14]) (R, Ie, D) ∈ R iff

R ≥ I(V ;X|Y ) (13.11)

Ie ≥ I(V ;X)− I(V ;Y |U) + I(X;Z|U) (13.12)

D ≥ E[d(X, X̂(V, Y ))] (13.13)

for some U, V satisfying the following Markov chain

U → V → X → Y, Z (13.14)

and a function X̂(V, Y ).

13.3 Vector Gaussian Sources

Now we study the secure lossy source coding problem for jointly Gaussian {(Xi,Yi,

Zi)}ni=1 where the tuples {(Xi,Yi,Zi)}ni=1 are independent across time, i.e., across

the index i, and each tuple is drawn from the same jointly Gaussian distribution

p(X,Y,Z). In other words, we consider the case where Xi is a zero-mean Gaussian

random vector with covariance matrix KX � 0, and the side information at the

legitimate user Yi and the eavesdropper Zi are jointly Gaussian with the source Xi.

In particular, we assume that Yi,Zi have the following form

Yi = Xi + NY,i (13.15)

Zi = Xi + NZ,i (13.16)
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where NY,i and NZ,i are independent zero-mean Gaussian random vectors with

covariance matrices ΣY � 0 and ΣZ � 0, respectively, and (NY,i,NZ,i) and Xi are

independent. We note that the side information given by (13.15)-(13.16) are not in

the most general form. In the most general case, we have

Yi = HY Xi + NY,i (13.17)

Zi = HZXi + NZ,i (13.18)

for some HY ,HZ matrices. However, until Section 13.5, we consider the form of

side information given by (13.15)-(13.16), and obtain our results for this model. In

Section 13.5, we generalize our results to the most general case given by (13.17)-

(13.18). We note that since the rate, information leakage and distortion region

is invariant with respect to the correlation between NY,i and NZ,i, the correlation

between NY,i and NZ,i is immaterial.

The distortion of the reconstructed sequence {X̂i}ni=1 is measured by the mean

square error matrix:

E
[(

Xi − X̂i

)(
Xi − X̂i

)>]
(13.19)

Hence, the distortion constraint is represented by a positive semi-definite matrix D,

which is achievable if there is an (n,R) code such that

1

n

n∑

i=1

E
[(

Xi − X̂i

)(
Xi − X̂i

)>] � D (13.20)
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Throughout this chapter, we assume that 0 � D � KX|Y . Since the mean square

error is minimized by the minimum mean square error (MMSE) estimator which

is given by the conditional mean, we assume that the legitimate user applies this

optimal estimator, i.e., the legitimate user selects its reconstruction function {X̂i}ni=1

as

X̂i = E [Xi|Yn, fn(Xn)] (13.21)

Once the estimator of the legitimate user is set as (13.21), using Theorem 13.2, a

single-letter description of the region R for a vector Gaussian source can be given

as follows.

Theorem 13.3 (R, Ie,D) ∈ R iff

R ≥ I(V ; X|Y) (13.22)

Ie ≥ I(V ; X)− I(V ; Y|U) + I(X; Z|U) (13.23)

D � KX|V Y (13.24)

for some U, V satisfying the following Markov chain

U → V → X→ Y,Z (13.25)

We also define the region R(D) as the union of the (R, Ie) pairs that are achievable

when the distortion constraint matrix is set to D. Our main result is an outer bound
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for the region R(D), hence for the region R.

Theorem 13.4 When D � KX|Y , we have

R(D) ⊆ Ro(D) (13.26)

where Ro(D) is given by the union of (R, Ie) that satisfy

R ≥ 1

2
log
|KX|Y |
|D| =

1

2
log
|KX |
|F(D)| −

1

2
log
|KX + ΣY |
|F(D) + ΣY |

(13.27)

Ie ≥ min
0�KX|V �KX|U�KX

KX|V �F(D)

1

2
log
|KX |
|KX|V |

− 1

2
log
|KX|U + ΣY |
|KX|V + ΣY |

+
1

2
log
|KX|U + ΣZ |
|ΣZ |

(13.28)

and F(D) = ΣY (ΣY −D)−1ΣY −ΣY .

We will prove Theorem 13.4 in Section 13.4. In the remainder of this section, we

provide interpretations and discuss some implications of Theorem 13.4.

The outer bound in Theorem 13.4 is obtained by minimizing the constraints on

R and Ie individually, i.e., the rate lower bound in (13.27) is obtained by minimizing

the rate constraint in (13.22) and the mutual information leakage lower bound in

(13.28) is obtained by minimizing the mutual information leakage constraint in

(13.23) separately. However, to characterize the rate and mutual information leakage

region R(D), one needs to minimize the rate constraint in (13.22) and the mutual

leakage information constraint in (13.23) jointly, not separately. In particular, since

the region R(D) is convex in the pairs (R, Ie) as per a time-sharing argument, joint

optimization of the rate constraint in (13.22) and the mutual information leakage
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constraint in (13.23) can be carried out by considering the tangent lines to the region

R(D), i.e., by solving the following optimization problem

L(µ1, µ2) = min
(R,Ie)∈R(D)

µ1R + µ2Ie (13.29)

= min
U→V→X→Y,Z

KX|V Y �D

µ1 [I(V ; X)− I(V ; Y)] + µ2 [I(V ; X)− I(V ; Y|U) + I(X; Z|U)]

(13.30)

for all values of µ1, µ2, where µj ∈ [0,∞), j = 1, 2. As of now, we have been unable

to solve the optimization problem L(µ1, µ2) for all values of (µ1, µ2). However, as

stated in Theorem 13.4, we solve the optimization problems L(0, µ2) and L(µ1, 0) by

showing the optimality of jointly Gaussian (U, V,X) to evaluate the corresponding

cost functions. In other words, our outer bound in Theorem 13.4 can be written as

follows:

R ≥ L(1, 0) (13.31)

Ie ≥ L(0, 1) (13.32)

We note that the constraint in (13.27), and hence L(1, 0), gives us the Wyner-Ziv

rate distortion function [113] for the vector Gaussian sources. Moreover, we note

that L(0, 1) gives us the minimum mutual information leakage to the eavesdropper

when the legitimate user wants to reconstruct the source within a fixed distortion

constraint D while there is no concern on the transmission rate R. Denoting the

minimum mutual information leakage to the eavesdropper when the legitimate user
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needs to reconstruct the source within a fixed distortion constraint D by Imin
e (D),

the corresponding result can be stated as follows.

Theorem 13.5 When D � KX|Y , we have

Imin
e (D) = min

0�KX|V �KX|U�KX

KX|V �F(D)

1

2
log
|KX |
|KX|V |

− 1

2
log
|KX|U + ΣY |
|KX|V + ΣY |

+
1

2
log
|KX|U + ΣZ |
|ΣZ |

(13.33)

where F(D) = ΣY (ΣY −D)−1ΣY −ΣY .

Theorem 13.5 implies that if the transmitter’s aim is to minimize the mutual

information leakage to the eavesdropper without concerning itself with the rate it

costs as long as the legitimate receiver is able to reconstruct the source within a

distortion constraint D, the use of jointly Gaussian (U, V,X) is optimal. Since in

Theorem 13.5, there is no rate constraint, one natural question to ask is whether

Imin
e (D) can be achieved by an uncoded transmission scheme. Now, we address

this question in a broader context by letting the encoder use any instantaneous

encoding function in the form of gi(Xi) where gi(·) can be a deterministic or a

stochastic mapping. When gi(·) is chosen to be stochastic, we assume it to be in-

dependent across time. We note that the uncoded transmission can be obtained

from instantaneous encoding by selecting gi(·) to be a linear function. Similarly,

uncoded transmission with artificial noise can be obtained from instantaneous en-

coding by selecting gi(x) = αx + N , where N denotes the noise. Hence, if the

encoder uses an instantaneous encoding scheme, the transmitted signal is given by
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M = [ g1(X1), . . . , gn(Xn) ]. Let I ins
e (D) be the minimum information leakage to

the eavesdropper when the legitimate user is able to reconstruct the source with

a distortion constraint D while the encoder uses an instantaneous encoding. The

following example demonstrates that, in general, Imin
e (D) cannot be achieved by

instantaneous encoding.

Example 13.1 Consider the scalar case, where the side information at the legiti-

mate user and the eavesdropper are given as follows

Yi = Xi +Ny,i (13.34)

Zi = Xi +Nz,i (13.35)

where Xi, Ny,i and Nz,i are zero-mean Gaussian random variables with variances

σ2
x, σ

2
y and σ2

z , respectively. {Xi}ni=1, {Ny,i}ni=1 and {Nz,i}ni=1 are independent. We

assume that σ2
y < σ2

z , which implies that we can assume X → Y → Z since the

scalar model in (13.34)-(13.35) is statistically degraded, or in other words, the cor-

relation between Ny,i and Nz,i does not affect the achievable (R, Ie, D) region. Using

Theorem 13.3, Imin
e (D) for the scalar Gaussian channel under consideration can be

found as follows

Imin
e (D) = min

U→V→X→Y→Z
σ2
x|vy≤D

I(V ;X)− I(V ;Y |U) + I(X;Z|U) (13.36)

= min
V→X→Y→Z
σ2
x|vy≤D

I(V ;X)− I(V ;Y ) + I(X;Z) (13.37)
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where in (13.37), we used the Markov chain U → V → X → Y → Z.

As shown in Appendix 13.7.1, the information leakage to the eavesdropper

when the encoder uses an instantaneous mapping is given by

I ins
e (D) = min

V→X→Y→Z
σ2
x|vy≤D

I(X;V, Z) (13.38)

= min
V→X→Y→Z
σ2
x|vy≤D

I(V ;X)− I(V ;Z) + I(X;Z) (13.39)

where (13.39) is obtained by using the Markov chain V → X → Z.

Using (13.37) and (13.39), we have

I ins
e (D)− Imin

e (D) = min
V→X→Y→Z
σ2
x|vy≤D

I(V ;X)− I(V ;Z) + I(X;Z)

− min
V→X→Y→Z
σ2
x|vy≤D

I(V ;X)− I(V ;Y ) + I(X;Z) (13.40)

≥ min
V→X→Y→Z
σ2
x|vy≤D

I(V ;Y )− I(V ;Z) (13.41)

= min
V→X→Y→Z
σ2
x|vy≤D

I(V ;Y |Z) (13.42)

where (13.42) comes from the Markov chain V → Y → Z. Next, we note the

following lemma.

Lemma 13.1 For jointly Gaussian (X, Y, Z) satisfying the Markov chain X →
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Y → Z and Pr[Y = Z] 6= 1, if D < σ2
x|y, we have

min
V→X→Y→Z
σ2
x|vy≤D

I(V ;Y |Z) > 0 (13.43)

The proof of Lemma 13.1 can be found in Appendix 13.7.2. The proof of Lemma 13.1

starts with the observation that (13.43) is zero iff we have the Markov chain V →

Z → Y . On the other hand, since we already have the Markov chain V → X → Y →

Z, and Y and Z are not identical, we show in Appendix 13.7.2 that the Markov chain

V → Z → Y is possible iff V and X are independent. However, if D < σ2
x|y, any V

that is independent of X is not feasible. Hence, Lemma 13.1 follows. Lemma 13.1

implies that in general, we have I ins
e (D) 6= Imin

e (D), i.e., Imin
e (D) cannot be achieved

by instantaneous encoding.

This example shows that an uncoded transmission is not optimal even when there

is no rate constraint. This is due to the presence of an eavesdropper; the presence

of an eavesdropper necessitates the use of a coded scheme.

Another question that Theorem 13.5 brings about is whether the minimum in

(13.33) is achieved by a non-trivial KX|U . By a trivial selection for KX|U we mean

either KX|U = KX or KX|U = KX|V . The former corresponds to the selection U = φ

and the latter corresponds to the selection U = V . We note that although (13.33)

is monotonically decreasing in KX|V in the positive semi-definite sense, (13.33) is

neither monotonically increasing nor monotonically decreasing in KX|U in the posi-

tive semi-definite sense. Hence, due to this lack of monotonicity of (13.33) in KX|U ,

in general, we expect that both U 6= φ and U 6= V may be necessary to attain the
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minimum in (13.33). The following example demonstrates that in general U 6= φ

and U 6= V may be necessary.

Example 13.2 Consider the Gaussian source X = [ X1 X2 ]> where X1 and X2 are

independent. The side information at the legitimate receiver and the eavesdropper

are given by

Y` = X` +NY,`, ` = 1, 2 (13.44)

Z` = X` +NZ,`, ` = 1, 2 (13.45)

where NY,` and NZ,` are zero-mean Gaussian random variables with variances σ2
Y,`

and σ2
Z,`, respectively. Moreover, NY,1 and NY,2 are independent, and also so are

NZ,1 and NZ,2. We assume that noise variances satisfy

σ2
Y,1 < σ2

Z,1 (13.46)

σ2
Z,2 < σ2

Y,2 (13.47)

which, in view of the fact that correlation between the noise at the legitimate receiver

and the noise at the eavesdropper does not affect the rate, distortion and information

leakage region, lets us assume the following Markov chains

X1 → Y1 → Z1 (13.48)

X2 → Z2 → Y2 (13.49)
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Moreover, we assume that the distortion constraint D is a diagonal matrix with

diagonal entries D1 and D2. In this case, the minimum information leakage is

given by

Imin
e (D1, D2) = min

V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1)− I(V1;Y1) + I(X1;Z1)

+ min
V2→X2→Z2→Y2
σ2
X2|V2Y2

≤D2

I(V2;X2) + I(X2;Z2|V2) (13.50)

whose proof can be found in Appendix 13.7.3. The minimum information leakage in

(13.50) corresponds the selections U = (φ, V2) and V = (V1, V2), where (U1, V1) and

(U2, V2) are independent. This selection of (U, V ) corresponds to neither U = φ nor

U = V .

Next, we obtain the minimum information leakage that arises when we set

either U = φ or U = V , and show that the minimum information leakage arising

from these selections are strictly larger than the minimum information leakage in

(13.50), which will imply the suboptimality of U = φ and U = V . When we set

U = φ, the minimum information leakage is given by

Imin−φ
e (D1, D2) = min

V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1)− I(V1;Y1) + I(X1;Z1)

+ min
V2→X2→Z2→Y2
σ2
X2|V2Y2

≤D2

I(V2;X2)− I(V2;Y2) + I(X2;Z2) (13.51)

whose proof is given in Appendix 13.7.4. When we set U = V , the minimum infor-
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mation leakage is given by

Imin−S
e (D1, D2) = min

V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1) + I(X1;Z1|V1)

+ min
V2→X2→Z2→Y2
σ2
X2|V2Y2

≤D2

I(V2;X2) + I(X2;Z2|V2) (13.52)

whose proof can be found in Appendix 13.7.4.

Now, we compare the minimum information leakage in (13.50) with (13.51)

and (13.52) to show that the selections U = φ and U = V are sub-optimal in general.

Using (13.50) and (13.51), we get

Imin−φ
e (D1, D2)− Imin

e (D1, D2)

= min
V2→X2→Z2→Y2
σ2
X2|V2Y2

≤D2

I(V2;X2)− I(V2;Y2) + I(X2;Z2)

− min
V2→X2→Z2→Y2
σ2
X2|V2Y2

≤D2

I(V2;X2) + I(X2;Z2|V2) (13.53)

≥ min
V2→X2→Z2→Y2
σ2
X2|V2Y2

≤D2

I(X2;Z2)− I(X2;Z2|V2)− I(V2;Y2) (13.54)

= min
V2→X2→Z2→Y2
σ2
X2|V2Y2

≤D2

I(V2;Z2)− I(V2;Y2) (13.55)

= min
V2→X2→Z2→Y2
σ2
X2|V2Y2

≤D2

I(V2;Z2|Y2) (13.56)

> 0 (13.57)
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where (13.55)-(13.56) follow from the Markov chain

V2 → X2 → Z2 → Y2 (13.58)

and (13.57) comes from Lemma 13.1. Thus, in general, we have Imin−φ
e (D1, D2) 6=

Imin
e (D1, D2), or in other words, in general, U = φ is sub-optimal.

Next, we consider the selection U = V . Using (13.50) and (13.52), we have

Imin−S
e (D1, D2)− Imin

e (D1, D2)

= min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1) + I(X1;Z1|V1)

− min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1)− I(V1;Y1) + I(X1;Z1) (13.59)

≥ min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(X1;Z1|V1) + I(V1;Y1)− I(X1;Z1) (13.60)

= min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;Y1)− I(V1;Z1) (13.61)

= min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;Y1|Z1) (13.62)

> 0 (13.63)

where (13.61)-(13.62) follow from the Markov chain

V1 → X1 → Y1 → Z1 (13.64)
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and (13.63) comes from Lemma 13.1. Thus, in general, we have Imin−S
e (D1, D2) 6=

Imin
e (D1, D2), or in other words, in general, U = V is sub-optimal.

Example 13.2 shows that, in general, we might need two covariance matrices,

and hence two different auxiliary random variables, to attain the minimum infor-

mation leakage. Indeed, if we have either U = V or U = φ, the corresponding

achievable scheme is identical to the Wyner-Ziv scheme [113]. Hence, the neces-

sity of two different auxiliary random variables implies that, in general, Wyner-Ziv

scheme [113] is suboptimal.

13.4 Proof of Theorem 13.4

We now provide the proof of Theorem 13.4. As mentioned in the previous section,

this outer bound is obtained by minimizing the rate constraint in (13.22) and the

mutual information leakage constraint in (13.23) separately. We first consider the

rate constraint in (13.22) as follows

R ≥ L(1, 0) = min
V→X→Y,Z
KX|V Y �D

I(V ; X|Y) (13.65)

= min
V→X→Y,Z
KX|V Y �D

h(X|Y)− h(X|V,Y) (13.66)

= min
V→X→Y,Z
KX|V Y �D

1

2
log |(2πe)KX|Y | − h(X|V,Y) (13.67)

= min
KX|V Y �D

1

2
log
|KX|Y |
|KX|V Y |

(13.68)

=
1

2
log
|KX|Y |
|D| (13.69)
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where (13.68) comes from the fact that h(X|V,Y) is maximized by jointly Gaussian

(V,X,Y), and (13.69) comes from the monotonicity of | · | in positive semi-definite

matrices. Now we introduce the following lemma.

Lemma 13.2

1

2
log
|KX|Y |
|D| =

1

2
log
|KX |
|F(D)| −

1

2
log
|KX + ΣY |
|F(D) + ΣY |

(13.70)

The proof of Lemma 13.2 is given in Appendix 13.7.5. Lemma 13.2 and (13.69)

imply (13.27).

Next, we consider the mutual information leakage constraint in (13.23) as

follows

Ie ≥ L(0, 1) = min
U→V→X→Y,Z

KX|V Y �D

I(V ; X)− I(V ; Y|U) + I(X; Z|U) (13.71)

We note that the cost function of L(0, 1) can be rewritten as follows

C(L) = I(V ; X)− I(V ; Y) + I(U ; Y) + I(X; Z|U) (13.72)

= I(V ; X|Y) + [I(U ; Y) + I(X; Z|U)] (13.73)

where (13.72) comes from the Markov chain U → V → Y and (13.73) comes from

the Markov chain V → X→ Y. We note that the first term in (13.73) is minimized

by a jointly Gaussian (V,X) as we already showed in obtaining the lower bound

for the rate given by (13.27) above in (13.65)-(13.69). On the other hand, the
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remaining term of (13.73) in the bracket is maximized by a jointly Gaussian (U,X)

as shown in [51]. Thus, a tension between these two terms arises if (U, V,X) is

selected to be jointly Gaussian. In spite of this tension, we will still show that a

jointly Gaussian (U, V,X) is the minimizer of L(0, 1). Instead of directly showing

this, we first characterize the minimum mutual information leakage when (U, V,X)

is restricted to be jointly Gaussian, and show that this cannot be attained by any

other distribution for (U, V,X). We note that any jointly Gaussian (U, V,X) can be

written as

V = AV X + NV (13.74)

U = AUX + NU (13.75)

where NV ,NU are zero-mean Gaussian random vectors with covariance matrices

ΣV ,ΣU , respectively. Moreover, NV ,NU are independent of X,Y,Z, but can be

dependent on each other. Before characterizing the minimum mutual information

leakage when (U, V,X) is restricted to be jointly Gaussian, we introduce the following

lemma.

Lemma 13.3 When D � KX|Y and V is Gaussian, we have the following facts.

• ΣY −D � 0, i.e., ΣY −D is positive definite, and hence, non-singular.

• We have the following equivalence:

KX|V Y � D ⇐⇒ KX|V � F(D) (13.76)
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The proof of Lemma 13.3 is given in Appendix 13.7.6. Using Lemma 13.3, the min-

imum mutual information leakage to the eavesdropper when (U, V,X) is restricted

to be jointly Gaussian can be written as follows:

LG = min
U→V→X→Y,Z

(U,V,X) is jointly Gaussian
KX|V �F(D)

I(V ; X)− I(V ; Y|U) + I(X; Z|U) (13.77)

We note that the minimization in (13.77) can be written as a minimization of the

cost function in (13.77) over all possible AU ,AV ,ΣU ,ΣV matrices by expressing

KX|U and KX|V in terms of AU ,AV ,ΣU ,ΣV . Instead of considering this tedious

optimization problem, we consider the following one:

L̄G = min
0�KX|V �KX|U�KX

KX|V �F(D)

1

2
log
|KX |
|KX|V |

− 1

2
log
|KX|U + ΣY |
|KX|V + ΣY |

+
1

2
log
|KX|U + ΣZ |
|ΣZ |

(13.78)

We note that due to the Markov chain U → V → X, we always have KX|V � KX|U .

A proof of this fact is given in Appendix 13.7.7. Besides this inequality, KX|V

and KX|U might have further interdependencies which are not considered in the

optimization problem in (13.78). Since neglecting these further interdependencies

among KX|U and KX|V enlarges the feasible set of the optimization problem in

(13.77), we have, in general,

LG ≥ L̄G (13.79)
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On the other hand, it can be shown that the value of L̄G can be obtained by some

jointly Gaussian (U, V,X) satisfying the Markov chain U → V → X, as stated in

the following lemma.

Lemma 13.4

LG = L̄G (13.80)

The proof of Lemma 13.4 is given in Appendix 13.7.8.

Now we study the optimization problem L̄G in (13.78) in more detail. Let

K∗X|V and K∗X|U be the minimizers for the optimization problem L̄G. They need to

satisfy the following KKT conditions.

Lemma 13.5 If K∗X|V and K∗X|U are the minimizers for the optimization problem

L̄G, they need to satisfy

(K∗X|V + ΣY )−1 + MU + MD = (K∗X|V )−1 (13.81)

(K∗X|U + ΣZ)−1 + MX = (K∗X|U + ΣY )−1 + MU (13.82)

MU(K∗X|U −K∗X|V ) = (K∗X|U −K∗X|V )MU = 0 (13.83)

MD(F(D)−K∗X|V ) = (F(D)−K∗X|V )MD = 0 (13.84)

MX(KX −K∗X|U) = (KX −K∗X|U)MX = 0 (13.85)

for some positive semi-definite matrices MU ,MD,MX .

The proof of Lemma 13.5 is given in Appendix 13.7.9.
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Next, we use channel enhancement [4]. In particular, we enhance the legitimate

user’s side information as follows.

(K∗X|U + Σ̃Y )−1 = (K∗X|U + ΣY )−1 + MU (13.86)

This new covariance matrix Σ̃Y has some useful properties which are listed in the

following lemma.

Lemma 13.6 We have the following facts.

• 0 � Σ̃Y

• Σ̃Y � ΣY , Σ̃Y � ΣZ

• (K∗X|V + Σ̃Y )−1 = (K∗X|V + ΣY )−1 + MU

• (K∗X|U + Σ̃Y )−1(K∗X|V + Σ̃Y ) = (K∗X|U + ΣY )−1(K∗X|V + ΣY )

• (K∗X|U + Σ̃Y )−1(KX + Σ̃Y ) = (K∗X|U + ΣZ)−1(KX + ΣZ)

• (K∗X|V + Σ̃Y )−1(F(D) + Σ̃Y ) = (K∗X|V )−1F(D)

The proof of Lemma 13.6 is given in Appendix 13.7.10. Using this new covariance

Σ̃Y , we define the enhanced side information at the legitimate user Ỹ as follows

Ỹ = X + ÑY (13.87)

where ÑY is a zero-mean Gaussian random vector with covariance matrix Σ̃Y . Since

we have Σ̃Y � ΣY and Σ̃Y � ΣZ as stated in the second statement of Lemma 13.6,
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without loss of generality, we can assume that the following Markov chain exists.

X→ Ỹ → Y,Z (13.88)

Assuming that the Markov chain in (13.88) exists does not incur any loss of gener-

ality because the rate, mutual information leakage and distortion region R depends

only on the conditional marginal distributions p(Y|X), p(Z|X) but not on the con-

ditional joint distribution p(Y,Z|X). Now, we define the following optimization

problem:

L̄ = min
U→V→X→Ỹ→Y,Z

KX|V Y �D

I(V ; X)− I(V ; Ỹ|U) + I(X; Z|U) (13.89)

We note that we have I(V ; Y|U) ≤ I(V ; Ỹ|U) due to the Markov chain in (13.88),

which leads to the following fact:

LG = L̄G ≥ L(0, 1) ≥ L̄ (13.90)

Moreover, unlike the original optimization problem L(0, 1) in (13.71), we can find the

minimizer of the new optimization problem L̄ explicitly, as stated in the following

lemma.

Lemma 13.7

L̄ =
1

2
log
|KX |
|F(D)| −

1

2
log
|KX + Σ̃Y |
|F(D) + Σ̃Y |

+
1

2
log
|KX + ΣZ |
|ΣZ |

(13.91)
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We note that Lemma 13.7 implies that U = φ and a Gaussian V leading to KX|V =

F(D) is the minimizer of the optimization problem L̄. The proof of Lemma 13.7 is

given in Appendix 13.7.11.

Next, we show that indeed LG = L̄G = L̄ which, in view of (13.90), will imply

L(0, 1) = L̄ = L̄G = LG. To this end, using Lemma 13.7, we have

L̄ =
1

2
log
|KX |
|F(D)| −

1

2
log
|KX + Σ̃Y |
|F(D) + Σ̃Y |

+
1

2
log
|KX + ΣZ |
|ΣZ |

(13.92)

=
1

2
log
|KX |
|K∗X|V |

− 1

2
log
|KX + Σ̃Y |
|K∗X|V + Σ̃Y |

+
1

2
log
|KX + ΣZ |
|ΣZ |

(13.93)

=
1

2
log
|KX |
|K∗X|V |

− 1

2
log
|K∗X|U + Σ̃Y |
|K∗X|V + Σ̃Y |

+
1

2
log
|K∗X|U + ΣZ |
|ΣZ |

(13.94)

=
1

2
log
|KX |
|K∗X|V |

− 1

2
log
|K∗X|U + ΣY |
|K∗X|V + ΣY |

+
1

2
log
|K∗X|U + ΣZ |
|ΣZ |

(13.95)

= L̄G = LG (13.96)

where (13.93) comes from the last statement of Lemma 13.6, (13.94) follows from

the fifth statement of Lemma 13.6, and (13.95) comes from the fourth statement of

Lemma 13.6. In view of (13.90), (13.96) implies that L(0, 1) = LG; completing the

proof of Theorem 13.4 as well as the proof of Theorem 13.5 due to the fact that

Imin
e = L(0, 1).
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13.5 General Case

We now consider the general case where the side information are given by

Y = HY X + NY (13.97)

Z = HZX + NZ (13.98)

where without loss of generality, we can assume that the covariance matrices of

Gaussian vectors NY and NZ are given by identity matrices. We denote the singu-

lar value decomposition of HY and HZ by HY = QY ΛY R>Y and HZ = QZΛZR>Z ,

respectively. Since any invertible transformation applied to the side information

does not change the rate, information leakage, and distortion region, the side infor-

mation given by (13.97)-(13.98) and the side information obtained by multiplying

(13.97)-(13.98) by Q>Y ,Q
>
Z , respectively, yield the same rate, information leakage

and distortion region. In other words, the side information given by (13.97)-(13.98)

and the side information given by

Ȳ = ΛY R>Y X + N̄Y (13.99)

Z̄ = ΛZR>ZX + N̄Z (13.100)

yield the same rate, information leakage and distortion region, where the covariance

matrices of N̄Y , N̄Z are given by identity matrices. Next, we claim that there is no

loss of generality to assume that the side information Ȳ and Z̄ have the same length

as the source X. To this end, assume that the length of Ȳ is smaller than the length

669



of X. In this case, simply, we can concatenate Ȳ with some zero vector to ensure that

both Ȳ and X have the same length. Next, assume that the length of Ȳ is larger than

the length of X. In this case, ΛY will definitely have at least length(Ȳ)− length(X)

diagonal elements which are zero, and hence the corresponding entries in Ȳ will

come from only the noise. Since noise components are independent, dropping these

elements of Ȳ does not change the rate, information leakage and distortion region.

Thus, without loss of generality, we can assume that length(Ȳ) = length(X), and

hence without loss of generality, we can assume that ΛY is a square matrix. The

same argument applies to the eavesdropper’s side information, and hence, without

loss of generality, we can also assume that ΛZ is a square matrix. Next, we define

the following side information

Ȳα = (ΛY + αI)R>Y X + N̄Y (13.101)

Z̄α = (ΛZ + αI)R>ZX + N̄Z (13.102)

where α > 0. We note that (ΛY + αI) and (ΛY + αI) are invertible matrices. Since

multiplying the side information in (13.101)-(13.98) by some invertible matrices does

not change the rate, information leakage and distortion region, the side information

in (13.101)-(13.102) and the following side information

¯̄Yα = X + N̄Y,α (13.103)

¯̄Zα = X + N̄Z,α (13.104)
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have the same rate, information leakage and distortion region, where the covariance

matrices of N̄Y,α and N̄Z,α are given by

ΣY,α = RY (ΛY + αI)−2R>Y (13.105)

ΣZ,α = RZ(ΛZ + αI)−2R>Z (13.106)

respectively. For a given distortion constraint D, we denote the rate and information

leakage region for the side information model given in (13.97)-(13.98) by Ro(D),

where the subscript o stands for the “original system”, and for the side information

model given in (13.103)-(13.104) by Rα(D). We have the following relationship

between Ro(D) and Rα(D).

Lemma 13.8

Ro(D) ⊆ lim
α→0
Rα(D) (13.107)

The proof of Lemma 13.8 is given in Appendix 13.7.12. Next, using Theorem 13.4,

we obtain an outer bound for the region limα→0Rα(D), where this outer bound

also serves as an outer bound for the region Ro(D) due to Lemma 13.8. The

corresponding result is stated in the following theorem.
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Theorem 13.6 If D � KX|Y , any (R, Ie) ∈ Ro(D) satisfies

R ≥ 1

2
log
|KX|Y |
|D| =

1

2
log

|KX |
|Fo(D)| −

1

2
log

|HY KXH>Y + I|
|HY Fo(D)H>Y + I| (13.108)

Ie ≥ min
0�KX|V �KX|U�KX

KX|V �Fo(D)

1

2
log
|KX |
|KX|V |

− 1

2
log
|HY KX|UH>Y + I|
|HY KX|V H>Y + I|

+
1

2
log |HY KX|UH>Y + I| (13.109)

where Fo(D) = (D−1 −H>Y HY )−1.

The proof of Theorem 13.6 is given in Appendix 13.7.13. We prove Theorem 13.6

in two steps. In the first step, by using Theorem 13.4, we obtain an outer bound for

the region Rα(D), and in the second step, we obtain the limit of this outer bound as

α→ 0. As the outer bound in Theorem 13.6 basically comes from the outer bound in

Theorem 13.4, all our previous comments and remarks about Theorem 13.4 are also

valid for the outer bound in Theorem 13.6. Similar to Theorem 13.4, Theorem 13.6

also provides the minimum information leakage to the eavesdropper when the rate

constraint on the transmitter is removed. Denoting the corresponding minimum

information leakage by Imin
e (D), we have the following theorem.

Theorem 13.7 If D � KX|Y , we have

Imin
e (D) ≥ min

0�KX|V �KX|U�KX

KX|V �Fo(D)

1

2
log
|KX |
|KX|V |

− 1

2
log
|HY KX|UH>Y + I|
|HY KX|V H>Y + I|

+
1

2
log |HY KX|UH>Y + I| (13.110)
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where Fo(D) = (D−1 −H>Y HY )−1.

As Theorem 13.7 basically comes from Theorem 13.5, all our previous comments

and remarks about Theorem 13.5 are also valid for Theorem 13.7.

13.6 Conclusions

In this chapter, we study secure lossy source coding for vector Gaussian sources,

where the transmitter sends information about the source in a way that the le-

gitimate user can reconstruct the source within a distortion level by using its side

information. Meanwhile, the transmitter wants to keep the mutual information

leakage to the eavesdropper to a minimum, where the eavesdropper also has a side

information about the source. We obtain an outer bound for the achievable rate,

mutual information leakage, and distortion region. We obtain the minimum mutual

information leakage to the eavesdropper when the legitimate user needs to recon-

struct the source within a certain distortion while there is no constraint on the

transmission rate.

13.7 Appendix

13.7.1 Proof of (13.38)

We first define the following function

R(D) = min
V→X→Y,Z
σ2
X|V Y ≤D

I(X;V, Z) (13.111)
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which is monotonically decreasing, continuous and convex in D. Next, we note that

when an instantaneous encoding scheme is used, the minimum-mean-square-error

estimator is given by

X̂i = E [Xi|g1(X1), . . . , gn(Xn), Y n] (13.112)

= E [Xi|gi(Xi), Yi] (13.113)

where (13.113) comes from the independence of (Xi, gi(Xi), Yi) across time. Con-

sequently, when an instantaneous encoding scheme is used, the minimum-mean-

square-error is given by

σ2
Xi|gi(Xi)Yi = E

[
(Xi − E [Xi|gi(Xi), Yi])

2] (13.114)

Assume that there exists an instantaneous encoding scheme that achieves the dis-

tortion level D:

lim
n→∞

1

n

n∑

i=1

σ2
Xi|gi(Xi)Yi ≤ D (13.115)

We now obtain a lower bound for the minimum information leakage for this instan-

taneous encoding scheme as follows

lim
n→∞

1

n
I(Xn;M,Zn) = lim

n→∞

1

n
I(Xn; g1(X1), . . . , gn(Xn), Zn) (13.116)

= lim
n→∞

1

n

n∑

i=1

I(Xi; gi(Xi), Zi) (13.117)
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= lim
n→∞

1

n

n∑

i=1

I(Xi;Vi, Zi) (13.118)

≥ lim
n→∞

1

n

n∑

i=1

R
(
σ2
Xi|ViYi

)
(13.119)

≥ lim
n→∞

R

(
1

n

n∑

i=1

σ2
Xi|ViYi

)
(13.120)

= R

(
lim
n→∞

1

n

n∑

i=1

σ2
Xi|ViYi

)
(13.121)

≥ R(D) (13.122)

where (13.117) comes from the independence of (Xi, gi(Xi), Zi) across time, (13.118)

follows by setting Vi = gi(Xi), (13.119) comes from the definition of R(D), (13.120)

is due to the convexity of R(D) in D, (13.121) follows from the fact that R(D)

is continuous in D, and (13.122) comes from (13.115) and the fact that R(D) is

monotonically decreasing in D.

13.7.2 Proof of Lemma 13.1

We first introduce two lemmas that will be used in the proof of Lemma 13.1.

Throughout this appendix, we use notation A ⊥⊥ B to denote “A and B are in-

dependent” to shorten the presentation.

Lemma 13.9 Let Q, T,W be arbitrary random variables. If we have Q → T →

T +W and T ⊥⊥ W . Then, we have (Q, T ) ⊥⊥ W .

Proof: Since a set of random variables is independent iff their joint charac-

teristic function is the product of their individual characteristic functions, to prove
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Lemma 13.9, it is sufficient to show the following.

E
[
es1Q+s2T+s3W

]
= E

[
es1Q+s2T

]
E
[
es3W

]
, ∀(s1, s2, s3) (13.123)

We can show this as follows

E
[
es1Q+s2T+s3W

]
= E

[
E
[
es1Q+s2T+s3W

∣∣T
]]

(13.124)

= E
[
e(s2−s3)T E

[
es1Q+s3(T+W )

∣∣T
]]

(13.125)

= E
[
e(s2−s3)T E

[
es1Q

∣∣T
]
E
[
es3(T+W )

∣∣T
]]

(13.126)

= E
[
es2T E

[
es1Q

∣∣T
]
E
[
es3W

∣∣T
]]

(13.127)

= E
[
es2T E

[
es1Q

∣∣T
]
E
[
es3W

]]
(13.128)

= E
[
es2T E

[
es1Q

∣∣T
]]
E
[
es3W

]
(13.129)

= E
[
es1Q+s2T

]
E
[
es3W

]
(13.130)

where (13.126) comes from the Markov chain Q→ T → T +W and (13.128) follows

from the fact that T ⊥⊥ W . Equation (13.130) implies the independence between

(Q, T ) and W ; completing the proof of Lemma 13.9. 2

Lemma 13.10 Let Q, T,W be random variables satisfying (T,Q) ⊥⊥ W and Q ⊥⊥

T +W . Then, we have Q ⊥⊥ T .

Proof: Similar to the proof of Lemma 13.9, here also we use the fact that a

set of random variables is independent iff their joint characteristic function is the

product of their individual characteristic functions. To this end, since (T,Q) ⊥⊥ W ,
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we have

E
[
es1W+s2T+s3Q

]
= E

[
es1W

]
E
[
es2T+s3Q

]
, ∀(s1, s2, s3) (13.131)

If we set s1 = s2 in (13.131), we get

E
[
es2W+s2T+s3Q

]
= E

[
es2W

]
E
[
es2T+s3Q

]
, ∀(s2, s3) (13.132)

On the other hand, since Q ⊥⊥ T +W , we have

E
[
es2W+s2T+s3Q

]
= E

[
es2(W+T )

]
E
[
es3Q

]
(13.133)

= E
[
es2W

]
E
[
es2T

]
E
[
es3Q

]
(13.134)

where (13.134) comes from the fact that T ⊥⊥ W . In view of (13.132) and (13.134),

we have

E
[
es2T+s3Q

]
= E

[
es2T

]
E
[
es3Q

]
(13.135)

which implies that T ⊥⊥ Q; completing the proof of Lemma 13.10. 2

We now prove Lemma 13.1. We note that we have I(V ;Y |Z) = 0 iff the

Markov chain V → Z → Y holds. We prove by contradiction that when D < σ2
x|y,

the Markov chain V → Z → Y is not possible. To this end, we note that the side
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information at the eavesdropper can be written as

Z = X +Ny + Ñz (13.136)

or in other words, we have Nz = Ny + Ñz where Ñz is a Gaussian random variable

independent of (X,Ny) with variance σ2
z − σ2

y > 0. Next, we note that the Markov

chain V → X → Y → Z implies (V,X) ⊥⊥ (Ny, Ñz) in view of Lemma 13.9. Since

Y, Z are jointly Gaussian, Y can be written as

Y = αZ + (Y − αZ) (13.137)

where α = E[Y Z]/E[Z2], and as a consequence of this α choice, we have Z ⊥⊥

Y − αZ. Hence, if we have the Markov chain

V → Z → Y = αZ + (Y − αZ) (13.138)

then, Lemma 13.9 implies that V ⊥⊥ Y − αZ, where Y − αZ is

Y − αZ = (1− α)X + (1− α)Ny − Ñz (13.139)

Since (V,X) ⊥⊥ (Ny, Ñz), we have (V,X) ⊥⊥ (1 − α)Ny − Ñz, and also V ⊥⊥ (1 −

α)X + (1− α)Ny − Ñz due to the assumption that the Markov chain V → Z → Y

holds. Hence, in view of Lemma 13.10, we have V ⊥⊥ X. Moreover, since we have

the Markov chain V → X → Y , V ⊥⊥ X implies that V ⊥⊥ (X, Y ). Hence, if
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V ⊥⊥ (X, Y ), we have σ2
x|vy = σ2

x|y. However, if D < σ2
x|y, V ⊥⊥ X is not feasible,

and this implies that the Markov chain V → Z → Y is not possible; completing the

proof of Lemma 13.1.

13.7.3 Proof of (13.50)

Here, we provide the proof of (13.50). To this end, we consider a slightly more

general case where the joint distribution of the source and side information is given

by

p(x,y, z) =
L∏

i=1

p(xi, yi, zi) (13.140)

and the distortion constraint is imposed with a diagonal matrix D whose diagonal

entries are denoted by D1, . . . , DL. From Theorem 13.3, the minimum information

leakage is given by

Imin
e = min

U→V→X→Y,Z
σ2
Xi|V Y L

≤Di, i=1,...,L

I(V ; X)− I(V ; Y|U) + I(X; Z|U) (13.141)

We first introduce the following auxiliary random variables

Ui = UY i−1ZL
i+1, i = 1, . . . , L (13.142)

Vi = V Y i−1XL
i+1, i = 1, . . . , L (13.143)
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which satisfy the Markov chain

Ui → Vi → Xi → Yi, Zi (13.144)

which follows from (13.140) and the Markov chain U → V → X→ Y,Z.

Next, we introduce the following two lemmas.

Lemma 13.11 ([3, Lemma 7]) Let Sn, T n be length-n random vectors, and W be

an arbitrary random variable. We have

n∑

i=1

I(T ni+1;Si|WSi−1) =
n∑

i=1

I(Si−1;Ti|WT ni+1) (13.145)

Using Lemma 13.11, the following lemma can be proved.

Lemma 13.12

I(W ;Sn)− I(W ;T n) =
n∑

i=1

I(W ;Si|Si−1T ni+1)− I(W ;Ti|Si−1T ni+1) (13.146)

Now, we proceed with (13.141) as follows

Imin
e = min

U→V→X→Y,Z
σ2
Xi|V Y L

≤Di, i=1,...,L

I(V ; X)− I(V ; Y|U) + I(X; Z|U) (13.147)

= min
U→V→X→Y,Z

σ2
Xi|V Y L

≤Di, i=1,...,L

I(V ; X)− I(V ; Y) + I(U ; Y)− I(U ; Z) + I(X; Z) (13.148)
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= min
U→V→X→Y,Z

σ2
Xi|V Y L

≤Di, i=1,...,L

L∑

i=1

I(V ;Xi|Y i−1, XL
i+1)− I(V ;Yi|Y i−1, XL

i+1)

+
L∑

i=1

I(U ;Yi|Y i−1, ZL
i+1)− I(U ;Zi|Y i−1, ZL

i+1) + I(X; Z)

(13.149)

= min
U→V→X→Y,Z

σ2
Xi|V Y L

≤Di, i=1,...,L

L∑

i=1

I(V ;Xi|Y i−1, XL
i+1)− I(V ;Yi|Y i−1, XL

i+1)

+
L∑

i=1

I(U ;Yi|Y i−1, ZL
i+1)− I(U ;Zi|Y i−1, ZL

i+1) + I(Xi;Zi)

(13.150)

= min
U→V→X→Y,Z

σ2
Xi|V Y L

≤Di, i=1,...,L

L∑

i=1

I(Y i−1, XL
i+1, V ;Xi)− I(Y i−1, XL

i+1, V ;Yi)

+
L∑

i=1

I(Y i−1, ZL
i+1, U ;Yi)− I(Y i−1, ZL

i+1, U ;Zi) + I(Xi;Zi)

(13.151)

= min
U→V→X→Y,Z

σ2
Xi|V Y L

≤Di, i=1,...,L

L∑

i=1

I(Vi;Xi)− I(Vi;Yi) + I(Ui;Yi)− I(Ui;Zi) + I(Xi;Zi)

(13.152)

= min
U→V→X→Y,Z

σ2
Xi|V Y L

≤Di, i=1,...,L

L∑

i=1

I(Vi;Xi)− I(Vi;Yi|Ui) + I(Xi;Zi|Ui) (13.153)

≥ min
Ui→Vi→Xi→Yi,Zi

σ2
Xi|ViYi

≤Di, i=1,...,L

L∑

i=1

I(Vi;Xi)− I(Vi;Yi|Ui) + I(Xi;Zi|Ui) (13.154)

where (13.148) comes from the Markov chain U → V → X→ Y,Z, (13.149) follows

from Lemma 13.12, (13.150) and (13.151) are due to (13.140), (13.152) follows from

the definitions of Ui, Vi in (13.142) and (13.143), respectively, (13.153) comes from
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(13.144), and (13.154) follows from

σ2
Xi|V Y L ≥ σ2

Xi|V Y LXL
i+1

(13.155)

= σ2
Xi|V Y iXL

i+1
(13.156)

= σ2
Xi|ViYi (13.157)

where (13.155) follows from the fact that conditioning reduces MMSE (which will

be shown in Appendix 13.7.7), (13.156) comes from the following Markov chain

Xi, V, Y
i → XL

i+1 → Y L
i+1 (13.158)

which is a consequence of (13.140) and the Markov chain U → V → X→ Y,Z, and

(13.157) is obtained by using the definition of Vi given in (13.143). Hence, (13.154)

implies that when the joint distribution of the source and side information can be

factorized as in (13.140), the minimum information leakage is given by

Imin
e = min

Ui→Vi→Xi→Yi,Zi
σ2
Xi|ViYi

≤Di, i=1,...,L

L∑

i=1

I(Vi;Xi)− I(Vi;Yi|Ui) + I(Xi;Zi|Ui) (13.159)

We now specialize (13.159) for the case given in Example 13.2, where L = 2 and we

have the following Markov chains

X1 → Y1 → Z1 (13.160)

X2 → Z2 → Y2 (13.161)
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Under these conditions, the minimum information leakage is given by

Imin
e = min

U1→V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1)− I(V1;Y1|U1) + I(X1;Z1|U1)

+ min
U2→V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(V2;X2)− I(V2;Y2|U2) + I(X2;Z2|U2) (13.162)

= min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1)− I(V1;Y1) + I(X1;Z1)

+ min
U2→V2→X2→Z2→Y2

σ2
X2|V2Y2

≤D2

I(V2;X2)− I(V2;Y2|U2) + I(X2;Z2|U2) (13.163)

= min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;X1)− I(V1;Y1) + I(X1;Z1)

+ min
V2→X2→Z2→Y2
σ2
X2|V2Y2

≤D2

I(V2;X2) + I(X2;Z2|V2) (13.164)

where (13.163)-(13.164) come from the following Markov chains

U1 → V1 → X1 → Y1 → Z1 (13.165)

U2 → V2 → X2 → Z2 → Y2 (13.166)

respectively; completing the proof.
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13.7.4 Proofs of (13.51) and (13.52)

We first prove (13.51). To this end, we note that when the joint distribution of the

source and side information is given by

p(x,y, z) =
L∏

i=1

p(xi, yi, zi) (13.167)

and the distortion constraint is imposed by a diagonal matrix D with diagonal

entries D1, . . . , DL, the minimum information leakage is given by

Imin
e = min

Ui→Vi→Xi→Yi,Zi
σ2
Xi|ViYi

≤Di, i=1,...,L

L∑

i=1

I(Vi;Xi)− I(Vi;Yi|Ui) + I(Xi;Zi|Ui) (13.168)

as shown in Appendix 13.7.3 (in particular, see (13.159)). When we set U = φ, in

other words, when we set U1 = φ, . . . , UL = φ, (13.168) reduces to

Imin−φ
e = min

Vi→Xi→Yi,Zi
σ2
Xi|ViYi

≤Di, i=1,...,L

L∑

i=1

I(Vi;Xi)− I(Vi;Yi) + I(Xi;Zi) (13.169)

which is the desired result in (13.51).

Next, we prove (13.52) by using (13.168). When we set U = V , in other words,

when we set U1 = V1, . . . , UL = VL in (13.168), we get

Imin
e = min

Ui→Vi→Xi→Yi,Zi
σ2
Xi|ViYi

≤Di, i=1,...,L

L∑

i=1

I(Vi;Xi) + I(Xi;Zi|Vi) (13.170)

which is the desired result in (13.52).
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13.7.5 Proof of Lemma 13.2

We note that since X,Y are jointly Gaussian, we have [114, page 155]

KX|Y = KX −KXY K−1
Y KY X (13.171)

= KX −KX(KX + ΣY )−1KX (13.172)

= KX(KX + ΣY )−1ΣY (13.173)

where (13.172) comes from the fact that Y = X + NY . Next, we have the following

chain of equalities

|KX(KX + ΣY )−1|
|F(D)(F(D) + ΣY )−1| =

|KX(KX + ΣY )−1ΣY |
|F(D)(F(D) + ΣY )−1ΣY |

(13.174)

=
|KX|Y |

|(ΣY (ΣY −D)−1ΣY −ΣY )Σ−1
Y (ΣY −D)| (13.175)

=
|KX|Y |
|D| (13.176)

where (13.175) follows from the definition of F(D), i.e., F(D) = ΣY (ΣY −D)−1ΣY −

ΣY . Equation (13.176) implies (13.70); completing the proof of Lemma 13.2.
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13.7.6 Proof of Lemma 13.3

We first prove the first statement of the lemma. To this end, using (13.173), we

have

KX|Y = KX(KX + ΣY )−1ΣY (13.177)

= ΣY −ΣY (KX + ΣY )−1ΣY (13.178)

Hence, using (13.178), the constraint D � KX|Y can be expressed as

D � ΣY −ΣY (KX + ΣY )−1ΣY (13.179)

which is

ΣY (KX + ΣY )−1ΣY � ΣY −D (13.180)

where ΣY (KX + ΣY )−1ΣY � 0 implying ΣY − D � 0. Hence, ΣY − D is non-

singular, and (ΣY −D)−1 exists.

Next, we prove the second statement of the lemma. To this end, we note that

since (V,X,Y) are jointly Gaussian, Y = X + NY , and V is independent of NY ,

KX|V Y is given by [114, page 155]

KX|V Y = KX − [ KXV KX ] M−1 [ KXV KX ]> (13.181)
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where M is given by

M =




KV KV X

KXV KY


 (13.182)

Using block matrix inversion lemma [115, page 45], M−1 can be obtained as

M−1 =




K−1
V + K−1

V KV X∆−1
M KXV K−1

V −K−1
V KV X∆−1

M

−∆−1
M KXV K−1

V ∆−1
M


 (13.183)

where ∆M is given by

∆M = KY −KXV K−1
V KV X (13.184)

= KX −KXV K−1
V KV X + ΣY (13.185)

= KX|V + ΣY (13.186)

where the last equality follows from the fact that KX|V = KX − KXV K−1
V KV X .

Using (13.183) and (13.186), we get

[ KXV KX ] M−1 =
[

ΣY ∆−1
M KXV K−1

V I−ΣY ∆−1
M

]
(13.187)

using this in conjunction with (13.186), we obtain

[ KXV KX ] M−1 [ KXV KX ]> = KX −ΣY + ΣY ∆−1
M ΣY (13.188)
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Using (13.188) in (13.181), we have

KX|V Y = ΣY −ΣY ∆−1
M ΣY (13.189)

= ΣY −ΣY (KX|V + ΣY )−1ΣY (13.190)

where (13.190) follows from (13.186). Thus, using (13.190), the constraint KX|V Y �

D can be expressed as follows

ΣY −ΣY (KX|V + ΣY )−1ΣY � D (13.191)

from which, since ΣY −D � 0, the following order can be obtained

KX|V � ΣY (ΣY −D)−1ΣY −ΣY = F(D) (13.192)

which completes the proof of Lemma 13.3.

13.7.7 Conditioning Reduces MMSE

Here, we prove that conditioning reduces MMSE. To this end, we introduce the

following lemma.

Lemma 13.13 Let U and V be any two n-dimensional random vectors and g :

Rn → Rn. Then,

E
[
g(V)g>(V)|U = u

]
� E [g(V)|U = u]E

[
g>(V)|U = u

]
(13.193)
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Proof: The proof of this lemma comes from the following fact

0 � E
[
(g(V)− E [g(V)|U = u]) (g(V)− E [g(V)|U = u])> |U = u

]
(13.194)

= E
[
g(V)g>(V)|U = u

]
− E [g(V)|U = u]E

[
g>(V)|U = u

]
(13.195)

2

We now prove the fact that conditioning reduces MMSE.

Lemma 13.14 If U → V → X, then KX|V � KX|U .

Proof: We have

KX|V = E
[
XX>

]
− E

[
E [X|V]E

[
X>|V

]]
(13.196)

= E
[
XX>

]
− E

[
E
[
E [X|V]E

[
X>|V

]
|U
]]

(13.197)

� E
[
XX>

]
− E

[
E [E [X|V] |U]E

[
E
[
X>|V

]
|U
]]

(13.198)

= E
[
XX>

]
− E

[
E [X|U]E

[
X>|U

]]
(13.199)

where (13.198) comes from Lemma 13.13 and (13.199) comes from the following fact

E [E [X|V] |U] = E [X|U] (13.200)

which is a consequence of the Markov chain U → V → X. 2
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13.7.8 Proof of Lemma 13.4

We now prove Lemma 13.4. Since any jointly Gaussian (U, V,X) triple satisfying

the Markov chain U → V → X also satisfies KX|V � KX|U due to Lemma 13.14,

the feasible set of L̄G already contains all jointly Gaussian (U, V ) pairs satisfying

the Markov chain U → V → X. Hence, we have LG ≥ L̄G. Next, we show that

L̄G ≥ LG to complete the proof of Lemma 13.4. To do so, we need to show that for

any jointly Gaussian (U, V,X) with conditional covariance matrices KX|U and KX|V

satisfying 0 � KX|V � KX|U � KX and KX|V � F(D), there exists another jointly

Gaussian (UG, V G) pair such that this pair has the following properties

• KX|V G = KX|V

• KX|UG = KX|U

• UG → V G → X

To this end, we note that (UG, V G) can be represented as

V G = AV X + NV (13.201)

UG = AUX + NU (13.202)

where (NU ,NV ) and X are independent, NU ,NV are zero-mean Gaussian random

vectors with identity covariance matrices. The cross covariance of NU and NV is

given by ΣUV = E
[
NUN>V

]
, which needs to be selected accordingly to ensure that

UG → V G → X.
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The conditional covariance KX|V G is given by [114, page 155]

KX|V G = KX −KXV GK−1
V G

KV GX (13.203)

Since we are seeking a V G such that KX|V G = KX|V , we set KX|V G = KX|V in

(13.203) yielding

KX|V = KX −KXV GK−1
V G

KV GX (13.204)

= KX −KXA>V (AV KXA>V + I)−1AV KX (13.205)

which is equivalent to

K−1
X (KX −KX|V )K−1

X = A>V (AV KXA>V + I)−1AV (13.206)

Next, we note the Woodbury matrix identity [53].

Lemma 13.15 ([53, page 17])

(
A + CBC>

)−1
= A−1 −A−1C

(
B−1 + C>A−1C

)−1
C>A−1 (13.207)

Using Woodbury matrix identity, we get

(
AV KXA>V + I

)−1
= I−AV (K−1

X + A>V AV )−1A>V (13.208)
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using which in (13.206), we get

K−1
X (KX −KX|V )K−1

X = A>V
[
I−AV (K−1

X + A>V AV )−1A>V
]
AV (13.209)

= A>V AV −A>V AV (K−1
X + A>V AV )−1A>V AV (13.210)

= A>V AV −A>V AV (K−1
X + A>V AV )−1

(
K−1
X + A>V AV −K−1

X

)
(13.211)

= A>V AV (K−1
X + A>V AV )−1K−1

X (13.212)

=
(
K−1
X + A>V AV −K−1

X

)
(K−1

X + A>V AV )−1K−1
X (13.213)

= K−1
X −K−1

X (K−1
X + A>V AV )−1K−1

X (13.214)

which implies

KX|V =
(
K−1
X + A>V AV

)−1
(13.215)

which, in turn, implies

A>V AV = K−1
X|V −K−1

X (13.216)

Hence, if we select AV as satisfying (13.216), we get KX|V G = KX|V . Similarly, if

we select AU to satisfy

A>UAU = K−1
X|U −K−1

X (13.217)

then, we also have KX|UG = KX|U .
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Next, we will explicitly construct AV and AU matrices to satisfy (13.216) and

(13.217), respectively. To this end, we introduce the following lemma, which will be

used subsequently.

Lemma 13.16 ([116]) Let A,B be two real symmetric positive semi-definite ma-

trices. Then, there exists a non-singular matrix W such that

A = W>ΛAW (13.218)

B = W>ΛBW (13.219)

(13.220)

where ΛA and ΛB are diagonal matrices.

Lemma 13.16 states that two real symmetric positive semi-definite matrices can be

diagonalized simultaneously. Using this fact in (13.216)-(13.217), we get

K−1
X|V −K−1

X = W>Λ2
V W (13.221)

K−1
X|U −K−1

X = W>Λ2
UW (13.222)

for some non-singular matrix W, and diagonal matrices ΛU ,ΛV . Since KX|V �

KX|U , we have K−1
X|V � K−1

X|U , which, in view of (13.221)-(13.222) imply

W> (Λ2
V −Λ2

U

)
W � 0 (13.223)
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Since W is non-singular, (13.223) implies that

ΛV � ΛU (13.224)

Finally, we choose

AV = ΛV W (13.225)

AU = ΛUW (13.226)

which, in view of (13.216)-(13.217) and (13.221)-(13.222), imply KX|V G = KX|V and

KX|UG = KX|U .

Next, we show that a proper selection the cross-covariance matrix ΣUV would

yield the desired Markov chain UG → V G → X. To this end, we introduce the

following matrix

AUV = ΛUΛ†V (13.227)

where the diagonal matrix Λ†V is defined as follows:

Λ†V,ii =





1
ΛV,ii

, if ΛV,ii 6= 0

0, otherwise

(13.228)
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Since ΛU � ΛV , we have ΛUΛ†V ΛV = ΛU . Hence, we have

AUV AV = AU (13.229)

We also note the following

AUV A>UV = ΛU

(
Λ†V
)2

ΛU � I (13.230)

since ΛU � ΛV .

Now, we are ready to show that UG and V G satisfy the Markov chain UG →

V G → X by specifying ΣUV . We set NU as follows

NU = AUV NV + Ñ (13.231)

where Ñ is a zero-mean Gaussian random vector with covariance matrix I−AUV A>UV ,

and is independent of NV . In view of (13.231), we have

UG = AUX + NU (13.232)

= AUV AV X + AUV NV + Ñ (13.233)

= AUV V
G + Ñ (13.234)

which implies that (UG, V G) satisfy the Markov chain UG → V G → X; completing

the proof.
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13.7.9 Proof of Lemma 13.5

The Lagrangian for the optimization problem L̄G is given as follows

L
(
L̄G
)

=
1

2
log
|KX |
|KX|V |

− 1

2
log
|KX|U + ΣY |
|KX|V + ΣY |

+
1

2
log
|KX|U + ΣZ |
|ΣZ |

− tr(M0KX|V )

− tr(MU(KX|U −KX|V ))− tr(MX(KX −KX|U))

− tr(MD(F(D)−KX|V )) (13.235)

where the positive semi-definite matrices M0,MU ,MD,MX are the Lagrange mul-

tipliers for the following constraints

KX|V � 0 (13.236)

KX|U −KX|V � 0 (13.237)

F(D)−KX|V � 0 (13.238)

KX −KX|U � 0 (13.239)

respectively. Let K∗X|V and K∗X|U be the minimizers of the optimization problem

L̄G. Using (13.235), the KKT conditions can be found as follows.

∇KX|V L(L̄G) |KX|V =K∗
X|V

= 0 (13.240)

∇KX|UL(L̄G) |KX|U=K∗
X|U

= 0 (13.241)

tr(M0K
∗
X|V ) = 0 (13.242)

tr(MU(K∗X|U −K∗X|V )) = 0 (13.243)
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tr(MD(F(D)−K∗X|V )) = 0 (13.244)

tr(MX(KX −K∗X|U)) = 0 (13.245)

We first note that we have K∗X|V � 0, otherwise L̄G → ∞. Hence, using the fact

that if A � 0,B � 0, tr(AB) ≥ 0, and (13.242), we get M0 = 0. Next, using

the fact that M0 = 0 in (13.240), we get the KKT condition given in (13.81).

Equation (13.241) implies (13.82). Finally, using the fact that A � 0,B � 0,

tr(AB) = tr(BA) ≥ 0 in (13.243)-(13.245), we can get the KKT conditions given

in (13.83)-(13.85), respectively.

13.7.10 Proof of Lemma 13.6

We start with the second statement of the lemma. To this end, we note that (13.82)

and (13.86) imply the following.

(K∗X|U + Σ̃Y )−1 = (K∗X|U + ΣY )−1 + MU (13.246)

= (K∗X|U + ΣZ)−1 + MX (13.247)

Next, using the fact that if A � 0,B � 0 and A � B, we have A−1 � B−1

in conjunction with the fact that MU � 0,MX � 0, we can obtain the second

statement of the lemma from (13.246)-(13.247).
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Next, we consider the third statement of the lemma as follows

K∗X|V + Σ̃Y = K∗X|V +
[
(K∗X|U + ΣY )−1 + MU

]−1 −K∗X|U (13.248)

= K∗X|V +
[
I + (K∗X|U + ΣY )MU

]−1
(K∗X|U + ΣY )−K∗X|U (13.249)

= K∗X|V +
[
I + (K∗X|U −K∗X|V + K∗X|V + ΣY )MU

]−1
(K∗X|U + ΣY )−K∗X|U

(13.250)

= K∗X|V +
[
I + (K∗X|V + ΣY )MU

]−1
(K∗X|U + ΣY )−K∗X|U (13.251)

= K∗X|V +
[
(K∗X|V + ΣY )−1 + MU

]−1
(K∗X|V + ΣY )−1(K∗X|U + ΣY )−K∗X|U

(13.252)

= K∗X|V +
[
(K∗X|V + ΣY )−1 + MU

]−1
(K∗X|V + ΣY )−1(K∗X|U −K∗X|V )

+
[
(K∗X|V + ΣY )−1 + MU

]−1 −K∗X|U (13.253)

= K∗X|V +
[
(K∗X|V + ΣY )−1 + MU

]−1 [
(K∗X|V + ΣY )−1 + MU

]
(K∗X|U −K∗X|V )

+
[
(K∗X|V + ΣY )−1 + MU

]−1 −K∗X|U (13.254)

= K∗X|V + (K∗X|U −K∗X|V ) +
[
(K∗X|V + ΣY )−1 + MU

]−1 −K∗X|U (13.255)

=
[
(K∗X|V + ΣY )−1 + MU

]−1
(13.256)

where (13.248) comes from (13.246), (13.251) and (13.254) follow from (13.83).

Now, we consider the fourth statement of the lemma as follows

(K∗X|U + Σ̃Y )−1(K∗X|V + Σ̃Y ) = I + (K∗X|U + Σ̃Y )−1(K∗X|V −K∗X|U) (13.257)

= I +
[
(K∗X|U + ΣY )−1 + MU

]
(K∗X|V −K∗X|U)

(13.258)
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= I + (K∗X|U + ΣY )−1(K∗X|V −K∗X|U) (13.259)

= (K∗X|U + ΣY )−1(K∗X|V + ΣY ) (13.260)

where (13.258) follows from (13.246), and (13.259) comes from (13.83).

Next, we consider the fifth statement of the lemma as follows

(K∗X|U + Σ̃Y )−1(KX + Σ̃Y ) = I + (K∗X|U + Σ̃Y )−1(KX −K∗X|U) (13.261)

= I +
[
(K∗X|U + ΣZ)−1 + MX

]
(KX −K∗X|U) (13.262)

= I + (K∗X|U + ΣZ)−1(KX −K∗X|U) (13.263)

= (K∗X|U + ΣZ)−1(KX + ΣZ) (13.264)

where (13.262) comes from (13.247), and (13.263) is due to (13.85).

Now, we prove the last statement of the lemma. To this end, we note that the

third statement of this lemma and (13.81) imply the following

(K∗X|V + Σ̃Y )−1 + MD = (K∗X|V )−1 (13.265)

which will be used in the sequel. Now, the last statement of this lemma follows from

(K∗X|V + Σ̃Y )−1(F(D) + Σ̃Y ) = I + (K∗X|V + Σ̃Y )−1(F(D)−K∗X|V ) (13.266)

= I +
[
(K∗X|V )−1 −MD

]
(F(D)−K∗X|V ) (13.267)

= I + (K∗X|V )−1(F(D)−K∗X|V ) (13.268)
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= (K∗X|V )−1F(D) (13.269)

where (13.267) comes from (13.265), and (13.268) is due to (13.84).

Finally, we note that (13.265) also implies the first statement of the lemma;

completing the proof.

13.7.11 Proof of Lemma 13.7

We first consider the cost function of the optimization problem L̄

C(L̄) = I(V ; X)− I(V ; Ỹ|U) + I(X; Z|U) (13.270)

= I(V ; X)− I(V ; Ỹ) + I(U ; Ỹ) + I(X; Z)− I(U ; Z) (13.271)

= I(V ; X)− I(V ; Ỹ) + I(U ; Ỹ,Z) + I(X; Z)− I(U ; Z) (13.272)

= I(V ; X)− I(V ; Ỹ) + I(U ; Ỹ|Z) + I(X; Z) (13.273)

≥ I(V ; X)− I(V ; Ỹ) + I(X; Z) (13.274)

where (13.271)-(13.272) come from the following Markov chain

U → V → X→ Ỹ → Y,Z (13.275)
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and (13.274) comes from the non-negativity of the mutual information. On the

other hand, (13.274) can be obtained from (13.89) by choosing U = φ, i.e., we have

L̄ ≤ min
V→X→Ỹ→Y,Z

KX|V Y �D

I(V ; X)− I(V ; Ỹ) + I(X; Z) (13.276)

Hence, (13.274) and (13.276) imply the following

L̄ = min
V→X→Ỹ→Y,Z

KX|V Y �D

I(V ; X)− I(V ; Ỹ) + I(X; Z) (13.277)

= min
V→X→Ỹ→Y,Z

KX|V Y �D

I(V ; X|Ỹ) + I(X; Z) (13.278)

where (13.278) comes from the Markov chain V → X → Ỹ. We note that the

optimization problem in (13.278) is similar to the one we already studied in (13.65)-

(13.69). Indeed, if the constraint KX|V Y � D in (13.278) was KX|V Ỹ � D, both

optimization problems would be identical, and using the analysis in (13.65)-(13.69),

we could conclude that (13.278) is minimized by a Gaussian V satisfying KX|V Ỹ �

D. However, the difference between these two constraints necessitates a new proof,

and indeed, showing the optimality of Gaussian V for the optimization problem in

(13.278) is not as straightforward as showing the optimality of Gaussian V for the

optimization problem in (13.65).

We find the minimizer for the optimization problem L̄ in two steps. In the

first step, for a given feasible V , we explicitly construct a feasible Gaussian V̄ which

provides the same value for the cost function of L̄ as the original V does. Thus, this
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first step implies that restricting V to be Gaussian does not change the optimum

value of the optimization problem L̄. Consequently, in the second step of the proof,

we minimize L̄ over all feasible Gaussian V . To this end, we note that the cost

function of the optimization problem L̄ can be written as

C(L̄) = h(Ỹ|V )− h(X|V ) + c (13.279)

for some constant c, which is independent of V . From now on, we focus on the

difference of the two differential entropy terms in (13.279). Next, we note that using

Lemma 5.17, we have

h(Ỹ|V )− h(X|V ) =
1

2

∫ Σ̃Y

0

J(X + N|V )dΣN (13.280)

where N is zero-mean Gaussian random vector with covariance matrix ΣN satis-

fying 0 � ΣN . Next, we find upper and lower bounds for (13.280). We note that

Lemma 5.16 implies the following upper bound for J(X + N|V )

J(X + N|V ) �
[
J−1(X|V ) + ΣN

]−1
(13.281)

Using (13.281) in (13.280) in conjunction with Lemma 5.8, we get

h(Ỹ|V )− h(X|V ) ≤ 1

2
log
|J−1(X|V ) + Σ̃Y |
|J−1(X|V )| (13.282)

We note that due to Lemma 5.13, we have J(X|V ) � K−1
X|V � 0, i.e., (13.282) is
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well-defined. Similarly, using Lemma 5.16, we have

J−1(X + ÑY |V )− Σ̃Y � J−1(X + N|V )−ΣN , ΣN � Σ̃Y (13.283)

which implies

J(X + N|V ) �
[
J−1(X + ÑY |V )− Σ̃Y + ΣN

]−1

(13.284)

Using (13.284) in (13.280) in conjunction with Lemma 5.8, we get

h(Ỹ|V )− h(X|V ) ≥ 1

2
log

|J−1(X + ÑY |V )|
|J−1(X + ÑY |V )− Σ̃Y |

(13.285)

Now, we rewrite the bounds in (13.282) and (13.285). To this end, we define the

following function

f(t) =
1

2
log
|K(t) + Σ̃Y |
|K(t)| , 0 ≤ t ≤ 1 (13.286)

where the matrix K(t) is given as follows

K(t) = tJ−1(X|V ) + (1− t)
[
J−1(X + ÑY |V )− Σ̃Y

]
(13.287)

Hence, using f(t) in (13.286), the bounds in (13.282) and (13.285) can be rewritten
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as follows:

f(0) ≤ h(Ỹ|V )− h(X|V ) ≤ f(1) (13.288)

Since f(t) is continuous in t, there exists t∗ such that

f(t∗) = h(Ỹ|V )− h(X|V ) (13.289)

=
1

2
log
|K(t∗) + Σ̃Y |
|K(t∗)| (13.290)

where K(t∗) is bounded as follows

J−1(X|V ) � K(t∗) � J−1(X + ÑY |V )− Σ̃Y (13.291)

� J−1(X + NY |V )−ΣY (13.292)

where we used the fact that 0 ≤ t∗ ≤ 1 and Lemma 5.16. Thus, (13.290) implies

that if we pick a Gaussian V̄ satisfying KX|V̄ = K(t∗), it provides the same value

for the cost function of L̄ as the original V does.

Next, we check whether this Gaussian V̄ is feasible, i.e., whether it satisfies

KX|V̄ Y � D. To this end, using Lemma 5.21, we get

KX|V̄ Y = ΣY −ΣY J(Y|V̄ )ΣY (13.293)
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Since V̄ is Gaussian, Lemma 5.13 implies that

J(Y|V̄ ) = K−1
Y |V̄ (13.294)

= (KX|V̄ + ΣY )−1 (13.295)

where (13.295) follows from the fact that (V̄ ,X) and NY are independent. Moreover,

due to (13.292), we have KX|V̄ � J−1(Y|V ) − ΣY , which together with (13.295)

imply the following

J(Y|V̄ ) � J(Y|V ) (13.296)

Using (13.296) in (13.293), we get

KX|V̄ Y � ΣY −ΣY J(Y|V )ΣY (13.297)

= KX|V Y (13.298)

� D (13.299)

where (13.298) follows from Lemma 5.21 and (13.299) is due to the assumption that

V is feasible, i.e., KX|V Y � D. Equation (13.299) implies that the constructed

Gaussian random vector V̄ is feasible, i.e., for each feasible V , there exists a feasible

Gaussian V̄ which provides the same value for the cost function of L̄; completing

the first step of the proof.

Hence, in view of this first step of the proof, we can restrict V to be Gaussian
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which leads to the following form for L̄:

L̄ = min
V→X→Ỹ→Y,Z
V is Gaussian

KX|V Y �D

I(V ; X)− I(V ; Ỹ) + I(X; Z) (13.300)

= min
V→X→Ỹ→Y,Z
V is Gaussian
KX|V �F(D)

I(V ; X)− I(V ; Ỹ) + I(X; Z) (13.301)

= min
KX|V �F(D)

1

2
log
|KX |
|KX|V |

− 1

2
log
|KX + Σ̃Y |
|KX|V + Σ̃Y |

+
1

2
log
|KX + ΣZ |
|ΣZ |

(13.302)

=
1

2
log
|KX |
|F(D)| −

1

2
log
|KX + Σ̃Y |
|F(D) + Σ̃Y |

+
1

2
log
|KX + ΣZ |
|ΣZ |

(13.303)

where (13.301) follows from Lemma 13.3, and (13.303) comes from the fact that

|KX|V + Σ̃Y |
|KX|V |

(13.304)

is monotonically decreasing in the positive semi-definite matrices KX|V ; completing

the proof of Lemma 13.7.

13.7.12 Proof of Lemma 13.8

We note that due to Theorem 13.3, we already have single-letter descriptions for

the regions Ro(D) and Rα(D). Thus, to prove Lemma 13.8, it suffices to show

that for any given feasible (U, V ), these two regions satisfy the relationship given in

Lemma 13.8. We first note the following Markov chains

U → V → X→ ¯̄Yα → Y (13.305)
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U → V → X→ ¯̄Zα → Z (13.306)

Next, we show that any feasible (U, V ) for the region Ro(D) is also feasible for the

region limα→0Rα(D). To this end, we note that

D � KX|V Y (13.307)

� KX|V Y ¯̄Yα
(13.308)

= KX|V ¯̄Yα
(13.309)

where (13.308) is due to the fact that conditioning reduces MMSE and (13.309)

follows from the Markov chain in (13.305). It can be shown that limα→0 KX|V ¯̄Yα

exists and is equal to KX|V Y . Hence, this observation and (13.309) imply that

(U, V ) is also feasible for the region limα→0Rα(D).

Next, we show that for a given (U, V ), any rate inside the region Ro(D) is

also inside limα→0Rα(D). To this end, for a given (U, V ), we denote the mini-

mum achievable rates in Ro(D) and Rα(D) by Ro and Rα, respectively. Due to

Theorem 13.3, we have

Ro −Rα = [I(V ; X)− I(V ; Y)]− [I(V ; X)− I(V ; ¯̄Yα)] (13.310)

= I(V ; ¯̄Yα)− I(V ; Y) (13.311)

= I(V ; ¯̄Yα|Y) (13.312)

≥ 0 (13.313)
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where (13.312) comes from the Markov chain in (13.305). Equation (13.312) implies

that any achievable rate within the region Ro(D) is also included in the region

limα→0Rα(D).

Finally, we show that for a given (U, V ), any achievable information leakage

inside the region Ro(D) is also inside limα→0Rα(D). To this end, for a given (U, V ),

we denote the minimum information leakage in Ro(D) and Rα(D) by Ie,o and Ie,α,

respectively. Due to Theorem 13.3, we have

Ie,o − Ie,α

= [I(V ; X)− I(V ; Y|U) + I(X; Z|U)]−
[
I(V ; X)− I(V ; ¯̄Yα|U) + I(X; ¯̄Zα|U)

]

(13.314)

=
[
I(V ; ¯̄Yα|U)− I(V ; Y|U)

]
+
[
I(X; Z|U)− I(X; ¯̄Zα|U)

]
(13.315)

= I(V ; ¯̄Yα|U,Y) +
[
I(X; Z|U)− I(X; ¯̄Zα|U)

]
(13.316)

≥ I(X; Z|U)− I(X; ¯̄Zα|U) (13.317)

≥ I(X; Z)− I(X; ¯̄Zα) (13.318)

=
1

2
log |HZKXH>Z + I| − 1

2
log
|KX + RZ(ΛZ + αI)−2R>Z |
|RZ(ΛZ + αI)−2R>Z |

(13.319)

=
1

2
log |HZKXH>Z + I|

− 1

2
log
|KX + RZ(ΛZ + αI)−1Q>ZQZ(ΛZ + αI)−1R>Z |
|RZ(ΛZ + αI)−1Q>ZQZ(ΛZ + αI)−1R>Z |

(13.320)

=
1

2
log |HZKXH>Z + I| − 1

2
log |QZ(ΛZ + αI)R>ZKXRZ(ΛZ + αI)Q>Z + I|

(13.321)

where (13.316) comes from the Markov chain in (13.305) and (13.318) follows from
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the Markov chain in (13.306). Equation (13.321) implies that

lim
α→0

Ie,o − Ie,α

≥ 1

2
log |HZKXH>Z + I| − lim

α→0

1

2
log |QZ(ΛZ + αI)R>ZKXRZ(ΛZ + αI)Q>Z + I|

(13.322)

=
1

2
log |HZKXH>Z + I| − 1

2
log |QZΛZR>ZKXRZΛZQ>Z + I| (13.323)

=
1

2
log |HZKXH>Z + I| − 1

2
log |HZKXH>Z + I| (13.324)

= 0 (13.325)

where (13.323) comes from the continuity of the determinant in positive semi-definite

matrices. Equation (13.325) implies that any achievable information leakage in

the region Ro(D) is also inside the region limα→0Rα(D); completing the proof of

Lemma 13.8.

13.7.13 Proof of Theorem 13.6

We start the proof of Theorem 13.6 by first expressing Theorem 13.4 for the side

information model given by (13.103)-(13.104). In other words, we first provide an

outer bound for the region Rα(D) by using Theorem 13.4. To this end, to be

able to use Theorem 13.4, we need D � KX| ¯̄Yα . However, since we originally have

D � KX|Y and KX| ¯̄Yα � KX|Y , where the latter one follows from the Markov chain

X→ Ȳα → Y and the fact that conditioning reduces MMSE, KX| ¯̄Yα −D might be

indefinite. However, the only place we use the condition D � KX|Y is to be able
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to show the equivalence between KX|V Y � D and KX|V � F(D) for Gaussian V

in Lemma 13.3. In particular, we only need the fact that ΣY −D is non-singular

to show this equivalence, and which is implied by D � KX|Y . However, still there

might be distortion matrices D for which although we have non-singular ΣY −D,

the condition D � KX|Y is not satisfied. Hence, if we can find an α∗ such that

ΣY,α −D � 0, 0 < α ≤ α∗ (13.326)

we can still use Theorem 13.4 to obtain an outer bound for the region Rα(D). Now,

we establish the existence of such an α∗. Using the assumption D � KX|Y , we have

D � KX|Y = (K−1
X + H>Y HY )−1 (13.327)

where the equality follows from (13.215). Equation (13.327) implies that

0 ≺ D−1 −H>Y HY (13.328)

= D−1 −RY Λ2
Y R>Y (13.329)

where we use the singular value decomposition of HY . Thus, since D−1−RY Λ2
Y R>Y

is strictly positive definite, there exists 0 < β such that

D−1 −RY Λ2
Y R>Y � β2I (13.330)

= β2RY R>Y (13.331)
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which implies

D−1 � RY (Λ2
Y + β2)R>Y (13.332)

which, in turn, implies the existence of an α∗ such that

D−1 � RY (ΛY + α)2R>Y , 0 < α ≤ α∗ (13.333)

Hence, using the definition of ΣY,α in (13.333), we get

D−1 � Σ−1
Y,α, 0 < α ≤ α∗ (13.334)

which is equivalent to the desired condition in (13.326) which is needed to use

Theorem 13.4 to obtain an outer bound for the region Rα(D). Hence, assuming

that 0 < α ≤ α∗, an outer bound for the region Rα(D) can be written as the union

of rate and information leakage (R, Ie) pairs satisfying

R ≥ 1

2
log
|KX| ¯̄Yα|
|D| =

1

2
log

|KX |
|Fα(D)| −

1

2
log

|KX + ΣY,α|
|Fα(D) + ΣY,α|

(13.335)

Ie ≥ min
0�KX|V �KX|U�KX

KX|V �Fα(D)

1

2
log
|KX |
|KX|V |

− 1

2
log
|KX|U + ΣY,α|
|KX|V + ΣY,α|

+
1

2
log
|KX|U + ΣZ,α|
|ΣZ,α|

(13.336)

where Fα(D) = ΣY,α(ΣY,α − D)−1ΣY,α − ΣY,α. We now find the limiting region

that comes from the one described by (13.335)-(13.336) as α → 0. To this end,we
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introduce the following lemma that will be used subsequently.

Lemma 13.17

lim
α→0

KX| ¯̄Yα = KX|Y (13.337)

lim
α→0

Fα(D) = (D−1 −H>Y HY )−1 (13.338)

The proof of Lemma 13.17 is given in Appendix 13.7.14.

We first consider the rate bound in (13.335) as follows

lim
α→0

1

2
log
|KX| ¯̄Yα|
|D| =

1

2
log
|KX|Y |
|D| (13.339)

which follows from the continuity of the determinant in positive semi-definite matri-

ces and (13.337). Similarly, for the second expression in the rate bound in (13.335),

we have

lim
α→0

1

2
log

|KX |
|Fα(D)| −

1

2
log

|KX + ΣY,α|
|Fα(D) + ΣY,α|

=
1

2
log

|KX |
|(D−1 −H>Y HY )−1| − lim

α→0

1

2
log

|KX + ΣY,α|
|Fα(D) + ΣY,α|

(13.340)

=
1

2
log

|KX |
|(D−1 −H>Y HY )−1| − lim

α→0

1

2
log

|KX + RY (ΛY + αI)−2R>Y |
|Fα(D) + RY (ΛY + αI)−2R>Y |

(13.341)

=
1

2
log

|KX |
|(D−1 −H>Y HY )−1|

− lim
α→0

1

2
log

|KX + RY (ΛY + αI)−1Q>Y QY (ΛY + αI)−1R>Y |
|Fα(D) + RY (ΛY + αI)−1Q>Y QY (ΛY + αI)−1R>Y |

(13.342)
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=
1

2
log

|KX |
|(D−1 −H>Y HY )−1|

− lim
α→0

1

2
log

|QY (ΛY + αI)R>Y KXRY (ΛY + αI)Q>Y + I|
|QY (ΛY + αI)R>Y Fα(D)RY (ΛY + αI)Q>Y + I| (13.343)

=
1

2
log

|KX |
|(D−1 −H>Y HY )−1| −

1

2
log

|QY ΛY R>Y KXRY ΛY Q>Y + I|
|QY ΛY R>Y (D−1 −H>Y HY )−1RY ΛY Q>Y + I|

(13.344)

=
1

2
log

|KX |
|(D−1 −H>Y HY )−1| −

1

2
log

|HY KXH>Y + I|
|HY (D−1 −H>Y HY )−1H>Y + I| (13.345)

where (13.340) is due to the continuity of the determinant in positive semi-definite

matrices and (13.338), (13.341) comes from the definition of ΣY,α, (13.344) comes

from the continuity of the determinant in positive semi-definite matrices and (13.338),

and (13.345) is obtained by using the singular value decomposition of HY . Hence,

(13.339) and (13.345) imply that any rate R inside the region limα→0Rα(D) satisfies

R ≥ 1

2
log
|KX|Y |
|D| (13.346)

=
1

2
log

|KX |
|(D−1 −H>Y HY )−1| −

1

2
log

|HY KXH>Y + I|
|HY (D−1 −H>Y HY )−1H>Y + I| (13.347)

Following a similar analysis, the limit of the information leakage in (13.336) can be

found as

min
0�KX|V �KX|U�KX

KX|V �(D−1−H>Y HY )−1

1

2
log
|KX |
|KX|V |

− 1

2
log
|HY KX|UH>Y + I|
|HY KX|V H>Y + I|

+
1

2
log |HY KX|UH>Y + I| (13.348)
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which implies that any information leakage Ie inside the region limα→0Rα(D) should

be larger than (13.348); completing the proof of Theorem 13.6.

13.7.14 Proof of Lemma 13.17

We first prove the following lemma which will be used subsequently.

Lemma 13.18 Let K(α) = (A + f(α)B)−1, 0 < α ≤ α∗, where A � f(α)B �

0, 0 ≤ α ≤ α∗ and f(α) is continuous in α. Then, we have

lim
α→0

K(α) = (A + f(0)B)−1 (13.349)

Proof: In the proof of this lemma, we use the fact that if limn→∞Cn = 0,

we have

(I + C)−1 =
∞∑

n=0

(−1)nCn (13.350)

where C0 = I [115, page 19]. Now, we consider

K(α) = (A + f(α)B)−1 (13.351)

= A−1/2(I + f(α)A−1/2BA−1/2)−1A−1/2 (13.352)

where due to A � f(α)B � 0, we have I � f(α)A−1/2BA−1/2 � 0 which implies

lim
n→∞

(
f(α)A−1/2BA−1/2

)n
= 0 (13.353)
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Hence, we can use (13.350) in (13.352) to get

K(α) = A−1/2

[
∞∑

n=0

(−1)nfn(α)(A−1/2BA−1/2)n

]
A−1/2 (13.354)

which implies

lim
α→0

K(α) = lim
α→0

A−1/2

[
∞∑

n=0

(−1)nfn(α)(A−1/2BA−1/2)n

]
A−1/2 (13.355)

= A−1/2

[
∞∑

n=0

(−1)nfn(0)(A−1/2BA−1/2)n

]
A−1/2 (13.356)

= A−1/2
[
I + f(0)A−1/2BA−1/2

]−1
A−1/2 (13.357)

= (A + f(0)B)−1 (13.358)

where (13.357) comes from (13.350); completing the proof of Lemma 13.18. 2

We now consider (13.337) in Lemma 13.17 as follows

KX| ¯̄Yα
= KX(KX + ΣY,α)−1ΣY,α (13.359)

= (K−1
X + Σ−1

Y,α)−1 (13.360)

=
[
K−1
X + RY (ΛY + αI)2R>Y

]−1
(13.361)

=
[
K−1
X + RY Λ2

Y R>Y + RY (2αΛY + α2I)R>Y
]−1

(13.362)

where 0 < α ≤ α∗. Equation (13.359) comes from (13.173), (13.361) is due to the

definition of ΣY,α. We note that K−1
X + RY Λ2

Y R>Y � 0, and thus, α∗ can be selected
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to ensure that

K−1
X + RY Λ2

Y R>Y � RY (2αΛY + α2I)R>Y (13.363)

for all 0 ≤ α ≤ α∗. Hence, we can use Lemma 13.18 in (13.362) to get

lim
α→0

KX| ¯̄Yα
=
[
K−1
X + RY Λ2

Y R>Y
]−1

(13.364)

=
[
K−1
X + RY ΛY Q>Y QY ΛY R>Y

]−1
(13.365)

= (K−1
X + HT

Y HY )−1 (13.366)

= KX|Y (13.367)

where (13.366) comes from the singular value decomposition of HY and (13.367) is

due to (13.215); completing the proof of (13.337).

Next, we consider (13.338) in Lemma 13.17 as follows

Fα(D) = ΣY,α(ΣY,α −D)−1ΣY,α −ΣY,α (13.368)

= ΣY,α(ΣY,α −D)−1D (13.369)

= (D−1 −Σ−1
Y,α)−1 (13.370)

= (D−1 −RY (ΛY + αI)2R>Y )−1 (13.371)

=
[
D−1 −RY Λ2

Y R>Y −RY (2αΛY + α2I)R>Y
]−1

(13.372)

=
[
D−1 −RY ΛY Q>Y QY ΛY R>Y −RY (2αΛY + α2I)R>Y

]−1
(13.373)

=
[
D−1 −H>Y HY −RY (2αΛY + α2I)R>Y

]−1
(13.374)

716



where 0 < α ≤ α∗. Equation (13.371) comes from the definition of ΣY,α and

(13.374) is obtained by using the singular value decomposition of HY . We note that

D−1 − H>Y HY is strictly positive definite as (13.328) indicates, and hence, there

exists an α∗ such that

D−1 −H>Y HY � RY (2αΛY + α2I)R>Y (13.375)

for all 0 ≤ α ≤ α∗. Consequently, we can use Lemma 13.18 in (13.374) to get

lim
α→0

Fα(D) = (D−1 −H>Y HY )−1 (13.376)

which completes the proof of Lemma 13.17.
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Chapter 14

Secure Lossy Source Coding under Relative Equivocation

14.1 Introduction

In this chapter, we revisit the problem of secure lossy source coding with side infor-

mation that we considered in the previous chapter. In this problem, the transmitter

wants to describe the source to the legitimate user within a distortion level while

keeping the source hidden from the eavesdropper as much as possible, where both

the legitimate user and the eavesdropper have some side information. In all previ-

ous works studying the secure lossy source coding problem, the secrecy is measured

by either the equivocation of the source at the eavesdropper (see [14, 112] and our

work in Chapter 13) or the equivocation of the legitimate user’s reconstruction of

the source at the eavesdropper (see [117]).

In this chapter, first, we argue that both of these secrecy measures have draw-

backs, especially if one wants to quantify the relative confusion of the eavesdropper

about the source with respect to the legitimate user. In secure channel coding prob-

lems (resp. secure lossless source coding problems), due to the perfect recovery of the

message (resp. the source) at the legitimate user, the equivocation of the message

(resp. the source) accurately measures the relative equivocation of the eavesdropper.

However, in the context of secure lossy source coding, since the legitimate user does

not reconstruct the source perfectly, but only within a distortion, the equivocation
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of the source at the eavesdropper cannot accurately measure the relative confusion

of the eavesdropper with respect to the legitimate user. Consequently, we argue that

the relative equivocation is a better measure of secrecy for the secure lossy source

coding problem.

Once we adopt the relative equivocation as the secrecy measure, we obtain

the single-letter description of the rate, relative equivocation and distortion region

for the secure lossy source coding problem. To this end, we show that the coding

scheme proposed in [14], where the same problem is studied when the equivocation

of the source at the eavesdropper is used as the secrecy measure, attains the rate,

relative equivocation and distortion region.

Next, we specialize the single-letter description we obtain to the degraded and

reversely degraded cases. Although the single-letter description of the rate, relative

equivocation and distortion region involves two auxiliary random variables, when

it is specialized to either degraded or reversely degraded cases, a single auxiliary

random variable is sufficient for the single-letter description. The latter fact implies

that Wyner-Ziv scheme [113] is optimal for both degraded and reversely degraded

cases, though it might not be optimal for the general case. In the final part of the

chapter, we address this issue, and provide a model for which two auxiliary random

variables are needed; implying that Wyner-Ziv scheme is not optimal in general.
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14.2 The Secrecy Measure

Let {(Xi, Yi, Zi)}ni=1 denote i.i.d. tuples drawn from a distribution p(x, y, z). The

transmitter, legitimate user and the eavesdropper observe Xn ∈ X n, Y n ∈ Yn,

and Zn ∈ Zn, respectively. The transmitter wants to convey information to the

legitimate user in a way that the legitimate user can reconstruct the source Xn

within a certain distortion while keeping the source from the eavesdropper as secret

as possible (see Figure 14.1). We note that if there was no eavesdropper, this setting

would reduce to the Wyner-Ziv problem [113].

The distortion of the reconstructed sequence at the legitimate user is mea-

sured by the function dn(Xn, X̂n) where X̂n ∈ X̂ n denotes the legitimate user’s

reconstruction of the source Xn. We consider functions dn(Xn, X̂n) that have the

following form

dn(Xn, X̂n) =
1

n

n∑

i=1

d(Xi, X̂i) (14.1)

where d(a, b) is a non-negative finite-valued function.

In the previous works [14, 112] on secure lossy source coding with side in-

formation (as well as our work in Chapter 13), the objective was to maximize the

uncertainty of the eavesdropper about the source Xn, and consequently, the equiv-

ocation of the source at the eavesdropper was chosen as the measure of secrecy:

1

n
H(Xn|M,Zn) (14.2)
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Legitimate User

Eavesdropper

TransmitterXn

X̂n

Y n

Xn

Zn

M = fn(X
n)

Figure 14.1: Secure lossy source coding with side information.

where M ∈M, which is a function of the source Xn, denotes the signal sent by the

transmitter. In this paper, we propose to use relative equivocation of the source at

the eavesdropper with respect to the legitimate user

1

n

[
H(Xn|M,Zn)−H(Xn|M,Y n)

]
(14.3)

To measure secrecy by using the equivocation of the source at the eavesdropper

given by (14.2) is indeed inspired by the secure transmission of uniformly distributed

messages over a wiretap channel (see Figure 14.2), where secrecy is measured by the

equivocation of the message at the eavesdropper

1

n
H(W |Zn) (14.4)

We note that in the wiretap channel, the legitimate user correctly decodes the

message W , and hence due to Fano’s lemma, we have limn→∞(1/n)H(W |Y n) = 0.

Thus, the equivocation of the message at the eavesdropper for the wiretap channel
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W ∼ Unif{1, . . . , 2nR}

LegitimateUser

p(y, z|x)Transmitter

Eavesdropper

W Xn

Y n

Zn

Ŵ

1
n
H(W |Zn)

Figure 14.2: Wiretap channel.

given by (14.4) is equivalent to

1

n
[H(W |Zn)−H(W |Y n)] (14.5)

as n → ∞. In other words, as n → ∞, the equivocation of the message at the

eavesdropper given by (14.4) is equivalent to the relative equivocation of the message

at the eavesdropper with respect to the legitimate user given by (14.5).

In our case, since the legitimate user does not reconstruct the source in a

lossless manner, the legitimate user will have some confusion about the source. In

other words, as long as the distortion between the source and its reconstruction at the

legitimate user is non-zero, the legitimate user will have a non-zero equivocation,

i.e., we have limn→∞(1/n)H(Xn|M,Y n) 6= 0. Hence, as opposed to the wiretap

channel, in our case, if we use the equivocation of the source at the eavesdropper

given by (14.2) as the secrecy measure, we do not have an equivalence between (14.2)

and the relative equivocation of the source at the eavesdropper with respect to the

legitimate user given by (14.3). In other words, although in the wiretap channel,

the equivocation at the eavesdropper tells us not only how much the eavesdropper
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is confused about the message but also the relative confusion of the eavesdropper

with respect to the legitimate user, in the secure lossy source coding problem, the

equivocation at the eavesdropper tells us just how much the eavesdropper is confused

about the source, but not the relative confusion of the eavesdropper with respect to

the legitimate user.

Moreover, although the equivocation of the source at the eavesdropper given

by (14.2) cannot indicate whether the eavesdropper has a better reconstruction of

the source or not, for some models of source and side information, the relative

equivocation of the source at the eavesdropper with respect to the legitimate user

given by (14.3) would indicate whether the eavesdropper has a better reconstruction

of the source than the legitimate user. The following example identifies some models

of source and side information where this claim holds.

Example 14.1 In this example, we consider the degraded and reversely degraded

models. For the degraded model, we have the following Markov chain

Xi → Yi → Zi, i = 1, . . . , n (14.6)

and for the reversely degraded model, we have the following Markov chain

Xi → Zi → Yi, i = 1, . . . , n (14.7)

We assume that in both models, both the legitimate user and the eavesdropper have

the same reconstruction alphabet X̂ n and use the same distortion metric dn(xn, x̂n) =
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(1/n)
∑n

i=1 d(xi, x̂i). We denote the minimum achievable distortion by the legitimate

user and the eavesdropper by dY and dZ, respectively. We have the following order

between dY and dZ for the models under consideration in this example.

Lemma 14.1 When both the legitimate user and the eavesdropper use the same

reconstruction alphabet and the same distortion metric, the following orders hold.

• If Xi → Yi → Zi, i = 1, . . . , n, we have dY ≤ dZ.

• If Xi → Zi → Yi, i = 1, . . . , n, we have dY ≥ dZ.

The proof of Lemma 14.1 is given in Appendix 14.8.1.

Now, we consider the degraded model. For the degraded model, as Lemma 14.1

states, the minimum achievable distortion by the legitimate user is less than the

minimum achievable distortion by the eavesdropper, i.e., dY ≤ dZ. Consequently,

we expect that the eavesdropper is more confused about the source than the legitimate

user, i.e., the relative equivocation of the source at the eavesdropper with respect to

the legitimate user is positive. Indeed, this expectation is right as seen through

H(Xn|M,Zn)−H(Xn|M,Y n) = H(Xn|M,Zn)−H(Xn|M,Y n, Zn) (14.8)

= I(Xn;Y n|M,Zn) (14.9)

≥ 0 (14.10)

where (14.8) is due to the Markov chain M → Xn → Y n → Zn.

Similarly, for the reversely degraded model, as Lemma 14.1 states, the mini-

mum achievable distortion by the eavesdropper is less than the minimum achievable

724



distortion by the legitimate user, i.e., dZ ≤ dY , and consequently, the legitimate

user is more confused about the source than the legitimate user, i.e., the relative

equivocation at the eavesdropper with respect to the legitimate user is negative:

H(Xn|M,Zn)−H(Xn|M,Y n) = H(Xn|M,Zn, Y n)−H(Xn|M,Y n) (14.11)

= −I(Xn;Zn|M,Y n) (14.12)

≤ 0 (14.13)

where (14.11) is due to the Markov chain M → Xn → Zn → Y n.

We note that although this example shows that for some models of source and

side information, the relative equivocation of the source at the eavesdropper with

respect to the legitimate user given by (14.3) indicates whether the eavesdropper

will have a better reconstruction of the source than the legitimate user, we do not

expect it to hold for all source and side information models. For example, if there is a

model with vector source and side information, and the model is neither degraded nor

reversely degraded, then using the relative equivocation, we might not understand

whether the legitimate user or the eavesdropper is able to reconstruct a specific

component of the source in a better way. Indeed, to understand the relative qualities

of the reconstructions of the source at the legitimate user and the eavesdropper, the

most appropriate secrecy metric to use is the minimum attainable distortion of the

eavesdropper’s reconstruction of the source. However, this formulation does not

seem to be tractable for now, especially, if one considers the fact that even for the

degraded case, this problem is still open [110].
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Before adopting the relative equivocation given by (14.3) as the secrecy metric

to formulate the problem of secure lossy source coding with side information, we

discuss another possible secrecy metric [117] which considers the equivocation of the

reconstructed sequence at the eavesdropper:

1

n
H(X̂n|M,Zn) (14.14)

Although this secrecy measure is useful in the sense that it can tell us how much

information the eavesdropper has about the legitimate user’s reconstruction, and

hence to what extent, the eavesdropper can reproduce the legitimate user’s recon-

struction, this secrecy measure also has some shortcomings. First, we note that

although the equivocation of the reconstructed source at the eavesdropper measures

the capability of the eavesdropper to reproduce the legitimate user’s reconstruction,

it does not measure the capability of the eavesdropper to reproduce the source it-

self. Hence, the use of the equivocation of the legitimate user’s reconstruction as

the measure of secrecy might be misleading, because the equivocation of the re-

constructed source might have a non-zero value indicating that the eavesdropper

cannot duplicate the legitimate user’s reconstruction, while the eavesdropper has a

better reconstruction of the source than the legitimate user. The following example

demonstrates this observation.

Example 14.2 In this example, we consider the reversely degraded model introduced

in Example 14.1. In the reversely degraded model, the eavesdropper has a better

side information than the legitimate user, and consequently, is less confused than
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the legitimate user. Moreover, as Lemma 14.1 states, for the reversely degraded

model, we have dZ ≤ dY , i.e., the eavesdropper has a better reconstruction of the

source than the legitimate user. On the other hand, due to the non-negativity of the

entropy, we have H(X̂n|M,Zn) ≥ 0 indicating that the eavesdropper might not be

able to reproduce the legitimate user’s reconstruction of the source. This results from

the fact that the reconstructed sequence X̂n depends on Y n, where this dependence

cannot be resolved by conditioning on Zn. Hence, the use of equivocation of legitimate

user’s reconstruction might be misleading.

Another point about the equivocation of the reconstructed sequence at the

eavesdropper given by (14.14) is that it depends on the entire joint distribution of the

source Xn and side information Y n and Zn, i.e., p(xn, yn, zn). It is well-known that

the minimum achievable distortions by the legitimate user and the eavesdropper, i.e.,

dY and dZ , depend only on the distributions p(xn, yn) and p(xn, zn), respectively, but

not on the joint distribution p(xn, yn, zn). Hence, by using the equivocation of the

reconstructed sequence at the eavesdropper given by (14.14), we might get different

equivocations for models that have identical distortion pairs (dY , dZ). In partic-

ular, consider two models with joint distributions p1(xn, yn, zn) and p2(xn, yn, zn),

for which although the joint distributions p1(xn, yn, zn) and p2(xn, yn, zn) are not

identical, we have p1(xn, yn) = p2(xn, yn) and p1(xn, zn) = p2(xn, zn). Let diY be

the minimum achievable distortion by the legitimate user in the model described

by pi(x
n, yn, zn), and similarly, let diZ be the minimum achievable distortion by

the eavesdropper in the model described by pi(x
n, yn, zn). Due to the equalities
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p1(xn, yn) = p2(xn, yn) and p1(xn, zn) = p2(xn, zn), we have d1
Y = d2

Y and d1
Z = d2

Z .

On the other hand, in general, we have H1(X̂n|M,Zn) 6= H2(X̂n|M,Zn)1 because

the equivocation of the reconstructed sequence at the eavesdropper given by (14.14)

depends on the joint distribution, and the joint distributions for these models are

not identical, i.e., p1(xn, yn, zn) 6= p2(xn, yn, zn). Hence, the equivocation of the

reconstructed sequence at the eavesdropper might be regarded as an inconsistent

measure of secrecy because although the relative qualities of the reconstructions of

the legitimate user and the eavesdropper do not change from one model to the other,

the equivocation of the reconstructed sequence at the eavesdropper might change.

14.3 Single-letter Characterization

Now, we formulate the secure lossy source coding problem when the relative equivo-

cation of the source at the eavesdropper with respect to the legitimate user given by

(14.3) is used as the merit of secrecy. An (n,R) code for secure lossy source coding

consists of an encoding function fn : X n → M = {1, . . . , 2nR} at the transmitter

and a decoding function at the legitimate user gn :M×Yn → X̂ n. A rate, relative

equivocation and distortion tuple (R,∆, D) is achievable if there exists an (n,R)

code satisfying

lim
n→∞

1

n

[
H(Xn|M,Zn)−H(Xn|M,Y n)

]
≥ ∆ (14.15)

lim
n→∞

E[dn(Xn, X̂n)] ≤ D (14.16)

1Hi(X̂
n|M,Zn) denotes the conditional entropy term that is computed according to the distri-

bution pi(m,x
n, yn, zn, x̂n).
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where M = fn(Xn) ∈ M. The set of all achievable (R,∆, D) tuples is denoted

by R∗. We obtain a single-letter characterization of the region R∗ as stated in the

following theorem.

Theorem 14.1 (R,∆, D) ∈ R∗ iff

R ≥ I(V ;X)− I(V ;Y ) (14.17)

∆ ≤ I(X;Y |U)− I(X;Z|U) (14.18)

D ≥ E[d(X, X̂(V, Y ))] (14.19)

for some U, V satisfying the following Markov chain

U → V → X → Y, Z (14.20)

and a function X̂(V, Y ).

The proof of Theorem 14.1 is given in Appendix 14.8.2. We show the achiev-

ability of the region R∗ by using the coding scheme proposed in [14], where the

problem of secure lossy source coding with side information was studied when the

secrecy of the source is measured by its equivocation at the eavesdropper given in

(14.2). We note that the two problems, the one that we consider by using the rel-

ative equivocation of the source at the eavesdropper with respect to the legitimate

user given by (14.3) as the secrecy measure and the other one studied in [14] that

uses the equivocation of the source at the eavesdropper given by (14.2) as the se-

crecy measure, are not identical, and hence, having the optimum coding scheme

729



for the latter problem does not imply that it will be an optimum solution for our

problem that uses the relative equivocation given by (14.3) as the secrecy measure.

Since here we show that the coding scheme in [14] can also achieve the region R∗,

our result implies that maximizing the equivocation at the eavesdropper given by

(14.2) is equivalent to maximizing the difference between the equivocations of the

legitimate user and the eavesdropper given by (14.3).

The coding scheme achieving the regionR∗ is similar to the Wyner-Ziv scheme

[113] in the sense that both schemes, by means of binning, make use of the side

information at the legitimate user to reduce the transmission rate. The difference

between these two schemes is that although the Wyner-Ziv scheme uses a single-

binning, the coding scheme achieving the region R∗ uses a double-binning, where

the additional binning is necessary due to the secrecy consideration in our problem.

In particular, in our problem, the transmitter generates sequences (Un, V n) and

bins both sequences. The bin indices of these two sequences are delivered to the

legitimate user. Using these bin indices, the legitimate user identifies the right

(Un, V n) sequences, and reconstructs Xn within the required distortion. On the

other hand, using the bin indices of (Un, V n), the eavesdropper identifies only the

right Un sequence, and consequently, U does not contribute to the equivocation, see

(14.18)2.

2The fact that the eavesdropper can decode Un sequence can be obtained by observing that for
a (U, V ) selection, if I(U ;Y ) ≥ I(U ;Z), there is no loss of optimality of setting U = φ which will
yield a larger region.
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14.4 Degraded and Reversely Degraded Cases

We now consider the degraded and reversely degraded cases. In the degraded case,

the source and side information satisfy the Markov chain in (14.6) and in the re-

versely degraded case, they satisfy the Markov chain in (14.7).

For the degraded case, Theorem 14.1 can be specialized into the following

form.

Corollary 14.1 In the degraded case, (R,∆, D) ∈ R∗ iff

R ≥ I(V ;X)− I(V ;Y ) (14.21)

∆ ≤ I(X;Y )− I(X;Z) (14.22)

D ≥ E[d(X, X̂(V, Y ))] (14.23)

for some V satisfying the following Markov chain V → X → Y → Z and a function

X̂(V, Y ).

This corollary can be obtained from Theorem 14.1 by noting the fact that

I(X;Y |U)− I(X;Z|U) ≤ I(X;Y )− I(X;Z) in view of the Markov chain in (14.6),

where the equality can be attained by setting U = φ. Corollary 14.1 implies that in

the degraded case, the relative equivocation is not affected by the choice of V , and

hence, there is no tension between the achievable rate and the achievable relative

equivocation originating from the choice of V . This also implies that the use of

optimal compression rate for the given distortion level is optimal. In other words,

the use of Wyner-Ziv coding [113] is optimal, and the regionR∗ for a fixed distortion
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D can be expressed as the union of rate and relative equivocation pairs (R,∆)

R ≥ RWZ(D) (14.24)

∆ ≤ I(X;Y )− I(X;Z) (14.25)

where RWZ(D) is the Wyner-Ziv rate distortion function given by

RWZ(D) = min
V→X→Y

E[d(X,X̂(V,Y ))]≤D

I(V ;X)− I(V ;Y ) (14.26)

The following example obtains the rate and relative equivocation region for the

degraded scalar Gaussian model.

Example 14.3 In this example, we consider the degraded scalar Gaussian model.

In this model, there is an i.i.d. Gaussian source {Xi}ni=1 with zero-mean and variance

σ2
X . The side information are given by

Yi = Xi +NY,i (14.27)

Zi = Xi +NZ,i (14.28)

where {NY,i}ni=1 and {NZ,i}ni=1 are i.i.d. Gaussian random variables with zero-mean

and variance σ2
Y and σ2

Z, respectively. Xi and (NY,i, NZ,i) are independent for each

i. We assume that σ2
Y < σ2

Z. Thus, without loss of generality, we can assume that
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the Markov chain

Xi → Yi → Zi (14.29)

holds, since the correlation between NY,i and NZ,i does not change the rate, relative

equivocation and distortion region. Hence, in view of the Markov chain in (14.29),

the rate, relative equivocation and distortion region of this model follows from Corol-

lary 14.1.

Before evaluating the region in Corollary 14.1 for the degraded scalar Gaus-

sian model, we specify the distortion metric. For this model, the distortion of the

reconstructed sequence is measured by its mean square error, i.e., d(x, x̂) = (x− x̂)2.

Since the mean square error is minimized by the conditional mean, the legitimate

user selects its reconstruction function as

X̂i = E [Xi|Y n, fn(Xn)] (14.30)

which implies that the distortion constraint in Corollary 14.1 can be expressed as

σ2
X|V Y ≤ D (14.31)

Hence, we can obtain the rate and relative equivocation region of the degraded scalar

Gaussian model by evaluating the region defined by (14.21)-(14.22) and (14.31),

which results in the region stated in the following corollary.
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Corollary 14.2 In the degraded scalar Gaussian model, (R,∆) ∈ R∗(D) iff

R ≥ RWZ(D) =
1

2
log

σ2
Xσ

2
Y

D (σ2
X + σ2

Y )
(14.32)

∆ ≤ 1

2
log

σ2
X + σ2

Y

σ2
Y

− 1

2
log

σ2
X + σ2

Z

σ2
Z

(14.33)

We note that in Corollary 14.2, the relative equivocation is constant, i.e., does not

interact with the rate. This also implies that we can always transmit at the Wyner-

Ziv rate.

Next, we specialize Theorem 14.1 for the reversely degraded model as follows.

Corollary 14.3 In the reversely degraded case, (R,∆, D) ∈ R∗ iff

R ≥ I(V ;X)− I(V ;Y ) (14.34)

∆ ≤ I(X;Y |V )− I(X;Z|V ) (14.35)

D ≥ E[d(X, X̂(V, Y ))] (14.36)

for some V satisfying the following Markov chain V → X → Z → Y and a function

X̂(V, Y ).

This corollary can be obtained from Theorem 14.1 by noting the fact that

I(X;Y |U) − I(X;Z|U) ≤ I(X;Y |V ) − I(X;Z|V ) in view of the Markov chain

in (14.7), where the equality can be attained by setting U = V . Corollary 14.3

implies that unlike the degraded case, in the reversely degraded case, there might

be a tension between the achievable rate and the achievable relative equivocation
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originating from the choice of V , since both the achievable rate and the achievable

relative equivocation depend on the choice of V . However, similar to the degraded

case, in the reversely degraded case also, we need only one auxiliary random variable

to attain the rate, relative equivocation and distortion region R∗. Thus, similar to

the degraded case, in the reversely degraded case also, Wyner-Ziv coding [113] is

sufficient to attain the entire region R∗. The difference between the degraded and

the reversely degraded cases is that in the degraded case, we can always transmit at

the minimum rate determined by the Wyner-Ziv rate distortion function in (14.24),

however, in the reversely degraded case, we might need to transmit at higher rates

to obtain a higher relative equivocation, since in this case, both the achievable

rate and the achievable relative equivocation depend on the choice of the auxiliary

random variable V . In other words, the choice of V that minimizes the rate, i.e.,

the minimizer for the optimization problem in (14.24), might not be the maximizer

of the relative equivocation term in (14.35). The following example demonstrates

this point.

Example 14.4 In this example, we consider the reversely degraded scalar Gaussian

model which is identical to the degraded scalar Gaussian model in Example 14.3 with

the only exception that here, we have σ2
Z < σ2

Y . Thus, without loss of generality, we

can assume that the Markov chain

Xi → Zi → Yi (14.37)

holds, since the correlation between NY,i and NZ,i does not change the rate, relative
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equivocation and distortion region. Hence, in view of the Markov chain in (14.37),

the rate, relative equivocation and distortion region of this model follows from Corol-

lary 14.3.

Before evaluating the region in Corollary 14.3, we specify the distortion metric.

Similar to Example 14.3, here also, we use the mean square error as the distortion

metric, i.e., d(x, x̂) = (x − x̂)2. Hence, the optimal reconstruction function for the

legitimate user is given by the conditional mean in (14.30), which implies that the

distortion constraint in Corollary 14.3 can be expressed as

σ2
X|V Y ≤ D (14.38)

Hence, we can obtain the rate, relative equivocation and distortion region of the

reversely degraded scalar Gaussian model by evaluating the region defined by (14.34)-

(14.35) and (14.38), which results in the region stated in the following corollary.

Corollary 14.4 In the reversely degraded scalar Gaussian model, (R,∆) ∈ R∗(D)

iff

R ≥ 1

2
log

σ2
X

σ2
X|V
− 1

2
log

σ2
X + σ2

Y

σ2
X|V + σ2

Y

(14.39)

∆ ≤ 1

2
log

σ2
X|V + σ2

Y

σ2
Y

− 1

2
log

σ2
X|V + σ2

Z

σ2
Z

(14.40)

for some σ2
X|V satisfying

σ2
X|V ≤

σ2
YD

σ2
Y −D

(14.41)
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We note that both rate and relative equivocation constraints in (14.39) and (14.40),

respectively, are monotonically decreasing in σ2
X|V . Hence, there is a tension between

the rate and the relative equivocation, i.e., there is a trade-off between the achievable

rate and the relative equivocation controlled by σ2
X|V , and equivalently by the choice

of V .

14.5 Maximum Relative Equivocation

In the previous section, we consider the degraded and reversely degraded cases where

it turned out that either (U = φ, V ) or (U = V, V ) is optimal for the evaluation

of the region given in Theorem 14.1. Here, we address the question whether one

of these two choices (U = φ, V ) and (U = V, V ) is always optimal. To this end,

we consider the maximum relative equivocation that is achievable when there is

no rate constraint on the transmitter. In other words, we are interested in the

maximum relative equivocation that we can obtain when the legitimate user needs

to reconstruct the source within a distortion D while there is no concern on the

transmission rate R. We denote the maximum relative equivocation by ∆max(D)

which is given in the following theorem.

Theorem 14.2 The maximum relative equivocation ∆max(D) at the eavesdropper

with respect to the legitimate user when the legitimate user needs to reconstruct the

source within a distortion D while there is no concern on the transmission rate R
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is given by

∆max(D) = max
U→V→X→Y,Z

E
[
d(X,X̂(V,Y ))

]
≤D

I(X;Y |U)− I(X;Z|U) (14.42)

We note that in Theorem 14.2, there are two auxiliary random variables U

and V over which optimization needs to be carried out. In the previous section,

we observe that when the model is either degraded or reversely degraded, a single

auxiliary random variable is sufficient. Now, we provide the following example

which shows that there are models for which two auxiliary random variables are

necessary, in other words, neither (U = φ, V ) nor (U = V, V ) is sufficient to attain

the maximum relative equivocation, and hence the entire rate, relative equivocation

and distortion region.

Example 14.5 Consider the parallel Gaussian source Xi = [X1,i X2,i]
> where

{X1,i}ni=1 and {X2,i}ni=1 are i.i.d. zero-mean Gaussian random variables with vari-

ances σ2
X,1 and σ2

X,2, respectively. The side information at the legitimate receiver

and the eavesdropper are given by

Y`,i = X`,i +NY,`,i, ` = 1, 2 (14.43)

Z`,i = X`,i +NZ,`,i, ` = 1, 2 (14.44)

where {NY,`,i}ni=1 and {NZ,`,i}ni=1 are zero-mean Gaussian random variables with

variances σ2
Y,` and σ2

Z,`, respectively, which are independent of {X`,i}ni=1. Moreover,

we assume that NY,1,i and NY,2,i are independent, and also so are NZ,1,i and NZ,2,i.

738



We assume that noise variances satisfy

σ2
Y,1 < σ2

Z,1 (14.45)

σ2
Z,2 < σ2

Y,2 (14.46)

Hence, without loss of generality, we can assume the following Markov chains

X1 → Y1 → Z1 (14.47)

X2 → Z2 → Y2 (14.48)

We impose a separate distortion constraint on each component of the source as

follows

lim
n→∞

1

n

n∑

i=1

E
[
(X`,i − X̂`,i)

2
]
≤ D`, ` = 1, 2 (14.49)

Using Theorem 14.2, the maximum relative equivocation ∆max(D1, D2) can be ob-

tained as follows.

Corollary 14.5

∆max(D1, D2) = I(X1;Y1)− I(X1;Z1) (14.50)

if there exists V1 satisfying V1 → X1 → Y1 → Z1 and σ2
X1|V1Y1 ≤ D1.

We note that the maximum relative equivocation given in (14.50) corresponds
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to the choice U = (φ,X2), V = (V1, X2) with independent V1 and X2 for the relative

equivocation bound given in Theorem 14.2. It is clear that this optimal choice does

not correspond to either (U = φ, V ) or (U = V, V ).

Next, we obtain the maximum relative equivocation arising from the choices

(U = φ, V ) and (U = V, V ). When (U = φ, V ), the corresponding maximum relative

equivocation ∆φ
max(D1, D2) is stated in the following lemma.

Lemma 14.2

∆φ
max(D1, D2) =

2∑

i=1

I(Xi;Yi)− I(Xi;Zi) (14.51)

if there exist (V1, V2) satisfying Vi → Xi → Yi, Zi and σ2
Xi|ViYi ≤ Di.

Next, we obtain the maximum relative equivocation arising from the choice

U = V , denoted by ∆S
max(D1, D2), as stated in the following lemma.

Lemma 14.3

∆S
max(D1, D2) = max

V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(X1;Y1|V1)− I(X1;Z1|V1) (14.52)

We note that (14.52) corresponds to the choice U = V = (V1, X2) where V1

and X2 are independent.

Now, we compare the maximum relative equivocation with the ones arising

from the choices (U = φ, V ) and U = V . First, we compare ∆max(D1, D2) and

740



∆φ
max(D1, D2) as follows

∆φ
max(D1, D2)−∆max(D1, D2) = I(X2;Y2)− I(X2;Z2) (14.53)

= −I(X2;Z2|Y2) (14.54)

< 0 (14.55)

which implies that (U = φ, V ) is, in general, a sub-optimal choice for the non-

degraded parallel Gaussian model.

Next, we compare ∆max(D1, D2) and ∆S
max(D1, D2). To this end, we introduce

the following lemma which will be used in the sequel.

Lemma 14.4 ([Chapter 13, Lemma 13.1]) For jointly Gaussian (X, Y, Z) sat-

isfying the Markov chain X → Y → Z and Pr[Y = Z] 6= 1, if D < σ2
X|Y , we

have

min
V→X→Y→Z
σ2
X|V Y ≤D

I(V ;Y |Z) > 0 (14.56)

Now, we are ready to compare ∆max(D1, D2) and ∆S
max(D1, D2) as follows

∆S
max(D1, D2)−∆max(D1, D2) = max

V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(X1;Y1|V1)− I(X1;Z1|V1)

− [I(X1;Y1)− I(X1;Z1)] (14.57)

= max
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;Z1)− I(V1;Y1) (14.58)
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= max
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

−I(V1;Y1|Z1) (14.59)

= − min
V1→X1→Y1→Z1

σ2
X1|V1Y1

≤D1

I(V1;Y1|Z1) (14.60)

< 0 (14.61)

where (14.59) is due to the Markov chain V1 → X1 → Y1 → Z1 and (14.61) comes

from Lemma 14.4. Hence, (14.61) implies that U = V is, in general, a sub-optimal

choice for the non-degraded parallel Gaussian model.

This example shows that in general, we might need two different auxiliary

random variables to evaluate the region R∗ in Theorem 14.1 for non-degraded mod-

els. Hence, we conclude that, in general, the Wyner-Ziv coding scheme [113] is not

sufficient to attain the region R∗ for general non-degraded models.

14.6 Uncoded Transmission

We note that in Theorem 14.2, there is no concern about the transmission rate

R. Hence, the encoder can use any uncoded scheme that requires an infinite rate.

We would like to understand whether the maximum relative equivocation ∆max(D)

can be attained by an uncoded scheme. To this end, we consider a slightly more

general scenario, where the encoder is allowed to use any instantaneous encoding

function in the form of gi(Xi) where gi(·) can be a deterministic or a stochastic

mapping. When gi(·) is chosen to be a stochastic function, we assume that it is

independent across time. We note that since any uncoded scheme can be obtained
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from an instantaneous encoding scheme by choosing gi(·) to be a linear function, the

instantaneous encoding scheme encompasses any uncoded scheme. Moreover, un-

coded transmission with artificial noise can also be obtained from an instantaneous

encoding scheme by selecting gi(x) = αx + N , where N denotes the noise. When

the encoder uses an instantaneous encoding scheme, the transmitted signal is given

by M = [g1(X1), . . . , gn(Xn)]. We denote the maximum relative equivocation when

the encoder uses an instantaneous scheme by ∆ins(D), where, as usual, D denotes

the distortion level within which the legitimate user needs to reconstruct the source.

The following example shows that, in general, ∆max(D) cannot be achieved by an

instantaneous encoding scheme, i.e., there are models where the maximum relative

equivocation ∆max(D) is strictly larger than ∆ins(D), i.e., ∆max(D) > ∆ins(D).

Example 14.6 In this example, we consider the degraded scalar Gaussian source

and side information model which is defined in Example 14.3. Consequently, here,

we have the Markov chain

Xi → Yi → Zi, i = 1, . . . , n (14.62)

Using Theorem 14.2 and Corollary 14.1, the maximum relative equivocation

∆max(D) for the degraded scalar Gaussian model can be written as

∆max(D) = I(X;Y )− I(X;Z) (14.63)

as long as there is a V satisfying σ2
X|V Y ≤ D.
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Next, we obtain ∆ins(D) for the degraded scalar Gaussian source and side

information model.

Lemma 14.5

∆ins(D) = max
V→X→Y→Z
σ2
X|V Y ≤D

I(X;Y |V )− I(X;Z|V ) (14.64)

We now compare ∆max(D) and ∆ins(D) as follows

∆ins(D)−∆max(D) = max
V→X→Y→Z
σ2
X|V Y ≤D

I(X;Y |V )− I(X;Z|V )− [I(X;Y )− I(X;Z)]

(14.65)

= max
V→X→Y→Z
σ2
X|V Y ≤D

I(V ;Z)− I(V ;Y ) (14.66)

= max
V→X→Y→Z
σ2
X|V Y ≤D

− I(V ;Y |Z) (14.67)

= − min
V→X→Y→Z
σ2
X|V Y ≤D

I(V ;Y |Z) (14.68)

< 0 (14.69)

where (14.67) follows from the Markov chain V → Y → Z and (14.69) is due to

Lemma 14.4. Hence, (14.69) implies that for the degraded scalar Gaussian source

and side information model, the maximum relative equivocation cannot be achieved

by an uncoded scheme, i.e., ∆max(D) > ∆ins(D).

Example 14.6 shows that in general, the maximum relative equivocation cannot

be achieved by an uncoded scheme. In other words, even when there is no concern
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on the transmission rate R that encoder uses, we still need to use a coded scheme

to achieve the maximum relative equivocation at the eavesdropper.

14.7 Conclusions

In this chapter, we study the problem of secure lossy source coding with side in-

formation. Unlike the earlier works in [14, 112], and also our work in Chapter 13,

which use the equivocation of the source at the eavesdropper as the secrecy mea-

sure, we formulate this problem under a new secrecy measure, namely the relative

equivocation of the source at the eavesdropper with respect to the legitimate user.

We argue that this new secrecy measure corresponds to the natural generalization of

the equivocation in a wiretap channel to the context of secure lossy source coding.

We obtain a single-letter description of the rate, relative equivocation and distor-

tion region for the problem of secure lossy source coding with side information under

this new secrecy measure. We specialize this single-letter expression to the degraded

and reversely degraded cases. We also discuss the relationships between the optimal

scheme attaining this region and the Wyner-Ziv scheme.

14.8 Appendix

14.8.1 Proof of Lemma 14.1

Let dnY and dnZ denote the minimum achievable distortion by the legitimate user and

the eavesdropper, respectively, for block-length n. First, we identify dnY and dnZ . To
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this end, we note that

E
[
dn(Xn, X̂n(M,Y n))

]
=

1

n

n∑

i=1

E
[
d(Xi, X̂i(M,Y n))

]
(14.70)

=
1

n

n∑

i=1

∑

xi,m,yn

p(xi,m, y
n)d(xi, x̂i(m, y

n)) (14.71)

from which dnY can be identified as

dnY =
1

n

n∑

i=1

∑

m,yn

[
min
x̂i∈X̂

∑

xi

p(xi,m, y
n)d(xi, x̂i)

]
(14.72)

Similarly, dnZ is given by

dnZ =
1

n

n∑

i=1

∑

m,zn

[
min
x̂i∈X̂

∑

xi

p(xi,m, z
n)d(xi, x̂i)

]
(14.73)

Next, we show that if Xi → Yi → Zi, d
n
Y ≤ dnZ which implies that dY ≤ dZ . Using

(14.73), we have

dnZ =
1

n

n∑

i=1

∑

m,zn

[
min
x̂i∈X̂

∑

xi

p(xi,m, z
n)d(xi, x̂i)

]
(14.74)

=
1

n

n∑

i=1

∑

m,zn

[
min
x̂i∈X̂

∑

xi,yn

p(xi,m, y
n, zn)d(xi, x̂i)

]
(14.75)

=
1

n

n∑

i=1

∑

m,zn

[
min
x̂i∈X̂

∑

xi,yn

p(xi,m, y
n)p(zn|yn)d(xi, x̂i)

]
(14.76)

≥ 1

n

n∑

i=1

∑

m,zn

∑

yn

[
min
x̂i∈X̂

∑

xi

p(xi,m, y
n)p(zn|yn)d(xi, x̂i)

]
(14.77)

=
1

n

n∑

i=1

∑

m,zn

∑

yn

p(zn|yn)

[
min
x̂i∈X̂

∑

xi

p(xi,m, y
n)d(xi, x̂i)

]
(14.78)
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=
1

n

n∑

i=1

∑

m,yn

[
min
x̂i∈X̂

∑

xi

p(xi,m, y
n)d(xi, x̂i)

]
(14.79)

= dnY (14.80)

where (14.76) comes from the Markov chain Xi → Yi → Zi. The second statement

of the lemma follows from the symmetry; completing the proof of Lemma 14.1.

14.8.2 Proof of Theorem 14.1

Here, we prove Theorem 14.1 in two steps. First, in the next section, we prove the

achievability of the region R∗ in Theorem 14.1 and in Section 14.8.2.2, we provide

the converse proof.

14.8.2.1 Achievability

To show the achievability of the region R∗ in Theorem 14.1, we use the coding

scheme proposed in [14]. We fix the joint distribution p(u, v|x) = p(v|x)p(u|v) and

the reconstruction function x̂(v, y) such that E
[
d(X, X̂(V, Y ))

]
≤ D/(1 + ε).

Codebook generation:

• Generate 2n(Ru+R̃u) un sequences through p(un) =
∏n

i=1 p(ui), and index them

as un(wu, w̃u), where wu ∈ {1, . . . , 2nRu} and w̃u ∈ {1, . . . , 2nR̃u}.

• For each un(wu, w̃u), generate 2n(Rv+R̃v) vn sequences through p(vn|un) =

∏n
i=1 p(vi|ui), and index them as vn(wu, w̃u, wv, w̃v), where wv ∈ {1, . . . , 2nRv}

and w̃v ∈ {1, . . . , 2nR̃v}.
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Encoding:

If xn is the source sequence to be transmitted, find a un sequence such that

(un, xn) is jointly typical3. Due to the mutual covering lemma [118], if we have

Ru + R̃u > I(U ;X) (14.81)

then there exists at least one such un sequence. Once such a un sequence is found,

we find a vn sequence such that (vn, un, xn) is jointly typical. Again, due to the

mutual covering lemma [118], if we have

Rv + R̃v > I(V ;X|U) (14.82)

then there exists at least one such vn sequence. After finding these typical un, vn

sequences, the transmitter sends their first indices, i.e., wu, wv. Hence, the total

transmission rate R is given by R = Ru +Rv.

Decoding and distortion:

After receiving wu, wv, the legitimate user decodes w̃u, w̃v by using its side

information. In particular, the legitimate user looks for the unique w̃u, w̃v such that

(un, vn, yn) is jointy typical. If the following constraints are satisfied

R̃u < I(U ;Y ) (14.83)

R̃v < I(V ;Y |U) (14.84)

3Throughout the proof, we use the strong typicality as defined in [118].
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the legitimate user can identify the (un, vn) sequences with vanishingly small prob-

ability of error.

Once the legitimate user decodes the vn sequence, it computes the reconstruc-

tion of the source xn via x̂n(vn, yn). The corresponding distortion can be computed

as follows

E
[
dn(Xn, X̂n)

]
≤ Pr[E ]dmax + Pr[Ec]E

[
dn(Xn, X̂n)|Ec

]
(14.85)

= Pr[E ]dmax + Pr[Ec]
(

1

n

n∑

i=1

E
[
d(Xi, X̂i)|Ec

])
(14.86)

≤ Pr[E ]dmax + Pr[Ec](1 + ε)E
[
d(X, X̂)

]
(14.87)

≤ Pr[E ]dmax + Pr[Ec]D (14.88)

where dmax = max(xn,x̂n)∈Xn×Xn d
n(xn, x̂n), E denotes the event that there is an error

in either encoding or decoding. Equation (14.87) follows from the typical average

lemma [118] in conjunction with the fact that if there is no error in encoding or

decoding, then (xn, x̂n) is jointly typical, and (14.88) follows from the assumption

that E
[
d(X, X̂)

]
≤ D/(1 + ε). Equation (14.88) implies that if there is no error in

encoding or decoding, then the reconstruction of the source within the distortion

level D is possible.

Equivocation computation:

Finally, we consider the relative equivocation of this coding scheme. We first
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obtain a lower bound for the equivocation of the eavesdropper as follows.

H(Xn|M,Zn) = H(Xn|Wu,Wv, Z
n) (14.89)

≥ H(Xn|Wu,Wv, Z
n, Un) (14.90)

= H(Xn|Wv, Z
n, Un) (14.91)

= H(Xn|Un)− I(Xn;Wv, Z
n|Un) (14.92)

= H(Xn|Un)− I(Xn;Zn|Un)− I(Xn;Wv|Un, Zn) (14.93)

≥ H(Xn|Un)− I(Xn;Zn|Un)−H(Wv) (14.94)

= H(Xn|Un)− I(Xn;Zn|Un)− nRv (14.95)

where (14.91) comes from the Markov chain Wu → Un → Xn, Zn,Wv. Next, we

consider the equivocation at the legitimate user as follows.

H(Xn|M,Y n) = H(Xn|Wu,Wv, Y
n) (14.96)

≤ H(Xn, Un, V n|Wu,Wv, Y
n) (14.97)

= H(Un, V n|Wu,Wv, Y
n) +H(Xn|Wu,Wv, Y

n, Un, V n) (14.98)

≤ nε1n +H(Xn|Wu,Wv, Y
n, Un, V n) (14.99)

= nε1n +H(Xn|Y n, Un, V n) (14.100)

= nε1n +H(Xn|Un)− I(Xn;Y n, V n|Un) (14.101)

where ε1n → 0 as n→∞, (14.99) comes from Fano’s lemma by noting the fact that

the legitimate user can decode (Un, V n) using the transmitted message Wu,Wv and
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its side information Y n, and (14.100) follows from the Markov chain (Wu,Wv) →

(Un, V n)→ Xn, Y n. Combining (14.95) and (14.101) yields

H(Xn|M,Zn)−H(Xn|M,Y n)

≥ I(Xn;Y n, V n|Un)− I(Xn;Zn|Un)− nRv − nε1n (14.102)

= I(Xn;Y n|Un) + I(Xn;V n|Un, Y n)− I(Xn;Zn|Un)− nRv − nε1n (14.103)

= I(Xn;Y n|Un) + I(Xn;V n|Un)− I(Y n;V n|Un)− I(Xn;Zn|Un)− nRv

− nε1n (14.104)

where (14.104) comes from the Markov chain Un → V n → Xn → Y n. Next, we

introduce the following lemma.

Lemma 14.6 ([64, Lemma 3]) Let T n1 , T
n
2 , T

n
3 be length-n sequences satisfying

T n1 → T n2 → T n3 , and {(T1i, T2i, T3i)}ni=1 be i.i.d. tuples. We have

∣∣∣∣
1

n
I(T n1 ;T n2 |T n3 )− I(T1;T2|T3)

∣∣∣∣ ≤ γn (14.105)

where γn → 0 as n→∞.

While [64] shows only the upper bound, following similar steps the lower bound in

Lemma 14.6 can be established as well. Using Lemma 14.6 in (14.104), we get

H(Xn|M,Zn)−H(Xn|M,Y n) ≥ nI(X;Y |U) + nI(X;V |U)− nI(Y ;V |U)

− nI(X;Z|U)− nγn − nRv − nε1n (14.106)
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Finally, we set the rate Rv as follows

Rv = I(X;V |U)− I(Y ;V |U) + β (14.107)

which, in view of (14.106), implies

H(Xn|M,Zn)−H(Xn|M,Y n) ≥ nI(X;Y |U)− nI(X;Z|U)− nβ − nγn − nε1n

(14.108)

which completes the equivocation computation.

Thus, we have shown that if the following constraints are satisfied,

Ru + R̃u > I(U ;X) (14.109)

Rv + R̃v > I(V ;X|U) (14.110)

R̃u < I(U ;Y ) (14.111)

R̃v < I(V ;Y |U) (14.112)

Rv = I(X;V |U)− I(Y ;V |U) + β (14.113)

this coding scheme enables the reconstruction of the source at the legitimate user

within the distortion level D while achieving the relative equivocation rate of

I(X;Y |U)− I(X;Z|U)− β (14.114)

at the eavesdropper. Eliminating R̃u, R̃v from (14.109)-(14.113) in conjunction with
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the fact that R = Ru + Rv leads to R > I(V ;X) − I(V ;Y ) + β; completing the

proof.

14.8.2.2 Converse

Let (R,∆, D) be an achievable tuple. Then, there exists an (n,R + ε) code such

that

lim
n→∞

1

n

[
H(Xn|M,Zn)−H(Xn|M,Y n)

]
≥ ∆− ε (14.115)

lim
n→∞

E[dn(Xn, X̂n)] ≤ D + ε (14.116)

We note that the joint distribution of (M,Xn, Y n, Zn) is given by

p(m,xn, yn, zn) = p(m,xn)
n∏

i=1

p(yi, zi|xi) (14.117)

Next, we define the following auxiliary random variables

Ui = MY i−1Zn
i+1 (14.118)

Vi = Xn
i+1Y

n
i+1Ui (14.119)

which, due to the probability distribution in (14.117), satisfy the following Markov

chain

Ui → Vi → Xi → Yi, Zi, i = 1, . . . , n (14.120)
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A lower bound for the rate (R + ε) can be found as follows

n(R + ε) ≥ H(M) ≥
n∑

i=1

I(Vi;Xi)− I(Vi;Yi) (14.121)

by using the analysis in Section IV.B of [14].

The distortion level can be bounded as follows

E[dn(Xn, X̂n)] = E[dn(Xn, X̂n(M,Y n))] (14.122)

=
1

n

n∑

i=1

E[d(Xi, X̂i(M,Y n))] (14.123)

≥ 1

n

n∑

i=1

E[d(Xi, X̂i(M,Y n, Zn
i+1, X

n
i+1))] (14.124)

=
1

n

n∑

i=1

E[d(Xi, X̂i(Vi, Yi))] (14.125)

where (14.122) comes from the fact that X̂n is a function of M,Y n, (14.124) is due

to the fact that providing extra information for the reconstruction of the source

cannot increase the distortion of the reconstructed sequence, and (14.125) comes

from the definition of Vi in (14.119).

Finally, we consider the relative equivocation term as follows

H(Xn|M,Zn)−H(Xn|M,Y n) = I(Xn;Y n|M)− I(Xn;Zn|M) (14.126)

=
n∑

i=1

I(Xn;Yi|M,Y i−1)− I(Xn;Zi|M,Zn
i+1) (14.127)
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=
n∑

i=1

I(Xn;Yi|M,Y i−1)− I(Xn;Zi|M,Zn
i+1) + I(Zi+1;Yi|M,Xn, Y i−1)

− I(Y i−1;Zi|M,Xn, Zn
i+1) (14.128)

=
n∑

i=1

I(Xn, Zn
i+1;Yi|M,Y i−1)− I(Xn, Y i−1;Zi|M,Zn

i+1) (14.129)

=
n∑

i=1

I(Xn;Yi|M,Y i−1, Zn
i+1) + I(Zn

i+1;Yi|M,Y i−1)− I(Xn;Zi|M,Zn
i+1, Y

i−1)

− I(Y i−1;Zi|M,Zn
i+1) (14.130)

=
n∑

i=1

I(Xn;Yi|M,Y i−1, Zn
i+1)− I(Xn;Zi|M,Zn

i+1, Y
i−1) (14.131)

=
n∑

i=1

I(Xn;Yi|Ui)− I(Xn;Zi|Ui) (14.132)

where (14.128) and (14.131) come from the Csiszar-Korner sum identity [3, Lemma

7].

Next, we note the following

I(Xn;Yi|M,Y i−1, Zn
i+1) = H(Yi|M,Y i−1, Zn

i+1)−H(Yi|M,Y i−1, Zn
i+1, X

n)

(14.133)

= H(Yi|M,Y i−1, Zn
i+1)−H(Yi|M,Y i−1, Zn

i+1, Xi) (14.134)

= I(Xi;Yi|M,Y i−1, Zn
i+1) (14.135)

where (14.134) comes from the following Markov chain

Yi → Xi →MY i−1Zn
i+1X

i−1Xn
i+1 (14.136)
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which follows from the probability distribution in (14.117). Similarly, we can get

I(Xn;Zi|M,Y i−1, Zn
i+1) = I(Xi;Zi|M,Y i−1, Zn

i+1) (14.137)

Using (14.135) and (14.137) in (14.132), we get

H(Xn|M,Zn)−H(Xn|M,Y n) =
n∑

i=1

I(Xi;Yi|Ui)− I(Xi;Zi|Ui) (14.138)

Finally, we define the uniformly distributed random variable Q ∈ {1, . . . , n} which

is independent of all other random varaibles, and U = (UQ, Q), V = (VQ, Q). Using

these random variables in (14.121), (14.125), and (14.138), we can get the desired

bounds given in Theorem 14.1.
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Chapter 15

Conclusions

In this dissertation, we address whether wireless communications can be secured at

the physical layer of communication by exploiting the unique characteristics of the

wireless medium, without any recourse to higher-layer security protocols. Towards

addressing this question, we study several fundamental multi-user channel mod-

els, inspired by wireless communication applications, by using information-theoretic

techniques.

In Chapter 2, we study the Gaussian MIMO wiretap channel in which a com-

mon message is sent to both the legitimate user and the eavesdropper in addition to

the private message sent only to the legitimate user. In this model, there is a secrecy

concern on the private message, in that it needs to be kept hidden as much as possi-

ble from the eavesdropper. A single-letter description for the capacity-equivocation

region of this channel model exists due to [3]. In Chapter 2, we show that it is

sufficient to consider jointly Gaussian auxiliary random variables and channel input

to evaluate this single-letter description of the capacity-equivocation region. Our

result provides the most comprehensive description for the capacity-equivocation

region of the Gaussian MIMO wiretap channel and generalizes all of the previous

partial results.

In Chapter 3, we study the secure broadcasting problem, where a transmitter
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wants to have secure communication with multiple legitimate users in the presence

of an external eavesdropper. Characterizing the secrecy capacity region of this chan-

nel in its most general form seems to be intractable for now, since the version of

this problem without any secrecy constraints, is the broadcast channel with an ar-

bitrary number of receivers, whose capacity region is unknown. Consequently, we

take the approach of considering special classes of channels. In particular, in Chap-

ter 3, we consider degraded multi-receiver wiretap channels, parallel multi-receiver

wiretap channels with a more noisy eavesdropper, parallel multi-receiver wiretap

channels with less noisiness orderings in each sub-channel, and parallel degraded

multi-receiver wiretap channels. For each channel model, we obtain either partial

characterizations of the secrecy capacity region or the entire region.

In Chapter 4, we study the Gaussian MIMO broadcast channel with common

and confidential messages where the transmitter sends a confidential message to

each user that needs to be kept hidden from the other user, in addition a common

message directed to both users. We obtain the entire capacity region of this channel

model. In particular, we show that a combination of superposition coding and

the S-DPC scheme proposed in [8] can attain the entire capacity region. In the

converse proof of this capacity result, the channel enhancement technique [4] and

an extremal inequality from [5] play important roles. In addition to this capacity

result, in Chapter 4, we also establish a connection between the Gaussian MIMO

broadcast channel with common and confidential messages and its non-confidential

counterpart, i.e., the Gaussian MIMO broadcast channel with common and private

messages, where there is no secrecy concern on the private messages. This connection
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explains why while the capacity region of the Gaussian MIMO broadcast channel

with common and private messages is not completely known, we are able to obtain

the entire capacity region for its confidential counterpart.

In Chapter 5, we study the Gaussian MIMO multi-receiver wiretap channel

where the transmitter sends a confidential message to each legitimate user in the

presence of an external eavesdropper. We obtain the secrecy capacity region of

this channel model. In particular, we show that the secrecy capacity region of the

Gaussian MIMO multi-receiver wiretap channel can be attained by a combination

of dirty-paper coding with Gaussian signals and stochastic encoding. We prove this

result in two main steps. In the first step, we consider the degraded Gaussian MIMO

multi-receiver wiretap channel, for which there is a single-letter description of the

secrecy capacity region. We propose a new technique to evaluate the single-letter

description for the vector Gaussian model, using which, we obtain the secrecy ca-

pacity region of the degraded channel. In the second step, we consider arbitrary, not

necessarily degraded, MIMO channels for which there is no single-letter description

of the secrecy capacity region. Despite that, we obtain the secrecy capacity region of

arbitrary, not necessarily degraded, MIMO channels by using the channel enhance-

ment technique and some limiting arguments [4, 21]. We also demonstrate that

our new technique to evaluate single-letter expressions for vector Gaussian models

can be useful in other problems as well, by providing an alternative proof for the

capacity region of the degraded Gaussian MIMO broadcast channel and an outer

bound for the vector Gaussian CEO problem.

In Chapter 6, we study the multi-receiver wiretap channel with public and
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confidential messages, which generalizes the channel model we consider in Chap-

ters 3 and 5 by incorporating public messages without any secrecy constraints on

them. We first consider the degraded discrete memoryless channel, and provide in-

ner and outer bounds for its capacity region. We show that there are cases where

these bounds match providing the capacity region. Second, we provide an inner

bound for the capacity region of the general multi-receiver wiretap channel by using

superposition coding, rate-splitting, binning and Marton’s coding. Third, we con-

sider the degraded Gaussian MIMO multi-receiver wiretap channel, and show that,

to evaluate the proposed inner and outer bounds for the Gaussian MIMO case, it is

sufficient to consider jointly Gaussian auxiliary random variables and channel input.

Similar to the discrete degraded case, for the degraded Gaussian MIMO case also,

these bounds match for certain cases. Finally, we consider the general Gaussian

MIMO multi-receiver wiretap channel and propose an inner bound for its capacity

region.

In Chapter 7, we study the weak eavesdropper MAC-WT. First, we develop an

n-letter outer bound for the secrecy capacity region of this class of channels. This

n-letter outer bound matches the achievable region partially. Although this partial

matching gives us a limited characterization of the capacity region, since it is in an

n-letter form, evaluation of this outer bound seems intractable. On the other hand,

focusing on Gaussian channels, we evaluate a looser version of our bound which

determines the secrecy capacity region along individual rates axes to within half bit

per channel use irrespective of the channel parameters. Moreover, if the users’ links

to the legitimate user are orthogonal, we are able to determine the entire secrecy
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capacity region to within half bit per channel use. We also demonstrate that our

outer bounding technique can be applied to the IC-WT with strong interference.

In Chapters 8 and 9, we study the effects of cooperation on secrecy. In par-

ticular, in Chapter 8, we study the CRBC and propose an achievable secrecy rate

region by using CAF. Evaluation of this achievable secrecy rate region for the Gaus-

sian CRBC demonstrates that by means of cooperation, both users can have secure

communication in a Gaussian CRBC although this is not possible in the underlying

Gaussian broadcast channel, i.e., when we remove the cooperation links between the

receivers. Hence, this example shows that cooperation can improve secrecy for the

broadcast setting. In Chapter 9, we study the MAC-GF and propose an achievable

scheme by using CAF. We evaluate this achievable scheme for the Gaussian MAC-

GF, and show that both users can have secure communication with the receiver,

although this is not possible without cooperation among the users.

The common theme in Chapters 8 and 9 is that user cooperation can increase

secrecy, and, even an untrusted party can help. However, this improvement depends

on the cooperative strategy. For instance, even though a decode-and-forward (DAF)

based cooperation scheme can increase the rate, it cannot improve the secrecy, be-

cause in this case the cooperating party, which is also the eavesdropper, needs to

decode the message it forwards. However, in CAF, we do not require the cooper-

ating party to decode the message. In fact, in CAF, the cooperating party helps

increase the rate of the main transmitter to levels which it itself cannot decode,

hence improving the secrecy of the main transmitter-receiver pair against itself.

In Chapter 10, we study the two-user one-eavesdropper compound wiretap
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channel. First, focusing on the discrete memoryless case, we provide a lower bound

for the secrecy capacity, which is the best known lower bound. Next, we study the

Gaussian MIMO instance of the aforementioned compound wiretap channel. For

the Gaussian MIMO case, we propose an achievable secrecy rate by using DPC

in the achievable scheme we provided for the discrete channel. We show that the

resulting secrecy rate achieves at least half of the secrecy capacity. Finally, we

consider a special class of two-user one-eavesdropper Gaussian MIMO compound

wiretap channels and obtain its secrecy capacity.

In Chapter 11, we generalize the compound wiretap channel we study in Chap-

ter 10 to a multi-user setting by studying the DCMRWC for two different commu-

nication scenarios. In the first scenario, the transmitter wants to send a confidential

message to each group of users, where both messages are to be kept confidential

from an eavesdropper. In the second scenario, the transmitter sends a confidential

message to the users in the first group which is wiretapped by both the users in

the second group and the eavesdroppers, and a different confidential message to the

second group of users which is wiretapped by only the eavesdroppers. For both sce-

narios, we establish the secrecy capacity region for the general discrete memoryless

channel model, the parallel channel model, and the Gaussian parallel channel model.

For the Gaussian MIMO channel model, we obtain the secrecy capacity region when

there is only one user in the second group, i.e., when there is only one weak user.

In Chapter 12, we study the two-user fading broadcast channel with confiden-

tial messages, where the transmitter sends a confidential message to each user that

needs to be kept hidden from the other user. We obtain the ergodic secrecy capac-
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ity region of the fading broadcast channel. Our result shows that fading enhances

secrecy by enabling both users to have simultaneous secure communication with the

transmitter, although this is not possible in the scalar non-fading broadcast channel,

where only one of the two users can have secrecy. This simultaneous secrecy of both

users is achieved by an opportunistic communication scheme, in which, at each time

instant, the transmitter talks to the user having a better channel gain.

In Chapter 13, we study the secure lossy transmission of a vector Gaussian

source to a legitimate user with some side information in the presence of an eaves-

dropper who also has some side information. By using the single-letter description

of the rate-equivocation region, we obtain an outer bound for the rate-equivocation

region of the vector Gaussian model at hand. We obtain this outer bound by opti-

mizing the rate and equivocation constraints involved in the single-letter description

individually. As a result of these individual optimizations, we obtain the maximum

equivocation at the eavesdropper when there is no rate constraint on the transmitter

to describe the source to the legitimate user. We show that, even in this case, where

there is no rate constraint on the transmitter, an uncoded scheme cannot attain

the maximum equivocation. Moreover, by using our maximum equivocation result,

we show that, in general, Wyner-Ziv coding, which is optimal in the absence of an

eavesdropper, is sub-optimal for the secure lossy source coding problem.

In Chapter 14, we revisit the secure lossy source coding problem, and propose

a new secrecy measure, namely the relative equivocation of the source at the eaves-

dropper with respect to the legitimate user. We argue that this new secrecy measure

partially overcomes the shortcomings of the previous ones (the equivocation of the
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source at the eavesdropper used in [14, 112], and also in our work in Chapter 13,

and the equivocation of the reconstructed source at the eavesdropper used in [117])

when one wants to quantify the relative confusion of the eavesdropper with respect

to the legitimate user. We obtain the rate, relative equivocation and distortion

region resulting from the use of this new secrecy measure in a single-letter form.

We specialize this single-letter expression to the degraded and reversely degraded

cases. We show that Wyner-Ziv scheme is not optimal in general, although, it is

optimal for the degraded and reversely degraded cases as well as in the absence of

an eavesdropper.
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