
ABSTRACT

Title of dissertation: GROUP TESTING IN
STRUCTURED AND
DYNAMIC NETWORKS

Batuhan Arasli, Doctor of Philosophy, 2023

Dissertation directed by: Professor Sennur Ulukus
Department of Electrical and Computer Engineering

We consider efficient infection identification algorithms based on group testing

under the structured disease spread network and dynamically evolving disease spread

network assumptions. Group testing is an efficient infection identification approach

based on the idea of pooling the test samples. Group testing has been widely

studied in various areas, such as screening and biology, communications, networks,

data science, and information theory. In this dissertation, we study group testing

applications over structured and dynamic networks, such as random graph-governed

correlated connections of nodes and dynamically evolving network topologies under

discrete time.

First, we propose a novel infection spread model based on a random graph rep-

resenting connections between n individuals. The infection spreads via connections

between individuals, resulting in a probabilistic cluster formation structure as well

as non-i.i.d. (correlated) infection statuses for individuals. We propose a class of

two-step sampled group testing algorithms where we exploit the known probabilistic

infection spread model. We investigate the metrics associated with two-step sam-

pled group testing algorithms. To demonstrate our results for analytically tractable

exponentially split cluster formation trees, we calculate the required number of tests

and the expected number of false classifications in terms of the system parameters

and identify the trade-off between them. For exponentially split cluster formation

trees, for zero-error construction, we prove that the required number of tests is

O(log2 n). Thus, for such cluster formation trees, our algorithm outperforms any

zero-error non-adaptive group test, binary splitting algorithm, and Hwang’s gener-

alized binary splitting algorithm. Our results imply that, by exploiting probabilistic

information on the connections of individuals, group testing can be used to reduce

the number of required tests significantly even when the infection rate is high, con-

trasting the prevalent belief that group testing is useful only when the infection rate

is low.

Next, we study a dynamic infection spread model inspired by the discrete

time SIR (susceptible-infected-recovered) model, where infections are spread via

non-isolated infected individuals; while infection keeps spreading over time, limited

capacity testing is performed at each time instant as well. In contrast to the clas-

sical, static group testing problem, the objective in our setup is not to find the

minimum number of required tests to identify the infection status of every individ-

ual in the population but to control the infection spread by detecting and isolating

the infections over time by using the given, limited number of tests. To analyze

the performance of the proposed algorithms, we focus on the average-case analysis

of the number of individuals that remain non-infected throughout the process of

controlling the infection. We propose two dynamic algorithms that both use a given

limited number of tests to identify and isolate the infections over time while the

infection spreads. The first algorithm is a dynamic randomized individual testing

algorithm; in the second algorithm, we employ the group testing approach similar

to the original work of Dorfman. By considering weak versions of our algorithms,

we obtain lower bounds for the performance of our algorithms. Finally, we imple-

ment our algorithms and run simulations to gather numerical results and compare

our algorithms and theoretical approximation results under different sets of system

parameters.

Finally, we consider the dynamic infection spread model based on the discrete

SIR model, which assumes the disease to be spread over time via infected and non-

isolated individuals. In our system, the main objective is not to minimize the number

of required tests to identify every infection but instead to utilize the available, given

testing capacity T at each time instant to efficiently control the infection spread. We

introduce and study a novel performance metric, which we coin as ϵ-disease control

time. This metric can be used to measure how fast a given algorithm can control

the spread of a disease. We characterize the performance of the dynamic individual

testing algorithm and introduce a novel dynamic SAFFRON-based group testing

algorithm. We present theoretical results and implement the proposed algorithms

to compare their performances.

GROUP TESTING IN STRUCTURED AND DYNAMIC
NETWORKS

by

Batuhan Arasli

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2023

Advisory Committee:
Professor Sennur Ulukus, Chair/Advisor
Professor Behtash Babadi
Professor Richard La
Professor Adrian Papamarcou
Professor Thomas Goldstein

© Copyright by
Batuhan Arasli

2023

Dedication

This dissertation is dedicated to my loving wife Özde and my parents Özlem and

Yılmaz for always believing in me.

ii

Acknowledgments

I am deeply grateful to my advisor, Professor Sennur Ulukus, for her guidance,

support, and encouragement throughout my Ph.D. journey. Her unwavering support

has been a constant source of motivation. I am honored to have had the opportunity

to work with such a brilliant and dedicated mentor. I would also like to thank her

for her patience and understanding. This dissertation would not have been possible

without her support and guidance.

I would like to extend my heartfelt gratitude to Professors Behtash Babadi,

Richard La, Adrian Papamarcou, and Thomas Goldstein for being on my disserta-

tion committee and for their time, support, and valuable feedback. I am extremely

grateful for the time, expertise, and insights that each of them has provided. I am

also thankful to every professor I have interacted with throughout my Ph.D. journey

at the University of Maryland. In particular, I would like to thank Professor Nuno

Martins and Adrian Papamarcou since I have learned much while working with

them as their teaching assistant. I would also like to thank Professor Alexander

Barg. His teachings in the three classes I took from him have been instrumental in

my academic and professional development.

I am thankful to Tolga Mete Duman of Bilkent University. In the last year

of my undergraduate studies at Bilkent University, I had the great opportunity to

do research under his supervision which sparked my interest in information theory,

which eventually led me to do information theory research throughout my Ph.D.,

which resulted in this dissertation.

iii

I am lucky to have shared the lab space with brilliant people who made

the lab a friendly place to work. Many thanks to my lab mates Sajani Vithana,

Zhusheng Wang, Priyanka Kaswan, Matin Mortaheb, Cemil Vahapoglu, Purbesh

Mitra, Mustafa Doger, Subhankar Banerjee, Shreya Meel, Alptug Aytekin, Sa-

han Liyanaarachchi, Mohamed Nomeir, Arunabh Srivastava, Brian Kim, Baturalp

Buyukates, Melih Bastopcu, Yi-PengWei, Karim Banawan, Ajaykrishnan Nageswaran,

and Sagnik Bhattacharya. I am also thankful to Karim Banawan and Yi-Peng Wei

for their guidance and our collaborations in the first year of my Ph.D.; I feel lucky

to collaborate with them in my very first year at the University of Maryland.

I would like to sincerely thank my dear friends Baturalp Buyukates, Melih

Bastopcu, Semih Kara, and Ece Yegane. I am so thankful that I have shared my

time in my Ph.D. journey with them. They have been like a family to me throughout

this journey. I will be missing all of our memories together (including the delicious

and extra cheesy meals that we cooked together with my dear roommates Baturalp

and Melih, and the moment when Semih, Ece and I realized the absurdity of doing

research in a basement). I am also grateful to Faizan Tariq for being a great friend

throughout this journey.

I am thankful to other friends at the University of Maryland for making these

years enjoyable. I also thank Dogan Kutay Pekcan and Can Ozgurel for their friend-

ship and for always being there for me, even when we are thousands of miles away.

Last but not least, I am thankful and grateful to my family. I still remember

the first day at school as a first grader, when I officially started this long journey

that led me to this day. My father, Yilmaz Arasli, and my mother Ozlem Arasli have

iv

never stopped believing in me since that day which was almost twenty-one years ago.

I am thankful to them and also to my brother, Dogukan Arasli, for always making

me laugh whenever we are together. I am most grateful to my loving, caring, and

beautiful wife, my soulmate Ozde Ozkaya Arasli. As someone who has recently

completed a dissertation that involves a considerable amount of probability theory,

I know how arbitrarily small the probability of meeting the one and only soulmate

in my life is, but you make me believe in miracles more and more every passing day.

I am lucky to have you in my life.

v

Table of Contents

List of Figures viii

List of Tables x

1 Introduction 1

2 Group Testing with a Graph Infection Spread Model 10
2.1 Introduction . 10
2.2 System Model . 12
2.3 Motivating Example . 24
2.4 Proposed Algorithm and Analysis . 32
2.5 Exponentially Split Cluster Formation Trees 43
2.6 Numerical Results . 50

2.6.1 Exponentially Split Cluster Formation Tree Based System . . 51
2.6.2 Arbitrary Random Connection Graph Based System 53

2.7 Conclusions . 57
2.8 Appendix . 58

3 Dynamic Infection Spread Model Based Group Testing 70
3.1 Introduction . 70
3.2 System Model . 71
3.3 Proposed Algorithms and Analysis 75

3.3.1 Dynamic Individual Testing Algorithm 81
3.3.2 Dynamic Dorfman-Type Group Testing Algorithm 84
3.3.3 Comparison of Dynamic Individual and Dorfman-Type Algo-

rithms . 88
3.4 Numerical Results . 91
3.5 Conclusions . 98
3.6 Appendix . 99

vi

4 Dynamic SAFFRON: Disease Control Over Time Via Group Testing 102
4.1 Introduction . 102
4.2 System Model . 104
4.3 Proposed Algorithms and Analysis 106

4.3.1 Related Prior Results . 107
4.3.2 Dynamic Individual Testing Algorithm 109
4.3.3 Dynamic SAFFRON Based Group Testing Algorithm 111

4.4 Numerical Results . 115
4.5 Conclusions . 117

5 Conclusions 119

Bibliography 121

vii

List of Figures

1.1 Infection status identification for a group of 6 people via a 2-stage
group testing algorithm. 2

1.2 Infection status identification for a group of 4 people with a single
stage group testing algorithm. 3

2.1 Random connection graph C and three possible realizations and clus-
ter formations. We show each cluster with a different color. 15

2.2 Edge probabilities of C and elements of F in example C given in
(2.1) with clusters shown in different colors. 18

2.3 Cluster formation tree F . 25
2.4 Subtree of F with assigned result vectors for each node. 29
2.5 F with assigned result vectors for each node. 30
2.6 A 4-level exponentially split cluster formation tree. 43
2.7 4 realizations of a random connection graph C that falls under four

different cluster formations in a 4-level exponentially split cluster for-
mation tree with δ = 4. 46

2.8 (a) Expected number of false classifications vs the choice of sampling
cluster formation Fm. (b) Required number of tests vs the choice of
sampling cluster formation Fm. 53

2.9 (a) Expected number of false classifications vs the choice of sampling
cluster formation Fm. (b) Required number of tests vs the choice of
sampling cluster formation Fm. (c) Random connection graph. 54

3.1 Average values of the random processes α(t), λ(t) and γ(t), with ob-
tained theoretical approximations given in Theorems 3.1–3.3 when
n = 1000, T = 80, q = 0.00003, p = 0.2, for (a) dynamic Dorfman-
type group testing algorithm, (b) dynamic individual testing algo-
rithm, (c) weak dynamic Dorfman-type group testing algorithm, (d)
weak dynamic individual testing algorithm. 94

viii

3.2 Average values of the random processes α(t), λ(t) and γ(t), with
obtained theoretical approximations given in Theorem 3.1 when n =
1000, T = 80, q = 0.0001, p = 0.01, for (a) dynamic Dorfman-type
group testing algorithm, (b) dynamic individual testing algorithm,
(c) weak dynamic Dorfman-type group testing algorithm, (d) weak
dynamic individual testing algorithm. 95

3.3 Average values of the random processes α(t), λ(t) and γ(t), with
obtained theoretical approximations given in Theorem 3.1 when n =
1000, T = 40, q = 0.0002, p = 0.2, for (a) dynamic Dorfman-type
group testing algorithm, (b) dynamic individual testing algorithm. . . 96

4.1 Numerical averages of the random processes α(t), λ(t) and γ(t) for
the system parameters n = 1000, T = 30, q = 0.00001, p = 0.2, for
dynamic individual testing algorithm. 115

4.2 Numerical averages of the random processes α(t), λ(t) and γ(t), with
theoretical calculation of λ(t), for the system parameters n = 1000,
T = 30, q = 0.00001, p = 0.2, for dynamic SAFFRON based group
testing algorithm. 117

ix

List of Tables

2.1 Nomenclature. 13

x

CHAPTER 1

Introduction

Efficient testing and infection identification are crucial in slowing down and even-

tually preventing disease spread, especially in the cases of novel pandemics where

fully effective vaccines and cures have not been developed. In cases where the dis-

ease of interest is highly contagious, such as covid-19, pandemics can affect the lives

of billions of people, even under strict measures to slow down the spread of the dis-

ease. While controlling the spread of disease, identification of the infection status

of the individuals plays a crucial role, which would be helpful to further implement

additional measures such as quarantining, which will eventually help to slow down

and control the pandemic. Even for diseases that do not result in global pandemics,

fast and efficient infection identification can be crucial and life-saving. Motivated

by the need for fast and efficient detection of the prevalence of syphilis among the

WW2 draftees, Robert Dorfman proposed the novel group testing approach in his

seminal paper [1].

The novel idea behind the group testing approach is mixing the test samples

of groups of individuals and testing the mixed samples rather than testing each

1

3

010

3

1 0

Figure 1.1: Infection status identification for a group of 6 people via a 2-stage group
testing algorithm.

of the samples individually. When the practical constraints of the testing method

and the infection of interest allow, group testing results in a problem where the

infection statuses of the individuals are combined by binary-OR operation, and the

main objective becomes designing groups of individuals (group tests) and decoding

the group test results to identify the infection statuses. For instance, in the seminal

work of Dorfman in [1], the proposed algorithm assigns disjoint groups of individuals

uniformly randomly and mixes the samples within groups. After testing the mixed

samples, if a mixed sample is negative, then every sample mixed in that mixed

sample is negative. On the other hand, if a mixed sample is positive, it implies that

there is at least one positive sample among the samples mixed in that mixed sample.

In the second round, every individual in the positive groups is tested individually

to identify positive groups. Especially when the prevalence rate of the infection

is low among the population, this group testing procedure results in a significant

reduction in the number of performed tests to identify the infection statuses of the

2

3

010

Figure 1.2: Infection status identification for a group of 4 people with a single stage
group testing algorithm.

individuals [1].

The groups for the testing can be disjoint, or a sample from an individual

can be mixed into multiple mixed samples. Furthermore, testing can be performed

in a single stage (non-adaptive group testing), or multiple stages of testing can

be performed (adaptive group testing) where tests can be designed by using the

results of prior stages. In Fig. 1.1, we present a toy example where the infection

statuses of 6 individuals are identified via the group testing algorithm proposed in

the seminal paper of Dorfman. Individual 3 (marked with red) is the only positive

among these six individuals. Notice that it is a two-stage group testing algorithm,

where three tests are performed in the first stage, and two tests are performed in the

second stage. At the end of the first stage, the infection statuses of four individuals

(individuals 1,2, 5, and 6) are identified. At the end of the second stage, the infection

statuses of the remaining two individuals are identified. In Fig. 1.2, we present the

identification of the infection statuses of four individuals by performing three group

tests in a single stage. Notice that the samples of individuals 2 and 4 are mixed in

two different mixed samples. Negative tests directly identify the negative infection

status of the samples that are mixed in them, while the positive test implies that

3

individual 3 is positive since individual 4 is identified as negative already. In both of

these examples, the total numbers of tests required to identify the infection statuses

of the individuals are strictly less than individual testing: five and three rather than

six and four, respectively. The overall benefit of the group testing can be observed

better with an increasing total number of individuals, as long as the prevalence rate

is low [2].

In the following, we briefly review the developing literature on group testing;

a detailed survey can be found in [2]. Following the seminal work of Dorfman,

adaptive algorithms [3–9] and non-adaptive algorithms [10–22] have been proposed

and performance guarantees have been characterized. The capacity of the group

testing problem has been studied in [14, 23–30] under various system models. The

resemblance of the group testing problem with the multiaccess communication first

stated by [31] and with the compressed sensing problem first studied in [32]. The

standard system models have been challenged, and a variety of models have been

studied: References [16, 32–39] study noisy group testing problem where the test

results are noisy, references [40–44] focus on limited adaptive testing stages for group

testing algorithm designs, references [20,21,33,45–53] investigate practical decoding

times as well as explicit and graph constrained algorithm designs. Group testing

has found various applications in distinct fields, such as communications literature

[54–63], network literature with fault detection in networks with specific focuses

on sensor networks [64–69], data science literature with applications for learning

and searching [70–75], data storage and compression [76,77], cyber-security [78,79],

databases [80], theoretical computer science [81–85], electronics [86,87], and so on.

4

Common to the majority of the standard group testing works is the observation

that the group testing is beneficial only when the prevalence rate of the infection

is low among the population [1, 2, 7–9, 11, 12, 14, 23, 24, 30, 32]. However, this limi-

tation is characterized under standard system models, i.e., standard combinatorial

and probabilistic settings. In the combinatorial setting, a fixed number of infections

(e.g., d infections) are assumed to be prevalent in the system, and the infected set

of individuals are uniformly randomly realized out of all possible d-sized subsets of

individuals. On the other hand, in the standard probabilistic setting, each individ-

ual is assumed to be independently infected with a given infection probability p. In

practice, even though these standard models are proven to be useful for some appli-

cations, for many applications, especially in contagious diseases, infection statuses

of the individuals are rarely independent and identical as in the probabilistic setting,

or the true number of infections in the system is rarely known, and the true infected

set is rarely uniformly distributed. In a more recent line of works, these standard

models have been challenged: in references [88–92] non-i.i.d. probabilistic models

are investigated, in [93–97], community structure based disease spread models are

studied, in references [98–100] benefits of structured side information in group test-

ing is the main focus, in references [101–105] dynamically evolving network-based

group testing and disease spread controlling are investigated.

In this dissertation, our goal is to analyze group testing under novel structured

and dynamic networks. Motivated by the fact that further practically available

side information can be utilized while designing group testing algorithms to reduce

the required number of tests further to identify the infection statuses of groups of

5

individuals, we propose and analyze structured side information aided systems that

correspond to community networks of the tested individuals. Another goal of this

dissertation is to investigate dynamic system models based on dynamically evolving

networks of individuals with non-static infection statuses, motivated by the goal of

helping group testing to be efficiently employed to help control the next pandemic.

In Chapter 2, we introduce a novel, random graph-based community-structured

infection spread model, where nodes represent individuals and possible infection

transmissions between individuals are represented by random edges between the

nodes. The probability distribution of edge realizations is assumed to be known,

and a realization of the random graph results in clusters in the population. A

random patient zero introduces the infection to the population by infecting every-

one in their cluster. Utilizing the probability distribution of the connections and

cluster formations in the random graph, we propose a novel family of algorithms:

two-step sampled group testing algorithms, which consists of sampling a subset of

individuals and performing non-adaptive tests to identify the selected individuals

with zero-error. For this second step of two-step sampled group testing algorithms,

we introduce F -separable zero-error non-adaptive test matrix designs. We charac-

terize the optimal design of two-step sampled group testing algorithms and derive

explicit results for the exponentially split cluster formation tree structures that we

introduce. We characterize the trade-off between the expected number of false clas-

sifications and the required number of tests for different choices of possible sampling

cluster formations for the two-step sampled group testing algorithms. We analyze

the computational complexity of two-step sampled group testing algorithms. For

6

zero-error construction, we prove that the required number of tests for the identi-

fication is less than 4(log2 n + 1)/3) and is O(log2 n) in a system that consists of

at most n equal-sized clusters. Even when we ignore the cluster size gain, we show

that our algorithm outperforms the optimal adaptive algorithms that assume the

known number of infections, such as Hwang’s generalized binary splitting algorithm,

including the regimes where the infection rate is high. With this, we show that, with

additional side information such as random graph-governed community structures,

group testing can be used efficiently even when the infection rate is high and sig-

nificant improvements over individual testing can be observed by utilizing available

side information.

In Chapter 3, we study a discrete time SIR model-based dynamic infection

spread model. We consider a population of n individuals divided into three disjoint

subsets: susceptible individuals, non-isolated infections, and isolated/recovered in-

dividuals. In the beginning, t = 0, the infection is introduced to the system, where

each individual gets infected with probability p independently. At t = 0, the infec-

tion model is identical to the standard i.i.d. probabilistic model. At each discrete

time instant after that, t ≥ 1, we consider a cycle of infection spread, testing, and

isolation of the detected infections. At each time instant, the infection is spread from

non-isolated infections to the susceptible individuals, independently with probability

q for each susceptible-infection pair. Then, group testing follows, where only a given,

limited number of T tests are performed. Depending on the test results, detected

infections are isolated and cannot spread the infection to susceptible individuals at

the times that follow their isolation. Eventually, they recover, and we assume they

7

do not get infected throughout the rest of the process. Here, similar to the real-life

scenarios, we consider a dynamically changing system and limited testing capacity

at each time instant rather than minimizing the total number of required tests to

identify everyone as in the static group testing problem. The performance metrics of

dynamic testing algorithms in such a system are the time when the infection spread

is brought under control, i.e., when all the infections are detected and isolated, and

the number of susceptible individuals when the infection is brought under control.

In this work, we analyze the average-case performance of the system. We derive

probabilistic results for the random processes of the number of susceptible individ-

uals, non-isolated infections, and isolated/recovered individuals for symmetric and

converging algorithms. We propose two dynamic algorithms: dynamic individual

testing and dynamic Dorfman-type group testing algorithm. We consider the weak

versions of these algorithms and use our general results to derive performance lower

bounds. We obtain simulation results to compare our theoretical approximation re-

sults with the numerical results for our proposed algorithms in different parameter

regimes.

In Chapter 4, we further expand the dynamic disease spread model introduced

in Chapter 3. We introduce two novel performance metrics: disease control time, t̄,

and ϵ-disease control time t̄ϵ. These performance metrics add a novel dimension to

the discrete-time SIR-based dynamic system model that we introduce in Chapter 3:

to assess the performance of proposed dynamic algorithms in terms of how fast the

disease spread is controlled, one can use these novel performance metrics. Moreover,

we propose a novel dynamic group testing algorithm: dynamic SAFFRON-based

8

group testing algorithm. We analyze the performance of the dynamic individual

testing algorithm and dynamic SAFFRON-based group testing algorithm in terms

of the novel performance metrics we introduce. We obtain simulation results to

analyze proposed dynamic group testing algorithms numerically.

In Chapter 5, we present the conclusions of this dissertation.

9

CHAPTER 2

Group Testing with a Graph Infection Spread Model

2.1 Introduction

In this chapter, we propose a novel infection spread model, where individuals are con-

nected via a random connection graph, whose connection probabilities are known1.

A realization of the random connection graph results in different connected compo-

nents, i.e., clusters, and partitions the set of all individuals. The infection starts with

a patient zero who is uniformly randomly chosen among n individuals. Then, any

individual who is connected to at least one infected individual is also infected. For

this system model, we propose a novel family of algorithms which we coin two-step

sampled group testing algorithms. The algorithm consists of a sampling step, where

a set of individuals are chosen to be tested, and a zero-error non-adaptive test step,

where selected individuals are tested according to a zero-error non-adaptive group

test matrix. In order to select individuals to test in the first step, one of the possible

cluster formations that can be formed in the random connection graph is selected.

Then, according to the selected cluster formation, we select exactly one individual

1For instance, location data obtained from cell phones can be used to estimate connection
probabilities.

10

from every cluster. After identifying the infection status of the selected individuals

with zero error, we assign the same infection status to the other individuals in the

same cluster as identified individuals. Note that, the actual cluster formation is

not known prior to the test design, and because of that, the selected cluster forma-

tion can be different from the actual cluster formation. Thus, this process is not

necessarily a zero-error group testing procedure.

Our main contributions consist of proposing a novel infection spread model

with a random connection graph, proposing a two-step sampled group testing al-

gorithm which is based on novel F -separable zero-error non-adaptive test matrices,

characterizing the optimal design of two-step sampled group testing algorithms, and

presenting explicit results on analytically tractable exponentially split cluster forma-

tion trees. For the considered two-step sampled group testing algorithms, we identify

the optimal sampling function selection, calculate the required number of tests and

the expected number of false classifications in terms of the system parameters, and

identify the trade-off between them. Our F -separable zero-error non-adaptive test

matrix construction is based on taking advantage of the known probability distribu-

tion of cluster formations. In order to present an analytically tractable case study

for our proposed two-step sampled group testing algorithm, we consider exponen-

tially split cluster formation trees as a special case, in which we explicitly calculate

the required number of tests and the expected number of false classifications. For

zero-error construction, we prove that the required number of tests is less than

4(log2 n + 1)/3 and is of O(log2 n), when there are at most n equal-sized clusters

in the system, each having δ individuals. For the sake of fairness, in our compar-

11

isons, we take δ to be 1, ignoring further reductions of the number of tests due to

δ. We show that, even when we ignore the gain by cluster size δ, our non-adaptive

algorithm, in the zero-error setting, outperforms any zero-error non-adaptive group

test and Hwang’s generalized binary splitting algorithm [7], which is known to be

the optimal zero-error adaptive group test [2]. Since the number of infections scale

as n
log2 n

δ in exponentially split cluster formation trees with nδ individuals, our re-

sults show that, we can use group testing to reduce the required number of tests

significantly in our system model even when the infection rate is high by using our

two-step sampled group testing algorithm.

2.2 System Model

We consider a group of n individuals. The random infection vector U = (U1, U2, . . . , Un)

represents the infection status of the individuals. Here Ui is a Bernoulli random vari-

able with parameter pi. If individual i is infected then Ui = 1, otherwise Ui = 0.

Random variables Ui need not be independent. A patient zero random variable Z

is uniformly distributed over the set of individuals, i.e., Z = i with probability

pZ(i) =
1
n
for i = 1, . . . , n. Patient zero is the first person to be infected. So far,

the infection model is identical to the traditional combinatorial model with k = 1

infected among n individuals.

Next, we define a random connection graph C , a random graph where vertices

represent the individuals and edges represent the connections between the individ-

uals. Let pC denote the probability distribution of the random graph C over the

12

Table 2.1: Nomenclature.

System
n number of individuals in the system
U infection status vector of size n
Z patient zero random variable

pZ(i) probability of individual i is the patient zero
C random connection graph
EC edge set of C
VC vertex set of C , also equal to [n]
C random connection matrix
F cluster formation random variable
F set of all possible cluster formations, i.e., {Fi}

pF (Fi) probability of true cluster formation is Fi

f number of possible cluster formations, i.e., |F|
σi number of clusters in the cluster formation Fi

Si
j jth cluster in Fi

λj number of unique clusters in F at and above the level Fj

λSj
i

number of unique ancestor nodes of Sj
i in F

δ size of the bottom level clusters in an exponentially split F
Algorithm

Fm sampling cluster formation chosen from F
M sampling function that selects individuals to be tested

U (M) infection status vector of the selected individuals by M
Sα(Mi) the cluster in Fα that contains ith selected individual by M
KM set of infections among the selected individuals by M
P(KM) set of all possible infected sets that KM can be

T number of tests to be performed
X T × σm test matrix
X(i) ith column of X
y test result vector of size T

Û estimated infection status of n individuals after test results
Ef,α expected number of false classifications given F = Fα

Ef expected number of false classifications

13

support set of all possible edge realizations. For the special class of random con-

nection graphs where the edges are realized independently, we fully characterize

the statistics of the random connection graph by the random connection matrix C,

which is a symmetric n × n matrix where the (i, j)th entry Cij is the probability

that there is an edge between vertices i and j for i ̸= j, and Cij = 0 for i = j by

definition.

A random connection graph C is an undirected random graph with vertex set

VC = [n], with each vertex representing a unique individual and a random edge

set EC = {eij} which represents connections between individuals, that satisfies the

following: 1) If eij ∈ EC , then there is an edge between vertices i and j; 2) For an

arbitrary edge set E∗
C , probability of EC = E∗

C is equal to pC (E
∗
C , VC). In the case

when all 1{eij∈EC } are independent, where 1A denotes the indicator function of the

event A, the random connection matrix C fully characterizes the statistics of edge

realizations. There is a path between vertices i and j if there exists a set of vertices

{i1, i2, . . . ik} in [n] such that {eii1 , ei1i2 , ei2i3 , . . . eikj} ⊂ EC , i.e., two vertices are

connected if there exists a path between them.

In our system model, if there is a path in C between two individuals, then

their infection statuses are equal. In other words, the infection spreads from patient

zero Z to everyone connected to patient zero. Thus, Uk = Ul if there exists a path

between k and l in C . Here, we note that a realization of the random graph C

consists of clusters of individuals, where a cluster is a subset of vertices in C such

that all elements in a cluster are connected with each other, and none of them

is connected to any vertex that is not in the cluster. More rigorously, a subset

14

0.75

0.6
0.55

0.3

0.8 0.2

0.78

0.65

0.550.85

0.60

0.350.3

0.250.1

0.05
0.25

0.05

0.951

1

0.9

0.85
0.35

1

0.95

1

1

0.751

1

1

0.65

(a) Probabilities of the edges.

1

2

3

4

(b) In this realization of C , there are 4
clusters.

1

2

3

4

(c) In this realization of C , there are 6
clusters.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(d) In this realization of C , there are 4
clusters.

Figure 2.1: Random connection graph C and three possible realizations and
cluster formations. We show each cluster with a different color.

S = {i1, i2, . . . ik} of VC is a cluster if, il and im are connected for all il ̸= im ∈ S,

but ia and ib are not connected for any ia ∈ S and all ib ∈ VC \S.

Note that the set of all clusters in a realization of the random graph C is a

partition of [n]. In a random connection graph structure, the formation of clusters in

C along with patient zero Z determines the status of the infection vector. Therefore,

instead of focusing on the specific structure of the graph C , we focus on the cluster

formations in C . For a given pC , we can calculate the probabilities of possible cluster

formations in C .

To solidify ideas, we give an example in Figure 2.1. For a random connection

graph where the edges are realized independently, we give probabilities of the exis-

15

tence of edges (zero probabilities are not shown) in Figure 2.1(a) and three different

realizations of a random connection graph C , where all three realizations result in

different cluster formations in Figure 2.1(b)-(d). In Figure 2.1, we consider a ran-

dom connection graph C that has n = 21 vertices, which represent the individuals

in our group testing model. Since in this example we assume that the edges are

realized independently, every edge between vertices i and j exists with probability

Cij independently. As we defined, if there is a path between two vertices (i.e., they

are in the same cluster), then we say that their infection statuses are the same. One

way of interpreting this is, there is a patient zero Z, which is uniformly randomly

chosen among n individuals, and patient zero spreads the infection to everyone in

its cluster. Therefore, working on the cluster formation structures, rather than

the random connection graph itself, is equally informative for the sake of designing

group tests. For instance, in the realization that we give in Figure 2.1(b), if the

edge between vertices 5 and 10 did not exist, that would be a different realization

for the random connection graph C . However, the cluster formations would still

be the same. As all infections are determined by the cluster formations and the

realization of patient zero, cluster formations are sufficient statistics. Before we rig-

orously argue this point, we first focus on constructing a basis for random cluster

formations.

The random cluster formation variable F is distributed over F as P(F =

Fi) = pF (Fi), for all Fi ∈ F , where F is a subset of the set of all partitions of the

set {1, 2, . . . , n}. In our model, we know the set F (i.e., the set of cluster formations

that can occur) and the probability distribution pF , since we know pC . Let us denote

16

|F| by f . For a cluster formation Fi, individuals that are in the same cluster have

the same infection status. Let |Fi| = σi, i.e., there are σi subsets in the partition Fi

of {1, 2, . . . , n}. Without loss of generality, for i < j, we have σi ≤ σj, i.e., cluster

formations in F are ordered in increasing sizes. Let Si
j be the jth subset of the

partition Fi where i ∈ [f] and j ∈ [σi]. Then, for fixed i and j, Uk = Ul for all

k, l ∈ Si
j, for all i ∈ [f] and j ∈ [σi].

To clarify the definitions, we give a simple running example which we will refer

to throughout this section. Consider a population with n = 3 individuals who are

connected according to the random connection matrix C and assume that the edges

are realized independently,

C =


0 0.3 0.5

0.3 0 0

0.5 0 0

 (2.1)

By definition, the main diagonal of the random connection matrix is zero, since

we define edges between distinct vertices only. In this example, F consists of 4

possible cluster formations, and thus, we have f = |F| = 4. The random cluster

formation variable F can take those 4 possible cluster formations with the following

17

0.3 0.5

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

F1 F2 F3 F4edge probabilities

Figure 2.2: Edge probabilities of C and elements of F in example C given in (2.1)
with clusters shown in different colors.

probabilities,

F =



F1 = {{1, 2, 3}}, w. p. 0.15

F2 = {{1, 2}, {3}}, w. p. 0.15

F3 = {{1, 3}, {2}}, w. p. 0.35

F4 = {{1}, {2}, {3}}, w. p. 0.35

(2.2)

This example network and the corresponding cluster formations are shown in Fig-

ure 2.2. Here, cluster formation F1 occurs when the edge between vertices 1 and 2

and the edge between vertices 1 and 3 are realized; F2 occurs when only the edge

between vertices 1 and 2 is realized; and F3 occurs when only the edge between

vertices 1 and 3 is realized. Finally, F4 occurs when none of the edges in C is re-

alized. In this example, we have σ1 = |F1| = 1, σ2 = |F2| = 2, σ3 = |F3| = 2, and

σ4 = |F4| = 3. Note that σ1 ≤ σ2 ≤ σ3 ≤ σ4 is assumed without loss of generality

above. Each subset that forms the partition Fi are denoted by Si
j, for instance, F3

consists of S3
1 = {1, 3} and S3

2 = {2}.

Next, we argue formally that cluster formations are sufficient statistics, i.e.,

they represent an equal amount of information as the realization of the random

graph as far as the infection statuses of the individuals are concerned. When Z

18

and F are realized, the infection statuses of n individuals are also realized, i.e.,

H(U |Z, F) = 0. Then,

I(U ;F) = H(U)−H(U |F) (2.3)

= H(U)− (H(U,Z|F)−H(Z|U, F)) (2.4)

= H(U)− (H(Z|F) +H(U |Z, F)−H(Z|U, F)) (2.5)

= H(U)− (H(Z)−H(Z|U, F)) (2.6)

≥ H(U)− (H(Z|C) +H(U |Z,C)−H(Z|U,C)) (2.7)

= H(U)−H(U |C) (2.8)

= I(U ;C) (2.9)

where in (2.7) we used the fact that F is a function of C (not necessarily invertible).

In addition, from U → C → F , we also have I(U ;F) ≤ I(U ;C), which together

with (2.9) imply I(U ;F) = I(U ;C). Thus, F is a sufficient statistic for C relative to

U . Therefore, from this point on, we focus on the random cluster formation variable

F in our analysis.

The graph model and the resulting cluster formations we described so far are

general. For tractability, in this chapter, we investigate a specific class of F which

satisfies the following condition: For all i, Fi can only be obtained by partitioning

some elements of Fi−1. This assumption results in a tree-like structure for cluster

formations. Thus, we call F sets that satisfy this condition cluster formation trees.

Formally, F is a cluster formation tree if Fi+1\Fi can be obtained by partitioning

19

the elements of Fi\Fi+1 for all i ∈ [f − 1]. Note that F in (2.2) is not a cluster

formation tree. However, if the probability of the edge between vertices 1 and 3

were 0, then F would not contain F1 and F3, and F would be a cluster formation

tree in this case. Note that cluster formation trees may arise in real-life clustering

scenarios, for instance, if individuals belong to a hierarchical structure. An example

is: an individual may belong to a professor’s lab, then to a department, then to a

building, then to a campus.

Next, we define the family of algorithms that we consider, which we coin two-

step sampled group testing algorithms2. Two-step sampled group testing algorithms

consist of two steps in both the testing and decoding phases. The following defini-

tions are necessary to characterize the family of algorithms that we consider.

To design a two-step sampled group testing algorithm, we first pick one of the

cluster formations in F to be the sampling cluster formation. The selection of Fm is

a design choice. For example, recalling the running example in (2.1)-(2.2), one can

choose F2 to be the sampling cluster formation.

Next, we define the sampling function, M , to be a function of Fm. The sam-

pling function selects which individuals to be tested by selecting exactly one indi-

vidual from every subset that forms the partition Fm. Let KM denote the infected

set among the sampled individuals. The output of the sampling function M is the

individuals that are sampled and going to be tested. In the second step, a zero-error

non-adaptive group test is performed on the sampled individuals. This results in

2In the two-step sampled group testing algorithms, two steps do not involve consecutive testing
phases: the proposed algorithm family in this chapter consist of non-adaptive constructions, and
should not be confused with semi-adaptive algorithms with two testing phases such as two-stage
algorithm in [93].

20

identifying the infection status of the selected σm = |Fm| individuals with zero-error

probability. For example, recalling the running example in (2.1)-(2.2), when the

sampling cluster formation is chosen as F2, we may design M as,

M = {1, 3} (2.10)

Note that, for each selection of Fm, M selects exactly one individual from each Sm
j .

As long as it satisfies this property, M can be chosen freely while designing the

group testing algorithm.

The test matrix X is a non-adaptive test matrix of size T × σm, where T is

the required number of tests. Let U (M) denote the infection status vector of the

sampled individuals. Then, we have the following test result vector y,

yi =
∨

j∈[σm]

XijU
(M)
j , i ∈ [T] (2.11)

In the classical group testing applications, while constructing zero-error non-

adaptive test matrices, the aim is to obtain unique result vectors, y, for every unique

possible infected set and, for instance, in combinatorial setting, with d infections,

d-separable matrix construction is proposed [17]. In the classical d-separable matrix

construction, we have

∨
i∈S1

X(i) ̸=
∨
i∈S2

X(i) (2.12)

for all subsets S1 and S2 of cardinality d. As a more general approach, we do

21

not restrict the possible infected sets to the subsets of [n] of the same size, but

we consider the problem of designing test matrices that satisfy (2.12) for every

unique S1 and S2 in a given set of possible infected sets. This approach leads to a

more general basis for designing zero-error non-adaptive group testing algorithms for

various scenarios when the available side information can restrict the set of possible

infected sets.

Using the test result vector y, in the first decoding step, the infection statuses

of the sampled individuals are identified with zero-error probability. In the second

stage of decoding, depending on Fm and the infection status of the sampled indi-

viduals, other non-tested individuals are estimated by assigning the same infection

status to all individuals that share the same cluster in the cluster formation Fm.

In the running example, with M given in (2.10), one must design a zero-error non-

adaptive test matrix X, which identifies the infection status of individuals 1 and

3.

Let Û = (Û1, Û2, . . . , Ûn) be the estimated infection status vector. By defi-

nition, the infection estimates are the same within each cluster, i.e., for sampling

cluster formation Fm, Ûk = Ûl, for all k, l ∈ Sm
j , for all j ∈ [σm]. Since M samples

exactly one individual from every subset that forms the partition Fm, there is ex-

actly one identified individual at the beginning of the second step of the decoding

phase. By the aforementioned rule, all n individuals have an estimated infection

status at the end of the process. For instance, in the running example, for the sam-

pling cluster formation F2, we have M = {1, 3} as given in (2.10) and X identifies

U1 and U3 with zero-error. Then, Û2 = U1, since individuals 1 and 2 are in the same

22

cluster in F2.

Finally, we have two metrics to measure the performance of a group testing

algorithm. The first is the required number of tests T , which is the number of rows

of X in the two-step sampled group testing algorithm family we defined. Having the

minimum number of required tests is one of the aims of the group testing procedure.

The second metric is the expected number of false classifications. Due to the second

step of decoding, the overall two-step sampled group testing algorithm is not a zero-

error algorithm (except for the choice of m = f), and the expected number of false

classifications is a metric to measure the error performance of the algorithm. We

use Ef = E[dH(U ⊕ Û)] to denote the expected number of false classifications, where

dH(·) is the Hamming weight of a binary vector.

Designing a two-step sampled group testing algorithm consists of selecting Fm,

then designing the function M , and then designing the non-adaptive test matrix X

for the second step of the testing and the first step of the decoding phase for zero-

error identification of the infection status of the sampled σm individuals. We consider

cluster formation trees and uniform patient zero assumptions for our infection spread

model, and we consider two-step sampled group testing algorithms for the group test

design.

The following section presents a motivating example to demonstrate our key

ideas.

23

2.3 Motivating Example

Consider the following example. There are n = 10 individuals and a cluster forma-

tion tree with f = 3 levels. Full characterization of F is as follows,

F =



F1 = {{1, 2, 3}, {4, 5}, {6, 7, 8, 9, 10}}, w.p. 0.4

F2 = {{1, 2}, {3}, {4, 5}, {6, 7, 8, 9, 10}}, w.p. 0.2

F3 = {{1, 2}, {3}, {4, 5}, {6, 7}, {8, 9, 10}}, w.p. 0.4

(2.13)

First, we find the optimal sampling functions, M , for all possible selections

of Fm. First, note that M selects exactly one individual from each subset that

forms Fm by definition. Therefore, the number of sampled individuals is constant

for a fixed choice of Fm. Thus, in the optimal sampling function design, the only

parameter we consider is the minimum number of expected false classifications Ef .

Note that a false classification occurs only when one of the sampled individuals has

a different infection status than one of the individuals in its cluster in Fm. For

instance, assume that m = 1 is chosen. Then, assume that the sampling function

M selects individual 1 from the set S1
1 = {1, 2, 3}. Recall that after the second

step of the two-step group testing algorithm, by using X, the infection status of

individual 1 is identified with zero error, and its status is used to estimate the status

of individuals 2 and 3 since they are in the same cluster in Fm = F1. However, with

positive probability, individuals 1 and 3 can have distinct infection statuses, in which

case, a false classification occurs. Note that this scenario occurs only when Fm is at

24

F1

F2

F3

{1,2,3}

{1,2} {3}

{1,2} {3}

{4,5}

{4,5}

{4,5}

{6,7,8,9,10}

{6,7,8,9,10}

{6,7} {8,9,10}

Figure 2.3: Cluster formation tree F .

a higher level than the realized F in the cluster formation tree F , where we refer to

F1 as the top level of the cluster formation tree and Ff as the bottom level.

While finding the optimal sampling functionM , one must consider the possible

false classifications and minimize Ef , the expected number of false classifications.

As shown in Figure 2.3, the cluster {4, 5} does not get partitioned, and for all three

choices of Fm, M can sample either one of the individuals 4 and 5. This selection

does not change the expected number of false classifications since U4 = U5 in all

possible realizations of F . For all sampling cluster formation selections, we have the

following analysis:

• If Fm = F1: If M samples individual 1 or 2 from the cluster S1
1 = {1, 2, 3}, a

false classification occurs if F = F2 and the cluster {1, 2} is infected. In that

case, individual 3 is falsely classified as infected. Similar false classification oc-

curs when F = F3 and the cluster {1, 2} is infected. Similarly, in these cases, if

individual 3 is infected, individual 3 is falsely classified as non-infected. Thus,

for cluster {1, 2, 3}, when either individual 1 or 2 is sampled, the expected

number of false classifications is:

(pF (F2) + pF (F3))(pZ(1) + pZ(2) + pZ(3)) = 0.6× 0.3 = 0.18 (2.14)

25

Similarly, when individual 3 is sampled from the cluster {1, 2, 3}, individuals

1 and 2 are falsely classified when F = F2 or F = F3 and either the cluster

{1, 2} or individual 3 is infected. Thus, in that case, the expected number of

false classifications is:

2(pF (F2) + pF (F3))(pZ(1) + pZ(2) + pZ(3)) = 2× 0.6× 0.3 = 0.36 (2.15)

Thus, (2.14) and (2.15) imply that, for cluster S1
1 = {1, 2, 3}, the optimal M

should select either individual 1 or 2 for testing. As discussed above, for cluster

S1
2 = {4, 5}, the selection of sampled individuals is indifferent and results in 0

expected false classification. Finally, for cluster S1
3 = {6, 7, 8, 9, 10}, a similar

analysis implies that, the optimal M should select one of the individuals in

{8, 9, 10} for testing.

• If Fm = F2: Similar combinatorial arguments follow and we conclude that

the selection of sampled individuals from the clusters S2
1 = {1, 2}, S2

2 = {3}

and S2
3 = {4, 5} are indifferent in terms of the expected number of false

classifications. Only possible false classification can happen in cluster S2
4 =

{6, 7, 8, 9, 10} when F = F3 and the infected cluster is either S3
4 = {6, 7} or

S3
5 = {8, 9, 10}. Similar to the case m = 1, if the sampled individual is either

6 or 7, then the expected number of false classifications is 0.6 in contrast to

0.4 when the sampled individual is one of 8, 9, and 10. Thus, the optimal M

should select one of the individuals 8, 9, and 10 as the sampled individual to

minimize the expected number of false classifications.

26

• If Fm = F3: It is not possible to make a false classification since for all clusters

in F3, all individuals that are in the same cluster have the same infection status

with probability 1.

Therefore, for this example, the optimal sampling function selects either indi-

vidual 1 or 2 from the set S1
1 ; selects either 4 or 5 from the set S1

2 ; and selects either

8, 9 or 10 from the set S1
3 if Fm = F1 and the same sampling is optimal with the

addition of individual 3, if Fm = F2. Let us assume that M selects the individual

with the smallest index when the selection is indifferent among a set of individuals.

Thus, the optimal sampling function M for this example is: {1, 4, 8}, {1, 3, 4, 8} or

{1, 3, 4, 6, 8}, depending on the selection of Fm being F1, F2, or F3, respectively.

Now, for these possible sets of sampled individuals, we need to design zero-

error non-adaptive test matrices.

• If Fm = F1 (i.e., M = {1, 4, 8}): The set of all possible infected sets is

P(KM) = {{1}, {4}, {8}}. By a counting argument, we need at least two tests

since each of the three possible infected sets must result in a unique result

vector y and each one of these sets has one element. We can achieve this lower

bound by using the following test matrix:

1 4 8

Test 1 0 1 1

Test 2 1 0 1

• If Fm = F2 (i.e., M = {1, 3, 4, 8}): In this case, the set of all possible infected

sets is now P(KM) = {{1}, {3}, {1, 3}, {4}, {8}}. In the classical zero-error

27

construction for the combinatorial group testing model, one can construct

d-separable matrices, and the rationale behind the construction is to enable

the decoding of the infected set when the infected set can be any d-sized

subset of [n]. However, in our model, the set of all possible infected sets, i.e.,

P(KM), is not a set of all fixed-sized subsets of [n], but instead, consists of

varying-sized subsets of [n] that are structured, depending on the given F . As

illustrated in Figure 2.3, a given cluster formation tree F can be represented

by a tree structure with nodes3 representing possible infected sets, i.e., clusters

at each level. Then, the aim of constructing a zero-error test matrix is to have

unique test result vectors for each unique possible infected set, i.e., unique

nodes in the cluster formation tree. In Figure 2.4, we present the subtree

of F , which ends at the level F2, with assigned result vectors to each node.

One must assign unique binary vectors to each node, except for the nodes

that do not get partitioned while moving from level to level: those nodes

represent the same cluster, and thus, the same vector is assigned, as seen

in Figure 2.4. Moreover, while merging in upper-level nodes, binary OR of

vectors assigned to the descendant nodes must be assigned to their ancestor

node. By combinatorial arguments, one can find the minimum vector length

such that such vectors can be assigned to the nodes.

In this case, the required number of tests must be at least three, and by

assigning result vectors as in Figure 2.4, we can construct the following test

3Throughout the chapter, we use the word “node” only for the possible clusters in the cluster
formation tree representations, not for the vertices in the connection graphs that represent the
individuals.

28

F1

F2





1

1

1









0

1

1









0

1

0









1

0

1









1

0

1









1

1

0









0

1

0





Figure 2.4: Subtree of F with assigned result vectors for each node.

matrix X:

1 3 4 8

Test 1 1 0 0 1

Test 2 1 1 1 0

Test 3 0 1 0 1

Note that for all elements of P(KM), the corresponding result vector is unique

and satisfies the tree structure criteria, as shown in Figure 2.4.

• If Fm = F3 (i.e., M = {1, 3, 4, 6, 8}): In this case, the set of all possible

infected sets is P(KM) = {{1}, {3}, {1, 3}, {4}, {6}, {8}, {6, 8}}. We give a

tree structure representation with assigned result vectors of length three that

achieves the tree structure criteria discussed above, shown in Figure 2.5 where

each unique node is assigned a unique vector except for the nodes that do not

get partitioned while moving from level to level. Note that every unique node

in the tree representation corresponds to a unique element of P(KM). The

corresponding test matrix X is the following 3× 5 matrix:

29

F1

F2





1

1

1









0

1

1









0

1

0









1

0

1









1

0

1









1

1

0









1

1

0









0

1

1









0

1

0









1

0

0









0

0

1





F3





0

1

0





Figure 2.5: F with assigned result vectors for each node.

1 3 4 6 8

Test 1 1 0 0 1 0

Test 2 1 1 1 0 0

Test 3 0 1 0 0 1

A more structured and detailed analysis of the selection of the optimal sam-

pling function and the minimum number of required tests is given in the next section.

We finalize our analysis of this example by calculating the expected number of

false classifications where Ef,α denotes the conditional expected false classifications,

given F = Fα:

• If Fm = F1:

Ef =
∑
α

pF (Fα)Ef,α

= pF (F2)Ef,2 + pF (F3)Ef,3

= 0.2(0.3× 1) + 0.4(0.3× 1 + 0.5× 2) = 0.58 (2.16)

30

• If Fm = F2:

Ef = pF (F3)Ef,3 = 0.4(0.5× 2) = 0.4 (2.17)

• If Fm = F3, we have Ef = 0.

Note that the choice of Fm is a design choice. One can use time sharing4

between different choices of m, depending on the specifications of the desired group

testing algorithm. For instance, if a minimum number of tests is desired, then one

can pick m = 1, which results in 2 tests, which is the minimum possible, but with

expected 0.58 false classifications, which is the maximum possible in this example.

On the other hand, if the minimum expected false classification is desired, one can

pick m = 3, resulting in 0 expected false classifications, which is the minimum possi-

ble, but with three tests, which is the maximum possible in this example. Generally,

there is a trade-off between the number of tests and the number of false classifica-

tions, and we can formulate optimization problems for specific system requirements,

such as finding a time-sharing distribution for Fm that minimizes the number of

tests for a desired level of false classifications, or vice versa.

In the following section, we describe the details of our proposed group testing

algorithm.

4Time sharing can be implemented by assigning a probability distribution to Fm over F , instead
of picking one cluster formation from F to be Fm deterministically.

31

2.4 Proposed Algorithm and Analysis

In our F -separable matrix construction, we aim to construct binary matrices with

n columns. For each possible infected subset of the selected individuals, there must

be a corresponding distinct result vector. A binary matrix X is F -separable if

∨
i∈S1

X(i) ̸=
∨
i∈S2

X(i) (2.18)

is satisfied for all distinct subsets S1 and S2 in the set of all possible infected subsets,

where X(i) denotes the ith column of X. In d-separable matrix construction [17],

this condition must hold for all subsets S1 and S2 of cardinality d; here, it must

hold for all possible feasible infected subsets as defined by F . From this point of

view, our F -separable test matrix construction exploits the known structure of F

and thus, it results in an efficient zero-error non-adaptive test design for the second

step of our proposed algorithm.

We adopt a combinatorial approach to the design of the non-adaptive test

matrix X. Note that, for a given M , we have σm individuals to be identified with

zero-error probability. The key point of our algorithm is that the infected set of

individuals among those selected individuals can only be some specific subsets of

those σm individuals. Without any information about the cluster formation, any one

of the 2σm subsets of the selected individuals can be the infected set. However, since

we are given F , we know that the infected set among the selected individuals, KM ,

can be one of the 2σm subsets only if there exists at least one set Sj
i that contains

32

KM and there is no element in the difference set M\KM such that it is an element of

all sets Sj
i containing KM . This fact, especially in a cluster formation tree structure,

significantly reduces the total number of possible infected subsets that need to be

considered. Therefore, we can focus on such subsets and design the test matrix

X by requiring that the logical OR operation of the columns corresponding to the

possible KM sets be distinct to decode the test results with zero error. Let P(KM)

denote the set of possible infected subsets of the selected individuals, i.e., the set of

possible sets that KM can be. Then, matrix X must satisfy (2.18) for all distinct S1

and S2 that are elements of P(KM). Note that the decoding process is a mapping

from the result vectors to the infected sets; thus, we require the distinct result vector

property to guarantee zero-error decoding.

Designing the X matrix that satisfies the aforementioned property is the key

idea of our algorithm. Before going into the design ofX, we first derive the expected

number of false classifications in a given two-step sampled group testing algorithm.

Recall that false classifications occur during the second step of the decoding phase.

In particular, in the second step of the decoding phase, depending on the selection of

the sampling cluster formation Fm, the infection statuses of the selected individuals

M are assigned to the other individuals such that the infection status estimate is the

same within each cluster. For fixed sampling cluster formation Fm and the sampling

function M , the number of expected false classifications can be calculated as in the

following theorem.

Theorem 2.1 In a two-step sampled group testing algorithm with the given sam-

33

pling cluster formation Fm and the sampling function M over a cluster formation

tree structure defined by F and pF , with uniform patient zero distribution pZ over

[n], the expected number of false classifications given F = Fα is

Ef,α =
∑
i∈[σm]

(
|Sα(Mi)|

n
· |Sm

i \Sα(Mi)| +
∑

Sα
j ⊆Sm

i \Sα(Mi)

|Sα
j |2

n

)
(2.19)

and the expected number of false classifications is

Ef =
∑
α>m

pF (Fα)Ef,α (2.20)

where Sα(Mi) is the subset in the partition Fα which contains the ith selected indi-

vidual.

Next, we obtain Theorem 2.2 to characterize the optimal choice of the sampling

function M . First, we define βi(k) functions. For i ∈ [f] and k ∈ [n],

βi(k) ≜
∑
j>i

pF (Fj)

(
|Sj(k)| · |Si(k)\Sj(k)| +

∑
Sj
l ⊆Si(k)\Sj(k)

|Sj
l |

2

)
(2.21)

where Si(k) is the subset in partition Fi that contains k.

Theorem 2.2 For sampling cluster formation Fm, the optimal choice of M that

minimizes the expected number of false classifications is

Mi = argmin
k∈Sm

i

βm(k) (2.22)

34

where Mi is the ith selected individual. Moreover, the number of required tests is

constant and is independent of the choice of M .

We present the proofs of Theorem 2.1 and Theorem 2.2 in the Appendix in Sec-

tion 2.8.

The optimal M analysis focuses on choosing the sampling function that results

in the minimum expected number of false classifications among the set of functions

that select exactly one individual from each cluster of a given Fm. For some sce-

narios, it is possible to choose a sampling function that selects multiple individuals

from some clusters of a given Fm that achieves expected false classifications-required

number of tests points that cannot be achieved by the optimal M in (2.49). How-

ever, in most cases, the sampling functions of interest, i.e., the sampling functions

that choose exactly one individual from each Fm, are globally optimal. First, the

sampling functions that select multiple individuals from a cluster that never gets

partitioned further in the levels below Fm are sub-optimal. These sampling functions

select multiple individuals to identify who are guaranteed to have the same infection

status. For instance, in zero expected false classifications case, i.e., the bottom level

Ff is chosen as the sampling cluster formation, sampling more than one individual

from each cluster is sub-optimal. Second, picking the sampling cluster formation Fm

and choosing anM such that multiple individuals are chosen from some clusters that

further get partitioned in the levels below Fm is equivalent to choosing a sampling

cluster formation below Fm and using an M that selects exactly one individual from

each cluster of the new sampling cluster formation, except for the scenarios where

35

there exist partitioning of multiple clusters in two consecutive cluster formations in

a given F , and one can consider a sampling function that selects multiple individuals

from some clusters of a given Fm that cannot be represented as a sampling function

that selects exactly one individual from each cluster of another cluster formation

Fm′ . For compactness, we focus on the family of sampling functions M that selects

exactly one individual from each cluster of the chosen Fm.

So far, we have presented a method to select individuals to be tested to min-

imize the expected number of false classifications. Now, we move on to the design

of X, the zero-error non-adaptive test matrix, which identifies the infection status

of the selected individuals M with a minimum number of tests. Recall that since

|F| = f , there are f possible choices of Fm, and each choice results in a different

test matrix X.

Based on the combinatorial viewpoint stated in (2.18), we propose a family

of non-adaptive group testing algorithms which satisfy the separability condition

for all of the subsets in P(KM), which is determined by F . We call such matrices

F-separable matrices and non-adaptive group tests that use F-separable matrices as

their test matrix as F-separable non-adaptive group tests. In the rest of the section,

we present our results on the required number of tests for F-separable non-adaptive

group tests.

The key idea of designing an F -separable matrix is determining the set P(KM)

for a given set of selected individuals M and the tree structure of F so that we can

find binary column vectors for each selected individual where all of the corresponding

possible result vectors are distinct. Note that, for a given choice of Fm, if we consider

36

the corresponding subtree of F which starts from the first level F1 and ends at

the level Fm, the problem of finding an F -separable non-adaptive test matrix is

equivalent to finding a set of length T binary column vectors for each node at level

Fm that satisfy the following criteria:

• For every node at the levels that are above the level Fm, each node must

be assigned a binary column vector that is equal to the OR of all vectors

that are assigned to its descendant nodes. This is because each node in the

tree corresponds to a possible set of infected individuals among the selected

individuals, where each merging of the nodes corresponds to the union of the

possible infected sets, which results in taking the OR of the assigned vectors

of the merged nodes.

• Each assigned binary vector must be unique for each unique node, i.e., for

every node that represents a unique set Sj
i . The assigned vector remains the

same for the nodes that do not split between two levels. This is because

each unique node (note that when a node does not split between levels, it

still represents the same set of individuals) corresponds to a unique possible

infected subset of the selected individuals, and they must satisfy (2.18).

In other words, for a cluster formation tree with assigned result vectors to each node,

a sufficient condition for the achievability of F -separable matrices is as follows:

Let u be a node with Hamming weight dH(u). Then, the number of all descen-

dant nodes of u with constant Hamming weights i must be less than
(
dH(u)

i

)
for

all i. This must hold for all nodes u. Furthermore, the number of nodes with

37

constant Hamming weight i must be less than
(
T
i

)
for all i. In addition, Ham-

ming weights of the nodes must strictly decrease while moving from ancestor

nodes to descendant nodes.

This condition is indeed sufficient because it guarantees the existence of a unique

set of vectors that can be assigned to each node of the subtree of F that satisfies

the merging/OR structure determined by the subtree.

The problem of designing an F -separable non-adaptive group test can be re-

duced to finding the minimum number T , for which we can find σm binary vectors

with length T , such that all vectors that are assigned to the nodes satisfy the above

condition. Here the assigned vectors are the result vectors y when the corresponding

node is the infected node.

We have the following definitions that we need in Theorem 2.3. For a given

F , we define λSj
i
as the number of unique ancestor nodes of the set Sj

i . We also

define λj as the number of unique sets Sb
a in F at and above the level Fj. Note that∑

a≤j σa is the total number of sets Sb
a in F at and above the level Fj, and thus we

have,

∑
a≤j

σa ≥ λj (2.23)

Theorem 2.3 For given F and Fm for m < f , the number of required tests for an

F-separable non-adaptive group test, i.e., the number of rows of the test matrix X,

38

must satisfy

T ≥ max

{
max
j∈[σm]

(λSm
j
+ 1), ⌈log2(λm + 1)⌉

}
(2.24)

with addition of 1’s removed in (2.24) for the special case of m = f .

We present the proof of Theorem 2.3 in the Appendix in Section 2.8. Note that

Theorem 2.3 is a converse argument without a statement about the achievability of

the given lower bound. In fact, the given lower bound is not always achievable.

Complexity: The time complexity of the two-step sampled group testing

algorithms consists of the complexity of finding the optimal M given Fm and F ,

the complexity of the construction of the F -separable test matrix given M and F ,

and the complexity of the decoding of the test results given the test matrix X and

the result vector y. In the following lemmas, we analyze the complexity of these

processes.

Lemma 2.1 For a given cluster formation tree F and a sampling cluster formation

Fm, the complexity of finding the optimal M as in Theorem 2.2 is

O(n(f −m)ζm) (2.25)

where ζm = max
k∈[n]
|{Sf

l : Sf
l ⊆ Sm(k)\Sf (k)}|.

Proof: To find the optimal M , βm(k) needs to be calculated as in (2.21) for each

k ∈ [n]. The complexity of each of these calculations is bounded above by the

39

number of cluster formations below Fm multiplied by the number of clusters at

level f that do not include the individual k and form the cluster Sm(k), i.e., the

clusters Sf
l that satisfy Sf

l ⊆ Sm(k)\Sf (k). Note that this upper bound varies for

each k ∈ [n] and the total complexity is the summation of these sizes multiplied

by f − m, i.e., the number of cluster formations below Fm, for each k ∈ [n]. As

an upper bound, we consider the maximum of these sizes, i.e., ζm, concluding the

proof. ■

In the next lemma, we analyze the complexity of the construction of the F -

separable test matrix given M and F .

Lemma 2.2 For a given cluster formation tree F and a sampling function M , the

complexity of assigning the binary result vectors to the nodes in F , and thus, the

construction of the F-separable test matrix is Ω(mσm).

Proof: When the cluster formation tree F and the sampling function M are given,

to assign unique binary result vectors to each node in F that represents a unique

possible infected cluster, we need to consider the subtree of F that starts with the

level F1 and ends at the level Fm, as in the example in Figure 2.4. Then, we need

to traverse from each bottom node in the subtree to the top node to detect every

cluster merging. This results in finding the numbers λSm
j

for j ∈ [σm] and λm

and unique binary test result vectors can be assigned to each unique node in F .

The traversing on the subtree of F starting from the bottom level Fm to the top

level for each bottom level node has the complexity Θ(mσm). This traversing does

not immediately result in the explicit construction of unique binary result vectors

40

to be assigned, but it gives an asymptotic lower bound for the complexity of the

construction of the F -separable test matrices. ■

Note that the Lemma 2.2 is an asymptotic lower bound for the complexity

of the binary result vector assignment to the unique nodes in F , and thus, for the

construction of the F -separable test result matrix X. This analysis is a baseline for

the proposed model, and proposing explicit F -separable test matrix constructions

with the exact number of required tests and complexity is an open problem.

Lemma 2.3 For a given F-separable test matrix X, with corresponding cluster

formation tree F with assigned binary result vectors to each node and the result

vector y, the decoding complexity is O(1).

Proof: While constructing the F -separable test matrix, we consider the assignment

of the unique binary result vectors to the nodes in the given cluster formation tree

F . For a given test matrix X and the result vector y, the decoding problem is a

hash table lookup with the complexity O(1). ■

Since during the proposed process of assignment of unique binary result vectors

to each unique node in F , we specifically assign the test result vectors to every unique

possible infected set, the decoding process is basically a hash table lookup, resulting

in fast decoding with low complexity.

Key Steps of the Proposed Algorithm: The summary of the key steps of

the two-step sampled group testing algorithm is given below:

• We start with the assumption that exact connections between the individuals

are not known, but the probability distribution of the possible edge realizations

41

is known.

• The given edge set probability distribution results in a random cluster forma-

tion variable, F . Each possible cluster formation is a partition of the set of all

individuals.

• Out of all possible cluster formations (which we call this set as F), one cluster

formation is selected as the sampling cluster formation, which we call Fm.

• Exactly one individual is selected from each cluster in Fm. These individuals

are then tested and identified.

• The selection is made according to the sampling function M . For the given

choice of Fm, M selects the individuals from the clusters that minimize the

expected number of false classifications, given in Theorem 2.2, and this results

in the expected number of false classifications given in Theorem 2.1.

• By using the given set of possible cluster formations, F , an F -separable test

matrix is constructed to identify the individuals selected by M . This test

matrix is guaranteed to identify the selected individuals since the construction

is based on assigning a unique test result vector to every possible infected set

among the selected individuals.

• In Theorem 2.3, we present a converse argument by giving a lower bound for

the required number of tests in terms of the system parameters.

• After obtaining the test results and identifying the selected individuals with

zero error, for each selected individual, their infection status is assigned to

42

F1

F2

F3

F4

Figure 2.6: A 4-level exponentially split cluster formation tree.

the others in their cluster, in Fm. Note that there is exactly one individual

selected and identified from every cluster in Fm. This step introduces possible

false classifications.

• Selecting Fm from lower levels from the possible cluster formations tree results

in lower expected false classifications while increasing the number of required

tests for identification. This results in a trade-off between the number of tests

and expected false classifications. By using a randomized selection of Fm,

intermediate points can also be achieved for the expected false classifications

and required number of tests.

In the next section, we introduce and focus on a family of cluster formation

trees, which we call exponentially split cluster formation trees. For this analytically

tractable family of cluster formation trees, we achieve the lower bound in Theo-

rem 2.3 order-wise, and we compare our result with the results in the literature.

2.5 Exponentially Split Cluster Formation Trees

In this section, we consider a family of cluster formation trees and explicitly charac-

terize the selection of optimal sampling function, the resulting expected number of

43

false classifications, and the number of required tests. We also compare our results

with Hwang’s generalized binary splitting algorithm [7] and zero-error non-adaptive

group testing algorithms to show the gain of utilizing the cluster formation structure.

A cluster formation tree F is an exponentially split cluster formation tree if it

satisfies the following criteria:

• An exponentially split cluster formation tree that consists of f levels has 2i−1

nodes at level Fi, for each i ∈ [f], i.e., σi = 2i−1, i ∈ [f].

• At level Fi, every node has 2f−iδ individuals where δ is a constant positive

integer, i.e., |Si
j| = 2f−iδ, i ∈ [f], j ∈ [σi].

• Every node has exactly two descendant nodes in one level below in the cluster

formation tree, i.e., every node is partitioned into equal-sized two nodes when

moving one level down in the cluster formation tree.

• Random cluster formation variable F is uniformly distributed over F , i.e.,

pF (Fi) = 1/f, i ∈ [f].

We analyze the expected number of false classifications and the required num-

ber of tests for exponentially split cluster formation trees by using the general results

derived in Section 2.4. In Figure 2.6, we give a 4-level exponentially split cluster

formation tree example. In that example, there is 20 = 1 node at level F1, and the

number of nodes gets doubled at each level since each node is split into two nodes

when moving one level down in the tree. Also, the sizes of the nodes at the same

level are the same, with the bottom-level nodes having the size δ.

44

Being a subset of cluster formation trees, exponentially split cluster forma-

tion trees correspond to random connection graphs where edges between individuals

are not independently realized in non-trivial cases. For instance, in Figure 2.7, we

present 4 different possible realizations of edges of a 4-level exponentially split cluster

formation tree system, given in Figure 2.6, where there are δ = 4 individuals in the

bottom level clusters. Here, if the edges between individuals are realized indepen-

dently, there would be possible cluster formations that do not result in exponentially

split cluster formation tree structure. The edge realizations are correlated in the

sense that if there is at least one edge realized between two bottom-level neighbor

clusters, then there must be at least one edge realized between other bottom-level

neighbor cluster pairs as well. Similarly, if there is at least one bottom level cluster

pair that are not immediate neighbors but get merged in some upper level Fk in

F , then other bottom level cluster pairs that get merged in Fk must be connected

as well. In Figure 2.7, in F4 realization, the only edges present are the edges that

form bottom-level clusters. In F3 realization, there is at least one edge realized

between each bottom-level neighbor cluster pair, resulting in clusters of 8 individ-

uals. Similarly, there are more distant connections that are realized in F2 and F1.

From a practical point of view, the 4-level exponential split cluster formation tree

example in Figure 2.6 and Figure 2.7 can be used to model real-life scenarios, such

as the infection spread in an apartment complex with multiple buildings. In the

bottom level, there are households that are guaranteed to be connected, and in the

F3 level the households that are in close contact are connected; in F2 level, there

is a connection building-wise, and in F1, the whole community is connected. Note

45

(a) F4 (b) F3

(c) F2 (d) F1

Figure 2.7: 4 realizations of a random connection graph C that falls under four
different cluster formations in a 4-level exponentially split cluster formation tree

with δ = 4.

that the connections given in Figure 2.7 are realization examples that fall under four

possible cluster formations and all edge realization scenarios are possible as long as

the resulting cluster formation is one of the four given cluster formations. While

designing the group testing algorithm, the given information is the probability dis-

tribution over the cluster formations, and in practice, one can expect a probability

distribution where bottom-level cluster formations, i.e., cluster formations towards

F4, have higher probabilities in a community where there are strict social isolation

measures, and high immunity rates for a contagious infection whereas higher prob-

abilities of upper-level cluster formations, i.e., cluster formations toward F1, can be

expected for communities with high contact rate and lower immunity.

Optimal sampling function and expected number of false classifica-

tions: Due to the symmetry of the system, for any choice Fm, each element of Sm
i

has the same βm(i) value for all i ∈ σm. Therefore, the sampling function selects

46

individuals from each set arbitrarily, i.e., the selection of a particular individual

does not change the expected number of false classifications. Thus, we can pick

any sampling function that selects one element from each Sm
i . By Theorem 2.1, the

expected number of false classifications, for given Fm, is

Ef =
∑
α>m

1

f

∑
i∈[σm]

(
|Sα(Mi)|

n
· |Sm

i \Sα(Mi)| +
∑

Sα
j ⊆Sm

i \Sα(Mi)

|Sα
j |2

n

)
(2.26)

=
∑
α>m

1

f

σm

σα

(
δ(2f−m − 2f−α) + (2α−m − 1)δ2f−α

)
(2.27)

=
∑
α>m

2f+1δ

f

(
2−α − 2m−2α

)
(2.28)

=
2f+1δ

f

(∑
α>m

2−α − 2m
∑
α>m

2−2α

)
(2.29)

=
2f+1δ

f

(
(2−m − 2−f)− 2m

3
(2−2m − 2−2f)

)
(2.30)

=
δ

3f

(
2f−m+2 + 2m−f+1 − 6

)
(2.31)

This expected number of false classifications takes its maximum value when Fm =

F1,

Ef =
δ

3f

(
2f+1 + 22−f − 6

)
(2.32)

and it takes its minimum value when Fm = Ff as Ef = 0. Since the choice of Fm is

a design parameter, one can use time sharing between the possible selections of Fm

to achieve any desired value for the expected number of false classifications between

Ef = 0 and Ef in (2.32).

47

Required number of tests: We first recall that, if we choose the sampling

cluster formation level Fm, the required number of tests for selected individuals at

that level for whom we design an F -separable test matrix depends on the subtree

that is composed of the first m levels of the cluster formation tree F . Note that the

firstm levels of an exponentially split cluster formation tree are also an exponentially

split cluster formation tree with m levels. In Theorem 2.4 below, we focus on the

sampling cluster formation choice at the bottom level, Fm = Ff , and characterize

the exact required number of tests to be between f and 4
3
f . This implies that the

required number of tests at level Ff is O(f); thus, the required number of tests at

level Fm is O(m).

Theorem 2.4 For an f level exponentially split cluster formation tree, at level f ,

there exists an F-separable test matrix, X, with not more than 4
3
f rows, i.e., an

upper (achievable) bound for the number of required tests is 4
3
(log2 n + 1) for n

individuals. Conversely, this is also the capacity order-wise since the number of

required tests must be greater than f .

We present the proof of Theorem 2.4 in the Appendix in Section 2.8.

Expected number of infections: In an exponentially split cluster formation

tree structure with f levels, the expected total number of infections is,

f∑
i=1

1

f
2f−iδ =

δ

f
(2f − 1) (2.33)

since pF (Fi) = 1/f and if F = Fi then there are 2f−iδ infections. Thus, the expected

48

number of infections is O
(

n
log2 n

)
.

Comparison: To compare our results for the exponentially split cluster for-

mation trees with other results in the literature, for fairness, we focus on the zero-

error case in our system model, which happens when Fm = Ff is chosen. Resulting

sampling function selects in total 2f−1 individuals and the resulting number of re-

quired tests is between f and 4
3
f , i.e., O(log2 n), as proved in Theorem 2.4. Note

that, by performing at most 4
3
f tests to 2f−1 individuals, we identify the infection

status of 2f−1δ individuals with zero false classifications, which implies that the

number of tests scales with the number of nodes at the bottom level, instead of the

number of individuals in the system. This results in a gain scaled with δ. How-

ever, to fairly compare our results with the results in the literature, we ignore this

gain and compare the performance of the second step of our algorithm only, i.e.,

the identification of the infection statuses of the selected individuals only. To avoid

confusion, let δ = 1, i.e., each cluster at the bottom level is an individual; thus,

n = 2f−1.

From (2.33), the expected number of infections in this system is 2f−1
f

=

O(n
log2 n

). When the infections scale faster than
√
n, as proved in [18] (see also [2]),

non-adaptive tests with zero-error criterion cannot perform better than individual

testing. Since our algorithm results in O(f) = O(log2 n) tests, it outperforms all

non-adaptive algorithms in the literature. Furthermore, we compare our results with

Hwang’s generalized binary splitting algorithm [7], even though it is an adaptive al-

gorithm and assumes prior knowledge of the exact number of infections. Hwang’s

49

algorithm results in a zero-error identification of k infections among the population

of n individuals with k log2(n/k) + O(k) tests and attains the capacity of adap-

tive group testing [2, 7, 27]. Since the number of infections takes f values in the

set {1, 2, 22, . . . , 2f−1} uniformly randomly, the resulting mean value of the required

number of tests when Hwang’s generalized binary splitting algorithm is used is

E[THwang] =

f−1∑
i=0

1

f

(
2i log2 2

f−1−i
)
+O

(
n

log2 n

)
(2.34)

=
f − 1

f

f−1∑
i=0

2i − 1

f

f−1∑
i=0

i2i +O

(
n

log2 n

)
(2.35)

=
2f − f − 1

f
+O

(
n

log2 n

)
(2.36)

= O

(
n

log2 n

)
(2.37)

Thus, the expected number of tests when Hwang’s generalized binary split-

ting algorithm is used scales as O
(

n
log2 n

)
, which is much faster than our result of

O(log2 n). We note that Hwang’s generalized binary splitting algorithm assumes

the prior knowledge of the exact number of infections and is an adaptive algorithm.

Further, we have ignored the gain of our algorithm in the first step (i.e., δ = 1).

Despite these advantages, our algorithm outperforms Hwang’s generalized binary

splitting algorithm for exponentially split cluster formation trees.

2.6 Numerical Results

In this section, we present numerical results for the proposed two-step sampled group

testing algorithm and compare our results with the existing results in the literature.

50

In the first simulation environment, we focus on exponentially split cluster formation

trees as presented in Section 2.5. In the second simulation environment, we consider

an arbitrary random connection graph, as discussed in Section 2.2, which does not

satisfy the cluster formation tree assumption. We verify our analytical results in

the first simulation environment by focusing on exponentially split cluster formation

trees. We show that our ideas can be applied to arbitrary random connection graph-

based networks in the second simulation environment.

2.6.1 Exponentially Split Cluster Formation Tree Based System

In the first simulation environment, we have an exponentially split cluster formation

tree with f = 10 levels and δ = 1 at the bottom level. For this system of n =

2f−1δ = 512 individuals, for each sampling cluster formation choice Fm (which is

a design parameter), from m = 1, i.e., the top level of the cluster formation tree,

to m = 10, i.e., the bottom level of the cluster formation tree, we calculate the

expected number of false classifications and the minimum required number of tests.

Note that the required number of tests is fixed for a fixed sampling cluster formation

Fm, while the number of false classifications depends on the realization of the true

cluster formation Fα and patient zero Z. This is because of the fact that when

a sampling cluster formation is selected, the test matrix of choice is guaranteed

to identify the sampled individuals with zero error, independent of the realized

infections. In Figure 2.8(a), we plot the expected number of false classifications

which meets the analytical expressions we found in Section 2.5. To plot Figure 2.8,

51

we run our simulation and realize the infections 1000 times to numerically obtain

the average number of false classifications in the system. While calculating the

minimum number of required tests, for each choice of Fm, our program finds the

minimum T that satisfies the sufficient criteria that we presented in Section 2.4

and in the proof of Theorem 2.4 by searching over possible assignments of binary

result vectors to the nodes in the given exponentially split cluster formation tree,

starting from the vector length one and increasing the vector length by one if no such

assignment is found. When a binary vector assignment to the nodes is found, the

resulting test matrix is constructed and used for running the simulation 1000 times

to obtain the numerical average of the expected number of false classifications. We

plot the minimum required number of tests in Figure 2.8(b). Note that, unlike the

number of false classifications, for a fixed Fm, the number of required tests is fixed,

and thus, we do not repeat the simulations while calculating the required number of

tests. The resulting non-adaptive test matrix X is fixed for a fixed Fm and identifies

the infection status of the individuals selected by M , with zero error.

Next for this network setting, we compare our zero-error construction results

with the results of a variation of Hwang’s generalized binary splitting algorithm

[7, 27], presented in [28], which further reduces the number of required tests by

reducing the O(k) term in the capacity expression of Hwang’s algorithm. As we

state in the comparison part of Section 2.5, the required number of tests in our

algorithm scales withO(log2 n). In our numerical results, we see the required number

of tests is 13 at level m = f = 10, as seen in Figure 2.8(b). On the other hand,

52

1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

(a)

1 2 3 4 5 6 7 8 9 10

9

10

11

12

13

14

15

(b)

Figure 2.8: (a) Expected number of false classifications vs the choice of sampling
cluster formation Fm. (b) Required number of tests vs the choice of sampling

cluster formation Fm.

the average number of required tests for Hwang’s algorithm scales as O
(

n
log2 n

)
,

and is approximately 172 in this case. Further, when we remove the assumption

of the known number of infections, we have to use the binary splitting algorithm

presented originally in [5], which results in a number of tests that is not lower than

individual testing, i.e., n = 512 tests in this case. For Hwang’s generalized and

the original binary splitting algorithm results, we run these algorithms 1000 times

by realizing the infection status of the population at each iteration to obtain the

numerical average of the number of required tests for both of these algorithms.

2.6.2 Arbitrary Random Connection Graph Based System

In our second simulation environment, we present an arbitrary random connection

graph C with 20 individuals, shown in Figure 2.9(c), where the edges realize inde-

pendently with probabilities shown on them (zero probability edges are not shown).

In this system, since each independent realization of 9 edges that can be either

53

50 100 150 200 250 300 350 400 450 500

0

1

2

3

4

5

(a)

50 100 150 200 250 300 350 400 450 500

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

(b)

1

0.6
11

0.4

0.6

1

0.25
1

0.05
0.25

0.6

1

1

1

0.95

1

1

1

0.65
1

2

3

4

5

6

7

8 9

10

11
12

13

14
15

16

1718

19

20

(c)

Figure 2.9: (a) Expected number of false classifications vs the choice of sampling
cluster formation Fm. (b) Required number of tests vs the choice of sampling

cluster formation Fm. (c) Random connection graph.

present or not results in a distinct cluster formation, in total, there are 29 = 512

cluster formations that can be realized with positive probability. Note that this sys-

tem with the random connection graph C does not yield a cluster formation tree,

yet we still apply our ideas designed for cluster formation trees here. For each one of

the 512 possible selections of m, we plot the corresponding expected number of false

classifications in Figure 2.9(a) and the required number of tests in Figure 2.9(b) for

our two-step sampled group testing algorithm.

In this simulation, for each possible choice of the sampling cluster formation

Fm, we calculate the set of all possible infected sets P(KM) for all possible choices

54

of M and calculate the resulting expected number of false classifications by also

calculating pF , the probability distribution of random cluster formations and select

the optimal sampling function M . For the required number of tests, we find the

minimum number of tests that satisfies the sufficient criteria that we presented

in Section 2.4 in order to construct F -separable matrices for this system. In our

simulation environment, this procedure is done by brute force, since this system is

not a cluster formation tree as in our system model and we cannot use the systematic

results that we derived. This simulation demonstrates that the ideas presented can

be generalized and applied to arbitrary random connection graph structures.

Since the system here is arbitrary unlike the exponentially split cluster forma-

tion tree structure in the first simulation environment in Section 2.6.1, the resulting

expected number of false classifications is not monotonically decreasing when we

sort the resulting required number of tests in the increasing order for the choices

of Fm. In Figure 2.9(a), we mark the choices of sampling cluster formations that

result in the minimum number of expected false classifications within each required

number of test ranges. By using time-sharing between these choices of the sampling

cluster formations, dotted red lines between them can be achieved. The 6 corner

points in Figure 2.9(a)-(b) correspond to the following cluster formations,

F1 ={{1-18}, {19-20}} (2.38)

F43 ={{1-6}, {7-13}, {14-18}, {19-20}} (2.39)

F184 ={{1-6}, {7-9}, {10-13}, {14-18}, {19}, {20}} (2.40)

55

F428 ={{1}, {2}, {3-6}, {7-9}, {10-13}, {14-17}, {18}, {19}, {20}} (2.41)

F510 ={{1, 2}, {3-6}, {7-9}, {10-13}, {14, 15}, {16}, {17}, {18}, {19}, {20}} (2.42)

F512 ={{1}, {2}, {3-6}, {7-9}, {10-13}, {14, 15}, {16}, {17}, {18}, {19}, {20}}

(2.43)

For instance, F43 in (2.39) is composed of 4 clusters with S43
1 = {1, 2, 3, 4, 5, 6},

S43
2 = {7, 8, 9, 10, 11, 12, 13}, S43

3 = {14, 15, 16, 17, 18} and S43
4 = {19, 20}. When

Fm = F43 is chosen as the sampling cluster formation, the resulting expected number

of false classifications is Ef = 1.505, and the required number of tests is 3, as seen in

Figure 2.9(a) and (b). For the sampling cluster formation choices which are not one

of the six cluster formations listed above, these six cluster formations can be chosen

to minimize the expected number of false classifications while keeping the required

number of tests constant. For instance, all choices of m between m = 2 and m = 42

result in the required number of three tests as m = 43 but yield a larger Ef than

what m = 43 yields.

For this system as well, we calculate the average number of required tests for

Hwang’s generalized binary splitting algorithm by using the results of [7, 27, 28] as

in the first simulation (by implementing and running these algorithms 1000 times

where we realize the infection status of the population for each iteration) and find

that the average number of required tests is 16.4 in this case. Similar to the first

simulation environment, the binary splitting algorithm presented originally in [5]

which does not require the exact number of infections, cannot perform better than

individual testing.

56

2.7 Conclusions

In this chapter, we introduced a novel infection spread model that consists of a

random patient zero and a random connection graph, which corresponds to a non-

identically distributed and correlated (non i.i.d.) infection status for individuals.

We proposed a family of group testing algorithms, which we call two-step sampled

group testing algorithms, and characterized their optimal parameters. We deter-

mined the optimal sampling function selection, derived expected false classifications,

and proposed F-separable non-adaptive group tests, which is a family of zero-error

non-adaptive group testing algorithms that exploit a given random cluster formation

structure. For a specific family of random cluster formations, which we call expo-

nentially split cluster formation trees, we calculated the expected number of false

classifications and the required number of tests explicitly, by using our general re-

sults, and showed that our two-step sampled group testing algorithm outperforms all

non-adaptive tests that do not exploit the cluster formation structure and Hwang’s

adaptive generalized binary splitting algorithm, even though our algorithm is non-

adaptive and we ignore our gain from the first step of our two-step sampled group

testing algorithm. Moreover, we characterized the computational complexities of

constructing the proposed algorithms. Finally, our work has an important implica-

tion: in contrast to the prevalent belief about group testing that it is useful only

when the infections are rare, our group testing algorithm shows that a considerable

reduction in the number of required tests can be achieved by using the prior proba-

bilistic knowledge about the connections between the individuals, even in scenarios

57

with a significantly high number of infections.

2.8 Appendix

Theorem 2.1 In a two-step sampled group testing algorithm with the given sam-

pling cluster formation Fm and the sampling function M over a cluster formation

tree structure defined by F and pF , with uniform patient zero distribution pZ over

[n], the expected number of false classifications given F = Fα is

Ef,α =
∑
i∈[σm]

(
|Sα(Mi)|

n
· |Sm

i \Sα(Mi)|+
∑

Sα
j ⊆Sm

i \Sα(Mi)

|Sα
j |2

n

)
(2.44)

and the expected number of false classifications is

Ef =
∑
α>m

pF (Fα)Ef,α (2.45)

where Sα(Mi) is the subset in the partition Fα which contains the ith selected indi-

vidual.

Proof: For the sake of simplicity, we denote the subset in partition Fα that contains

the ith selected individual by Sα(Mi). We start our calculation with the conditional

expectation where F = Fα is given. Observe that an error occurs, in the second step

of the decoding process, only if Fm is at a higher level of the cluster formation tree

than the realization of F = Fα and the true infected cluster K = Sα
γ is merged at the

level Fm, i.e., α > m and Sα
γ /∈ Fm. Since there is exactly one true infected cluster,

which is at level Fα, false classifications only happen in the set Sm
θ that contains Sα

γ .

58

Now, we know that for the given sampling function M , the θth selected individual is

selected from the set Sm
θ and in the second step of the decoding phase, its infection

status is assigned to all of the members of the set Sm
θ . Therefore, the members

of the difference set Sm
θ \Sα(Mθ) are falsely classified if the set Sα(Mθ) is the true

infected set. In that case, all members of Sm
θ would be classified as infected while

only the subset of them, which is Sα(Mθ) were infected. On the other hand, when

the cluster of the selected individual at level Fα is not infected, i.e., the infected

cluster is a subset of Sm
θ \Sα(Mθ), then only the infected cluster is falsely identified

since all of the members of Sm
θ are classified as non-infected. Thus, we have the

following conditional expected number of false classifications when F = Fα is given,

where pSj
i
denotes the probability of the set Sj

i being infected

Ef,α =
∑
i∈[σm]

(
pSα

Mi
|Sm

i \Sα(Mi))|+
∑

Sα
j ⊆Sm

i \Sα(Mi)

pSα
j
|Sα

j |
)

(2.46)

=
∑
i∈[σm]

(
|Sα(Mi)|

n
· |Sm

i \Sα(Mi)|+
∑

Sα
j ⊆Sm

i \Sα(Mi)

|Sα
j |2

n

)
(2.47)

where (2.47) follows from the uniform patient zero assumption. Finally, since false

classifications occur only when α > m, we have the following expression for the

expected number of false classifications

Ef =
∑
α>m

pF (Fα)Ef,α (2.48)

concluding the proof. ■

59

Theorem 2.2 For sampling cluster formation Fm, the optimal choice of M that

minimizes the expected number of false classifications is

Mi = argmin
k∈Sm

i

βm(k) (2.49)

where Mi is the ith selected individual. Moreover, the number of required tests is

constant and is independent of the choice of M .

Proof: We first prove the second part of the theorem, i.e., that the choice of M

does not change the required number of tests. In a cluster formation tree structure,

when we sample exactly one individual from each subset Sm
i , P(KM) contains sin-

gle element subsets of selected individuals, since when F = Fm we have exactly one

infected individual that can be any one of these individuals with positive probabil-

ity. Now consider the cluster formation Fm−1. Since it is a cluster formation tree

structure, there must be at least one Sm−1
i such that, Sm−1

i = Sm
j ∪ Sm

k , Sm
j ̸= Sm

k ,

which means that, P(KM) must contain the set of selected individuals from Sm
k and

Sm
j as well, because of the fact that in the case of F = Fm−1, these individuals can

be infected simultaneously. Similarly, when moving towards the top node of the

cluster formation tree (i.e., F1), whenever we observe a merging, we must add the

corresponding union of the subsets of individuals to P(KM), which is the set of all

possible infected sets for the selected individuals M . Thus, the structure of distinct

sets of possible infected individuals does not depend on the indices of the sampled

individuals within each Sm
i , but depends on the given F and Fm, completing the

60

proof of the second part of the theorem.

We next prove the first part of the theorem, i.e., we prove that selecting the

individual that has the minimum βm(k) value for each Sm
i results in the minimum

expected number of false classifications and thus, it is the optimal choice. First,

recall that, by definition, M depends on Fm, and thus, we design sampling function

M for a given Fm. Now, recall the expected number of false classifications stated in

(2.44)-(2.45). Designing a sampling function that minimizes Ef for a given Fm can

be done as follows. From (2.44)-(2.45),

min
M

Ef =min
M

{ ∑
α:m<α

pF (Fα)
∑
i∈[σm]

(
|Sα(Mi)|

n
× |Sm

i \Sα(Mi)|+
∑

Sα
j ⊆Sm

i \Sα(Mi)

|Sα
j |2

n

)}

(2.50)

=
1

n

∑
i∈[σm]

min
M

{ ∑
α:m<α

pF (Fα)

(
|Sα(Mi)| × |Sm

i \Sα(Mi)|+
∑

Sα
j ⊆Sm

i \Sα(Mi)

|Sα
j |2
)}

(2.51)

=
1

n

∑
i∈[σm]

(∑
α:m<α

pF (Fα)

(
|Sα(k∗

i)| × |Sm
i \Sα(k∗

i)|+
∑

Sα
j ⊆Sm

i \Sα(k∗i)

|Sα
j |2
))

(2.52)

where k∗
i = argmin

k∈Sm
i

βm(k), and (2.52) is the minimum value of the expected number

of false classifications for given Fm. The sampling function M defined in (2.49)

achieves the minimum and thus, it is optimal, completing the proof of the first part

of the theorem. ■

Theorem 2.3 For given F and Fm for m < f , the number of required tests for an

61

F-separable non-adaptive group test, i.e., the number of rows of the test matrix X,

must satisfy

T ≥ max

{
max
j∈[σm]

(λSm
j
+ 1), ⌈log2(λm + 1)⌉

}
(2.53)

with addition of 1’s removed in (2.53) for the special case of m = f .

Proof: First, we have that each unique node (nodes that represent a unique subset

Sj
i) represents a unique possibly infected set KM where each result vector must

be unique as well. Therefore, in total, we must have at least λm unique vectors.

Furthermore, when m < f , it is possible that the infected set among the sampled

individuals is the empty set. Thus, we have to reserve the zero vector for this case

as well. Therefore, the total number of tests must be at least ⌈log2(λm + 1)⌉ in

general, with an exception of m = f case, where we can assign the zero vector to

one of the nodes and may achieve ⌈log2(λm)⌉.

Second, assume that for any node j at an arbitrary level Fi, i < m, the set

of indices of the positions of 1’s must contain the set of indices of the positions

of 1’s of the descendants of node j. Moreover, since all nodes that split must be

assigned a unique vector, Hamming weights of the vectors must strictly decrease as

we move from an ancestor node to a descendant at each level. Considering the fact

that the ancestor node at the top level can have Hamming weight at most T and

the nodes at the level Fm must be assigned a vector which has Hamming weight

at least 1, including the node that has the most unique ancestor nodes, T must be

62

at least max
j∈[σm]

(λSm
j
+ 1). Similar to the first case, when m = f , we can have zero

vector assigned to one of the bottom level nodes, and thus, we can have T at least

max
j∈[σm]

λSm
j
. ■

Theorem 2.4 For an f level exponentially split cluster formation tree, at level f ,

there exists an F-separable test matrix, X, with not more than 4
3
f rows, i.e., an

upper (achievable) bound for the number of required tests is 4
3
(log2 n + 1) for n

individuals. Conversely, this is also the capacity order-wise since the number of

required tests must be greater than f .

Proof: By using the converse in Theorem 2.3, we already know that the required

number of tests is at least f from (2.24) since there are λf = 2f − 1 unique nodes

and also λSf
i
+ 1 = f for every subset Sf

i . This proves the converse part of the

theorem.

In order to satisfy the sufficient conditions for the existence of an F -separable

matrix, each node in the tree must be represented by a T length vector of sufficient

Hamming weight, so that i) every descendant can be represented by a unique vector

with positions of 1’s being the subsets of the positions of 1’s of their ancestor nodes,

and ii) OR of vectors that are all descendants of a node must be equal to the vector

of the ancestor node. In our proof, we show that, for exponentially split cluster

formation trees, it is sufficient to check that we have a sufficient number of rows in

X to uniquely assign vectors to the bottom level nodes, i.e., the subsets Sf
i at level

Ff .

First, as we stated above, from the converse in Theorem 2.3, an F -separable

63

test matrix of an exponentially split cluster formation tree with f levels must have at

least f rows. However, for exponentially split cluster formation trees, this converse

is not achievable: There are 2f−1 nodes at level f but
(
f
1

)
binary vectors with

Hamming weight 1. Since for f > 3,
(
f
1

)
is less than 2f−1, we cannot assign distinct

Hamming weight 1 vectors to the bottom level nodes. Thus, we need vectors with

lengths longer than f . Now, assume that an achievable F -separable test matrix has

f +k rows, where k is a non-negative integer. Our objective in the remainder of the

proof is to characterize this k in terms of f .

We argue that if the number of nodes at the bottom level, which is equal

to 2f−1, is less than
∑k+1

i=1

(
f+k
i

)
then we can find an achievable F -separable test

matrix, i.e.,

k+1∑
i=1

(
f + k

i

)
≥ 2f−1 (2.54)

is a sufficient condition for the existence of an achievable F -separable test matrix

for a given (f, k) pair. Minimum k that satisfies (2.54) will result in the minimum

number of required tests f + k. In our construction, we assign each node at level Fi

a unique vector with Hamming weight f + k+1− i, except for the bottom level Ff .

Since each node is assigned a unique vector, when moving from a level to one level

down, descendant nodes must be assigned vectors that have Hamming weight of at

least 1 less than their ancestor node. At the bottom level, we use the remaining

vectors with Hamming weight less than or equal to k+1. We choose minimum such

k for this construction, resulting in the minimum number of tests.

64

Before proving the achievability of this above construction, we first analyze the

minimum k that satisfies (2.54) in terms of f . We state and prove in Theorem 2.4

in the Appendix in Section 2.8 that k = f/3 satisfies (2.54), giving an upper bound

for the minimum k, thus finalizing the first part of the achievability proof. This, in

turn, shows that we can use all vectors of Hamming weight 1 through k + 1 in the

bottom level to represent all 2f−1 nodes at that level.

Next, we show that for the upper levels, our construction is achievable, i.e.,

we can find sufficiently many vectors of corresponding Hamming weights. By using

Theorem 2.5 in the Appendix in Section 2.8, and the fact that for k ≤ f/3, when

f ≥ 13, we have

(
f + k

k + 2

)
≥ 2f−2 (2.55)

which implies that, we can find unique vectors of Hamming weight k+2, to assign to

the nodes at level Ff−1 (one level up from the bottom level). For the remaining levels

below ⌈(f+k)/2⌉, we have
(
f+k
i

)
>
(
f+k
i+1

)
and the number of nodes decreases by half

as we move upwards on the tree. Thus, we can find unique vectors to represent the

nodes by increasing the Hamming weights by 1 at each level, which is the minimum

increase of Hamming weights while moving upwards on the tree. For the remaining

nodes, which are above the level ⌈(f + k)/2⌉, we can use the lower bound for the

binomial coefficient,

(
f + k

i

)
≥
(
f + k

i

)i

≥ 2i (2.56)

65

to show that there are unique vectors of required weights at those levels as well.

Thus, there are sufficiently many unique vectors of appropriate Hamming

weights at every level. Finally, we have to check whether or not there is a suffi-

cient number of unique vectors for every subtree of descendants of each node. In

exponentially split cluster formation trees, due to the symmetry of the tree, any

descendant subtrees of each node are again an exponentially split cluster formation

tree. If we assume that k, where the number of rows of X is equal to f +k, satisfies

(2.54) with k being the minimum such number, then every descendant subtree below

the top level has parameters (f − i, k) and we show in Theorem 2.4 in the Appendix

in Section 2.8 that they also satisfy the condition (2.54). For f values that are below

the corresponding threshold in our proof steps (e.g., f ≥ 13 threshold before (2.55)

above), manual calculations yield the desired results. This proves the achievability

part of the theorem. ■

Lemma 2.4 Minimum k that satisfies

k+1∑
i=1

(
f + k

i

)
≥ 2f−1 (2.57)

is upper bounded by f/3.

Proof: We prove the statement of the lemma by showing that the pair (f, k) =

(f, f/3) satisfies (2.57). We first consider the left hand side of (2.57) when f is

66

incremented by 1 for fixed k, and write it as

k+1∑
i=1

(
f + k + 1

i

)
= 2

k+1∑
i=1

(
f + k

i

)
+ 1−

(
f + k

k + 1

)
(2.58)

which follows by using the identity
(
a
b

)
=
(
a−1
b−1

)
+
(
a−1
b

)
.

Second, we prove the following statement for k ≥ 1,

k+1∑
i=1

(
4k

i

)
≥ 23k−1 (2.59)

Note that, when k = f/3, (2.59) is equivalent to (2.57) for f values that are divisible

by 3. For f values that are not divisible by 3, since the pairs (f−1, k) and (f−2, k)

satisfy (2.57) when the pair (f, k) satisfies (2.57), by (2.58), it suffices to prove the

statement in (2.59).

We prove (2.59) by induction on k. For k = 1, the inequality holds. Assume

that the inequality holds for a k ≥ 1, then we show that it also holds for k + 1. In

the lines below, we use the identity
(
a
b

)
=
(
a−1
b−1

)
+
(
a−1
b

)
recursively,

k+2∑
i=1

(
4k + 4

i

)
=

k+2∑
i=1

(
4k + 3

i

)
+

k+2∑
i=1

(
4k + 3

i− 1

)
(2.60)

=
k+2∑
i=1

(
4k + 2

i

)
+

k+2∑
i=1

(
4k + 2

i− 1

)
+ 1 +

k+1∑
i=1

(
4k + 2

i

)
+

k+1∑
i=1

(
4k + 2

i− 1

)
(2.61)

...

67

=9
k+1∑
i=1

(
4k

i

)
− 5

(
4k

k + 1

)
+

(
4k

k + 2

)
+ 4

(
4k

k − 1

)
+ 5

(
4k

k − 2

)
+ A

(2.62)

=9
k+1∑
i=1

(
4k

i

)
− 2k + 11

k + 2

(
4k

k + 1

)
+ 4

(
4k

k − 1

)
+ 5

(
4k

k − 2

)
+ A

(2.63)

=8
k+1∑
i=1

(
4k

i

)
− k + 9

k + 2

(
4k

k + 1

)
+

(
4k

k

)
+ 5

(
4k

k − 1

)
+ 6

(
4k

k − 2

)
+ A′

(2.64)

=8
k+1∑
i=1

(
4k

i

)
+ 3

(
4k

k − 2

)
+ A′′ (2.65)

≥23k+2 (2.66)

where A,A′, A′′ are positive terms that are o
((

4k
k−2

))
, and we use the identity

(
a
b

)
=

a−b+1
b

(
a

b−1

)
after equation (2.62) to eliminate the negative

(
4k
k+1

)
term. Inequality

(2.66) follows from the induction assumption. This proves the statement for k + 1

and completes the proof. ■

Lemma 2.5 When k ≤ 2n−8
5

, the following inequality holds

1

2

k∑
i=1

(
n

i

)
<

(
n

k + 1

)
(2.67)

Proof: We prove the lemma by induction over k. First, note that the inequality

holds when k = 1,

1

2

(
n

1

)
<

(
n

2

)
(2.68)

68

Then, assume that the statement is true for k. Now we check the statement for

k + 1,

1

2

k+1∑
i=1

(
n

i

)
<

3

2

(
n

k + 1

)
(2.69)

≤ n− k − 1

k + 2

(
n

k + 1

)
(2.70)

=

(
n

k + 2

)
(2.71)

where (2.69) follows from the induction assumption and (2.70) is because k ≤ 2n−8
5

.

This proves the statement for k + 1 and completes the proof. ■

69

CHAPTER 3

Dynamic Infection Spread Model Based Group Testing

3.1 Introduction

In this chapter, we consider dynamic testing algorithms over discrete time for a

dynamic infection spread model with fixed, limited testing capacity at each time

instant, where a full identification is not possible. In our system, test results are

available immediately, and thus, the disease spread is not due to the delay between

applying tests and receiving test results, but rather due to the limited testing ca-

pacity at each time instant. We follow a dynamic infection spread model, which is

inspired by the well-known SIR model where the individuals are divided into three

groups: susceptible individuals (S), non-isolated infections (I), and isolated infec-

tions (R), i.e., recovered individuals in the classical SIR model. We do not assume

a community structure in our system. We initialize our system by introducing the

initial infections, and after that, at each time instant, infection is spread by infected

non-isolated individuals to the susceptible individuals. Meanwhile, at each time

instant, after the infection spread phase, the testing phase is performed, where a

limited number of T tests are performed to detect a number of infections in the

70

system. In our system, the objective is not to minimize the number of required

tests to identify everyone at each time instant, but to control the infection spread

either as soon as possible or with a minimum number of people that got infected

throughout the process, by using the given, limited, testing capacity T at each time

instant.

We analyze the average case performance of our system, i.e., the expected val-

ues of the number of susceptible individuals, and non-isolated and isolated infections

over time, which are random processes. For symmetric and converging algorithms,

we state a general analytical result for the expected number of susceptible individ-

uals in the system when the infection is brought under control, which is the time

when there is no non-isolated infection left in the system. We present two dynamic

algorithms: dynamic individual testing and dynamic Dorfman-type group testing

algorithm. We provide weak versions of these two algorithms and use our general

result to obtain a lower bound on the expected number of susceptible individuals

when the infection is under control. Finally, we run simulations to get numerical

results of our proposed algorithms for different sets of parameters.

3.2 System Model

We consider a population of n individuals whose infection statuses change over time.

The time dimension t is discrete in our system, i.e., t ∈ {0, 1, 2, . . .}. Similar to the

classical discrete SIR model, the population consists of three distinct subgroups:

susceptible individuals who are not infected but can get infected by infected in-

71

dividuals (S), infected individuals who can infect the susceptible individuals (I),

and isolated individuals who were infected, have been detected via performed tests

and isolated indefinitely (R) 1. Let Ui(t) denote the infection status of individual i at

time t, where 1 represents being infected, 0 represents not being infected and 2 rep-

resents being isolated. At the beginning (t = 0), we introduce the initial infections

in the system, independently with probability p, where Ui(0) is a Bernoulli random

variable with parameter p. Random variables Ui(0) are mutually independent for

i ∈ [n]. Let α(t) denote the number of susceptible individuals at time t, λ(t) denote

the number of non-isolated infected individuals at time t, and γ(t) denote the num-

ber of isolated individuals at time t. Starting from t = 1, each time instant consists

of two phases: the infection spread phase and testing phase, in the respective order.

Infection Spread Phase: Infected individuals spread the infection to the

susceptible members of the population. At each time instant, starting from t = 1,

the infection spreads independently across the individuals: Each infected individual

can infect each susceptible individual with probability q, independent across both

infected individuals and susceptible individuals. Isolated individuals cannot infect

others and their infection status cannot change after they are isolated. Thus, the

probability of the event that individual i gets infected by another individual j at

time t ≥ 1 is equal to

qP (Uj(t− 1) = 1, Ui(t− 1) = 0) for i, j ∈ [n]. (3.1)

1These are called recovered (R) individuals in the SIR model; we call them isolated individuals.
As they are isolated indefinitely, they are recovered eventually.

72

Testing Phase: At each time instant starting from t = 1, T tests can be

performed to the individuals. Note that the testing capacity T is a given parameter

and thus, in contrast to the classical group testing systems, we do not seek to

minimize the number of performed tests for full identification of the infection status

of the population but aim to efficiently perform T tests at each time instant to

identify and isolate as many infections as possible to control the infection spread.

Here, performed tests can be group tests, and we define the T × n binary test

matrices, X(t), which specify the pooling scheme for the tests at each time t. For

each time instant t ≥ 1, we have the test result vectors y(t), which are equal to

yi(t) =
∨
j∈[n]

Xij(t)1{Uj(t)=1}, i ∈ [T] (3.2)

where yi(t) denotes the ith test result at time t, Xij(t) denotes the ith row, jth

column of the test matrix X(t).

Note that, since the previous test matrices and test results are available while

designing these test matrices, X(t) can depend on the previous test results y(t′) for

t′ < t. We assume that when tests are performed at some time instant t′, the test

results y(t′) will be available before the infection spread phase at time t′ + 1. Thus,

after the test results are available, detected infections are isolated immediately, i.e.,

if the ith individual is detected to be infected during the testing phase at time t′,

then Ui(t
′) = 2. Recall that, after an infected individual is isolated at some time t′,

they cannot infect others at times greater than t′ and their infection status cannot

change, i.e., Ui(t) = 2 for t ≥ t′.

73

Testing Policy: A testing policy π is an algorithm that specifies how to

allocate the given testing capacity T for each time instant until the infection is

under control. We define t̄ to be the time when Ui(t̄) ̸= 1 for all individuals i ∈ [n]

for the first time and we say that the infection is under control at t̄. Note that,

after t̄, the infection statuses of the individuals cannot change and the steady state

is achieved: They are either isolated (Ui(t) = 2) or non-infected (Ui(t) = 0). Since

we do not consider re-entries of recoveries to the population, the infection spread is

under control when all infections in the system are isolated. Otherwise, the infection

may keep spreading to susceptible individuals by non-detected infections.

Performance Metrics: The main objective is to bring the infection spread

under control by detecting and isolating each infected individual by performing at

most T tests at each time instant. Note that, meanwhile, infection keeps spreading,

and thus, detecting the infection status of an individual to be negative does not

imply that they are identified for the rest of the process; they can get infected in

later time instants. As defined, t̄ is the time that the infection is under control,

and when the system has reached that state, further testing of the individuals is

unnecessary. Therefore, there are two metrics to measure the performance of a

testing policy π: The time t̄ when the infection is brought under control and the total

number of isolated individuals when the infection is under control while comparing

the performances of the testing policies, earlier infection control time t̄ and less

number of total infections at the time of infection control γ(t̄) are favored. Proposed

algorithms may not simultaneously improve both metrics: One policy may bring the

infection spread under control fast (i.e., low t̄) but may result in a high number of

74

total infections (i.e., high γ(t̄)) while another policy may bring the infection spread

under control slowly but with a lower number of total infections.

3.3 Proposed Algorithms and Analysis

In this section, we propose two algorithms and analyze their performances. The

first algorithm does not utilize the group testing approach and it is based on the

idea of dynamically and individually testing the population. The second algorithm

consists of a group testing approach at each time instant, similar to the original

idea of Dorfman [1] in a dynamic setting. Before stating these two algorithms and

further analyzing their performances individually, we first state general results.

Symmetric and Converging Dynamic Testing Algorithms: In our anal-

ysis, we focus on symmetric and converging dynamic testing algorithms, which satisfy

the symmetry criterion,

P (Ui(t) = k) = P (Uj(t) = k), i, j ∈ [n], k ∈ {0, 1, 2} t ≥ 0 (3.3)

and convergence criterion,

lim
t→∞

P (Ui(t) = 1) = o(1/n), i ∈ [n] (3.4)

Furthermore, we assume that the probability of an individual not being iden-

tified in the tests at time t, denoted by p′(t), only depends on the testing capacity

T , α(t), λ(t) and γ(t). Note that, α(t) + λ(t) + γ(t) = n for all time instants t.

75

Infection Spread Probability: We consider q = o(1/n) for the infection

spread probability q. This is a practical assumption since q is the probability of the

event of infection spread that is realized independently for every element of the set

product of the infected individuals and susceptible individuals, at each time instant.

We analyze the long-term behavior of the system in the average case, i.e., we

focus on the terms E[α(t)], E[λ(t)] and E[γ(t)] when t is large enough.

Lemma 3.1 When a symmetric and converging dynamic testing algorithm is im-

plemented,

lim
t→∞

E[λ(t)] = o(1) (3.5)

and thus, the system approaches to steady state, in the average case.

Proof: Note that all three system functions α(t), λ(t) and γ(t) can be written as

the summation of n indicator functions

E[λ(t)] = E

[
n∑

i=1

1{Ui(t)=1}

]
(3.6)

=
n∑

i=1

E
[
1{Ui(t)=1}

]
(3.7)

=
n∑

i=1

P (Ui(t) = 1) (3.8)

= nP (Ui(t) = 1) (3.9)

which results in limt→∞E[λ(t)] = no(1/n), due to converging algorithm assumption

(3.4), which is equal to o(1). ■

Note that, when the system reaches a state where λ(t) = 0, then there will not

76

be a further change in the infection statuses of the individuals, i.e., the infection will

be under control. The following lemma is useful for the justification of the average

case analysis of our system.

Lemma 3.2 When a symmetric and converging dynamic testing algorithm is imple-

mented, we have limt→∞ P (λ(t) > ϵ) = o(1) for arbitrarily small, constant, ϵ ∈ R.

Proof: Since λ(t) ≥ 0 for all t ≥ 0, we can apply Markov’s inequality,

lim
t→∞

P (λ(t) > ϵ) ≤ lim
t→∞

E[λ(t)]

ϵ
(3.10)

= o(1) (3.11)

where (3.10) follows from the fact that P (λ(t) > ϵ) ≤ E[λ(t)]
ϵ

for all t ≥ 0, and (3.11)

follows from the result of Lemma 3.1. ■

The focus of our analysis is to give a lower bound for the number of susceptible

individuals (who have never got infected throughout the process) when the infection

is brought under control, in the average-case. To analyze the long-term behavior

of E[α(t)], we have to analyze the long-term behavior of P (Ui(t) = 0). A direct

calculation of this probability is not analytically tractable, however, by conditioning

on λ(t− 1), we give a recursive asymptotic calculation. Before stating the recursive

relation, we first prove a lemma that will be useful.

Lemma 3.3 For q = o(1/n) and for all t ≥ 0, we have

cov
(
P (Ui(t) = 0|λ(t)), (1− q)λ(t)

)
≈ 0 (3.12)

77

Proof: For the proof, we use the covariance inequality, i.e., |cov(X, Y)| ≤
√

var(X)var(Y)

which is a direct application of the Cauchy-Schwarz inequality, applied to the ran-

dom variables X − E[X] and Y − E[Y]. Using the covariance inequality, we have

|cov
(
P (Ui(t) = 0|λ(t)), (1− q)λ(t)

)
| ≤

√
var(P (Ui(t) = 0|λ(t)))var((1− q)λ(t))

(3.13)

≤
√
var((1− q)λ(t)) (3.14)

=
√

E[(1− q)2λ(t)]− (E[(1− q)λ(t)])2 (3.15)

≈
√

(1− q)E[2λ(t)] − ((1− q)E[λ(t)])2 (3.16)

= 0 (3.17)

where (3.14) follows from the fact that the random variable P (Ui(t) = 0|λ(t)) is

bounded above by 1 and below by 0, and (3.16) follows from the linear approximation

of the function (1− q)x for small q = o(1/n) and λ(t) that is bounded above by n.

■

Lemma 3.4 When a symmetric and converging dynamic testing algorithm is im-

plemented, we have

P (Ui(t) = 0) ≈ (1− p)(1− q)
n

t−1∑
j=0

P (U1(j)=1)

(3.18)

Proof: Conditioned on λ(t−1), we have the following recursive relation for P (Ui(t) =

78

0)

P (Ui(t) = 0) = E[P (Ui(t) = 0|λ(t− 1))] (3.19)

= E[P (Ui(t− 1) = 0|λ(t− 1))(1− q)λ(t−1)] (3.20)

≈ E[P (Ui(t− 1) = 0|λ(t− 1))]E[(1− q)λ(t−1)] (3.21)

= P (Ui(t− 1) = 0)E[(1− q)λ(t−1)] (3.22)

≈ P (Ui(t− 1) = 0)(1− q)E[λ(t−1)] (3.23)

= P (Ui(t− 1) = 0)(1− q)

n∑
j=1

P (Uj(t−1)=1)

(3.24)

= P (Ui(t− 1) = 0)(1− q)nP (U1(t−1)=1) (3.25)

where (3.21) follows from Lemma 3.3, (3.23) follows from the linear approximation

of the function (1 − q)x ≈ 1 − qx, and (3.25) follows from the symmetry criterion

of the implemented algorithm. Recursively using the result in (3.25) and the initial

value P (Ui(0) = 0) = (1− p) yields the desired result. ■

To complete our analysis and give a lower bound for the expected number of

susceptible individuals when the infection is under control, we further need to focus

on P (Ui(t) = 1). Similar to the case of P (Ui(t) = 0), a direct calculation is not

analytically tractable. However, we have a recursive relation when conditioned on

λ(t− 1), and we obtain the following lemma.

Lemma 3.5 When a symmetric and converging dynamic testing algorithm is imple-

mented, and cov
(
P (Ui(t) = 0|λ(t)), p′λ(t)(t+ 1)

)
and cov

(
P (Ui(t) = 1|λ(t)), p′λ(t)(t+ 1)

)

79

are arbitrarily small 2 for all t ≥ 0, we have

P (Ui(t) = 1) ≈ p(1 + nq(1− p))t
t∏

j=1

p′(j) (3.26)

where the conditional probability of an individual not being identified in the tests at

time t given λ(t− 1) is denoted by p′λ(t−1)(t).

See the Appendix in Section 3.6 for the proof of Lemma 3.5. Combining the

results of Lemmas 3.4 and 3.5, we have the following result.

Theorem 3.1 When a symmetric and converging dynamic testing algorithm is im-

plemented and vanishing covariance constraints in Lemma 3.5 are satisfied for all

t ≥ 0, we have

E[α(t)] ≈ n(1− p)(1− q)
np

t−1∑
i=0

(
(1+nq(1−p))i

i∏
j=1

p′(j)

)
(3.27)

Proof: Expressing α(t) in terms of the corresponding indicator random variables

and using the symmetry criterion and results of Lemmas 3.4 and 3.5 yields

E[α(t)] = E

[
n∑

i=1

1{Ui(t)=0}

]
(3.28)

2In both of the covariances in the lemma statement, we have probabilities that are conditioned
on the number of infected and non-isolated individuals at time t. Note that P (Ui(t) = 0|λ(t))
and P (Ui(t) = 1|λ(t)) are the probabilities that the individual i is susceptible, and infected and
non-isolated, respectively. Since we only consider symmetric and converging dynamic testing
algorithms, these probabilities are symmetric across all individuals for every time instant t. Note
that since the standard deviations of each of these random variables can also be arbitrarily small,
the arbitrarily small covariance constraints in the lemma statement do not directly imply a weak
correlation between these random variables.

80

=
n∑

i=1

E[1{Ui(t)=0}] (3.29)

=
n∑

i=1

P (Ui(t) = 0) (3.30)

= nP (Ui(t) = 0) (3.31)

≈ n(1− p)(1− q)
np

t−1∑
i=0

(
(1+nq(1−p))i

i∏
j=1

p′(j)

)
(3.32)

which is the desired result. ■

Our main result Theorem 3.1 is a general result and holds for the symmetric

and converging dynamic testing algorithms as long as they satisfy the vanishing

covariance conditions that we state in Lemma 3.5. In the remainder of this sec-

tion, we propose and describe two dynamic testing algorithms and analyze their

performance.

3.3.1 Dynamic Individual Testing Algorithm

In the dynamic individual testing algorithm, we do not utilize the group testing

approach, and uniformly randomly select T individuals to individually test at each

time instant t ≥ 1, from the non-isolated individuals.

To analyze the performance of our dynamic individual testing algorithm, we

use the general result of Theorem 3.1. First, we show that the dynamic individual

testing algorithm satisfies the symmetry and convergence criteria in (3.3) and (3.4).

Since the process of selection of individuals to be tested is repeated at each

time instant with uniformly random selections, as well as the infection spread pro-

81

cess, the dynamic individual testing algorithm is symmetric. We show that the

dynamic individual testing algorithm also satisfies the convergence criterion (3.4) in

the following lemma. For the range of the testing capacity T , we focus on the case of

T < n, since when T ≥ n, at one time instant, everyone can be tested individually

and the infection will be under control trivially.

Lemma 3.6 For constant T and n, the dynamic individual testing algorithm satis-

fies the convergence criterion

lim
t→∞

P (Ui(t) = 1) = 0, i ∈ [n] (3.33)

Proof: First, the probability that an infected individual is detected at a time instant

t, denoted by 1− p′(t) is

1− p′(t) = E[1− p′γ(t−1)(t)] (3.34)

= E

[
T

n− γ(t− 1)

]
(3.35)

≥ T

n
(3.36)

where p′γ(t−1)(t) denotes the probability of the conditional event that an infected

individual is not detected at the time instant t given γ(t − 1). Now, since the

conditional events of detection given that the individual is infected are independent

across time due to the uniform random selection of tested individuals at each time

82

instant, and the fact that
∞∑
i=1

(1− p′(i)) ≥
∞∑
i=1

T

n
(3.37)

since the right hand side of (3.37) grows to infinity, from the second Borel-Cantelli

lemma, the conditional detection event occurs infinitely often, i.e., let Dt denote the

event that the individual i is identified at time t, then

P (lim sup
t→∞

Dt) = 1 (3.38)

which yields the desired result of limt→∞ P (Ui(t) = 1) = 0. ■

Next, we consider a weak version of our algorithm, where at each time instant,

during the testing phase, instead of selecting T individuals to test from n − γ(t)

non-isolated individuals, we select T individuals from n individuals, including the

isolated ones, whose test results will be negative. For the weak version of the

dynamic individual testing algorithm, we have

1− p′(t) =
T

n
, t > 0 (3.39)

which is the identification probability of an individual at time t. Moreover, since it

is an upper bound for the identification probability of an individual for the original

dynamic individual testing algorithm, we have

lim
t→∞

E[αorig(t)] ≥ lim
t→∞

E[αweak(t)] (3.40)

83

Since the weak dynamic individual testing algorithm is a symmetric and converging

algorithm (note that the result of Lemma 3.6 still holds) and due to the fact that

p′(t) is constant in the weak dynamic individual testing algorithm, we can directly

use the result of Lemma 3.5, due to the fact that the vanishing covariance criteria

are already satisfied. Now, using Theorem 3.1, we have the following result for the

weak dynamic individual testing algorithm.

Theorem 3.2 When weak dynamic individual testing algorithm is used and (1 −

T
n
)(1 + nq(1− p)) < 1, we have

lim
t→∞

E[αweak(t)] ≈ n(1− p)(1− q)
np

1−(1−T
n)(1+nq(1−p)) (3.41)

which is a lower bound for limt→∞E[αorig(t)], i.e., the limit of the expected number

of susceptible individuals for the dynamic individual testing algorithm.

Proof: The weak dynamic individual testing algorithm satisfies the constraints for

using Theorem 3.1. Thus, we can use Theorem 3.1 directly to derive the long-

term behavior of the expected number of susceptible individuals by considering the

limit of (3.27) for constant p′(t) = 1 − T/n. On the other hand, in the case of

(1− T
n
)(1 + nq(1− p)) ≥ 1, we have limt→∞E[αweak(t)] ≈ 0. ■

3.3.2 Dynamic Dorfman-Type Group Testing Algorithm

In the dynamic Dorfman-type group testing algorithm, we utilize the group testing

idea while designing the test matrices at each time instant t ≥ 1.

84

At each time instant, the dynamic Dorfman-type group testing algorithm uni-

formly randomly partitions the set of all non-isolated individuals to equal-sized T/2

disjoint sets (with possibly one unequal-sized set if the total number of non-isolated

individuals is not divisible by T/2). Then, test samples of the individuals are mixed

with others in the same group: T/2 group tests are performed, and positive and

negative groups are determined. Then, among the positive groups, one group (or

multiple groups if the sizes of the groups are less than T/2, depending on the system

parameters) is uniformly randomly selected to be individually tested. T/2 individu-

als from the selected group are uniformly randomly selected and individually tested;

here, depending on the parameters, some individuals from the selected group may

not be tested, as well as individuals from multiple positive groups may be selected.

Detected infections are isolated, and at the next time instant, the whole process is

repeated with uniform random selections.

Since the partition selection and individuals within group selection are uni-

formly random at each time instant, the dynamic Dorfman-type group testing al-

gorithm is symmetric. Similar to Section 3.3.1, we proceed by showing that the

dynamic Dorfman-type group testing algorithm satisfies the convergence criterion

in (3.4) as well.

Lemma 3.7 For constant T and n, the dynamic Dorfman-type group testing algo-

rithm satisfies the convergence criterion

lim
t→∞

P (Ui(t) = 1) = 0, i ∈ [n] (3.42)

85

Proof: The probability that an individual is identified at a time instant t, which is

1− p′(t), satisfies the following

1− p′(t) ≥ T

2n
(3.43)

since T/2 individuals are individually tested at each time instant and due to the

symmetry of the infection status in the system and the fact that the individuals are

selected from a positive group (or from multiple positive groups), the probability

of detection for the dynamic Dorfman-type group testing algorithm, at each time

instant, must be higher than uniformly randomized testing of T/2 individuals. Now,

since the events of identification of individuals are independent across time due to

the uniform random selection of tested individuals at each time instant, and the fact

that
∞∑
i=1

(1− p′(t)) ≥
∞∑
i=1

T

2n
(3.44)

grows to infinity, we conclude that limt→∞ P (Ui(t) = 1) = 0, from the second Borel-

Cantelli lemma as in Lemma 3.6. ■

Similar to the dynamic individual testing case, we focus on a weak version of

the dynamic Dorfman-type group testing algorithm to provide a lower bound for

the expected number of susceptible individuals in the system at the steady state.

In the weak version of the dynamic Dorfman-type group testing algorithm, the

results from the T/2 group tests are discarded, and it is basically equivalent to the

uniformly random individual testing of T/2 individuals. Furthermore, the isolated

individuals are also included in the testing procedure: n individuals are divided into

86

groups and then tested at each time instant, rather than only non-isolated individ-

uals, as in the original dynamic Dorfman type group testing algorithm. The proba-

bility of identification at time t for the weak dynamic Dorfman-type group testing

algorithm, given by 1 − p′(t), is always less than the original dynamic Dorfman-

type group testing algorithm, due to the discarded T/2 group tests and included

isolated individuals to the tests. Note that the weak dynamic Dorfman-type group

testing algorithm is also symmetric and satisfies the convergent criterion (3.4) since

Lemma 3.7 still holds; the lower bound in (3.44) is the detection probability of

the weak algorithm. Moreover, since the weak algorithm has a constant value for

p′λ(t−1)(t), it satisfies the vanishing covariance constraints given in the statement of

Lemma 3.5. Using the general result of Theorem 3.1, we have the following result

for the dynamic Dorfman-type group testing algorithm by following similar steps to

those in Theorem 3.2.

Theorem 3.3 When the weak dynamic Dorfman-type group testing algorithm is

used and (1− T
2n
)(1 + nq(1− p)) < 1, we have

lim
t→∞

E[αweak(t)] ≈ n(1− p)(1− q)
np

1−(1− T
2n)(1+nq(1−p)) (3.45)

which is a lower bound for limt→∞ E[αorig(t)], i.e., the expected number of susceptible

individuals for the dynamic Dorfman-type group testing algorithm.

Note that this result of the weak dynamic Dorfman-type group testing algo-

rithm is a loose lower bound for the performance of the algorithm, which is only

87

significant because it shows that the weak dynamic Dorfman-type group testing

algorithm performs in a similar manner with the weak dynamic individual testing

algorithm, order-wise (T replaced with T/2), which is a performance lower bound

for the dynamic Dorfman-type group testing algorithm.

3.3.3 Comparison of Dynamic Individual and Dorfman-Type Algo-

rithms

To compare the average number of detected infections at a given time instant for the

dynamic individual testing and dynamic Dorfman-type group testing algorithms, we

obtain the following results stated in the following lemmas.

Lemma 3.8 When there are α̃(t) susceptible and λ̃(t) non-isolated infected individ-

uals in a system after the infection spread phase, and just before the testing phase

at time instant t, and the dynamic individual testing algorithm is being used, on

average, T λ̃(t)

α̃(t)+λ̃(t)
infections are detected and isolated at time t.

Proof: When T individuals from α̃(t) + λ̃(t) individuals are uniformly randomly

selected, we have

E

[
T∑
i=1

1Ũi(t)=1

]
= TP (Ũi(t) = 1) (3.46)

=
T λ̃(t)

α̃(t) + λ̃(t)
(3.47)

where Ũi(t) represents the infection status of the ith selected individual for testing

at the time of the testing phase. ■

88

On the other hand, when the dynamic Dorfman-type group testing algorithm

is used, T/2 individuals to be individually tested are chosen from a set of individuals

of size 2(α̃(t)+λ̃(t))
T

that is guaranteed to have at least one infected individual, in the

case of α̃(t) + λ̃(t) ≥ T 2/4. When α̃(t) + λ̃(t) < T 2/4, T/2 individuals to be tested

individually are chosen from multiple groups, each having at least one infected

individual. The following lemma gives an average number of detected and isolated

infections at each time instant for the case of α̃(t) + λ̃(t) ≥ T 2/4, which, in general,

holds for practical applications with low testing capacity. Moreover, the following

result is also a lower bound for the case of α̃(t)+ λ̃(t) < T 2/4, where T/2 individuals

to be individually tested are selected from multiple positive groups.

Lemma 3.9 When there are α̃(t) susceptible and λ̃(t) non-isolated infected individ-

uals in a system after the infection spread phase and just before the testing phase

at time instant t, with α̃(t) + λ̃(t) ≥ T 2/4, and the dynamic Dorfman-type group

testing algorithm is being used, if α̃(t) ≥ 2(α̃(t) + λ̃(t))/T , on average,

T λ̃(t)

2(α̃(t) + λ̃(t))

1−

(α̃(t)

2(α̃(t)+λ̃(t))/T

)
(α̃(t)+λ̃(t)

2(α̃(t)+λ̃(t))/T

)
−1

(3.48)

infections are detected and isolated at time t. If α̃(t) < 2(α̃(t) + λ̃(t))/T , then,

on average, T λ̃(t)

2(α̃(t)+λ̃(t))
infections are detected and isolated at time t. In the case of

α̃(t) + λ̃(t) < T 2/4, (3.48) is a lower bound for the average number of detected and

isolated individuals at time t.

Proof: When T/2 individuals are uniformly randomly selected from a set of indi-

89

viduals that are guaranteed to have at least one infection, with size 2(α̃(t)+ λ̃(t))/T ,

we have

E

T/2∑
i=1

1Ũi(t)=1

∣∣∣∣∣∣
C∑
i=1

1Ũi(t)=1 ≥ 1

 =

E

[
T/2∑
i=1

1Ũi(t)=1

]

P

(
C∑
i=1

1Ũi(t)=1 ≥ 1

) (3.49)

=
T λ̃(t)

2(α̃(t) + λ̃(t))

1−

(α̃(t)

2(α̃(t)+λ̃(t))/T

)
(α̃(t)+λ̃(t)

2(α̃(t)+λ̃(t))/T

)
−1

(3.50)

where Ũi(t) represents the infection status of the ith selected individual for testing

at the time of the testing phase and C = 2(α̃(t) + λ̃(t))/T .

In the case of α̃(t)+ λ̃(t) < T 2/4, T/2 individuals to be tested individually are

chosen from multiple groups where each of them is guaranteed to have at least one

infected individual. Therefore, the term in the denominator of the right-hand side

of (3.49), i.e., P

(
C∑
i=1

1Ũi(t)=1 ≥ 1

)
, is replaced by the probability of the event that

multiple subsets of size C having at least one non-isolated infected member, which is

a subset of the event that only one subset of individuals of size C having at least one

non-isolated infected member and thus, having lower probability. Therefore, (3.49)

is also a lower bound for the average number of detected and isolated infections at

time instant t, for the case of α̃(t) + λ̃(t) < T 2/4. ■

For a given state of the system at the time of the testing phase, i.e., α̃(t) and

λ̃(t), as we show in Lemmas 3.8 and 3.9, using the dynamic Dorfman-type group

testing algorithm becomes advantageous with respect to the dynamic individual

90

testing algorithm when α̃(t) ≥ 2(α̃(t) + λ̃(t))/T and

1/2 <

(α̃(t)

2(α̃(t)+λ̃(t))/T

)
(α̃(t)+λ̃(t)

2(α̃(t)+λ̃(t))/T

) (3.51)

=

C∏
i=0

(α̃(t)− i)

C∏
i=0

(α̃(t) + λ̃(t)− i)

(3.52)

where C = 2(α̃(t) + λ̃(t))/T .

In the next section, we present the numerical results of our two proposed

dynamic algorithms, as well as their weak versions, under various sets of system

parameters.

3.4 Numerical Results

In our numerical results, we implement the algorithms that we proposed: the dy-

namic Dorfman-type group testing algorithm, the dynamic individual testing algo-

rithm, and the weak versions of these algorithms. In all of our simulations, we start

with n individuals, with all of them susceptible. Then, at time t = 0, we realize

the initial infections in the system uniformly randomly with probability p. At each

time instant that follows, for the infection spread phase, we simulate the random

infection spread from the non-isolated infections to the susceptible individuals. For

the testing phase, we simulate the random selection of individuals to be tested and

perform the tests. Depending on the test results, we simulate the isolation of the

detected infections. We repeat these phases at each time instant until time t = 500

91

and obtain the sample paths of the random processes α(t), λ(t), and γ(t). We iterate

this whole process 1000 times to obtain 1000 sample paths of the random processes,

and then we calculate the average of the sample paths to obtain the expected values

of α(t), λ(t) and γ(t), numerically. In Figures 3.1–3.3, we plot these expected values

of α(t), λ(t) and γ(t) for the algorithms that we propose. In our simulations, we also

consider the value of the theoretical approximation result that we obtained in The-

orem 3.1. For each sample path, at each time instant, we numerically calculate the

values of p′(t) for both dynamic individual testing and dynamic Dorfman-type group

testing algorithms and then use the expression that we obtained in Theorem 3.1 to

calculate the α(t) approximation curve. We calculate and plot the average of the

α(t) approximation curve. For the weak versions of the proposed algorithms, we use

the results of Theorems 3.2 and 3.3 to directly calculate and plot the steady state

approximations of α(t). Pseudo-code of the simulations that we perform is given

below in Algorithm 1.

92

Algorithm 1 Simulations to Obtain Numerical Results

i← 1 ▷ Simulations are repeated to obtain average sample paths.

while i ≤ imax do

t← 0

U ← 0nx1

for individual j in [n] do

if random roll in [0, 1] ≤ p then

Uj ← 1

t← 1 ▷ Initial infections are realized

while t ≤ tmax do

for individual j in infections do

for individual k in susceptibles do

if random roll in [0, 1] ≤ q then

Uk ← 1
▷ End of the infection spread phase

for test τ in [T] do

yτ ←
∨

j∈[n] Xτj1{Uj=1}
▷ Testing is done

for individual j in [n] do

if j has infection and detected then

Uj ← 2
▷ Recovery is done

t← t+ 1 ▷ α(t), λ(t), γ(t) are saved
▷ Averages of α(t), λ(t), γ(t) are calculated over iterations i

93

0 50 100 150 200 250 300 350 400 450 500

time (t)

0

100

200

300

400

500

600

700

800

900

1000

n
u

m
b

e
r

o
f

p
e

o
p

le

(t): susceptibles

(t): infections

(t): isolations

Theorem 1

(a)

0 50 100 150 200 250 300 350 400 450 500

time (t)

0

100

200

300

400

500

600

700

800

900

1000

n
u

m
b

e
r

o
f

p
e

o
p

le

(t): susceptibles

(t): infections

(t): isolations

Theorem 1

(b)

0 50 100 150 200 250 300 350 400 450 500

time (t)

0

100

200

300

400

500

600

700

800

900

1000

n
u

m
b

e
r

o
f

p
e

o
p

le

(t): susceptibles

(t): infections

(t): isolations

Theorem 3

(c)

0 50 100 150 200 250 300 350 400 450 500

time (t)

0

100

200

300

400

500

600

700

800

900

1000

n
u

m
b

e
r

o
f

p
e

o
p

le

(t): susceptibles

(t): infections

(t): isolations

Theorem 2

(d)

Figure 3.1: Average values of the random processes α(t), λ(t) and γ(t), with obtained
theoretical approximations given in Theorems 3.1–3.3 when n = 1000, T = 80,
q = 0.00003, p = 0.2, for (a) dynamic Dorfman-type group testing algorithm, (b)
dynamic individual testing algorithm, (c) weak dynamic Dorfman-type group testing
algorithm, (d) weak dynamic individual testing algorithm.

94

0 50 100 150 200 250 300 350 400 450 500

time (t)

0

100

200

300

400

500

600

700

800

900

1000

n
u

m
b

e
r

o
f

p
e

o
p

le

(t): susceptibles

(t): infections

(t): isolations

Theorem 1

(a)

0 50 100 150 200 250 300 350 400 450 500

time (t)

0

100

200

300

400

500

600

700

800

900

1000

n
u

m
b

e
r

o
f

p
e

o
p

le

(t): susceptibles

(t): infections

(t): isolations

Theorem 1

(b)

0 50 100 150 200 250 300 350 400 450 500

time (t)

0

100

200

300

400

500

600

700

800

900

1000

n
u

m
b

e
r

o
f

p
e

o
p

le

(t): susceptibles

(t): infections

(t): isolations

(c)

0 50 100 150 200 250 300 350 400 450 500

time (t)

0

100

200

300

400

500

600

700

800

900

1000

n
u

m
b

e
r

o
f

p
e

o
p

le

(t): susceptibles

(t): infections

(t): isolations

(d)

Figure 3.2: Average values of the random processes α(t), λ(t) and γ(t), with ob-
tained theoretical approximations given in Theorem 3.1 when n = 1000, T = 80,
q = 0.0001, p = 0.01, for (a) dynamic Dorfman-type group testing algorithm, (b)
dynamic individual testing algorithm, (c) weak dynamic Dorfman-type group test-
ing algorithm, (d) weak dynamic individual testing algorithm.

95

0 50 100 150 200 250 300 350 400 450 500

time (t)

0

100

200

300

400

500

600

700

800

900

1000

n
u

m
b

e
r

o
f

p
e

o
p

le

(t): susceptibles

(t): infections

(t): isolations

Theorem 1

(a)

0 50 100 150 200 250 300 350 400 450 500

time (t)

0

100

200

300

400

500

600

700

800

900

1000

n
u

m
b

e
r

o
f

p
e

o
p

le

(t): susceptibles

(t): infections

(t): isolations

Theorem 1

(b)

Figure 3.3: Average values of the random processes α(t), λ(t) and γ(t), with obtained
theoretical approximations given in Theorem 3.1 when n = 1000, T = 40, q =
0.0002, p = 0.2, for (a) dynamic Dorfman-type group testing algorithm, (b) dynamic
individual testing algorithm.

In Figure 3.1, we present numerical results for the system with the parameters

n = 1000, T = 80, q = 0.00003, and p = 0.2. Due to the relatively high number

of initial infections in the system, we observe that the dynamic individual testing

algorithm performs better than the dynamic Dorfman-type group testing algorithm

in terms of the average steady-state α(t). In the weak versions of the algorithms,

we observe that their performance is strictly worse than their respective original

algorithms, at each time instant, in terms of the average α(t), as expected. The

difference between the average α(t) curves of the original and weak versions of

the dynamic Dorfman-type group testing algorithm is higher than the difference

between the average α(t) curves of the original and weak versions of the dynamic

individual testing algorithm. This is due to the fact that in the weak dynamic

individual testing algorithm, we still utilize T tests at each time instant but can

sample the isolated individuals to test, while in the weak dynamic Dorfman-type

96

group testing algorithm, we ignore the group tests and only consider T/2 individual

tests. However, since the advantage of the group test is not effective for this set of

parameters, as we present in Figure 3.1, even the weak dynamic Dorfman-type group

testing algorithm provides a reasonable lower bound for its original version. Finally,

we observe that our approximation results in Theorem 3.1 match with the average

α(t) curves in both dynamic Dorfman-type group testing and dynamic individual

testing algorithms. Similarly, the average α(t) curves that we obtain from the weak

versions of the proposed algorithms are also closely approximated by the results that

we obtain in Theorems 3.2 and 3.3.

In Figure 3.2, we run the same simulations as in Figure 3.1, for the parameters

n = 1000, T = 80, q = 0.0001 and p = 0.01. Now, relative to the first set of param-

eters, the number of initial infections is lower but the infection spread probability is

higher. Because of the targeted individual testing to the positive groups in the dy-

namic Dorfman-type group testing algorithm, it outperforms the dynamic individual

testing algorithm for this set of parameters, as we present in Figure 3.2. Since the

advantage of the group testing is more prevalent for this set of parameters, the weak

version of the dynamic Dorfman-type group testing algorithm results in an average

α(t) curve that is a loose lower bound for the average α(t) curve of the original ver-

sion, while the weak dynamic individual testing algorithm results in a proper lower

bound for the original version. Furthermore, for this set of parameters, despite the

fact that the Theorem 3.1 approximation matches the average α(t) curves for both

of the original versions of the proposed algorithms, the resulting Theorem 3.2 and

Theorem 3.3 approximations cannot be used due to the non-convergent exponents

97

in the expressions.

In our third and final set of parameters, we consider a lower number of test

capacity, T , than the first two sets of parameters, a high number of initial infections,

p, and a high infection spread probability, q. As expected, for this set of parameters,

for both of the algorithms, the system reaches a steady state when almost everyone

in the population gets infected. Due to the high number of infections at each time

instant in the system, the dynamic individual testing algorithm performs slightly

better than the dynamic Dorfman-type group testing algorithm, even though it still

fails to control the infection spread in an effective manner.

3.5 Conclusions

In this chapter, we considered a dynamic infection spread model over discrete time,

inspired by the SIR model, widely used in the modeling of contagious infections in

populations. Instead of recovered individuals in the system, we considered isolated

infections, where infected individuals can be identified and isolated via testing. In

our system model, the infection statuses of the individuals are random processes

rather than random variables, such as the infection status of the individuals in the

classical group testing problems. In parallel with the dynamic configuration of our

system, we considered dynamic group testing algorithms: At each time instant,

after the infection is spread by infected individuals to the susceptible individu-

als randomly, a given limited number of (possibly group) tests are performed to

identify and isolate infected individuals. This dynamic infection spread and identi-

98

fication system is more challenging than the classical group testing problem setup

since negative identifications are not finalized and can change over time, while only

the positive identifications are isolated for the rest of the process. We analyzed the

performance of dynamic testing algorithms by providing approximation results for

the expected number of susceptible individuals (that have never gotten infected)

when the infection is brought under control, where all infections are identified and

isolated for symmetric and converging algorithms. Then, we proposed two dynamic

algorithms: dynamic individual testing algorithm and dynamic Dorfman-type group

testing algorithm. We considered the weak versions of these algorithms and used

our general result to provide lower bounds on the expected number of suscepti-

ble individuals for these two algorithms. We compared the average identification

performance of these two algorithms by deriving conditions when one algorithm out-

performs the other. In our simulations, we implemented both the original and weak

versions of the proposed algorithms and also simulated and compared the theoreti-

cal approximation results that we derived for three different sets of parameters, and

we demonstrated various possible scenarios. Our work is unique in that the disease

spread in our dynamic system is due to limited testing capacity as opposed to the

delay in obtaining (unlimited) test results in the existing literature.

3.6 Appendix

Lemma 3.5 When a symmetric and converging dynamic testing algorithm is imple-

mented, and cov
(
P (Ui(t) = 0|λ(t)), p′λ(t)(t+ 1)

)
and cov

(
P (Ui(t) = 1|λ(t)), p′λ(t)(t+ 1)

)

99

are arbitrarily small for all t ≥ 0, we have

P (Ui(t) = 1) ≈ p((1 + nq(1− p)))t
t∏

j=1

p′(j) (3.53)

where the conditional probability of an individual not being identified in the tests at

time t given λ(t− 1) is denoted by p′λ(t−1).

Proof: Conditioned on λ(t− 1), we have the following recursive relation

P (Ui(t) = 1)

=E[P (Ui(t) = 1|λ(t− 1))] (3.54)

=E[P (Ui(t− 1) = 0|λ(t− 1))(1− (1− q)λ(t−1))p′λ(t−1)(t)

+ P (Ui(t− 1) = 1|λ(t− 1))p′λ(t−1)(t)] (3.55)

≈E[1− (1− q)λ(t−1)]E[P (Ui(t− 1) = 0|λ(t− 1))p′λ(t−1)(t)]

+ E[P (Ui(t− 1) = 1|λ(t− 1))p′λ(t−1)(t)] (3.56)

≈E[p′λ(t−1)(t)]E[1− (1− q)λ(t−1)]E[P (Ui(t− 1) = 0|λ(t− 1))]

+ E[p′λ(t−1)(t)]E[P (Ui(t− 1) = 1|λ(t− 1))] (3.57)

=p′(t)(P (Ui(t− 1) = 0)(1− E[(1− q)λ(t−1)]) + P (Ui(t− 1) = 1)) (3.58)

≈p′(t)((1− p)(1− q)
n

t−2∑
j=0

P (Ui(j)=1)

(1− (1− q)E[λ(t−1)]) + P (Ui(t− 1) = 1))

(3.59)

=p′(t)((1− p)(1− q)
n

t−2∑
j=0

P (Ui(j)=1)

(1− (1− q)nP (Ui(t−1)=1)) + P (Ui(t− 1) = 1))

(3.60)

100

=p′(t)((1− p)((1− q)
n

t−2∑
j=0

P (Ui(j)=1)

− (1− q)
n

t−1∑
j=0

P (Ui(j)=1)

) + P (Ui(t− 1) = 1))

(3.61)

≈p′(t)((1− p)(qn
t−1∑
j=0

P (Ui(j) = 1)− qn

t−2∑
j=0

P (Ui(j) = 1)) + P (Ui(t− 1) = 1))

(3.62)

=p′(t) (nq(1− p)P (Ui(t− 1) = 1) + P (Ui(t− 1) = 1)) (3.63)

=p′(t) (1 + nq(1− p))P (Ui(t− 1) = 1) (3.64)

where (3.56) follows from the arbitrarily small variance of (1− q)λ(t) similar to the

proof of Lemma 3.3, (3.57) follows from the given vanishing covariance assumptions

in the statement of the lemma, (3.59) follows from Lemma 3.4, and (3.62) follows

from the linear approximation (1− q)x ≈ 1− qx. Recursively applying (3.64) yields

the desired result. ■

101

CHAPTER 4

Dynamic SAFFRON: Disease Control Over Time Via Group

Testing

4.1 Introduction

In this chapter, we consider the discrete time, SIR-based dynamic infection spread

model introduced in Chapter 3. In our model, at each time instant, the testing

capacity is limited and fixed, and full identification of the infections in the system

is not possible. Each discrete time instant consists of two phases: the infection

spread phase and the testing phase. Identified infections are isolated, and further

infection spread by them is prevented. Since the testing capacity is limited at each

time instant, not all of the infections are detected, and infected individuals that

are not detected and isolated keep spreading the infection. The dynamic infection

spread model is based on the SIR model, where the population is divided into three

disjoint groups: susceptible individuals (S), non-isolated infections (I), and isolated

infections (R). At the initial time instant, we assume i.i.d. initial infections in the

system. At each time instant that follows, non-isolated infections spread the disease

to the susceptible individuals in the system. Consecutively, during the testing phase,

102

a limited number of tests are performed and detected infections are isolated. We

assume that, for the rest of the testing process, isolated infections remain in the

same state. This is a reasonable assumption since they eventually recover, and even

when their isolation ends, they can be immune to the infection for a disease-specific

time period. We assume that the testing process will be finalized before the end

of that time period. The objective is not to identify all of the infections while

minimizing the number of tests but to identify as many infections as possible at

each time instant by using the limited number of T tests and to eventually control

the spread of the disease.

We propose two novel performance metrics: disease control time, t̄, and ϵ-

disease control time t̄ϵ. We characterize the performance of dynamic individual

testing algorithms in terms of these novel performance metrics. Moreover, we intro-

duce a novel dynamic algorithm: dynamic SAFFRON based group testing algorithm,

which is inspired by the static SAFFRON scheme that is studied in [106] and intro-

duced in [48]. We present the average case theoretical analysis of both the dynamic

individual testing algorithm and dynamic SAFFRON-based group testing algorithm,

in (4.6) and (4.12), respectively. Finally, we implement the discrete-time SIR-based

dynamic infection spread model and the dynamic algorithms to simulate them and

compare the numerical results with the theoretical results we obtain.

103

4.2 System Model

There are n individuals in the system, and their infection status, which we denote

by Ui(t) for individual i at time t, changes over discrete time instants. At any

given time, there are three disjoint groups in the population: susceptible individuals

who can get infected (S), non-isolated infections who have not been detected (I),

and isolated infections who have been detected by performed tests and isolated

indefinitely (R). Ui(t) can take values 0 (susceptible), 1 (non-isolated infection),

and 2 (isolated infection), representing the infection state of the individual i at time

t. At t = 0, we introduce the initial i.i.d. infections to the system: each individual

is infected with probability p independently. We introduce three random processes:

α(t) denotes the number of susceptible individuals, λ(t) denotes the number of non-

isolated infections, and γ(t) denotes the isolated infections, at time t.

Each discrete time instant, t ≥ 1 consists of two consecutive phases: the

infection spread phase and the testing phase. During the infection spread phase,

each non-isolated and infected individual can infect each susceptible individual with

probability q independently. Here, since each susceptible individual can be infected

by each non-isolated and infected individual, this can be modeled as the realization

of α(t)λ(t) independent Bernoulli random variables with parameter q, for each time

t ≥ 1. Following the infection spread phase, the testing phase starts in which the

testing capacity is limited to a given, fixed number, T . Thus, the aim of designing

the group testing algorithm is to construct T × n binary test matrices that specify

the testing pools. Let X(t) denote the binary test matrix for the tests at time t,

104

and Xij(t) denote the ith row and jth column of X(t), where Xij(t) is 1 if the test

sample of jth individual is mixed in the ith mixed test sample, and 0 otherwise. Let

y(t) denote the test result vector of the tests performed at time t and yi(t) denote

the ith test result at time t. Then, we have

yi(t) =
∨
j∈[n]

Xij(t)1{Uj(t)=1}, i ∈ [T] (4.1)

We assume that results of the tests that are performed at time t are avail-

able before the infection spread phase at time t+ 1, i.e., y(t) vector is known while

designing the binary test matrix X(t + 1). Moreover, when infected individuals

are detected during the testing phase at time t, they are immediately isolated and,

thus, prevented from spreading the infection for the rest of the testing process, i.e.,

Ui(t) = 2 for all times t ≥ t′, if the individual i is detected to be infected by the

tests performed at time t′. Note that the only possible infection state changes in

our system are either from susceptible individuals to non-isolated infections, which

happens via infection spread from non-isolated and infected individuals to suscepti-

ble individuals during the infection spread phase at each time, or from non-isolated

infections to isolated infections which happens via infection detection during the

testing phase at each time instant. A group testing policy π is a scheme that speci-

fies the algorithm to construct binary test matrices X(t) for each time instant t ≥ 1

until the infection is under control.

Since the source of the infection state evolution in our dynamic model is the

non-isolated infections, we define the disease control time t̄ to be the first time when

105

no non-isolated infections remain in the population, i.e., t̄ = min{t | λ(t) = 0}.

After time t̄, every individual in the population is either susceptible or isolated, i.e.,

Ui(t) = 0 or Ui(t) = 2 for i ∈ [n] and for all t ≥ t̄. Furthermore, we introduce ϵ-

disease control time for probabilistic analysis, denoted by t̄ϵ where E[λ(t̄ϵ)] = ϵ holds.

While characterizing and analyzing the performance of a group testing algorithm π,

there are two performance metrics associated with it: the disease control time t̄ (or

t̄ϵ) and the number of individuals that have never gotten infected throughout the

process, i.e., α(t̄). Lower t̄ is favored to control the disease faster, and higher α(t̄)

is favored to control the disease with a lower number of total infections.

4.3 Proposed Algorithms and Analysis

In this section, we introduce a novel dynamic group testing algorithm: dynamic

SAFFRON-based group testing algorithm. This algorithm is inspired by the static

group testing algorithm introduced in [48], coined as the SAFFRON scheme, which

is further studied in [106] for the partial detection problem. We analyze the dynamic

SAFFRON-based group testing algorithm in terms of two performance metrics: dis-

ease control time and the number of susceptible individuals when the disease is

brought under control. Furthermore, we analyze the dynamic individual testing

algorithm we introduced in Chapter 3 in terms of its ϵ-disease control time perfor-

mance.

106

4.3.1 Related Prior Results

For completeness, here we present a revised version of the results from Chapter 3,

which we use for the analysis in this chapter. To keep it compact, we only include

the main results that we use in the analysis in this chapter.

We consider symmetric and converging dynamic testing algorithms which must

satisfy the symmetry criterion:

P (Ui(t) = k) = P (Uj(t) = k), k ∈ {0, 1, 2} (4.2)

for each time instant t ≥ 0 and for all i, j ∈ [n] pair. Moreover, they must satisfy

the convergence criterion:

lim
t→∞

P (Ui(t) = 1) = o(1/n), i ∈ [n] (4.3)

Let p′(t) denote the probability of an individual not being identified during the

testing phase at time t. Note that since we consider symmetric and converging

dynamic testing algorithms, this probability is the same for all individuals. We

consider dynamic testing algorithms where p′(t) only depends on the testing capacity

T , α(t), λ(t) and γ(t). We assume the infection spread probability q scales as o(1/n).

Since the infection spread is realized for every susceptible and non-isolated infected

individual pair and there can be O(n2) such pairs at each time instant, assuming q

to be o(1/n) is a mild assumption.

107

In the remainder of this subsection, we present our prior result from Chapter 3

that we use in our analysis in this chapter regarding symmetric and converging

dynamic testing algorithms.

We start with the following lemma, where we prove that symmetric and con-

verging dynamic testing algorithms guarantee the disease to be controlled eventually.

Lemma 4.1 When a symmetric and converging dynamic testing algorithm is im-

plemented, limt→∞E[λ(t)] = o(1) and thus, the system approaches the steady state,

in the average-case.

The statements of Lemma 4.2 and Theorem 4.1 give improved characteriza-

tions of the approximation terms compared to the original statements in Chapter 3.

The approximations are characterized by o(1) terms in this chapter, which follow

from the linear approximations in Taylor series expansions for exponential terms and

hold since q = o(1/n). Moreover, arbitrarily small variance conditions in Chapter 3

are also characterized to scale as o(1) here. In the following lemma, we characterize

an approximation of the probability of an individual being infected and non-isolated

at time t, i.e., the probability of the event of Ui(t) = 1.

Lemma 4.2 When a symmetric and converging dynamic testing algorithm is im-

plemented, we have

P (Ui(t) = 1) = p((1 + nq(1− p)))t
t∏

j=1

p′(j) + o(1) (4.4)

where the conditional probability of an individual not being identified in the tests at

108

time t given λ(t−1) is denoted by p′λ(t−1) and when cov
(
P (Ui(t) = 0|λ(t)), p′λ(t)(t+ 1)

)
and cov

(
P (Ui(t) = 1|λ(t)), p′λ(t)(t+ 1)

)
both scale as o(1) with respect to n for all

t ≥ 0.

The following theorem presents a general result that characterizes the approxi-

mation of the expectation of α(t). This result holds for all symmetric and converging

dynamic testing algorithms that satisfy the small covariance conditions that we state

in Lemma 4.2.

Theorem 4.1 When a symmetric and converging dynamic testing algorithm is im-

plemented and vanishing covariance constraints in Lemma 4.2 are satisfied for all

t ≥ 0, we have

E[α(t)] = n(1− p)(1− q)
np

t−1∑
i=0

(
(1+nq(1−p))i

i∏
j=1

p′(j)

)
+ o(1) (4.5)

We use Theorem 4.1 to characterize the expected number of susceptible in-

dividuals when the disease is brought under control, which is one of the two per-

formance metrics we consider. On the other hand, for the characterization of the

disease control time t̄, our analysis is based on Lemma 4.2.

4.3.2 Dynamic Individual Testing Algorithm

In the dynamic individual testing algorithm, we consider randomized, individual

testing of T individuals at each time instant t ≥ 1, where T individuals to be tested

are uniformly randomly selected from the whole population, independent across both

109

individuals and time. In Chapter 3, we proved that the dynamic individual testing

algorithm (weak dynamic individual testing algorithm in Chapter 3) is a symmetric

and converging dynamic testing algorithm. Furthermore, we derived E[α(t)] results

for the disease control time. Here, we derive ϵ-disease control time performance

results of the dynamic individual testing algorithm.

In the following theorem, we present our result for the ϵ-disease control time

performance metric when the dynamic individual testing algorithm is used in our

proposed dynamic system.

Theorem 4.2 When the dynamic individual testing algorithm is used, we have

t̄ϵ =
ln(ϵ/np+ o(1))

ln
(
(1− T

n
)(1 + nq(1− p))

) (4.6)

Proof: We start with the mean of non-isolated infections

E[λ(t)] = nP (Ui(t) = 1) (4.7)

= np((1 + nq(1− p)))t
t∏

j=1

p′(j) + o(n) (4.8)

where (4.7) follows from the definition of λ(t) as the total number of non-isolated

infected individuals and (4.8) follows from Lemma 4.2. Then, we have

ϵ = np((1 + nq(1− p)))t̄ϵ
t̄ϵ∏

j=1

p′(j) + o(n) (4.9)

= np

(
(1− T

n
)(1 + nq(1− p))

)t̄ϵ

+ o(n) (4.10)

110

where (4.9) follows from the definition of ϵ-disease control time and (4.10) follows

from the fact that p′(t) = (1 − T/n) for all t ≥ 1 when dynamic individual testing

algorithm is used. Finally, we get

t̄ϵ =
ln(ϵ/np+ o(1))

ln
(
(1− T

n
)(1 + nq(1− p))

) (4.11)

by arranging the terms. ■

In Theorem 4.2, we characterize the ϵ-disease control time metric for the dy-

namic individual testing algorithm. Since it is defined as the time instant when there

are ϵ non-isolated infected individuals in the average case, the ϵ-disease control time

metric presents a characterization of how fast a given algorithm can control the

disease spread.

4.3.3 Dynamic SAFFRON Based Group Testing Algorithm

We propose and analyze a novel algorithm, which we coin as the dynamic SAFFRON-

based group testing algorithm. It is inspired by the static group testing algorithm,

SAFFRON, introduced in [48] and studied in [106] for partial detection.

The static SAFFRON scheme-inspired algorithm presented in [106] is based

on constructing binary test matrices for the groups of individuals that contain ap-

proximately one infected individual. Constructed SAFFRON scheme test matrices

can be used to recover exactly one infected individual within the tested group while

also indicating whether there is zero or more than one infected individual within the

tested group if there is not exactly one infected individual.

111

Here, we propose the novel dynamic SAFFRON-based group testing algorithm,

where at each time instant t + 1, groups of size ⌊(n − γ(t))/E[λ(t)]⌋ are selected

uniformly and randomly from the set of non-isolated individuals. For the λ(t) values

that are close to their mean,1 each of these groups has approximately one infected

and non-isolated individual.

By designing SAFFRON scheme-inspired binary test sub-matrices that are

guaranteed to identify one infection from each group that has exactly one infection,

we detect and isolate infections over time.

For a selected group of individuals, the binary test sub-matrix is constructed

as follows:

• Let η denote the size of the selected individuals, i.e., η = ⌊(n−γ(t))/E[λ(t)]⌋.

• First ⌈log(η)⌉ rows of the test sub-matrix are constructed where the column

vector corresponding to column i is set to the binary representation of the

number i− 1.

• Then, the remaining ⌈log(η)⌉ rows of the test sub-matrix are constructed by

concatenating the created sub-matrix in the previous step with the binary

matrix where the value of each element is flipped, i.e., XORed with 1.

By using this construction, it is guaranteed that if there is exactly one infection

within the tested individuals, there will be exactly ⌈log(η)⌉ positive tests, and the

positive test indices will be the binary representation of i − 1 where the infected

1Our numerical results suggest a concentration around the mean for λ(t). An in-depth concen-
tration analysis can be the subject of future works.

112

individual index is i. If there is no infection, then all tests will be negative. In the

case of more than one infection, strictly more than ⌈log(η)⌉ tests will be positive.

Thus, this construction guarantees the detection of a single infection within the

selected group.

In the following lemma, we characterize the expected number of detected in-

fections at each time instant.

Lemma 4.3 When the dynamic SAFFRON-based group testing algorithm is used,

at each time instant t ≥ 1, in average

T

2
log−1

(
n− γ(t− 1)

E[λ(t− 1)]

)(
1− E[λ(t− 1)]

n− γ(t− 1)

)n−γ(t−1)
E[λ(t−1)]

−1

(4.12)

infections are detected and isolated.

Proof: We choose the group size as n−γ(t−1)
E[λ(t−1)]

since there will be approximately one

infected individual within each group when the groups are chosen uniformly ran-

domly from the set of all non-isolated individuals. Since the testing capacity is T

at each time instant, there will be

T

2
log−1

(
n− γ(t− 1)

E[λ(t− 1)]

)
(4.13)

such groups. Recall that the probability that a non-isolated individual is infected

is E[λ(t−1)]
n−γ(t−1)

since the dynamic SAFFRON-based group testing algorithm uniformly

randomly selects the groups at each time instant and since the infection statistics are

symmetric over individuals. Furthermore, the group size is the inverse of this term.

113

Therefore, each group contains exactly one infected individual with probability

(
1− E[λ(t− 1)]

n− γ(t− 1)

)n−γ(t−1)
E[λ(t−1)]

−1

(4.14)

where the lemma statement follows. ■

Similar to our analysis for the dynamic individual testing algorithm, we can

use the results of Lemma 4.2 and Theorem 4.1 for dynamic SAFFRON-based group

testing algorithm where we have

p′(t) =
ζ

E[λ(t)]
(4.15)

where ζ = T
2
log−1

(
n−γ(t−1)
E[λ(t−1)]

)(
1− E[λ(t−1)]

n−γ(t−1)

)n−γ(t−1)
E[λ(t−1)]

−1

. To justify using Lemma 4.2

and Theorem 4.1 results, we need to prove that the dynamic SAFFRON-based group

testing algorithm satisfies symmetry and convergence criteria in (4.2) and (4.3).

Since the selection of tested groups is independent across individuals for each

time instant, the dynamic SAFFRON-based group testing algorithm is symmet-

ric. To guarantee convergence, we consider using the dynamic individual testing

algorithm whenever T < 2 log⌊(n − γ(t))/E[λ(t)]⌋, i.e., the regime where the ex-

pected number of non-isolated infections is small with respect to the total number

of non-isolated individuals. In that regime, SAFFRON-based construction cannot

be used efficiently to detect infections. In the regime where the expected number of

non-isolated infections is high, the SAFFRON-based scheme can consistently detect

infections as characterized in Lemma 4.3.

114

0 50 100 150 200 250 300 350 400 450 500

time (t)

0

100

200

300

400

500

600

700

800

900

1000

n
u
m

b
e
r

o
f
p
e
o
p
le

(t): susceptibles

(t): infections

(t): isolations

Figure 4.1: Numerical averages of the random processes α(t), λ(t) and γ(t) for the
system parameters n = 1000, T = 30, q = 0.00001, p = 0.2, for dynamic individual
testing algorithm.

4.4 Numerical Results

In our simulations, we implement the dynamic discrete SIR-based infection spread

system. We initialize our system with random independent initial infections with

probability p. In the following time instants, we simulate the random disease spread

from non-isolated infections to susceptible individuals, independently with proba-

bility q. For both dynamic algorithms, we run our system for 500 time instants

and iterate, realizing this dynamic system 1000 times. We save the sample path

trajectories of the random processes α(t), λ(t), and γ(t), take their averages, and

plot.

To control disease spread, in our first simulation, we implement the dynamic

individual testing algorithm, where randomly selected T individuals are individually

115

tested at each time instant. Here, by using our theoretical result in Theorem 4.2, we

have t̄ϵ = 235.57 when ϵ = 1. This is consistent with the numerical results plotted in

Figure 4.1. In our second simulation, we implement a hybrid version of the dynamic

SAFFRON-based group testing algorithm. At each time instant, we randomly select

groups of people where each group has one infection on average, where we use

expected λ(t) that we calculate by using Lemma 4.3, to obtain the group size. Then,

we construct SAFFRON scheme-based test sub-matrices for each group and perform

maximum T tests. In practice, SAFFRON scheme-based construction can have a

non-utilized testing capacity at each discrete time instant since the testing capacity

T may not be divisible by the calculated group size. We utilize this available testing

capacity and perform random individual testing when available non-utilized tests

remain. Moreover, later in the testing process, since the expected λ(t) becomes

smaller, the calculated group size grows larger, and the required number of tests

for SAFFRON-based construction exceeds the testing capacity T . For these later

times in the testing process, we switch to the dynamic individual testing algorithm

to detect and isolate remaining infections. We also plot the theoretical calculation

of expected λ(t) in Figure 4.2, where we use Lemma 4.3 for calculation, which aligns

with the numerical results that we obtain, as we plot in Figure 4.2. We observe that

the steady state average of the number of susceptible individuals is slightly higher in

the dynamic individual testing algorithm while the convergence time is slightly lower

in the dynamic SAFFRON-based group testing algorithm. This observation for this

set of parameters suggests that both algorithms can be used to optimize different

performance metrics, depending on the system requirements and parameters, as well

116

0 50 100 150 200 250 300 350 400 450 500

time (t)

0

100

200

300

400

500

600

700

800

900

1000

n
u
m

b
e
r

o
f
p
e
o
p
le

(t): susceptibles

(t): infections

(t): isolations

Theoretical (t)

Figure 4.2: Numerical averages of the random processes α(t), λ(t) and γ(t), with
theoretical calculation of λ(t), for the system parameters n = 1000, T = 30, q =
0.00001, p = 0.2, for dynamic SAFFRON based group testing algorithm.

as hybrid usage of the dynamic algorithms is also possible as in our hybrid dynamic

SAFFRON-based group testing algorithm implementation.

4.5 Conclusions

In this chapter, we considered a dynamic infection spread model based on the dis-

crete SIR model. We aimed to efficiently utilize the available testing capacity T at

each time instant to control disease spread within a community rather than min-

imize the number of required tests to determine every infection as in the static

group testing problem. We presented two novel performance metrics: disease con-

trol time and ϵ-disease control time. Unlike our previous metric in Chapter 3, which

is the expected number of susceptible individuals in the steady state, ϵ-disease con-

117

trol time measures the timeliness of the disease control. We refined our results in

Chapter 3 and used them to characterize the performance of dynamic individual

testing algorithm in terms of the ϵ-disease control time metric, in (4.6). We intro-

duced dynamic SAFFRON-based group testing algorithm and presented average case

performance results in (4.12), which can be further used in combination with our

previous results regarding symmetric and converging dynamic testing algorithms.

We simulated our dynamic system, implemented the dynamic individual testing

algorithm and dynamic SAFFRON-based group testing algorithm, and presented

the numerical results we obtained. The novel performance metrics that we intro-

duced in this chapter add a novel dimension to our proposed dynamic model, where

one can consider implementing and assessing the performance of a wider variety of

algorithms depending on the system requirements.

118

CHAPTER 5

Conclusions

In this dissertation, we studied the applications of group testing in novel structured

and dynamic networks.

In Chapter 2, we studied a random connection graph-based community struc-

ture. This results in a non-identical and correlated infection status distribution of

the individuals. We proposed novel two-step sampled group testing algorithms, and

we characterized their optimal parameters and their constructions. For exponen-

tially split cluster formation trees, we explicitly calculated the expected number

of false classifications and the required number of tests. We showed that by uti-

lizing the community structure-based side information, even when the prevalence

rate is high, group testing can be utilized to reduce the required number of tests

significantly.

In Chapter 3, we proposed and analyzed a discrete-time SIR-based dynami-

cally evolving network structured disease spread system model. We proposed two

novel dynamic testing algorithms: the dynamic individual testing algorithm and the

dynamic Dorfman-type group testing algorithm. We analyzed the performances of

119

these algorithms based on our average-case performance metric: the expected num-

ber of susceptible individuals when the disease spread is brought under control. We

obtained general theoretical results for symmetric and converging dynamic group

testing algorithms family. We characterized the conditions for when each algorithm

outperforms the other one. We implemented the proposed discrete-time SIR-based

disease spread network and proposed algorithms, and we ran simulations in varying

parameter regimes.

In Chapter 4, we further expanded the dynamic disease spread network-based

system model that we introduced in Chapter 3. We proposed two novel performance

metrics (disease control time and ϵ-disease control time) motivated by the fact that

one might have varying objectives while designing dynamic group testing algorithms

to control disease spread within a population. We revised and expanded our results

from Chapter 3, and also proposed the dynamic SAFFRON-based group testing

algorithm. By using our general results, we characterized the performance of the

proposed dynamic algorithms in terms of the ϵ-disease control time metric. We im-

plemented the proposed algorithms and ran simulations to obtain numerical results

for both the dynamic SAFFRON-based group testing algorithm and the dynamic

individual testing algorithm.

The contents of Chapter 2 are published in [96, 107], Chapter 3 in [104, 108],

Chapter 4 in [105]. Other publications of the author’s Ph.D. research that are not

included in this dissertation are [109–113].

120

Bibliography

[1] R. Dorfman. The detection of defective members of large populations. Annals
of Mathematical Statistics, 14(4):436–440, December 1943.

[2] M. Aldridge, O. Johnson, and J. Scarlett. Group Testing: An Information
Theory Perspective. Now Foundations and Trends, December 2019.

[3] C. H. Li. A sequential method for screening experimental variables. Journal
of the American Statistical Association, 57(298):455–477, 1962.

[4] H. M. Finucan. The blood testing problem. Journal of the Royal Statistical
Society. Series C (Applied Statistics), 13(1):43–50, 1964.

[5] M. Sobel and P. A. Groll. Group testing to eliminate efficiently all defec-
tives in a binomial sample. Bell System Technical Journal, 38(5):1179–1252,
September 1959.

[6] M. Sobel and P. A. Groll. Binomial group-testing with an unknown proportion
of defectives. Technometrics, 8(4):631–656, 1966.

[7] F. K. Hwang. A method for detecting all defective members in a population by
group testing. Journal of the American Statistical Association, 67(339):605–
608, September 1972.

[8] M. C. Hu, F. K. Hwang, and J. K. Wang. A boundary problem for group
testing. SIAM Journal on Algebraic Discrete Methods, 2(2):81–87, 1981.

[9] D.-Z. Du and F. K. Hwang. Combinatorial Group Testing and Its Applications.
World Scientific, 2nd edition, December 1999.

[10] M. B. Malyutov. Search for sparse active inputs: A review. In Information
Theory, Combinatorics, and Search Theory, pages 609–647, 2013.

[11] A. G. D’yachkov. Lectures on designing screening experiments, 2014. Available
at arXiv:1401.7505.

121

[12] D.-Z. Du and F. K. Hwang. Pooling Designs and Nonadaptive Group Testing:
Important Tools for DNA Sequencing. World Scientific, 1st edition, 2006.

[13] T. Wadayama. Nonadaptive group testing based on sparse pooling graphs.
IEEE Trans. on Info. Theory, 63(3):1525–1534, 2017.

[14] M. Aldridge. Individual testing is optimal for nonadaptive group testing in
the linear regime. IEEE Trans. on Info. Theory, 65(4):2058–2061, 2019.

[15] M. Mézard, M. Tarzia, and C. Toninelli. Group testing with random
pools: Phase transitions and optimal strategy. Journal of Statistical Physics,
131(5):783–801, 2008.

[16] C. L. Chan, S. Jaggi, V. Saligrama, and S. Agnihotri. Non-adaptive group
testing: Explicit bounds and novel algorithms. IEEE Trans. on Info. Theory,
60(5):3019–3035, May 2014.

[17] H. B. Chen and F. K. Hwang. Exploring the missing link among d-
separable, d−-separable and d-disjunct matrices. Discrete Applied Mathemat-
ics, 155(5):662 – 664, March 2007.

[18] M. Ruszinko. On the upper bound of the size of the r-cover-free families.
Journal of Combinatorial Theory, Series A, 66(2):302 – 310, May 1994.

[19] C. Shangguan and G. Ge. New bounds on the number of tests for disjunct
matrices. IEEE Trans. on Info. Theory, 62(12):7518–7521, 2016.

[20] E. Porat and A. Rothschild. Explicit nonadaptive combinatorial group testing
schemes. IEEE Transactions on Information Theory, 57(12):7982–7989, 2011.

[21] A. Mazumdar. Nonadaptive group testing with random set of defectives. IEEE
Trans. on Info. Theory, 62(12):7522–7531, December 2016.

[22] O. Johnson, M. Aldridge, and J. Scarlett. Performance of group testing al-
gorithms with near-constant tests per item. IEEE Trans. on Info. Theory,
65(2):707–723, February 2019.

[23] P. Fischer, N. Klasner, and I. Wegenera. On the cut-off point for combinatorial
group testing. Discrete Applied Mathematics, 91(1):83–92, 1999.

[24] M. Aldridge. Rates of adaptive group testing in the linear regime. In IEEE
ISIT, July 2019.

[25] O. Johnson. Strong converses for group testing from finite blocklength results.
IEEE Transactions on Information Theory, 63(9):5923–5933, 2017.

[26] A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimroth, and P. Loick. Information-
theoretic and algorithmic thresholds for group testing. IEEE Trans. on Info.
Theory, pages 7911–7928, 2020.

122

[27] L. Baldassini, O. Johnson, and M. Aldridge. The capacity of adaptive group
testing. In IEEE ISIT, July 2013.

[28] A. Allemann. An efficient algorithm for combinatorial group testing. In In-
formation Theory, Combinatorics, and Search Theory: In Memory of Rudolf
Ahlswede, pages 569–596, January 2013.

[29] T. Kealy, O. Johnson, and R. Piechocki. The capacity of non-identical adaptive
group testing. In Allerton Conference, pages 101–108, 2014.

[30] L. Riccio and C. J. Colbourn. Sharper bounds in adaptive group testing.
Taiwanese Journal of Mathematics, 4(4):669–673, December 2000.

[31] J. Wolf. Born again group testing: Multiaccess communications. IEEE Trans.
on Info. Theory, 31(2):185–191, 1985.

[32] G. K. Atia and V. Saligrama. Boolean compressed sensing and noisy group
testing. IEEE Trans. on Info. Theory, 58(3):1880–1901, March 2012.

[33] S. Cai, M. Jahangoshahi, M. Bakshi, and S. Jaggi. Efficient algorithms for
noisy group testing. IEEE Trans. on Info. Theory, 63(4):2113–2136, April
2017.

[34] J. Scarlett and V. Cevher. Near-optimal noisy group testing via separate
decoding of items. In IEEE ISIT, pages 2311–2315, 2018.

[35] J. Scarlett and O. Johnson. Noisy non-adaptive group testing: A (near-
)definite defectives approach. IEEE Trans. on Info. Theory, 66(6):3775–3797,
June 2020.

[36] J. Scarlett. Noisy adaptive group testing: Bounds and algorithms. IEEE
Trans. on Info. Theory, 65(6):3646–3661, 2019.

[37] M. Cheraghchi. Improved constructions for non-adaptive threshold group test-
ing. In Proceedings of the 37th International Colloquium Conference on Au-
tomata, Languages and Programming, page 552–564, 2010.

[38] P. Damaschke. Threshold group testing. In General Theory of Information
Transfer and Combinatorics, pages 707–718. Springer, 2006.

[39] D. Sejdinovic and O. T. Johnson. Note on noisy group testing: Asymptotic
bounds and belief propagation reconstruction. In 48th Annual Allerton Con-
ference on Communication, Control and Computing, pages 998 – 1003, 2010.

[40] T. Berger and V. I. Levenshtein. Asymptotic efficiency of two-stage disjunctive
testing. IEEE Transactions on Information Theory, 48(7):1741–1749, 2002.

123

[41] P. Damaschke and A. S. Muhammad. Randomized group testing both query-
optimal and minimal adaptive. In Proceedings of the 38th International Con-
ference on Current Trends in Theory and Practice of Computer Science, page
214–225, 2012.

[42] M. Mezard and C. Toninelli. Group testing with random pools: Optimal two-
stage algorithms. Information Theory, IEEE Transactions on Information
Theory, 57(04):1736 – 1745, 2011.

[43] M. Aldridge. Conservative two-stage group testing, 2020. Available at arXiv:
2005.06617.

[44] M. Cheraghchi, R. Gabrys, and O. Milenkovic. Semiquantitative group testing
in at most two rounds, 2021. Available at arXiv: 2102.04519.

[45] M. Cheraghchi, A. Karbasi, S. Mohajerzefreh, and V. Saligrama. Graph-
constrained group testing. IEEE Transactions on Information Theory, 58,
2010.

[46] E. Karimi, F. Kazemi, A. Heidarzadeh, K. R. Narayanan, and A. Sprintson.
Non-adaptive quantitative group testing using irregular sparse graph codes.
In Allerton Conference, September 2019.

[47] P. Johann. A group testing problem for graphs with several defective edges.
Discrete Applied Mathematics, 117:99–108, 2002.

[48] K. Lee, R. Pedarsani, and K. Ramchandran. Saffron: A fast, efficient, and
robust framework for group testing based on sparse-graph codes. In IEEE
ISIT, July 2016.

[49] H. Q. Ngo, E. Porat, and A. Rudra. Efficiently decodable error-correcting
list disjunct matrices and applications. In Proceedings of the 38th Interna-
tional Colloquim Conference on Automata, Languages and Programming, page
557–568, 2011.

[50] S. Bondorf, B. Chen, J. Scarlett, H. Yu, and Y. Zhao. Sublinear-time non-
adaptive group testing with o(k log n) tests via bit-mixing coding. Available
at arXiv: 1904.10102.

[51] H. A. Inan, P. Kairouz, M. Wootters, and A. Ozgur. On the optimality of
the kautz-singleton construction in probabilistic group testing. In Allerton
Conference, October 2018.

[52] H. A. Inan and A. Ozgur. Strongly explicit and efficiently decodable proba-
bilistic group testing. In IEEE ISIT, June 2020.

[53] H. A. Inan, P. Kairouz, and A. Ozgur. Sparse combinatorial group testing.
IEEE Transactions on Information Theory, 66(5):2729–2742, 2020.

124

[54] J. Hayes. An adaptive technique for local distribution. IEEE Transactions on
Communications, 26(8):1178–1186, 1978.

[55] T. Berger, N. Mehravari, D. Towsley, and J. Wolf. Random multiple-access
communication and group testing. IEEE Transactions on Communications,
32(7):769–779, 1984.

[56] A. De Bonis and U. Vaccaro. Constructions of generalized superimposed codes
with applications to group testing and conflict resolution in multiple access
channels. Theoretical Computer Science, 306(1):223–243, 2003.

[57] S. Wu, S. Wei, Y. Wang, R. Vaidyanathan, and J. Yuan. Partition information
and its transmission over boolean multi-access channels. IEEE Trans. on Info.
Theory, 61(2):1010–1027, February 2015.

[58] G. Atia, S. Aeron, E. Ermis, and V. Saligrama. On throughput maximization
and interference avoidance in cognitive radios. In 2008 5th IEEE Consumer
Communications and Networking Conference, pages 963–967, 2008.

[59] N. J. A. Harvey, M. Patrascu, Y. Wen, S. Yekhanin, and V. W. S. Chan.
Non-adaptive fault diagnosis for all-optical networks via combinatorial group
testing on graphs. In IEEE INFOCOM 2007 - 26th IEEE International Con-
ference on Computer Communications, pages 697–705, 2007.

[60] A. Sharma and C. R. Murthy. Group testing-based spectrum hole search for
cognitive radios. IEEE Transactions on Vehicular Technology, 63(8):3794–
3805, 2014.

[61] J. Robin and E. Erkip. Capacity bounds and user identification costs in
rayleigh-fading many-access channel, 2021. Available at arXiv: 2105.05603.

[62] J. Robin and E. Erkip. Access delay constrained activity detection in massive
random access, 2021. Available at arXiv: 2111.03051.

[63] O. Yildiz, A. Khalili, and E. Erkip. Hybrid beam alignment for multi-path
channels: A group testing viewpoint, 2021. Available at arXiv: 2111.08159.

[64] L. Ma, T. He, A. Swami, D. Towsley, K. K. Leung, and J. Lowe. Node failure
localization via network tomography. In Proceedings of the 2014 Conference on
Internet Measurement Conference, page 195–208. Association for Computing
Machinery, 2014.

[65] W. Xu, M. Wang, E. Mallada, and A. Tang. Recent results on sparse recovery
over graphs. In 2011 Conference Record of the Forty Fifth Asilomar Conference
on Signals, Systems and Computers (ASILOMAR), pages 413–417, 2011.

[66] C. Lo, M. Liu, J. P. Lynch, and A. C. Gilbert. Efficient sensor fault detection
using combinatorial group testing. In 2013 IEEE International Conference on
Distributed Computing in Sensor Systems, pages 199–206, 2013.

125

[67] M. Goodrich and D. Hirschberg. Improved adaptive group testing algorithms
with applications to multiple access channels and dead sensor diagnosis. Jour-
nal of Combinatorial Optimization, 15, 05 2009.

[68] V. Arrigoni, N. Bartolini, A. Massini, and F. Trombetti. Static and dynamic
failure localization through progressive network tomography, 2021. Available
at arXiv: 2103.17221.

[69] J. Robin and E. Erkip. Sparse activity discovery in energy constrained multi-
cluster iot networks using group testing, 2021. Available at arXiv: 2103.16174.

[70] A. Emad, K. R. Varshney, and D. M. Malioutov. A semiquantitative group
testing approach for learning interpretable clinical prediction rules. In Signal
Processing with Adaptive Sparse Structured Representations (SPARS), 2015.

[71] S. Dash, D. M. Malioutov, and K. R. Varshney. Learning interpretable classifi-
cation rules using sequential rowsampling. In 2015 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pages 3337–3341,
2015.

[72] D. Malioutov and K. Varshney. Exact rule learning via boolean compressed
sensing. In International Conference on Machine Learning (ICML), June 2013.

[73] A. Emad and O. Milenkovic. Poisson group testing: A probabilistic model
for nonadaptive streaming boolean compressed sensing. In 2014 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3335–3339, 2014.

[74] M. Shi, T. Furon, and H. Jegou. A group testing framework for similarity
search in high-dimensional spaces. In Proceedings of the 22nd ACM Interna-
tional Conference on Multimedia, page 407–416, 2014.

[75] J. Engels, B. Coleman, and A. Shrivastava. Practical near neighbor search via
group testing, 2021. Available at arXiv: 2106.11565.

[76] E. S. Hong and R. E. Ladner. Group testing for image compression. IEEE
Transactions on Image Processing, 11(8):901–911, 2002.

[77] Y.-W. Hong and A. Scaglione. Group testing for sensor networks: The value of
asking the right questions. In Conference Record of the Thirty-Eighth Asilomar
Conference on Signals, Systems and Computers, volume 2, pages 1297–1301,
2004.

[78] S. Khattab, S. Gobriel, R. Melhem, and D. Mosse. Live baiting for service-
level dos attackers. In IEEE INFOCOM - The 27th Conference on Computer
Communications, pages 171–175, 2008.

126

[79] Y. Xuan, I. Shin, M. T. Thai, and T. Znati. Detecting application denial-
of-service attacks: A group-testing-based approach. IEEE Transactions on
Parallel and Distributed Systems, 21(8):1203–1216, 2010.

[80] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking
most frequent items dynamically. ACM Transactions on Database Systems,
30(1):249–278, 2005.

[81] R. Clifford, K. Efremenko, E. Porat, and A. Rothschild. Pattern matching
with don’t cares and few errors. Journal of Computer and System Sciences,
76:115–124, 2010.

[82] A. Macula and L. Popyack. A group testing method for finding patterns in
data. Discrete Applied Mathematics, 144:149–157, 11 2004.

[83] J. Wang, E. Lo, and M. L. Yiu. Identifying the most connected vertices in
hidden bipartite graphs using group testing. IEEE Transactions on Knowledge
and Data Engineering, 25(10):2245–2256, 2013.

[84] N. H. Bshouty and A. Costa. Exact learning of juntas from membership
queries. In Algorithmic Learning Theory, pages 115–129. Springer Interna-
tional Publishing, 2016.

[85] A. Ambainis, A. Belovs, O. Regev, and R. De Wolf. Efficient quantum algo-
rithms for (gapped) group testing and junta testing. In 27th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 903–922. Association
for Computing Machinery, 2016.

[86] A. B. Kahng and S. Reda. New and improved bist diagnosis methods from
combinatorial group testing theory. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 25(3):533–543, 2006.

[87] M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, and M. M. Ziegler.
Molecular electronics: From devices and interconnect to circuits and architec-
ture. Proceedings of the IEEE, 91(11):1940–1957, 2003.

[88] S. D. Lendle, M. G. Hudgens, and B. F. Qaqish. Group testing for case
identification with correlated responses. Biometrics, 68(2):532–540, June 2012.

[89] T. Li, C. L. Chan, W. Huang, T. Kaced, and S. Jaggi. Group testing with
prior statistics. In IEEE ISIT, July 2014.

[90] Y-J. Lin, C-H. Yu, T-H. Liu, C-S. Chang, and W-T. Chen. Positively corre-
lated samples save pooled testing costs. Available at arXiv:2011.09794.

[91] E. Nebenzahl and M. Sobel. Finite and infinite models for generalized group-
testing with unequal probabilities of success for each item. In Discriminant
Analysis and Applications, pages 239–289. Elsevier, 1973.

127

[92] M. Doger and S. Ulukus. Group testing with non-identical infection probabil-
ities. In IEEE REDUNDANCY, October 2021.

[93] P. Nikolopoulos, S. R. Srinivasavaradhan, T. Guo, C. Fragouli, and S. Diggavi.
Group testing for connected communities. In AISTATS, April 2021.

[94] P. Nikolopoulos, S. R. Srinivasavaradhan, T. Guo, C. Fragouli, and S. Diggavi.
Group testing for overlapping communities. In IEEE ICC, June 2021.

[95] H. Nikpey, J. Kim, X. Chen, S. Sarkar, and S. S. Bidokhti. Group testing with
correlation under edge-faulty graphs. Available at arXiv:2202.02467.

[96] B. Arasli and S. Ulukus. Group testing with a graph infection spread model.
Information, special issue on Advanced Technologies in Storage, Computing,
and Communication, 14(1), January 2023.

[97] S. Ahn, W.-N. Chen, and A. Ozgur. Adaptive group testing on networks with
community structure. In IEEE ISIT, July 2021.

[98] M. Gonen, M. Langberg, and A. Sprintson. Group testing on general set-
systems. Available at arXiv:2202.04988.

[99] T. B. Idalino and L. Moura. Structure-aware combinatorial group testing: A
new method for pandemic screening. Available at arXiv:2202.09264.

[100] I. Lau, J. Scarlett, and Y. Sun. Model-based and graph-based priors for group
testing. Available at arXiv:2205.11838.

[101] S. R. Srinivasavaradhan, P. Nikolopoulos, C. Fragouli, and S. Diggavi. Dy-
namic group testing to control and monitor disease progression in a population.
Available at arXiv:2106.10765.

[102] S. R. Srinivasavaradhan, P. Nikolopoulos, C. Fragouli, and S. Diggavi. An
entropy reduction approach to continual testing. In IEEE ISIT, July 2021.

[103] M. Doger and S. Ulukus. Dynamical Dorfman testing with quarantine. In
CISS, March 2022. Also available at arXiv:2201.07204.

[104] B. Arasli and S. Ulukus. Group testing with a dynamic infection spread. In
IEEE ISIT, July 2022.

[105] B. Arasli and S. Ulukus. Dynamic saffron: Disease control over time via group
testing. Algorithms, special issue on Combinatorial Optimization, Graph, and
Network Algorithms, 15(11), November 2022.

[106] M. Aldridge. Pooled testing to isolate infected individuals. In CISS, March
2021.

[107] B. Arasli and S. Ulukus. Graph and cluster formation based group testing. In
IEEE ISIT, July 2021.

128

[108] B. Arasli and S. Ulukus. Dynamic infection spread model based group testing.
Algorithms, special issue on Combinatorial Optimization, Graph, and Network
Algorithms, 16(1), January 2023.

[109] K. Banawan, B. Arasli, Y.-P. Wei, and S. Ulukus. The capacity of private
information retrieval from heterogeneous uncoded caching databases. IEEE
Transactions on Information Theory, 66(6):3407–3416, June 2020.

[110] Y.-P. Wei, B. Arasli, K. Banawan, and S. Ulukus. The capacity of private infor-
mation retrieval from decentralized uncoded caching databases. Information,
special issue on Private Information Retrieval: Techniques and Applications,
10(12), November 2019.

[111] K. Banawan, B. Arasli, Y.-P. Wei, and S. Ulukus. Private information retrieval
from heterogeneous uncoded caching databases. In IEEE ISIT, July 2019.

[112] Y.-P. Wei, B. Arasli, K. Banawan, and S. Ulukus. Private information retrieval
from decentralized uncoded caching databases. In IEEE ISIT, July 2019.

[113] K. Banawan, B. Arasli, and S. Ulukus. Improved storage for efficient private
information retrieval. In IEEE Information Theory Workshop (ITW), August
2019.

129

	List of Figures
	List of Tables
	Introduction
	Group Testing with a Graph Infection Spread Model
	Introduction
	System Model
	Motivating Example
	Proposed Algorithm and Analysis
	Exponentially Split Cluster Formation Trees
	Numerical Results
	Exponentially Split Cluster Formation Tree Based System
	Arbitrary Random Connection Graph Based System

	Conclusions
	Appendix

	Dynamic Infection Spread Model Based Group Testing
	Introduction
	System Model
	Proposed Algorithms and Analysis
	Dynamic Individual Testing Algorithm
	Dynamic Dorfman-Type Group Testing Algorithm
	Comparison of Dynamic Individual and Dorfman-Type Algorithms

	Numerical Results
	Conclusions
	Appendix

	Dynamic SAFFRON: Disease Control Over Time Via Group Testing
	Introduction
	System Model
	Proposed Algorithms and Analysis
	Related Prior Results
	Dynamic Individual Testing Algorithm
	Dynamic SAFFRON Based Group Testing Algorithm

	Numerical Results
	Conclusions

	Conclusions
	Bibliography

