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This dissertation focuses on characterizing optimal energy management poli-

cies for energy harvesting communication networks with system costs. The system

costs that we consider are the cost of circuitry to be on (processing cost) at the

transmitters, cost of decoding at the receivers, cost of moving to harvest more en-

ergy in mobile energy harvesting nodes, and the cost of collecting measurements

(sampling cost) from physical phenomena.

We first consider receiver decoding costs in networks where receivers, in addi-

tion to transmitters, rely on energy harvested from nature to communicate. Energy

harvested at the receivers is used to decode their intended messages, and is modeled

as a convex increasing function of the incoming rate. With the goal of maximizing

throughput by a given deadline, we study single-user and multi-user settings, and

show that decoding costs at the receivers can be represented as generalized data

arrivals at the transmitters. This introduces a further coupling between the trans-

mitters and receivers of the network and allows us to characterize optimal policies

by moving all constraints to the transmitter side.



Next, we study the decoding cost effect on energy harvesting cooperative mul-

tiple access channels, where users employ data cooperation to increase their achiev-

able rates. Data cooperation requires each user to decode the other user’s data

before forwarding it to the destination, which uses up some of the harvested en-

ergy. With the presence of decoding costs, we show that data cooperation may

not be always helpful; if the decoding costs are relatively high, then sending di-

rectly to the receiver without data cooperation between the users achieves higher

throughput. When cooperation is helpful, we determine the optimum allocation of

available energy between decoding cooperative partner’s data and forwarding it to

the destination.

We then study the impact of adding processing costs, on top of decoding costs,

in energy harvesting two-way channels. Processing costs are the amounts of energy

spent for circuitry operation, and are incurred whenever a user is communicating.

We show that due to processing costs, transmission may become bursty, where users

communicate through only a portion of the time. We develop an optimal scheme

that maximizes the sum throughput by a given deadline under both decoding and

processing costs.

Next, we focus on online policies. We consider a single-user energy harvesting

channel where the transmitter is equipped with a finite-sized battery, and the goal

is to maximize the long term average utility, for general concave increasing utility

functions. We show that fixed fraction policies are near optimal; they achieve a

long term average utility that lies within constant multiplicative and additive gaps

from the optimal solution for all battery sizes and all independent and identically



distributed energy arrival patterns. We then consider a specific scenario of a utility

function that measures the distortion of Gaussian samples communicated over a

Gaussian channel. We formulate two problems: one with, and the other without

sampling costs, and design near optimal fixed fraction policies for the two problems.

Then, we consider another aspect of costs in energy harvesting single-user

channels, that is, the energy spent in physical movement in search of better energy

harvesting locations. Since movement has a cost, there exists a tradeoff between

staying at the same location and moving to a new one. Staying at the same location

allows the transmitter to use all its available energy in transmission, while moving

to a new one may let the transmitter harvest higher amounts of energy and achieve

higher rates at the expense of a cost incurred through the relocation process. We

characterize this tradeoff optimally under both offline and online settings.

Next, we consider different performance metrics, other than throughput, in

energy harvesting communication networks. First, we study the issue of delay in

single-user and broadcast energy harvesting channels. We define the delay per data

unit as the time elapsed from the unit’s arrival at the transmitter to its departure.

With a pre-specified amount of data to be delivered, we characterize delay minimal

energy management policies. We show that the structure of the optimal policy is

different from throughput-optimal policies; to minimize the average delay, earlier

arriving data units are transmitted using higher powers than later arriving ones,

and the transmit power may reach zero, leading to communication gaps, in between

energy or data arrival instances.

Finally, we conclude this dissertation by considering the metric of the age of



information in energy harvesting two-hop networks, where a transmitter is commu-

nicating with a receiver through a relay. Different from delay, the age of information

is defined as the time elapsed since the latest data unit has reached the destination.

We show that age minimal policies are such that the transmitter sends message up-

dates to the relay just in time as the relay is ready to forward them to the receiver.
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CHAPTER 1

Introduction

Energy harvesting communications offer the promise of energy self-sufficient, energy

self-sustaining operation for wireless networks with significantly prolonged lifetimes.

In this dissertation, we characterize optimal energy management policies in energy

harvesting communication networks taking into consideration different aspects of

system costs. Namely, we study the effects of the costs of circuitry to be on (pro-

cessing costs) at the transmitters, the costs of decoding at the receivers, the costs

of moving to harvest more energy in mobile energy harvesting nodes, and the costs

of collecting measurements (sampling costs) from physical phenomena, on energy

management policies that optimize certain utilities. Considering such system costs

introduces new structures to optimal energy management policies, and in general

takes the analysis of energy harvesting communication networks one step further

into practicality.

In Chapter 2, we focus on receiver-side energy harvesting. Energy harvesting

communications have been considered mostly for energy harvesting transmitters,

e.g., [1–36], with fewer works on energy harvesting receivers, e.g., [37–41]. In Chap-

1



ter 2, we consider energy harvesting communications with both energy harvesting

transmitters and receivers. The energy harvested at the transmitters is used for

data transmission according to a rate-power relationship, which is concave, mono-

tone increasing in powers. The energy harvested at the receivers is used for de-

coding costs, which we assume to be convex, monotone increasing in the incoming

rate [37,38,42–45]. The transmission energy costs and receiver decoding costs could

be comparable, especially in short-distance communications, where high rates can

be achieved with relatively low powers, and the decoding power could be dominant;

see [42] and the references therein.

We model the energy needed for decoding at the receivers via decoding causal-

ity constraints: the energy spent at the receiver for decoding cannot exceed the

receiver’s harvested energy. We already have the energy causality constraints at the

transmitter: the energy spent at the transmitter for transmitting data cannot exceed

the transmitter’s harvested energy. Therefore, for a given transmitter-receiver pair,

transmitter powers need now to adapt to both energy harvested at the transmitter

and at the receiver; the transmitter must only use powers, and therefore rates, that

can be handled/decoded by the receiver. The most closely related work to the work

in Chptaer 2 is [37], where the authors consider a general network with energy har-

vesting transmitters and receivers, and maximize a general utility function, subject

to energy harvesting constraints at all terminals. Reference [37] carries the effects

of decoding costs to the objective function. If the objective function is no longer

concave after this operation, it uses time-sharing to concavify it, leading to a con-

vex optimization problem, which it then solves by using a generalized water-filling

2



algorithm. We consider a similar problem with a specific utility function which is

throughput, for specific network structures, with different decoding costs informed

by network information theory. First, we consider the single-user channel, and ob-

serve that the decoding costs at the receiver can be interpreted as a gate keeper at

the front-end of the receiver that lets packets pass only if it has sufficient energy

to decode. We show that we can carry this gate effect to the transmitter as a gen-

eralized data arrival constraint. Therefore, the setting with decoding costs at the

receiver is equivalent to a setting with no decoding costs at the receiver, but with

a (generalized) data arrival constraint at the transmitter [1]. We also note that

the energy harvesting component of the receiver can be separated as a virtual relay

between the transmitter and the receiver; and again, the problem can be viewed

as a setting with no decoding costs at the receiver but with a virtual relay with a

(generalized) energy arrival constraint [12–17].

We then consider several multi-user settings. We begin with a decode-and-

forward two-hop network, where the relay and the receiver both have decoding

costs. This gives rise to decode-and-forward causality constraints at the relay in

addition to decoding causality constraints at the receiver and energy causality con-

straints at the transmitter. We decompose the problem into inner and outer prob-

lems. In the inner problem, we fix the relay’s decoding power strategy, and show

that separable policies are optimal [12, 13]. These are policies that maximize the

throughput of the transmitter-relay link independent of maximizing the throughput

of the relay-destination link. Thereby, we solve the inner problem as two single-

user problems with decoding costs. In the outer problem, we find the best relay

3



decoding strategy by a water-filling algorithm. Next, we consider a two-user mul-

tiple access channel (MAC) with energy harvesting transmitters and receiver, and

maximize the departure region. We consider two different decoding schemes: si-

multaneous decoding, and successive cancellation decoding [46]. Each scheme has a

different decoding power consumption. For the simultaneous decoding scheme, we

show that the boundary of the maximum departure region is achieved by solving a

weighted sum rate maximization problem that can be decomposed into an inner and

an outer problem. We solve the inner problem using the results of single-user fad-

ing problem [3]. The outer problem is then solved using a water-filling algorithm.

In the successive cancellation decoding scheme, our problem formulation is non-

convex. We then use a successive convex approximation technique that converges

to a local optimal solution [47,48]. The maximum departure region with successive

cancellation decoding is larger than that with simultaneous decoding. We conclude

Chapter 2 by characterizing the maximum departure region of a two-user degraded

broadcast channel (BC) with energy harvesting transmitter and receivers. With the

transmitter employing superposition coding [49], a corresponding decoding power

consumption at the receivers is assumed. We again decompose the weighted sum

rate maximization problem into an inner and outer problem. We show that the

inner problem is equivalent to a classical single-user energy harvesting problem with

a time-varying minimum power constraint, for which we present an algorithm. We

solve the outer problem using a water-filling algorithm similar to the outer problems

of the two-hop network and the MAC with simultaneous decoding.

In Chapter 3, we study the decoding costs effects on an energy harvesting

4



cooperative MAC. In a cooperative MAC, users decode the signals transmitted by

the other user to form common information, and cooperatively send the previously

established common information to the receiver to achieve beamforming gains [50].

This model has the unique property that the transmitters act as receivers as well,

where transmission power and decoding costs simultaneously reflect on the total

energy budget of each node. The energy harvesting cooperative MAC is considered

in [51] for data cooperation only, and extended in [52] to the case of joint data and

energy cooperation, without taking into account the decoding costs incurred at the

nodes, and significant gains in departure regions are demonstrated. The goal of

Chapter 3 is to incorporate the decoding cost of cooperation into the cooperative

MAC model, and investigate the gains from cooperation in a more realistic setup.

To this end, we model the decoding power as an increasing convex function in

the incoming rate [37, 38], and in particular, we focus on exponential decoding

functions [43, 44]. We characterize the optimal offline power scheduling policies

that maximize the departure region by a given deadline subject to energy causality

constraints and decoding costs.

In Chapter 4, we explore another aspect of system costs: the costs for circuitry

operations, or processing costs. We study the effects of processing and decoding costs

combined in an energy harvesting two-way channel. We design optimal offline power

scheduling policies that maximize the sum throughput by a given deadline, subject

to energy and decoding causality constraints at both users, with processing costs.

In the two-way energy harvesting channel, each node transmits data to the other

user, and receives data from the other user in a full duplex manner. Therefore, each
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node is simultaneously an energy harvesting transmitter and an energy harvesting

receiver, and needs to optimize its power schedule over time slots by optimally

dividing its energy for transmission and decoding. The power used for transmission

is modeled through a concave rate-power relationship as in the Shannon formula;

and the power used for decoding is modeled as a convex increasing function of the

incoming rate. In particular, throughout Chapter 4, we focus on decoding costs that

are exponential in the incoming rate [43,44].

Even in the case of energy harvesting transmitters only and energy harvest-

ing receivers only, the energy availability of one side limits the transmission and

reception abilities of the other side; energy harvesting introduces coupling between

transmitters and receivers. In the energy harvesting two-way channel, this coupling

is even stronger. In addition, we assume that power consumption at a user includes

power spent for processing as well, i.e., power spent for the circuitry. This is the

power spent for the user to be on and communicating. Depending on the energy

availability and the communication distance, processing costs at the transmitter

could be a significant system factor. References [24–29] study the impact of process-

ing costs on energy harvesting communications. As discussed in Chapter 2, decoding

power at the receiver could be a significant system factor as well [37,38,41–43]. The

differentiating aspect regarding processing costs and decoding costs is as follows:

the processing cost is modeled as a constant power spent per unit time whenever

the transmitter is on [53], whereas the decoding cost at a receiver is modeled as an

increasing convex function of the incoming rate to be decoded [37,38]. In Chapter 4,

we consider both decoding and processing costs in a single setting.
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In the first part of Chapter 4, we focus on the case with only decoding costs.

We first consider the case with a single energy arrival at each user. We show that

the transmission is limited by the user with smaller energy; the user with larger

energy may not consume all of its energy. We next consider the case with multiple

energy arrivals at both users. We show that the optimal power allocations are non-

decreasing over time, and they increase synchronously at both users. We develop an

iterative algorithm based on two-slot updates to obtain the optimal power allocations

for both users that converges to the optimal solution. Next, we focus on the case

with only processing costs. We assume that both users incur processing costs per

unit time as long as they are communicating. We first consider the formulation for

a single energy arrival. In this case, we show that transmission can be bursty [53];

users may opt to communicate for only a portion of the time. We also show that

it is optimal for the two users to be fully synchronized; the two users should be

switched on for the same portion of the time during which they both exchange data,

and then they switch off together. Then, we generalize this to the case of multiple

energy arrivals, and show that any throughput optimal policy can be transformed

into a deferred policy, in which users postpone their energy consumption to fill

out later slots first. We find the optimal deferred policy by iteratively applying

a modified version of the single energy arrival result in a backward manner. We

conclude Chapter 4 by studying the general case with both decoding and processing

costs in a single setting. We formulate a sum throughput optimization problem that

is a generalization of the setting with only decoding costs or only processing costs.

We solve this general problem in the single energy arrival scenario, and then present
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an iterative algorithm to solve the multiple energy arrival case that is a combination

of the algorithms used to solve the cases with only decoding and only processing

costs.

In Chapter 5, we focus on online settings, where the amounts of energy har-

vested are revealed causally over time. We consider a single-user communication

channel, where the transmitter has a battery of finite size to save its incoming en-

ergy, and achieves a reward for every transmitted message that is in the form of some

general concave increasing utility function of the transmission power. The goal is

to characterize online power control policies that maximize the long term average

utility subject to energy causality constraints. One motivation for this setting is en-

ergy harvesting receivers studied in Chapter 2. Since power consumed in decoding

is modelled as a convex increasing function of the incoming rate [37, 38], the rate

achieved at the receiver is then a concave increasing function of the decoding power.

Recently, [54] has introduced an online power control policy for a single-user energy

harvesting channel that maximizes the long term average throughput under the

AWGN capacity utility function 1
2

log(1 + x). The proposed policy is near optimal

in the sense that it performs within constant multiplicative and additive gaps from

the optimal solution that is independent of energy arrivals and battery sizes. This

is extended to broadcast channels in [55], multiple access channels in [56, 57], and

systems with processing costs in [58–60] (for examples of earlier online approaches

see, e.g., [61–63]). In Chapter 5, we generalize the approaches in [54] to work for

general concave monotonically increasing utility functions for single-user channels.

That is, we consider the design of online power control policies that maximize the
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long term average general utilities.

We first study the special case of Bernoulli energy arrivals that fully recharge

the battery when harvested, and characterize the optimal online solution. Then, for

the general independent and identically distributed (i.i.d.) arrivals, we show that

the policy introduced in [54] performs within a constant multiplicative gap from the

optimal solution for any general concave increasing utility function, for all energy

arrivals and battery sizes. We then provide sufficient conditions on the utility func-

tion to guarantee that such policy is within a constant additive gap from the optimal

solution. We then consider a specific scenario where a sensor node collects samples

from an i.i.d. Gaussian source and sends them to a destination over a Gaussian

channel, and the goal is to characterize online power control policies that minimize

the long term average distortion of the received samples at the destination. We

note that an offline version of this problem has been considered in [35]. We follow

the approaches in [54–58] to extend the offline results in [35] to online settings. We

formulate two problems: one with and the other without sampling energy consump-

tion costs. In both problems, we show that fixed fraction policy achieves a long

term average distortion that lies within a constant additive gap from the optimal

achieved distortion for all energy arrivals and battery sizes.

In Chapter 6, we consider another aspect of power consumption in energy

harvesting sensor nodes, namely, the power consumed in the process of harvesting

energy. That is, there is a cost to taking actions to harvest energy. In Chapter 6,

we model this cost via the energy consumed in physical movement. We consider an

energy harvesting transmitter with the ability to move along a straight line. Two
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energy sources are located at the opposite ends of the line, and the amount of energy

harvested at the transmitter from each source depends on its distance from the two

sources. Movement is thus motivated by finding better energy harvesting locations.

However, the transmitter incurs a moving cost per unit distance travelled. Therefore,

a tradeoff arises between staying in the same position and using all available energy

in transmission, and spending some of the available energy to move to another

location where it harvests higher energy. In this work, we characterize this tradeoff

optimally, by designing throughput optimal power and movement policies. We note

that related system models are considered in [64,65] where some devices (energy-rich

sources) move through a sensor network and refill the batteries of the sensors with

RF radiation.

We study both offline and online settings in Chapter 6. In the offline setting,

our goal is to maximize the throughput by a given deadline. We first study the case

where each energy source has a single energy arrival, and then generalize it to the

case of multiple energy arrivals. Although our problem formulation is non-convex,

we are able to solve it optimally for the single energy arrival scenario. For the

multiple energy arrivals scenario, we design an iterative algorithm with guaranteed

convergence to a local optimal solution of our optimization problem. For each

iteration, we first show that given the optimal movement energy expenditure in a

given time slot, the movement policy is greedy; the transmitter moves to the better

location (energy-wise) in that time slot only without considering future time slots.

We then find optimal movement energy consumption using a water-filling algorithm.

In the online setting, we model the energy arrival processes at the two sources
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as two independent and i.i.d. processes. Only the means of the two processes

are known before communication. Our goal is to maximize the long term average

throughput. To that end, we propose an optimal move-then-transmit scheme where

the transmitter first uses all its harvested energy to move towards the source with

higher energy harvesting mean. After that, it stays at that source’s position and

starts communicating with the receiver. We show that the energy used in movement

does not affect the throughput in the long term average sense. If the transmitter

has an infinite battery, we use the best effort transmission strategy to optimally

manage the harvested energy in transmission [66]. In this policy, the transmitter

sends with the average harvesting rate whenever feasible and stays silent otherwise.

On the other hand, if the transmitter has a finite battery, we use the fixed fraction

policy [54], where the transmitter uses a fixed fraction of the amount of energy

available in its battery for transmission in every time slot, to achieve a long term

average rate that lies within constant additive and multiplicative gaps from the

optimal solution for all energy arrival patterns and battery sizes.

In Chapters 7 and 8, we consider different performance metrics, other than the

throughput metric considered mainly in previous chapters. First, in Chapter 7, we

study the issue of delay on energy harvesting networks. According to a specific data

demand, the transmitter needs to schedule the transmission of data packets using

the available energy such that the average delay experienced by the data is minimal.

In [1], the problem of minimizing the transmission completion time is considered.

Reference [1] and the subsequent literature showed that, due to the concavity of

the rate-power relationship, the transmit power must be kept constant between
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energy harvesting and data arrival events, and the transmitter must schedule data

transmissions using longest possible stretches of constant power, subject to energy

and data causality. While [1] minimizes the time by which all of the data packets

are transmitted, different data packets experience different delays, and the average

delay of the system is not minimized. In particular, when the earlier-arriving data

packets are transmitted slowly, the later-arriving data packets experience not only

the delay in their own transmissions, but a portion of the delay experienced by the

earlier-arriving packets, as they have to wait extra time in the data queue while

those packets are being transmitted. This compounds the delays that the later-

arriving data packets experience. The delay minimization problem was considered

previously in [67] for a non energy harvesting system.

We consider the problem of average delay minimization in an energy harvesting

system in Chapter 7. First, we consider a single-user channel where the transmitter

is equipped with a finite-sized battery and a finite-sized data buffer. We show that,

unlike the previous literature, the transmission power should not be kept constant

between energy harvesting and data arrival events. We let the power (and therefore

the rate) vary even during the transmission of a single packet. We show that the

optimal packet scheduling is such that the transmit power starts with a high value

and decreases linearly over time possibly reaching zero before the arrival of the

next energy or data packet into the system. The high initial transmit power values

ensure that earlier bits are transmitted faster, decreasing their own delay and also

the delays of the later-arriving data packets. Using a Lagrangian framework, we

develop a recursive solution that finds the optimal transmit power over time by
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determining the optimal Lagrange multipliers.

Next, we consider a two-user energy harvesting broadcast channel where the

transmitter is equipped with an infinite-sized battery, and data packets intended for

both users are available before the transmission starts. In this system, there is a

tradeoff between the delays experienced by both users; as more resources (power) is

allocated to a user, its delay decreases while the delay of the other user increases.

We consider the minimization of the sum delay in the system. We formulate the

problem using a Lagrangian framework, and express the optimal solution in terms

of Lagrange multipliers. We develop an iterative solution that solves the optimum

Lagrange multipliers by enforcing the KKT optimality conditions. Similar to the

single-user setting, we show that the optimal transmission power decreases between

energy harvests, and may possibly hit zero before the next energy harvest, yielding

communication gaps, where no data is transmitted. During active communication,

data may be sent to both users, or only to the stronger, or only to the weaker user,

depending on the energy harvesting profile. We contrast our work with [7] which

developed an algorithm that minimized the transmission completion time, i.e., a

time by which all data is delivered to users. To that end, [7] studies the throughput

maximization problem, and shows that, for general priorities, there exists a cut-off

power level such that only the total power above this level is used to serve the weaker

user. In particular, for sum throughput maximization, this cut-off is infinity, and

all power is allocated to packets sent to the stronger user. In contrast, in our sum

delay minimization problem, the weaker user always gets a share of the transmitted

power, as otherwise, its delay becomes unbounded, and the sum delay will not be
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minimized. In our work, we show that there exists a cut-off time, beyond which

data is sent only to the weaker user.

In Chapter 8, we study the metric of the age of information in an energy

harvesting two-hop network. We consider a source node that is collecting measure-

ments from a physical phenomenon and sends updates to a destination through the

help of a relay. Both the source and the relay depend on energy harvested from

nature to communicate. Updates need to be sent in a timely manner; namely, such

that the total age of information is minimized by a given deadline. The age of

information is defined as the time elapsed since the freshest update has reached the

destination. Minimizing the age of information metric has been studied mostly in

a queuing-theoretic framework; [68] studies a source-destination link under random

and deterministic service times. This is extended to multiple sources in [69]. Ref-

erences [70–72] consider variations of the single source system, such as randomly

arriving updates, update management and control, and nonlinear age metrics. [73]

introduces penalty functions to assess age dissatisfaction; and [74] shows that last-

come-first-serve policies are optimal in multi-hop networks.

Our work in Chapter 8 is most closely related to [75, 76], where age mini-

mization in single-user energy harvesting systems is considered; the difference of

these works from energy harvesting literature in [1–36] is that the objective is age

of information as opposed to throughput or transmission completion time, and the

difference of them from age minimization literature in [68–74] is that sending up-

dates incurs energy expenditure where energy becomes available intermittently. [75]

considers random service time (time for the update to take effect) and [76] considers
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zero service time; in our work here, we consider a fixed but non-zero service time.

We consider an energy harvesting two-hop network where a source is sending

information updates to a destination through a half-duplex relay. The source and the

relay use fixed communication rates. Thus, different from [75, 76], they both incur

fixed non-zero amounts of transmission delays to deliver their data. Our setting is

offline, and the objective is to minimize the total age of information received by the

destination within a given communication session time, subject to energy causality

constraints at the source and relay nodes, and data causality constraints at the

relay node. We first solve the single-hop version of this problem where the source

communicates directly to the destination, with non-zero update transmission delays,

extending the offline results in [76]; we observe that introducing non-zero update

transmission delays is equivalent to having minimum inter-update time constraints.

We then solve the two-hop problem; we first show that it is not optimal for the

source to send a new update before the relay finishes forwarding the previous ones,

i.e., the relay’s data buffer should not contain more than one update packet waiting

for service, otherwise earlier arriving packets become stale. Then, we show that

the optimal source transmission times are just in time for the relay to forward the

updates, i.e., it is not optimal to let an update wait in the relay’s data buffer after

being received; it must be directly forwarded. This contrasts the results in [12, 13]

that study throughput maximization in energy harvesting relay networks. In there,

throughput-optimal policies are separable in the sense that the source transmits the

most amount of data to the relay regardless of the relay’s energy harvesting profile.

In our case, the age-optimal policy is not separable; it treats the source and the
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relay nodes as one combined node that is communicating to the destination. Hence,

our single-hop results serve as a building block to find the solution of the two-hop

problem.

In Chapter 9, we draw conclusions for this dissertation.
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CHAPTER 2

Optimal Policies for Wireless Networks with Energy Harvest-

ing Transmitters and Receivers: Effects of Decoding Costs

2.1 Introduction

In this chapter, we consider the effects of decoding costs in energy harvesting com-

munication systems. In our setting, receivers, in addition to transmitters, rely solely

on energy harvested from nature, and need to spend some energy in order to decode

their intended packets. We model the decoding energy as an increasing convex func-

tion of the rate of the incoming data. In this setting, in addition to the traditional

energy causality constraints at the transmitters, we have the decoding causality con-

straints at the receivers, where energy spent by the receiver for decoding cannot

exceed its harvested energy. We first consider the point-to-point single-user prob-

lem where the goal is to maximize the total throughput by a given deadline subject

to both energy and decoding causality constraints. We show that decoding costs

at the receiver can be represented as generalized data arrivals at the transmitter,

and thereby moving all system constraints to the transmitter side. Then, we con-

sider several multi-user settings. We start with a two-hop network where the relay
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and the destination have decoding costs, and show that separable policies, where

the transmitter’s throughput is maximized irrespective of the relay’s transmission

energy profile, are optimal. Next, we consider the multiple access channel and the

broadcast channel where the transmitters and the receivers harvest energy from

nature, and characterize the maximum departure region. In all multi-user settings

considered, we decompose our problems into inner and outer problems. We solve

the inner problems by exploiting the structure of the particular model, and solve

the outer problems by water-filling algorithms.

2.2 Single-User Channel

As shown in Fig. 2.1, we have a transmitter and a receiver, both relying on energy

harvested from nature. The time is slotted, and at the beginning of time slot

i ∈ {1, . . . , N}, energies arrive at a given node ready to be used in the same slot

or saved in a battery to be used in future slots. Let {Ei}Ni=1 and {Ēi}Ni=1 denote

the energies harvested at each slot for the transmitter and the receiver, respectively,

and let {pi}Ni=1 denote the transmitter’s powers.

Without loss of generality, we assume that the time slot duration is normalized

to one time unit. The physical layer is a Gaussian channel with zero-mean unit-

variance noise. The objective is to maximize the total amount of data received and

decoded by the receiver by the deadline N . Our setting is offline in the sense that

all energy amounts are known prior to transmission.

The receiver must be able to decode the kth packet by the end of the kth
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Figure 2.1: Single-user channel with an energy harvesting transmitter and an energy
harvesting receiver.

slot. A transmitter transmitting at power pi in the ith time slot will send at a

rate g(pi) , 1
2

log2 (1 + pi), for which the receiver will spend φ(g(pi)) amount of

power to decode, where φ is generally an increasing convex function [37, 38, 42–45].

In the sequel, we will also focus on the specific cases of linear and exponential

functions, where φ(r) = ar + b, with a, b ≥ 0, and φ(r) = c2dr + e, with c, d ≥ 0

and c+ e ≥ 0. Continuing with a general convex increasing function φ, we have the

following decoding causality constraints for the receiver:

k∑
i=1

φ(g(pi)) ≤
k∑
i=1

Ēi, k = 1, . . . , N (2.1)

Therefore, the overall problem is formulated as:

max
p

N∑
i=1

g(pi)

s.t.
k∑
i=1

pi ≤
k∑
i=1

Ei, ∀k

k∑
i=1

φ(g(pi)) ≤
k∑
i=1

Ēi, ∀k (2.2)
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where p denotes the vector of powers. Note that the problem above in general is

not a convex optimization problem as (2.1) in general is a non-convex constraint

since φ is a convex function while g is a concave function [77]. Applying the change

of variables g(pi) = ri, and defining f , g−1 (note that f is a convex function), we

have

max
r

N∑
i=1

ri

s.t.
k∑
i=1

f(ri) ≤
k∑
i=1

Ei, ∀k

k∑
i=1

φ(ri) ≤
k∑
i=1

Ēi, ∀k (2.3)

which is now a convex optimization problem [77].

We note that the constraints in (2.3), i.e.,
∑k

i=1 φ(ri) ≤
∑k

i=1 Ēi, place upper

bounds on the rates of the transmitter by every slot k. This resembles the problem

addressed in [1] with data packet arrivals during the communication session. In fact,

when φ(r) = r and Ēi = bi, where bi is the amount of data arriving in slot i, these

are exactly the data arrival constraints in [1]. A general convex φ generalizes this

data arrival constraint. We characterize the solution of (2.3) in the following three

lemmas and the theorem. The proofs rely on the convexity of f and φ generalizing

the proof ideas in [1].

Lemma 2.1 The optimal {r∗i } is monotonically increasing.

Proof: Assume that there exists a time slot k such that r∗k > r∗k+1, and consider

20



a new policy obtained by replacing both r∗k and r∗k+1 by r̂k = r̂k+1 ,
r∗k+r∗k+1

2
, and

observe that from the convexity of f and φ, we have

f(r̂k) + f(r̂k+1) ≤ f(r∗k) + f(r∗k+1) (2.4)

φ(r̂k) + φ(r̂k+1) ≤ φ(r∗k) + φ(r∗k+1) (2.5)

In addition, since both f and φ are monotonically increasing, we have f (r̂k) ≤ f (r∗k),

and φ (r̂k) ≤ φ (r∗k). Therefore, the new policy is feasible, and can only save some

energy either at the transmitter or at the receiver. This saved energy can be used

to increase the rates in the upcoming time slots. Thus, the original policy cannot

be optimal. �

Lemma 2.2 In the optimal policy, whenever the rate changes in a time slot, at least

one of the following events occur: 1) the transmitter consumes all of its harvested

energy in transmission, or 2) the receiver consumes all of its harvested energy in

decoding, up to that time slot.

Proof: Assume not, i.e., r∗k < r∗k+1 but both the transmitter and the receiver did

not consume all their energies in the kth time slot. Then, we can always increase r∗k

and decrease r∗k+1 without conflicting the energy causality or the decoding causality

constraints. By the convexity of f and φ, this modification would save some energy

that can be used to increase the rates in the upcoming time slots. Therefore, the

original policy cannot be optimal. �

Lemma 2.3 In the optimal policy, by the end of the transmission period, at least
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one of the following events occur: 1) the transmitter’s total power consumption in

transmission is equal to its total harvested energy, or 2) the receiver’s total power

consumption in decoding is equal to its total harvested energy.

Proof: Assume that both conditions are not met. Then, we can increase the rate

in the last time slot until either the transmitter, or the receiver, consumes all of its

energy. This is always feasible and strictly increases the rate. �

Theorem 2.1 Let ψ , φ−1. A policy is optimal iff it satisfies the following

rn = min

{
g

(∑in
j=1Ej −

∑in−1

j=1 f(rj)

in − in−1

)
, ψ

(∑in
j=1 Ēj −

∑in−1

j=1 φ(rj)

in − in−1

)}
(2.6)

where

in = arg min
in−1<i≤N

{
g

(∑i
j=1Ej −

∑in−1

j=1 f(rj)

i− in−1

)
, ψ

(∑i
j=1 Ēj −

∑in−1

j=1 φ(rj)

i− in−1

)}

(2.7)

with i0 = 0, and n = 1, . . . , N .

Proof: First, we prove that the optimal policy satisfies (2.6) and (2.7). We show this

by contradiction. Let us assume that the optimal policy, that satisfies the necessary

lemmas above, is not given by (2.6) and (2.7) and achieves a higher throughput. In

particular, let us assume that it coincides with the policy given by (2.6) and (2.7)

for all rates {ri}n−1
i=1 but has a different value for rn. Let us denote the points of rate

increase of this policy by {ik}. Thus, there must exist a time index i′ > in−1 such
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that

rn > min

{
g

(∑i′

j=1Ej −
∑in−1

j=1 f(rj)

i′ − in−1

)
, ψ

(∑i′

j=1 Ēj −
∑in−1

j=1 φ(rj)

i′ − in−1

)}
(2.8)

and let us consider two different cases.

Assume that i′ < in. If the transmitter’s energy is the bottleneck at i′, then

rn cannot be supported by the transmitter. On the other hand, if the receiver’s

energy is the bottleneck at i′, then rn cannot be supported by the receiver. Hence,

rn is not feasible in both cases. Now, assume that i′ > in. Then, there will exist a

duration ⊆ [in + 1, i′] where the rate has to decrease in order to satisfy feasibility.

This violates the monotonicity property, and hence cannot be optimal.

Second, let us show sufficiency. We show this again by contradiction. Let us

assume that the policy that satisfies (2.6) and (2.7) is not optimal. In particular,

let us assume that there exists another policy {r′i} that coincides with it for all

rates {ri}n−1
i=1 but has a different value for rn. Since this new policy should have

higher throughput, we have r′n > rn. Now, assume i′n > in. Then, clearly r′n is not

feasible in the duration [in−1 + 1, in]. On the other hand, if i′n < in, then by the

monotonicity property, all upcoming rates {r′i} for i > i′n can only be larger than

r′n, which are all larger than rn. This makes the new policy infeasible by the end of

slot in since rn consumes all feasible energy according to (2.6) and (2.7). Thus, the

original policy is optimal. �

Theorem 2.1 shows that decoding costs at the receiver are similar in effect to

having a single-user channel with data arrivals during transmission and no decoding

23



data buffer

energy
buffer
energy

buffer
energy

S

Ei

D

Ēi
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Figure 2.2: Decoding costs viewed as a virtual relay.

costs. This stems from the fact that the transmitter has to adapt its powers (and

rates) in order to meet the decoding requirements at the receiver. Therefore, the

receiver’s harvested energies and the function φ control the amount of data the

transmitter can send by any given point in time.

Alternatively, we can slightly change the single-user problem (2.3) by adding

an extra variable r̄i as follows

max
r,r̄

N∑
i=1

r̄i

s.t.
k∑
i=1

f(ri) ≤
k∑
i=1

Ei, ∀k

k∑
i=1

φ(r̄i) ≤
k∑
i=1

Ēi, ∀k

r̄i ≤ ri, ∀i (2.9)

This gives the same solution as we will always have r̄∗i = r∗i satisfied for all i.

Therefore, as shown in Fig. 2.2, we can view the single-user setting with an energy

harvesting receiver, as a two-hop setting with a virtual relay between the transmitter

and the receiver, with a non-energy harvesting receiver. To this end, we separate the
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decoding costs of the receiver, which are subject to energy harvesting constraints,

as a relay which is subject to energy harvesting constraints in its transmissions, and

consider the receiver as fully powered [12–17]. The receiver will only receive data

if the relay has sufficient energy to forward it. In addition, this energy harvesting

virtual relay has no data buffer, thus, its incoming data rate equals its outgoing

data rate. The rate through this relay is controlled by Ēi and φ. Thus, the de-

coding function φ puts a generalized energy arrival effect to this virtual relay, in a

similar way that it puts a generalized data arrival effect to the transmitter through

Theorem 2.1, as shown in Fig. 2.1.

It is worth mentioning that if we consider the special case where the receiver

has no battery to store its energy, this will lead to the following decoding causality

constraint

φ(g(pi)) ≤ Ēi, i = 1, . . . , N (2.10)

which, in view of the generalized data arrival interpretation, can be modeled as a

time-varying upper bound on the transmitter’s power in each slot

pmax
i , f

(
ψ
(
Ēi
))

(2.11)

where ψ(Ēi) is the maximum transmission rate of a packet that Ēi can handle at

the decoder, and pmax
i denotes its corresponding maximum transmit power. This

problem has been considered in the general framework of [78], and in [6] for the spe-
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Figure 2.3: Two-hop energy harvesting system with both relay and destination
decoding costs.

cial case of a constant maximum power constraint. One solution for this problem

is to apply a backward water-filling algorithm that starts from the last slot back-

wards, where at each slot directional water-filling [3] is applied only on slots whose

maximum power constraint is not satisfied with equality. This might cause some

wastage of water if the maximum power constraints are tighter than the transmit-

ter’s energy causality constraints, which depends primarily on how the function φ

relates the transmitter’s and the receiver’s energies.

2.3 Two-Hop Network

We now consider a two-hop network consisting of a single source-destination pair

communicating through a relay, as depicted in Fig. 2.3. The relay is full duplex,

and it uses a decode-and-forward protocol. The relay has a data buffer to receive

its incoming packets from the source. At the beginning of slot i, energies in the

amounts of Ei, Ẽi, and Ēi arrive at the source, relay, and destination, respectively.

Unused energies can be saved in their respective batteries.

Let ri and r̃i be the rates of the source and the relay, respectively, in slot
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i. Our goal is to maximize the total amount of data received and decoded at the

destination by the deadline N . We impose decoding costs on both the relay and the

destination. The problem is formulated as:

max
r,r̃

N∑
i=1

r̃i

s.t.
k∑
i=1

f (ri) ≤
k∑
i=1

Ei, ∀k

k∑
i=1

φ (ri) + f (r̃i) ≤
k∑
i=1

Ẽi, ∀k

k∑
i=1

r̃i ≤
k∑
i=1

ri, ∀k

k∑
i=1

φ (r̃i) ≤
k∑
i=1

Ēi, ∀k (2.12)

where the first constraint in (2.12) is the source transmission energy causality con-

straint, the second one is the relay decode-and-forward causality constraint, the third

one is the data causality constraint at the relay, and the last one is the destination

decoding causality constraint.

We first note that that if the relay did not have a data buffer, the source and

the relay rates will need to be equal, i.e., r̃i = ri for all i. In this case, the problem

reduces to be a problem only in terms of the source rates, and could be solved by

straightforward generalization of the single-user result in Theorem 2.1 considering

three constraints instead of two. In a sense, this would be equivalent to taking the

effects of decode-and-forward causality at the relay and decoding causality at the

receiver back to the source as two different generalized data arrival effects. This can
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be further extended to multi-hop networks with relays having no data buffers by

taking their constraint effects all the way back to the source.

In our setting, having a data buffer at the relay imposes non-obvious relation-

ships among the source and the relay rates. To tackle this issue, we decompose

the problem into inner and outer problems. In the inner problem, we solve for the

source and relay rates after fixing a decoding power strategy for the relay node. By

that we mean choosing the amounts of powers, {δi}Ni=1, the relay dedicates to de-

coding its incoming source packets. These amounts need to be feasible in the sense

that
∑k

i=1 δi ≤
∑k

i=1 Ẽi, ∀k. This decomposes the decode-and-forward causality

constraint into the following two constraints:

k∑
i=1

φ (ri) ≤
k∑
i=1

δi,
k∑
i=1

f (r̃i) ≤
k∑
i=1

Ẽi − δi, ∀k (2.13)

In the next lemmas and theorem, we characterize the solution of the inner problem.

The proofs of the lemmas are extensions of the ones presented in [13] to the case of

generalized data arrivals.

Lemma 2.4 There exists an optimal increasing source rate policy for the inner

problem.

Proof: Assume that there exists a time slot k where rk > rk+1. We have two cases

to consider. First, assume r̃k > r̃k+1. Let us define a new policy by replacing the

kth and k+1st source and relay rates by r′ , rk+rk+1

2
, and r̃′ , r̃k+r̃k+1

2
, respectively.

By the convexity of f and φ, and linearity of the data causality constraint, the new
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policy is feasible, and can only save some energy at the source or the relay. This

energy can be used in later slots to achieve higher rates.

Now, assume r̃k ≤ r̃k+1. We argue that the data arrival causality constraint

is satisfied with strict inequality at time slot k. For if it were equality, we need to

have r̃k ≥ rk and r̃k+1 ≤ rk+1, which leads to rk ≤ r̃k ≤ r̃k+1 ≤ rk+1, an obvious

contradiction. Now, we can find a small enough ε > 0, such that defining a new

policy by replacing the kth and k+1st source rates by rk−ε and rk+1+ε, respectively,

we do not affect the relay rates. By the convexity of f and φ, the new policy is

feasible, and can only save some energy at the source. This energy can be used in

later slots to send more data to the relay, and hence, possibly increasing the relay

rates, and the end-to-end throughput. �

Lemma 2.5 The optimal increasing source rate policy for the inner problem {r∗i } is

given by the single-user problem solution in (2.6) and (2.7), where the transmitter’s

and the receiver’s energies are given by {Ei} and {δi}, respectively.

Proof: Let us denote the single-user solution by {r′i}. Assume for contradiction

that it is not optimal for the inner problem. In particular, let {r∗i } and {r′i} be

equal for i = 1, . . . , k − 1, and differ on the kth slot. We again have two cases to

consider. First, assume r∗k > r′k. In this case, since by Lemma 2.4, {r∗i } is increasing,

by similar arguments as in the proof of Theorem 2.1, the policy {r∗i } will eventually

not satisfy the source’s energy causality or the relay’s decoding causality constraints,

at some time slot j ≥ k. Hence, it cannot be optimal.

Now, assume r∗k < r′k. We argue that this shrinks the feasible set of the relay’s
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rates. We show this by induction. By assumption of this case, it is true at time slot

k, that we have
∑k

i=1 r
∗
i <

∑k
i=1 r

′
i. Now, assume it is true that for some time slot

j > k we have
∑j

i=1 r
∗
i <

∑j
i=1 r

′
i, and consider the j + 1st time slot. If r∗j+1 > r′j+1,

then we are back to the previous case where this cannot be feasible eventually.

Therefore, the feasible set of the relay’s rates shrinks at time slot j + 1, and hence,

shrinks all over k, . . . , N . Thus, this case cannot be optimal either. �

Lemma 2.5 states that the optimal source policy is separable [12, 13] in the

sense that the source maximizes its throughput to the relay irrespective of how the

relay spends its transmission energy. This stems from the fact that the relay has

an infinite data buffer to store its incoming source packets. Therefore, once we fix

a decoding power strategy at the relay, we get separability. The following theorem,

which is an extended version of Theorem 2.1, gives the optimal relay rates for the

inner problem. The proof is similar to that of Theorem 2.1 and is omitted for brevity.

Theorem 2.2 Given the optimal source rates {r∗i }, the optimal relay rates for the

inner problem is given by

r̃∗n = min

{
g

(∑in
j=1 Ẽj − δj −

∑in−1

j=1 f(r̃∗j )

in − in−1

)
,

ψ

(∑in
j=1 Ēj −

∑in−1

j=1 φ(r̃∗j )

in − in−1

)
,

∑in
j=1 r

∗
j −

∑in−1

j=1 r
∗
j

in − in−1

}
(2.14)

where in is the arg min of the expression in (2.14) as in (2.6)-(2.7), and i0 = 0.

Denoting the solution of the inner problem by R(δ), we now find the optimal
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relay decoding strategy {δ∗i } by solving the following outer problem:

max
δ

R(δ)

s.t.
k∑
i=1

δi ≤
k∑
i=1

Ẽi, ∀k (2.15)

We have the following lemma regarding the outer problem.

Lemma 2.6 R(δ) is a concave function.

Proof: Consider two decoding power strategies δ1, δ2, and let {r1, r̃1}, {r2, r̃2} be

their corresponding source and relay optimal inner problem rates, respectively. Let

δθ , θδ1 + (1 − θ)δ2, for some 0 ≤ θ ≤ 1, and consider the rate policy defined

by rθ , θr1 + (1 − θ)r2, and r̃θ , θr̃1 + (1 − θ)r̃2, for the source, and the relay,

respectively. By the convexity of f and φ, the policy {rθ, r̃θ} is feasible for the

decoding strategy δθ. Therefore, we have

R(δθ) ≥
N∑
i=1

r̃θi = θR(δ1) + (1− θ)R(δ2) (2.16)

proving the concavity of R(δ). �

Therefore, the outer problem is a convex optimization problem [77]. We pro-

pose a water-filling algorithm to solve the outer problem [20]. We first note that

R(δ) does not possess any monotonicity properties in the feasible region. For in-

stance, R(Ẽ) = R(0) = 0, while R(δ) is strictly positive for some δ in between.

Thus, at the optimal relay decoding power strategy, not all the relay’s decoding

31



energy will be exhausted. To this end, we add an extra N + 1st slot where we can

possibly discard some energy. We start by filling up each slot by its corresponding

energy/water level and we leave the extra N + 1st slot initially empty. Meters are

put in between bins to measure the amount of water passing. We let water flow to

the right only if this increases the objective function. After each iteration, water

can be called back if this increases the objective function. All the amount of water

that is in the extra slot is eventually discarded, but may be called back also dur-

ing the iterations. Since with each water flow the objective function monotonically

increases, problem feasibility is maintained throughout the process, and due to the

convexity of the problem, the algorithm converges to the optimal solution.

2.4 Multiple Access Channel

We now consider a two-user Gaussian MAC as shown in Fig. 2.4. The two transmit-

ters harvest energy in amounts {E1i}Ni=1 and {E2i}Ni=1, respectively, and the receiver

harvests energy in amounts
{
Ēi
}N
i=1

. The receiver noise is with zero-mean and

unit-variance. The capacity region for this channel is given by [49]:

r1 ≤ g(p1)

r2 ≤ g(p2)

r1 + r2 ≤ g(p1 + p2) (2.17)
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Figure 2.4: Two-user MAC with energy harvesting transmitters and receiver.

where p1 and p2 are the powers used by the first and the second transmitter, respec-

tively.

In addition to the usual energy harvesting causality constraints on the trans-

mitters [5], we impose a receiver decoding cost. We note that there can be different

ways to impose this constraint depending on how the receiver employs the decoding

procedure. In the next two sub-sections, we consider two kinds of decoding proce-

dures, namely, simultaneous decoding, and successive decoding [46, 49]. Changing

the decoding model affects the optimal power allocation for both users so as to adapt

to how the receiver spends its power.

2.4.1 Simultaneous Decoding

In this case, the two transmitters can only send at rates whose sum can be decoded

at the receiver. A power control policy {p1i, p2i}Ni=1 is feasible if the following are
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satisfied:

k∑
i=1

p1i ≤
k∑
i=1

E1i, ∀k

k∑
i=1

p2i ≤
k∑
i=1

E2i, ∀k

k∑
i=1

φ (g (p1i + p2i)) ≤
k∑
i=1

Ēi, ∀k (2.18)

From here on, we assume a specific structure for the decoding function φ for math-

ematical tractability and ease of presentation. In particular, we assume that it is

exponential with parameters c = 1, d = 2 and e = −1, i.e., φ(r) = g−1(r) = 22r − 1.

Let Bj denote the total departed bits from the jth user by time slot N . Our aim is

to characterize the maximum departure region, D(N), which is the region of (B1, B2)

the transmitters can depart by time slot N , through a feasible policy. The following

lemmas characterize this region [5].

Lemma 2.7 The maximum departure region, D(N), is the union of all (B1, B2),

over all feasible policies {p1i, p2i}Ni=1, where for any fixed power policy, (B1, B2) sat-

isfy

B1 ≤
N∑
i=1

g(p1i)

B2 ≤
N∑
i=1

g(p2i)

B1 +B2 ≤
N∑
i=1

g(p1i + p2i) (2.19)
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Figure 2.5: Departure region of a two-user MAC.

Lemma 2.8 D(N) is a convex region.

Each point on the boundary of D(N), see Fig. 2.5, can be characterized by

solving a weighted sum rate maximization problem subject to feasibility conditions

(2.18). Let µ1 and µ2 be the non-negative weights for the first and the second user

rates, respectively. Assuming without loss of generality that µ1 > µ2, and defining

µ , µ2
µ1−µ2 , we then need to solve the following optimization problem:

max
p1,p2

N∑
i=1

g(p1i) + µ
N∑
i=1

g(p1i + p2i)

s.t.
k∑
i=1

p1i ≤
k∑
i=1

E1i, ∀k

k∑
i=1

p2i ≤
k∑
i=1

E2i, ∀k

k∑
i=1

p1i + p2i ≤
k∑
i=1

Ēi, ∀k (2.20)
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We note that the above problem resembles the one formulated in [20] for a diamond

channel with energy cooperation. First, we state a necessary condition of optimality

for the above problem.

Lemma 2.9 In the optimal solution for (2.20), by the end of the transmission pe-

riod, at least one of the following occur: 1) both transmitters consume all of their

harvested energies in transmission, or 2) the receiver consumes all of its harvested

energy in decoding.

Proof: Assume without loss of generality that transmitter 1 does not consume all

of its energies in transmission, and that the receiver also does not consume all of

its energies in decoding. Then, we can always increase the value of p1N until either

transmitter 1 or the receiver consume their energies. This strictly increases the

objective function. �

We decompose the optimization problem (2.20) into two nested problems.

First, we solve for p2 in terms of p1, and then solve for p1. Let us define the

following inner problem:

G(p1) , max
p2

N∑
i=1

g(p1i + p2i)

s.t.
k∑
i=1

p2i ≤
k∑
i=1

Qi, ∀k (2.21)

where the modified energy levels Qi are defined as follows:

Qi = Mi −Mi−1,
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Mi = min

{
i∑

j=1

E2j,

i∑
j=1

Ēj − p1j

}
, M0 = 0 (2.22)

Then, we have the following lemma.

Lemma 2.10 G(p1) is a decreasing concave function in p1.

Proof: G is a decreasing function of p1 since the feasible set shrinks with p1. To

show concavity, let us choose two points p
(1)
1 and p

(2)
1 , and take their convex com-

bination pθ1 = θp
(1)
1 + (1 − θ)p

(2)
1 for some 0 ≤ θ ≤ 1. Let p

(1)
2 and p

(2)
2 denote

the solutions of the inner problem (2.21) at p
(1)
1 and p

(2)
1 , respectively. Now, let

pθ2 , θp
(1)
2 + (1− θ)p(2)

2 , and observe that, from the linearity of the constraint set,

pθ2 is feasible with respect to pθ1. Therefore, we have

G
(
pθ1
)
≥

N∑
i=1

g
(
pθ1i + pθ2i

)
≥

N∑
i=1

θg
(
p

(1)
1i + p

(1)
2i

)
+ (1− θ)g

(
p

(2)
1i + p

(2)
2i

)
= θG

(
p

(1)
1

)
+ (1− θ)G

(
p

(2)
1

)
(2.23)

where the second inequality follows from the concavity of g. �

We observe that the inner problem (2.21) is a single-user energy harvesting

maximization problem with fading, whose solution is via directional water-filling of

{Qi}Ni=1 over the inverse of the fading levels {1 + p1i}Ni=1 as presented in [3]. Next,
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we solve the outer problem given by:

max
p1

µG (p1) +
N∑
i=1

g(p1i)

s.t.
k∑
i=1

p1i ≤
k∑
i=1

Ti, ∀k (2.24)

where we define the water levels Ti = Li−Li−1, with Li = min
{∑i

j=1E1j,
∑i

j=1 Ēj

}
,

and L0 = 0. The minimum is added to ensure the feasibility of the inner problem.

Note that, by Lemma 2.10, the outer problem is a convex optimization problem [77].

We first note that at the optimal policy, first user’s modified energies {Ti} need not

be fully utilized by the end of transmission. This is because the objective function

is not increasing in p1. To this end, we use the iterative water-filling algorithm for

the outer problem proposed in Section 2.3 to solve this outer problem. Since the

problem is convex, iterations converge to the optimal solution.

Note that the above formulation obtains the dotted points in the curved por-

tion of the departure region in Fig. 2.5. Specific points in the departure region, e.g.,

points 1 and 3 in Fig. 2.5, can be found by specific schemes [79], by solving the

problem for the cases µ1 = µ2 and µ1µ2 = 0.

2.4.2 Successive Cancelation Decoding

We now let the receiver employ successive decoding, where it aims at decoding the

corner points, and then uses time sharing if necessary to achieve the desired rate

pair [46, 49]. For instance, if the system is operating at its lower corner point, then
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the receiver first decodes the message of the second user, by treating the first user’s

signal as noise, then decodes the message of the first user, after subtracting the

second user’s signal from its received signal. For µ1 > µ2, we are always at a lower

corner point at every time slot, and therefore the weighted sum rate maximization

problem can be formulated as:

max
p1,p2

µ1

N∑
i=1

g(p1i) + µ2

N∑
i=1

g

(
p2i

1 + p1i

)

s.t.
k∑
i=1

p1i ≤
k∑
i=1

E1i, ∀k

k∑
i=1

p2i ≤
k∑
i=1

E2i, ∀k

k∑
i=1

p1i +
p2i

1 + p1i

≤
k∑
i=1

Ēi, ∀k (2.25)

where the last inequality comes from the fact that the receiver is decoding the second

user’s message first by treating the first user’s signal as noise, and thereby spends

φ
(
g
(

p2i
1+p1i

))
amount of energy to decode this message, and then spends φ (g (p1i))

amount of energy to decode the first user’s message after subtracting the second

user’s signal.

Observe that the last constraint, i.e., the decoding causality constraint, is non-

convex. Therefore, one might need to invoke the time-sharing principle in order to

fully characterize the boundary of the maximum departure region. In terms of the
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rates the problem can be written as:

max
r1,r2

µ1

N∑
i=1

r1i + µ2

N∑
i=1

r2i

s.t.
k∑
i=1

22r1i − 1 ≤
k∑
i=1

E1i, ∀k

k∑
i=1

22r1i
(
22r2i − 1

)
≤

k∑
i=1

E2i, ∀k

k∑
i=1

22r1i + 22r2i − 2 ≤
k∑
i=1

Ēi, ∀k (2.26)

which is a non-convex problem due to the second user’s energy causality constraint.

In fact, the above problem is a signomial program, a generalized form of a geometric

program, where posynomials can have negative coefficients [77]. Next, we use the

idea of successive convex approximation [47] to provide an algorithm that converges

to a local optimal solution.

By applying the change of variables xji , 22rji−1, j = 1, 2, and some algebraic

manipulations:

min
x1,x2,t1,t2

N∑
i=1

t−µ11i t−µ22i

s.t.
k∑
i=1

x1i ≤
k∑
i=1

E1i, ∀k

k∑
i=1

(1 + x1i)x2i ≤
k∑
i=1

E2i, ∀k

k∑
i=1

x1i + x2i ≤
k∑
i=1

Ēi, ∀k

t1i ≤ 1 + x1i, ∀i
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t2i ≤ 1 + x2i, ∀i (2.27)

Now, the problem looks very similar to a geometric program except for the

last two sets of constraints. These constraints are written in the form of a monomial

less than a posynomial, which will not allow us to write the problem in convex

form by the usual geometric programming transformations [77]. We will follow an

approach introduced in [48] in order to iteratively approximate the posynomials on

the right hand side by monomials, and thereby reaching a geometric program that

can be efficiently solved [77]. Approximations should be chosen carefully such that

iterations converge to a local optimum solution of the original problem [47]. Towards

that, we use the arithmetic-geometric mean inequality to write:

1 + x ≥
(

1

α

)α(
x

1− α

)1−α

, u(x;α) (2.28)

which holds for 0 ≤ α ≤ 1. In particular, equality holds at a point xk ≥ 0 if

we choose α = 1
1+xk

. Therefore, the monomial function u(x;αk) approximates the

posynomial function 1 + x at x = xk. Substituting this approximation, we obtain

that at the k + 1st iteration, we need to solve the following geometric program:

min
x1,x2,t1,t2

N∑
i=1

t−µ11i t−µ22i

s.t.
k∑
i=1

x1i ≤
k∑
i=1

E1i, ∀k

k∑
i=1

(1 + x1i)x2i ≤
k∑
i=1

E2i, ∀k
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k∑
i=1

x1i + x2i ≤
k∑
i=1

Ēi, ∀k

t1i

u
(
x1i;α

(k)
1i

) ≤ 1, ∀i

t2i

u
(
x2i;α

(k)
2i

) ≤ 1, ∀i (2.29)

where α
(k)
ji ,

1

1+x
(k)
ji

, j = 1, 2, and x
(k)
ji is the solution of the kth iteration. We

pick an initial feasible point
(
x

(0)
1 ,x

(0)
2

)
and run the iterations. The choice of the

approximating monomial function u satisfies the conditions of convergence stated

in [47], and therefore, the iterative solution of problem (2.29) converges to a point

(x∗1,x
∗
2) that is local optimal for problem (2.25). Finally, we get the original power

allocations by substituting p∗1i = x∗1i, and p∗2i = (x∗1i + 1)x∗2i.

2.5 Broadcast Channel

We now consider a two-user Gaussian BC with energy harvesting transmitter and

receivers as shown in Fig. 2.6. Energies arrive in amounts Ei, Ē1i, and Ē2i, at the

transmitter, and the receivers 1 and 2, respectively. By superposition coding [49],

the weaker user is required to decode its message while treating the stronger user’s

interference as noise. While the stronger user is required to decode both messages

successively by first decoding the weaker user’s message, and then subtracting it to

decode its own. The receiver noises have variances 1 and σ2 > 1.

42



B2 S

Ei

D2
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Figure 2.6: Two-user BC with energy harvesting transmitter and receivers.

Under a total transmit power P , the capacity region of the Gaussian BC is [49]:

r1 ≤
1

2
log2 (1 + αP ) , r2 ≤

1

2
log2

(
1 +

(1− α)P

αP + σ2

)
(2.30)

working on the boundary of the capacity region we have:

P =
(
σ2 − 1

)
22r2 + 22(r1+r2) − σ2 , F (r1, r2) (2.31)

where F (r1, r2) is the minimum power needed by the transmitter to achieve rates r1

and r2. Note that F is an increasing convex function of both rates.

As in the MAC case, the goal here is to characterize the maximum departure

region:

max
r1,r2

µ1

N∑
i=1

r1i + µ2

N∑
i=1

r2i

s.t.
k∑
i=1

F (r1i, r2i) ≤
k∑
i=1

Ei, ∀k
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k∑
i=1

φ(r1i + r2i) ≤
k∑
i=1

Ē1i, ∀k

k∑
i=1

φ(r2i) ≤
k∑
i=1

Ē2i, ∀k (2.32)

where the first constraint in (2.32) is the source transmission energy causality con-

straint, and second and third constraints are the decoding causality constraints at

the stronger and weaker receivers, respectively. Here also, we take the decoding cost

function φ to be φ(r) = 22r − 1.

By virtue of superposition coding, we see that, in the optimization problem in

(2.32), the decoding causality constraint of the stronger user is a function of both

rates intended for the two users, as it is required to decode both messages. While

the decoding causality constraint for the weaker user is a function of its own rate

only. By the convexity of F and φ, the maximum departure region is convex, and

thus the weighted sum rate maximization in (2.32) is sufficient to characterize its

boundary [7]. In addition, the optimization problem in (2.32) is convex [77].

We note that a related problem has been considered in [10], where the authors

characterized transmission completion time minimization policies for a BC setting

with data arrivals during transmission. There, the solution is found by sequentially

solving an equivalent energy consumption minimization problem until convergence.

Their solution is primarily dependent on Newton’s method [77]. Some structural

insights are also presented about the optimal solution. In our setting, we consider

the case with receiver side decoding costs, and generalize the data arrivals concept

by considering the convex function φ. In addition, our formulation imposes further
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interactions between the strong and the weak user’s data, by allowing a constraint

(strong user’s) that is put on the sum of both rates, instead of on individual rates.

We characterize the solution of the problem according to the relation between

µ1 and µ2 as follows. If µ1 ≥ µ2, then due to the degradedness of the second user,

it is optimal to put all power into the first user’s message. This way, the problem

reduces to a single-user problem:

max
r1

N∑
i=1

r1i

s.t.
k∑
i=1

22r1i − 1 ≤
k∑
i=1

Wi, ∀k (2.33)

where the modified energy levels {Wi} are defined as follows:

Wi = Li − Li−1,

Li = min

{
i∑

j=1

Ej,
i∑

j=1

Ē1j

}
, L0 = 0 (2.34)

On the other hand, if µ1 < µ2, then we need to investigate the necessary

KKT optimality conditions [77]. We write the Lagrangian for the problem (2.32) as

follows:

L =− µ1

N∑
i=1

r1i − µ2

N∑
i=1

r2i

+
N∑
i=1

λi

(
i∑

j=1

(
σ2 − 1

)
22r2j + 22(r1j+r2j) − σ2 − Ej

)

+
N∑
i=1

ν1i

(
i∑

j=1

22(r1j+r2j) − 1− Ē1j

)
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+
N∑
i=1

ν2i

(
i∑

j=1

22r2j − 1− Ē2j

)

−
N∑
i=1

η1ir1i −
N∑
i=1

η2ir2i (2.35)

Taking the derivative with respect to r1i and r2i and equating to zero, we obtain:

22(r1i+r2i) =
µ1 + η1i∑N
j=i λj + ν1j

(2.36)

22r2i =
µ2 − µ1 + η2i − η1i∑N
j=i(σ

2 − 1)λj + ν2j

(2.37)

along with the complementary slackness conditions:

λi

(
i∑

j=1

(
σ2 − 1

)
22r2j + 22(r1j+r2j) − σ2 − Ej

)
= 0, ∀i

ν1i

(
i∑

j=1

22(r1j+r2j) − 1− Ē1j

)
= 0, ∀i

ν2i

(
i∑

j=1

22r2j − 1− Ē2j

)
= 0, ∀i

η1ir1i = 0, η2ir2i = 0, ∀i (2.38)

From here, we state the following lemmas

Lemma 2.11 The sum rate {r∗1i + r∗2i} is monotonically increasing.

Proof: We prove this by contradiction. Assume that there exists some time slot k

such that r1k + r2k > r1(k+1) + r2(k+1). From (2.36), since the denominator cannot

increase, the numerator has to decrease for the sum rate to decrease, i.e., η1k >
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η1(k+1) ≥ 0. From complementary slackness, we must have r1k = 0. Therefore, in

order for the sum rate to decrease we must have r2k > r2(k+1), which in turn leads

to η2k = 0.

From (2.37), we know that for the weak user’s rate to decrease, the numerator

has to decrease, i.e., we must have η2(k+1) − η1(k+1) < η2k − η1k. Since η2k = 0, this

is equivalent to having η2(k+1) < η1(k+1) − η1k. However, we know from above that

η1k > η1(k+1), i.e., η2(k+1) < 0, an obvious contradiction by non-negativity of the

Lagrange multipliers. �

Lemma 2.12 The weak user’s rate {r∗2i} is monotonically increasing.

Proof: We also prove this by contradiction. Assume that there exists some time slot

k such that r2k > r2(k+1). From (2.37), since the denominator cannot increase, the

numerator has to decrease for the weak user’s rate to decrease, i.e., η2(k+1)−η1(k+1) <

η2k−η1k. Let us consider two different cases. First, assume η1k ≥ η1(k+1). Therefore,

we must have η2k > η2(k+1) + (η1k − η1(k+1)) ≥ 0, and thus, by complementary

slackness, r2k = 0, and hence, r2(k+1) cannot be less since it cannot drop below zero.

Now, assume η1k < η1(k+1). In this case, by complementary slackness, r1(k+1) =

0. By Lemma 2.11, we have r1k + r2k ≤ r2(k+1), i.e., r2(k+1) ≥ r2k, which is a

contradiction. �

With the change of variables: pti , 22(r1i+r2i) − 1, and p2i , 22r2i − 1, (2.32)

becomes:

max
pt,p2

µ1

N∑
i=1

g (pti) + (µ2 − µ1)
N∑
i=1

g (p2i)
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s.t.
k∑
i=1

(σ2 − 1)p2i + pti ≤
k∑
i=1

Ei, ∀k

k∑
i=1

pti ≤
k∑
i=1

Ē1i, ∀k

k∑
i=1

p2i ≤
k∑
i=1

Ē2i, ∀k

pti ≥ p2i, ∀i (2.39)

We now decompose the above problem into an inner and an outer problem

and iterate between them until convergence. First, we fix the value of p2, and solve

the following inner problem:

H(p2) , max
pt

N∑
i=1

g(pti)

s.t.
k∑
i=1

pti ≤
k∑
i=1

Vi, ∀k

pti ≥ p2i, ∀i (2.40)

where the modified energy levels Vi are defined as follows

Vi = Bi −Bi−1,

Bi = min

{
i∑

j=1

Ē1j,
i∑

j=1

Ej − (σ2 − 1)p2j

}
, B0 = 0 (2.41)

We have the following lemma for this inner problem whose proof is similar to that

of Lemma 2.10.

Lemma 2.13 H(p2) is a decreasing concave function in p2.
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We note that the p2 vector serves as a minimum power constraint to the inner

problem. Let us write the Lagrangian for the inner problem:

L =−
N∑
i=1

g(pti) +
N∑
j=1

λj

(
j∑
i=1

pti −
j∑
i=1

Vi

)
−

N∑
i=1

µi (pti − p2i) (2.42)

Taking the derivative with respect to pti and equating to zero, we obtain:

pti =
1∑N

j=i λj − µi
− 1 (2.43)

First, let us examine the necessary conditions for the optimal power to increase,

i.e., pti < pt(i+1). This occurs iff λi + µi+1 > µi ≥ 0. Thus, we must either have

λi > 0 which means that, by the complementary slackness, we have to consume all

the available energy by the end of the ith slot. Or, we have µi+1 > 0 which means

that pt(i+1) = p2(i+1). Next, let us examine the necessary conditions for the optimal

power to decrease, i.e., pti > pt(i+1). This occurs iff µi > λi+µi+1 ≥ 0, and therefore,

we must have pti = p2i.

We note from Lemmas 2.11 and 2.12 that both {p∗2i} and {p∗ti} are monotoni-

cally increasing. Therefore, we only focus on fixing an increasing feasible p2. This,

when combined with the above conditions, leads to the following lemma.

Lemma 2.14 For a fixed increasing p2, the optimal solution pt of the inner problem

is also increasing.

Proof: By the KKT conditions stated above, if we have pti > pt(i+1), then we must

have pti = p2i. Thus, we will have pt(i+1) < pti = p2i ≤ p2(i+1), i.e., the minimum
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Algorithm 1

1: Initialize the status of each bin Si = Vi
2: Mark bins by their minimum power requirements {p2i}Ni=1

3: Set k = N
4: while k ≥ 1 do
5: if Sk < p2k then
6: Pour water into the kth bin from previous bins, in a backward manner,

until equality holds
7: else
8: Do directional water-filling over the current and upcoming bins {k, k +

1, . . . , N}
9: end if

10: Update the status of each bin
11: k ← k − 1
12: end while

power constraint is not satisfied at the i+ 1st slot. �

Therefore, choosing an increasing p2 in the outer problem ensures that the

inner problem’s solution pt is also increasing, and thereby, satisfies the conditions of

Lemmas 2.11 and 2.12. We solve the inner problem by Algorithm 1. The algorithm’s

main idea is to equalize the powers as much as possible via directional water-filling [3]

while satisfying the minimum power requirements.

Observe that the algorithm gives a feasible power profile; it examines each slot,

and does not move backwards unless the minimum power requirement is satisfied. If

there is an excess energy above the minimum, say at slot k, it performs directional

water-filling which will occur if Sk > Sk+1 (let us consider water-filling only over two

bins for simplicity). Since the minimum power requirement vector p2 is increasing,

after equalizing the energies the updated status will satisfy Sk = Sk+1 > p2(k+1) ≥

p2k, i.e., the minimum power requirement is always satisfied if directional water-

filling occurs. Also observe that the algorithm cannot give out a decreasing power
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p2i

1: Initialization 2: Filling last bin first 3: Filling middle bin 4: Directional water-filling
from first bin

Figure 2.7: Numerical example for the BC inner problem.

profile since p2 is increasing.

According to the KKT conditions, the power increases from slot k to slot k+1

only if pt(k+1) = p2(k+1) or the total energy is consumed by slot k. We see that the

algorithm satisfies this condition. Power increases only if directional water-filling is

not applied at slot k, which means that either some of the water was poured forward

in the previous iteration to satisfy pt(k+1) = p2(k+1), or no water was poured which

means that all energy is consumed by slot k.

A numerical example for a three-slot system is shown in Fig. 2.7. The min-

imum power requirements are shown by red dotted lines in each bin. According

to the algorithm, we first initialize by pouring all the amounts of water in their

corresponding bins. We begin by checking the last bin, and we see that it needs

some extra water to satisfy its minimum power requirement. Thus, we pour water

forward from the middle bin until the minimum power requirement of the last bin

is satisfied with equality. This causes a deficiency in the middle bin, and therefore,

we pour water forward from the first bin until the minimum power requirement of

the middle bin is satisfied with equality. Since the problem is feasible, the amount

of water remaining in the first bin should satisfy its minimum power requirement.
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In fact, in this example, there is an excess amount that is therefore used to equalize

the water levels of the first two bins via directional water-filling. This ends the

algorithm and gives the optimum power profile.

We now find the optimum value of p2 by solving the following outer problem:

max
p2

µH (p2) +
N∑
i=1

g(p2i)

s.t.
k∑
i=1

p2i ≤
k∑
i=1

Ki, ∀k (2.44)

where µ , µ1
µ2−µ1 , and the modified water levels Ki are given by:

Ki = Ai − Ai−1,

Ai = min

{
i∑

j=1

Ē2j,
i∑

j=1

Ē1j,
1

σ2

i∑
j=1

Ej

}
, A0 = 0 (2.45)

where the extra terms in the Ai expression are to ensure feasibility of the inner

problem. By Lemma 2.13, the outer problem is a convex optimization problem [77].

We solve it by an algorithm similar to that of the two-hop network outer problem,

except that we only focus on choosing increasing power vectors p2 in each iteration.

By convexity of the problem, the iterations converge to the optimal solution.

2.6 Numerical Results

In this section, we present numerical results for the considered systems models.

We focus on the specific case where g(x) = log(1 + x), and φ = g−1. Starting
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Figure 2.8: Departure regions of a MAC with simultaneous and successive cancel-
lation decoding.

with the single-user channel, we consider a five-slot system with energy amounts

of E = [2, 2, 1, 2.5, 0.5] at the transmitter, and Ē = [1, 1, 0.5, 2.5, 3] at the re-

ceiver. The optimal rates in this case according to Theorem 2.1 are given by

r∗ = [0.6061, 0.6061, 0.6061, 1.2528, 1.3863]. As we see, the rates are non-decreasing,

which is consistent with Lemma 2.1, and they strictly increase only after consuming

all the receiver’s energies in decoding by the end of the third slot, and again by the

end of the fourth one, which is consistent with Lemma 2.2.

In Fig. 2.8, we plot the maximum departure regions for a MAC with simul-

taneous decoding and successive cancellation decoding. We consider a system of

three time slots, during which the nodes harvest the energies: E1 = [0.5, 1, 2],

E2 = [1, 2, 0.5], and Ē = [1.5, 2, 0.5]. We observe that the simultaneous decoding

region lies strictly inside the successive decoding region. The latter, given by the ge-

ometric programming framework, is only a local optimal solution; one can therefore
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Figure 2.9: Departure regions of a BC with and without decoding costs.

achieve even higher rates if a global optimal solution is attained.

Finally, in Fig. 2.9, we provide some simulation results to illustrate the differ-

ence between the departure regions with and without decoding costs for a BC. We

consider a system of three time slots, where the energy profile of the transmitter is

given by E = [5, 6, 7]. The maximum departure region with no decoding costs is

shown in blue. We vary the energy profiles at the receivers to show the effect of the

decoding costs on the maximum departure region. We start by setting Ē1 = [4, 5, 6],

and Ē2 = [1, 2, 3], to get region A in red. Then we lower the values to Ē1 = [3, 4, 5],

and Ē2 = [1, 1.5, 2], to get region B in green. Finally, we lower the values again to

Ē1 = [2, 3, 4], and Ē2 = [0.5, 1, 1.5], to get region C in brown. We note that as we

lower the energy profiles at the receivers, the decoding causality constraints become

more binding, and therefore, the region progressively shrinks.
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2.7 Conclusion

In this chapter, we considered decoding costs in energy harvesting communication

networks. In our settings, we assumed that receivers, in addition to transmitters,

rely on energy harvested from nature. Receivers need to spend a decoding power

that is a function of the incoming rate in order to receive their packets. This gave

rise to the decoding causality constraints: receivers cannot spend energy in decoding

prior to harvesting it. We first considered a single-user setting and maximized

the throughput by a given deadline. Next, we considered two-hop networks and

characterized the end-to-end throughput maximizing policies. Then, we considered

two-user MAC and BC settings, with focus on exponential decoding functions, and

characterized the maximum departure regions. In most of the models considered,

we were able to move the receivers’ decoding costs effect back to the transmitters

as generalized data arrivals; transmitters need to adapt their powers (and rates) not

only to their own energies, but to their intended receivers’ energies as well. Such

adaptation is governed by the characteristics of the decoding function.

Throughout this chapter, we only considered receiver decoding costs in our

models without considering transmitter processing costs. On the other hand, other

works have considered the processing costs at the transmitter [24–29] without con-

sidering decoding costs at the receiver. In their models, the transmitter spends a

constant amount of power per unit time whenever it is communicating to account

for circuitry processing; while in our model, the receiver spends a decoding power

which is a function of the incoming data rate. In Chapter 4, we combine the two
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approaches to account for both the processing costs at the transmitter and the

decoding costs at the receiver in a single setting.

56



CHAPTER 3

Energy Harvesting Cooperative Multiple Access Channel with

Decoding Costs

3.1 Introduction

In this chapter, we consider an energy harvesting cooperative multiple access channel

with decoding costs, see Fig. 3.1. In this setting, users cooperate at the physical layer

(data cooperation) in order to increase the achievable rates. Data cooperation comes

at the expense of decoding costs: each user spends some amount of its harvested

energy to decode the message of the other user, before forwarding both messages

to the receiver. The decoding power spent is an increasing convex function of the

incoming message rate. We characterize the optimal power scheduling policies that

achieve the boundary of the maximum departure region subject to energy causality

constraints and decoding costs by using a generalized water-filling algorithm.
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Figure 3.1: Energy harvesting cooperative MAC with decoding costs.

3.2 System Model and Problem Formulation

We consider a time-slotted system, where energies arrive in amounts of E1i and E2i

at the first and the second user, respectively, in slot i. The energy arriving at each

user can be used for transmission, decoding, or can be saved in a battery to be used

in future slots. The users communicate with the receiver over a Gaussian MAC, with

a noise variance σ2 > 1 at the receiver. They also overhear each other’s transmission

over stronger links: the channels between the users are assumed to be Gaussian with

unit-variance. In order to make use of the overheard information, the messages are

transmitted to the receiver using block Markov superposition coding [50]. Users 1

and 2 create common information using powers p12 and p21, and convey the created

common information to the receiver using powers pu1 and pu2. Since user-receiver

links are weaker than user-user links, direct transmission is not considered [80].

For a given power policy (p12, p21, pu1, pu2), a rate pair (r1, r2) belongs to the

achievable rate region of the cooperative MAC, denoted by FCMAC (p12, p21, pu1, pu2),
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if [50]

r1 ≤
1

2
log (1 + p12) (3.1)

r2 ≤
1

2
log (1 + p21) (3.2)

r1 + r2 ≤
1

2
log

(
S

σ2

)
(3.3)

where S , σ2 + p12 + p21 +
(√

pu1 +
√
pu2

)2
. Throughout this chapter, we denote

g(p) , 1
2

log(1 + p).

Our goal is to characterize the maximum departure region [5], FCMAC , subject

to energy causality constraints and decoding costs at both users. Since FCMAC is a

convex region, its boundary can be characterized by solving the following weighted

sum rate maximization problem for all µ1, µ2 > 0,

max
r1,r2,p12,p21

pu1,pu2

N∑
i=1

µ1r1i + µ2r2i

s.t. (r1i, r2i) ∈ FCMAC (p12i, p21i, pu1i, pu2i) , ∀i
k∑
i=1

p12i + pu1i + φ(r2i) ≤
k∑
i=1

E1i, ∀k

k∑
i=1

p21i + pu2i + φ(r1i) ≤
k∑
i=1

E2i, ∀k

r1i, r2i, p12i, p21i, pu1i, pu2i ≥ 0 (3.4)

where φ(r), an increasing convex function in r, is the decoding power (cost) needed

to decode a message of rate r. Therefore, each user needs to adapt its powers (and

rates) to both its own and the other user’s energy arrivals.
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3.3 Properties of the Optimal Policy

We first show that in the cooperative MAC, the optimal rate allocation (r1, r2)

can be expressed directly in terms of powers p12 and p21 used for common message

generation.

Lemma 3.1 There exists an optimal policy for problem (3.4) where the two inequal-

ities (3.1) and (3.2) hold with equality ∀i.

Proof: Assume that in the optimal policy (3.1) does not hold with equality for some

time slot k. Then, we decrease p12k and increase pu1k by the same amount, until

(3.1) holds with equality. This either increases Sk, or keeps it constant, hence the

third inequality still holds. The new power allocation is energy feasible. Since the

rate allocation did not change, the newly obtained policy is optimal as well. Similar

arguments follow if the second inequality does not hold with equality. �

We remark here that in the cooperative MAC with no decoding costs [51], the

optimal policy is to send at a rate pair so that (3.3) as well holds with equality,

or else the rates can be improved [51, Lemma 2]. However this is not necessarily

true in the presence of decoding costs, as increasing one of the user’s rate comes

at the expense of decreasing the other user’s rate, as some of the power used for

transmission needs to be shifted to decoding at the cooperative partner.

In the sequel, we focus on the case of exponential decoding costs. Specifically,

we set φ = a · g−1, for some decoding power factor a > 0 [81]. By Lemma 3.1, the
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problem can now be written only in terms of the powers as

max
p12,p21,pu1,pu2

N∑
i=1

µ1g(p12i) + µ2g(p21i)

s.t. g(p12i) + g(p21i) ≤
1

2
log

(
Si
σ2

)
, ∀i

k∑
i=1

p12i + pu1i + ap21i ≤
k∑
i=1

E1i, ∀k

k∑
i=1

p21i + pu2i + ap12i ≤
k∑
i=1

E2i, ∀k

p12i, p21i, pu1i, pu2i ≥ 0 (3.5)

which is not a convex optimization problem due to the first set of constraints. Next,

we characterize the (local) optimality conditions for problem (3.5). The Lagrangian

is

L =−
(

N∑
i=1

µ1g(p12i) + µ2g(p21i)

)
+

N∑
i=1

λi

(
g(p12i) + g(p21i)−

1

2
log

(
Si
σ2

))

+
N∑
k=1

γ1k

(
k∑
i=1

p12i + pu1i + ap21i −
k∑
i=1

E1i

)

+
N∑
k=1

γ2k

(
k∑
i=1

p21i + pu2i + ap12i −
k∑
i=1

E2i

)

−
(

N∑
i=1

ω1ipu1i + ω2ipu2i + η1ip12i + η2ip21i

)
(3.6)

where {λi, γ1i, γ2i, η1i, η2i, ω1i, ω2i} are non-negative Lagrange multipliers. Differen-

tiating with respect to the powers and equating to zero we get the following KKT
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conditions

N∑
k=i

γ1k + aγ2k =
µ1 − λi
1 + p12i

+
λi
Si

+ η1i (3.7)

N∑
k=i

γ2k + aγ1k =
µ2 − λi
1 + p21i

+
λi
Si

+ η2i (3.8)

N∑
k=i

γ1k =

(
1 +

√
pu2i

pu1i

)
λi
Si

+ ω1i (3.9)

N∑
k=i

γ2k =

(
1 +

√
pu1i

pu2i

)
λi
Si

+ ω2i (3.10)

along with the complementary slackness conditions

λi

(
g(p12i) + g(p21i)−

1

2
log

(
Si
σ2

))
= 0, ∀i (3.11)

γ1k

(
k∑
i=1

p12i + pu1i + ap21i −
k∑
i=1

E1i

)
= 0, ∀k (3.12)

γ2k

(
k∑
i=1

p21i + pu2i + ap12i −
k∑
i=1

E2i

)
= 0, ∀k (3.13)

η1ip12i = 0, η2ip21i = 0, ∀i (3.14)

ω1ipu1i = 0, ω2ipu2i = 0, ∀i (3.15)

Note that, for the derivatives in (3.9) and (3.10) to be well defined, the cooperative

powers pu1i, pu2i must be non-zero; otherwise the problem formulation needs to be

revisited. Since the case where the users do not send any cooperative codewords

occurs very rarely in practice, in this work, we focus only on policies where pu1i and

pu2i are positive, i.e., ω1i = ω2i = 0. We have the following claim regarding the

optimal value of λi.
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Lemma 3.2 The optimal λi satisfies λi ≤ max{µ1, µ2}.

Proof: First, note that by concavity of the objective function, it is sub-optimal to

move all the energy in slot i forward to future slots. This means that either p12i

or p21i is strictly positive for any i. By complementary slackness, this means that

either η1i = 0 or η2i = 0. Without loss of generality, assume η1i = 0 for some i.

Substituting (3.9) and (3.10) into (3.7), we get

(
1 +

√
pu2i

pu1i

)
λi
Si

+

(
1 +

√
pu1i

pu2i

)
aλi
Si

=
µ1 − λi
1 + p12i

+
λi
Si

(3.16)

Observe that we always have

(
1 +

√
pu2i

pu1i

)
λi
Si
≥ λi
Si

(3.17)

and hence, to satisfy (3.16) we need to have

0 ≤
(

1 +

√
pu1i

pu2i

)
aλi
Si
≤ µ1 − λi

1 + p12i

(3.18)

which leads to λi ≤ µ1 ≤ max{µ1, µ2}. �

Note that if λi > µ1 for some i, then we must have η1i > 0 so that (3.16)

is satisfied (after adding η1i to its right hand side). We will use this observation

later in the upcoming proofs. The next lemma shows that we can overcome the

non-convexity issue of problem (3.5) by using its relation to problem (3.4).

Lemma 3.3 Any local optimal point for problem (3.5) is also a local optimal point
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for problem (3.4).

Proof: We prove the lemma by showing that any primal and dual variables satisfy-

ing the KKT conditions for problem (3.5) correspond to those satisfying the KKT

conditions for problem (3.4). The KKT optimality conditions for (3.4) are

λ1i + λ12i = µ1 + ν1i (3.19)

λ2i + λ12i = µ2 + ν2i (3.20)

N∑
k=i

γ1k + aγ2k =
λ1i

1 + p12i

+
λ12i

Si
+ η1i (3.21)

N∑
k=i

γ2k + aγ1k =
λ2i

1 + p21i

+
λ12i

Si
+ η2i (3.22)

N∑
k=i

γ1k =

(
1 +

√
pu2i

pu1i

)
λ12i

Si
(3.23)

N∑
k=i

γ2k =

(
1 +

√
pu1i

pu2i

)
λ12i

Si
(3.24)

along with the complementary slackness conditions

λ1i (r1i − g(p12i)) = 0, ∀i (3.25)

λ2i (r2i − g(p21i)) = 0, ∀i (3.26)

λ12i

(
r1i + r2i −

1

2
log

(
Si
σ2

))
= 0, ∀i (3.27)

γ1k

(
k∑
i=1

p12i + pu1i + ap21i −
k∑
i=1

E1i

)
= 0, ∀k (3.28)

γ2k

(
k∑
i=1

p21i + pu2i + ap12i −
k∑
i=1

E2i

)
= 0, ∀k (3.29)

η1ip12i = 0, η2ip21i = 0, ∀i (3.30)
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ν1ir1i = 0, ν2ir2i = 0, ∀i (3.31)

Now, consider a KKT point for problem (3.5), i.e., some feasible primal and dual

variables {p̃jki, p̃uji, γ̃ji, λ̃i, η̃ji}, j, k ∈ {1, 2}, j 6= k, satisfying (3.7)-(3.14). We then

assign the following values for the variables of problem (3.4)

p12i = p̃12i, p21i = p̃21i, pu1i = p̃u1i, pu2i = p̃u2i (3.32)

r1i = log (1 + p̃12i) , r2i = log (1 + p̃21i) (3.33)

γ1i = γ̃1i, γ2i = γ̃2i (3.34)

λ12i = λ̃i, λ1i =
(
µ1 − λ̃i

)+

, λ2i =
(
µ2 − λ̃i

)+

(3.35)

ν1i =
(
λ̃i − µ1

)+

, ν2i =
(
λ̃i − µ2

)+

(3.36)

η1i = η̃1i +
(
µ1 − λ̃i

)−
, η2i = η̃2i +

(
µ2 − λ̃i

)−
(3.37)

where (·)+ = max{0, ·} and (·)− = min{0, ·}. Using the observation stated right

after Lemma 3.2, we can directly verify that (3.19)-(3.31) are satisfied using the

above assignments. �

We note that problem (3.4) is convex, and thus its KKT conditions are also

sufficient for optimality [77]. Therefore, by Lemma 3.3, we can optimally solve

problem (3.4) by characterizing the KKT points of problem (3.5), which we focus

on in the remainder of this chapter.

A power allocation policy which uses all available energy by the end of the

transmission is called an energy consuming policy. The next lemma shows that, it
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is sufficient to restrict our attention to energy consuming policies.

Lemma 3.4 There exists an optimal policy for problem (3.5) where both users ex-

haust all their energies, in transmission and decoding, by the end of communication.

Proof: Let one of the users, say user 1, have some leftover energy at the end of

transmission. Then, we can increase pu1N until user 1’s energy is exhausted. This is

feasible, as it increases the right hand side of (3.3), and does not change the rates,

and therefore, is optimal. �

Note that (3.3) is a constraint on the total data rate. When it holds with

equality, the users send at the maximum allowed data rate. We call such policies

data consuming policies. The next lemma shows that it is sufficient to restrict our

attention to policies that are data consuming in the last slot.

Lemma 3.5 There exists an optimal policy for problem (3.5) that is data consuming

in the last time slot.

Proof: If (3.3) is not tight in slot N , then we can decrease, say, pu1N until the data

consumption constraint holds with equality in time slot N . This is energy feasible,

and does not change the rates, and therefore, is optimal. �
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3.4 Single Energy Arrival

In this section, we consider the case where each user harvests only one packet of

energy. By Lemma 3.4, both users consume all the available energy, i.e., we have

p12 + ap21 + pu1 = E1, p21 + ap12 + pu2 = E2 (3.38)

We now solve the above equations for p12 and p21 in terms of the cooperative powers

pu1 and pu2, and substitute back in problem (3.5) for the N = 1 case to get the

following reduced problem in terms of the cooperative powers1

max
pu1,pu2

µ1g

(
E1 − aE2

1− a2
− pu1 − apu2

1− a2

)
+ µ2g

(
E2 − aE1

1− a2
− pu2 − apu1

1− a2

)
s.t. g

(
E1 − aE2

1− a2
− pu1 − apu2

1− a2

)
+ g

(
E2 − aE1

1− a2
− pu2 − apu1

1− a2

)
≤ 1

2
log

(
Su
σ2

)
0 ≤ pu1 ≤ E1, 0 ≤ pu2 ≤ E2

a(E2 − pu2) ≤ E1 − pu1 ≤
E2 − pu2

a
(3.39)

where the last constraint assures the non-negativity of p12 and p21, and the term Su

is given by

Su , σ2 +
E1 + E2 + apu1 + apu2 + 2(1 + a)

√
pu1pu2

1 + a
(3.40)

We solve the above problem over two stages as follows.

1Without loss of generality, we focus on the case a < 1 throughout this chapter. Similar analysis
follows for the case a ≥ 1.
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Stage 1: First, we solve a relaxed problem by ignoring the data consumption

constraint. Note that the relaxed problem is a convex problem. To solve it, we

further note that, if the last constraint in problem (3.39) is not binding, i.e., if both

p12 and p21 are strictly positive, then by taking derivative of the objective function

with respect to the cooperative powers, the solution of the relaxed problem is found

by solving the following two linear equations in (pu1, pu2)

(
1

aµ2

+
a

µ1

)
pu2 −

(
1

µ2

+
1

µ1

)
pu1 = c1 (3.41)(

1

µ2

+
1

µ1

)
pu2 −

(
a

µ2

+
1

aµ1

)
pu1 = c2 (3.42)

where the constants c1 and c2 are given by

c1 =
1− a2 + E2 − aE1

aµ2

− 1− a2 + E1 − aE2

µ1

(3.43)

c2 =
1− a2 + E2 − aE1

µ2

− 1− a2 + E1 − aE2

aµ1

(3.44)

If (3.41)-(3.42) admit a solution, (p̃u1, p̃u2), not satisfying the last constraint in

(3.39), then by the concavity of the objective function, the solution is given by pro-

jecting (p̃u1, p̃u2) onto this last constraint set, which will make one of the constraint’s

inequalities hold with equality. Substituting this into the objective function, the re-

laxed problem in this case gets simplified to a one-variable convex optimization

problem that can be solved by first derivative analysis over the feasible region. We

denote the solution of the relaxed problem by (p̄u1, p̄u2).

Stage 2: We now check whether (p̄u1, p̄u2) satisfies the data consumption
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constraint. Denote the left hand side of the constraint by G (p̄u1, p̄u2) and let

S̄u = Su
∣∣
(p̄u1,p̄u2)

. If the constraint is not satisfied, then we have

G (p̄u1, p̄u2) >
1

2
log

(
S̄u
σ2

)
(3.45)

Hence, the goal now is to find the closest point (p∗u1, p
∗
u2) to (p̄u1, p̄u2) such that

G (p∗u1, p
∗
u2) = 1

2
log (S∗u/σ

2). Towards that end, we note that 1
2

log (Su/σ
2) is in-

creasing in (pu1, pu2), and that G(E1, E2) = 0. By the concavity of G, the two

functions G(pu1, pu2) and 1
2

log (Su/σ
2) are guaranteed to intersect at some point

(p∗u1, p
∗
u2) > (p̄u1, p̄u2). The optimal (p∗u1, p

∗
u2) is the pair at which the intersection of

the two functions yields the maximum value for the objective function.

This concludes our discussion on the single energy arrival scenario. In the

next section, we use this result to extend the analysis to the general multiple energy

arrival scenario.

3.5 Multiple Energy Arrivals

We present an iterative generalized water-filling algorithm that optimally solves

problem (3.5) for general N . We need to determine the optimal energy distribution

among the slots for each user. We first initialize the energy state vectors S1 =

E1 and S2 = E2 and solve for each slot i independently using the results of the

previous section with energies S1i and S2i. Next, given the powers in each slot,

we determine λi by solving (3.16) if p12i > 0 (and if p21i > 0 we solve a similar

equation with appropriate coefficients). Next, we solve equations (3.7)-(3.10) for all
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the remaining Lagrange multipliers treating
∑N

k=i γ1k and
∑N

k=i γ2k as variables of

their own, because we are solving for each slot independently. Let us define

κ1i ,
1∑N

k=i γ1k + aγ2k

, κ2i ,
1∑N

k=i γ2k + aγ1k

(3.46)

We can compute {κ1i, κ2i}Ni=1 given the initialization policy. We interpret these

terms as generalized water levels to be equalized to the extent possible among the

slots. We have the following lemma regarding their optimal values.

Lemma 3.6 The optimal generalized water levels {κ∗1i, κ∗2i} for problem (3.5) are

non-decreasing, and increase synchronously. The latter event occurs only if at least

one user consumes its energy in transmission and decoding.

Proof: The first part follows by noting that due to the non-negativity of the La-

grange multipliers {γ1i, γ2i}, the denominators of the water levels in (3.46) are non-

increasing. For the second part, since a > 0, both denominators decrease from slot

i to slot i + 1 iff at least γ1i > 0 or γ2i > 0. This makes both water levels increase

synchronously. Finally, by complementary slackness, if we have γji > 0, then user j

consumes its energy in slot i, j = 1, 2. �

Next, we check if the obtained water levels satisfy the conditions of the previous

lemma. If not, then some energy needs to flow forward until they satisfy these

conditions. However, due to the decoding costs, energy transfer from one user affects

both water levels, and therefore both users’ powers. Hence, we keep record of how

much energy is transferred forward at each user by, e.g., putting measuring meters
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in between the slots of each user [18]. We start by updating slots 1 and 2, followed

by slots 2 and 3, and so on. If at a given two slots (i, i+ 1) we have κ1i > κ1(i+1) or

κ2i > κ2(i+1) then energy flows from slot i to i+1 from either one or both users until

the water levels are equalized. We keep iterating until the conditions of Lemma 3.6

are satisfied for all the slots. During the iterations, energy can be drawn back, using

the values stored in the meters, if this increases the objective function. Iterations

converge to a KKT point of problem (3.5), which is, by Lemma 3.3, a KKT point

of problem (3.4), and thereby the optimal solution.

3.6 Numerical Results

In this section, we present some simple numerical examples. We consider a five slot

system with energies E1 = [5, 1, 6, 2, 2] and E2 = [2, 3, 4, 3, 4] at the first and the

second user, respectively. The receiver noise variance is set to σ2 = 1.2.

We solve the problem with different values of decoding costs and plot Bj =∑N
i=1 rji, the number of total departed bits for user j, in Fig. 3.2. For reference, we

plot the case a = 0 studied in [51] that provides the largest departure region, and

also the non-cooperative (direct) MAC departure region studied in [5]. We observe

that the departure region shrinks as we increase the decoding cost. With a = 0.3,

the region is still completely outside the non-cooperative MAC region, showing the

advantage of data cooperation. For the case a = 0.7, the regions intersect, and

not all operating points are better than the non-cooperative MAC. Finally, for a

relatively large a = 2, the departure region is completely inside the non-cooperative
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Figure 3.2: Departure regions for different values of the decoding cost parameter.

MAC region, showing that the users achieve higher rates if they do not cooperate

due to the high decoding costs they incur. Therefore, the results show that it is

not always better to perform data cooperation, but rather it depends on how much

energy each user spends to decode the other user’s message.

We also compute the optimal generalized water levels for a particular operating

point: Q in Fig. 3.2 for the case of a = 0.3 with µ1 = µ2 = 1. Iterations converge

to: κ∗1 = [4.1, 16.3, 17.5, 17.5, 30.7] and κ∗2 = [3.1, 6.6, 7.3, 7.3, 9.2]. We see that the

water levels are non-decreasing, and increase simultaneously, as stated in Lemma 3.6.

3.7 Conclusion

In this chapter, we considered an energy harvesting cooperative multiple access

channel (MAC) where users cooperate at the physical layer (data cooperation) in

order to increase the achievable rates at the expense of decoding costs; each user
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spends some amount of its harvested energy to decode the message of the other user,

before forwarding both messages to the receiver. We characterized the optimal power

scheduling policies that achieve the boundary of the maximum departure region

subject to energy causality constraints and decoding costs by using a generalized

water-filling algorithm. When considering decoding costs, results show that it is

not always better to perform data cooperation, but rather it depends on how much

energy each user spends to decode the other user’s message.
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CHAPTER 4

Energy Harvesting Two-Way Channels with Decoding and

Processing Costs

4.1 Introduction

In this chapter, we study the effects of decoding and processing costs in an en-

ergy harvesting two-way channel, see Fig. 4.1. We design the optimal offline power

scheduling policies that maximize the sum throughput by a given deadline, subject

to energy causality constraints, decoding causality constraints, and processing costs

at both users. In this system, each user spends energy to transmit data to the

other user, and also to decode data coming from the other user; that is, each user

divides its harvested energy for transmission and reception. Further, each user in-

curs a processing cost per unit time as long as it communicates. The power needed

for decoding the incoming data is modeled as an increasing convex function of the

incoming data rate; and the power needed to be on, i.e., the processing cost, is

modeled to be a constant per unit time. We solve this problem by first considering

the cases with decoding costs only and processing costs only individually. In each

case, we solve the single energy arrival scenario, and then use the solution’s insights
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Figure 4.1: Two-way channel with energy harvesting transceivers.

to provide an iterative algorithm that solves the multiple energy arrivals scenario.

Then, we consider the general case with both decoding and processing costs in a

single setting, and solve it for the most general scenario of multiple energy arrivals.

4.2 The Case with Only Decoding Costs

4.2.1 Single Energy Arrival

In this section, we consider the case where both users have a single energy arrival

each. Users 1 and 2 have E1 and E2 amounts of energy available at the beginning of

communication, respectively. Without loss of generality, the communication takes

place over a time slot of unit length. The physical layer is Gaussian with unit-

variance noise at both users. In the full-duplex Gaussian two-way channel, the

sum rate is given by the sum of the single-user rates [49]. Therefore, the rate per

user is the single-user Shannon rate of 1
2

log(1 + p), where p is the transmit power.

Throughout this chapter, log is the natural logarithm. A receiver decodes a message

of rate r by spending a decoding power φ(r) that is exponential in the incoming rate,

i.e., φ(r) = a(ebr + c) for some a, b > 0 and c ≥ −1. Throughout this chapter, we

take b = 2 and c = −1 for convenience and mathematical tractability. Without
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loss of generality, any other such exponential decoding power can be handled by

appropriately modifying the incoming energy. Therefore, if the first user transmits

with power p, the incoming rate is 1
2

log(1 + p), and the second user spends a power

of ap to decode the incoming data. Thus, the throughput maximization problem is

max
p1,p2

1

2
log(1 + p1) +

1

2
log(1 + p2)

s.t. p1 + ap2 ≤ E1

p2 + ap1 ≤ E2 (4.1)

where p1 and p2 are the powers of users 1 and 2, respectively. We assume a 6= 1, for

if a = 1, by concavity of the log, the optimal solution will be given by p∗1 = p∗2 =

min{E1, E2}/2. We have the following lemma regarding this problem.

Lemma 4.1 In the optimal policy, at least one user consumes all of its energy in

transmission and decoding. This is the user with the smaller energy.

Proof: The first part of the lemma follows directly by noting that if neither of the

constraints holds with equality, then we can increase the power (and therefore rate)

of one of the users until one of the constraints becomes tight. Now assume that

E1 ≤ E2, but only the second user consumes all of its energy, i.e., p∗2 + ap∗1 = E2 ≥

E1 > p∗1 + ap∗2, which further leads to having

p∗1 < p∗2, if a < 1 (4.2)

p∗1 > p∗2, if a > 1 (4.3)
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Let us consider the case in (4.2) (similar arguments follow for the case in (4.3)),

choose some ε > 0, and define the following new policy: p̃1 = p∗1 + ε, p̃2 = p∗2 − ε.

Since the first user did not consume all of its energy, we can choose ε small enough

such that the new policy consumes the following amounts of energy

p̃2 + ap̃1 = p∗2 + ap∗1 − (1− a)ε < E2 (4.4)

p̃1 + ap̃2 = p∗1 + ap∗2 + (1− a)ε ≤ E1 (4.5)

By concavity of the log, this new policy strictly increases the sum rate, and therefore,

the original policy cannot be optimal, i.e., the first user has to consume all of its

energy. �

The above lemma states that, in the presence of decoding costs, one user may

not be able to use up all of its energy. This is because each user now needs to adapt

its power (and rate) to both its own energy and to the energy of the other user,

in order to guarantee decodability. This makes the user with smaller energy be a

bottleneck for the system.

Without loss of generality, we continue assuming E1 ≤ E2. Therefore, by

Lemma 4.1, we have p∗1 + ap∗2 = E1. Substituting this condition in (4.1), we get the

following problem for a < 1

max
p2

1

2
log (1 + E1 − ap2) +

1

2
log (1 + p2)

s.t. 0 ≤ p2 ≤
E2 − aE1

1− a2
(4.6)
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Alternatively, we get the following problem for a > 1

max
p1

1

2
log (1 + p1) +

1

2
log

(
1 +

E1 − p1

a

)
s.t. 0 ≤ p1 ≤

aE2 − E1

a2 − 1
(4.7)

In both problems, the objective function is concave and the feasible set is

an interval. It then follows that the optimal power can be found via equating the

derivative of the objective function to 0, and projecting the solution onto the feasible

set. For instance, the optimal second user power in problem (4.6) is given by

p∗2 = min

{[
1 + E1 − a

2a

]+

,
E2 − aE1

1− a2

}
(4.8)

where [x]+ = max(x, 0).

4.2.2 Multiple Energy Arrivals

We now consider the case of multiple energy arrivals. Energies arrive at the be-

ginning of time slot i with amounts E1i and E2i at the first and the second user,

respectively, ready to be used in the same slot. Unused energies are saved in batter-

ies for later slots. The goal is to maximize the sum throughput by a given deadline

N . The problem becomes

max
p1,p2

N∑
i=1

1

2
log (1 + p1i) +

1

2
log (1 + p2i)
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s.t.
k∑
i=1

p1i + ap2i ≤
k∑
i=1

E1i, ∀k

k∑
i=1

p2i + ap1i ≤
k∑
i=1

E2i, ∀k (4.9)

which is a convex optimization problem [77]. The Lagrangian is

L =−
N∑
i=1

1

2
log (1 + p1i)−

N∑
i=1

1

2
log (1 + p2i) +

N∑
k=1

λ1k

(
k∑
i=1

p1i + ap2i −
k∑
i=1

E1i

)

+
N∑
k=1

λ2k

(
k∑
i=1

p2i + ap1i −
k∑
i=1

E2i

)
(4.10)

where {λ1k} and {λ2k} are non-negative Lagrange multipliers associated with the

energy causality constraints of the first and the second user, respectively. KKT

optimality conditions [77] are

p1i =
1∑N

k=i(λ1k + aλ2k)
− 1, ∀i (4.11)

p2i =
1∑N

k=i(λ2k + aλ1k)
− 1, ∀i (4.12)

along with the complementary slackness conditions

λ1k

(
k∑
i=1

p1i + ap2i −
k∑
i=1

E1i

)
= 0, ∀k (4.13)

λ2k

(
k∑
i=1

p2i + ap1i −
k∑
i=1

E2i

)
= 0, ∀k (4.14)

In the following lemmas, we characterize the properties of the optimal solution

of this problem.
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Lemma 4.2 In the optimal policy, both users’ powers are non-decreasing in time,

i.e., p1(i+1) ≥ p1i and p2(i+1) ≥ p2i, ∀i.

Proof: The proof follows from (4.11)-(4.12) since the denominators are non-negative

and non-increasing as λ1k, λ2k ≥ 0, ∀k. �

Lemma 4.3 In the optimal policy, the power of user j ∈ {1, 2} increases in a time

slot only if at least one of the two users consumes all of its available energy in

transmission/decoding in the previous time slot.

Proof: From (4.11)-(4.12), we see that powers can only increase from slot i to slot

i + 1 if at least λ1i or λ2i is strictly positive, or else powers will stay the same.

By complementary slackness conditions in (4.13)-(4.14), we see that the first (resp.,

second) user’s energies must all be consumed by slot i if λ1i > 0 (resp., λ2i > 0). �

Lemma 4.4 In the optimal policy, powers of both users increase synchronously.

Proof: Let us assume that we have p1i < p1(i+1). By Lemma 4.3, we must have at

least λ1i > 0 or λ2i > 0. This in turn makes p2i < p2(i+1) from (4.12). Similarly, if we

have p2i < p2(i+1), then we must also have p1i < p1(i+1) from (4.11). This concludes

the proof. �

4.2.2.1 The Case of Two Arrivals

We now solve the case of two energy arrivals at each user explicitly. We will provide

an iterative algorithm to solve the general multiple energy arrivals case by utilizing

the two-slot solution. In a two-slot setting, it is optimal to have at least one user
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consume all of its energy in the second slot. It is not clear, however, if this is the case

in the first slot. Towards that, we check the feasible energy consumption strategies

and choose the one that gives the maximum sum rate. For each strategy, we find

the optimal residual energy transferred from the first to the second slot for a given

user. We begin by checking a constant-power strategy which, by concavity of the

objective function, is optimal if it is feasible [1]. This occurs when neither user

consumes all of its energy in the first slot, and hence, by Lemma 4.3, the powers

of each user in the two slots are equal, i.e., p11 = p12 , p1, and p21 = p22 , p2.

This leaves us with solving a single-arrival problem, as discussed in Section 4.2.1,

with the average energy E1 = E11+E12

2
and E2 = E21+E22

2
, at the first and the second

user, respectively. There can be four more energy consumption strategies to check

if the above is infeasible. We highlight one of them in the following analysis. The

remaining ones follow similarly.

We consider the strategy in which the first user consumes all of its energy

in the first slot, and the second user consumes all of its energy in the second slot.

The second user may have some residual energy left from the first slot to be used

in the second slot. Denoting this energy residual by r, we have: p11 + ap21 = E11,

and p21 + ap11 = E21 − r. Solving these two equations for p11 and p21, we obtain:

p11 = E11−a(E21−r)
1−a2 , and p21 = E21−r−aE11

1−a2 . Since the second user consumes all of

its energy in the second slot we have: p22 + ap12 = E22 + r. Next, we divide the

energy consumption in the second slot between the two users as: p12 = δ
a

and

p22 = E22 + r − δ, for some δ ≥ 0. Finding the optimal sum rate in this strategy

is tantamount to solving for the optimal values of r and δ. Thus, problem (4.9) for
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N = 2 in this case can be rewritten as

max
r,δ

1

2
log

(
1 +

E11 − a(E21 − r)
1− a2

)
+

1

2
log

(
1 +

E21 − r − aE11

1− a2

)
+

1

2
log

(
1 +

δ

a

)
+

1

2
log (1 + E22 + r − δ)

s.t. 0 ≤ δ ≤ E22 + r(
E21 −

E11

a

)+

≤ r ≤ E21 − aE11

δ ≤ a

1− a2
(E12 − a (E22 + r)) (4.15)

which is a convex optimization problem in (r, δ) [77]. Note that for the above

problem to be feasible, we need to have: E21 ≥ aE11, and E12 ≥ aE22. Other

consumption strategies will have similar necessary conditions.

To solve the above problem, we first assume that the Lagrange multiplier

associated with the last constraint is zero, i.e., the constraint is not binding (this is

the energy causality constraint of the first user in the second time slot), and obtain a

solution. The solution is optimal if it satisfies that constraint with strict inequality.

Otherwise, the constraint is binding, and needs to be satisfied with equality. In

the latter case, we substitute δ = 1
1−a2 (E12 − a (E22 + r)) in the objective function

and solve a problem of only one variable, r, which can be solved by direct first

derivative analysis over the feasible region of r. We now characterize the solution

after removing that last constraint. We define r1 ,
(
E21 − E11

a

)+
and r2 , E21−aE11

for convenience, and introduce the following Lagrangian
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L =− 1

2
log

(
1 +

E11 − a(E21 − r)
1− a2

)
− 1

2
log

(
1 +

E21 − r − aE11

1− a2

)
− 1

2
log

(
1 +

δ

a

)
− 1

2
log (1 + E22 + r − δ) + λδ(δ − E22 − r)− ηδδ + λr(r − r1) + ηr(r2 − r)

(4.16)

where λδ, ηδ, λr, and ηr are the non-negative Lagrange multipliers. Taking the

derivatives with respect to δ, r, and equating to 0, we get the following

1

a+ δ
+ ηδ =

1

1 + E22 + r − δ + λδ (4.17)

1

1 + E22 + r − δ +
a

1− a2 + E11 − a(E21 − r)
+ ηr =

1

1− a2 + E21 − r − aE11

+ λr

(4.18)

From (4.17), we solve for δ in terms of r as follows

δ(r) =



0, a > 1 + E22 + r

1+E22+r−a
2

, 1− (E22 + r) ≤ a ≤ 1 + E22 + r

E22 + r, a < 1− (E22 + r)

(4.19)

Next, we find the optimal value of r. For that, we substitute by δ(r) in (4.18).

Assuming that the middle expression in (4.19) holds, we have

ηr + f1(r) = λr + f2(r) (4.20)
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where f1 and f2 are given by

f1(r) =
2

1 + E22 + a+ r
+

a

1− a2 + E11 − aE21 + ar
(4.21)

f2(r) =
1

1− a2 + E21 − aE11 − r
(4.22)

To solve this, we first assume λr = ηr = 0, and equate both sides of (4.20). The

existence of a feasible solution of r in this case depends on the extreme values of f1

and f2. In particular, since f1(r) is decreasing in r, while f2(r) is increasing in r,

the solution exists if and only if f1(r2) ≤ f2(r2) and f1(r1) ≥ f2(r1). Note that such

solution can be found, for example, by a bisection search. If this condition is not

satisfied, then one of the Lagrange multipliers (λr, ηr) needs to be strictly positive

in order to equate both sides in (4.20). In particular, if f1(r2) > f2(r2), then we

need λr > 0, which implies by complementary slackness that r = r2. On the other

hand, if f1(r1) < f2(r1), then we need ηr > 0, which implies by complementary

slackness that r = r1. After solving for r, we check if it is consistent with the chosen

expression of δ(r) by checking the conditions in (4.19). If not, then we check the

other two cases: δ(r) = 0 and δ(r) = E22 + r, and re-solve for r. The analysis in

these cases follows similarly as above. This concludes the solution of the two-slot

case. In the next section, we use the above analysis to find the optimal solution in

the general case of multiple energy arrivals.
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4.2.2.2 Iterative Solution for the General Case

We solve problem (4.9) iteratively in a two-slot by two-slot manner, starting from

the last two slots and going backwards. Once we reach the first two slots, we re-

iterate starting from the last two slots, and go backwards again. Iterations stop

if the powers do not change after we reach the first two slots. The details are as

follows.

We first initialize the energy status of each slot of both users by S1 = E1

and S2 = E2, where E1 and E2 are vectors of energy arrivals at user 1 and 2,

respectively, and solve each slot independently, as discussed in Section 4.2.1, to get

an initial feasible power policy
{
p

(0)
1 ,p

(0)
2

}
. We then start by examining slots N −1

and N . We solve the throughput maximization problem for these two slots with

energies
{
S1(N−1), S1N

}
and

{
S2(N−1), S2N

}
at the first and second user, respectively,

as discussed in Section 4.2.2.1. After we solve this problem, we update the energy

status vectors S1 and S2, and move back one slot to examine slots N − 2 and

N −1. We solve the throughput maximization problem for these two slots using the

updated energy status
{
S1(N−2), S1(N−1)

}
and

{
S2(N−2), S2(N−1)

}
at the first and

second user, respectively. We update the energy status vector after solving this

problem, and continue moving backwards until we solve for slots 1 and 2. After

that, we get another feasible power policy
{
p

(1)
1 ,p

(1)
2

}
, where the superscript stands

for the iteration index. We then compare this power policy with the initial one. If

they are the same, we stop. If not, we perform this process again starting from the

last two slots, going backwards, until we get an updated power policy
{
p

(2)
1 ,p

(2)
2

}
.
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We stop after the kth iteration if p
(k−1)
1 = pk1 and p

(k−1)
2 = pk2. Since the sum

throughput can only increase with the iterations, and since it is also upper bounded

due to the energy constraints, the convergence of the above two-slot iterations is

guaranteed.

Next, we check whether the limit point satisfies the KKT optimality conditions.

Namely, we solve for the Lagrange multipliers in (4.11) and (4.12). If they are all

non-negative, then the KKT conditions are satisfied and, by the convexity of the

problem, the limit point is optimal [77]. If not, then the energy status vectors need

to be updated. This might be the case for instance if while updating some given

two slots, more than necessary amount of energy is transferred forward. While this

may be optimal with respect to these two slots, it does not take into consideration

the energy arrival vectors in the entire N slots. Therefore, in such cases, we perform

another round of iterations where we take some of the energy back if this increases

the objective function. Taking energy back without violating causality can be done,

e.g., via putting measuring meters in between the slots during the two-slot update

phase to record the amount of energy moving forward [18]. Since the problem

feasibility is maintained with each update, and by the convexity of the problem,

cycling through all the slots infinitely often converges to the optimal policy.

This concludes the discussion of the problem with only decoding costs. In the

next section, we discuss the case with only processing costs.
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4.3 The Case with Only Processing Costs

4.3.1 Single Energy Arrival

In this section, we study the case where each user has only one energy arrival. In this

two-way setting, we incorporate the processing costs into our problem as follows:

each user incurs a processing cost when it is on for either transmitting or receiving

or both. We note that due to the processing costs, it might be optimal for the users

to be turned on for only a portion of the time. In this case, the transmission scheme

becomes bursty [53]. At this point, it is not clear whether it is optimal for the two

users to be fully synchronized, i.e., switch on/off simultaneously. For instance, it

might be the case that the second user’s energy is higher, and therefore it uses the

channel for a larger portion of the time θ2 > θ1. In this case, the first user stops

transmitting after θ1 amount of the time, but stays on for an extra θ2 − θ1 amount

of time to receive the rest of the second user’s data. The same argument could hold

for the second user if the first user’s energy is larger. Therefore, for the general case

of θ1 6= θ2, each user stays on for a max{θ1, θ2} amount of time. We formulate the

problem as

max
θ1,θ2,p1,p2

θ1

2
log(1 + p1) +

θ2

2
log(1 + p2)

s.t. θ1p1 + max{θ1, θ2}ε1 ≤ E1

θ2p2 + max{θ1, θ2}ε2 ≤ E2

0 ≤ θ1, θ2 ≤ 1 (4.23)
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where εj is the processing cost per unit time for user j, j = 1, 2.

We have the following two lemmas regarding this problem: Lemma 4.5 states

that both users need to use up all of their available energies. Lemma 4.6 states that

both users need to be fully synchronized, i.e., they need to turn on for exactly the

same duration of time, and turn off together. Hence, whenever a user is turned on,

it both sends and receives data.

Lemma 4.5 In the optimal solution of problem (4.23), both users exhaust their

available energies.

Proof: This follows by directly noting that if one user does not use all its energy,

then we can increase its power until it does. This strictly increases the objective

function. �

Lemma 4.6 In the optimal solution of problem (4.23), we have θ∗1 = θ∗2.

Proof: We show this by contradiction. Assume without loss of generality that it is

optimal to have θ1 < θ2. By Lemma 4.5, we have the powers given by

p1 =
E1 − θ2ε1

θ1

, p2 =
E2

θ2

− ε2 (4.24)

Therefore, we rewrite problem (4.23) as

max
θ1,θ2

θ1

2
log

(
1 +

E1 − θ2ε1
θ1

)
+
θ2

2
log

(
1 +

E2

θ2

− ε2
)

s.t. 0 ≤ θ1 ≤ θ2 ≤ θm (4.25)
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where θm , min{1, E1

ε1
, E2

ε2
} assures positivity of powers. Next, we note that the first

term in the objective function above is monotonically increasing in θ1, and therefore

its value is maximized at the boundary of the feasible set, i.e., at θ1 = θ2, which

gives a contradiction. �

By Lemma 4.6, problem (4.23) now reduces to having only one time variable

θ , θ1 = θ2

max
θ,p1,p2

θ

2
log(1 + p1) +

θ

2
log(1 + p2)

s.t. θ(p1 + ε1) ≤ E1

θ(p2 + ε2) ≤ E2

0 ≤ θ ≤ 1 (4.26)

We will solve (4.26), and its most general multiple energy arrival version, in

the rest of this section. We first note that the problem is non-convex. Applying the

change of variables: p̄1 , θp1, p̄2 , θp2, we get the following equivalent problem

max
θ,p̄1,p̄2

θ

2
log
(

1 +
p̄1

θ

)
+
θ

2
log
(

1 +
p̄2

θ

)
s.t. p̄1 + θε1 ≤ E1

p̄2 + θε2 ≤ E2

0 ≤ θ ≤ 1 (4.27)

which is convex, as the objective function is now concave because it is the per-
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spective of a concave function [77], and the constraints are affine in both variables.

Using Lemma 4.5, we equate the energy constraints and substitute them back in

the objective function to get

max
0≤θ≤θm

θ

2
log

(
1 +

E1 − θε1
θ

)
+
θ

2
log

(
1 +

E2 − θε2
θ

)
(4.28)

where θm is as in Lemma 4.6. Note that the objective function in the above problem

is concave since the function x log(b + c/x) is concave in x, for x > 0, and for any

real-valued constants b and c. Since the feasible set is an interval, it then follows

that the optimal solution is given by projecting stationary points of the objective

function onto the feasible set. Differentiating, we obtain the following equation in θ

f1(θ) · f2(θ) = e−2 (4.29)

where the function fj(θ), for j = 1, 2, is defined as

fj(θ) ,
e(εj−1)/((Ej/θ)−(εj−1))

(Ej/θ)− (εj − 1)
(4.30)

One can show that fj(θ) is monotonically increasing in θ, for all θ feasible. Therefore,

(4.29) has a unique solution in θ, which we denote by θ̄. Finally, the optimal

(burstiness factor) θ∗ is given by θ∗ = min
{
θ̄, 1
}

.

We note that the value of θ∗ can be strictly less than 1, which leads to bursty

transmission from the two users. The amount of burstiness depends on the avail-

able energies at both users and their processing costs, the relation among which is
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captured by the functions f1 and f2 in (4.29). The two users’ energies and process-

ing costs affect each other; one user having relatively low energy or relatively high

processing cost can decrease the value of θ∗, i.e., increase the amount of burstiness

in the channel. Finally, once the optimal θ∗ is found, the optimal powers of the

users are found by substituting θ∗ in the energy constraints.

4.3.2 Multiple Energy Arrivals

We now extend our results to the case of multiple energy arrivals. During slot i, the

two users can be turned on for a θi portion of the time. We argue that the users have

to be synchronized. For if they were not, then given the optimal energy distribution

among the slots, we can synchronize both users in each slot independently, which

gives higher throughput, as discussed in the single energy arrival scenario. Then,

the problem becomes

max
θ,p1,p2

N∑
i=1

θi
2

log(1 + p1i) +
θi
2

log(1 + p2i)

s.t.
k∑
i=1

θi(p1i + ε1) ≤
k∑
i=1

E1i, ∀k

k∑
i=1

θi(p2i + ε2) ≤
k∑
i=1

E2i, ∀k

0 ≤ θi ≤ 1, ∀i (4.31)
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As we did in the single energy arrival case, we apply the change of variables p̄1i =

θip1i and p̄2i = θip2i, ∀i, to get the following equivalent convex optimization problem

max
θ,p̄1,p̄2

N∑
i=1

θi
2

log

(
1 +

p̄1i

θi

)
+
θi
2

log

(
1 +

p̄2i

θi

)

s.t.
k∑
i=1

p̄1i + θiε1 ≤
k∑
i=1

E1i, ∀k

k∑
i=1

p̄2i + θiε2 ≤
k∑
i=1

E2i, ∀k

p̄1i ≥ 0, p̄2i ≥ 0, 0 ≤ θi ≤ 1, ∀i (4.32)

The Lagrangian for this problem is

L =−
(

N∑
i=1

θi
2

log

(
1 +

p̄1i

θi

)
+
θi
2

log

(
1 +

p̄2i

θi

))
−

N∑
i=1

η1ip̄1i −
N∑
i=1

η2ip̄2i

+
N∑
j=1

λ1j

(
j∑
i=1

p̄1i + θiε1 −
j∑
i=1

E1i

)
+

N∑
j=1

λ2j

(
j∑
i=1

p̄2i + θiε2 −
j∑
i=1

E2i

)

+
N∑
i=1

ωi (θi − 1)−
N∑
i=1

νiθi (4.33)

where λ1i, η1i, λ2i, η2i, ωi, νi are non-negative Lagrange multipliers. Differentiating

with respect to p̄1i and p̄2i, we obtain the following KKT optimality conditions

p̄1i

θi
=

(
1∑N

j=i λ1j

− 1

)+

,
p̄2i

θi
=

(
1∑N

j=i λ2j

− 1

)+

(4.34)

along with the usual complementary slackness conditions [77]. The following two

lemmas characterize the optimal power policy for problem (4.32). The proofs follow
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as in Lemmas 4.2 and 4.3, and are omitted for brevity.

Lemma 4.7 In the optimal solution of problem (4.32), powers of both users are

non-decreasing over time.

Lemma 4.8 In the optimal solution of problem (4.32), if a user’s energy is saved

from one time slot to the next, then the powers spent by this user in the two slots

have to be equal.

Next, we note that the optimal solution of problem (4.32) is not unique. For

instance, assume that one solution of the problem required some energy to be trans-

ferred from the ith to the (i+ 1)st slot at both users, and that the optimal values of

θi and θi+1 are both less than 1. By Lemma 4.8, since we transferred some energy

between the two slots, we must have equal powers in both slots. Now, if we transfer

an extra amount of energy between the two slots, this allows us to do the following:

1) decrease the value of θi and increase that of θi+1, and 2) change the value of p̄ji

and p̄j(i+1), j = 1, 2, correspondingly so that we obtain the same values of powers

at the two slots as before. This leaves us with the same value for the objective

function, as what we did is that we changed the values of the pre-log factors in a

feasible manner while keeping the values inside the logs as they were. We can keep

doing this until either slot i+1 is completely filled, i.e., θi+1 = 1, or all of the energy

is transferred from slot i, i.e., θi = 0.

We coin this type of policies as deferred policies; no new time slots are opened

unless all time slots in the future are completely filled, i.e., 0 < θi ≤ 1 iff θk = 1,

∀k = i+ 1, . . . , N . Consequently, {θi}Ni=1 will be non-decreasing. There can only be
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one unique optimal deferred policy for problem (4.32). In the sequel, we determine

that policy.

4.3.2.1 Optimal Deferred Policy

Finding the optimal deferred policy relies on the fact that, by energy causality, ener-

gies can only be used after they have been harvested. To this end, we begin from the

last slot, and make sure that it is completely filled, i.e., it has no burstiness, before

opening up a previous slot. We apply a modified version of the single energy arrival

result iteratively in a backward manner through two main phases: 1) deferring, and

2) refinement. These are illustrated as follows.

We first start by the deferring phase. The goal of this phase is to determine an

initial feasible deferred policy. In the refinement phase, the optimality of such policy

is investigated. We first initialize the energy status of each slot of both users by

S1 = E1 and S2 = E2, and start from the last slot and move backwards. In the kth

slot, we start by examining the use of the kth slot energies in the kth slot only. This

is done using the results of the single energy arrival (4.29). If the resulting θk < 1,

then we transfer some energy from previous slots forward to the kth slot until either

it is completely filled, i.e., θk = 1, or all previous slots’ energies are exhausted. We

test the possibility of the former condition by moving all energy from a previous slot

l < k, and re-solving for θk. If the result is unity, then the energies of slot l can for

sure fill out slot k. Next, we show how much energy is actually needed to do so.

We have two conditions to satisfy: 1) θk = 1, and 2) powers of user j in slots l
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and k are equal, pjl = pjk , p′j, if user j transfers energy from slot l to k (according

to Lemma 4.8). Let us denote the burstiness in slot l by θ′. Hence, if both users

transfer energy, the optimal policy is found by solving the following problem

max
θ′,p′1,p

′
2

1 + θ′

2
log(1 + p′1) +

1 + θ′

2
log(1 + p′2)

s.t. (1 + θ′)(p′1 + ε1) = S1l + S1k

(1 + θ′)(p′2 + ε2) = S2l + S2k

0 ≤ θ′ ≤ 1 (4.35)

Following the same analysis as in the single energy arrival case, we solve

f1 (1 + θ′) · f2 (1 + θ′) = e−2 (4.36)

On the other hand, if only the first user transfers energy, the optimal policy is found

by replacing the second constraint in problem (4.35) by θ′(p2l + ε2) = S2l, where

p2k = S2k − ε2 in this case. This gives the following to solve for θ′

f1 (1 + θ′) · f2 (θ′) = e−2 (4.37)

Similarly, if the transfer is done only from the second user we solve

f1 (θ′) · f2 (1 + θ′) = e−2 (4.38)
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In all the three cases of energy transfer above, the equations to solve have an in-

creasing left hand side, and hence a unique solution. Finally, the optimal policy

is the one that gives the maximum sum throughput among the feasible ones. It is

worth noting that, by the concavity of the objective function, transferring energy

from both users is optimal if feasible, since it equalizes arguments (powers) of a

concave objective function [1].

If the initially resulting θk = 1 in the kth slot, we do directional water-filling

over the future slots, which gives the optimal sum rate [3]. Next, we check if energy

should be transferred from a previous slot l from the first, second, or both users,

in exactly the same way as above, i.e., by solving (4.36)-(4.38). If energy transfer

(from either or both users) is feasible and gives a higher objective function, we do

directional water-filling again from slot k over future slots, followed by repeating

the above energy transfer checks once more. These inner iterations stop if either no

energy transfer occurs, or no directional water-filling occurs. The deferring phase

ends after examining the first slot. During this phase, we record how much energy

is being moved forward to fill up future slots. Meters are put in between slots for

that purpose.

In the refinement phase, the goal is to check whether the currently reached

energy distribution is optimal. One reason it might not be optimal is that during the

deferring phase, some excess amounts of energy can be transferred from, e.g., slot

k forward unnecessarily without taking into account the energies available before

slot k. We check the optimality of the deferring phase policy by performing two-

slot updates starting from the last two slots going backwards. During the updates,
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Algorithm 2 Optimal deferred policy

Phase 1: Deferring

1: Set S1 = E1, S2 = E2, m1 = m2 = 0, and k = N
2: while k ≥ 1 do
3: Using energies {S1k, S2k}, solve for θk using (4.29)
4: if θk < 1 then
5: repeat
6: Transfer all energy from slot k − l to slot k
7: Re-solve for θk using (4.29)
8: if Slot k is completely filled then
9: Find energy needed to fill it using (4.36)-(4.38)

10: else l← min{l + 1, k − 1}
11: end if
12: until θk = 1, or all previous energies are exhausted
13: else
14: repeat
15: Directional water-filling over slots {k, . . . , N}
16: Check for energy transfer using (4.36)-(4.38)
17: until No water-filling or energy transfer occur
18: end if
19: Update the energy status values S1 and S2

20: Update the meters’ values m1 and m2

21: k ← k − 1
22: end while

Phase 2: Refinement

23: repeat
24: for k = 0 : N − 2 do
25: Update the energy status of slots (N − k− 1, N − k) taking energy back

if needed
26: end for
27: until Meters’ values m1 and m2 do not change
28: p∗1 = S1, and p∗2 = S2.
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energy can be drawn back from future slots if this increases the objective function

as long as it does not violate causality. This can be done by checking the values

stored in the meters in between the slots. See [82] for details on how to update a

given two slots. We summarize the steps of finding the optimal solution discussed

in this section in Algorithm 2.

4.4 Decoding and Processing Costs Combined

We have thus far considered throughput maximizing policies for two-way channels

with either decoding or processing costs. In this section, we study the general setting

with both decoding and processing costs. In this setup, user j spends a decoding

cost whenever it is receiving the other user’s message, and in addition to that, it

incurs a processing cost per unit time εj whenever it is operating. We allow user j

to transmit for a θj portion of the time, and formulate the general problem where

θ1 can be different than θ2 as follows

max
θ,p

N∑
i=1

θ1i

2
log (1 + p1i) +

θ2i

2
log (1 + p2i)

s.t.
k∑
i=1

θ1ip1i + θ2iap2i + max(θ1i, θ2i)ε1 ≤
k∑
i=1

E1i, ∀k

k∑
i=1

θ2ip2i + θ1iap1i + max(θ1i, θ2i)ε2 ≤
k∑
i=1

E2i, ∀k

0 ≤ θ1i, θ2i ≤ 1, ∀i (4.39)

Note that the above problem is a generalization of the problems considered in
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Sections 4.2 and 4.3. On one hand, if we set a = 0, i.e., do not consider decoding

costs, we get back to problem (4.31), after applying the synchronization argument

to get θ1i = θ2i, ∀i. On the other hand, setting ε1 = ε2 = 0, i.e., not considering

processing costs, and applying the change of variables p̄j , θjpj, j = 1, 2, we get

max
θ,p̄

N∑
i=1

θ1i

2
log

(
1 +

p̄1i

θ1i

)
+
θ2i

2
log

(
1 +

p̄2i

θ2i

)

s.t.
k∑
i=1

p̄1i + ap̄2i ≤
k∑
i=1

E1i, ∀k

k∑
i=1

p̄2i + ap̄1i ≤
k∑
i=1

E2i, ∀k

0 ≤ θ1i, θ2i ≤ 1, ∀i (4.40)

It is direct to see that the objective function is increasing in θ1,θ2, and therefore

the maximum is attained at θ∗1 = θ2
∗ = 1, i.e., we get back to problem (4.9). We

solve problem (4.39) in the remainder of this chapter.

4.4.1 Single Energy Arrival

We first consider the case where each user harvests only one energy packet. Note

that (4.39) is not a convex optimization problem. We apply the change of variables

p̄j , θjpj, j = 1, 2, to get

max
θ1,θ2,p̄1,p̄2

θ1

2
log

(
1 +

p̄1

θ1

)
+
θ2

2
log

(
1 +

p̄2

θ2

)
s.t. p̄1 + ap̄2 + max(θ1, θ2)ε1 ≤ E1
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p̄2 + ap̄1 + max(θ1, θ2)ε2 ≤ E2

0 ≤ θ1, θ2 ≤ 1 (4.41)

which is now a convex optimization problem [77]. Next, we have the following

lemma.

Lemma 4.9 In the optimal solution of problem (4.41), θ∗1 = θ∗2.

Proof: Assume, e.g., θ∗1 < θ∗2. Setting θ1 = θ∗2 is always feasible since the feasible

set is only affected by the maximum of the θ1 and θ2. This strictly increases the

objective function since it is monotonically increasing in θ1. �

Lemma 4.9 shows that it is optimal for the two users to be fully synchronized;

they turn on, exchange information, and then turn off simultaneously, similar to

what Lemma 4.6 states in the scenario with no decoding costs. This reduces the

problem to the following

max
θ,p̄1,p̄2

θ

2
log
(

1 +
p̄1

θ

)
+
θ

2
log
(

1 +
p̄2

θ

)
s.t. p̄1 + ap̄2 + θε1 ≤ E1

p̄2 + ap̄1 + θε2 ≤ E2

0 ≤ θ ≤ 1 (4.42)

We have the following lemma regarding this problem, whose proof is similar to that

of Lemma 4.1.
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Lemma 4.10 In the optimal solution of problem (4.42), at least one user consumes

all its energy.

Next, we solve (4.42) for the case a = 1. By the previous lemma, we have

p̄∗1 + p̄∗2 = min{E1 − θ∗ε1, E2 − θ∗ε2}, and by concavity of the objective function, we

further have p̄∗1 = p̄∗2. Substituting the powers back in the objective function, we get

a reduced problem in only one variable θ

max
0≤θ≤θm

θ log

(
1 +

min{E1 − θε1, E2 − θε2}
2θ

)
(4.43)

where θm , min
{

1, E1

ε1
, E2

ε2

}
assures the positivity of the powers. Note that by

monotonicity of the log, and non-negativity of θ, we have

θ log

(
1 +

min{E1 − θε1, E2 − θε2}
2θ

)
= min

{
θ log

(
1 +

E1 − θε1
2θ

)
, θ log

(
1 +

E2 − θε2
2θ

)}
(4.44)

It is direct to show that each of the terms inside the minimum expression on the

right hand side of the above equation is concave in θ, and therefore the minimum

of the two is also concave in θ [77]. Hence, problem (4.43) is a convex optimization

problem [77]. Let us define θ̄ , E1−E2

ε1−ε2 as the value of θ at which E1−θε1 = E2−θε2.

We now consider two different cases.

The first case is when θ̄ /∈ [0, θm], then the minimum expression in the objective

function reduces to only one of its two terms for all θ feasible. Let us assume without
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loss of generality that it is equal to E1 − θε1. Hence, taking the derivative of the

objective function and setting it to 0, we solve the following for θ

log

(
1− ε1

2
− E1

2θ

)
=

E1/2θ

1− ε1/2 + E1/2θ
(4.45)

The above equation has a unique solution since both sides are monotone in θ; the

term on the left is higher than the term on the right as θ approaches 0; and is lower

than the term on the right as θ approaches E1

ε1
. We denote this unique solution by

θ̂. We note that in this problem, we always have θ∗ > 0; we also have θ∗ = θm only

if θm = 1, or else the throughput is zero. Thus, if θm < 1, then θ̂ is always feasible

and θ∗ = θ̂. While if θm = 1, then θ̂ might not be feasible, and therefore in general

we have θ∗ = min{θ̂, 1}. This concludes the first case.

The second case is when θ̄ ∈ [0, θm]. In this case, depending on the sign of

ε1−ε2, the minimum expression in the objective function is given by one term in the

interval [0, θ̄] (let us assume it to be E1−θε1 without loss of generality), and is given

by the other term (E2 − θε2) in the interval [θ̄, θm]. We solve the problem in this

case sequentially as follows: We solve (4.45) for θ̂1 and compute θ∗1 = min{θ̂1, 1}.

If θ∗1 is less than θ̄ then, by concavity of the objective function, it is the optimal

solution. Else, if θ∗1 ≥ θ̄, we solve the following equation

log

(
1− ε2

2
− E2

2θ

)
=

E2/2θ

1− ε2/2 + E2/2θ
(4.46)
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for θ̂2 and compute θ∗2 = min{θ̂2, 1}, which will now be no less than θ̄, and is equal

to the optimal solution. We finally note that θ∗ = θ̄ iff θ∗1 = θ∗2 = θ̄. This concludes

the second case.

Next, we discuss the case a < 1 (similar arguments follow for the case a > 1,

and are omitted for brevity). We have the following lemma in this case, whose proof

is similar to that of Lemma 4.1.

Lemma 4.11 If the energies and processing costs are such that E1 − θε1 is less

(resp., larger) than E2 − θε2 for all θ feasible, then the first (resp., second) user

consumes all its energy.

We solve the problem by assuming the situation of the above lemma is true,

i.e., one user is energy tight for all θ feasible. If this is not the case, then as we did in

the a = 1 case above, we solve the problem twice assuming one user is tight at each

time, and check which is feasible (or equivalently pick the solution with higher sum

throughput). Thus, without loss of generality, we assume the first user consumes

all its energy, i.e., we have p̄1 = E1− θε1− ap̄2. Substituting this in problem (4.42),

we get the following

max
θ,p̄2

θ

2
log

(
1 +

E1 − θε1 − ap̄2

θ

)
+
θ

2
log
(

1 +
p̄2

θ

)
s.t. 0 ≤ p̄2 ≤

E1 − θε1
a

p̄2 ≤
E2 − aE1 − θ(ε2 − aε1)

1− a2

0 ≤ θ ≤ θm (4.47)
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where the upper bound in the first constraint assures the non-negativity of the first

user’s power. We note that if p̄∗2 ∈ {0, E1−θ∗ε1
a
}, i.e., if either of the two users is not

transmitting, the problem reduces to the following in terms of only one variable θ

max
0≤θ≤θm

θ

2
log

(
1 +

E1 − θε1
θ

)
(4.48)

which can be solved in a similar manner as we solved problem (4.43). On the other

hand, if the third constraint is tight, i.e., if the second user also consumes all its

energy, the problem becomes

max
θ̃l≤θ≤θ̃m

θ

2
log

(
1 +

E2 − aE1 − θ(ε2 − aε1)

(1− a2)θ

)
+
θ

2
log

(
1 +

E1 − aE2 − θ(ε1 − aε2)

(1− a2)θ

)
(4.49)

where θ̃l and θ̃m are such that E1 − aE2 ≥ θ(ε1 − aε2) and E2 − aE1 ≥ θ(ε2 − aε1),

i.e., to assure non-negativity of powers. Note that the objective function in the

above problem is concave. Hence, following a Lagrangian approach [77], we solve

the following for θ

f̃1(θ) · f̃2(θ) = e−2 (4.50)

where f̃j(θ), j = 1, 2 is defined as

f̃j(θ) ,
e(ε̃j−1)/((Ẽj/θ)−(ε̃j−1)

(Ẽj/θ)− (ε̃j − 1)
(4.51)
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with Ẽj , Ej − aEk and ε̃j , εj − aεk, j 6= k. We note that the above equation is

similar to (4.29), in the case with only processing costs. It can be shown by simple

first derivative analysis that f̃1 and f̃2 are both increasing in θ, and therefore (4.50)

has a unique solution. Let us denote such solution by θ̃. Finally, by concavity of

the objective function, the optimal θ∗ in this case is given by projecting θ̃ onto the

feasible set {θ : θ̃l ≤ θ ≤ θ̃m} [77].

Now that we know how to solve problem (4.47) when either of the first two

constraints is tight, we proceed to solve the problem in general as follows. We

first solve the problem assuming p̄∗2 is an interior point, i.e., neither of the first two

constraints is tight. If the solution in this case is feasible, then it is optimal. Else,

by concavity of the objective function, we project the solution onto the feasible set{
p̄2 : 0 ≤ p̄2 ≤ min

{
E1−θε1

a
, E2−aE1−θ(ε2−aε1)

1−a2

}}
. In case p̄2 is given by the upper limit

in this feasible set, we solve the problem twice assuming the minimum expression is

given by one of its terms in each, and pick the one with higher throughput.

Finally, it remains to present the interior point solution. We introduce the

following Lagrangian for the problem in this case

L =− θ

2
log

(
1 +

E1 − θε1 − ap̄2

θ

)
− θ

2
log
(

1 +
p̄2

θ

)
+ ω(θ − θm) (4.52)

Taking the derivative with respect to p̄2 and θ and equating to 0, we get the following

a
(

1 +
p̄2

θ

)
= 1− ε1 +

E1 − ap̄2

θ
(4.53)
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log
(

1 +
p̄2

θ

)
+ log

(
1− ε1 +

E1 − ap̄2

θ

)
=

p̄2/θ

1 + p̄2/θ
+

(E1 − ap̄2)/θ

1− ε1 + (E1 − ap̄2)/θ
+ ω

(4.54)

substituting the first equation in the second, and denoting y , 1 + p̄2/θ, we further

get

log(y) = 1− 1

2
log(a)−

1
2

(1 + (1− ε1)/a)

y
+ ω/2 (4.55)

which has a unique solution, y∗, for y ≥ 1. If ω∗ > 0, then by complementary

slackness, θ∗ = θm, and p̄∗2 is found by substituting in (4.53), else if ω∗ = 0, then θ∗

is found by substituting y∗ also in (4.53). By that, we conclude our analysis of the

single arrival case.

4.4.2 Multiple Energy Arrivals

In this section, we study the multiple energy arrival problem. Following the same

synchronization argument as in Section 4.3.2, problem (4.39) reduces to

max
θ,p̄1,p̄2

N∑
i=1

θi
2

log

(
1 +

p̄1i

θi

)
+

N∑
i=1

θi
2

log

(
1 +

p̄2i

θi

)

s.t.
k∑
i=1

p̄1i + ap̄2i + θiε1 ≤
k∑
i=1

E1i, ∀k

k∑
i=1

p̄2i + ap̄1i + θiε2 ≤
k∑
i=1

E2i, ∀k

0 ≤ θi ≤ 1, ∀i (4.56)
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which is a convex optimization problem [77]. The Lagrangian is

L =−
N∑
i=1

θi
2

log

(
1 +

p̄1i

θi

)
−

N∑
i=1

θi
2

log

(
1 +

p̄2i

θi

)
+

N∑
i=1

ωi(θi − 1)−
N∑
i=1

ηiθi

+
N∑
k=1

λ1k

(
k∑
i=1

p̄1i + ap̄2i + θiε1 −
k∑
i=1

E1i

)

+
N∑
k=1

λ2k

(
k∑
i=1

p̄2i + ap̄1i + θiε2 −
k∑
i=1

E2i

)
(4.57)

Taking the derivative with respect to p̄1i and p̄2i and equating to 0 we get

p̄1i

θi
=

(
1∑N

k=i λ1k + aλ2k

− 1

)+

(4.58)

p̄2i

θi
=

(
1∑N

k=i λ2k + aλ1k

− 1

)+

(4.59)

along with the complementary slackness conditions [77]. Therefore, we have the

following lemma for this problem. The proof follows using similar arguments as in

Lemmas 4.2, 4.3, and 4.4.

Lemma 4.12 In the optimal policy of problem (4.56), the powers of both users are

non-decreasing; increase only if at least one user consumes all energy; and increase

synchronously.

We note that, as discussed in Section 4.3.2, the optimal policy for problem

(4.56) is not unique. Using similar arguments, any optimal policy can be transferred

into a (unique) deferred policy. Hence, in the remainder of this chapter, we find

the optimal deferred policy for problem (4.56). We present an algorithm that is a
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combination of the ideas used in Sections 4.2 and 4.3 as follows.

We start by a deferring phase similar to the one discussed in Section 4.3.2.1.

We highlight the main differences in the following. First, to determine how much

energy is needed to be transferred to fill a given slot k from a previous slot l, we

assume that both users transfer energy, and similar to problem (4.35), we solve the

following single energy arrival problem

max
θ,p̄1,p̄2

1 + θ

2
log

(
1 +

p̄1

1 + θ

)
+

1 + θ

2
log

(
1 +

p̄2

1 + θ

)
s.t. p̄1 + ap̄2 + (1 + θ)ε1 ≤ S1l + S1k

p̄2 + ap̄1 + (1 + θ)ε2 ≤ S2l + S2k

0 ≤ θ ≤ 1 (4.60)

After solving this problem, we set θk−1 = θ∗, and pj(k−1) = pjk = (1+θ∗)p̄∗j , j = 1, 2.

The resulting policy is optimal if feasible since it equalizes powers [1]. If not, then

we need to check the other ways of transfer, namely, transferring from the first user

only, or from the second user only. We also need to assume an energy consumption

strategy in slot k, i.e., which user consumes all its energy. We solve for all possible

strategies, and pick the one with maximum sum throughput among the feasible

ones. We highlight the solution of one energy consumption strategy in the following

discussion. The rest follows similarly.

We discuss the strategy of transferring energy only from the second user in

slot l, and that the second user consumes all its energy in slot k. Towards that end,
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we first fix θl = θ, and then, as discussed in Section 4.2.2, we solve the following

equivalent problem in (r, δ)

max
r,δ

1

2
log

(
1 +

S1l − aS2l − θ(ε1 − aε2) + ar

θ(1− a2)

)
+

1

2
log

(
1 +

δ

a

)
+

1

2
log

(
1 +

S2l − aS1l − θ(ε2 − aε1)− r
θ(1− a2)

)
+

1

2
log (1 + S2k + r − δ)

s.t. 0 ≤ δ ≤ S2k − ε2 + r

r ≥
(
aS2l − S1l + θ(ε1 − aε2)

a

)+

r ≤ min {S2l, S2l − aS1l − θ(ε2 − aε1)}

δ ≤ a

1− a2
(S1k − aS2k − (ε1 − aε2)− ar) (4.61)

We note that the above problem is exactly the same as problem (4.15) if we set

θ = 1, and ε1 = ε2 = 0. With processing costs, the problem can be solved similarly.

We solve the above problem for all given θ and do a one dimensional line search to

find the optimal θ∗l .

By the end of the deferring phase above, there will exist a time slot k∗, after

which all time slots are completely filled, and before which all time slots are empty,

i.e., we will have θl = 1, ∀l > k∗; θl = 0, ∀l < k∗; and θk∗ ≤ 1. We can now focus

on the non-empty time slots k∗, . . . , N . Each will have a certain energy distribution

{Sji}Ni=k∗ , j = 1, 2, from the deferring phase. We also record the amount of energy

transferred to future slots in meters as we did in Section 4.2.2. Next, we check

if such energy distributions need improvement. We note that if θk∗ = 1, then the

problem becomes a decoding cost problem that can be solved iteratively as discussed
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in Section 4.2.2 with equivalent energies: {Sji − εj}Ni=k∗ , j = 1, 2. If θk∗ < 1,

however, then as we reach slots {k∗, k∗ + 1} in the two-slot updates, we update the

distributions by finding the best energy transfer strategy, i.e., transfer from only

one or both users, as discussed in problems (4.60) and (4.61). Iterations converge

to the optimal solution.

4.5 Numerical Results

4.5.1 Deterministic Arrivals

In this section we present numerical examples to further illustrate our results. We

begin by the building blocks of the proposed algorithms; two-slot systems. We start

with the case with only decoding costs and consider a system with energies E1 =

[0.5, 3.5] and E2 = [1, 1.5]. The decoding power factor is equal to a = 0.5. We first

solve for each slot independently using the single arrival result to get p1 = [0, 1] and

p2 = [0.33, 1.33]. Then, we find the optimal solution as discussed in Section 4.2.2.1.

First, we check the constant-power strategy, where neither user consumes its energy

in the first slot, and solve a single arrival problem with average energy arrivals

Ē1 = 2 and Ē2 = 1.25 to get p̄1 = 1.75 and p̄2 = 0.375, which are found infeasible.

Thus, we move to check the second consumption strategy: the first user consumes

all energy in the first slot while the second user consumes all energy in the second

slot, i.e., we solve problem (4.15). We first remove the last constraint, and take

δ(r) = 1+E22+r−a
2

, the middle term of (4.19), and solve for r using (4.20). This gives

r = 0.55, which satisfies the middle constraint in (4.19), thus the assumed δ(r) is
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Figure 4.2: Two-slot system with only decoding costs.

correct, and gives δ = 1.27. Finally, we check the relaxed (last) constraint of (4.15);

we find that it is satisfied with strict inequality. Therefore, (r∗ = 0.55, δ∗ = 1.27) is

the optimal solution for this consumption strategy. The corresponding powers are

given by p1 = [0.36, 2.55] and p2 = [0.26, 0.77]. Next, we check the other strategies.

Among the feasible ones, we find that the maximum throughput is given by that

of the second strategy above, and is therefore the optimal solution of this two-slot

system. In Fig. 4.2, we show the single-slot solution on the left and the optimal

solution on the right of the figure. The height of the water in blue represents the

power level of a user in a given slot. We note that the first user’s optimal power

in the first slot is larger than the corresponding single-slot power allocation. That

is because the second user’s optimal power is smaller than the single-slot power

allocation, which gives more room for the first user to transmit. This shows how

decoding costs closely couple the performance of the two users.

Next, we consider the case with only processing costs, with energies E1 =

[0.5, 1] and E2 = [1, 1], and processing costs ε1 = 0.5 and ε2 = 0.4. In Fig. 4.3, we

present one feasible, and two optimal, power policies. The height of the water levels

in blue represents the actual transmit powers {p1i, p2i}, while the width represents
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Figure 4.3: Optimal deferred policy in a two-slot system with only processing costs.

the burstiness {θi}, for i = 1, 2. On the left, we solve for each slot independently

using the single arrival result. This gives a non-deferred policy with θ = [0.47, 0.65],

p1 = [0.57, 1.04], p2 = [1.75, 1.14], and a sum throughput equal to 0.541. We then

transfer all the energy from the 1st to the 2nd slot and re-solve for θ2 using (4.29).

The result is θ2 = 1, which means that the 1st slot’s energies are capable of totally

filling the 2nd slot. We therefore compute the exact amount needed to do so by

setting θ2 = 1 and solving for θ1 = θ′ assuming both users transfer energy, i.e.,

using (4.36). This gives θ1 = 0.122, p∗1 = [0.84, 0.84], p∗2 = [1.39, 1.39], and a

sum throughput equal to 1.656. This transfer strategy is found feasible, and hence

optimal. We show the optimal deferred policy at the middle of Fig. 4.3. Finally,

on the right of Fig. 4.3, we show another optimal, yet non-deferred, power policy.

This is simply done by shifting some of the water back, in a feasible manner, from

slot 2 to slot 1. Namely, we increase the value of θ1 to 0.35 and decrease that of θ2

to 0.772, with the same transmit powers. This is a feasible non-deferred policy, and

gives the same objective function of 1.656. This shows the non-uniqueness of the

solution of problem (4.32).

We now solve a more involved four-slot system with energiesE1 = [0.9, 0.1, 3, 0.8]

and E2 = [0.8, 1.5, 2, 2]. Here we consider both decoding and processing costs with
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Figure 4.4: Optimal policy in a four-slot system with both decoding and processing
costs.

parameters a = 0.7, ε1 = 0.3, and ε2 = 0.6. We begin by the initialization step;

filling up later slots first in a backward manner. This leaves us with an energy

distribution of S1 = [0, 1, 1.7788, 2.021] and S2 = [0, 0.936, 3.236, 2.128] at the first

and the second user, respectively. We then begin the two-slot updates to check

whether the given distributions need improvement. With the possibility of draw-

ing back energy as feasible as imposed by the meters put between slots, our algo-

rithm converges to the optimal solution in 8 iterations. The optimal powers are

given by p∗1 = [0, 0.3585, 0.65, 0.65], p∗2 = [0, 0.9407, 1.357, 1.357], and the deferred

burstiness is given by θ∗ = [0, 0.76, 1, 1]. We see that the optimal powers are non-

decreasing, and increase synchronously, as stated in Lemma 4.12, and that {θ∗i }

is non-decreasing, which is an attribute of a deferred policy. The optimal pol-

icy is shown in Fig. 4.4. Next, we remove the decoding costs and solve the same

problem with only processing costs as discussed in Section 4.3.2. We reach the op-

timal deferred policy after 5 iterations, which is given by p∗1 = [0.67, 0.67, 1.6, 1.6],

p∗2 = [1.47, 1.47, 1.47, 1.47], and θ∗ = [0.033, 1, 1, 1]. We notice that the first time

slot is utilized in this case, when the decoding costs are removed. Finally, we remove

the processing costs and solve the same problem with only decoding costs as dis-

cussed in Section 4.2.2. After 7 iterations, we get the optimal p∗1 = [0.1, 0.1, 0.8, 0.8]
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Figure 4.5: Effect of processing and decoding costs on the sum rate in a five-slot
system.

and p∗2 = [0.57, 0.57, 1.57, 1.57].

In Fig. 4.5, we show the effect of decoding and processing costs on the sum

rate. We consider a five-slot system with E1 = [2, 3, 1, 1, 5] and E2 = [4, 2, 2, 3, 3].

Initially we set a = 0.7, ε1 = 0.8, and ε2 = 0.5. We then vary one parameter and

fix the rest, and observe how it affects the sum rate. As expected, adding costs

decreases the achievable throughput as we see from the figure. We also note that

the sum rate is almost constant for initial small values of ε2. That is due to the fact

that the second user’s processing costs are not the bottleneck to the system in this

range. In fact, the first user is the bottleneck in this range. This shows how the

two users are strongly coupled in this two-way setting with decoding and processing

costs.
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Figure 4.6: Comparison of an online best effort scheme and the optimal offline
scheme.

4.5.2 Stochastic Arrivals

We now discuss online scenarios where energy is known causally after being har-

vested, while only its statistics is known a priori. We present a best effort online

scheme to compare with our optimal offline solution. Namely, we assume that the

energy harvesting process is i.i.d. with mean µ, and that in time slot i, the jth

user energy consumption is bounded by min{bji, µ}, where bji is the battery state

of user j in slot i, capturing the energy arrival at slot i, Eji, and the residual from

previous slots, if any. This scheme decouples the multiple arrival problem into N

single arrival problems that can be solved as discussed in Section 4.4.1, without vi-

olating the causal knowledge of the energy arrival information. In Fig. 4.6, we plot

the average throughput of this online policy for different time slots, and compare it

with the optimal offline policy discussed in Section 4.4.2. Energies follow a uniform
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distribution on [0, 3], processing costs are ε1 = 0.8 and ε2 = 0.5, and the decoding

cost factor is a = 0.7. We run the simulations multiple times for every time slot and

take the average, and then plot the sum rate divided by the number of time slots.

We see from the figure that as the number of time slots increases, the gap between

the online and the offline throughputs increases, and then converges to a constant

value. This is due to the fact that in this best effort policy the problem is decoupled

as discussed above, and the optimal energy distribution among the slots is no longer

achieved, and therefore, the loss of optimality increases with the increase in the

number of slots. However, as N grows large, and since we are using i.i.d. arrivals,

the best effort policy’s loss with respect to the optimal offline one converges to a

constant value.

4.6 Conclusion

In this chapter, we designed throughput-optimal offline power scheduling policies in

an energy harvesting two-way channel where users incur decoding and processing

costs. Each user spends a decoding power that is an exponential function of the

incoming rate, and in addition, incurs a constant processing power as long is it is

communicating. We first studied the case with only decoding costs, followed by

that with only processing costs. We then formulated the general problem with both

decoding and processing costs in a single setting, and provided an iterative algorithm

to find the optimal power policy in this case using insights from the solutions of the

case with only decoding and only processing costs.
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CHAPTER 5

Online Fixed Fraction Policies in Energy Harvesting Com-

munication Systems

5.1 Introduction

In this chapter, we consider power scheduling policies for single-user energy harvest-

ing communication systems, where the goal is to characterize online policies that

maximize the long term average utility, for general concave and monotonically in-

creasing utility functions. The transmitter relies on energy harvested from nature

to send its messages to the receiver, and is equipped with a finite-sized battery to

store its harvested energy, see Fig. 5.1. Energy packets are i.i.d. over time slots,

and are revealed causally to the transmitter. Only the average energy arrival rate is

known a priori. We first characterize the optimal solution for the case of Bernoulli

arrivals. Then, for general i.i.d. arrivals, we first show that fixed fraction policies, in

which a fixed fraction of the battery state is consumed in each time slot, are within

a constant multiplicative gap from the optimal solution for all energy arrivals and

battery sizes. We then derive a set of sufficient conditions on the utility function

to guarantee that fixed fraction policies are within a constant additive gap as well
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Figure 5.1: Single-user energy harvesting channel with general utility function.

from the optimal solution. We then consider a specific scenario where a sensor node

collects samples from a Gaussian source and sends them to a destination node over

a Gaussian channel. The goal is to minimize the long term average distortion of

the source samples received at the destination. We study two problems: the first is

when sampling is cost-free, and the second is when there is a sampling cost incurred

whenever samples are collected. We show that fixed fraction policies achieve a long

term average distortion that lies within a constant additive gap from the optimal

solution for all energy arrivals and battery sizes. For the problem with sampling

costs, the transmission policy is bursty; the sensor may collect samples and transmit

for only a portion of the time.

5.2 General Utility Functions

We consider a single-user channel where the transmitter relies on energy harvested

from nature to send its messages to the receiver. Energy arrives (is harvested) in

packets of amount Et at the beginning of time slot t. Without loss of generality, a slot

duration is normalized to one time unit. Energy packets follow an i.i.d. distribution

with a given mean. Our setting is online: the amounts of energy are known causally
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in time, i.e., after being harvested. Only the mean of the energy arrivals is known

a priori. Energy is saved in a battery of finite size B.

Let u be a differentiable, concave, and monotonically increasing function rep-

resenting a general utility (reward) function, with u(0) = 0 and u(x) > 0 for

x > 0, and let gt denote the transmission power used in time slot t. By allo-

cating power gt in time slot t, the transmitter achieves u (gt) instantaneous reward.

Denoting E t , {E1, E2, . . . , Et}, a feasible online policy g is a sequence of mappings

{gt : E t → R+} satisfying

0 ≤ gt ≤ bt , min{bt−1 − gt−1 + Et, B}, ∀t (5.1)

with b1 , B without loss of generality (using similar arguments as in [54, Appendix

B]). We denote the above feasible set in (5.1) by F . Given a feasible policy g, we

define the n-horizon average reward as

Un(g) ,
1

n
E

[
n∑
t=1

u (gt)

]
(5.2)

Our goal is to design online power scheduling policies that maximize the long term

average reward subject to (online) energy causality constraints. That is, to charac-

terize

ρ∗ , max
g∈F

lim
n→∞

Un(g) (5.3)

We note that problem (5.3) can be solved by dynamic programming techniques

119



since the underlying system evolves as a Markov decision process. However, the

optimal solution using dynamic programming is usually computationally demanding

with few structural insights. Therefore, in the sequel, we aim at finding relatively

simple online power control policies that are provably within a constant additive

and multiplicative gap from the optimal solution for all energy arrivals and battery

sizes.

We assume that Et ≤ B ∀t a.s., since any excess energy above the battery

capacity cannot be saved or used. Let µ = E[Et], where E[·] is the expectation

operator, and define

q ,
E[Et]

B
(5.4)

Then, we have 0 ≤ q ≤ 1 since Et ≤ B a.s. We define the power control policy as

follows [54]

g̃t = qbt (5.5)

That is, in each time slot, the transmitter uses a fixed fraction of its available energy

in the battery. Such policies were first introduced in [54], and coined fixed fraction

policies (FFP). Clearly such policies are always feasible since q ≤ 1. Let ρ (g̃) be the

long term average utility under the FFP {g̃t}. Next, we find the optimal solution

of problem (5.3) under the specific case of Bernoulli energy arrivals. After that, we

discuss how the FFP performs under general i.i.d. energy arrivals.
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5.2.1 Bernoulli Energy Arrivals

Let {Êt} be a Bernoulli energy arrival process with mean µ as follows

Êt =


B, w.p. p

0, w.p. 1− p
(5.6)

Note that under such specific energy arrival setting, whenever an energy packet

arrives, it completely fills the battery, and resets the system. This constitutes a

renewal. Then, by [83, Theorem 3.6.1] (see also [54]), the following holds for any

power control policy g

lim
n→∞

Ûn(g) = lim
n→∞

1

n
E

[
n∑
t=1

u (gt)

]

=
1

E[L]
E

[
L∑
t=1

u (gt)

]
(5.7)

where Ûn(g) is the n-horizon average utility under Bernoulli arrivals, and L is a

random variable denoting the inter-arrival time between energy arrivals, which is

geometric with parameter p, and E[L] = 1/p.

Using the FFP defined in (5.5) in (5.7) gives a lower bound on the long term

average utility. Note that by (5.6), the fraction q in (5.4) is now equal to p. Also,

the battery state decays exponentially in between energy arrivals, and the FFP is

g̃t = p(1− p)t−1B = (1− p)t−1µ (5.8)
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for all time slots t, where the second equality follows since pB = µ. Using (5.7),

problem (5.3) in this case reduces to

max
g

∞∑
t=1

p(1− p)t−1u (gt)

s.t.
∞∑
t=1

gt ≤ B, gt ≥ 0, ∀t (5.9)

which is a convex optimization problem. The Lagrangian is,

L = −
∞∑
t=1

p(1− p)t−1u (gt) + λ

(
∞∑
t=1

gt −B
)
−
∞∑
t=1

ηtgt (5.10)

where λ and {ηt} are Lagrange multipliers. Taking derivative with respect to gt and

equating to 0 we get

u′ (gt) =
λ− ηt

p(1− p)t−1
(5.11)

Since u is concave, u′ is monotonically decreasing and v , (u′)−1 exists, and is also

monotonically decreasing. By complementary slackness, we have ηt = 0 for gt > 0,

and the optimal power in this case is given by

gt = v

(
λ

p(1− p)t−1

)
(5.12)

and it now remains to find the optimal λ. We note by monotonicity of v, {gt} is
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non-increasing, and it holds that

gt = v

(
λ

p(1− p)t−1

)
> 0⇔ λ < p(1− p)t−1u′(0) (5.13)

Hence, if u′(0) is infinite, then (5.13) is satisfied ∀t, and the optimal power allocation

sequence is an infinite sequence. In this case, we solve the following equation for the

optimal λ

∞∑
t=1

v

(
λ

p(1− p)t−1

)
= B (5.14)

which has a unique solution by monotonicity of v.

On the other hand, for finite u′(0), there exists a time slot N , after which

the second inequality in (5.13) is violated since λ is a constant and p(1 − p)t−1 is

decreasing. In this case the optimal power allocation sequence is only positive for a

finite number of time slots 1 ≤ t ≤ N . We note that N is the smallest integer such

that

λ ≥ p(1− p)Nu′(0) (5.15)

Thus, to find the optimal N (and λ), we first assume N is equal to some integer

{2, 3, 4, . . . }, and solve the following equation for λ

N∑
t=1

v

(
λ

p(1− p)t−1

)
= B (5.16)
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We then check if (5.15) is satisfied for that choice of N and λ. If it is, we stop.

If not, we increase the value of N and repeat. This way, we reach a KKT point,

which is sufficient for optimality by convexity of the problem [77]. We note that

for u(x) = 1
2

log(1 + x) whose u′(0) is finite, [54] called N , Ñ . We generalize their

analysis for any concave increasing function u. This concludes the discussion of the

optimal solution in the case of Bernoulli energy arrivals.

5.2.2 General i.i.d. Energy Arrivals

We now consider the case of a general i.i.d. energy arrival process. We first have

the following two results.

Lemma 5.1 The optimal solution of problem (5.3) satisfies

ρ∗ ≤ u(µ) (5.17)

Proof: Following [54] and [59], we first remove the battery capacity constraint set-

ting B =∞. This way, the feasible set F in (5.1) becomes

n∑
t=1

gt ≤
n∑
t=1

Et, ∀n (5.18)

Then, we remove the expectation and consider the offline setting of problem (5.3),

i.e., when energy arrivals are known a priori. Since the energy arrivals are i.i.d., the

strong law of large numbers indicates that limn→∞
1
n

∑n
t=1 Et = µ a.s., i.e., for every

δ > 0, there exists n large enough such that 1
n

∑n
t=1Et ≤ µ + δ a.s., which implies
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by (5.18) that the feasible set, for such (δ, n) pair, is given by

1

n

n∑
t=1

gt ≤ µ+ δ a.s. (5.19)

Now fix such (δ, n) pair. The objective function is given by

1

n

n∑
t=1

u(gt) (5.20)

Since u is concave, the optimal power allocation minimizing the objective function

is gt = µ + δ, 1 ≤ t ≤ n [77] (see also [1]). Whence, the optimal offline solution is

given by u(µ + δ). We then have ρ∗ ≤ u(µ + δ). Since this is true ∀δ > 0, we can

take δ down to 0 by taking n infinitely large. �

Theorem 5.1 The achieved long term average utility under the FFP in (5.5) sat-

isfies

1

2
≤ ρ (g̃)

u (µ)
≤ 1 (5.21)

Proof: We first derive a lower bound on the long term average utility for Bernoulli

energy arrivals under the FFP as follows

lim
n→∞

Ûn(g̃)
(a)
= p

∞∑
i=1

p(1− p)i−1

i∑
t=1

u (g̃t)

=
∞∑
t=1

p(1− p)t−1u
(
(1− p)t−1µ

)
(5.22)
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(b)

≥
∞∑
t=1

p(1− p)2(t−1)u (µ)

=
1

2− pu(µ) ≥ 1

2
u(µ) (5.23)

where (a) follows by (5.7), (b) follows by concavity of u [77], and the last inequality

follows since 0 ≤ p ≤ 1. Next, we use the above result for Bernoulli arrivals to

bound the long term average utility for general i.i.d. arrivals under the FFP in the

following lemma; the proof follows by concavity and monotonicity of u, along the

same lines of [54, Section VII-C], and is omitted for brevity.

Lemma 5.2 Let {Êt} be a Bernoulli energy arrival process as in (5.6) with param-

eter q as in (5.4) and mean qB = µ. Then, the long term average utility under the

FFP for any general i.i.d. energy arrivals, ρ(g̃), satisfies

ρ(g̃) ≥ lim
n→∞

Ûn(g̃) (5.24)

Using Lemma 5.1, (5.23), and Lemma 5.2, we have

1

2
u(µ) ≤ ρ(g̃) ≤ ρ∗ ≤ u(µ) (5.25)

�

We note that the results in Lemma 5.1 and Theorem 5.1 indicate that the FFP

in (5.5) achieves a long term average utility that is within a constant multiplicative

gap from the optimal solution that is equal to 1
2
. This result is proved in [54] for
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u(x) = 1
2

log(1 + x). Here, we are generalizing it to work for any concave increasing

function u with u(0) = 0.

Next, we state the additive gap results. We first define

hθ(x) , u(θx)− u(x) (5.26)

for some 0 ≤ θ ≤ 1, and define the following two classes of utility functions.

Definition 5.1 (Utility Classes) A utility function u belongs to class (A) if hθ(x)

does not converge to 0 as x→∞, and belongs to class (B) if limx→∞ hθ(x) = 0.

Now let us define the following function for 0 < θ < 1

h(θ) , inf
x
hθ(x) (5.27)

whenever the infimum exists. Note that the infimum exists for class (B) utility

functions since hθ(x) < 0 for x > 0 by monotonicity of u, and hθ(0) = 0. We state

some properties of the function h in the next lemma.

Lemma 5.3 h(θ) is non-positive, concave, and non-decreasing in θ.

Proof: Since u is increasing and 0 ≤ θ ≤ 1, then hθ(x) < 0 for all x, and hence the

infimum is non-positive. Concavity follows by the concavity of u and the fact that

the infimum of concave functions is also concave [77]. Finally, h is non-decreasing

since u is monotonically increasing. �
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The next two theorems summarize the additive gap results for utility functions

in classes (A) and (B) in Definition 5.1.

Theorem 5.2 If h(θ) exists, and if

r , (1− q) lim
t→∞

1− limx→x̄t+1 u ((1− q)t+1x) /u(x)

1− limx→x̄t u ((1− q)tx) /u(x)
< 1 (5.28)

where x̄t ∈ arg infx h(1−q)t(x); then the achieved long term average utility under the

FFP in (5.5) satisfies

u (µ) + α ≤ ρ (g̃) ≤ u (µ) (5.29)

where α ,
∑∞

t=0 q(1− q)th ((1− q)t) is finite.

Proof: By Lemma 5.1 and Lemma 5.2, it is sufficient to study the lower bound in

the case of Bernoulli arrivals. By (5.22) we have

lim
n→∞

Ûn(g̃) =
∞∑
t=1

p(1− p)t−1u
(
(1− p)t−1µ

)
(c)

≥
∞∑
t=1

p(1− p)t−1
(
u (µ) + h

(
(1− p)t−1

))
= u(µ) +

∞∑
t=0

p(1− p)th
(
(1− p)t

)
, u(µ) + α (5.30)

where (c) follows since h(θ) exists, and is by definition no larger than hθ(x), ∀x, θ.

Now to check whether α is finite, we apply the ratio test to check the convergence
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of the series
∑∞

t=0(1− p)th ((1− p)t). That is, we compute

r , lim
t→∞

∣∣∣∣(1− p)t+1h ((1− p)t+1)

(1− p)th ((1− p)t)

∣∣∣∣
= (1− p) lim

t→∞

infx 1− u ((1− p)t+1x) /u(x)

infx 1− u ((1− p)tx) /u(x)
(5.31)

where the second equality follows by definition of h. Next, we replace infx by limx→x̄t

since x̄t ∈ arg inf h(1−p)t(x), and take the limit inside (after the 1). Finally, if r < 1

then α is finite; if r > 1 then α = −∞; and if r = 1 then the test is inconclusive

and one has to compute limT→∞
∑T

t=0 p(1− p)th ((1− p)t) to get the value of α. �

Theorem 5.3 For class (B) utility functions, the achieved long term average utility

under the FFP in (5.5) satisfies

lim
µ→∞

ρ (g̃) = ρ∗ (5.32)

Proof: For utility functions of class (B), we have limx→∞ u(θx)− u(x) = 0. Thus,

∀ε > 0 there exists µ̄ large enough such that

u
(
(1− p)t−1µ

)
> u (µ)− ε, ∀µ ≥ µ̄ (5.33)

whence, for Bernoulli energy arrivals we have

lim
n→∞

Ûn(g̃) =
∞∑
t=1

p(1− p)t−1u
(
(1− p)t−1µ

)
≥ u (µ)− ε, ∀µ ≥ µ̄ (5.34)
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It then follows by Lemma 5.1 and Lemma 5.2 that

ρ∗ ≥ ρ (g̃) ≥ u (µ)− ε ≥ ρ∗ − ε, ∀µ ≥ µ̄ (5.35)

and we can take ε down to 0 by taking µ infinitely large. �

We note that the results in Lemma 5.1 and Theorem 5.2 indicate that the

FFP in (5.5) achieves a long term average utility, under some sufficient conditions,

that is within a constant additive gap from the optimal solution that is equal to

|∑∞t=0 q(1− q)th ((1− q)t)|. One can further make this gap independent of q by

minimizing it over 0 ≤ q ≤ 1. We discuss examples of the above results in Sec-

tion 5.4, where we also comment on FFP performance under utility functions that

do not satisfy the sufficient conditions in Theorem 5.2.

5.3 Specific Scenario: Distortion Minimization

We now focus on a specific scenario of a sensor node collecting i.i.d. Gaussian source

samples, with zero-mean and variance σ2
s , over a sequence of time slots. Samples are

compressed and sent over an additive white Gaussian noise channel, with variance

σ2
c , to an intended destination. We consider a strict delay scenario where samples

need to be sent during the same time slot in which they are collected. With a mean

squared error distortion criterion, the average distortion of the source samples in

time slot t, Dt, is given by [49]

Dt = σ2
s exp (−2rt) (5.36)
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where rt denotes the sampling rate at time slot t.

The sensor uses energy harvested from nature to send its samples over the

channel, with minimal distortion, and consumes energy in sampling and transmis-

sion. Depending on the physical settings, sampling energy can be a significant

system aspect and needs to be taken into consideration [35]. We formulate two

different problems for that matter: one without, and the other with sampling costs

as follows.

We first consider the case of no sampling cost, where energy is consumed only

in transmission. By allocating power gt at time slot t to the Gaussian channel, the

sensor achieves an instantaneous communication rate of [49]

rt =
1

2
log
(
1 + gt/σ

2
c

)
(5.37)

Given a feasible policy g, and using (5.36) and (5.37), we define the n-horizon

average distortion as follows

Dn(g) ,
1

n
E

[
n∑
t=1

σ2
s

1 + gt/σ2
c

]
(5.38)

Our goal is to minimize the long term average distortion, subject to (online) energy

causality constraints. That is, to characterize the following

d∗ , min
g∈F

lim
n→∞

Dn(g) (5.39)

where F is as defined in (5.1).
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We note that the distortion function σ2
s

1+x/σ2
c

is convex and decreasing in x.

Hence, the function ū(x) , − σ2
s

1+x/σ2
c
+σ2

s is concave and increasing in x with ū(0) = 0.

One can therefore apply the results of Section 5.2 to problem (5.39) after changing

the minimization to maximization and the distortion function to the function ū

above. We will, however, proceed with the minimization problem as is for two

main reasons. First, this will allow us to use a different analysis approach to find

an additive gap that is relatively easier to compute than computing the term α in

Theorem 5.2. Second, we will use this approach later when we consider the case

with sampling costs since, as we will discuss, we cannot directly use the analysis in

Section 5.2 to solve the problem in the case with sampling costs.

Now let us consider the case where sampling the source incurs an energy cost

ε per unit time, that is a constant independent of the sampling rate. Due to the

sampling cost, collecting all the source samples might not be optimal. Hence, we

allow the sensor to be on during a θt ≤ 1 portion of time slot t, and turn off for the

remainder of the time slot. The expected distortion achieved in time slot t under

this setting is now given by

Dε
t = (1− θt)σ2

s + θtσ
2
s exp (−2rt) (5.40)

and the feasible set F ε is now given by the sequence of mappings {(θt, gt) : E t →

[0, 1]× R+} satisfying

θt(ε+ gt) ≤ bt , min{bt−1 − θt−1(ε+ gt−1) + Et, B}, ∀t (5.41)
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with b1 , B; compare the feasible set in (5.41) with cost to the feasible set in (5.1)

with no additional cost. We note that the problem with sampling costs is formulated

slightly different in [35]. In our formulation, the expected distortion is interpreted

by time sharing between not transmitting (and hence achieving σ2
s) and transmitting

with rate rt (and hence achieving σ2
s exp(−2rt)). Given a feasible policy (θ, g), and

using (5.37) and (5.40), we define the n-horizon average distortion with sampling

costs as

Dεn (θ, g) ,
1

n
E

[
n∑
t=1

(1− θt)σ2
s + θt

σ2
s

1 + gt/σ2
c

]
(5.42)

whence our goal is to characterize

d∗ε , min
(θ,g)∈Fε

lim
n→∞

Dεn (θ, g) (5.43)

Observe that in the case of sampling costs we optimize over two sequences

of variables {θt} and {gt}. Hence, the analysis in Section 5.2 cannot be directly

applied to this case, unlike the case with no sampling costs. Thus, we proceed with

a different approach to find an additive gap for this case. We note that online FFP

analysis for two variables has been considered previously in [59,60].

5.3.1 Bernoulli Energy Arrivals

In this section, we discuss the optimal solution of problems (5.39) and (5.43) under

a Bernoulli energy arrival process as defined in (5.6). We first note that problem
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(5.39) can be solved using the same analysis in Section 5.2.1 after replacing the

objective function by ū(x) , − σ2
s

1+x/σ2
c

+ σ2
s . Hence, in this section we only focus on

the case of sampling costs in problem (5.43). Following the analysis in Section 5.2.1,

and applying the change of variables ḡt , θtgt, problem (5.43) can be rewritten as

min
θ,g

∞∑
t=1

p(1− p)t−1

(
(1− θt)σ2

s + θt
σ2
s

1 + ḡt
θtσ2

c

)

s.t.
∞∑
t=1

ḡt + θtε ≤ B

ḡt ≥ 0, 0 ≤ θt ≤ 1, ∀t (5.44)

which is a convex optimization problem since θ
1+x/θ

is the perspective function of

the convex function 1
1+x

and is therefore jointly convex in (θ, x) [77]. We introduce

the following Lagrangian for this problem

L =
∞∑
t=1

p(1− p)t−1

(
(1− θt)σ2

s + θt
σ2
s

1 + ḡt
θtσ2

c

)
+ λ

(
∞∑
t=1

ḡt + θtε−B
)
−
∞∑
t=1

ηtḡt

−
∞∑
t=1

γtθt +
∞∑
t=1

ωt(θt − 1) (5.45)

where λ, {ηt}, {γt}, and {ωt} are non-negative Lagrange multipliers. Taking deriva-

tive with respect to ḡt and equating to 0 we get

σ2
sp(1− p)t−1

σ2
c (1 + ḡt/θtσ2

c )
2 = λ− ηt (5.46)
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which can be rewritten as follows using complementary slackness

ḡt
θt

= σ2
c

(√
σ2
sp(1− p)t−1

σ2
cλ

− 1

)+

(5.47)

where (x)+ = max{x, 0}. This shows that the optimal power gt is monotonically

decreasing over time, and that there exists a time slot N after which there is no

transmission and all powers are 0. Now let us take the derivative of the Lagrangian

with respect to θt, equate it to 0, and use (5.46) to get

ḡt
θt

= σ2
c

√
λε− γt + ωt
σ2
c (λ− ηt)

(5.48)

We now have the following result.

Lemma 5.4 In problem (5.44), let N be the last time slot of transmission according

to (5.47). Then, the optimal {θ∗t } satisfies: θ∗t = 1 for t < N ; 0 < θ∗N ≤ 1; θ∗t = 0

for t > N .

Proof: First, we note that ḡt = 0 if and only if θt = 0. Clearly θt = 0 implies

ḡt = θtgt = 0. To see the other direction, assume ḡt = 0 for some time slot t. Then,

the achieved distortion in this time slot is given by σ2
s regardless of the value of θt.

Therefore, setting θt = 0 saves ε energy per unit time in this time slot that can be

used in another time slot i to increase its transmission energy ḡi and achieve lower

distortion. Hence, after time slot N , we see that ḡt = 0 according to (5.47), and

hence θ∗t = 0 for t > N .
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Next, let us assume that 0 < θ∗j < 1 for some time slot j. By the above

argument we have ḡj > 0. By complementary slackness, we also have ωj = γj = 0.

Hence, by (5.48) we have ḡj/θj = σ2
c

√
ε/σ2

c . Thus, whenever the transmission is

bursty, the transmission power is constant. This constant can be equal to (5.47) at

only one time slot since transmission power is decreasing. Moreover, after time slot

j, the power can only decrease by increasing the value of γt in (5.48), which means

by complementary slackness that θt = 0 for t > j, which further implies that ḡt = 0

for t > j. Therefore, j = N .

Finally, for t < N , the power increases going backwards only by increasing

the value of ωt in (5.48), which means by complementary slackness that θ∗t = 1 for

t < N . �

The previous lemma shows that transmission can be bursty, i.e., 0 < θt < 1,

only in the last time slot of transmission, N . This is similar to the optimal policy

under Bernoulli energy arrivals found in [59] in the case of single-user channels with

processing costs. We now proceed to find the optimal solution as follows. Note that

the problem reduces to finding the optimal N , λ, and θN . We fix N and θN ∈ (0, 1],

and solve the following equation for λ

N−1∑
t=1

σ2
c

(√
σ2
sp(1− p)t−1

σ2
cλ

− 1

)
+ (N − 1)ε

+ θN

(
σ2
c

(√
σ2
sp(1− p)N−1

σ2
cλ

− 1

)
+ ε

)
= B (5.49)
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which has a unique solution since the left hand side is monotonically decreasing in

λ. After that, we check if the solution satisfies the following two inequalities

σ2
sp(1− p)N−1

σ2
c

> λ (5.50)

σ2
sp(1− p)t−1 + (σ2

c − ε)λ− 2σ2
s

√
λp(1− p)t−1 ≥ 0, t ≤ N (5.51)

where the first inequality ensures the positivity of powers, and the second one ensures

the existence of non-negative Lagrange multipliers {ωt}Nt=1. If the two inequalities

are satisfied, then this KKT point is the optimal solution by the convexity of the

problem. Otherwise, we perform a one-dimensional search over θN ∈ (0, 1] if any

of the two inequalities is violated. If they cannot be simultaneously satisfied for all

choices of θN , we change the value of N and repeat. The convergence to the optimal

solution is guaranteed. This concludes the discussion of the optimal solution under

Bernoulli energy arrivals.

5.3.2 General i.i.d. Energy Arrivals

We now discuss how the FFP performs in problems (5.39) and (5.43) under general

i.i.d. energy arrivals. For problem (5.39), we define the power control policy as

follows [54]

g̃t = qbt (5.52)
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and for problem (5.43), we define it as

θ̃t(ε+ g̃t) = qbt (5.53)

That is, for either problem, in each time slot, the sensor uses a fixed fraction of its

available energy in the battery. We note that using (5.54) in problem (5.43) decou-

ples the problem into multiple single-slot problems where the energy consumption

in time slot t is qbt. In the sequel, we show that solving that single-slot problem for(
θ̃t, g̃t

)
gives

θ̃t = min

{
qbt

ε+
√
εσ2

c

, 1

}
, g̃t = max

{
qbt − ε,

√
εσ2

c

}
(5.54)

Observe that in the above assignment, for a single energy arrival, either the trans-

mission power or the on time decreases over slots in a fractional manner, i.e., while

one decreases the other one is fixed. Let d (g̃) and dε

(
θ̃, g̃

)
denote the long term

average distortion under {g̃t} in (5.52) and {(θ̃t, g̃t)} in (5.54), respectively. We

now characterize the performance of FFP in the case of general i.i.d. arrivals in the

following two theorems.

Theorem 5.4 For all i.i.d. energy arrivals with mean µ, the optimal solution of

problem (5.39) satisfies

d∗ ≥ f(µ) ,
σ2
s

1 + µ/σ2
c

(5.55)
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and the FFP in (5.52) satisfies

f(µ) ≤ d (g̃) ≤ f(µ) +
1

2
σ2
s (5.56)

for all values of µ and σ2
c .

Proof: Lower Bounding d∗: First, we derive the lower bound in (5.55) by means of

the offline solution along the same lines as in the proof of Lemma 5.1. Applying the

same (δ, n) argument using the strong law of large numbers, the objective function

is given by

1

n

n∑
t=1

σ2
s

1 + gt/σ2
c

=
1

n

n∑
t=1

f(gt) (5.57)

It is direct to see that f is convex. Therefore, the optimal power allocation mini-

mizing the objective function is gt = µ + δ, 1 ≤ t ≤ n [77] (see also [1]). Whence,

the optimal offline solution is given by f(µ+ δ). We then have d∗ ≥ f(µ+ δ). Since

this is true ∀δ > 0, we can take δ down to 0 by taking n infinitely large. Therefore,

(5.55) holds.

Upper Bounding d∗: Bernoulli Energy Arrivals: Next, we derive an upper

on d∗. Towards that, we first the study a special energy harvesting i.i.d. process:

the Bernoulli process. Let {Êt} be a Bernoulli energy arrival process as defined in

(5.6). Under such specific energy arrival setting, whenever an energy packet arrives,

it completely fills the battery, and resets the system. This constitutes a renewal.

Then, by [83, Theorem 3.6.1] (see also [54]), the following holds for any power control
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policy g

lim
n→∞

D̂n(g) = lim
n→∞

1

n
E

[
n∑
t=1

σ2
s

1 + gt/σ2
c

]

=
1

E[L]
E

[
L∑
t=1

σ2
s

1 + gt/σ2
c

]
(5.58)

where D̂n(g) is the n-horizon average distortion under Bernoulli arrivals, and L is

a random variable denoting the inter-arrival time between energy arrivals, which is

geometric with parameter p, and E[L] = 1/p.

Now, substituting by the FFP (5.52) gives an upper bound on d∗. Note that

by (5.6), the fraction q in (5.4) is now equal to p. Also note that in between energy

arrivals, the battery state decays exponentially, and the FFP in (5.52) gives

g̃t = p(1− p)t−1B = (1− p)t−1µ (5.59)

for all time slots t, where the second equality follows since pB = µ. Therefore, using

(5.58) and (5.59), we bound the distortion under the FFP as follows

lim
n→∞

D̂n(g̃) =
1

E[L]
E

[
L∑
t=1

σ2
s

1 + (1− p)t−1µ/σ2
c

]
(a)

≤ 1

E[L]
E

[
L∑
t=1

σ2
s

1 + µ/σ2
c

+
(
1− (1− p)t−1

)
σ2
s

]

= f(µ) + σ2
s

(
1− 1

E[L]
E

[
L∑
t=1

(1− p)t−1

])

= f(µ) + σ2
s

p(1− p)
1− (1− p)2
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(b)

≤ f(µ) +
σ2
s

2
(5.60)

where (a) follows since 1
1+λx

≤ 1
1+x

+(1−λ) for 0 ≤ λ ≤ 1 and x ≥ 0; and (b) follows

since p(1−p)
1−(1−p)2 has a maximum value of 1/2 for 0 ≤ p ≤ 1. Next, we use the above

result for Bernoulli arrivals to bound the distortion for general i.i.d. arrivals under

the FFP in the following lemma; the proof follows by convexity and monotonicity

of f , along the same lines of [54, Section VII-C], and is omitted for brevity.

Lemma 5.5 Let {Êt} be a Bernoulli energy arrival process as in (5.6) with param-

eter q as in (5.4) and mean qB = µ. Then, the long term average distortion under

the FFP for any general i.i.d. energy arrivals, d(g̃), satisfies

d(g̃) ≤ lim
n→∞

D̂n(g̃) (5.61)

Using (5.55), (5.60), and Lemma 5.5, we have

f(µ) ≤ d∗ ≤ d(g̃) ≤ f(µ) +
σ2
s

2
(5.62)

�

Theorem 5.5 For all i.i.d. energy arrivals with mean µ, the optimal solution of

problem (5.43) satisfies

d∗ε ≥ fε(µ) , min
θ,ḡ

(1− θ)σ2
s + θ

σ2
s

1 + ḡ
θσ2
c
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s.t. θε+ ḡ ≤ µ, 0 ≤ θ ≤ 1 (5.63)

and the FFP in (5.54) satisfies

fε(µ) ≤ dε

(
θ̃, g̃

)
≤ fε(µ) +

1

2
σ2
s (5.64)

for all values of ε, µ, and σ2
c .

Proof: Lower Bounding d∗ε : First, we derive the lower bound in (5.63) by means of

the offline solution as done in the proof of Theorem 5.4. We first apply the change

of variables: ḡt , θtgt ∀t. The feasible set F ε now becomes

n∑
t=1

θtε+ ḡt ≤
n∑
t=1

Et, ∀n; 0 ≤ θt ≤ 1, ∀t (5.65)

Applying the same (δ, n) argument using the strong law of large numbers, as in the

proofs of Theorem 5.4 and Lemma 5.1, the objective function is given by

1

n

n∑
t=1

(1− θt)σ2
s +

θtσ
2
s

1 + ḡt
θtσ2

c

,
1

n

n∑
t=1

H (θt, ḡt) (5.66)

It is direct to see that H is jointly convex in (θt, ḡt) since the second added term

is the perspective of the convex function f(ḡt) [77]. Therefore, the optimal power

allocation minimizing the objective function is θtε+ ḡt = µ+ δ, 1 ≤ t ≤ n [77] (see

also [1]). We denote this optimal offline solution by fε(µ + δ) as defined in (5.63).

We then have d∗ε ≥ fε(µ + δ); we take δ down to 0 by taking n infinitely large.
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Therefore, (5.63) holds.

Upper Bounding d∗ε : Bernoulli Energy Arrivals: Next, we derive an upper

bound on d∗ε . Following the same steps as in the proof of Theorem 5.4, we first

consider Bernoulli energy arrivals as in (5.6). In this case we have

lim
n→∞

D̂εn (θ, g) =
1

E[L]
E

[
L∑
t=1

(1− θt)σ2
s +

θtσ
2
s

1 + gt/σ2
c

]
(5.67)

where D̂εn (θ, g) is the n-horizon average distortion under Bernoulli arrivals. Next,

we upper bound the long term average distortion in this case by substituting the

FFP in (5.54) setting

θ̃t(ε+ g̃t) = p(1− p)t−1B = (1− p)t−1µ (5.68)

for all time slots t. Note that the average minimal distortion in time slot t is given

by fε ((1− p)t−1µ). We have the following lemma regarding fε

Lemma 5.6 The function fε is convex and non-increasing.

Proof: fε is non-increasing since allocating more power can only decrease the dis-

tortion. To show convexity, let (θ1, ḡ1) and (θ2, ḡ2) be the solutions achieving fε(x1)

and fε(x2), respectively, for some x1, x2 ≥ 0. Now choose λ ∈ [0, 1], and let

xλ , λx1 + (1 − λ)x2. It is direct to see that the convex combination (θλ, ḡλ) ,

(λθ1 + (1− λ)θ2, λḡ1 + (1− λ)ḡ2) is feasible for xλ. Therefore,

fε (xλ) ≤ H (θλ, ḡλ)
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≤ λH (θ1, ḡ1) + (1− λ)H (θ2, ḡ2)

= λfε (x1) + (1− λ)fε (x2) (5.69)

where H is as defined in (5.66), and the second inequality follows by convexity of

H. �

Next, following the same steps used in showing (5.60), by (5.67) and (5.68),

we have

lim
n→∞

D̂εn
(
θ̃, g̃

)
≤ fε(µ) +

σ2
s

2
(5.70)

where step (a) in (5.60) follows by Lemma 5.6. Finally, we use the above result to

bound the distortion for general i.i.d. arrivals under the FFP. We basically extend

the statement of Lemma 5.5 to the case with sampling costs since fε is convex and

monotone. We then have

dε

(
θ̃, g̃

)
≤ lim

n→∞
D̂εn
(
θ̃, g̃

)
(5.71)

Using (5.63), (5.70), and (5.71), we have

fε(µ) ≤ d∗ε ≤ dε

(
θ̃, g̃

)
≤ fε(µ) +

σ2
s

2
(5.72)

It now remains to show that the FFP corresponds to (5.54). Towards that

end, we solve fε (qbt) for θ and ḡ. We first make the substitution ḡ = qbt − θε into
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the objective function. The problem now becomes

min
0≤θ≤min{1,qbt/ε}

θ

1− ε
σ2
c

+ qbt
θσ2
c

− θ (5.73)

where the constraint θ ≤ qbt/ε ensures non-negativity of ḡ. One can show that the

objective function above is convex in θ. Hence, we take the derivative, equate to 0,

solve for θ, and then project the solution onto the feasible set to get the optimal

solution of this problem [77]. This gives θ̃t in (5.54); while g̃t in (5.54) is directly

derived by substituting g = qbt
θ
− ε. �

Note that the results in the two theorems above directly imply that the average

long term distortion under the FFP proposed for both problems (5.43) and (5.39)

lies within a constant additive gap from the optimal solution. We also observe that

the additive gap indicated in Theorem 5.5 does not depend on the sampling cost ε.

5.4 Examples and Discussion

In this section we present some examples to illustrate the results of this work. We

first show that the utility function u(x) = 1
2

log(1 + x) considered in [54] belongs to

class (A). Indeed we have h′θ(x) = θ−1
2(1+θx)(1+x)

, which is negative for all 0 < θ < 1,

and therefore hθ(x) is decreasing in x and does not converge to 0. We then show

that the sufficient conditions of Theorem 5.2 are satisfied. We have the function

h(θ) = lim
x→∞

1

2
log

1 + θx

1 + x
=

1

2
log(θ) (5.74)
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exists, and the ratio

r = (1− q) lim
t→∞

1− limx→∞ log(1 + (1− q)t+1x)/ log(1 + x)

1− limx→∞ log(1 + (1− q)tx)/ log(1 + x)
= 1− q (5.75)

is less than 1, and hence the gap α is finite. Furthermore, [54] showed that mini-

mizing α over all q gives a constant additive gap, independent of q, that is equal to

0.72.

Next, we note that all bounded utility functions belong to class (B). These

are functions u where there exists some constant M <∞ such that u(x) ≤M, ∀x.

Examples for these include: u(x) = 1− e−βx for some β > 0, u(x) = x/(1 + x), and

the negative distortion function u(x) = − σ2
s

1+x/σ2
c

+ σ2
s . To see that these functions

belong to class (B), observe that limx→∞ u(x) = M by monotonicity of u, and hence

limx→∞ u(θx)−u(x) = 0. We also note that class (B) is not only inclusive of bounded

utility functions. For example, the unbounded function u(x) =
√

log(1 + x) satisfies

lim
x→∞

√
log(1 + θx)−

√
log(1 + x) =

log(θ)

limx→∞
√

log(1 + θx) +
√

log(1 + x)
= 0

(5.76)

and therefore belongs to class (B). For such unbounded functions in class (B), the

FFP is not only within a constant additive gap of the optimal solution, but it is

asymptotically optimal as well, as indicated by Theorem 5.3.

Note that one can find a (strict) lower bound on h(θ) for some utility functions

if it allows more plausible computation of α, or if h(θ) itself is not direct to compute.
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For instance, for any bounded utility function u, the following holds: h(θ) ≥ (θ −

1)M , where M is the upper bound on u. To see this, observe that by concavity of

u and the fact that u(0) = 0 we have

inf
x
u(θx)− u(x) ≥ (θ − 1) sup

x
u(x) (5.77)

This gives

α ≥
∞∑
t=0

q(1− q)t
(
(1− q)t − 1

)
M

=
q − 1

2− qM

≥ −1

2
M (5.78)

where the second inequality follows since q−1
2−q is minimized at q = 0. Another

example is u(x) = 1
2

log (1 +
√
x), which belongs to class (A). We observe that h(θ)

in this case is lower bounded by 1
2

log(θ). Hence, this function admits an additive

gap no larger than 0.72 calculated in [54] for u(x) = 1
2

log(1 + x).

Finally, we note that the conditions of Theorem 5.2 are only sufficient for

the FFP defined in (5.5) to be within an additive gap from optimal. For instance,

consider u(x) =
√
x. This function belongs to class (A) as hθ(x) =

√
θx−√x does

not converge to 0. In fact, hθ(x) is unbounded below and h(θ) does not exist. This

means that any FFP of the form g̃t = θbt, for any choice of 0 < θ < 1, is not within

a constant additive gap from the upper bound
√
µ. However, there exists another

FFP (with a different fraction than q in (5.4)) that is optimal in the case of Bernoulli
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Figure 5.2: Performance of the FFP with no sampling costs.

arrivals. Since u′(0) =∞, we use (5.14) to find the optimal λ, where v(x) = 1/(4x2),

and substitute in (5.12) to get that the optimal transmission scheme is fractional:

gt = p̂ (1− p̂)(t−1)B, ∀t, where the transmitted fraction p̂ , 1−(1−p)2. This shows

that one can pursue near optimality results under an FFP by further optimizing the

fraction of power used in each time slot, and comparing the performance directly to

the optimal solution instead of an upper bound. While in this work, we compared

the lower bound achieved by the FFP to a universal upper bound that works for all

i.i.d. energy arrivals.

Next, we present some examples regarding the distortion minimization setting.

We set both σ2
s and σ2

c to unity, and consider a system with Bernoulli energy arrivals

with probability p = 0.5. In Fig. 5.2, we plot the lower bound on the long term

average distortion for the problem without sampling costs along with the FFP,

against the battery size B. We also plot the optimal solution in this scenario. We

see that the FFP performs very close to the optimal policy. We note that the
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Figure 5.3: Performance of the FFP with sampling costs.

empirical gap between the optimal policy and the FFP is no larger than 0.03, while

the empirical gap between the lower bound and the FFP is no larger than 0.15,

which is lower than the theoretical gap of 0.5 in Theorem 5.4.

In Fig. 5.3, we plot the same curves for the problem with sampling costs. We

set the sampling cost ε = 1.5. We notice that the distortion levels are higher in

general when compared to the case without sampling costs, which is mainly due to

having some energy spent in sampling instead of reducing distortion. The empirical

gap in this case is 0.22, which is lower than the theoretical gap of 0.5 in Theorem 5.5.

In Fig. 5.4, we show the FFP (left hand side in blue) versus the optimal

policy (right hand side in red) for B = 40 during only one renewal period, i.e.,

for one energy arrival. We plot the power and the transmit duration (burstiness)

during the first 10 time slots, with the height representing power and the width

representing burstiness. We see that in the FFP on the left, for time slots 1 through

3, the transmission power g̃t decreases fractionally while the value of θ̃t is constant
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Figure 5.4: FFP (left) vs. optimal policy (right) with sampling costs and one energy
arrival with B = 40.

at unity. Starting from time slot 4 onwards, the opposite occurs; the value of

θ̃t decreases fractionally while the transmission power g̃t is constant at 1.225. As

indicated by (5.54), either the power or the transmit duration decreases fractionally

while the other is constant over time. On the other hand, in the optimal policy on

the right, we see that the transmission power g∗t is decreasing all the way to the end.

In this example, the last time slot of transmission is N = 6, and the transmission is

bursty only in that time slot, as indicated by Lemma 5.4, with θ∗6 = 0.78.

5.5 Conclusion

In this chapter, we considered online power scheduling policies in single-user energy

harvesting channels, where the goal is to maximize the long term average utility for

a general concave increasing utility function. We showed that fixed fraction policies

achieve a long term average utility that lies within a constant multiplicative gap from

the optimal solution for all i.i.d. energy arrivals and battery sizes. We then derived
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sufficient conditions on the utility function to guarantee that fixed fraction policies

are within a constant additive gap from the optimal solution as well. We then

considered a specific scenario where a source is aiming at sending Gaussian samples

over a Gaussian channel with minimal long term average distortion. We studied this

problem with and without sampling costs, and showed that fixed fraction policies

are within a constant additive gap from the optimal solution.
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CHAPTER 6

Mobile Energy Harvesting Nodes: Offline and Online Opti-

mal Policies

6.1 Introduction

In this chapter, we consider a mobile energy harvesting transmitter where movement

is motivated by trying to find better energy harvesting locations. Movement comes

with an energy cost expenditure, and hence there exists a tradeoff between staying

at the same location and moving to a new one. On one hand, the transmitter may

opt not to move and use all its available energy for transmission; on the other hand,

it can choose to move to a potentially better location, spending some of its available

energy during the movement process, and yet harvest larger amounts of energy at

the new location and achieve higher throughput. In this chapter, we characterize

this tradeoff by designing throughput optimal power allocation policies subject to

energy causality constraints and moving costs. In our setup, the transmitter moves

along a straight line, where two energy sources are located at the opposite ends

of the line. We first study the offline version of this problem where the goal is to

maximize the throughput by a given deadline. Although our problem formulation
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is non-convex, we characterize the optimal solution in closed form in the case of a

single energy arrival at each source. Then, we use this solution to characterize local

optimal solutions in the case of multiple energy arrivals at each source. Next, we

study the online version of this problem with i.i.d. energy arrivals at each source, and

the goal is to maximize the long term average throughput. We propose an optimal

move-then-transmit scheme where the transmitter first moves towards the source

with higher mean energy arrival, stays at that source, and then starts transmission.

If the transmitter has an infinite battery, it uses the optimal best effort transmission

policy, where it transmits with the mean harvesting rate whenever feasible and stays

silent otherwise. If the transmitter has a finite battery, it uses the fixed fraction

policy, where it uses a fixed fraction of the amount of energy available in its battery

for transmission in every time slot, to achieve a near optimal rate that provably lies

within constant additive and multiplicative gaps from the optimal solution for all

energy arrival patterns and battery sizes.

6.2 System Model and Problem Formulation

We consider a single-user AWGN channel with an energy harvesting transmitter

with moving abilities. The transmitter has the ability to relocate itself to different

positions in search for better energy harvesting spots. Movement is along a straight

line, and energy is harvested from two energy sources located at the two opposite

ends of the line, see Fig. 6.1. The transmitter’s position determines how much

energy is harvested from each source: the closer the transmitter is to one source, the
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Figure 6.1: Mobile energy harvesting node moving along a straight line between two
energy sources. The position of the node determines how much energy it harvests
from each source.

larger the amounts of energy it harvests from that source compared to the other.

In our setting, the transmitter-receiver distance is much larger than the distance

between the two energy sources so as to ensure that the transmitter-receiver channel

characteristics are not affected by the transmitter’s movement.

We consider a time-slotted model, where the transmitter is allowed to move

during a fixed portion of time at the beginning of each slot, and then starts commu-

nicating. Without loss of generality, we assume that the remaining portion of the

time slot where the transmitter communicates is normalized to one time unit, so that

we may use energy and power interchangeably. Throughout most of this chapter, we

will consider the case where the transmitter is equipped with an infinite-sized bat-

tery to save its harvested energy. However, in some cases we will extend our analysis

to the finite battery case as well. Energy arrives in packets of amounts E1i and E2i

in slot i at the first and the second energy source, respectively. At the beginning of

slot i, the transmitter relocates itself to some position xi, and harvests energy from
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both sources simultaneously according to the following relationship [84–86]

E(i, xi) =
E1i

(xi + `)α
+

E2i

(L− xi + `)α
(6.1)

where α is the path loss factor, L is the distance between the two energy sources,

and ` > 0 is a parameter added to adjust the Friis’ free space equation for short

distance communication, that is, to keep the harvested energy bounded when the

transmitter lies at either ends of the line. Note that E(i, xi) is the actual amount

of harvested energy that enters into the battery of the transmitter.

The transmitter incurs moving costs whenever it relocates itself to a different

position. We model the total moving cost up to slot k as follows

cm(k) , εm

k∑
i=1

|xi − xi−1| (6.2)

where x0 is the initial position of the transmitter,
∑k

i=1 |xi−xi−1| represents the total

distance moved by the transmitter up to slot k, and εm is the cost of movement in

energy per unit distance. Since movement is not cost-free, a tradeoff arises between

spending energy to move into better spots (in the sense of energy availability), and

staying at the same location and spending all the available energy in communicating.

We design power and movement policies that capture the optimal tradeoff of this

setting.
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6.2.1 Offline Problem

We first consider an offline scenario, where energy amounts are known to the trans-

mitter prior to the start of communication. Our goal in this setting is to maximize

the total number of bits delivered to the receiver by a given deadline N , subject to

energy causality constraints and moving costs. The physical layer is Gaussian with

unit noise power, and the transmitter uses power pi for transmission in time slot i.

We formulate the problem as follows

max
p,x

N∑
i=1

1

2
log(1 + pi)

s.t. cm(1) ≤ E0

cm(k + 1) +
k∑
i=1

pi ≤ E0 +
k∑
i=1

E(i, xi), 1 ≤ k ≤ N

0 ≤ xi ≤ L, pi ≥ 0, ∀i (6.3)

where cm(N + 1) , cm(N), and E0 is the initial energy available at the transmitter.

This initial energy enables the transmitter to relocate itself during the first slot (if

needed). Note that if the transmitter needs to move in slot k + 1, then it needs to

save some energy by the end of slot k for that purpose. In other words, it should not

consume all its energy in transmission by the end of slot k. That is why the energy

incurred for moving up to slot k + 1 is bounded by the residual energy remaining

after slot k: E0 +
∑k

i=1 E(i, xi)− pi. We solve problem (6.3) in Section 6.3.
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6.2.2 Online Problem

We then consider an online scenario, where energy amounts are only revealed to

the transmitter causally over time; the amount of energy harvested at time slot

t is only known after moving to position xt. We assume that energy harvesting

processes at the two sources {E1i} and {E2i} follow two independent i.i.d. distri-

butions with means µ1 and µ2, respectively. Only the means of the two processes

are known to the transmitter prior to the start of communication. Let bt represent

the amount of energy in the battery at time slot t, and let E t , {E1, E2, . . . , Et}. A

feasible online power control and movement policy {p,x} is a sequence of mappings

{xt : E t−1 → [0, L]} and {pt : E t → R+} satisfying

εm|x1 − x0| ≤ E0 (6.4)

εm|xt − xt−1|+ pt ≤ bt , bt−1 − εm|xt−1 − xt−2| − pt−1 + E(t, xt) (6.5)

Let us denote the above feasible set by F . Our goal is to maximize the long term

average throughput

r∗ , max
{p,x}∈F

lim
T→∞

1

T
E

[
T∑
t=1

1

2
log (1 + pt)

]
(6.6)

We solve problem (6.6) in Section 6.4, where we also discuss the case where the

transmitter is equipped with a finite battery of size B.
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6.3 Offline Setting: Problem (6.3)

In this section, we characterize the optimal solution of problem (6.3). We first note

the following necessary optimality conditions.

Lemma 6.1 In the optimal solution of (6.3), powers are non-decreasing over time.

Proof: We show this by contradiction. Assume that at the optimal policy {p∗,x∗},

there exists a time slot k such that p∗k > p∗k+1. Keeping the movement policy x∗ the

same, we define another power policy p̃ where only the kth and (k + 1)st powers

change to p̃k = p̃k+1 =
p∗k+p∗k+1

2
. It is direct to see that {p̃,x∗} is a feasible policy.

By concavity of the log, this new policy strictly increases the objective function,

and hence the original policy {p∗,x∗} cannot be optimal. �

Lemma 6.2 In the optimal solution of (6.3), the transmitter consumes all its har-

vested energy by the end of communication.

Proof: We show this by contradiction. If the statement of the lemma were not

true, then we can increase the value of pN until all energy is consumed. This strictly

increases the objective function. �

6.3.1 Single Energy Arrival

In this section we study the case where each energy source has only one energy

packet arrival. That is, we have only one pair of variables (p, x) to optimize. By
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Lemma 6.2, we have

p(x) = E0 +
E1

(x+ `)α
+

E2

(L− x+ `)α
− εm|x− x0| (6.7)

and therefore, by monotonicity of the log, problem (6.3) becomes

max
x

E1

(x+ `)α
+

E2

(L− x+ `)α
− εm|x− x0|

s.t. εm|x− x0| ≤ E0

0 ≤ x ≤ L (6.8)

Therefore, the problem now reduces to finding the optimal position x∗.

Note that there are two possible movement strategies the transmitter can

make: move forward to some x ≥ x0, or move backward to some x < x0. The trans-

mitter chooses the movement strategy that gives the maximum objective function

(and hence power/rate). To that end, we next solve the case of moving forward.

The problem in this case becomes

max
x

E1

(x+ `)α
+

E2

(L− x+ `)α
− εmx

s.t. x0 ≤ x ≤ min

{
E0

εm
+ x0, L

}
, xmax (6.9)

Now observe that the objective function is a convex function in x that is maximized

over an interval. It then follows that the optimal solution x∗ has to be at the
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boundary of the feasible set [77], i.e.,

x∗ ∈ {x0, xmax} (6.10)

Hence, we pick x∗ that gives the higher value after substituting in (6.7), i.e., after

comparing p (x0) and p (xmax).

Similarly, the problem in the case of moving backward is given by

max
x

E1

(x+ `)α
+

E2

(L− x+ `)α
+ εmx

s.t. xmin , max

{
x0 −

E0

εm
, 0

}
≤ x ≤ x0 (6.11)

which again, by convexity of the objective function, yields a solution at the boundary.

That is

x∗ ∈ {xmin, x0} (6.12)

Hence, we pick x∗ that gives the higher value after substituting in (6.7), i.e., after

comparing p (x0) and p (xmin).

Based on the previous analysis, the optimal position in the single energy arrival

scenario can only have three possible values: x∗ ∈ {xmin, x0, xmax}. This means that

if the transmitter decides to move, it moves to the furthest possible distance (forward

or backward) allowed by its available initial energy E0 and the physical length of
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the straight line L. Therefore, the optimal power is given by

p∗ = max {p (xmin) , p (x0) , p (xmax)} (6.13)

and x∗ is the corresponding maximizing argument.

6.3.2 Multiple Energy Arrivals

In this section we study the multiple energy arrivals setting. We note that problem

(6.3) is not a convex optimization problem due to the convexity of the energy har-

vesting function E(i, xi) in (6.1). We therefore follow a majorization maximization

argument to find a local optimal solution for this problem via successive convex

optimization. Namely, we approximate E(i, xi) around some feasible point to get

a convex problem, whose solution is then used to (better) approximate E(i, xi) in

the next iteration. Approximate functions should be chosen carefully such that it-

erations converge to a local optimal solution of the original problem [47, 48]. In

particular, in the (j + 1)st iteration, we solve the following problem

max
p,x

N∑
i=1

1

2
log(1 + pi)

s.t. cm(1) ≤ E0

cm(k + 1) +
k∑
i=1

pi ≤ E0 +
k∑
i=1

f (j)(i, xi), ∀k

0 ≤ xi ≤ L, pi ≥ 0, ∀i (6.14)
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where f (j)(i, xi) is the first order Taylor series approximation of E(i, xi) around x
(j)
i ,

the solution of the approximate problem in the jth iteration. That is, we have

f (j)(i, xi) , b
(j)
i +m

(j)
i xi (6.15)

where

b
(j)
i ,

E1i

(x
(j)
i + `)α

+
E2i

(L− x(j)
i + `)α

+

(
αE1i

(x
(j)
i + `)α+1

− αE2i

(L− x(j)
i + `)α+1

)
x

(j)
i

(6.16)

and

m
(j)
i , −

αE1i

(x
(j)
i + `)α+1

+
αE2i

(L− x(j)
i + `)α+1

(6.17)

By convexity of E(i, xi), it is direct to see that f (j)(i, xi) satisfies the conditions

stated in [47] that guarantee convergence of the iterative solution of problem (6.14)

to a local optimal point of problem (6.3). Namely, it holds that

f (j)(i, xi) ≤ E(i, xi), ∀xi (6.18)

f (j)
(
i, x

(j)
i

)
= E

(
i, x

(j)
i

)
(6.19)

df (j)
(
i, x

(j)
i

)
dxi

=
dE
(
i, x

(j)
i

)
dxi

(6.20)

We focus on problem (6.14) in the remainder of this section. In particular, we

introduce some auxiliary variables {δi} to denote the amount of energy used for
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movement in the ith slot. That is, we have

εm|xi − xi−1| = δi, ∀i (6.21)

This allows us to rewrite the optimization problem as follows

max
p,x,δ

N∑
i=1

1

2
log(1 + pi)

s.t.
k∑
i=1

pi ≤ E0 +
k∑
i=1

b
(j)
i +m

(j)
i xi −

k+1∑
i=1

δi, ∀k

δ1 ≤ E0

εm|xi − xi−1| ≤ δi, ∀i

0 ≤ xi ≤ L, pi ≥ 0, δi ≥ 0, ∀i (6.22)

where the relaxation of the equality in (6.21) to an inequality in the above problem

does not change the solution. To see this, note that if there exists some slot k such

that δ∗k > εm|x∗k − x∗k−1|, then one can simply decrease the value of δ∗k until equality

holds while keeping the values of x∗k and x∗k−1 the same. This strictly increases the

feasible set and thereby potentially increases the objective function. Also note that

we set δN+1 , 0. We now have the following lemma.

Lemma 6.3 In the optimal solution of problem (6.22), if δ∗i > 0 then the trans-

mitter should move forward (resp. backward) during slot i if m
(j)
i is positive (resp.

negative). Conversely, if m
(j)
i = 0, then there exists an optimal policy with δ∗i = 0.

Proof: We show this by contradiction. Assume that we have δ∗i > 0 and m
(j)
i > 0
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but the transmitter moves backward during time slot i, i.e., x∗i < x∗i−1. Now consider

the following alternative policy. Let δi = 0, i.e., xi = x∗i−1, and let δi+1 = δ∗i + δ∗i+1.

Since the cost to move is linear with distance, this new policy reaches the position

x∗i+1 from x∗i−1 with the same cost. At the same time, since m
(j)
i > 0, this new

policy harvests higher energy at slot i, and thereby achieves higher rates. Thus,

the transmitter should move forward. The case where m
(j)
i < 0 implies that the

transmitter should move backward can be shown using similar arguments. This

proves the first part of the lemma.

To show the second part, note that since m
(j)
i = 0, moving during slot i does

not make the transmitter gain any energy. Hence, by linearity of the moving cost,

given any optimal policy with δ∗i > 0, setting δi = 0 and δi+1 = δ∗i + δ∗i+1 in that

case makes the transmitter harvest the same amount of energy, and reach x∗i+1 with

the same moving cost. �

Lemma 6.3 indicates that given the optimal amount of movement energy, the

optimal movement policy is greedy. That is, if the transmitter moves during some

time slot i, it moves towards the higher energy location in slot i without considering

upcoming slots’ energies. Next, we find the optimal greedy policy by decomposing

problem (6.22) into inner and outer problems as follows.

6.3.2.1 Inner Problem

We first fix a feasible choice for {δi} and solve an inner problem for the pair {pi, xi}.

We denote the solution of the inner problem by R(δ). By Lemma 6.3, once δ is

164



fixed, the position x is determined according to the sign of m(j). Whence, the

power p is found via directional water-filling [3]. Note that the choice of δi should

be such that it is equal to 0 if m
(j)
i = 0, according to Lemma 6.3. In addition, we

note that if we have some δi > 0 while the greedy movement is not feasible, i.e.,

moving forward/backward with δi energy gets the transmitter outside the straight

line boundaries, then surely this δi choice is not optimal and needs to change. How

to optimally find {δ∗i } is handled next.

6.3.2.2 Outer Problem

After we solve the inner problem, we find the optimal {δ∗i } by solving an outer

problem by maximizing R(δ) over the feasible choices of δi. We have the following

lemma regarding this problem

Lemma 6.4 R(δ) is a concave function in δ.

Proof: Let us pick two feasible points δ(1) and δ(2) and denote the solutions of the

inner problem for these two choices by {p(1),x(1)} and {p(2),x(2)}, respectively. Now

let δθ , θδ(1) + (1 − θ)δ(2) for some 0 ≤ θ ≤ 1. Next, observe that by linearity of

the feasible set, the pair p(θ) , θp(1) + (1− θ)p(2) and x(θ) , θx(1) + (1− θ)x(2) is

feasible in the inner problem for the choice of δ(θ). Therefore, we have

R
(
δ(θ)
)
≥

N∑
i=1

1

2
log
(

1 + p
(θ)
i

)
≥

N∑
i=1

θ

2
log
(

1 + p
(1)
i

)
+

1− θ
2

log
(

1 + p
(2)
i

)
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= θR
(
δ(1)
)

+ (1− θ)R
(
δ(2)
)

(6.23)

where the second inequality follows by concavity of the log. This concludes the

proof. �

We now solve the following outer problem

max
δ

R(δ)

s.t. δ1 ≤ E0

k+1∑
i=1

δi ≤ E0 +
k∑
i=1

b
(j)
i +

[
m

(j)
i L

]+

, ∀k

δi ≥ 0, ∀i (6.24)

with δN+1 , 0, and [y]+ , max(y, 0). Note that the term
[
m

(j)
i L

]+

ensures that all

the feasible range of {δ} is covered in the outer problem, and that the inner problem

is energy-feasible. By Lemma 6.4, the outer problem is a convex optimization prob-

lem [77]. However, not all the available energy should be used in movement, or else

we achieve zero throughput. Hence, we follow an iterative water-filling algorithm

to solve the outer problem similar to the one proposed in [21] that we summarize

next. We add an extra (N + 1)st slot where unused energy can be discarded. Ini-

tially, each slot is filled up by its own energy arrival and the extra (N + 1)st slot

is left empty. We allow energy/water to move to the right only if this increases

the objective function. Meters are put in between slots to measure the amount of

water moving forward. This allows us to pull water back to their sources if this
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Algorithm 3

1: repeat
2: Approximate E(i, xi) around the (j−1)st iteration’s location solution x

(j−1)
i

using (6.15)-(6.17), ∀i.
3: Fix a feasible movement energy allocation δ.
4: repeat
5: Solve inner problem for R(δ) as in Section 6.3.2.1.
6: Solve outer problem for δ∗ as in Section 6.3.2.2.
7: until Convergence of movement energy water levels.
8: until

∥∥(x(j),p(j)
)
−
(
x(j−1),p(j−1)

)∥∥ is small enough.

increases the objective function. Eventually, all the water in the (N + 1)st slot will

be discarded but can be pulled back also during the iterations if necessary. Since

the objective function increases with each water flow, problem feasibility is main-

tained during iterations, and by convexity of the problem, iterations converge to the

optimal solution. We summarize the multiple energy arrivals solution approach in

Algorithm 3.

6.4 Online Setting: Problem (6.6)

In this section we discuss the solution of problem (6.6). Note that the transmitter

needs to decide on both the movement and the transmission energy for each time slot

during the course of communication given only causal knowledge of the harvested

energy. In particular, since the energy at time slot t is revealed after the transmitter

relocates itself to position xt, this means that the transmitter decides on where to

relocate blindly, i.e., before knowing what amount of energy it will harvest. We now

derive an upper bound on the optimal long term average throughput under such

conditions in the following lemma.
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Lemma 6.5 The optimal solution, r∗, of problem (6.6) satisfies

r∗ ≤ 1

2
log (1 + max {µ̄1, µ̄2}) (6.25)

where µ̄1 ,
µ1
`α

+ µ2
(L+`)α

and µ̄2 ,
µ1

(L+`)α
+ µ2

`α
.

Proof: First, let us take εm = 0. This enlarges the feasible set F since now the trans-

mitter can move without energy cost. Since E(i, xi) is convex in xi, the movement

policy in this case should be extremal; the transmitter should only be positioned at

either ends of the line to harvest maximal energy. Let us assume that the trans-

mitter chooses to be at the first source’s position, i.e., at x = 0, for θ fraction of

the time. This allows us to construct a set of time slot indices J1(n) ⊆ {1, . . . , n}

with xi = 0 for i ∈ J1(n), and limn→∞ |J1(n)| /n = θ. Similarly, we can define J2(n)

to be the time slot indices where the transmitter is located at the second source’s

position, xi = L, with limn→∞ |J2(n)| /n = 1− θ. Using Jensen’s inequality [77] we

have

r∗ ≤ lim
T→∞

1

2
log

(
1 + E

[
1

T

T∑
t=1

pt

])
(6.26)

≤ lim
T→∞

1

2
log

1 + E

 1

T

∑
t∈J1(T )

E(t, 0) +
1

T

∑
t∈J2(T )

E(t, L)

 (6.27)

= lim
T→∞

1

2
log

(
1 +
|J1(T )|
T

µ̄1 +
|J2(T )|
T

µ̄2

)
(6.28)

=
1

2
log (1 + θµ̄1 + (1− θ)µ̄2) (6.29)

≤ 1

2
log (1 + max {µ̄1, µ̄2}) (6.30)

168



where (6.27) follows by definitions of the feasible set F . �

Next, we propose an online feasible energy management policy and show that it

achieves the upper bound in the previous lemma, and thereby proving its optimality.

Let j , arg maxi∈{1,2} µ̄i, i.e., j denotes the energy source with higher average

arrival rate µj. Then, starting from its original position x0, the transmitter uses

all its harvested energy to move towards source j, and does not use any energy in

transmission. Let us denote by n0 the time slot at which the transmitter arrives at

source j. Then, starting from time slot n0 + 1 onwards, the transmitter uses all its

energy in transmission, and does not use any energy in movement, i.e., it stays at

source j till the end. We coin the above scheme as the move-then-transmit scheme.

We now have the following result regarding how n0 behaves asymptotically.

Lemma 6.6 For all values of εm > 0, 0 < L < ∞, and E0 ≥ 0, it holds that

limk→∞
n0

k
= 0 a.s.

Proof: Let us assume without loss of generality that µ2 > µ1. By definition, one

can write n0 as follows

n0 = min

{
k :

k∑
i=1

E(i, xi) ≥ Lεm − E0

}
(6.31)

≤ min

{
k :

k∑
i=1

E1i + E2i ≥ (L+ `)α (Lεm − E0)

}
(6.32)

where (6.32) follows by considering the worst case (smallest) amount of energy

harvested from both sources simultaneously, i.e., assuming the transmitter is at

distance L away from both sources. Now since {E1i + E2i} is an i.i.d. process with
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mean µ1 + µ2, by the strong law of large numbers, we have that for fixed γ, ν > 0,

there exists a number k0 such that ∀k ≥ k0 the following holds

k∑
i=1

E1i + E2i ≥ k (µ1 + µ2 − ν) (6.33)

with probability larger than 1−γ. Whence, a further upper bound on n0, that holds

with probability larger than 1− γ is given by

n0 ≤ min {k ≥ k0 : k (µ1 + µ2 − ν) ≥ (L+ `)α (Lεm − E0)} (6.34)

= max

{⌈
(L+ `)α (Lεm − E0)

µ1 + µ2 − ν

⌉
, k0

}
(6.35)

Therefore, it holds that

lim
k→∞

n0

k
≤ lim

k→∞

1

k
max

{⌈
(L+ `)α (Lεm − E0)

µ1 + µ2 − ν

⌉
, k0

}
= 0 (6.36)

with probability larger than 1 − γ. Since γ > 0 was arbitrary, the above is true as

γ → 0 as well. This concludes the proof. �

Note that while staying at source j, the transmitter is harvesting i.i.d. amount

of energy with an average of µ̄j. Hence, the transmitter can use, e.g., the best

effort transmission scheme introduced and analyzed in [66] to optimally manage

the amounts of its harvested energy for transmission. This best effort transmission

scheme achieves the capacity of an AWGN channel with an average power constraint

equal to the average energy harvesting rate by basically allowing the transmitter to
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send with energy equal to the average harvesting rate as long as it is feasible, and

stay silent otherwise [66].

Next, we state the two main results of this section. Throughout, we assume

that the amounts of energy generated at the two source are bounded, i.e., there

exist some M1 > 0 and M2 > 0 such that E1i ≤ M1 a.s. ∀i and E2i ≤ M2 a.s.

∀i. It is worth noting that this boundedness assumption is satisfied naturally if

the transmitter is equipped with a finite battery B, since any excess energy received

above the battery capacity overflows and cannot be used. We now have the following

result for the infinite battery case.

Theorem 6.1 The move-then-transmit scheme along with best effort transmission

strategy is optimal, for all values of εm > 0, 0 < L <∞, and E0 ≥ 0.

Proof: Without loss of generality let use assume that µ2 > µ1, and hence the

transmitter initially moves towards the second source and reaches there after some n0

time slots. We then have the following energy causality constraints for transmission

1

k

k∑
i=n0+1

pi ≤
1

k

k∑
i=n0+1

E(i, L), ∀k ≥ n0 (6.37)

Now let us examine the amounts of energy not used in transmission, i.e., during the

first n0 time slots, if the transmitter was initially located at x0 = L. By Lemma 6.6

and the boundedness assumption, this amount behaves asymptotically as follows

lim
k→∞

1

k

n0∑
i=1

E(i, L) ≤ lim
k→∞

n0

k

(
M1

(L+ r)α
+
M2

rα

)
= 0 a.s. (6.38)
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Therefore, for fixed γ, ν > 0 we have

1

k

k∑
i=n0+1

pi ≤
1

k

k∑
i=1

E(i, L)− ν

k
, ∀k ≥ n0 (6.39)

with probability larger than 1− γ, and k large enough. Thus, as k grows infinitely

large, one can take γ and ν down to 0, which means that the energy used in move-

ment does not have a long term average effect on the energy causality constraint

set. Therefore, transmitting by the average harvesting rate at the second source

E [E(i, L)] = µ̄2 using the best effort strategy one achieves the following rate for T

large enough [66]

T − n0

T

1

2
log (1 + µ̄2)− κT (6.40)

where κT → 0 as T →∞. Hence, taking the limit as T →∞, and using Lemma 6.6,

one achieves a long term average throughput of 1
2

log (1 + µ̄2), which is equal to the

upper bound stated in Lemma 6.5. Therefore, the proposed scheme is optimal. �

Next, we discuss the case where the transmitter is equipped with a finite

battery of size B. Under a finite battery capacity B, reference [54] introduced

a near-optimal online policy for single-user energy harvesting channels coined the

fixed fraction policy (FFP). Under this policy, in each time slot, the transmitter uses

a fixed fraction of the amount of energy available in its battery for transmission.

Such fraction is given by the average harvesting rate divided by the battery capacity.

It is shown in [54] that such policy achieves a long term average throughput that
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lies within constant multiplicative and additive gaps from the optimal solution, for

all i.i.d. energy arrival patterns and battery sizes. In our setting let us define the

following fraction

q ,
max {µ̄1, µ̄2}

B
(6.41)

and define the transmission power at time slot t to be given by

pt =


0, t ≤ n0

qbt, t > n0

(6.42)

Since q ≤ 1, the FFP policy above is always feasible. We now state the following

result for the finite battery case.

Theorem 6.2 The move-then-transmit scheme along with the FFP in (6.42) achieve

a long term average throughput that lies within an additive gap 0.72 and a multi-

plicative gap of 0.5 from the optimal solution, for all values of εm > 0, 0 < L <∞,

and E0 ≥ 0; and for all i.i.d. energy patterns and battery sizes.

Proof: The proof follows the same lines as in the proof of Theorem 6.1; basically,

the fact that the effect of the movement strategy on the energy causality constraint

set vanishes in the long term does not depend on the battery capacity, and hence it

still holds. Once this is established, one can treat the problem as a single-user online

problem with an energy harvesting average rate of µ̄j, and use the same techniques

as in [54, Theorem 2] to show that the achieved rate lies within the constant gaps
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Figure 6.2: Convergence of throughput over time.

mentioned in the theorem from the upper bound stated in Lemma 6.5, and hence,

the same constant gap results hold with respect to the optimal solution. �

6.5 Numerical Results

6.5.1 Deterministic Arrivals

In this section, we present some numerical examples to further illustrate our results

in the offline setting. We consider a system of four time slots. The transmitter has

an initial amount of energy of E0 = 0.1 energy units. The length of the straight line

between the energy sources is L = 7 distance units, and the transmitter is initially

positioned at x0 = 2.5. Energies arrive at the two energy sources with amounts

E1 = [0, 1, 7, 5] and E2 = [8, 5, 1, 1], at the first and the second energy source,

respectively. The path loss factor α = 2.5, ` = 0.3, and the movement energy cost

per distance εm = 0.5.
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We solve problem (6.14) by initially approximating the energy-position func-

tion at each time slot around x0. We then do the problem decomposition to solve

for {δ∗i } and {p∗i , x∗i } as discussed in Sections 6.3.2.1 and 6.3.2.2. Finally, we substi-

tute by {x∗i } in problem (6.14) and re-iterate until convergence. For this example,

it takes 5 iterations to converge to a local optimal solution of problem (6.3). In

Fig. 6.2, we show the convergence of the throughput with iterations.

In Fig. 6.3, we plot the results of this example. We show the transmitter’s

position at different slots in between the two energy sources. Arrows at the sources

represent the amounts of energy arriving (emitted) by each source at a given time

slot. From the figure, we see that the transmitter stays at its initial position in

the first time slot, i.e., x∗1 = 2.5. This is mainly because the initial position of

the transmitter is inclined towards the first source, and the fact that the energy

amount at the second source is higher than that of the first source in the first time

slot. One more reason for this movement behavior is that the first source receives
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Figure 6.4: Transmit power and movement energy consumptions.

higher amounts of energy in later slots. Therefore, we see that the transmitter

moves towards the first source during slots 2 and 3 until it reaches the end of the

line in slot 4. The optimal position is given by x∗ = [2.5, 1.98, 1.58, 0], with powers

p∗ = [0, 0, 0.68, 101.44], and movement energy consumption of [0, 0.25, 0.2, 0.67].

We plot the optimal transmit power and movement energy consumptions over

the four time slots in Fig. 6.4. The height in blue and green represents the transmit

power and the movement energy costs, respectively. We see that the transmitter

neither moves nor transmits during the first time slot and saves all its harvested

energy for later slots’ movements and transmission. It starts spending some energy

in movement during the second time slot while still not transmitting, and then

finally during the third and fourth time slots it both moves and transmits to the

receiver, achieving a throughput of 2.57.

Next, we show the effect of the movement energy cost per unit distance, εm, on

the throughput. We shift the initial position to x0 = 3.5 and use the same parameter

values from the previous example except that we decrease εm to 0.01. The solution
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in this case is x∗ = [7, 7, 0, 0] with a throughput equal to 9.7. Due to the small

movement energy cost, the transmitter in this case rides the energy peaks from the

two sources, i.e., it harvests Ei = 1
`α

max{E1i, E2i}, ∀i. The optimal location is

shown by the green transmitter in Fig. 6.5. We then increase εm to 3 and re-solve.

In this case, we get x∗ = [3.5, 3.5, 3.5, 3.5] with a throughput equal to 0.484. Due to

the large movement energy cost, the transmitter does not move during the course

of communication and uses all of its available energy only for transmission. The

optimal location in this case is shown by the brown transmitter in Fig. 6.5.

6.5.2 Stochastic Arrivals

In this section, we present some numerical results for the online setting. We consider

a system where the energy arrivals at the first source follows a uniform distribution

and that at the second source follows an exponential distribution. The system

parameters are the same as in the previous offline examples except that we set
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Figure 6.6: Long term average rate achieved by the proposed move-then-transmit
and best effort policy, and the theoretical upper bound, versus the average harvesting
rate of the first source. In this example we set µ2 = 2µ1.

L = 10 distance units and εm = 10 energy units per unit distance. In Fig. 6.6 we

plot the long term average rate achieved by the proposed move-then-transmit and

best effort policy against µ1. We set µ2 = 2µ1 in this example. We also plot the

theoretical upper bound obtained in Lemma 6.5. We see that the proposed policy

achieves the theoretical upper bound and that the two curves are almost identical

as stated in Theorem 6.1.

Finally, we consider a transmitter with finite battery capacity B. Energy

arrivals follow Bernoulli distribution with parameters 0.5 and 0.3 at the first and

the second source, respectively. In Fig. 6.7, we plot the long term average throughput

achieved by the proposed move-then-transmit and FFP against µ1. We set µ2 =

2 × 0.3
0.5
µ2 = 1.2µ2 in this example. We also scale the battery with µ1 and set it

to B = max{B̄1, B̄2} where B̄1 ,
0.5µ1
`α

+ 0.3µ2
(L+`)α

and B̄2 ,
0.5µ1

(L+`)α
+ 0.3µ2

`α
. We see

that the rate achieved lies within a constant gap from the upper bound as stated in
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Figure 6.7: Long term average rate achieved by the proposed move-then-transmit
and fixed fraction policy, and the theoretical upper bound, versus the average har-
vesting rate of the first source. In this example we set µ2 = 1.2µ1.

Theorem 6.2.

6.6 Discussion and Possible Extensions

In this section, we discuss some extensions to the problems and the model of this

chapter. Regarding the movement path, we considered a one-dimensional straight

line movement profile in this chapter as a first step to characterize the movement-

throughput tradeoff. It would be of interest to extend the movement path to

other two-dimensional or three-dimensional geometric shapes and understand the

movement-throughput tradeoff in more general settings.

Regarding the energy sources, we considered the case where the sources emit

energy in each time slot according to some random phenomenon. One way to extend

this model is to optimize the amounts of the sources’ emitted energy by introducing
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storage devices at the energy source side, i.e., transform the random energy source

to a controlled energy sharing entity. In this case, the energy harvested at the

transmitter at time slot i is given by

E(i, xi) =
β1i

(xi + `)α
+

β2i

(L− xi + `)α
(6.43)

where {β1i} and {β1i} satisfy the usual energy causality constraints

k∑
i=1

β1i ≤
k∑
i=1

E1i, ∀k (6.44)

k∑
i=1

β2i ≤
k∑
i=1

E2i, ∀k (6.45)

In other words, the two sources now generate energy with amounts {E1i} and {E2i}

but only share {β1i} and {β2i} portion of them with the transmitter. We note

that in this case, procrastinating policies [19] need not be optimal since the energy

sharing efficiency is changing with the position of the transmitter. We also note

that even with a single energy arrival at the two sources the problem now does not

admit a closed form solution as shown in Section 6.3.1. This is only the case if we

consider only one time slot N = 1. Thus, even with a single energy arrival, one has

to optimize the amounts of shared energy over multiple time slots.

6.7 Conclusion

In this chapter, we considered mobility effects on energy harvesting nodes. Energy

arrivals at a node depend on the node’s relative position to energy emitting sources,
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and therefore movement is motivated by finding better energy harvesting locations.

However, nodes incur a moving cost per unit distance travelled. We considered

movement along a straight line, where two energy sources are located towards the

opposite ends of the line. We characterized the optimal tradeoff between staying

at the same spot so as to spend all available energy in transmission, and spending

some energy to move to a potentially better energy location so as to achieve higher

throughput. We studied this problem in both offline and online settings. In the

offline setting, we designed movement and transmission policies that maximize the

sum throughput by a given deadline. We first solved the case with a single energy

arrival at each source, and then generalized that to the case of multiple energy

arrivals. In the online setting, we proposed an optimal move-then-transmit scheme

that maximizes the long term average throughput, where the transmitter first moves

towards the energy source with higher energy harvesting mean, and then starts

transmission. We analyzed the performance of this scheme under both infinite and

finite battery capacities at the transmitter.
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CHAPTER 7

Delay Minimal Policies in Energy Harvesting Communica-

tion Systems

7.1 Introduction

In this chapter, we characterize delay minimal power scheduling policies in energy

harvesting communication systems. We consider a continuous time system where

the delay experienced by each bit is given by the time spent by the bit in the queue

waiting to be transmitted to its receiver. We first consider a single-user channel

where the transmitter has a finite-sized battery to save its harvested energy. Data

arrives during the course of communication and is saved in a finite data buffer as

well. We find the optimal power policy that minimizes the average delay experi-

enced by the bits subject to energy and data causality constraints. We characterize

the optimal solution in terms of Lagrange multipliers, and calculate their values in

a recursive manner. We show that, different from the existing literature, the opti-

mum transmission power is not constant between the energy harvesting and data

arrival events; the transmission power starts high, decreases linearly, and potentially

reaches zero between energy harvests and data arrivals. Intuitively, untransmitted
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bits experience cumulative delay due to the bits to be transmitted ahead of them,

and hence the reason for transmission power starting high and decreasing over time

between energy harvests and data arrivals. Next, we study a multiuser version of

this problem, namely a two-user broadcast channel, and characterize the optimal

transmission policies that minimize the sum delay. For this setting, we consider the

case where the transmitter has an infinite-sized battery, and that all data packets in-

tended for the receivers are available at the beginning of the communication session.

We characterize the optimal solution in terms of Lagrange multipliers, and present

an iterative solution that optimally calculates their values. Our results show that in

the optimal policy, both users may not be served simultaneously all the time; there

may be times where only the strong user or only the weak user is served alone. We

also show that the optimal policy may have gaps in transmission in between en-

ergy arrivals where none of the users is served, echoing the results of the single-user

setting.

7.2 Single-User Channel

In this section we consider a single-user AWGN channel, see Fig. 7.1, where at arrival

time tm, m = 0, 1, . . . ,M − 1, with t0 = 0, energy is harvested at the transmitter

with amount Em and data intended for the receiver arrives with amount Bm. The

transmitter saves energy and data in a battery with finite capacity Emax and in

a data buffer with finite capacity Bmax, respectively. We denote the cumulative

harvested energy and the total amounts of received data at time t by
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Figure 7.1: Single-user energy harvesting channel with finite-sized battery and data
buffer.

Ea(t) =
m−1∑
i=0

Ei, tm−1 < t ≤ tm, m = 1, . . . ,M (7.1)

Ba(t) =
m−1∑
i=0

Bi, tm−1 < t ≤ tm, m = 1, . . . ,M (7.2)

where we define tM =∞. For a power policy p(t) at time t, the cumulative consumed

energy and the total departed data to the receiver at time t are given by

E(t) =

∫ t

0

p(τ)dτ (7.3)

B(t) =

∫ t

0

1

2
log(1 + p(τ))dτ (7.4)

where log is the natural logarithm throughout this chapter. We call a policy feasible

if the following is satisfied

Ea(t)− Emax ≤ E(t) ≤ Ea(t), ∀t (7.5)

Ba(t)−Bmax ≤ B(t) ≤ Ba(t), ∀t (7.6)
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The above conditions assure that the policy conforms to energy and data causality

constraints, and that energy and data buffers are not overflown.

The delay experienced by each bit is the time interval from its arrival time to

its actual transmission time. The total average delay for the system is given by

D̄ =

∫ ∞
0

tdB(t)−
∫ ∞

0

tdBa(t) (7.7)

Our objective is to characterize the optimal power policy that minimizes the total

average delay in (7.7) subject to feasibility conditions in (7.5) and (7.6). For a given

data arrival profile, the second term in (7.7) is constant, and therefore minimizing

D̄ is equivalent to minimizing the gross delay defined as

D =

∫ ∞
0

tdB(t) =

∫ ∞
0

t

2
log(1 + p(t))dt (7.8)

We note that the maximum data buffer constraint in this setting can model strict

delay requirements for data packets. The optimization problem is formulated as

min
p

∫ ∞
0

t log(1 + p(t))dt

s.t. Ea(tm)− Emax ≤
∫ tm

0

p(t)dt ≤ Ea(tm), m = 1, . . . ,M

Ba(tm)−Bmax ≤
∫ tm

0

log(1 + p(t))dt ≤ Ba(tm), m = 1, . . . ,M − 1∫ ∞
0

log(1 + p(t))dt = Ba(tM)

p(t) ≥ 0, ∀t (7.9)
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where for convenience we dropped the half term of the rate-power function1. We

solve problem (7.9) in the remainder of this section.

7.2.1 Properties of the Optimal Solution

We note that problem (7.9) is not a convex optimization problem. However, our

analysis will show that the KKT optimality conditions admit a unique, and therefore

the optimal, solution. We introduce the following Lagrangian

L =

∫ ∞
0

t log(1 + p(t))dt−
∫ ∞

0

η(t)p(t)dt

+
M∑
m=1

λ1m

(∫ tm

0

p(t)dt− Ea(tm)

)
+

M∑
m=1

λ2m

(
Ea(tm)− Emax −

∫ tm

0

p(t)dt

)

+
M−1∑
m=1

µ1m

(∫ tm

0

log(1 + p(t))dt−Ba(tm)

)

+
M−1∑
m=1

µ2m

(
Ba(tm)−Bmax −

∫ tm

0

log(1 + p(t))dt

)

− ν
(∫ ∞

0

log(1 + p(t))dt−Ba(tM)

)
(7.10)

where {λ1m, λ2m, µ1m, µ2m}, ν, and η(t) are Lagrange multipliers. Taking the deriva-

tive with respect to p(t) and equating to 0 we get the following KKT optimality

conditions

p(t) =

(
µ(t)− t
λ(t)

− 1

)+

(7.11)

1This is indeed without loss of optimality as the objective function and the data constraints
can both be multiplied by 2.
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where we have defined

λ(t) =
∑

{m: tm≥t}

λ1m − λ2m (7.12)

µ(t) = ν −
∑

{m: tm≥t}

µ1m − µ2m (7.13)

along with the complementary slackness conditions

λ1m

(∫ tm

0

p(t)dt− Ea(tm)

)
= 0, ∀m (7.14)

λ2m

(
Ea(tm)− Emax −

∫ tm

0

p(t)dt

)
= 0, ∀m (7.15)

µ1m

(∫ tm

0

log(1 + p(t))dt−Ba(tm)

)
= 0, m = 1, . . . ,M − 1 (7.16)

µ2m

(
Ba(tm)−Bmax −

∫ tm

0

log(1 + p(t))dt

)
= 0, m = 1, . . . ,M − 1 (7.17)

We now state the following lemma

Lemma 7.1 The optimal λ(t) (resp. µ(t)) is a piece wise constant function, with

possible changes only if the energy (resp. data) buffer is either depleted or full.

Proof: By the complementary slackness conditions we have

λ1m = λ2m = 0, if Ea(tm)− Emax < E(tm) < Ea(tm) (7.18)

E(tm) = Ea(tm), if λ1m > 0 (7.19)

E(tm) = Ea(tm)− Emax, if λ2m > 0 (7.20)
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Therefore, λ(t) stays constant between arrival times, and can only change when

λ1m > 0 or λ2m > 0 for some m, which occurs only if the energy buffer is either

depleted or full at tm. Similar arguments follow for µ(t). �

By Lemma 7.1, both λ(t) and µ(t) are sequences rather than continuous func-

tions of time. We denote by {s1, s2, . . . , sL} ⊆ {t0, t1, . . . , tM−1} the change times of

λ(t) and µ(t), with s1 = 0. Therefore we have

λ(t) =


λck, t ∈ [sk, sk+1)

λcL, t ∈ [sL,∞)

, µ(t) =


µck, t ∈ [sk, sk+1)

µcL, t ∈ [sL,∞)

(7.21)

Therefore, by definition of {sk}, at least one constraint is met with equality at

sk, ∀k, and no constraint is met with equality during the interval (sk−1, sk). The

following lemma provides the necessary conditions for the two sequences {λck} and

{µck} to increase/decrease.

Lemma 7.2 In the optimal policy: 1) λck is larger (resp. smaller) than λck−1 only if

the battery is full (resp. depleted) at time sk−1; and 2) µck is larger (resp. smaller)

than µck−1 only if the data buffer is depleted (resp. full) at time sk−1.

Proof: By definition of λ(t) in (7.12), the function can only increase (resp. decrease)

after time sk−1 if λ2m > 0 (resp. λ1m > 0) for m such that tm = sk−1. By

complementary slackness, the battery must be full (resp. depleted) at time sk−1.

The second statement of the lemma follows using similar arguments. �

We conclude the optimality conditions by the following lemma
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Lemma 7.3 Whenever the optimal power p(t) > 0, it is monotonically decreasing

with time.

Proof: Let us have p(t) > 0 ∀t ∈ (l1, l2) where (l1, l2) lies in between arrival times.

By Lemma 7.1, we know that both λ(t) and µ(t) are constants during that inter-

val (say λl and µl). Hence, from (7.11), p(t) is either monotonically increasing or

decreasing (depending on the sign of λl). Now assume it is increasing during this

interval, i.e., λl < 0, and denote λ′l = −λl, and µ′l = l2 − µl + l1. Now define a new

power policy p′(t) = (µ′l − t)/λ′l − 1, for t ∈ (l1, l2). It is direct to see that both p(t)

and p′(t) use the same energy and deliver the same data amount during (l1, l2), as

what we did is merely flipping the curve of p(t) in (l1, l2) around l1+l2
2

. However, the

(now decreasing) new policy p′(t) does so with a strictly less delay. This is due to

the multiplicative term t in the objective function; it is strictly better to use higher

powers at the beginning and lower powers at the end, so that data arriving earlier

in time are delivered faster. �

By Lemma 7.3, we conclude that the optimal λ(t) is non-negative for all t, and

that it is necessary, from (7.11), to have µ(t) > t for all t before the total amount of

data is delivered. Lemma 7.3 also shows that power can reach 0 in between arrivals,

where the communication stops until the next energy or data arrival instant.

7.2.2 Recursive Formulas

In this section, we show how to find λck, µ
c
k, and sk in a recursive manner. We will

use these recursive formulas to construct the optimal solution in the next section.
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First, assume sk, E(sk), B(sk), and µck are known, and define the following values

for all {m : tm > sk}

λeum : E(sk) +

∫ tm

sk

(
µck − t
λeum

− 1

)+

dt = Ea(tm) (7.22)

λbum : B(sk) +

∫ tm

sk

log

(
1 +

(
µck − t
λbum

− 1

)+
)
dt = Ba(tm) (7.23)

λum = max{λeum , λbum} (7.24)

λelm : E(sk) +

∫ tm

sk

(
µck − t
λelm

− 1

)+

dt = Ea(tm)− Emax (7.25)

λblm : B(sk) +

∫ tm

sk

log

(
1 +

(
µck − t
λblm

− 1

)+
)
dt = Ba(tm)−Bmax (7.26)

λlm = min{λelm, λblm} (7.27)

Therefore, λum is the minimum value of λ such that either the energy or the data

buffer is depleted by time tm, i.e., an upper bound is met with equality. On the

other hand, λlm is the maximum value of λ such that either the energy or the data

buffer is full by time tm, i.e., a lower bound is met with equality. Let us denote

Λ(m) = [λum, λ
l
m]. Hence, to maintain feasibility, we need to have λck ∈ Λ(m) if

sk+1 ≥ tm. Now define the following integers

mmax
1 (k) = max

{
m :

m⋂
i: ti>sk

Λ(i) 6= ∅
}

(7.28)

mu
1(k) = max

{
m : λum ∈

m⋂
i: ti>sk

Λ(i)

}
(7.29)

ml
1(k) = max

{
m : λlm ∈

m⋂
i: ti>sk

Λ(i)

}
(7.30)
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We now have the following lemma.

Lemma 7.4 Assume that one has the optimal solution up to time sk, along with

µck. Then, λck and sk+1 are found as follows:

If Λ (mmax
1 (k) + 1) >

mmax
1 (k)⋂

i: ti>sk

Λ(i) ⇒ λck = λlml1(k), sk+1 = tml1(k)

Else, if Λ (mmax
1 (k) + 1) <

mmax
1 (k)⋂

i: ti>sk

Λ(i) ⇒ λck = λumu1 (k), sk+1 = tmu1 (k)

where the comparisons of the intervals above are pointwise.

Proof: Let us assume that Λ (mmax
1 (k) + 1) >

⋂mmax
1 (k)

i: ti>sk
Λ(i) and consider two dif-

ferent possibilities. First, if λck > λl
ml1(k)

, then a lower bound will be met before

tml1(k). By Lemma 7.2, we know that λ(t) can only increase if a lower bound is

met with equality. This means that eventually the lower bound at tml1(k) will be

breached. On the other hand, if λck < λl
ml1(k)

, then by definition of ml
1(k), we know

that λlm ≥ λl
ml1(k)

for all m : sk < tm < ml
1(k). This means that only an upper

bound can be met before or at tml1(k). By Lemma 7.2, we know that λ(t) can only

decrease if an upper bound is met with equality. Therefore, λ(t) will not increase to

have a value inside Λ (mmax
1 (k) + 1) (which lies above

⋂mmax
1 (k)

i: ti>sk
Λ(i) by assumption)

at tmmax
1 (k)+1, i.e., the upper bound at tmmax

1 (k)+1 will be breached. Thus, we must

have λck = λl
ml1(k)

, sk+1 = tml1(k) in this case. Similar arguments follow for the other

case when Λ (mmax
1 (k) + 1) <

⋂mmax
1 (k)

i: ti>sk
Λ(i). �

Similarly to what we did above, we can define the quantities
{
µeum , µ

bu
m , µ

u
m

}
and

{
µelm, µ

bl
m, µ

l
m

}
as we did in (7.22)-(7.27) with fixed (known) λck. Further, we can
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also define the set U(m) = [µlm, µ
u
m], which gives rise to the following integers

mmax
2 (k) = max

{
m :

m⋂
i: ti>sk

U(i) 6= ∅
}

(7.31)

mu
2(k) = max

{
m : µum ∈

m⋂
i: ti>sk

U(i)

}
(7.32)

ml
2(k) = max

{
m : µlm ∈

m⋂
i: ti>sk

U(i)

}
(7.33)

We now have the following lemma. The proof follows using similar arguments as in

that of Lemma 7.4, and is therefore omitted for brevity.

Lemma 7.5 Assume that one has the optimal solution up to time sk, along with

λck. Then, µck and sk+1 are found as follows

If U (mmax
2 (k) + 1) >

mmax
2 (k)⋂

i: ti>sk

U(i) ⇒ µck = µumu2 (k), sk+1 = tmu2 (k)

Else, if U (mmax
2 (k) + 1) <

mmax
2 (k)⋂

i: ti>sk

U(i) ⇒ µck = µlml2(k), sk+1 = tml2(k)

where the comparisons of the intervals above are pointwise.

Lemmas 7.4 and 7.5 show how to optimally construct λck and µck, along with

sk+1, given µck and λck, respectively, along with the optimal solution up to sk. In

solving our problem, we neither know the optimal value of λc1 or µc1 in order to

apply those lemmas, and hence, we need to assume some initialization values for

either of them in order to start computing the remaining ones recursively. It then

remains to find out if such initializations were erroneous, and how to adjust them if
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this were the case. In addition to that issue, we also note that Lemmas 7.4 and 7.5

only give the value of sk+1. One needs either λck+1 or µck+1 along the way in order

to reapply the results of the lemmas and move forward to find sk+2. We address

these issues formally through the next series of lemmas. Throughout the lemmas,

we first assume a value for µck and find the corresponding values of λck and sk+1

by Lemma 7.4. We then assess the optimality of the assumed µck according to the

constraints met at sk+1. The next lemma will help in that assessment.

Lemma 7.6 Given a time interval [ta, tb], and a power policy p0(t), if we define

another power policy p1(t) that consumes the same amount of energy during [ta, tb],

and has a slower decline, then the policy p1(t) departs more data during that interval.

Similarly, if we define another power policy p2(t) that departs the same amount of

data during [ta, tb], and has a slower decline, then the policy p2(t) consumes less

energy during that interval.

Proof: Assume without loss of generality that Ei(ta) = Bi(ta) = 0, for i = 0, 1, 2.

Since we have E1(tb) = E0(tb), and that p1(t) declines slower than p0(t), therefore

it must hold that E0(t) =
∫ t
ta
p0(τ)dτ ≥

∫ t
ta
p1(τ)dτ = E1(t) ∀t ∈ [ta, tb], i.e., p0(t)

majorizes p1(t) in the interval [ta, tb]. By concavity of the log, it then follows that

B1(tb) =
∫ tb
ta

1
2

log(1 + p1(t))dt >
∫ tb
ta

1
2

log(1 + p0(t))dt = B0(tb) by the theory of

continuous majorization [87]. This proves the first part of the lemma.

We prove the second part by contradiction. Assume E2(tb) ≥ E0(tb). Since

p2(t) declines slower than p0(t), therefore there must exist some point t′ ∈ (ta, tb] at

which E2(t′) = E0(t′) with E0(t) ≥ E2(t) ∀t ∈ [ta, t
′]. Using the first assertion of
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the lemma, we have

B2(t′) > B0(t′) (7.34)

Since E2(tb) ≥ E0(tb), then we must have

B2(tb)−B2(t′) > B0(tb)−B0(t′) (7.35)

From (7.34) and (7.35), we get B2(tb) > B0(tb), which contradicts the assumption

that both policies depart the same amount of data. Therefore we must have E2(tb) <

E0(tb). �

Next, we use the results in Lemma 7.6 to prove the statements in the following

lemmas.

Lemma 7.7 If an energy constraint is binding at sk+1, while data constraints are

not, and if µck > sk+1, then we have µck+1 = µck. Otherwise, µck is not optimal, and

needs to increase. Similarly, if a data constraint is binding at sk+1, while energy

constraints are not, and if sk+1 < tM =∞, then we have λck+1 = λck. Otherwise, µck

is not optimal, and needs to decrease.

Proof: By complementary slackness, we know that we must have µck+1 = µck since

the data constraints are not binding at sk+1. However, if µck < sk+1, then by (7.11),

p(t) = 0 ∀t ≥ sk+1, and the transmitter will not be able to deliver the required

amount of data to the receiver. Hence, µck needs to increase in order to maintain

feasibility of the problem. This proves the first part of the lemma. To show the
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second part, we also note that by complementary slackness, we must have λck+1 = λck

since the energy constraints are not binding at sk+1. However, if sk+1 =∞, i.e., we

reached the end of the communication session, then we can use some extra amounts

of energy to decrease the delay as follows: decrease the value of µck and decrease

that of λck such that the amounts of departed bits in (sk,∞) stays the same. This

makes the power in the interval (sk,∞) be of a faster decline, i.e., finish transmission

faster, and in turn by Lemma 7.6 will consume more energy, which is feasible since

the energy constraints are not binding. �

Lemma 7.8 If the battery is empty at sk+1, and the data buffer is overflown, then

µck is not optimal and needs to increase. Similarly, if the data buffer is empty at

sk+1, and the battery is overflown, then µck is not optimal and needs to decrease.

Proof: To show the first part, let us increase the value of µck and increase that of λck

such that the consumed energy in the interval (sk, sk+1] stays the same. This means

that the power in the interval (sk, sk+1] will have a slower decline. By Lemma 7.6,

this new policy departs more bits, and prevents the overflow of the data buffer.

Similarly, for the second part, let us decrease the value of µck and decrease that

of λck such that the data delivered in the interval (sk, sk+1] stays the same. This

means that the power in the interval (sk, sk+1] will have a faster decline, i.e., finish

transmission faster, and in turn by Lemma 7.6 will consume more energy and prevent

the overflow of the battery. �

The next two lemmas deal with the cases where both data and energy con-

straints are binding at sk+1. In such cases, we re-solve a shifted problem starting
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at sk+1 recursively using the above analysis, with initial conditions as indicated by

the binding constraints at sk+1, e.g., a full/empty data/energy buffer, and denote

the optimal Lagrange multipliers of this shifted problem by {λ̄i, µ̄i}Mi=k+1. We then

compare the values of those Lagrange multipliers obtained from the shifted problem

to λck and µck and examine their optimality as follows.

Lemma 7.9 If the battery is empty (resp. full) and the data buffer is full (resp.

empty) at sk+1, and the solution of the shifted problem satisfies: λ̄k+1 ≤ λck and

µ̄k+1 ≤ µck (resp. λ̄k+1 ≥ λck and µ̄k+1 ≥ µck), then the solution of the shifted

problem, as well as the pair (λck, µ
c
k), is optimal. Otherwise, µck is not optimal and

needs to increase (resp. decrease).

Proof: We first note that the conditions of optimality stated in the lemma are those

stated in Lemma 7.2. If these are not satisfied, and the battery is empty while the

data buffer is full at sk+1, then we can increase the value of µck and increase that of

λck such that the consumed energy in (sk, sk+1] stays the same. This means that the

power in the interval (sk, sk+1] will have a slower decline. By Lemma 7.6, this new

policy departs more bits, which is feasible since the data buffer is full at sk+1, and

eventually achieves less delay. The proof of the other scenario stated in the lemma

where the battery is full and the data buffer is empty at sk+1 follows using similar

arguments as in the proof of the second part of Lemma 7.8. �

Lemma 7.10 If both the battery and the data buffer are empty (resp. full) at sk+1,

and the solution of the shifted problem satisfies: λ̄k+1 ≤ λck and µ̄k+1 ≥ µck (resp.

λ̄k+1 ≥ λck and µ̄k+1 ≤ µck), then the solution of the shifted problem, as well as the
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pair (λck, µ
c
k), is optimal. Otherwise, if λ̄k+1 > λck (resp. µ̄k+1 > µck), then µck is not

optimal and needs to increase. On the other hand, if µ̄k+1 < µck (resp. λ̄k+1 < λck),

then µck is not optimal and needs to decrease.

Proof: We first note that the conditions of optimality stated in the lemma are those

stated in Lemma 7.2. If both the battery and the data buffer are empty at sk+1,

and λ̄k+1 > λck, then we can increase the value of µck and increase that of λck such

that the amount of data delivered in (sk, sk+1] stays the same. This means that

the power in the interval (sk, sk+1] will have a slower decline. By Lemma 7.6, this

new policy consumes a smaller amount of energy, i.e., energy constraints will not

be binding at sk+1, and therefore we will have λck+1 = λck. On the other hand if

µ̄k+1 < µck, then we decrease the value of µck and decrease that of λck such that the

amount of energy consumed in (sk, sk+1] stays the same. This means that the power

in the interval (sk, sk+1] will have a faster decline. By Lemma 7.6, this new policy

delivers a smaller amount of data, i.e., data constraints will not be binding at sk+1,

and therefore we will have µck+1 = µck. The proof of the other scenario stated in

the lemma where both the battery and the data buffer are full follows using similar

arguments. �

It is clear from the above recursive formulas that the optimal Lagrange multi-

pliers can only have one unique set of values. This shows that the KKT conditions

have a unique solution for this problem, as mentioned in the beginning of the analysis

in Section 7.2.1.
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7.2.3 Constructing the Optimal Solution

In this section, we summarize the solution of the single-user problem. We first

initialize by setting s1 = 0, and choosing a value for µc1. We then find the value

of λc1 and s1 by Lemma 7.4. Next, we check the constraints at s1 and use Lem-

mas 7.7, 7.8, 7.9, and 7.10 to assess the optimality of the initialized µc1. This results

into one of the following cases: 1) the value of µc2 or λc2 is given because µc1 is opti-

mal; 2) µc1 is not optimal and needs to increase or decrease; 3) the optimal solution

of the problem is obtained according to Lemmas 7.9 and 7.10. In case 3, we need

to solve a shifted problem starting at s2; we do so by initializing a value of µc2 and

continue as discussed above. In case 2, one can find the optimal µc1 by using, e.g.,

a bisection search. In case 1, we either use Lemma 7.4 to find λc2 and s3 if µc2 was

given, or use Lemma 7.5 to find µc2 and s3 if λc2 was given; we then repeat the above

constraints’ checks at s3, and so on. We stop when all data is transmitted under

the above conditions.

7.3 Broadcast Channel

In this section, we consider an energy harvesting two-user broadcast channel, see

Fig. 7.2, where at time tm, m = 0, 1, . . . ,M − 1, with t0 = 0, energy is harvested

with amount Em. Unlike the single-user problem, the data packets in this broadcast

setting are available before the communication starts, in amounts B1 and B2, for

the first and the second user, respectively.
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Figure 7.2: Two-user energy harvesting broadcast channel.

The physical layer is a degraded broadcast channel,

Yj = X + Zj, j = 1, 2 (7.36)

where X is the transmitted signal, Yj is the received signal of user j, and Zj is the

Gaussian noise at receiver j with variance σ2
j . We assume σ2

1 = 1 < σ2
2 , σ2, i.e.,

the first user is stronger. The capacity region for this channel is [49]

r1 ≤
1

2
log (1 + αP ) , r2 ≤

1

2
log

(
1 +

(1− α)P

αP + σ2

)
(7.37)

where α is the fraction of the total power assigned to the first (stronger) user, and

log is the natural logarithm. Working on the boundary of the capacity region we

have,

P = e2(r1+r2) +
(
σ2 − 1

)
e2r2 − σ2 , g (r1, r2) (7.38)

which is the minimum power needed to achieve rates r1 and r2, at the first and the
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second user, respectively. Note that g(r1, r2) is strictly convex in (r1, r2) [77]. We

call a policy feasible if the following are satisfied:

∫ t

0

g (r1(τ), r2(τ)) dτ ≤ Ea(t), ∀t (7.39)∫ ∞
0

r1(t)dt = B1 (7.40)∫ ∞
0

r2(t)dt = B2 (7.41)

where the first constraint is the energy causality constraint with Ea(t) as defined in

(7.1), and the remaining two are to ensure data delivery to both users.

As discussed in the single-user scenario, the average gross delay experienced

by each user is given by

D1 =

∫ ∞
0

r1 (t) tdt (7.42)

D2 =

∫ ∞
0

r2 (t) tdt (7.43)

Note that, unlike the single-user scenario, in this two-user setting, there is a tradeoff

between the delays experienced by the two users. This tradeoff can be characterized

by developing the delay region, similar to departure region in [7], where all achievable

(D1, D2) can be plotted. It can be shown that this region is strictly convex, and

in order to achieve pareto-optimum delay points, one needs to solve weighted sum

delay minimization problems in the form of minµ1D1 + µ2D2 subject to energy

causality constraints. We focus on the sum delay minimization problem by taking

µ1 = µ2 = 1. Therefore, in this section, we consider the following optimization
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problem:

min
r1,r2

∫ ∞
0

r1 (τ) τdτ +

∫ ∞
0

r2 (τ) τdτ

s.t.

∫ tm

0

g (r1(τ), r2(τ)) dτ ≤ Ea(tm), m = 1, . . . ,M∫ ∞
0

r1(τ)dτ = B1∫ ∞
0

r2(τ)dτ = B2

r1(t) ≥ 0, r2(t) ≥ 0, ∀t (7.44)

7.3.1 Minimum Sum Delay Policy

We note that (7.44) is a convex optimization problem [77]. We solve using a La-

grangian approach:

L =

∫ ∞
0

r1 (τ) τdτ +

∫ ∞
0

r2 (τ) τdτ +
M∑
m=1

λm

(∫ tm

0

g (r1(τ), r2(τ)) dτ − Ea(tm)

)

− ν1

(∫ ∞
0

r1(τ)dτ −B1

)
− ν2

(∫ ∞
0

r2(τ)dτ −B2

)
−
∫ ∞

0

γ1(τ)r1(τ)dτ −
∫ ∞

0

γ2(τ)r2(τ)dτ (7.45)

where {λm}, ν1, ν2, γ1(t), and γ2(t) are Lagrange multipliers. KKT optimality

conditions are:

t+ λ(t)
∂g (r1(t), r2(t))

∂r1(t)
− ν1 − γ1(t) = 0 (7.46)

t+ λ(t)
∂g (r1(t), r2(t))

∂r2(t)
− ν2 − γ2(t) = 0 (7.47)
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where we have:

λ(t) =
∑

{m:tm≥t}

λm (7.48)

∂g (r1(t), r2(t))

∂r1(t)
= 2e2(r1(t)+r2(t)) (7.49)

∂g (r1(t), r2(t))

∂r2(t)
= 2e2(r1(t)+r2(t)) + 2

(
σ2 − 1

)
e2r2(t) (7.50)

along with the complementary slackness conditions:

λm

(∫ tm

0

g (r1(τ), r2(τ)) dτ − Ea(tm)

)
= 0, ∀m (7.51)

ν1

(∫ ∞
0

r1(τ)dτ −B1

)
= 0, γ1(t)r1(t) = 0 ∀t (7.52)

ν2

(∫ ∞
0

r2(τ)dτ −B2

)
= 0, γ2(t)r2(t) = 0 ∀t (7.53)

From the above KKT conditions, we can write the rates and total power

expressions in terms of the Lagrange multipliers. First, we write the rate expressions

as:

r1(t) =
1

2
log

(
(σ2 − 1) (γ1 (t) + ν1 − t)
γ2 (t)− γ1 (t) + ν2 − ν1

)
(7.54)

r2(t) =
1

2
log

(
γ2 (t)− γ1 (t) + ν2 − ν1

λ (t) (σ2 − 1)

)
(7.55)

We now state the following result.

Lemma 7.11 The optimal Lagrange multipliers (ν∗1 , ν
∗
2) satisfy: ν∗1 < ν∗2 < σ2ν∗1 .

Proof: We show this by contradiction. Assume ν∗2 ≤ ν∗1 . Then, by (7.55), the
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value of r2(t) is well-defined only if γ2(t) > 0 ∀t, which means by complementary

slackness that r2(t) = 0 ∀t. Therefore, assuming B2 > 0, the weak user will never

get to receive any of its data. This proves the first inequality.

To show the second inequality, assume σ2ν∗1 ≤ ν∗2 . Thus,

(σ2 − 1) (ν1 − t)
γ2 (t) + ν2 − ν1

≤ 1, ∀t, γ2(t) ≥ 0 (7.56)

Therefore, the right hand side of (7.54) can only be positive if γ1(t) > 0, but this

means, by complementary slackness, that r1(t) = 0, which is a contradiction. Hence,

r1(t) = 0 ∀t, and, assuming B1 > 0, the strong user will never get to receive any of

its data. �

Next, we characterize the optimal total transmit power g (r1(t), r2(t)) by the

following lemma.

Lemma 7.12 In the optimal policy, the total transmit power g (r1(t), r2(t)) is given

by

g(r1(t), r2(t)) = max

{
ν2 − t
λ(t)

− σ2,
ν1 − t
λ(t)

− 1

}+

(7.57)

Proof: From (7.47) and (7.50), we have

g(r1(t), r2(t)) =
ν2 + γ2(t)− t

λ(t)
− σ2 (7.58)
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Since from (7.49) and (7.50) we always have

∂g(r1(t), r2(t))

∂r2(t)
− σ2 ≥ ∂g(r1(t), r2(t))

∂r1(t)
− 1 (7.59)

with equality iff r2(t) = 0, from (7.46) and (7.47), we have

ν2 + γ2(t)− t
λ(t)

− σ2 ≥ ν1 + γ1(t)− t
λ(t)

− 1 (7.60)

Thus, if r2(t) > 0, by complementary slackness γ2(t) = 0, and the total power is

given by

g(r1(t), r2(t)) =
ν2 − t
λ(t)

− σ2 (7.61)

>
ν1 + γ1(t)− t

λ(t)
− 1 (7.62)

≥ ν1 − t
λ(t)

− 1 (7.63)

On the other hand, if r2(t) = 0 and r1(t) > 0, we have

g(r1(t), r2(t)) =
ν2 + γ2(t)− t

λ(t)
− σ2 (7.64)

=
ν1 − t
λ(t)

− 1 (7.65)

≥ ν2 − t
λ(t)

− σ2 (7.66)

Finally, if both rates are zero, then the total power is zero. Combining this with the

above gives (7.57). �
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The above lemma shows that the optimal power decreases with time between

energy harvests, and can reach zero before increasing again with the next energy

harvest. The following lemmas characterize the structure of the optimal policy.

Lemma 7.13 In the optimal policy, the transmission starts by sending data to the

strong user, and finishes by sending data to the weak user.

Proof: We show this by contradiction. Assume that the transmission starts by

sending data to the weak user only, i.e., r2(0) > r1(0) = 0.2 By complementary

slackness, we have γ2(0) = 0. By Lemma 7.11, since σ2ν1 > ν2, we have

(σ2 − 1) (γ1(0) + ν1)

ν2 − ν1 − γ1(0)
> 1, ∀γ1(0) ≥ 0 (7.67)

which implies, by (7.54), that r1(0) > 0, which is a contradiction. For the second

part of the lemma, assume that the transmission ends at some time tf with r1(tf ) >

r2(tf ) = 0. By Lemma 7.12, we know that this can only occur if λ(tf ) >
ν2−ν1
σ2−1

, λth.

Since λ(t) is non-increasing, we have λ(t) ≥ λ(tf ), ∀t ≤ tf . This means that λ(t)

does not fall below λth throughout the transmission, which is equivalent to saying,

again by Lemma 7.12, that the weak user does not receive any of its data, which is

a contradiction. �

Lemma 7.14 For t < tth ,
σ2ν1−ν2
σ2−1

, if the transmitter is sending data, then it is

sending to the strong user.

2Extension of the contradiction arguments in this lemma to an ε-length interval, ε > 0, follows
directly.
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Proof: We show this by contradiction. Assume that for some t < tth data is sent

only to the weak user, i.e., we have r1(t) = 0 and r2(t) > 0. By complementary

slackness, we have γ2(t) = 0. Since t < tth, it follows by simple manipulations

that the numerator of the term inside the log in (7.54) is strictly larger than its

denominator ∀γ1(t) ≥ 0, i.e., r1(t) > 0, which is a contradiction. The only case

where r1(t) = 0 for some t < tth is when γ2(t) > 0, which means by complementary

slackness that r2(t) = 0. �

7.3.1.1 Modes of Operation

There can be four different modes of operation at a given time, depending on which

user is receiving data. The first mode is when only the strong user is receiving

data, i.e., r1(t) > 0 and r2(t) = 0. By Lemma 7.12, this can be the case only if

λ(t) ≥ λth = ν2−ν1
σ2−1

. In this mode, we have the total power and the strong user’s rate

given by

g(r1(t), 0) =
ν1 − t
λ(t)

− 1 (7.68)

r1(t) =
1

2
log

(
ν1 − t
λ(t)

)
(7.69)

The second mode of operation is when both users are receiving data, i.e.,

r1(t) > 0 and r2(t) > 0. Again by Lemma 7.12, this can be the case only if

λ(t) < λth. Moreover, by (7.54), we also need t < tth = σ2ν1−ν2
σ2−1

. In this mode, the
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total power and the users’ rates are given by

g(r1(t), r2(t)) =
ν2 − t
λ(t)

− σ2 (7.70)

r1(t) =
1

2
log

(
(σ2 − 1)(ν1 − t)

ν2 − ν1

)
(7.71)

r2(t) =
1

2
log

(
ν2 − ν1

λ(t)(σ2 − 1)

)
(7.72)

The third mode of operation is when only the weak user is receiving data, i.e.,

r1(t) = 0 and r2(t) > 0. For this to occur we need both λ(t) < λth and t ≥ tth. The

total power and the weak user’s rate are then given by

g(0, r2(t)) =
ν2 − t
λ(t)

− σ2 (7.73)

r2(t) =
1

2
log

(
ν2 − t
λ(t)σ2

)
(7.74)

The fourth mode is when both rates (and the power) are zero. We denote

this mode as a communication gap. These gaps may occur, for instance, if there is

a small amount of energy in the battery that is insufficient to deliver all the data,

and a large amount of energy arrives later. The transmitter may then finish up this

small amount of energy to send some bits out and wait for additional energy to send

the remaining bits.
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7.3.1.2 Finding the value of λ(t)

We next characterize the rates and powers. The following lemma shows that λ(t) is

a piecewise constant function.

Lemma 7.15 In the optimal policy, the Lagrange multiplier function λ(t) is piece-

wise constant, with possible changes only when energy is depleted.

Proof: By the complementary slackness conditions on λ(t),

λ∗m = 0, if E∗(tm) < Ea(tm) (7.75)

E∗(tm) = Ea(tm), if λ∗m > 0 (7.76)

Therefore, λ(t) remains constant between energy harvests, and can only decrease

when λm > 0 for some m, which happens only when energy is depleted. �

By Lemma 7.15, λ(t) is a sequence rather than a continuous function of time.

We denote the times of change of λ(t) by {s1, s2, . . . , sL} with s1 = 0, and the values

of λ(t) between such times by

λ(t) =


λck, t ∈ [sk, sk+1)

λcL, t ∈ [sL,∞)

(7.77)

Next, we characterize the optimal {λck} sequentially. Determining the value

of λck requires the knowledge of ν∗1 and ν∗2 , and also which mode of operation is

active during the interval [sk, sk+1). Let us define Bj(t) as the total amount of bits
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transmitted to user j by time t. The next lemma shows how to compute λck given

the mode of operation. The proof uses similar steps as in the proof of Lemma 7.4

in the single-user setting and is omitted for brevity.

Lemma 7.16 Given a mode of operation, with the optimal ν∗1 , ν∗2 , λcl , sl, ∀l < k,

define the following quantities ∀m: tm > sk

λ̄m : E∗(sk) +

∫ tm

sk

g(r1(τ), r2(τ))+dτ = Ea(tm) (7.78)

λ̃1 : B∗1(sk) +

∫ ∞
sk

r1(τ)+dτ = B1 (7.79)

λ̃2 : B∗2(sk) +

∫ ∞
sk

r2(τ)+dτ = B2 (7.80)

where r1, r2, and g(r1, r2) are defined by the mode of operation in Section 7.3.1.1,

with the convention that λ̃j = 0 whenever a mode of operation has rj = 0, j = 1, 2.

Then, the optimal λck for this mode of operation is given by

λck = max{λ̄m, λ̃1, λ̃2}, ∀m : tm > sk (7.81)

The results in Lemma 7.16 imply that one has to know the mode of operation

before computing the optimal values of the Lagrange multipliers. Note that com-

munication gaps occur naturally due to the (·)+ operation in these expressions. In

the next section, we develop an iterative solution that computes {λck} based on an

initial assignment of the mode of operation and the values of ν1, ν2. The solution is

based on the necessary conditions stated in the previous lemmas. By Lemma 7.11,

209



we know that the optimal values of ν1, ν2 lie in a cone in R2
++. We also know, by

Lemmas 7.12 and 7.13, that the communication stops if t > ν2. Therefore, we find

an upper bound on the value of ν∗2 as follows. First, we move all of the energy to

tM−1, the arrival time of the last energy packet, and start the communication from

there. Second, we solve this single energy arrival problem and find its optimal ν∗2

which we denote by νsingle
2 . Therefore, an upper bound on ν∗2 of the multiple energy

arrival problem is

ν∗2 ≤ νsingle
2 + tM−1 , νub (7.82)

Once this upper bound is found, one can perform a two-dimensional grid search over

the feasible region of ν1, ν2:

Rν1ν2 =
{
ν1, ν2 : 0 < ν1 < ν2 < σ2ν1, ν2 ≤ νub

}
(7.83)

Next, we analyze the single energy arrival case to characterize the upper bound on

ν∗2 .

7.3.1.3 Single Energy Arrival

For the single energy arrival case, we first note that there can be no communication

gaps, as this can only increase the delay. We also note that since there is only one

value of λ, corresponding to only one energy arrival constraint, the optimal power

is given by the first term in (7.57). If not, then the weak user will never receive
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its data. Hence, the first mode of operation where only the strong user is receiving

data never occurs. Thus, the optimal total power is given by

ps(t) =
ν2 − t
λ
− σ2, ∀t ≤ tf , ν2 − λσ2 (7.84)

where the subscript s denotes single arrival, and tf is such that ps(t) is non-negative.

From the above, we also note that λ cannot be 0, or else the power is infinitely large.

Since λ > 0, by complementary slackness, the transmitter has to consume all of its

energy by the end of transmission. This simplifies the single energy arrival problem,

as in this case, we have all the three constraints, both users’ data and transmitter’s

energy, met with equality. Therefore, we can solve for the optimal values of the

Lagrange multipliers satisfying the following:

∫ tth

0

1

2
log

(
(σ2 − 1)(ν1 − t)

ν2 − ν1

)
dt = B1 (7.85)

tth
2

log

(
ν2 − ν1

λ(σ2 − 1)

)
+

∫ tf

tth

1

2
log

(
ν2 − t
λσ2

)
dt = B2 (7.86)∫ tf

0

ps(t)dt = E (7.87)

The above three equations are direct consequences of the modes of operation analysis

in Section 7.3.1.1. These can be further simplified into:

ν1

2
log

(
(σ2 − 1)ν1

ν2 − ν1

)
= B1 (7.88)

ν2

2
log

(
ν2 − ν1

λ(σ2 − 1)

)
= B2 (7.89)
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(ν2 − λσ2)
2

2λ
= E (7.90)

Note that (7.88)-(7.90) have three equations in three unknowns, and can be solved

numerically for the values of λ∗, ν∗1 , and ν∗2 . Note from the above analysis that,

since we always start with the second mode of operation, where both users receive

data, in this setting, we have λ < λth. This implies that tf > tth, and enables the

following stronger version of Lemma 7.13.

Lemma 7.17 In the optimal policy solving (7.44), transmission always ends by

sending data only to the weak user.

Proof: In the single energy arrival case, since tf > tth, we always end transmission

by sending data only to the weak user. In the multiple arrival case, the last energy

arrival can be viewed as a single energy arrival problem with the remaining data

in the data buffers as modified constraints. Then the single energy arrival result

applies, yielding the stated result. �

We have now characterized how to get the upper bound νub in (7.82). In the

next section we present an iterative method to find the optimal Lagrange multipliers

solving problem (7.44).

7.3.2 Iterative Solution

The analysis presented in Lemma 7.16 describes an optimal method of finding {λck}

given ν∗1 and ν∗2 . To find the latter two, we perform a grid search over the region

Rν1ν2 , which is fully characterized by the single arrival analysis. We perform the
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search as follows. We fix (ν1, ν2) ∈ Rν1ν2 , and solve for {λck} to acquire a transmission

policy accordingly. We denote by Mode 1, Mode 2, and Mode 3, the mode of

operation where data is sent only to the strong user, both users, and only to the

weak user, respectively. Since Mode 1 can only occur at the beginning, we assume

that the transmission starts according to that mode, and compute the corresponding

λs by Lemma 7.16. If these λs are all less than λth, then they are correct. We move

to Mode 2 once we get a value of λ larger than λth. We stay at Mode 2 until the time

passes tth, then move to Mode 3 till the end of communication. By Lemma 7.17, we

know that Mode 3 always exists. The transmission then ends whenever the weak

user’s data or the transmission energy is finished.

After we find the transmission policy, we check whether the data buffers of

both users are empty. If this is the case, then by the convexity of the problem,

this policy is optimal as we have thus found a feasible policy satisfying the KKT

conditions [77]. Note that we might end up with a policy that either does not finish

up all the users’ data, or even transmits more than the available. If either is the

case, we re-solve using another (ν1, ν2) point. We summarize how to find the optimal

(ν1, ν2) iteratively as follows. We initialize by setting ν1 = ε and ν2 = ν1 + ε for

some ε > 0 small enough. We then solve for {λck} as described above. If we do not

reach a feasible KKT point, we increase ν2 by another ε and repeat. We keep doing

this until we reach a feasible KKT point, or ν2 becomes larger than min{σ2ν1, ν
ub}.

In the latter case, we increase ν1 by ε and repeat the whole procedure again. Since

the region Rν1ν2 is bounded, iterations are guaranteed to find the optimal solution.
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Figure 7.3: Optimal solution for a single-user system with 3 energy arrivals and 2
data arrivals.

7.4 Numerical Results

In this section, we present some numerical examples to further illustrate the results

in this chapter. We begin by considering a single use channel with Emax = Bmax = 10

units. Energy arrives with amounts of [8, 12, 20] at times t = [0, 10, 30], while data

arrives with amounts of [10, 15] at times t = [0, 10]. In Fig. 7.3 we show the delay

minimal solution in this setting. We see that the power is monotonically decreasing

between arrival times, and actually drops to 0 before the last energy arrival. The

optimal energy and data profiles are also shown in the figure. The upper and lower

dotted lines represent the upper and lower constraints, respectively, as dictated by
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Figure 7.4: Effects of having a finite-sized battery and data buffer in a single-user
system.

the arrival profile and the value of the finite-sized battery or data buffer.

In Fig. 7.3, we see that the size of the buffers is not a bottleneck to the sys-

tem. We therefore consider another example where energy arrives with amounts

of [10, 15, 20, 25] at times t = [0, 15, 20, 40], while data arrives with amounts of

[10, 18, 22] at times t = [0, 20, 40], and plot the optimal solution in Fig. 7.4. We see

that the power in this case does not drop down to 0 until at the end of communi-

cation, and that its slope changes when the optimal energy or data profiles hit the

lower bounds indicated by the size of the buffers.

Next, we present a numerical example to illustrate the results of the broadcast

setting. We consider a system where energy arrives with values [6, 10, 4, 5] at times
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Figure 7.5: Optimal power and rates for a system with four energy arrivals.

t = [0, 70, 100, 150], with amounts of data B1 = 8 and B2 = 4.25 intended for the

strong and the weak user, respectively. We first find the upper bound on ν∗2 by

solving the single energy arrival case by setting E = 25 in (7.90) and finding the

value of νsingle
2 . Adding tM−1 = 150, we get νub ' 170. We then apply the iterative

solution described in Section 7.3.2 to find the optimal total power allocation for the

multiple arrival case and the corresponding users’ rates. These are shown in Fig. 7.5

as a function of time. We see that all four modes of operation are present in this

example: the transmitter begins by sending data only to the strong user (Mode 1)

until it consumes the initial energy arrival, and stays silent until the next energy

arrival, then it sends data to both users simultaneously (Mode 2) until all strong
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Figure 7.6: Optimal energy and data consumption.

user’s data is finished, which occurs at tth ' 79.4. Then, it starts sending data only

to the weak user (Mode 3), before keeping silent until the third energy arrival, and

then finishes up the weak user’s data. Note that the fourth energy arrival is not

used in this example. In Fig. 7.6, we show the corresponding optimal total energy

and data consumption for this policy as a function of time.

Finally, we compare this to the transmission completion time minimization

problem in [7] with the same data values and energy arrival profile. The optimal

transmission completion time is equal to T ∗ = 90. Calculating the delay achieved

by such policy gives D ' 717.2. On the other hand, our delay minimizing policy

achieves a smaller delay of D∗ ' 593.3, however, it takes a larger amount of time to
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finish T ' 101.5. This shows that there exists a tradeoff between delay minimization

and transmission completion time minimization, and that the two problems are

different, even when all data is available before the start of communication. That is,

finishing data delivery by a minimum time, and having data experience minimum

overall delay yield different optimum policies.

7.5 Conclusion

In this chapter, we considered delay minimization in energy harvesting communica-

tion channels. First, we studied the single-user channel where the transmitter has a

finite-sized battery and data buffer, and energy and data packets become available at

the transmitter during the course of communication. We determined the optimum

power control policy in terms of the Lagrange multiplier functions. We identified the

properties of these functions and gave a method that evaluates them recursively. We

proposed a solution which iteratively updates the initial value of a Lagrange multi-

plier, and obtains the optimum power allocation policy. The optimal power values

start high, decrease linearly, potentially reaching zero between energy harvests and

data arrivals. This policy is different from the piecewise constant power policies of

the existing literature which focus on minimizing a deadline by which all packets

are transmitted or maximizing the throughput before a fixed deadline. Initial high

powers in our case make sure that the delay does not accumulate by transmitting

data at faster rates first, then decreasing the rate gradually.

Next, we considered a two-user energy harvesting broadcast channel and char-
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acterized the minimal sum delay policy subject to energy harvesting constraints,

when the transmitter has an infinite-sized battery, and all data intended for both

users is available before transmission. We showed that the optimal power is decreas-

ing between energy harvests, and that there can be times when data is sent only to

the strong user, both users, or only to the weak user. We also showed that there

can be communication gaps where the transmitter is silent between energy arrivals.

We presented a method to find the optimal policy iteratively.
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CHAPTER 8

Age-Minimal Transmission in Energy Harvesting Two-hop

Networks

8.1 Introduction

In this chapter, we consider an energy harvesting two-hop network where a source

is communicating to a destination through a relay. During a given communication

session time, the source collects measurement updates from a physical phenomenon

and sends them to the relay, which then forwards them to the destination, see

Fig. 8.1. The objective is to send these updates to the destination as timely as

possible; namely, such that the total age of information is minimized by the end

of the communication session, subject to energy causality constraints at the source

and the relay, and data causality constraints at the relay. Both the source and the

relay use fixed, yet possibly different, transmission rates. Hence, each update packet

incurs fixed non-zero transmission delays. We first solve the single-hop version of this

problem, and then show that the two-hop problem is solved by treating the source

and relay nodes as one combined node, with some parameter transformations, and

solving a single-hop problem between that combined node and the destination.
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Figure 8.1: Energy harvesting two-hop network. The source collects measurements
and sends them to the destination through the relay.

8.2 System Model and Problem Formulation

A source node acquires measurement updates from some physical phenomenon and

sends them to a destination, through the help of a half-duplex relay, during a com-

munication session of duration T time units. Updates need to be sent as timely as

possible; namely, such that the total age of information is minimized by time T .

The age of information metric is defined as

a(t) , t− U(t), ∀t (8.1)

where U(t) is the time stamp of the latest received update packet at the destination,

i.e., the time at which it was acquired at the source. Without loss of generality, we

assume a(0) = 0. The objective is to minimize the following quantity

AT ,
∫ T

0

a(t)dt (8.2)

Both the source and the relay depend on energy harvested from nature to

transmit their data, and are equipped with infinite-sized batteries to save their
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incoming energy. Energy arrives in packets of amounts E and Ē at the source and

the relay, respectively. Update packets are of equal length, and are transmitted using

fixed rates at the source and the relay. We assume that one update transmission

consumes one energy packet at a given node, and hence the number of updates is

equal to the minimum of the number of energy arrivals at the source and the relay.

Under a fixed rate policy, each update takes d and d̄ amount of time to get through

the source-relay channel and the relay-destination channel, respectively1.

Source energy packets arrive at times {s1, s2, . . . , sN} , s, and relay energy

packets arrive at times {s̄1, s̄2, . . . , s̄N} , s̄, where without loss of generality we

assume that both the source and the relay receive N energy packets, since each

update consumes one energy packet in transmission from either node, and hence

any extra energy arrivals at either the source or the relay cannot be used. Let ti

and t̄i denote the transmission time of the ith update at the source and the relay,

respectively. We first impose the following constraints

ti ≥ si, t̄i ≥ s̄i, 1 ≤ i ≤ N (8.3)

representing the energy causality constraints [1] at the source and the relay, which

mean that no energy packet can be used before being harvested. Next, we must

1d can be considered, for instance, equal to B/r where B is the update packet length in bits
and r = g(E) is the transmission rate in bits/time units, where g is some increasing function
representing the rate-energy relationship.
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have

ti + d ≤ t̄i, 1 ≤ i ≤ N (8.4)

to ensure that the relay does not forward an update before receiving it from the

source, which represents the data causality constraints [1]. We also have the service

time constraints

ti + d ≤ ti+1, t̄i + d̄ ≤ t̄i+1, 1 ≤ i ≤ N − 1 (8.5)

which ensure that there can only be one transmission at a time at the source and

the relay. Hence, d and d̄ represent the service (busy) time of the source and relay

servers, respectively.

Transmission times at the source and the relay should also be related according

to the half-duplex nature of the relay operation. For that, we must have the half-

duplex constraints

(ti, ti + d) ∩ (t̄j, t̄j + d̄) = ∅, ∀i, j (8.6)

where ∅ denotes the empty set, since the relay cannot receive and transmit simul-

taneously. These constraints enforce that either the source transmits a new update

after the relay finishes forwarding the prior one, i.e., ti+1 ≥ t̄i + d̄ for some i; or

that the source delivers a new update before the relay starts transmitting the prior

one, i.e., ti+k + d ≤ t̄i for some i and k. The latter case means that there are k + 1
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update packets waiting in the relay’s data buffer just before time t̄i. We prove that

this case is not age-optimal. To see this, consider the example of having k + 1 = 2

updates packets in the relay’s data buffer waiting for service. The relay in this

case has two choices at its upcoming transmission time: 1) forward the first update

followed by the second one sometime later, or 2) forward the second update only

and ignore the first one. These two choices yield different age evolution curves. We

observe, geometrically, that AT under choice 2 is strictly less than that under choice

1. Since the source under choice 2 consumes an extra energy packet to send the first

update unnecessarily, it should instead save this energy packet to send a new update

after the first one is forwarded by the relay. Therefore, it is optimal to replace the

half-duplex constraints in (8.6) by the following reduced ones

t̄i + d̄ ≤ ti+1, 1 ≤ i ≤ N − 1 (8.7)

Next, observe that (8.5) can be removed from the constraints since it is implied

by (8.4) and (8.7). In conclusion, the constraints are now those in (8.3), (8.4), and

(8.7).

Finally, we add the following constraint to ensure reception of all updates by

time T

t̄N + d̄ ≤ T (8.8)

In Fig. 8.2, we present an example of the age of information in a system with
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Figure 8.2: Age evolution in a two-hop network with three updates.

3 updates. The area under curve representing AT is given by the sum of the areas

of the trapezoids Q1, Q2, and Q3, in addition to the area of the triangle L. The

area of Q2 for instance is given by 1
2

(
t̄2 + d̄− t1

)2 − 1
2

(
t̄2 + d̄− t2

)2
. The objective

is to choose feasible transmission times for the source and the relay such that AT

is minimized. Computing the area under the age curve for general N arrivals, we

formulate the problem as follows

min
t,t̄

N∑
i=1

(
t̄i + d̄− ti−1

)2 −
(
t̄i + d̄− ti

)2
+ (T − tN)2

s.t. ti ≥ si, t̄i ≥ s̄i, 1 ≤ i ≤ N

ti + d ≤ t̄i, 1 ≤ i ≤ N

t̄i + d̄ ≤ ti+1, 1 ≤ i ≤ N (8.9)

with t0 , 0 and tN+1 , T .

We note that the energy arrival times s and s̄, the transmission delays d and

d̄, the session time T , and the number of energy arrivals N , are such that problem
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(8.9) has a feasible solution. This is true only if

T ≥ s̄i + (N − i+ 1) d̄, ∀i (8.10)

T ≥ si + (N − i+ 1)
(
d+ d̄

)
, ∀i (8.11)

where (8.10) (resp. (8.11)) ensures that the ith energy arrival time at the relay

(resp. source) is small enough to allow the reception of the upcoming N − i updates

within time T .

8.3 Solution Building Block: The Single-User Channel

In this section, we solve the single-user version of problem (8.9); namely, when the

source is communicating directly with the destination. We use the solution to the

single-user problem in this section as a building block to solve problem (8.9) in the

next section. In Fig. 8.3, we show an example of the age evolution in a single-user

setting. The area of Q2 is now given by 1
2

(t2 + d− t1)2− 1
2
d2. We compute the area

under the age curve for general N arrivals and formulate the single-user problem as

follows

min
t

N∑
i=1

(ti + d− ti−1)2 + (T − tN)2

s.t. ti ≥ si, 1 ≤ i ≤ N

ti + d ≤ ti+1, 1 ≤ i ≤ N (8.12)
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Figure 8.3: Age evolution using in a single-user channel with three updates.

where the second constraints are the service time constraints.

We note that reference [76] considered problem (8.12) when the transmission

delay d = 0. We extend their results for a positive delay (and hence a finite trans-

mission rate) in this section. We first introduce the following change of variables:

x1 , t1 + d; xi , ti − ti−1 + d, 2 ≤ i ≤ N ; and xN+1 , T − tN . These variables

must satisfy
∑N+1

i=1 xi = T +Nd, which reflects the dependent relationship between

the new variables {xi}. This can also be seen from Fig. 8.3. Substituting by {xi}

in problem (8.12), we get the following equivalent problem

min
x

N+1∑
i=1

x2
i

s.t.
k∑
i=1

xi ≥ sk + kd, 1 ≤ k ≤ N

xi ≥ 2d, 2 ≤ i ≤ N

xN+1 ≥ d

N+1∑
i=1

xi = T +Nd (8.13)
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Observe that problem (8.13) is a convex problem that can be solved by standard

techniques [77]. For instance, we introduce the following Lagrangian

L =
N+1∑
i=1

x2
i −

N∑
k=1

λk

(
k∑
i=1

xi − sk − kd
)
−

N∑
i=2

ηi (xi − 2d)

− ηN+1 (xN+1 − d) + ν

(
N+1∑
i=1

xi − T −Nd
)

(8.14)

where {λ1, . . . , λN , η2 . . . , ηN+1, ν} are Lagrange multipliers, with λi, ηi ≥ 0 and

ν ∈ R. Differentiating with respect to xi and equating to 0 we get the following

KKT conditions

x1 =
N∑
k=1

λk − ν (8.15)

xi =
N∑
k=i

λk + ηi − ν, 2 ≤ i ≤ N (8.16)

xN+1 = ηN+1 − ν (8.17)

along with complementary slackness conditions

λk

(
k∑
i=1

xi − sk − kd
)

= 0, 1 ≤ k ≤ N (8.18)

ηi (xi − 2d) = 0, 1 ≤ i ≤ N (8.19)

ηN+1(xN+1 − d) = 0 (8.20)

We now have the following lemmas characterizing the optimal solution of

problem (8.13): {x∗i }. Lemmas 8.1 and 8.3 show that the sequence {x∗i }N+1
i=2 is
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non-increasing, and derive necessary conditions for it to strictly decrease. On the

other hand, Lemma 8.2 shows that x∗1 can be smaller or larger than x∗2, and derives

necessary conditions for the two cases.

Lemma 8.1 For 2 ≤ i ≤ N − 1, x∗i ≥ x∗i+1. Furthermore, x∗i > x∗i+1 only if∑i
j=1 x

∗
j = si + id.

Proof: We show this by contradiction. Assume that for some i ∈ {2, . . . , N −1} we

have x∗i < x∗i+1. By (8.16), this is equivalent to having λi + ηi < ηi+1, i.e., ηi+1 > 0,

which implies by complementary slackness in (8.19) that x∗i+1 = 2d. This means

that x∗i < 2d, i.e., infeasible. Therefore x∗i ≥ x∗i+1 holds. This proves the first part

of the lemma.

To show the second part, observe that since x∗i > x∗i+1 if and only if λi + ηi >

ηi+1, then either λi > 0 or ηi > 0. If ηi > 0, then by (8.19) we must have x∗i = 2d,

which renders x∗i+1 < 2d, i.e., infeasible. Therefore, ηi cannot be positive and

we must have λi > 0. By complementary slackness in (8.18), this implies that∑i
j=1 x

∗
j = si + id. �

Lemma 8.2 x∗1 > x∗2 only if x∗1 = s1 + d; while x∗1 < x∗2 only if x∗i = 2d, for

2 ≤ i ≤ N .

Proof: The necessary condition for x∗1 to be larger than x∗2 can be shown using the

same arguments as in the proof of the second part of Lemma 8.1, and is omitted

for brevity. Let us now assume that x∗1 is smaller than x∗2. By (8.15) and (8.16),

this occurs if and only if η2 > λ1, which implies that x∗2 = 2d by complementary
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slackness in (8.19). Finally, by Lemma 8.1, we know that {x∗i }Ni=2 is non-increasing;

since they are all bounded below by 2d, and x∗2 = 2d, then they must all be equal

to 2d. �

Lemma 8.3 x∗N ≥ x∗N+1. Furthermore, x∗N > x∗N+1 only if at least: 1)
∑N

i=1 x
∗
i =

sN +Nd, or 2) x∗N = 2d occurs.

The proof of Lemma 8.3 is along the same lines of the proofs of the previous

two lemmas and is omitted for brevity.

We will use the results of Lemmas 8.1, 8.2, and 8.3 to derive the optimal

solution of problem (8.13). To do so, one has to consider the relationship between

the parameters of the problem: T , d, and N . For instance, one expects that if

the session time T is much larger than the minimum inter-update time d, then

the energy causality constraints will be binding while the constraints enforcing one

update at a time will not be, and vice versa. We formalize this idea by considering

two different cases as follows.

8.3.1 Nd ≤ T < (N + 1)d

We first note that Nd is the least value that T can have for problem (8.13) to admit a

feasible solution. In this case, the following theorem shows that the optimal solution

is achieved by sending all updates back to back with the minimal inter-update time

possible to allow the reception of all of them by the end of the relatively small session

time T .
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Theorem 8.1 Let Nd ≤ T < (N + 1)d. Then, the optimal solution of problem

(8.13) is given by

x∗1 = max

{
T − (N − 2)d

2
, s1 + d

}
(8.21)

x∗i = 2d, 2 ≤ i ≤ N (8.22)

x∗N+1 = T − (N − 2)d− x∗1 (8.23)

Proof: We first argue that if x∗1 ≥ x∗2, then
∑N+1

i=1 x∗i ≥ (2N + 1)d. The last

constraint in problem (8.13) then implies that T ≥ (N + 1)d, which is infeasible

in this case. Therefore, we must have x∗1 < x∗2. By Lemma 8.2, this occurs only if

x∗i = 2d for 2 ≤ i ≤ N . Hence, we set xN+1 = T − (N − 2)d− x1, and observe that

problem (8.13) in this case reduces to a problem in only one variable x1 as follows

min
x1

x2
1 + (T − (N − 2)d− x1)2

s.t. s1 + d ≤ x1 ≤ T − (N − 1)d (8.24)

whose solution is given by projecting the critical point of the objective function onto

the feasible interval since the problem is convex [77]. This directly gives (8.21). �

8.3.2 T ≥ (N + 1)d

In this case, we propose an algorithmic solution that is based on the necessary op-

timality conditions in Lemmas 8.1, 8.2, and 8.3. We first solves problem (8.13)

without considering the service time constraints, i.e., assuming that the set of con-
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straints {xi ≥ 2d, 2 ≤ i ≤ N ; xN+1 ≥ d} is not active. We then check if any

of these abandoned constraints is not satisfied, and optimally alter the solution to

make it feasible.

Let us denote by (P e) problem (8.13) without the set of constraints {xi ≥

2d, 2 ≤ i ≤ N ; xN+1 ≥ d}, i.e., considering only the energy causality constraints.

We then introduce the following algorithm to solve problem (P e)

Definition 8.1 (Inter-Update Balancing Algorithm) Start by computing

i1 , arg max

{
s1,

s2

2
, . . . ,

sN
N
,
T − d
N + 1

}
(8.25)

where the set is indexed as {1, . . . , N + 1}, and then set

x∗1 = · · · = x∗i1 = max

{
s1,

s2

2
, . . . ,

sN
N
,
T − d
N + 1

}
+ d (8.26)

If i1 = N + 1 stop, else compute

i2 , arg max

{
si1+1 − si1 ,

si1+2 − si1
2

, . . . ,
sN − si1
N − i1

,
T − d− si1
N + 1− i1

}
(8.27)

where the set is indexed as {i1 + 1, . . . , N + 1}, and then set

x∗i1+1 = · · · = x∗i2 = max

{
si1+1 − si1 ,

si1+2 − si1
2

, . . . ,
sN − si1
N − i1

,
T − d− si1
N + 1− i1

}
+ d

(8.28)
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If i2 = N + 1 stop, else continue with computing i3 as above. The algorithm is

guaranteed to stop since it will at most compute iN+1 which is equal to N + 1 by

construction.

Note that while computing ik, if the arg max is not unique, we pick the largest

maximizer. Observe that the algorithm equalizes the xi’s as much as allowed by

the energy causality constraints. Let {x̄i}Ni=1 be the output of the Inter-Update

Balancing algorithm and let {xei}Ni=1 denote the optimal solution of problem (P e).

We now have the following results

Lemma 8.4 {x̄i}Ni=1 is a non-increasing sequence, and x̄j > x̄j+1 only if
∑j

i=1 x̄i =

sj + jd.

Proof: We show this by induction. Clearly, we have x̄1 = x̄2 = · · · = x̄i1 =
si1
i1

+ d

by construction. Now assume that {x̄i}iki=1 is non-increasing, and consider {x̄i}ik+1

i=1 .

We know that x̄ik+1 = x̄ik+2 = · · · = x̄ik+1
=

sik+1
−sik

ik+1−ik
+ d by construction. We now

proceed by contradiction; assume that x̄ik+1
> x̄ik . This means that the following

holds

sik+1
− sik

ik+1 − ik
>
sik − sik−1

ik − ik−1

(8.29)

or equivalently

ik+1 − ik
ik+1 − ik−1

sik−1
+

ik − ik−1

ik+1 − ik−1

sik+1
> sik (8.30)
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Next, observe that the following holds by construction when choosing xik

sik − sik−1

ik − ik−1

≥ sik+1
− sik−1

ik+1 − ik−1

(8.31)

which is equivalent to

ik+1 − ik
ik+1 − ik−1

sik−1
+

ik − ik−1

ik+1 − ik−1

sik+1
≤ sik (8.32)

This contradicts (8.30), and proves the first part of the lemma.

Now let us show the second part. Assume that x̄j+1 < x̄j. Then necessarily

we must have j = ik for some ik, or else they should be equal. Therefore, by

construction, we have

ik∑
i=1

x̄i = (ik − ik−1)

(
sik − sik−1

ik − ik−1

+ d

)
+ (ik−1 − ik−2)

(
sik−1

− sik−2

ik−1 − ik−2

+ d

)

+ · · ·+ i1

(
si1
i1

+ d

)
=sik + ikd (8.33)

This concludes the proof. �

Lemma 8.5 xei = x̄i, 1 ≤ i ≤ N .

Proof: Let {x̄i}Ni=1 be the output of the Inter-Update Balancing algorithm and let

{xei}Ni=1 denote the optimal solution of problem (P e). We first show that {x̄i}Ni=1 is
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feasible. Let j be such that ik < j ≤ ik+1. Then

j∑
i=1

x̄i =

ik∑
i=1

x̄i +

j∑
i=ik+1

x̄i

= sik + ikd+ (j − ik)
(
sik+1

− sik
ik+1 − ik

+ d

)
(8.34)

≥ sik + jd+ (j − ik)
(
sj − sik
j − ik

)
(8.35)

= sj + jd (8.36)

where (8.34) follows by (8.33), and (8.35) follows since, by construction, we have

sik+1
− sik

ik+1 − ik
≥ sj − sik

j − ik
, ∀ik < j ≤ ik+1 (8.37)

Finally, note that the stopping criterion of the algorithm is when iL = N + 1 for

some iL. Whence, we have

N+1∑
i=1

x̄i =i1

(
si1
i1

+ d

)
+ (i2 − i1)

(
si2 − si1
i2 − i1

+ d

)

+ · · ·+ (N + 1− iL−1)

(
T − d− siL−1

N + 1− iL−1

+ d

)
=(N + 1)d+ (T − d) = T +Nd (8.38)

This shows that that {x̄i}Ni=1 is feasible.

Next, we show that xei = x̄i, ∀i. We show this by contradiction. Let xei = x̄i

for 1 ≤ i ≤ m− 1 and let xem 6= x̄m, i.e., m is the first time index at which the two

sequences are different. We now consider two cases as follows.
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First, assume xem < x̄m. Note that it must be the case that ik1 < m ≤ ik for

some ik. Therefore, x̄i = x̄m, ∀m ≤ i ≤ ik, by construction. By (8.16), we have that

{xei} is non-increasing since ηi = 0 and λi ≥ 0. Therefore, xei < x̄i, ∀m ≤ i ≤ ik,

and hence
∑ik

i=1 x
e
i <

∑ik
i=1 x̄i = sik + ikd, i.e., the allegedly-optimal policy is not

feasible. Therefore xem ≥ x̄m

Second, assume xem > x̄m. Since
∑N+1

i=1 xei =
∑N+1

i=1 x̄i, therefore there must

exist some time index l > m such that xel < x̄l. Now let ε , min{xem− x̄m, x̄l− xel },

and consider a new policy {x̃i} which is equal to {xei} except at time indices m and

l, with x̃m = xem − ε and x̃l = xel + ε. Since x̃m ≥ x̄m, the new policy is feasible. In

addition, by convexity of the square function, the following holds [77]

(x̃m)2 + (x̃l)
2 < (x∗m)2 + (x∗l )

2 (8.39)

which means that the new policy achieves a lower age, rendering {xei} suboptimal.

The above arguments show that we must have xei = x̄i, ∀i. This completes

the proof. �

We note that Lemma 8.5 is similar to [76, Theorem 1]. In fact, the Inter-

Update Balancing algorithm reduces to the optimal offline algorithm proposed in [76]

when d = 0. When d > 0, some change of parameters can still show the equivalence.

The next corollary now follows.

Corollary 8.1 Consider problem (P e) with the additional constraint that
∑j

i=1 xi =

sj + jd holds for some j ≤ N . Then, the optimal solution of the problem, under this

condition, for time indices not larger than j is given by {xei}ji=1.
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Proof: This direct by setting T ′ , sj + d and N ′ , j − 1, and applying the Inter-

Update Balancing algorithm on the problem with a reduced number of variables

{x1, . . . , xN ′+1}. �

The following theorem shows that the optimal solution of problem (8.13), {x∗i },

is found by equalizing the inter-update times as much as allowed by the energy

causality constraints. If such equalization does not satisfy the minimal inter-update

time constraints, we force it to be exactly equal to such minimum and adjust the

last variable xN+1 accordingly.

Theorem 8.2 Let T ≥ (N + 1)d. If xei ≥ 2d, 2 ≤ i ≤ N and xeN+1 ≥ d, then

x∗i = xei , ∀i. Else, let n0 be the first time index at which {xei} is not feasible in

problem (8.13). Then, we have n0 ≤ N . If n0 > 2, we have

x∗i = xei , 1 ≤ i ≤ n0 − 1 (8.40)

x∗i = 2d, n0 ≤ i ≤ N (8.41)

x∗N+1 = T +Nd−
N∑
i=1

x∗i (8.42)

Otherwise, for n0 = 2, {x∗i } is given by the above if xe1 = s1 + d, else {x∗i } is given

by (8.21)-(8.23).

Proof: The first part of the theorem follows directly since the solution of the less

constrained problem (P e) is optimal if feasible in problem (8.13). Next, we prove

the second part.

We first show that n0 ≤ N by contradiction. Assume that n0 = N + 1, i.e.,
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xeN+1 < d and xeN ≥ 2d > xeN+1. By Lemma 8.4, this means that
∑N

i=1 x
e
i = sN+Nd.

Hence, xeN+1 = T + Nd − sN − Nd = T − sN , which cannot be less than d by the

feasibility assumption in (8.10). Thus, n0 ≤ N .

Now let n0 > 2 and observe that xen0
< 2d ≤ xn0−1. Thus, by Lemma 8.4, we

must have
∑n0−1

i=1 xei = sn0−1 + (n0 − 1)d. Now let us show that the proposed policy

is feasible; we only need to check whether x∗N+1 ≥ d. Towards that, we have

x∗N+1 = T +Nd−
n0−1∑
i=1

x∗i − (N − n0 + 1) 2d

= T − sn0−1 − (N − n0 + 1)d ≥ d (8.43)

where the last inequality follows by the feasibility assumption in (8.10). Therefore,

the proposed policy is feasible.

We now show that it is optimal as follows. Assume that there exists another

policy {x̃i} that achieves a lower age than {x∗i }. We now have two cases. First,

assume that
∑n0−1

i=1 x̃i = sn0−1 + (n0 − 1)d. then by Corollary 8.1 we must have

x̃i = x∗i for 1 ≤ i ≤ n0 − 1. Now for n0 ≤ i ≤ N , if x̃i > x∗i = 2d, this means that

x̃N+1 < x∗N+1 to satisfy the last constraint in (8.13). Since
∑N+1

i=n0
x̃i =

∑N+1
i=n0

x∗i , then

by convexity of the square function,
∑N+1

i=n0
(x̃i)

2 >
∑N+1

i=n0
(x∗i )

2 [77], and hence {x̃i}

cannot be optimal. Second, assume that
∑n0−1

i=1 x̃i > sn0−1 + (n0 − 1)d =
∑n0−1

i=1 x∗i .

Since x̃i ≥ x∗i = 2d for n0 ≤ i ≤ N , and
∑N+1

i=1 x̃i =
∑N+1

i=1 x∗i , then we must

have x̃N+1 < x∗N+1. Thus,
∑N+1

i=1 (x̃i)
2 >

∑N+1
i=1 (x∗i )

2 by convexity of the square

function [77], and {x̃i} cannot be optimal.

Finally, let n0 = 2. If xe1 = s1 + d, then the proof follows by the arguments
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for the n0 > 2 case. Else if xe1 > s1 + d, then xe1 = xe2 ≥ xeN+1 by Lemma 8.4. Since

{xei}Ni=2 have to increase to at least 2d, then xe1 + xeN+1 has to decrease to satisfy

the last constraint in (8.13). However, one cannot increase xe1 to 2d or more and

compensate that by decreasing xeN+1, by convexity of the square function. Thus,

x∗1 < x∗2, and Lemma 8.2 shows that the results of Theorem 8.1 follow to give

(8.21)-(8.23). �

8.4 Two-Hop Network: Solution of Problem (8.9)

We now discuss how to use the results of the single-user problem to solve problem

(8.9). We have the following theorem.

Theorem 8.3 The optimal solution of problem (8.9) is given by the optimal solution

of problem (8.12) after replacing si by max{s̄i, si + d}, ∀i; d by d + d̄; and T by

T + d.

Proof: Let f denote the objective function of problem (8.9). Differentiating f with

respect to ti, i ≤ N − 1, we get ∂f
∂ti

= 2
(
t̄i + d̄− ti

)
− 2

(
t̄i+1 + d̄− ti

)
, which is

negative since t̄i+1 > t̄i. We also have ∂f
∂tN

= 2
(
t̄N + d̄− tN

)
− 2 (T − tN), which is

non-positive since t̄N + d̄ ≤ T . Thus, f is decreasing in {ti}N−1
i=1 and non-increasing

in tN . Therefore, the optimal {t∗i } satisfies the data causality constraints in (8.4)

with equality for all updates so as to be the largest possible and achieve the smallest
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AT . Setting ti = t̄i − d, ∀i in problem (8.9) we get

f =
N∑
i=1

(
t̄i + d̄+ d− t̄i−1

)2 −N
(
d̄+ d

)2
+ (T + d− t̄N)2 (8.44)

with the constraints now being

t̄i ≥ si + d, t̄i ≥ s̄i, ∀i (8.45)

t̄i + d̄+ d ≤ t̄i+1, 1 ≤ i ≤ N − 1 (8.46)

t̄N + d̄ ≤ T (8.47)

We now see that minimizing f subject to the above constraints is exactly the same

as solving problem (8.12) after applying the change of parameters mentioned in the

theorem. �

Theorem 8.3 shows that the source should send its updates just in time as

the relay is ready to forward, and no update should wait for service in the relay’s

data buffer. Thus, the source and the relay act as one combined node that can send

updates whenever it receives combined energy packets at times {max{s̄i, si + d}}.

This fundamental observation can be generalized to multi-hop networks as well.

Given M > 1 relays, each node should send updates just in time as the following

node is ready to forward, until reaching destination.
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8.5 Numerical Results

We now present some numerical examples to further illustrate our results. A two-

hop network has energy arriving at times s = [2, 6, 7, 11, 13] at the source, and

s̄ = [1, 4, 9, 10, 15] at the relay. A source transmission takes d = 1 time unit to

reach the relay; a relay transmission takes d̄ = 2 time units to reach the destination.

Session time is T = 19. We apply the change of parameters in Theorem 8.3 to

get new energy arrival times s = [3, 7, 9, 12, 15], new transmission delay d = 3, and

new session time T = 20. Then, we solve problem (8.13) to get the optimal inter-

update times, using the new parameters. Note that T ≥ (N + 1)d = 18, whence the

optimal solution is given by Theorem 8.2. We apply the Inter-Update Balancing

algorithm to get xe = [6.5, 6.5, 5.67, 5.67, 5.67, 5]. Hence, the first infeasible inter-

update time occurs at n0 = 3 (xe3 < 2d = 6). Thus, we set: x∗1 = xe1 and x∗2 = xe2;

x∗3 = x∗4 = x∗5 = 2d; and x∗6 = T +Nd−∑5
i=1 x

∗
i . We see that x∗ = [6.5, 6.5, 6, 6, 6, 4]

satisfies the conditions stated in Lemmas 8.1, 8.2, and 8.3.

We consider another example where energy arrives at times s = [0, 4, 4, 9, 13]

and s̄ = [1, 3, 6, 10, 12], with T = 16. Applying the change of parameters in The-

orem 8.3 we get T = 17 < (N + 1)d = 18, and hence we use the results of Theo-

rem 8.1 to get x∗ = [5, 6, 6, 6, 6, 3]. We then increase T to 18. This is effectively

19 according to Theorem 8.3, and therefore we apply Theorem 8.2 results. The

Inter-Update Balancing algorithm gives xe = [5.8, 5.8, 5.8, 5.8, 5.8, 5], and hence

n0 = 2. Since xe1 > s1 + d = 4, then the optimal solution is given by (8.21)-(8.23)

as x∗ = [5, 6, 6, 6, 6, 5].
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8.6 Conclusion

In this chapter, we proposed age-minimal policies in energy harvesting two-hop

networks with fixed transmission delays. The optimal policy is such that the relay’s

data buffer should not contain any packets waiting for service; the source should

send an update to the relay just in time as the relay is ready to forward. This let

us treat the source and relay nodes as one combined node communicating with the

destination node, and reduce the two-hop problem to a single hop one. We solved

the single hop problem by balancing inter-update times to the extent allowed by

energy arrival times and transmission delays.
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CHAPTER 9

Conclusions

In this dissertation, we characterized optimal energy management policies in energy

harvesting communication networks while taking into account various system costs.

In Chapter 2, we considered receiver decoding costs, where energy harvesting

receivers spend an amount of energy to decode their intended messages. We modeled

the decoding energy as a convex increasing function of the incoming data rate. This

introduced a further coupling between transmitters and receivers of the network.

We characterized throughput-optimal policies in single-user and multi-user settings

by treating decoding costs as generalized data arrivals and moving all constraints

to the transmitter side.

In Chapter 3, we studied the impact of decoding costs on energy harvesting

cooperative multiple access channels, where users cooperate in the physical layer

to achieve higher rates. We showed that, depending on the relative values of the

decoding costs, data cooperation between the users might achieve lower rates than

directly sending to the receiver. In the case when cooperation is beneficial, we

determined the optimal distribution of harvested energy to decoding and cooperative
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forwarding.

In Chapter 4, we investigated the addition of processing costs on top of de-

coding costs in two-way energy harvesting channels, where users incur a processing

energy cost whenever they are operating. Due to processing costs, transmission can

be bursty; the users communicate only during a portion of the time. We designed

throughput-optimal schemes under both decoding and processing costs in a single

setting.

In Chapter 5, we focused on online settings. We characterized online power

control policies that maximize the long term average utility of single-user energy

harvesting channels with finite batteries, for some concave increasing utility function.

We showed that fixed fraction policies perform within constant multiplicative and

additive gaps from the optimal solution for all energy arrivals and battery sizes.

We also considered a specific scenario of distortion minimization with and without

sampling costs.

In Chapter 6, we considered another aspect of system costs in energy harvest-

ing single-user channels, that is, the cost of movement in search of better energy

harvesting locations. We characterized the optimal throughput-movement tradeoff,

in offline and online settings, for a transmitter moving along a straight line and

communicating with a receiver.

We then considered different performance metrics, other than the throughput

metric considered in previous chapters. In particular, in Chapter 7, we studied the

issue of transmission delay. We defined the delay as the time elapsed from arrival

to departure of data units, and characterized delay minimal transmission policies in
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single-user and broadcast energy harvesting channels. Different from conventional

throughput-optimal policies, delay minimal policies give higher priorities to earlier

arriving data units compared to later arriving ones, and may have communication

gaps in between energy or data arrivals.

Finally, in Chapter 8, we considered the metric of age of information in energy

harvesting two-hop networks, where a transmitter is sending status updates of a

physical phenomenon to a receiver through the help of a relay. With the age of

information defined as the time elapsed since the freshest update has reached the

destination, we showed that age minimal policies are such that the transmitter

should send updates to the relay just in time as the relay is ready to forward them

to the destination.

The contents of Chapter 2 are published in [79,88], Chapter 3 in [89], Chapter 4

in [81,82,90], Chapter 5 in [91,92], Chapter 6 in [93], Chapter 7 in [94], and Chapter 8

in [95].
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