Correlation and Cooperation in Wireless Communications

Sennur Ulukus
Department of ECE
University of Maryland
ulukus@umd.edu

Joint work with Wei Kang and Nan Liu.
Correlated data arises in wireless communications for many reasons.

- **Measured data** may be correlated as in sensor networks,
- Correlated data may be created by communication between users as in user cooperation,
- Correlated data may result from relaying and multi-hopping in large networks.
Outline of the Talk

• Two-user multiple access channel with arbitrarily correlated data
 – The capacity region is still an open problem
 – Currently there are
 * single-letter sub-optimal achievable schemes [Cover, El Gamal, Salehi], [Dueck]
 * n-letter incomputable tight outer bounds [Cover, El Gamal, Salehi]
 – We develop a computable single-letter outer bound using our new data processing inequality

• N-user multiple access channel with correlated data (a.k.a. dense sensor network)
 – Correlated Gaussian random process, Gaussian channel with cooperation, $N \to \infty$
 – The general problem is still open
 – We develop lower and upper bounds for a certain class of Gaussian random processes
 – We identify cases where our lower and upper bounds meet and yield order-optimal schemes
Two-user Multiple Access Channel

- A joint source-channel coding problem
 - Sources: \((U^n, V^n)\), i.i.d., \(p(u, v)\).
 - Channel: discrete memoryless, \(p(y|x_1, x_2)\).
 - Encoding/decoding: \(X_1^n = f_1(U^n), X_2^n = f_2(V^n), (\hat{U}^n, \hat{V}^n) = d(Y^n)\).
 - Necessary and sufficient conditions for reliable transmission?
Existing Single-letter Results

• Independent sources: $p(u, v) = p(u)p(v)$
 $$H(U) < I(X_1; Y|X_2)$$
 $$H(V) < I(X_2; Y|X_1)$$
 $$H(U) + H(V) < I(X_1, X_2; Y)$$

 for some $p(x_1, x_2) = p(x_1)p(x_2)$.

• Correlated sources: arbitrary $p(u, v)$
 – Cover, El Gamal and Salehi, 1980: A single-letter achievability result,
 $$H(U|V) < I(X_1; Y|X_2, V)$$
 $$H(V|U) < I(X_2; Y|X_1, U)$$
 $$H(U, V) < I(X_1, X_2; Y)$$

 for some $X_1 \rightarrow U \rightarrow V \rightarrow X_2$.
 – Not optimal, counter example by Dueck, 1981.
Arbitrarily Correlated Sources: Capacity Result in n-letters

- Correlated sources: arbitrary $p(u, v)$
 - Cover, El Gamal and Salehi, 1980:
 \[
 H(U|V) < \frac{1}{n} I(X_1^n; Y^n|X_2^n, V^n) \\
 H(V|U) < \frac{1}{n} I(X_2^n; Y^n|X_1^n, U^n) \\
 H(U, V) < \frac{1}{n} I(X_1^n, X_2^n; Y^n)
 \]
 where $X_1^n \rightarrow U^n \rightarrow V^n \rightarrow X_2^n$.
 - necessary and sufficient condition;
 - n-letter form, incomputable for sufficiently large n;
 - case-by-case.
Our contribution: a computable single-letter outer bound

In this talk, we will focus on the sum-rate point

Steps to our upper bound:

- n-letter converse for sum rate: incomputable

$$H(U, V) \leq \frac{1}{n} I(X_1^n, X_2^n; Y^n) \text{ where } X_1^n \to U^n \to V^n \to X_2^n$$

- A usual way to upper bound the above n-letter mutual information

$$\frac{1}{n} I(X_1^n, X_2^n; Y^n) \leq \frac{1}{n} \sum_{i=1}^{n} I(X_1i, X_2i; Y_i) \leq \max_{p(x_1, x_2)} I(X_1, X_2; Y)$$

- $B \triangleq \{p(x_1, x_2) : X_1 \to U^n \to V^n \to X_2\}$. If $B' \supseteq B$, then

$$\max_B I(X_1, X_2; Y) \leq \max_{B'} I(X_1, X_2; Y)$$

- Find a larger set B', i.e., find a necessary condition for $X_1 \to U^n \to V^n \to X_2$.
Necessary Condition for the Markov Chain

• Need a single-letter necessary condition on \(p(x_1, x_2) \) for \(X_1 \to U^n \to V^n \to X_2 \).

• Intuitively, using the data processing inequality: if \(X_1 \to U^n \to V^n \to X_2 \)

\[
I(X_1; X_2) \leq I(U^n; V^n) = nI(U; V)
\]

and therefore

\[
B' = \{p(x_1, x_2) : I(X_1; X_2) \leq nI(U; V)\}
\]

is a larger set.

• This becomes trivial when \(n \) is large, as all \(p(x_1, x_2) \in B' \).

• Data processing inequality limits correlation, and limits feasible set of probability distributions.

• Usual data processing inequality seems useless when \(n \to \infty \).

• We need a data processing inequality that will be useful when \(n \to \infty \).

• We need a new data processing inequality on new measures of correlation.
New Measures of Correlation

- For any joint distribution matrix P_{XY} with diagonal marginal distributions P_X and P_Y, there is a one-to-one transformation
 \[
 \tilde{P}_{XY} = P_X^{-\frac{1}{2}} P_{XY} P_Y^{-\frac{1}{2}}
 \]

- Spectral properties of \tilde{P}_{XY}
 \[
 \tilde{P}_{XY} = W \Lambda Z^T = p_X^{\frac{1}{2}} (p_Y^{\frac{1}{2}})^T + \sum_{i=2}^{l} \lambda_i w_i z_i^T
 \]
 where $w_1 = p_X^{\frac{1}{2}} = P_X^{\frac{1}{2}} e$, $z_1 = p_Y^{\frac{1}{2}} = P_X^{\frac{1}{2}} e$, and $\lambda_1 = 1 \geq \lambda_2 \geq \cdots \geq \lambda_l \geq 0$.

- $\lambda_2, \ldots, \lambda_l$ are measures of correlation.
 - $(\lambda_2, \ldots, \lambda_l) = \begin{cases}
 (1, \ldots, 1) & X = Y \\
 \cdots & \text{correlated} \\
 (0, \ldots, 0) & X \perp Y
 \end{cases}$
 - Witsenhausen showed that common data $\Leftrightarrow \lambda_2 = 1$.
A New Data Processing Inequality

- If $X \rightarrow Y \rightarrow Z$

$$\tilde{P}_{XZ} = \tilde{P}_{XY} \tilde{P}_{YZ}$$

and

$$\tilde{P}_{XZ} - p_X^{\frac{1}{2}}(p_Z^{\frac{1}{2}})^T = (\tilde{P}_{XY} - p_X^{\frac{1}{2}}(p_Y^{\frac{1}{2}})^T)(\tilde{P}_{YZ} - p_Y^{\frac{1}{2}}(p_Z^{\frac{1}{2}})^T)$$

- For matrices A and B, $\lambda_i(AB) \leq \lambda_i(A)\lambda_1(B)$.

- **New Data Processing Inequality**: If $X \rightarrow Y \rightarrow Z$, then

$$\lambda_i(\tilde{P}_{XZ}) \leq \lambda_i(\tilde{P}_{XY})\lambda_2(\tilde{P}_{YZ}) \leq \lambda_i(\tilde{P}_{XY}), \quad i = 2, \ldots, \text{rank}(\tilde{P}_{XZ})$$

- Processing from Y to Z scales correlation measures $\lambda_i(\tilde{P}_{XY})$ down by a factor less than $\lambda_2(\tilde{P}_{YZ})$.

- **Our data processing inequality versus usual data processing inequality**: if $X \rightarrow Y \rightarrow Z$

$$\lambda_i(\tilde{P}_{XZ}) \leq \lambda_i(\tilde{P}_{XY}) \quad \text{versus} \quad I(X;Z) \leq I(X;Y)$$
I.i.d. Sequences

- If \((U^n, V^n)\), i.i.d., then
 \[P_{U^nV^n} = P_{UV} \otimes P_{UV} \otimes \cdots \otimes P_{UV} = P_{UV}^\otimes_n \]
 and correspondingly,
 \[\tilde{P}_{U^nV^n} = \tilde{P}_{UV}^\otimes_n \]

- Applying SVD to \(\tilde{P}_{U^nV^n}\),
 \[\tilde{P}_{U^nV^n} = W_n \Lambda_n Z_n^T \]
 Then, \(W_n = W^\otimes_n\), \(\Lambda_n = \Lambda^\otimes_n\) and \(Z_n = Z^\otimes_n\).

- The ordered singular values of \(\tilde{P}_{U^nV^n}\) are
 \[1 \geq \lambda_2(\tilde{P}_{U^nV^n}) = \cdots = \lambda_{n+1}(\tilde{P}_{U^nV^n}) \geq \lambda_{n+2}(\tilde{P}_{U^nV^n}) \geq \cdots \]
 \[\geq \lambda_2(\tilde{P}_{UV}) \]
A Necessary Condition

• If \(X_1 \rightarrow U^n \rightarrow V^n \rightarrow X_2 \), then (our new data processing inequality)

\[
\lambda_i(\tilde{P}_{X_1X_2}) \leq \lambda_2(\tilde{P}_{X_1U^n})\lambda_i(\tilde{P}_{U^nV^n})\lambda_2(\tilde{P}_{V^nX_2}), \quad i = 2, \ldots, \min(|X_1|, |X_2|)
\]

• From our previous discussion, we have

 – \(\lambda_i(\tilde{P}_{U^nV^n}) \leq \lambda_2(\tilde{P}_{UV}) \), for any \(i \geq 2 \). (i.i.d. sequence)

 – \(\lambda_2(\tilde{P}_{X_1U^n}) \leq 1 \). (property of \(\tilde{P} \))

• Therefore, if \(X_1 \rightarrow U^n \rightarrow V^n \rightarrow X_2 \), then

\[
\lambda_i(\tilde{P}_{X_1X_2}) \leq \lambda_2(\tilde{P}_{UV}), \quad i = 2, \ldots, \min(|X_1|, |X_2|)
\]

• Compare this with the usual data processing inequality: \(I(X_1; X_2) \leq nI(U; V) \).

• Now we have, \(B = \{ p(x_1, x_2) : X_1 \rightarrow U^n \rightarrow V^n \rightarrow X_2 \} \)

\[
B' = \{ p(x_1, x_2) : \lambda_i(\tilde{P}_{X_1X_2}) \leq \lambda_2(\tilde{P}_{UV}), \quad i = 2, \ldots, \min(|X_1|, |X_2|) \}
\]

and

\[
\max_B I(X_1, X_2; Y) \leq \max_{B'} I(X_1, X_2; Y)
\]
Our Main Result

- If a pair of i.i.d. sources \((U, V)\) with joint distribution \(p(u, v)\) can be transmitted reliably through a discrete, memoryless, multiple access channel characterized by \(p(y|x_1, x_2)\), then

\[
H(U, V) < I(X_1, X_2; Y)
\]

for some \((X_1, X_2)\) satisfying

\[
\lambda_i(\tilde{P}_{X_1 X_2}) \leq \lambda_2(\tilde{P}_{UV}), \quad i = 2, \ldots, \min(|X_1|, |X_2|).
\]
Some Examples: The Channel

- Channel inputs X_1 and X_2 and output Y are all binary, and $p(y|x_1, x_2)$ is

 \[
 \begin{array}{c|cccc}
 Y \backslash X_1X_2 & 11 & 10 & 01 & 00 \\

 1 & 1 & 1/2 & 1/2 & 0 \\
 0 & 0 & 1/2 & 1/2 & 1 \\
 \end{array}
 \]

- Trivial upper bound

 \[
 C_0 \triangleq \max_{p(x_1, x_2)} I(X_1, X_2; Y) = 1
 \]

- Our upper bound

 \[
 C_1 \triangleq \max_{p(x_1, x_2)} \lambda_2(\tilde{P}_{X_1X_2}) \leq \lambda_2(\tilde{P}_{UV}) I(X_1, X_2; Y)
 \]

- The sub-optimal single-letter achievability result by Cover, El Gamal and Salehi

 \[
 C_2 \triangleq \max_{p(x_1, x_2)} I(X_1, X_2; Y)
 \]

- We have: $C_0 \geq C_1 \geq C_2$
Example 1

- Joint source distribution $p(u,v)$ is

<table>
<thead>
<tr>
<th>$U \setminus V$</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/3</td>
<td>1/6</td>
</tr>
<tr>
<td>0</td>
<td>1/6</td>
<td>1/3</td>
</tr>
</tbody>
</table>

- Trivial upper bound shows that reliable transmission is impossible.
Example 2

- Joint source distribution $p(u, v)$ is

<table>
<thead>
<tr>
<th>$U \setminus V$</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- Our bound shows that reliable transmission is impossible.

- The trivial upper bound fails to show whether reliable transmission is possible or not.

- C_2 = 0.51
- C_1 = 0.56
- $H(U, V)$ = 0.92
- C_0 = 1
Example 3

- Joint source distribution $p(u,v)$ is

<table>
<thead>
<tr>
<th>$U \setminus V$</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0.85</td>
</tr>
<tr>
<td>0</td>
<td>0.1</td>
<td>0.05</td>
</tr>
</tbody>
</table>

- Both our upper bound and the achievability expression of Cover, El Gamal and Salehi fail to show whether reliable transmission is possible or not.
Conclusions for the First Part

- The capacity region of the MAC with correlated sources remains an open problem.
- The current converse is in n-letter form; and is incomputable.
- We proposed a new data processing inequality.
- By using this inequality, we obtained a new outer bound for the capacity region.
- Our outer bound is loose but is in single-letter and computable.
• Underlying one-dimensional spatial Gaussian random process $S(u), 0 \leq u \leq U_0$
• N sensors equally placed on $[0, U_0]$, sampling $S(u)$ without noise
• Collector node wishes to reconstruct the entire random process with minimum MSE

$$d(s(u), \hat{s}(u)) = \frac{1}{U_0} \int_0^{U_0} (s(u) - \hat{s}(u))^2 du$$
Channel Model

- All nodes are equipped with one transmit and one receive antenna
- All nodes hear a linear combination of the signals transmitted by all other nodes

\[Y_i = \sum_{j=0, j\neq i}^{N} h_{ji}X_j + Z_i, \quad i = 0, 1, 2, \cdots, N \]

where

- \(\{Z_i\}_{i=0}^{N} \) is a vector of \(N + 1 \) random variables, i.i.d. \(\mathcal{N}(0, 1) \)
- Channel gains \(h_{ij} \) are bounded, i.e.

\[\bar{h}_l \leq h_{ij} \leq \bar{h}_u, \quad i, j = 0, 1, \cdots, N \]

- All sensors share a sum power constraint \(P(N) \), e.g., \(P(N) = NP_{\text{ind}} \) and \(P(N) = P_{\text{tot}} \)
- Multiple access channel with potential cooperation and (imperfect) feedback
The Nature of the Problem

• Finding minimum distortion is difficult: joint source-channel coding problem with distortion
 – Source coding: indirect observation, distributed correlated data
 – Channel coding: MAC with potential cooperation and (imperfect) feedback

• **Goal:** Understanding the order optimal performance of such network
 – Minimum achievable expected distortion as a function of $P(N)$?
 – Rate at which distortion goes to zero with N?
 – Order-optimal achievability scheme?

• **Approach:**
 – **Lower bound** on distortion
 * Perfect cooperation: sensors know $S(u)$; point-to-point joint source-channel coding
 – **Upper bound** on distortion
 * Separation-based scheme:
 · Achievable rate of cooperative MAC [Gastpar & Vetterli, 05]
 · Achievable distributed rate-distortion point [Flynn & Gray, 87]
Lower Bound: Perfect Cooperation

- All sensors know the entire random process perfectly
- Rate-distortion for a Gaussian random process (inverse waterfilling over the Karhunen-Loeve eigenvalues of the random process) & capacity of $N \times 1$ point-to-point MISO channel

![Diagram showing the concept of perfect cooperation in MISO systems]
Upper Bound based on an Achievable Scheme

- **Separation-based** achievability scheme
- Source coding [Flynn & Gray, 87]:
 - Each sensor performs single-user rate-distortion coding
 - Slepian-Wolf distributed lossless encoding on the index of the rate-distortion code
- Channel coding—amplify and forward [Gastpar & Vetterli, 05]:
 - All sensors take turns broadcasting their own data, using single-user channel coding
 - All sensors amplify and forward to the collector node
The Class \mathcal{A} of Gaussian Random Processes

- Gaussian random process with autocorrelation $K(u, s)$
 - Mercer’s theorem:

 $K(u, s) = \sum_{k=0}^{\infty} \lambda_k \phi_k(u) \phi_k(s)$

 - λ_k are the eigenvalues, $\phi_k(t)$ are the orthonormal eigenfunctions

- Eigenvalues:

 $\lambda_k \sim \frac{1}{k^x}, \quad x > 1$

- Autocorrelation function and the eigenfunctions satisfy some Lipschitz-like conditions

 $|K(u_1, s_1) - K(u_2, s_2)| \leq B \left(\sqrt{(u_1 - u_2)^2 + (s_1 - s_2)^2} \right)^\alpha$ \quad $\forall u_1, s_1, u_2, s_2 \in [0, U_0]$

 $|\phi_k(s_1) - \phi_k(s_2)| \leq B_3(k + B_4)^\tau|s_1 - s_2|^{\gamma}$ \quad $\forall u \in [0, U_0]$

 $|K(u, s_1)\phi_k(s_1) - K(u, s_2)\phi_k(s_2)| \leq B_2(k + B_1)^\tau|s_1 - s_2|^{\beta}$ \quad $\forall s_1, s_2 \in [0, U_0]$

- Parameters $x > 1$, $1/2 < \alpha \leq 1$, $0 \leq \beta, \gamma \leq 1$, $\tau \geq 0$

- E.g., Gauss-Markov process: $K(u, s) = \frac{\sigma^2}{2\eta} e^{\eta|u-s|}$ satisfies above with $x = 2, \alpha = \beta = \tau = \gamma = 1$.

24
Results for Gaussian Processes in \mathcal{A}

- **Lower bound:**
 - Rate-distortion for a Gaussian random process with $\lambda_k \sim k^{-x}$
 \[
 D_l(R) = \Theta \left(\frac{1}{R^{x-1}} \right), \quad R > 0
 \]
 - Capacity of $N \times 1$ point-to-point MISO channel [Telatar, 99]
 \[
 C_l(P(N)) = \Theta (\log(NP(N))), \quad P(N) > N^{-1}
 \]
 - Lower bound on minimum achievable distortion: $D_l(C_l)$

- **Upper bound:**
 - Distributed achievable rate-distortion
 \[
 D_u(R) = \Theta \left(\frac{1}{R^{x-1}} \right), \quad 0 < R < N^{\min\left(\frac{\gamma}{2\pi}, \frac{2\alpha-1}{2(x-1)}, \frac{\beta}{x+\tau+1}\right)}
 \]
 - Achievable sum rate using amplify and forward
 \[
 C_u(P(N)) = \Theta (\log(NP(N))), \quad P(N) > N^{-\frac{1}{2}}
 \]
 - Upper bound on minimum achievable distortion: $D_u(C_u)$
Comparison of the Lower and Upper Bounds for Gaussian Processes in \mathcal{A}

- **Large** sum power

 \[P(N) \text{ is larger than } e^{N \min\left(\frac{\gamma}{2}, \frac{2\alpha-1}{2(x-1)}, \frac{\beta}{x+\epsilon+1} \right)} \]

 - Lower bound: $\Theta\left(\frac{1}{(\log(NP(N)))^{x-1}} \right)$

 - Upper bound: we do not have an explicit upper bound

 - Whether we can develop an upper bound that meets the lower bound remains open

 - However, this region of sum power constraints is not of practical interest
Comparison of the Lower and Upper Bounds for Gaussian Processes in \mathcal{A}

- **Medium** sum power

 - $P(N)$ is in the wide range of $N^{-\frac{1}{2}}$ to $e^{\min\left(\frac{\gamma}{2\tau}, \frac{2\alpha-1}{2(x-1)}, \frac{\beta}{x+\tau+1}\right)}$

 - Our lower and upper bounds meet

 - Minimum achievable expected distortion is
 \[
 \Theta\left(\frac{1}{(\log(NP(N)))^{x-1}}\right)
 \]

- **Order-optimal achievability scheme**: separation-based scheme

 - Distributed rate-distortion code [Flynn & Gray, 87]

 - Single-user channel code with amplify and forward cooperation [Gastpar & Vetterli, 05]

- The practically interesting cases: $P(N) = P_{\text{tot}}$ and $P(N) = NP_{\text{ind}}$

 - For both cases, the distortion decreases to zero at the rate of
 \[
 \frac{1}{(\log N)^{x-1}}
 \]

 - Therefore, we would prefer $P(N) = P_{\text{tot}}$ over $P(N) = NP_{\text{ind}}$

 - In fact, we would prefer $P(N) = N^{-1/3}$!
Comparison of the Lower and Upper Bounds for Gaussian Processes in \mathcal{A}

- **Small** sum power
 - $P(N)$ ranges from N^{-1} to $N^{-\frac{1}{2}}$
 - Our lower and upper bounds do not meet
 * Lower bound decreases to zero as $\Theta\left(\frac{1}{(\log N)^{x-1}}\right)$
 * Upper bound is a non-zero constant
 - Main discrepancy: sum rate of a cooperative MAC with feedback
 \[
 C_l(P(N)) = \Theta\left(\log(NP(N))\right), \quad P(N) > N^{-1}
 \]
 \[
 C_u(P(N)) = \Theta\left(\log(NP(N))\right), \quad P(N) > N^{-\frac{1}{2}}
 \]
 - This region is of practical interest
 * Sum power constraint is low
 * Potentially good performance based on lower bound on the distortion
 - More effort is required to find an order-optimal achievability scheme
Comparison of the Lower and Upper Bounds for Gaussian Processes in \mathcal{A}

- **Very small** sum power
 - $P(N)$ is less than N^{-1}
 - Our lower and upper bounds meet
 - Minimum achievable expected distortion: $\Theta(1)$
 - Power consumption is good, but not of practical interest, unacceptable distortion
Conclusions for the Second Part

- We investigated the achievable distortion in dense Gaussian sensor networks.

- We provided lower and upper bounds on the minimum achievable expected distortion.

- For a class of random process, we showed that the lower and upper bounds meet order-wise.

- For these Gaussian random process, the order-optimal scheme is separation-based:
 - Distributed rate-distortion coding [Flynn & Gray, 87]
 - Amplify and forward [Gastpar & Vetterli, 05] method for cooperative multiple access

- Interplay between:
 - \textbf{external} correlation in the observed data, and
 - \textbf{internal} correlation created through cooperation

- Internal correlation created through cooperation converts the MAC into a MISO channel.