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Security in Wireless Systems

• Inherent openness in wireless communications channel: eavesdropping and jamming attacks
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Countering Security Threats in Wireless Systems

• Cryptography

– at higher layers of the protocol stack

– based on the assumption of limited computational power at Eve

– vulnerable to large-scale implementation of quantum computers

• Techniques like frequency hopping, CDMA

– at the physical layer

– based on the assumption of limited knowledge at Eve

– vulnerable to rogue or captured node events

• Physical layer security

– at the physical layer

– no assumption on Eve’s computational power

– no assumption on Eve’s available information

– unbreakable, provable, and quantifiable (in bits/sec/hertz)

– implementable by signal processing, communications, and coding techniques
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Beginnings of Security Research: Shannon 1949

• Noiseless bit pipes to Bob and Eve.
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• Eve gets whatever Bob gets.

• Secure communications is not possible.
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Shannon’s 1949 Security Paper

• Noiseless bit pipes to Bob and Eve.
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• One-time pad: X =W ⊕K

• If K is uniform, then X is independent of W . If we know K, then W = X ⊕K.

• For perfect secrecy, length of K (key rate) must be as large as length of W (message rate).
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Beginnings of Cryptography

• Private key cryptography

– Based on one-time pad

– There are separate secure communication links for key exchange

– Encryption and decryption are done using these keys

• Public key cryptography

– Encryption is based on publicly known key (or method)

– Decryption can be performed only by the desired destination

– Security based on computational advantage

– Security against computationally limited adversaries

– Certain operations are easy in one direction, difficult in the other direction

∗ Multiplication is easy, factoring is difficult (RSA)
∗ Exponentiation is easy, discrete logarithm is difficult (Diffie-Hellman)
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Cryptography versus Physical Layer Security
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Wyner’s Wiretap Channel

• Wyner introduced the wiretap channel in 1975.

• Major departure from Shannon’s model: noisy channels.

• Eve’s channel is degraded with respect to Bob’s channel: X → Y → Z
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• Secrecy is measured by equivocation, Re, at Eve, i.e., the confusion at Eve:

Re = lim
n→∞

1
n

H(W |Zn)
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Notions of Perfect Secrecy

• Perfect secrecy is achieved if Re = R

• This is perfect weak secrecy:

lim
n→∞

1
n

I(W ;Zn) = 0

• Also, there is perfect strong secrecy:

lim
n→∞

I(W ;Zn) = 0

• All capacity results obtained for weak secrecy have been extended for strong secrecy.

• However, there is still no proof of equivalence or strict containment.
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Capacity-Equivocation Region

• Wyner characterized the optimal (R,Re) region:

R ≤ I(X ;Y )

Re ≤ I(X ;Y )− I(X ;Z)

• Main idea is to split the message W into two coordinates, secret and public: (Ws,Wp).

• Ws needs to be transmitted in perfect secrecy.

• Wp has two roles:

– Carries some information on which there is no secrecy constraint

– Provides protection for Ws by creating confusion for the eavesdropper
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A Typical Capacity-Equivocation Region

• Wyner characterized the optimal (R,Re) region:

R ≤ I(X ;Y )

Re ≤ I(X ;Y )− I(X ;Z)

• A typical (R,Re) region:

Cs C R

Re

• There might be a tradeoff between rate and its equivocation:

– Capacity and secrecy capacity might not be simultaneously achievable
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A Typical Capacity-Equivocation Region

• Wyner characterized the optimal (R,Re) region:

R ≤ I(X ;Y )

Re ≤ I(X ;Y )− I(X ;Z)

• A typical (R,Re) region:

Re
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b
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• There might be a tradeoff between rate and its equivocation:

– Capacity and secrecy capacity might not be simultaneously achievable
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Secrecy Capacity

• Perfect secrecy when R = Re.

• The maximum perfect secrecy rate is the secrecy capacity:

Cs = max
X→Y→Z

I(X ;Y )− I(X ;Z)

• Main idea is to replace Wp with dummy indices, W̃s, which carry no information.

• In particular, each Ws is mapped to many codewords:

– Stochastic encoding (a.k.a. random binning)

• To send message Ws securely, we send Xn(Ws,W̃s) where W̃s is random.

• This one-to-many mapping aims to confuse the eavesdropper
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Main Tool: Stochastic Encoding

• Each message Ws is associated with many codewords: Xn(Ws,W̃s).
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Stochastic Encoding: 64-QAM Example

Bob’s Noise Eve’s Noise

Bob’s Constellation Eve’s Constellation

2log 64 6 b/s
B

C 2log 16 4 b/s
E

C

2 b/s
s B E

C C C
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Stochastic Encoding: 64-QAM Example

Divide Bob’s constellation into 4 subsets.
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Message 3

Message 4
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Stochastic Encoding: 64-QAM Example

All red stars denote the same message. Pick one randomly.
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Stochastic Encoding: 64-QAM Example

Bob can decode the message reliably.
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Stochastic Encoding: 64-QAM Example

For Eve, all 4 messages look equally likely.
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General Wiretap Channel

• Csiszar and Korner considered the general wiretap channel in 1978.

• Eve’s signal is not necessarily a degraded version of Bob’s signal.
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General Capacity-Equivocation Region

• General (R,Re) region:

R ≤ I(V ;Y )

Re ≤ I(V ;Y |U)− I(V ;Z|U)

for some (U,V ) such that U →V → X → Y,Z.

• Two new ingredients in the achievable scheme

– V : channel prefixing

– U : rate splitting
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General Capacity-Equivocation Region

• Contrast with the degraded case

R ≤ I(V ;Y ) R≤ I(X ;Y )

Re ≤ I(V ;Y |U)− I(V ;Z|U) Re≤ I(X ;Y )− I(X ;Z)

for some (U,V ) such that U →V → X → Y,Z.

• Two new ingredients in the achievable scheme

– V : channel prefixing

– U : rate splitting

22



General Secrecy Capacity

• Contrast with the degraded case

R ≤ I(V ;Y ) R≤ I(X ;Y )

Re ≤ I(V ;Y |U)− I(V ;Z|U) Re≤ I(X ;Y )− I(X ;Z)

for some (U,V ) such that U →V → X → Y,Z.

• Two new ingredients in the achievable scheme

– V : channel prefixing

– U : rate splitting

• General secrecy capacity expression:

Cs = max
V→X→Y Z

I(V ;Y )− I(V ;Z)

i.e., rate splitting is not needed.
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Main Tool: Channel Prefixing

• A virtual channel from V to X .

• Additional stochastic mapping from the message to the channel input: W →V → X .

• Real channel: X → Y and X → Z. Constructed channel: V → Y and V → Z.
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• With channel prefixing: V → X → Y,Z.

• From DPI, both mutual informations decrease, but the difference may increase.

• The secrecy capacity:

Cs = max
V→X→Y Z

I(V ;Y )− I(V ;Z)
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Gaussian Wiretap Channel

• Leung-Yang-Cheong and Hellman considered the Gaussian wire-tap channel in 1978.

Y = X +N1 and Z = X +N2
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• Degraded: No channel prefixing is necessary and Gaussian signalling is optimal.

• The secrecy capacity:

Cs = max
X→Y→Z

I(X ;Y )− I(X ;Z) = [CB −CE ]
+

i.e., the difference of two capacities.
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Caveat: Need Channel Advantage

The secrecy capacity: Cs = [CB −CE ]
+

Bob’s channel is better Eve’s channel is better
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positive secrecy no secrecy

Cs =CB −CE Cs = 0
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Two Recurring Themes

• Creating advantage for the legitimate users:

– computational advantage (cryptography)

– knowledge advantage (spread spectrum)

– channel advantage (physical layer security)

• Exhausting capabilities of the illegitimate entities:

– exhausting computational power (cryptography)

– exhausting searching power (spread spectrum)

– exhausting decoding capability (physical layer security)
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Outlook at the End of 1970s and Transition into 2000s

• Information theoretic secrecy is extremely powerful:

– no limitation on Eve’s computational power

– no limitation on Eve’s available information

– yet, we are able to provide secrecy to the legitimate user

– unbreakable, provable, and quantifiable (in bits/sec/hertz) secrecy

• We seem to be at the mercy of the nature:

– if Bob’s channel is stronger, positive perfect secrecy rate

– if Eve’s channel is stronger, no secrecy

• We need channel advantage. Can we create channel advantage?

• Wireless channel provides many options:

– time, frequency, multi-user diversity via fading

– cooperation via overheard signals

– multi-dimensional signalling via multiple antennas

– signal alignment

28



Fading Wiretap Channel

• In the Gaussian wiretap channel, secrecy is not possible if

CB ≤CE

• Fading provides time-diversity: Can it be used to obtain/improve secrecy?
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MIMO Wiretap Channel

• In SISO Gaussian wiretap channel, secrecy is not possible if

CB ≤CE

• Multiple antennas improve reliability and rates. How about secrecy?
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Broadcast (Downlink) Channel

• In cellular communications: base station to end-users channel can be eavesdropped.

• This channel can be modelled as a broadcast channel with an external eavesdropper.
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Internal Security within a System

• Legitimate users may have different security clearances.

• Some legitimate users may have paid for some content, some may not have.

• Broadcast channel with two confidential messages.
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Multiple Access (Uplink) Channel

• Alice and Charles want to have secure communication with Bob in the presence of Eve.

• Simultaneous multi-message secrecy. Opportunities for deaf cooperation.
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Interference Channel with Confidential Messages

• Interference results in performance degradation, requires sophisticated transceiver design.

• From a secrecy point of view, interference (overheard signal) results in loss of confidentiality.
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Cooperative Channels

• Overheard information at communicating parties:

– Forms the basis for cooperation; results in loss of confidentiality

• How do cooperation and secrecy interact?

• Can Charles help without learning the messages going to Bob?
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Fading Broadcast Channel with Confidential Messages

• Both users want secrecy against each other.

• In a non-fading setting, only one user can have a positive secure rate.

• With full CSIT and CSIR: Gaussian signalling with power control is optimal.

• Ekrem et. al., Ergodic Secrecy Capacity Region of the Fading Broadcast Channel, ICC 2009.
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The Secrecy Capacity Region

• (Squared) channel gains are exponential random variables with means σ1,σ2, respectively.
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• Fading (channel variation over time) is beneficial for secrecy.

• Both users can have positive secrecy rates in fading (even if they have the same average
quality). This is not possible without fading.
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Fading Wiretap Channel without CSI

• Fast fading channel: no CSI anywhere.

• Discrete signalling is optimal.
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• Mukherjee et. al., Fading Wiretap Channel with No CSI Anywhere, ISIT 2013.
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Gaussian MIMO Wiretap Channel

• Multiple antennas improve reliability and rates. They improve secrecy as well.
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• No channel prefixing is necessary and Gaussian signalling is optimal. The secrecy capacity:

Cs = max
K:tr(K)≤P

1
2

log
∣∣∣HMKH⊤

M + I
∣∣∣− 1

2
log

∣∣∣HEKH⊤
E + I

∣∣∣
• As opposed to the SISO case, CS ̸=CB −CE . Tradeoff between the rate and its equivocation.

• Shafiee et. al., Towards the Secrecy Capacity of the Gaussian MIMO Wire-tap Channel: The
2-2-1 Channel, IEEE Trans. on Information Theory, 2009.
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Cooperative Channels and Secrecy

• How do cooperation and secrecy interact?

• Is there a trade-off or a synergy?
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• Ekrem et. al., Secrecy in Cooperative Relay Broadcast Channels, IEEE Trans. on Information
Theory, 2011.
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Interactions of Cooperation and Secrecy

• Existing cooperation strategies:

– Decode-and-forward (DAF)

– Compress-and-forward (CAF)

• Decode-and-forward:

– Relay decodes (learns) the message.

– No secrecy is possible.

• Compress-and-forward:

– Relay does not need to decode the message.

– Can it be useful for secrecy?

• Achievable secrecy rate when relay uses CAF:

I(X1;Y1,Ŷ1|X2)− I(X1;Y2|X2) = I(X1;Y1|X2)− I(X1;Y2|X2)︸ ︷︷ ︸+ I(X1;Ŷ1|X2,Y1)︸ ︷︷ ︸
secrecy rate of the additional term

wiretap channel due to CAF
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Gaussian Relay Broadcast Channel (Charles is Stronger)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
1
 (bits/channel use)

R
2
           

(bits/channel use)

 

 

Joint jamming and relaying
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• Bob cannot have any positive secrecy rate without cooperation.

• Cooperation is beneficial for secrecy if CAF based relaying (cooperation) is employed.

• Charles can further improve his own secrecy by joint relaying and jamming.
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Secure Degrees of Freedom: Motivation

• For most multi-user wiretap channels, secrecy capacity is unknown.

• Partial characterization in the high power, P, regime.

• Secure degrees of freedom (d.o.f.) is defined as:

Ds
△
= lim

P→∞

Cs
1
2 logP

• Rest of this talk:

– Secrecy penalty paid in d.o.f

– Role of a helper for security

– D.o.f. optimal deaf cooperation

– Secure d.o.f. of some multi-user channels
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Canonical Gaussian Wiretap Channel

• Canonical Gaussian wiretap channel with power P,
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• The secrecy capacity is known exactly:

Cs =
1
2

log
(
1+h2P

)
− 1

2
log

(
1+g2P

)
• In this case, Cs does not scale with logP, and Ds = 0.

• Severe penalty for secrecy. D.o.f. goes from 1 to 0 due to secrecy.
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Cooperative Jamming

• Cooperative jamming from helpers improves secure rates [Tekin, Yener, 2008].
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• Secure d.o.f. with i.i.d. Gaussian cooperative jamming is still zero.

• Positive secure d.o.f. by using nested lattice codes [He, Yener, 2009].

• Question: What is the exact secure d.o.f.?
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Gaussian Wiretap Channel with M Helpers

• The exact secure d.o.f. with M helpers is M
M+1 .

• Even though they are independent, more helpers is better.
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• Tools: Real interference alignment and structured coding.

• Xie et. al., Secure Degrees of Freedom of the Gaussian Wiretap Channel with Helpers,
Allerton Conference, 2012.
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Secure Signal Alignment with M Helpers

• Alignment for the M = 2 case:
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• The transmitter sends M independent sub-messages.

• M helpers send an independent cooperative jamming signal each.

• Each cooperative jamming signal is aligned with one sub-message at the eavesdropper.

• All cooperative jamming signals are aligned together at the legitimate receiver.
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Eavesdropper CSI?

• The previous achievable scheme required perfect knowledge of eavesdropper CSI.
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• Generally, it is difficult or impossible to obtain the eavesdropper’s CSI.

• Question: What is the exact secure d.o.f. without eavesdropper CSI?

• The exact secure d.o.f. is still M
M+1 .

• Xie et. al., Secure Degrees of Freedom of the Gaussian Wiretap Channel with Helpers and No
Eavesdropper CSI: Blind Cooperative Jamming, CISS 2013.
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Secure Signal Alignment with M Helpers without Eavesdropper CSI

• Alignment for M = 2 helpers without eavesdropper CSI:
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• The transmitter sends M independent sub-messages and also a cooperative jamming signal.

• M helpers send an independent cooperative jamming signal each.

• All M+1 cooperative jamming signals are blue aligned together at the legitimate receiver.

• All cooperative jamming signals span the entire space at the eavesdropper.
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Multiple Access Wiretap Channel

• Each user has its own message to be kept secret from the external eavesdropper.

W2

W1 W2

WK XK

WK
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• The exact sum secure d.o.f. is K(K−1)
K(K−1)+1 .

• Xie et. al., Secure Degrees of Freedom of the Gaussian Multiple Access Wiretap Channel,
ISIT 2013.
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Secure Signal Alignment for the Multiple Access Channel

• Alignment for the K = 3 case:

V3

U1

U1 U2 U3

U2

U3

V1

V2

X1

X2

Y1

Y2

X3

V1

U2

V2

U3

V3

V1 V2 V3

U1

• Each transmitter divides its own message into K −1 sub-messages.

• The total K jamming signals from the K users span the whole space at the eavesdropper.

• The jamming signals are aligned in the same dimension at the legitimate receiver.
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Secure Signal Alignment for the Multiple Access Channel

• Alignment for the K = 3 case:
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• Each transmitter divides its own message into K −1 sub-messages.

• The total K jamming signals from the K users span the whole space at the eavesdropper.

• The jamming signals are aligned in the same dimension at the legitimate receiver.
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Interference Channel with an External Eavesdropper

• External eavesdropper model (IC-EE).
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• Secure all messages against the external eavesdropper.
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Interference Channel with Confidential Messages

• Confidential message model (IC-CM).

ŴK
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• Secure all messages against all unintended receivers.
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Unified Model: Internal and External Security

• Interference channel with confidential messages and one external eavesdropper (IC-CM-EE):
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• Secure all messages against the internal unintended receivers and the external eavesdropper.
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Secure Signal Alignment for the Unified K-User IC-CM-EE

• The exact sum secure dof is K(K−1)
2K−1 .

• Added challenge: simultaneous alignment at multiple receivers.
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• Xie et. al., Unified Secure DoF Analysis of K-User Gaussian Interference Channels, ISIT
2013.
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Going Back to where We have Started

• Cryptography

– at higher layers of the protocol stack

– based on the assumption of limited computational power at Eve

– vulnerable to large-scale implementation of quantum computers

• Techniques like frequency hopping, CDMA

– at the physical layer

– based on the assumption of limited knowledge at Eve

– vulnerable to rogue or captured node events

• Physical layer security

– at the physical layer

– no assumption on Eve’s computational power

– no assumption on Eve’s available information

– unbreakable, provable, and quantifiable (in bits/sec/hertz)

– implementable by signal processing, communications, and coding techniques
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Going Back to where We have Started

• Cryptography

– at higher layers of the protocol stack

– based on the assumption of limited computational power at Eve

– vulnerable to large-scale implementation of quantum computers

• Techniques like frequency hopping, CDMA

– at the physical layer

– based on the assumption of limited knowledge at Eve

– vulnerable to rogue or captured node events

• Physical layer security

– at the physical layer

– no assumption on Eve’s computational power

– no assumption on Eve’s available information

– unbreakable, provable, and quantifiable (in bits/sec/hertz)

– implementable by signal processing, communications, and coding techniques
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Going Back to where We have Started

• Cryptography

– at higher layers of the protocol stack

– based on the assumption of limited computational power at Eve

– vulnerable to large-scale implementation of quantum computers

• Techniques like frequency hopping, CDMA

– at the physical layer

– based on the assumption of limited knowledge at Eve

– vulnerable to rogue or captured node events

• Physical layer security

– at the physical layer

– no assumption on Eve’s computational power

– no assumption on Eve’s available information

– based on the assumption of limited ???????? at Eve

– unbreakable, provable, and quantifiable (in bits/sec/hertz)

– implementable by signal processing, communications, and coding techniques
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Two Recurring Themes

• Creating advantage for the legitimate users:

– computational advantage (cryptography)

– knowledge advantage (spread spectrum)

– channel advantage (physical layer security)

• Exhausting capabilities of the illegitimate entities:

– exhausting computational power (cryptography)

– exhausting searching power (spread spectrum)

– exhausting decoding capability (physical layer security)
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Three Dimensions of Advantage

• Three known dimensions of advantage: knowledge, computational, channel advantage.
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b
b

PLS

Crypto

• Each method uses only one possible dimension of advantage.
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Hybrid Schemes

• Hybrid schemes: move to another dimension when an advantage is lost.

SS

knowledge

advantage

computational

advantage

channel
advantage

b

b
b

PLS

Crypto

hybrid schemes

• Still a single dimension is used.
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Hybrid Schemes

• Hybrid schemes: move to another dimension when an advantage is lost.

SS

knowledge

advantage

computational

advantage

channel
advantage

b

b
b

PLS

Crypto

hybrid schemes

• Still a single dimension is used.
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Combined Schemes

• Combine and utilize multiple dimensions of advantage

SS

knowledge

advantage

computational

advantage

channel
advantage

b

b
b

PLS

Crypto

combined schemes

b

• Multi-dimensional, multi-faceted, cross-layer security.
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Conclusions

• Wireless communication is susceptible to eavesdropping and jamming attacks.

• Wireless medium also offers ways to neutralize the loss of confidentiality:

– time, frequency, multi-user diversity via fading

– cooperation via overheard signals

– multi-dimensional signalling via multiple antennas

– secure signal alignment

• Information theory directs us to methods that can be used to achieve:

– unbreakable, provable, and quantifiable (in bits/sec/hertz) security

– irrespective of the adversary’s computation power or inside knowledge

• Resulting schemes implementable by signal processing, communications and coding tech.

• Many open problems...
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