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Abstract—Wireless power transfer (WPT) is an emerging
paradigm that will enable using wireless to its full potential in
future networks, not only to convey information but also to deliver
energy. Such networks will enable trillions of future low-power
devices to sense, compute, connect, and energize anywhere, any-
time, and on the move. The design of such future networks brings
new challenges and opportunities for signal processing, machine
learning, sensing, and computing. The objective is to make the best
use of the RF radiations, spectrum, and network infrastructure
to provide cost-effective and real-time power supplies to wireless
devices and enable wireless-powered applications. In this paper,
we first review recent signal processing techniques to make WPT
and wireless information and power transfer (WIPT) as efficient as
possible. Topics include high-power amplifier and energy harvester
nonlinearities, active and passive beamforming, intelligent reflect-
ing surfaces, receive combining with multi-antenna harvester, mod-
ulation, coding, waveform, large-scale (massive) multiple-input
multiple-output (MIMO), channel acquisition, transmit diversity,
multi-user power region characterization, coordinated multipoint,
and distributed antenna systems. Then, we overview two different
design methodologies: the model and optimize approach relying on
analytical system models, modern convex optimization, and com-
munication/information theory, and the learning approach based
on data-driven end-to-end learning and physics-based learning. We
discuss the pros and cons of each approach, especially when ac-
counting for various nonlinearities in wireless-powered networks,
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and identify interesting emerging opportunities for the approaches
to complement each other. Finally, we identify new emerging
wireless technologies where WPT may play a key role—wireless-
powered mobile edge computing, wireless-powered sensing, and
wireless-powered federated learning—arguing WPT, communica-
tion, computation, sensing, and learning must be jointly designed.

Index Terms—Wireless power transfer, wireless powered
networks, wireless information and power transfer, wireless
powered communications, wireless energy harvesting
communications, signal processing, beamforming, intelligent
reflecting surface, waveform, modulation, multi-antenna,
optimization, information theory, machine learning, data-driven,
end-to-end learning, physics-based learning, sensing, edge
computing, federated learning.

I. INTRODUCTION

TWENTY years from now, according to Koomey’s law [1],
devices will require 10 000 times less energy to compute

a given task, due to the reduction in power requirements of
their electronics. Moreover, trillions of Internet-of-Things (IoT)
devices will emerge. This explosion of low-power devices de-
mands a re-thinking of future network design, where wireless
will be used to its full potential, not only to convey informa-
tion but also to deliver energy. Wireless power will bring new
opportunities, namely proactive and controllable energy supply
with genuine mobility—no wires, no contact, no or reduced
batteries—and therefore small, light, and compact devices. This
will not only yield environmental benefits by eliminating the
need to produce, maintain, or dispose of trillions of batteries,
but also enable a myriad of new wireless applications such
as autonomous low-power sensing and computing. This is all
thanks to the prolonged lifetime and the long-term, predictable,
and reliable energy supply offered by wireless power unlike
ambient energy-harvesting technologies such as solar, thermal,
or vibration.

Wireless power and wireless communications have, however,
evolved as two separate fields in academia and industry [2]. This
separation has consequences: first, current wireless networks
broadcast radio-frequency (RF) energy into air (for communi-
cation purposes) but do not use it for charge devices; second,
providing ubiquitous wireless power would require deploying
a separate network of dedicated energy transmitters. Imagine
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Fig. 1. Future of wireless powered networks.

instead a future network where information and energy flow
together through the wireless medium. Wireless Information
Transfer (WIT) and Wireless Power Transfer (WPT) would refer
to two extreme strategies respectively targeting communication-
only and power-only. A unified Wireless Information and Power
Transfer (WIPT) design would be able to softly evolve between
the two extremes to best use the RF spectrum/radiation and
network infrastructure to communicate and energize, thereby
outperforming traditional systems that separate communications
and power.

Such a network will enable the creation of highly efficient
wireless power resources, such that low-power devices (e.g.,
sensors) with or without a communication capability can be
wirelessly powered anywhere, anytime and on the move. Con-
sequently low-power devices with communication capabilities
can experience a true ubiquitous wireless connectivity. It will
also enable low-power and high-power devices to co-exist in
such a way that transmit signals simultaneously charge remote
low-power devices and carry information to high-power devices
(e.g. smartphones, tablets), as illustrated in Fig. 1. Wireless
power will also enable emerging wireless applications, such
as wireless-powered edge intelligence, wireless-powered com-
puting, wireless-powered sensing, and wireless-powered au-
tonomous systems.

The design of efficient wireless power resources, the inte-
gration of wireless power and communications, sensing and
computing, and the positioning of wireless power as a key
enabler of new wireless applications brings new challenges,
ideas and opportunities, and calls for a paradigm shift in wireless
system and network design. Numerous research problems must
be addressed that cover a wide range of disciplines, including cir-
cuit and systems, sensors, antenna and propagation, microwave
theory and techniques, communication, signal processing, ma-
chine learning, sensing, computing, and information theory.

A. Wireless Power for Future Networks: Overview of
Challenges and Technologies

Wireless power, especially in its most promising form of WPT,
will be a fundamental building block of future wireless networks.
WPT research over the past decades has largely focused on RF
theories and techniques regarding the energy receptor with the
design of efficient RF solutions, circuits, antennas, rectifiers and
power management units [3]–[6]. Nevertheless, more recently,
a new complementary line of research on communications and
signal design for WPT has attracted significant attention in the
communication and signal processing literature [7]. Addition-
ally, there has been growing interest in bridging RF, signal, and
system designs to bring these two communities closer together
and better understand the fundamentals of an effective wireless

powered network architecture [8]. This has resulted in a new un-
derstanding of signal and system design for WPT and WIPT [9].

There are numerous design challenges of the envisioned future
network : 1) Range: Deliver wireless power at distances of
5-100 s meters (m) for energizing low-power devices in in-
door/outdoor settings; 2) Efficiency: Boost the end-to-end power
transfer efficiency (up to a fraction of a percent/a few percent)
or equivalently the DC power level at the energy harvester for
a given transmit power; 3) Non-line of sight (NLoS): Support
Line of sight (LoS) and NLoS to widen real-world applications
of future WIPT networks; 4) Mobility support: Support mobile
devices at least for those at pedestrian speed; 5) Ubiquitous
accessibility: Provide power ubiquitously within the network
coverage area; 6) Safety and health: Make RF system safe and
comply with the regulations; 7) Energy consumption: Limit the
energy consumption of wireless powered devices; 8) Seamless
integration of wireless communication and wireless power:
Unify wireless communication and wireless power into WIPT;
9) Integrated WPT, sensing, computing, and communication:
Integrate WPT with sensing/computing and communication in
5G-and-beyond systems with virtualization and network slicing.

Challenges (1)–(7) are being studied in various communi-
ties [6]–[8], [10], [11]. Solutions cover a wide range of areas
spanning sensors, devices, RF, communication, signal and sys-
tem designs for WPT. Typical WPT scenarios under study are
illustrated in Fig. 2 and include:
� Single-user (point-to-point) WPT: The focus here is on a

single energy transmitter (ET) and a single energy receiver
(ER). Both ET and ER may be equipped with multi-
ple co-located antennas. This scenario is the fundamental
building block of future wireless networks since most of
the challenges (1)–(7) must be tackled for this setup before
considering multi-user scenarios.

� Multi-user WPT: The focus here is on transmit antennas
being either co-located or distributed and delivering energy
to multiple ERs equipped with one or multiple antennas.

Challenge (8) has recently been reviewed in [9] in an attempt
to lay the fundamentals of WIPT from energy harvester model-
ing to signal and system designs. In contrast to WPT and WIT,
where the emphasis of the system design is to exclusively deliver
energy and information, respectively, in WIPT, both energy
and information are to be delivered. The challenge is therefore
to understand how to make the best use of the RF radiation
and the RF spectrum to provide both information and energy,
and requires the characterization of the fundamental trade-off
between the amount of information and the amount of energy
that can be delivered in a wireless network and how signals
should be designed to achieve this trade-off.

As illustrated in Fig. 3, WIPT can be categorized into three
different types.
� Simultaneous Wireless Information and Power Transfer

(SWIPT): Energy and information are simultaneously
transmitted from one or multiple transmitter(s) to one
or multiple receiver(s) [12]–[32]. The information re-
ceiver(s) (IR) and ER can be co-located or separated.
With co-located receivers, each receiver is a single (typ-
ically low-power) device that is simultaneously being
charged and receiving data. With separate receivers, ER
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Fig. 2. WPT deployment scenarios.

Fig. 3. Different WIPT scenarios and architectures.

and IR are different devices, the former being a low-power
device being energized, the latter being a device receiving
data.

� Wirelessly Powered Communication Networks (WPCNs):
Energy is transmitted in the downlink from an access
point to a receiver and information is transmitted in the
uplink [33]–[35]. The receiver is a device that harvests
energy in the downlink and uses the harvested energy to
transmit data in the uplink.

� Wirelessly Powered Backscatter Communication (WPBC):
Energy is transmitted in the downlink and information
is transmitted in the uplink using backscatter modulation
at a tag to reflect and modulate the incoming RF signal
for communication with a reader [36]–[38]. Backscatter
communications benefit from several orders-of-magnitude
lower power consumption than conventional wireless com-
munications because tags do not require oscillators to
generate carrier signals [39].

Moreover, a network could have a mixture of all of these types
of transmissions with multiple co-located and/or distributed ETs
and information transmitter(s) (IT).

Challenge (9) is new and arises since next-generation Internet-
of-Things (IoT) that build on the 5G/6G platform are seeing an
increasing level of integration between storage, computing, and
communication so as to efficiently enable a wide range of new
applications in distributed sensing, edge computing and artificial
intelligence (AI). Thus, wirelessly powering next-generation
IoT calls for the joint control of WPT, sensing, computing,
and communication so as to optimize efficiency of a system
supporting specific applications. In particular, there exist trade-
offs between transferred energy and energy consumption of
sensing/computing (e.g., on-device AI model training) and com-
munication (e.g., mobile computation offloading). Quantifying
and exploiting such trade-offs can substantially improve system
performance.

B. Objectives and Organization

Various review papers have appeared in past years on
WPT, emphasizing separately RF, circuit and antenna solutions

[4]–[6], [10], [11], and communications, signal and system
design solutions [7]. More recently attempts have been made
to bridge RF, signal and system designs to get a better under-
standing of the fundamental building blocks of an efficient WPT
network architecture [8]. This synthesis of work in different
areas of WPT has yielded critical observations and given a fresh
new look to promising avenues for WPT signal and system
design. As an example, [8] shows that the nonlinear nature of
the WPT design problem, both for the ET and the ER, must be
accounted for at the signal and the circuit-level design.

Similarly, review papers on WIPT have also appeared [40]–
[50]. Emphasis was put at that time on characterizing the fun-
damental tradeoff between conveying information and energy,
so-called rate-energy (R-E) tradeoff, under the assumption of a
very simple linear model of the ET and ER. In recent years, the
validity of this linear model has been questioned and there has
been an increasing departure from simple linear assumptions
in the WIPT literature. It turns out that the linear model is
inaccurate and leads to inefficient WIPT designs, and that WIPT
design radically changes once we adopt more realistic nonlinear
models of the energy harvester (EH) [9]. Recently, [9] showed
how crucial the EH model is to WIPT signal and system designs
and how WIPT signal and system designs revolve around the
underlying EH model. It highlighted different linear and non-
linear EH models, and showed in a systematic way how WIPT
designs and R-E tradeoff differ for each of them. In particular, the
paper showed how the modeling of the EH can have tremendous
influence on the design of the physical and higher layers of WIPT
networks.

This paper overviews recent advances and emerging opportu-
nities for signal processing, machine learning, computing, and
sensing in the broad area of future wireless powered networks
(including WPT, WIPT, and other emerging wireless powered
applications). The objectives are threefold.

First, this paper aims to provide a review of recent signal
processing techniques to tackle the challenges of WPT and
WIPT and make them a reality. Topics discussed include high
power amplifier (HPA) and EH nonlinearities, transmit active
and passive beamforming and intelligent reflecting surfaces
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(also called reconfigurable intelligent surfaces), receive com-
bining with multi-antenna harvester, modulation, coding, wave-
form, joint beamforming, combining and waveform, large-scale
(massive) multiple-input multiple-output (MIMO), channel ac-
quisition, transmit diversity, power region characterization in
multi-user WPT, coordinated multipoint and distributed antenna
systems for wireless powered networks. A particular emphasis
is on how the design of those techniques is deeply rooted in
the EH nonlinearity and contrasts with a previous tutorial [7]
where nonlinearity was highlighted only as part of the waveform
design.

Second, this paper aims to provide an overview of various
design methodologies. All past tutorial and review papers rely
exclusively on the traditional model-and-optimize approach
where they derive an analytical system model (under some
assumptions) and use modern convex optimization tools to
optimize it. Instead here we also discuss the role machine
learning, in the form of model-based and data-based end-to-end
learning and physics-based learning, can play to design future
wireless-powered networks. This is particularly relevant due to
the importance of accounting for various sources of nonlinearity
in wireless power. We identify the pros and cons of the model
and optimize approach and the learning approach and identify
interesting emerging opportunities for machine learning to com-
plement human expertise.

Third, this paper aims to identify emerging wireless technolo-
gies where WPT will play a key role. In particular, we discuss
and study how WPT can enable wireless-powered computing,
wireless-powered sensing, and wireless-powered edge/federated
learning.

Organization: In Section II, we introduce the system model
of WPT, discuss the HPA and EH nonlinearity and EH archi-
tecture, and review various signal processing techniques used to
increase the end-to-end power transfer efficiency of single-user
and multi-user WPT. Section III builds upon previous section
and introduces the system model of WIPT before reviewing
various signal processing techniques to achieve the best R-E
tradeoff of WIPT. Section IV discusses and contrasts the pros
and cons of two major design methodologies to design WPT
and WIPT, namely the model-and-optimize approach and the
learning approach. Section V discusses how wireless power will
enable new and emerging scenarios and applications in future
wireless powered networks such as wireless-powered comput-
ing, sensing, and federated learning. Section VI concludes the
paper and discusses future works.

Notation: In this paper, scalars are denoted by italic letters.
Boldface lower- and upper-case letters denote vectors and matri-
ces, respectively. CM×N denotes the space ofM ×N complex
matrices. j denotes the imaginary unit, i.e., j2 = −1. E[·] de-
notes statistical expectation and �{·} represents the real part
of a complex number. IM denotes an M ×M identity matrix
and 0 denotes an all-zero vector/matrix. |.| and ‖.‖ refer to the
absolute value of a scalar and the 2-norm of a vector. For an
arbitrary-size matrix A, its complex conjugate, transpose, Her-
mitian transpose, and Frobenius norm are respectively denoted
asA∗,AT ,AH , and ‖A‖F . [A]im denotes the (i,m)th element
of matrix A. For a square Hermitian matrix S, Tr(S) denotes its
trace, while λmax(S) and vmax(S) denote its largest eigenvalue

Fig. 4. The block diagram of a generic WPT system [7].

and the corresponding eigenvector, respectively. In the context
of random variables, i.i.d. stands for independent and identically
distributed. The distribution of a Circularly Symmetric Complex
Gaussian (CSCG) random variable with zero-mean and variance
σ2 is denoted by CN (0, σ2); hence with the real/imaginary part
distributed as N (0, σ2/2). ∼ stands for “distributed as”. We
use the notation sinc(t) = sin(πt)

πt . diag(A1, . . . ,AN ) refers to
a block diagonal matrix with blocks being A1,..., AN .

II. WIRELESS POWER TRANSFER: KEY TECHNOLOGIES TO

INCREASE EFFICIENCY

In the past decade, there has been a significant interest in WPT
and ambient wireless energy harvesting (WEH) for low-power
(e.g., from μW to a few W) delivery over distances of a few m
to hundreds of m [51], [52]. This originates from the increasing
need to build reliable and convenient wireless power systems for
remotely energizing low-power devices, such as sensors, RFID
tags, and consumer electronics [8], [53], [54].

Fig. 4 shows a generic WPT system that consists of an RF
ET and an ER. A DC power source is used to generate a signal
that is upconverted to the RF domain at the ET, then transmitted
over the air, and collected at an ER in the RF domain before
being converted to DC. The ER is made of an antenna combined
with a rectifier (rectenna) and a power management unit (PMU).
Since the majority of the electronics requires a DC power source,
a rectifier is required to convert RF to DC. The recovered DC
power then either supplies a low power device directly, or is
stored in a battery or a super capacitor for high power low duty-
cycle operations. The recovered DC power can also be managed
by a DC-to-DC converter before being stored. In WPT, the entire
link, including ET and ER, of Fig. 4 can be fully optimized.
Therefore, in contrast to ambient WEH, WPT offers full control
of the design and room to enhance the end-to-end power transfer
efficiency e

e =
P rdc
P tdc

=
P trf
P tdc︸︷︷︸
e1

P rrf
P trf︸︷︷︸
e2

P rdc
P rrf︸︷︷︸
e3

, (1)

where e1, e2, and e3 denote the DC-to-RF, RF-to-RF, and RF-
to-DC power conversion/transmission efficiency, respectively.

A. Signal and System Model

We consider a single-user point-to-point MIMO WPT system
in a general multipath environment. This setup is referred to
as “WPT with co-located antennas one-to-one” in Fig. 2. The
ET is equipped with M antennas that transmit power to a ER
equipped withQ receive antennas. We consider the general setup
of a multi-subband transmission (with a single subband being a
special case) employing N orthogonal subbands where the nth

subband has carrier frequency fn and all subbands employ equal
bandwidth fw, n = 0, . . ., N − 1. The carrier frequencies (also
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called tones) are evenly spaced such that fn = f0 + nΔf with
the inter-carrier frequency spacing Δf (with fw ≤ Δf ).

The WPT signal transmitted on antenna m, xrf,m(t), is a
multi-carrier modulated waveform with frequencies fn, n =
0, . . ., N − 1, carrying independent symbols on subband n =
0, . . ., N − 1. The input WPT signal at time t to the HPA of
antenna m = 1, . . .,M is given by

xin,m(t) =
√
2�

{
N−1∑
n=0

xm,n(t)e
j2πfnt

}
(2)

with the baseband equivalent signal xm,n(t) given by

xm,n(t) =

∞∑
k=−∞

xm,n,k sinc(fwt− k) (3)

where xm,n,k denotes the complex-valued power carrying sym-
bol at time index k, modeled as a random variable generated in
an i.i.d. fashion. xm,n(t) has bandwidth [−fw/2, fw/2]. For the
special case of unmodulated WPT, xm,n(t) is constant across
t, i.e., xm,n(t) = xm,n = sm,ne

jϕm,n , ∀t. In this case, xin,m(t)
is a summation of N sinewaves inter-separated by Δf Hz, and
hence essentially occupies zero bandwidth.

The power at the transmitter before HPA is written as

P tdc =

N−1∑
n=0

Tr(Qn) = Tr(Q), (4)

withQ = diag{Q0, . . .,QN−1}where the positive semidefinite
input covariance matrix Qn at subband n is defined as Qn �
E[xn(t)x

H
n (t)] ∈ CM×M andxn(t) � [x1,n(t), . . ., xM,n(t)]

T

denotes the signal vector across the M antennas in subband n.
For convenience, we also define Pn = Tr(Qn) as the transmit
power in subband n such that P tdc =

∑N−1
n=0 Pn.

The input signal xin,m(t) on each antennam is then amplified
by a HPA and filtered using a band-pass filter (BPF) into the
transmit WPT signal xrf,m(t)

xrf,m(t) =
√
2�

{
N−1∑
n=0

xrf,m,n(t)e
j2πfnt

}
, (5)

with

xrf,m,n(t) =

∞∑
k=−∞

xrf,m,n,k sinc(fwt− k). (6)

Realistically, the relationship between xin,m(t) and xrf,m(t) is
nonlinear and accounts for coupling across frequencies as well
as magnitude and phase distortions induced by the HPA and BPF.
The transmit WPT signal xrf,m(t) is then transmitted over the
air by antennam. The total average transmit power is expressed
as P trf =

∑M
m=1 E[xrf,m(t)2] and is subject to the constraint

P trf ≤ P .
The transmit WPT signal propagates through a multipath

channel characterized by L paths. Let τl and αl be the delay and
amplitude gain of the lth path, respectively. Further, denote by
ζq,m,n,l the phase shift of the lth path between transmit antenna
m and receive antenna q for subband n. The signal received
at antenna q (q = 1, . . ., Q) from transmit antenna m can be
expressed as

yrf,q,m(t)=
√
2�

{
L−1∑
l=0

N−1∑
n=0

αlxrf,m,n(t− τl)

ej2πfn(t−τl)+ζq,m,n,l

}
,

≈
√
2�

{
N−1∑
n=0

hq,m,nxrf,m,n(t)e
j2πfnt

}
. (7)

We have assumed maxl �=l′ |τl − τl′ | < 1/fw so that,
for each subband, xrf,n,m(t) are narrowband signals,
thus xrf,m,n(t− τl) = xrf,m,n(t), ∀l. Variable hq,m,n =∑L−1
l=0 αle

j(−2πfnτl+ζq,m,n,l) is the baseband channel frequency
response between transmit antenna m and receive antenna q at
frequency fn.

The total signal and noise received at antenna q is the super-
position of the signals received from all M transmit antennas,
i.e.,

yrf,q(t) =
√
2�

{
N−1∑
n=0

hq,nxrf,n(t)e
j2πfnt

}
+ wA,q(t), (8)

where wA,q(t) is the antenna noise, hq,n� [hq,1,n, . . ., hq,M,n]
denotes the channel vector from the M transmit antennas to
receive antenna q, and xrf,n(t) � [xrf,1,n(t), . . ., xrf,M,n(t)]

T .
Ignoring the noise power, the total RF power received by all

Q antennas of the receiver can be expressed as

P rrf =

Q∑
q=1

E
[
yrf,q(t)

2
]
=

Q∑
q=1

N−1∑
n=0

E
[|hq,nxrf,n(t)|2

]
. (9)

Finally, unless stated explicitly, we assume perfect Channel
State Information at the Transmitter (CSIT).

Next, the output DC power P rdc depends on the exact ER
architecture to be discussed in subsequent sections.

Remark 1: The system model is written using a general form
assuming that complex-valued symbols are random variables
and occupy a non-zero bandwidth. This is used to ease and
harmonize the system model with WIPT discussed in Section III.
It is nevertheless to be noted that if the aim is to design WPT with-
out any consideration for communications, one would strictly
speaking not need complex-valued symbols to be random, and
one could assume them deterministic (with zero bandwidth),
therefore transforming the above system model into unmod-
ulated WPT with multisine waveforms (with N sinewaves)
transmitted from each antenna.

B. Transmitter (HPA) Nonlinearity

We here discuss the modeling of the HPA. The HPA input-
output relationship is realistically nonlinear, though this source
of nonlinearity is commonly ignored.

1) Linear HPA: : If we ignore the HPA nonlinearity and
assume the relationship between xin,m(t) and xrf,m(t) is lin-
ear such that xrf,m(t) = Gxin,m(t) with G the amplification
gain, and taking G = 1 for simplicity of exposure, we have
P trf =

∑M
m=1 E[xrf,m(t)2] = P tdc. In other words, referring to

Fig. 4, the DC-to-RF conversion efficiency e1 is equal to 1. More
realistically, under the linear regime of the HPA, P trf = e1P

t
dc

with e1 a constant strictly smaller than 1 and independent of
the input signal (but whose exact value depends on the HPA
technology).
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Fig. 5. Input-output voltage characteristics for solid state HPA with As =
10−3V and G = 1.

The total RF power received by all Q antennas can then be
expressed more easily as

P rrf = e1

N−1∑
n=0

Tr
(
HH
n HnQn

)
, (10)

where Hn � [hH1,n, . . . ,h
H
Q,n]

H ∈ CQ×M denotes the MIMO
channel matrix from the M transmit antennas to the Q receive
antennas at subband n.

2) Nonlinear HPA: : The HPA has a nonlinear characteristics
that distorts its input signal and makes it challenging to analyze.
Indeed, real HPAs do not exhibit a pure linear behavior and
xrf,m(t) = fHPA(xin,m(t))where fHPA is a nonlinear function,
which leads toP trf = e1(xin,m(t))P tdc, i.e., e1(xin,m(t)) is itself
a nonlinear function ofxin,m(t). A common model for solid state
HPA [55], [56] is written as

fHPA(xin,m(t)) =
G(

1 +
(
G|xin,m(t)|

As

)2β
) 1

2β

xin,m(t) (11)

whereAs is the output saturation voltage,G is the amplification
gain, and β represents the smoothness of the transition from the
linear regime to the saturation. In Fig. 5, (11) is illustrated for
As = 10−3V and G = 1. The HPA would operate in the linear
regime if the input voltage is significantly smaller than As and
would operate in the nonlinear regime (leading to saturation)
otherwise.

C. Energy Receiver Nonlinearity and Architecture

We here discuss the architecture and related nonlinearity of
single-antenna and multi-antenna ER.

1) Single-Antenna Energy Receiver: The key building block
of the ER is the rectenna [57]. A rectenna harvests electro-
magnetic energy, then rectifies and filters it using a low pass
filter. The rectenna can be optimized for the specific operating
frequencies, input power level and input waveforms. Various
rectifier technologies (including the popular Schottky diodes)
and topologies (with single and multiple diode rectifier) have
been studied [4]–[6]. The simplest form of rectifier, so-called
single series rectifier, is illustrated by the circuit in Fig. 6 [58]. It
is made of a matching network (to match the antenna impedance

Fig. 6. Single series rectifier designed for an average RF input power of -
20 dBm (10 µW) at 2.45GHz [58]. vs is the voltage source of the antenna.
R1 models the antenna impedance. C1 and L1 form the matching network.
SMS-7630 refers to the type of Schottky diode. C and RL form the low-pass
filter with RL being the output load.

Fig. 7. RF-to-DC conversion efficiency e3 vs average RF input powerP r
rf with

rectifier from Fig. 6 obtained from circuit simulations [58]. The input signal is
a CW at 5.18 GHz and rectifier is designed for -20 dBm input power.

to the rectifier input impedance) followed by a single diode and a
low-pass filter. This circuit was designed for 10 μW input power
at 2.45 GHz.

Using circuit simulations and the single-series rectifier from
Fig. 6, Fig. 7 illustrates the dependency of the RF-to-DC conver-
sion efficiency e3 to the signal average RF power and shape at the
input of the rectifier when a continuous wave (CW), i.e., a single
sinewave, and a multisine waveform (with N = 8 equispaced
frequencies) are used for excitation [58]. Those two excitations
have the same average RF input power P rrf , but their shape is
different.

We note that e3 is particularly low at low input power for
both types of excitations. This is due to the rectifier sensitivity
with the diode not being easily turned on at low input power.
Nevertheless, the multisine waveform manages to boost e3 in
the low power regime much better than CW. Importantly, for a
given waveform, be it CW or multisine, e3 increases with P rrf in
the normal region of operation of the rectifier, namely whenever
the diode is not in the breakdown region. Beyond a few hundreds
of μW input power, irrespectively of the input signal shape, the
output DC power saturates and e3 suddenly significantly drops
when the rectifier enters the diode breakdown region1, which is
not the intended region of operation of the rectifier.

1The diode SMS-7630 becomes reverse biased at P r
rf ≈ 500µW to 1 mW for

CW. To operate beyond such input power, multiple diode rectifier is preferred
to avoid the saturation problem [4], [6], [59].
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Fig. 8. Antenna equivalent circuit (left) and a single diode rectifier (right) [64].
The rectifier comprises a non-linear device (diode) and a low-pass filter (con-
sisting of a capacitor C and a load RL).

The key observation of Fig. 7 is that due to the EH nonlinearity,
e3 is clearly not a constant, but depends on 1) the input power
level and 2) the shape of the input signal yrf [60]–[64]. Mathe-
matically, this is reflected by the fact that the output DC voltage
vout = fEH(yrf(t)) where fEH(yrf(t)) is a nonlinear function
of yrf(t), which has as consequence that P rdc = e3(yrf(t))P

r
rf ,

i.e. e3 is not a constant but rather a nonlinear function of the
input signal to the rectenna. Note the importance of writing
fEH(yrf(t)) and e3(yrf(t)) instead of simply fEH(P

r
rf) and

e3(P
r
rf). fEH and e3 are not simply a nonlinear function of the

average RF input power P rrf of the input waveform yrf(t), but
also of the shape of this input waveform!

The first and only model available in the WPT signal design
literature that captures power and shape dependency on output
DC power was derived in [64]–[66], and is briefly summarized in
the sequel. Let us abstract the rectifier in Fig. 6 into the simplified
representation in Fig. 8. We consider for simplicity a rectifier
with input impedance Rin composed of a single series diode
followed by a low-pass filter with a load. We consider this setup
as it is the simplest rectifier configuration2. As per the system
model, the RF signal yrf(t) impinging on the receive antenna has
an average power P rrf . The receive antenna is assumed lossless
and modeled as an equivalent voltage source vs(t) in series with
an impedance Rant as shown in Fig. 8. With perfect matching
(Rin = Rant), the input voltage of the rectifier vin(t) can be
related to the received signal yrf(t) by vin(t)=yrf(t)

√
Rant. A

rectifier is always made of a nonlinear rectifying component
such as diode followed by a low pass filter with load as shown
in Fig. 8.

The current id(t) flowing through an ideal diode (neglecting
its series resistance) relates to the voltage drop across the diode
vd(t) = vin(t)− vout(t) as

id(t) = is

(
e

vd(t)

nvt − 1

)
, (12)

where is is the reverse bias saturation current, vt is the thermal
voltage, n is the ideality factor (assumed equal to 1.05).

Taking the polynomial (Taylor) expansion of the diode I-V
characteristics id(t), truncating it at the ntho order, making use
of some physical assumptions on an ideal low-pass filter that
removes the non-DC components in id(t) and the rectenna
output voltage vout(t), the output DC voltage of the rectifier
vout can be approximated as the following nonlinear function of

2The model is not limited to a single series diode but also holds for more
general rectifiers with many diodes as per [68].

yrf(t)

vout = fEH (yrf(t)) =

no∑
i even,i≥2

βiE
[
yrf(t)

i
]

(13)

where βi =
R

i/2
ant

i!(nvt)(i−1) [64], [67]. The operator E[·] in (13) has

the effect of taking the DC component of the diode current id(t)
but also averaging over the potential randomness carried by the
input signal yrf(t). Consequently, the harvested DC power P rdc
of the single-antenna receiver is then given by

P rdc =
v2out
RL

. (14)

We clearly see that fEH(yrf(t)) is a nonlinear function of
yrf(t). Specifically, it is a function of the input signal average
power P rrf = E[yrf(t)

2] (i.e. the second moment of yrf(t)) but
also of its higher order moments E[yrf(t)

i] for i even and i > 2.
This dependency on the second and higher order moments of
yrf(t) explains why multisine outperforms CW in Fig. 7 [64],
but also explains why e3 is an increasing function ofP rrf . Indeed,
due to the convexity of the I-V characteristics and the polynomial
expansion, using Jensen’s inequality, we have

E
[
yrf(t)

i
] ≥ (E

[
yrf(t)

2
]
)

i
2 = (P rrf)

i
2 (15)

for i even and i ≥ 2, so that

vout ≥
no∑

i even,i≥2

βi (P
r
rf)

i
2 . (16)

Taking for instance as yrf(t) a multisine waveform with average
power P rrf uniformly distributed across the N sinewaves, we
can easily show that E[yrf(t)

4] scales proportionally toN(P rrf)
2,

therefore demonstrating that E[yrf(t)
4] > (P rrf)

2 for sufficiently
largeN and explaining mathematically why multisine (and other
types of signals) can outperform CW (N = 1) [64]. We can
draw two crucial observations from relationships (15) and (16),
respectively.

Observation 1: Relationship (15) highlights the key role of
choosing input signals with large E[yrf(t)

i]. Two input signals
may indeed have the same E[yrf(t)

2] = P rrf but very different
E[yrf(t)

4]. This explains mathematically the dependence of e3
(and P rdc) on the shape of the input signal in Fig. 7.

Observation 2: The lower bound (16) highlights that e3 in-
creases with P rrf . This explains mathematically the dependence
of e3 on the input power level in Fig. 7 for the practical operation
regime of the rectifier (not in breakdown), and highlights that
the strategy that maximizesP rrf does not maximizeP rdc, but only
maximizes a lower bound on P rdc.

Those two observations highlight that a signal theory, design
and processing of basic building blocks of wireless powered
networks such as modulation, waveform, and input distribution,
are influenced by the EH nonlinearity and motivate efficient
signal and system designs that leverage the EH nonlinearity.
The crucial role played by this EH nonlinearity in the signal
designs and evaluations of WPT, SWIPT, and WPBC was first
highlighted in [64], [66], and [37], respectively.

Remark 2: Slightly different formulations of the above EH
model are available in [64], [67], [69]–[71], where the output is
expressed in terms of DC current instead of voltage, or where
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Fig. 9. Schematic of the MIMO WPT system with DC combining at the
receiver [75].

Fig. 10. Schematic of the MIMO WPT system with RF combining at the
receiver [75].

operator E[.] is applied without performing the polynomial
expansion.

Remark 3: Other models forP rdc are available in the literature
as discussed in greater details in [9]. Those models either assume
e3 constant (so-called linear model [7]) or only capture the
dependency of e3 on E[yrf(t)

2] = P rrf (e.g., so-called saturation
nonlinear model [72]). The linear model is very inaccurate [64],
[73]. The saturation model is more accurate since it is based
on curve fitting, but does not capture the dependency of the
rectification process on the shape of the input signal and arguably
over-emphasizes the importance of saturation in the EH. Satura-
tion is unlikely a major problem in wireless powered networks
since the typical input RF power levels (below 100μW) are
smaller than the saturation level, as demonstrated by over the
air measurements with various types of signals in [73], [74]
(and also in Figs. 11 and 12 below). Moreover, if saturation
happens to lead to a significant performance loss, it implies that
the rectifier was not designed carefully enough for the expected
range of input power levels. Saturation can indeed be avoided
by a proper design of the rectifier [4], [6], [9], [59], [66]. The
interested reader is referred to [9], [66] and references therein
for more discussions on EH models.

2) Multi-Antenna Energy Receiver: Two main combining
strategies exist, namely DC combining and RF combining,
as illustrated in Fig. 9 and Fig. 10, respectively [75]. In DC
combining, each receive antenna is connected to a rectifier and
the number of rectifiers increases with the number of receive
antennas. However, in RF combining, the RF signals from all
receive antennas are first combined in the RF domain before
being fed to a single rectifier used to rectify the combined RF
signal. A combination of those two architectures is also possible,

Fig. 11. CDF of output DC power (P r
dc) measurement results at different

distances from 0.6 to 5.4 m with the number of transmit antennas M=1, 2, 4,
8, and the number of carriers (tones) N=1 and 8 [74].

Fig. 12. Curve fitting and measurement results of output DC power (P r
dc)

versus distance with N=1, 8 and M=1,2,4,8 [74].

as well as other variants based on the use of power splitters and
power combiners [76].

In the DC combiner architecture,

P rdc =

Q∑
q=1

v2out,q
RL

, (17)

where vout,q = fEH(yrf,q(t)) is the output DC voltage of the
rectifier connected to receive antenna q.

In the RF combiner architecture, a frequency-dependent ana-
logue combiner wR,n is applied to the received signals (8) such
that the received signal after combining fed to the single rectifier
is given by

ỹ(t) =
√
2�

{
N−1∑
n=0

wH
R,nHnxrf,n(t)e

j2πfnt

}
+ w̃A(t), (18)

where w̃A is the effective combined noise. Note that in practice
it may be difficult to design frequency-dependent combiner,
in which case wR = wR,n is constant across frequency. The
combiner is subject to the constraint ‖wR‖2 ≤ 1 originating
from the fact that since the RF combining circuit is passive, the
output power of the RF combining circuit should be no larger
than its input power. Additionally, the combiner may be subject
to constant modulus constraint so as to be implemented by Q
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phase shifters of the form

wR =
1√
Q

[
e−jθ1 , e−jθ2 , . . . , e−jθQ

]T
, (19)

where θq denotes the qth phase shift for q = 1, . . . , Q. Finally,

the output DC power is given by P rdc =
v2out

RL
where vout =

fEH(ỹ(t)).

D. End-to-End Efficiency, Energy Maximization and Problem
Formulation

A major and interesting technical challenge in WPT system
design is that the maximization of e is not achieved by maxi-
mizing e1, e2, e3 independently from each other. This is because
e1, e2, e3 are coupled due to the aforementioned nonlinearities,
especially at practical input RF power range 1 μW -1 mW.
Indeed, since e3 is a function of the input signal shape and power
to the rectifier and therefore a function of the transmit signal and
the wireless channel state. Similarly, e2 depends on the transmit
signal and the channel state and so is e1, since it is a function of
the HPA nonlinearity.

One possible problem formulation is therefore to find the
signaling strategies that maximizes e. This can be written as

max
p(x0,...,xN−1)

e(x0, . . .,xN−1) (20)

subject to P trf ≤ P. (21)

where maximization is performed over the input distributions
p(x0, . . .,xN−1) that satisfies the average transmit power con-
straintP trf ≤ P . An alternative formulation that is more common
consists in maximizing the harvested DC output power

max
p(x0,...,xN−1)

P rdc(x0, . . .,xN−1) (22)

subject to P trf ≤ P, (23)

In those two formulations, if the ER is equipped with an RF com-
biner, the optimization would have to be additionally performed
over wR subject to the constraint ‖wR‖2 ≤ 1 or structure as in
(19). Note that in the event power bearing symbols are deter-
ministic, maxp(x0,...,xN−1) can be replaced by maxx0,...,xN−1

.
Note that those two formulations are not equivalent. The

main difference is that (20) specifically accounts for e1, while
(22) does not. To account for e1 and HPA efficiency, additional
constraints can be added to problem (22) for instance in the form
of peak-to-average power (PAPR) constraints [64].

E. Signal Processing Techniques for Single-User WPT

In this section, we review recent signal processing techniques
developed to tackle the challenges of WPT, increase its efficiency
and its range in a single-user setting. Techniques discussed
include transmit active beamforming, transmit passive beam-
forming and intelligent reflecting surfaces, receive combining
with multi-antenna harvester, waveform, joint beamforming,
combining and waveform, large-scale (massive) multiple-input
multiple-output (MIMO), channel acquisition, transmit diver-
sity, time-reversal, and retrodirective arrays. Importantly, while
some of those techniques focus on enhancing P rrf and e2 (and
therefore a lower bound on P rdc), others such as waveform,

transmit diversity, receive combiner, joint waveform and beam-
forming are deeply rooted in the EH nonlinearity (and therefore
the maximization of P rdc itself) and only appeared to light once
the nonlinearity is accounted for in the signal design.

1) Transmit Active Beamforming: Leveraging the presence
of multiple antennas at the transmitter, each equipped with an
RF chain, the simplest strategy is transmit active beamforming to
increaseP rrf . Considering a multiple-input single-output (MISO)
setup (Q = 1) with N = 1 and a linear HPA, (8) boils down to
yrf(t) =

√
2�{hwTx(t)e

j2πft}+ wA(t), with wT the trans-
mit beamformer. The transmitter simply performs conventional
Maximum Ratio Transmission (MRT) wT =

√
P h̄H , with h̄ =

h/‖h‖ and x(t) being any chosen random input with unit power
(with x(t) = 1 corresponding to a CW). Fig. 11 and 12 illustrate
the benefits in terms of output DC power P rdc and range of WPT
by adopting MRT beamforming with 1, 2, 4, 8 transmit antennas
and continuous wave (N = 1, 1 tone), based on experimental
data gathered in a typical indoor environment at 2.4 GHz with a
rectenna similar to Fig. 6 under an Effective Isotropic Radiated
Power (EIRP) of 36dBm [74]. Other experimental results of such
beamforming technique can be found in [77], [78].

2) Transmit Passive Beamforming: Transmit Passive Beam-
forming through intelligent reflecting surface (IRS), also known
as reconfigurable intelligent surface, has gained popularity as
an emerging technology for wireless networks [79]–[81]. IRS
consists of a large number of L reconfigurable passive elements
(without any need for an RF chain) integrated into the propaga-
tion environment. By collaboratively adjusting the impedance
of all passive elements at the IRS, the reflected signals add co-
herently with the signals from other paths at the desired receiver
to increase the received RF signal power, therefore enabling
a passive beamforming gain. Owing to the passive structure,
IRS has several advantages including low cost, low profile, light
weight, conformal geometry, low power consumption and no
additive thermal noise during the reflection.

Considering a SISO setup (M = 1, Q = 1) with N = 1
and a linear HPA, yrf(t) =

√
2�{hx(t)ej2πft}+ wA(t) with

h = gd + grΘgi where gd refers to the direct channel between
the ET and ER, gr is a 1× L vector channel between the IRS
(equipped with L elements) and the ER, and gi is the L× 1
vector channel between the ET and the IRS. Θ is the scattering
matrix of the L-port reconfigurable impedance network and is
subject to the constraints Θ = ΘT and ΘHΘ = IL [82]. The
L-port reconfigurable impedance network is constructed with
reconfigurable and passive elements so that it can reflect the
incident signal with a reconfiguration that can be adapted to
the channel. Three different architectures are possible, namely
single connected reconfigurable impedance network character-
ized by a diagonal Θ (the simplest and most common one [79]–
[81]), group connected reconfigurable impedance network char-
acterized by a block diagonal Θ = diag(Θ1,Θ2, . . . ,ΘG)
where the L elements have been divided into G groups with
each group having LG = L/G elements, and fully connected
reconfigurable impedance network characterized by a full
Θ [82].

Considering a group connected reconfigurable impedance
network, the design of Θ that maximizes e2 is the solution of
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Fig. 13. Power gain of the group connected and fully connected reconfigurable
impedance networks over the single connected reconfigurable impedance net-
work. [82].

the optimization problem

max
Θ

|hd + hrΘhi|2 (24)

subject to Θ = diag(Θ1,Θ2, . . . ,ΘG), (25)

ΘH
g Θg = ILG

, ∀g, (26)

Θg = ΘT
g , ∀g. (27)

The single and fully connected reconfigurable impedance net-
works can be designed similarly by noting that they are two
special cases of the group connected reconfigurable impedance
network, i.e. with G = L (LG = 1) and G = 1 (LG = L), re-
spectively. One way to solve (24)-(27) is by reformulating it as
an unconstrained optimization problem [82]. It has been shown
in [82] that for a given L, the larger LG (and the smaller G)
the higher the received RF power (and therefore the higher
e2). In other words, the received RF power P rrf,full of fully
connected networks is larger than that of the group connected
network (P rrf,group) and single connected network (P rrf,single),
at the cost of a higher implementation complexity. Group con-
nected network exhibit a nice tradeoff between complexity and
performance. This is illustrated in Fig. 13 where the power gains
P rrf,group/P

r
rf,single andP rrf,full/P

r
rf,single of the group connected

and fully connected reconfigurable impedance networks over
the single connected reconfigurable impedance network are
displayed as a function of L for several values of group size
LG [82]. Compared with the single connected reconfigurable
impedance network, fully connected reconfigurable impedance
network can increase the received signal power by up to 62%.
For group connected withLG = 2, 3, 4, 6, 8, gains of 26%, 37%,
43%, 49%, 52% are achieved over the single connected network,
respectively.

In contrast to active antenna arrays where the amplitudes
and phases can be adjusted freely at each antenna and at each
frequency, the elements in IRS are subject to less flexibility
due to the passive nature of the IRS and the hardware con-
straints. Specifically, taking a single-connected network, due to
constraints ΘHΘ = I, the amplitude of the diagonal entries is
fixed to unity and only the phases of those entries are optimized.
Moreover the IRS is commonly assumed frequency flat in the

sense that the phases of the passive elements are kept constant
across frequency. Despite those constraints, the passive beam-
forming gain can be significant and IRS brings some natural
benefits to WPT since IRS can help increasing the RF power
level P rrf at the input of the rectenna [83]–[88]. The presence
of active antennas and passive IRS leads to a joint design and
optimization of active and passive beamforming.

3) Receive Combining: Beamforming is not limited to the ET
and can also be used at the ER subject to a proper design of the
DC and RF combiner schemes of Fig. 9 and 10 [75]. Assuming
N = 1 and a linear HPA, yrf,q(t) =

√
2�{hqwTx(t)e

j2πft}+
wA,q(t). In MIMO WPT with DC combiner, only the transmit
beamformer wT is optimized and problem (22) is equivalent to

max
wT

1

RL

Q∑
q=1

⎛
⎝ no∑
i even,i≥2

βiζi |hqwT|i
⎞
⎠2

(28)

subject to ‖wT‖2 ≤ P, (29)

where ζ2 = 1/2, ζ4 = 3/8, ζ6 = 5/16 [75]. With RF combiner,
ỹrf(t) =

√
2�{wH

RHwTx(t)e
j2πft}+ w̃A(t), andwT andwR

need to be jointly optimized. Subject to combiner structure (19),
Problem (22) is equivalent to

max
wT,{θq}

∣∣wH
RHwT

∣∣2 (30)

subject to ‖wT‖2 ≤ P, (31)

wR =
1√
Q

[
e−jθ1 , e−jθ2 , . . . , e−jθQ

]T
, (32)

− π ≤ θq ≤ π, 1 ≤ q ≤ Q. (33)

Those non-convex optimization problems can be solved by
involving geometric program (GP) and semi-definite relaxation
(SDR) [75].

Interestingly, due to the rectenna nonlinearity that induces a
higher e3 for higher input power level (recall Fig. 7 for power
levels lower than saturation and Observation 2), it turns out that
RF combining outperforms DC combining since the rectifier in
RF combining operates on a higher RF power input signal. In
other words, RF combining can leverage the nonlinearity more
efficiently than DC combining. The performance gains of RF
combining methods over DC combining can be quite significant
as shown in the circuit simulations of Fig. 14. We can see that
P rdc increases with the number of receive antennasQ (this is in a
way reminiscent of increasingM in transmit beamforming), but
the increase is faster with RF combining than DC combining.
Hence, in MIMO WPT, while increasing the number of transmit
antennas M and receive antennas Q helps to increase P rrf and
therefore e2, a suitable choice of the combiner at the receiver
further helps by increasing e3.

The challenge with RF combining is that it not only needs
CSIT but also Channel State Information at the Receiver (CSIR)
for the joint transmit beamforming and receive combiner op-
timization. In contrast, DC combining only needs CSIT for
transmit beamforming optimization.

4) Waveform: Another promising strategy is the design of
transmit multi-carrier (N > 1) waveform to utilize the nonlinear
characteristic of the rectenna so as to boost e2 × e3 [64]. Such
design originates from the fact that the output of the EH and e3
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Fig. 14. Average output DC power P r
dc versus the number of receive antennas

Q for M = 10 transmit antennas based on circuit simulations [75].

are a nonlinear function of the rectenna input signal shape, as
shown in Fig. 7 and discussed in Observation 1. The transmit
waveform design has a significant influence on P rdc, namely it
not only affects e2 and P rrf , but also e3.

In [64], a systematic methodology was derived to design and
optimize waveforms for WPT. The optimal waveform design
in [64] is adaptive to the frequency selective channel (with
frequency flat channel being a special case) and is rooted in
the tradeoff between allocating the power to the strongest car-
rier so as to leverage the frequency diversity/selectivity and
maximize e2 and allocate power across N carriers so as to
leverage the rectifier nonlinearity and maximize e3. As a result,
the optimal waveform allocates power non-uniformly across the
N carriers, with the carriers corresponding to stronger channel
gain allocated more power. Due to the EH nonlinearity, the
waveform design results from a non-convex and computation-
ally involved optimization problem. Assuming M = 1, Q = 1,
linear HPA and deterministic multisine waveform, yrf(t) =√
2�{∑N−1

n=0 hnxne
j2πfnt}+ wA(t). Denoting xn = sne

jϕn

and hn = Ane
jϕn , the optimal set of phases {ϕn} and mag-

nitudes {sn} that are solutions of problem (22) are given by
ϕ�n = −ϕn and by the solutions of the optimization problem
(for no = 4)

max
{sn}

α

[
N−1∑
n=0

s2nA
2
n

]
+

∑
n0,n1,n2,n3

n0+n1=n2+n3

3∏
j=0

snj
Anj

(34)

subject to

N−1∑
n=0

s2n ≤ P (35)

where α = β2ζ2/(β4ζ4). The first term in (34) relates to P rrf =
E[yrf(t)

2] and the second term to E[yrf(t)
4]. The challenge is

due to the nonlinear coupling across frequency captured by the
second term. The first term will favor a single-sinewave power
allocation strategy, i.e., allocating all the power to sinewave
corresponding to maxnAn. However due to the presence of
the second term, such a single-sinewave strategy is in general
sub-optimal. Indeed, the optimal solution results from a tradeoff
between maximizing the first term (and therefore maximizeP rrf )
by allocating power to a single sinewave and leveraging the

Fig. 15. Frequency response of the wireless channel and WPT waveform
magnitudes (N = 16) for 10 MHz bandwidth [68].

nonlinearity of the second term (and therefore maximize e3)
by allocating power across multiple sinewaves. Consequently,
the optimal solution, obtained using reverse GP, reveals that
the power is allocated across all sinewaves but more power
is allocated to frequencies corresponding to larger channel
gains [64]. This is illustrated in Fig. 15 where the upper graph is
the magnitude of the channel frequency response and the lower
figure illustrates the solution of problem (34) (“opt”) atN = 16
uniformly spaced frequencies. Doing so, the waveform exploits
a channel frequency diversity gain and the EH nonlinearity.

GP does not lend itself easily to implementation due to
the high complexity. Other optimization frameworks to design
waveforms have therefore been proposed in [67], [69]. Sub-
optimal low complexity methods, called SMF, have also been
proposed in [68]. A simple way to allocate power across fre-
quencies is as follows s2n = cA2β

n where c is a constant satisfying
the average transmit power constraint. By scaling the channel
gain using an exponent proportional to β > 1, the waveform
allocates more (resp. less) power to the frequency components
corresponding to large (resp. weak) channel gains and replicates
the main behavior of the “opt” solution. This is illustrated in
Fig. 15 with β = 1, 3 [68]. By adjusting β > 1, we amplify
the strong frequency components and attenuate the weak ones,
so as to come close to the optimal power allocation. Though
suboptimal, the SMF design was shown to perform close to the
“opt” GP design.

Such optimized and low complexity waveforms were shown
using circuit simulations to provide significant benefits of
100%-200% over conventional continuous-wave signal and non-
optimized waveforms in a wide range of rectifier topologies by
leveraging the channel frequency diversity gain and a gain origi-
nating from the rectifier nonlinearity [64], [68]. They have been
successfully experimentally validated, demonstrating gains of
105%-170% in real-time over-the-air experimentation, in [73].
In Fig. 11 and 12, the benefit in terms of output DC power
and range with using N = 8 over conventional CW (N = 1) is
illustrated.

In the presence of HPA nonlinearity, PAPR constraints could
be added to problem (34) as in [64], though a more involved and
interesting problem would be to revise problem (34) accounting
for HPA nonlinearity (11).
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5) Joint Beamforming, Combining and Waveform: Remark-
ably, such waveforms can also be designed for a multi-antenna
transmitter so as to additionally exploit a beamforming gain [64],
[67]. Joint waveform and beamforming enables to simultane-
ously harvest three different gains, namely a beamforming gain,
a frequency diversity gain and a gain related to the rectifier
nonlinearity, and therefore offers additional opportunities over
spatial domain processing/beamforming-only or over frequency
domain waveform-only to boost e2 × e3.

Though the optimal design of joint waveform and beamform-
ing results from the solution of an optimization problem [64],
[67], a simple combination of the MRT beamforming and the
low-complexity SMF waveform was demonstrated experimen-
tally in [74] to significantly boost the output DC power and
the range of WPT, as illustrated in Fig. 11 and Fig. 12. We
observe that WPT performance gains can be obtained by ex-
ploiting either the frequency domain, the spatial domain, or
both domains jointly. Besides, the 8-antenna 1-tone waveform
shows a similar performance to that of the 4-antenna 8-tone
waveform. In the same manner, 4-antenna single-tone and 2-
antenna 8-tone, and 2-antenna single-tone and 1-antenna 8-tone
show similar performance. Such behavior demonstrates that one
can trade the spatial domain (number of antennas) processing
with the frequency domain (number of tones) processing and
inversely, and the gains in terms of output DC power and range
can be accumulated using a joint beamforming and waveform
strategy.

The accumulated gains of beamforming and waveform also
applies to MIMO WPT where a joint waveform, transmit beam-
forming and receive combining was shown to provide significant
gains over individual techniques [89]. It was shown that the joint
waveform and beamforming design provides a higher output DC
power than the beamforming only design with a relative gain
exceeding 180% whenM = 2,N = 16, andQ = 2. Moreover,
RF combining was shown to provide a higher output DC power
than DC combining with a relative gain which can be up to 550%
when M = 2, N = 8, and Q = 10.

Similarly, the transmit waveform and active beamforming can
be jointly designed together with the passive beamforming at
the IRS so as to efficiently exploit frequency and spatial domain
gains [87], [88]. Note that those gains were demonstrated despite
the frequency flat constraints of the passive elements of the IRS
(the scattering matrixΘ of the IRS is constant across frequency).

6) Large-Scale (Massive) MIMO: The results in [64] also
highlight the potential of a large-scale multisine multiantenna
(M >> 1, N >> 1) closed-loop WPT architecture, reminis-
cent of Massive MIMO with orthogonal frequency division mul-
tiplexing (OFDM) in communications. In [67], such a promising
architecture was studied and shown to enhance e and increase
the range of WPT. It enables highly efficient WPT by jointly
optimizing transmit signals over a large number of frequency
components and transmit antennas, thereby combining the bene-
fits of pencil beams (as in Massive MIMO) and waveform design
to exploit the large beamforming gain of the transmit antenna
array and the nonlinearity of the rectifier at long distances. The
challenge is the large number of dimensions N and M that
requires a reformulation of the optimization problem. The new

design offers significantly lower complexity in signal design
compared to the GP approach [67].

Interestingly in the limit of large M , the design
of the joint multiantenna multisine waveform is sim-
plified thanks to the channel hardening. Indeed, with
yrf(t) =

√
2�{∑N−1

n=0 hnxne
j2πfnt}+ wA(t), and writing

xn = snh̄
H
n (with h̄n = hn/‖hn‖ and

∑N−1
n=0 s

2
n ≤ P ),

limM→∞ ‖hn‖/
√
M = 1 and the channel after beamforming

becomes effectively frequency flat due to channel hardening on
all frequencies. In the limit of largeM , {sn} is therefore simply
obtained as the solution (34) over an effective frequency-flat
channel (An = A). A good (close to optimum) strategy is to
allocate power uniformly across frequencies, i.e. sn =

√
P/N .

7) Channel Acquisition: The aforementioned techniques
have been designed assuming perfect CSIT. In practice, the CSI
should be acquired by the ET and several strategies have been
proposed, including forward-link training with CSI feedback,
reverse-link training via channel reciprocity, power probing with
limited feedback, and channel estimation based on backscatter
communications [7], [90]–[97]. The first two are similar to
strategies used in modern communication systems, but incur
too high energy consumption and/or too complex processing for
low power nodes. The third is more promising and tailored to
WPT because it is implementable with very low communication
and signal processing requirements at the ER. The fourth one is
also promising and is based on the idea that the ET exploits its
observed backscatter signals to estimate the backscatter-channel
(i.e., ET-to-ER-to-ET) state information (BS-CSI) directly in-
stead of estimating the forward channel ET-ER as in previous
three techniques. The BS-CSI is then used in the transmit signal
design.

The framework for power probing with limited feedback
of [96] focuses on general setup of multi-antenna multi-carrier
WPT over frequency-selective channels. It demonstrates that one
can jointly exploit a beamforming gain, the channel frequency
selectivity, and the EH nonlinearity through a joint waveform
and beamforming based on limited feedback. To that end, it
relies on the output DC power measurement and a limited
number of feedback bits for the selection or the refinement of
the joint waveform and beamforming. In the selection strategy,
the ET transmits over multiple time slots with a different (joint
waveform and beamforming) precoder within a codebook at
each time slot, and the ER reports the index of the precoder
in the codebook that offers the largest P rdc. In the refinement
strategy, the ET sequentially transmits using two precoders in
each stage, and the ER reports one feedback bit, indicating an
increase or a decrease inP rdc during this stage. Based on multiple
one-bit feedback, the ET successively refines precoders (across
space and frequency) in a tree-structured codebook over multiple
stages. The optimization of the codebook of joint waveform and
beamformers is pretty challenging and employs the framework
of the generalized Lloyd’s algorithm. Fig. 16 illustrates the
experimental results obtained with such a strategy for 1 to 6
bits of feedback with M = 4 and N = 1, 2, 4, 8 [98]. We note
the significant increase in P rdc asN increases with perfect CSIT,
and the need for larger codebook sizes to come closer to the
perfect CSIT performance.
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Fig. 16. Measurement results of output DC power P r
dc of joint waveform and

beamforming with limited feedback for M = 4, N = 1, 2, 4, 8 and 1 to 6 bits
of feedback [98].

8) Transmit Diversity: Another WPT signal strategy, de-
noted as transmit diversity [58], relies on M dumb transmit
antennas to induce fast fluctuations of the wireless channel
through a simple phase sweeping method consisting of the
transmission of a signal x(t) on each antenna with an an-
tenna dependent time-varying phase ψm(t), namely xin,m(t) =√
2�{x(t)ej(2πft+ψm(t))}. Those fluctuations are shown to

boost P rdc. This is another consequence of EH nonlinearity in
Observation 1, namely that fading and fast fluctuations of the
wireless channel do not increase P rrf but increase E[yrf(t)

4] and
therefore e3. In contrast to the beamforming strategies, transmit
diversity does not rely on any form of CSIT. Interestingly, this
highlights that multiple transmit antennas are useful in WPT
even in the absence of CSIT. In [58], [73] real-time over-the-
air measured gains of 50% to 100% were demonstrated with
a two-antenna transmit diversity strategy over single-antenna
setup without any need for CSIT.

Transmit diversity has a number of practical benefits leading
to low cost deployments, namely the use of dumb antennas fed
with a low PAPR CW (hence making a better use of e1), no
need for synchronization among transmit antennas, applicable
to co-located and distributed antenna deployments, transparent
to the ERs (which eases the system implementation), applicable
to deployments with a massive number of devices (massive
IoT deployments) for which CSIT acquisition is unpractical.
Another related CSI-free multiantenna techniques for WPT has
been proposed in [99].

9) Other Techniques: Another technique that can be seen
as an alternative to multi-antenna beamforming to enable
directional/energy focusing transmission for WPT, is time-
reversal [100], [101]. With time-reversal, the multipaths in the
wireless channel are used as virtual antennas to enable spatial-
temporal focusing effect and enhance e2. Upon acquiring the
channel impulse response, the transmitter sends a time-reversed
conjugate waveform, using the principle of match filtering, in
order to leverage the multipath channel and focus the signal
power at the receiver input. Time-reversal can be applied to a
single-antenna or multi-antenna transmitters and requires large
bandwidth in order to distinguish as many paths in the channel
as possible. Note that time reversal waveform design is different
from aforementioned waveform design and is not rooted in the

EH nonlinearity. It may be promising to investigate how those
two types of waveforms can be designed in a unified manner.

Another low complexity (without the need for sophisticated
digital signal processing) alternative to enable beamforming
gain in multi-antenna settings is by using retrodirective arrays.
Upon receiving a signal from any direction, retrodirective arrays
exploit channel reciprocity to transmit a signal response, in
the form of a phase-conjugated version of the received sig-
nal, back to the same direction without the need of knowing
the source direction or performing explicit channel estima-
tion/feedback [102], [103]. Two well known retrodirective array
structures are Van Atta arrays and the heterodyne retrodirective
arrays with phase-conjugating circuits. WPT using retrodirec-
tive techniques have been studied in [104] and experimentally
demonstrated in different setups [105]–[107]. It would be inter-
esting to explore how waveform and retrodirective array could be
jointly designed so as to exploit the beamforming and waveform
gains.

F. Signal Processing Techniques for Multi-User WPT

WPT is not limited to a single ET and ER. In a multiuser
WPT setting with one ET and K ERs, with each ER having
one rectenna (Fig. 2), the output DC power P rdc,k at a given
rectenna k depends on P rdc,j at another rectenna j �= k; i.e., a
given signal, e.g., waveform or beamformer, may be suitable for
one rectenna but inefficient for another. Therefore, a tradeoff
exists between the output DC power of the different rectennas.
The energy region formulates this tradeoff by expressing the
set of output DC power at all rectennas that can be achieved
simultaneously, which is written mathematically as a weighted
sum of output DC power as

max
p(x0,...,xN−1)

K∑
k=1

vkP
r
dc,k(x0, . . .,xN−1) (36)

subject to P trf ≤ P, (37)

where, by changing the weights vk, we can operate on a different
point of the energy region boundary and therefore favor one
user over another one. An alternative problem formulation can
be written as a maximization of minimum energy among all K
users

max
p(x0,...,xN−1)

min
k=1,...,K

P rdc,k(x0, . . .,xN−1) (38)

subject to P trf ≤ P. (39)

Those two problems have been studied in [67].
All aforementioned single-user techniques can be designed

for multiuser WPT. Among the most advanced ones leveraging
combined frequency-domain and spatial-domain gains, we note
the joint beamforming and waveform for multiuser WPT of [64],
[67], and the joint passive beamforming and waveform design
for multiuser IRS-aided WPT of [88]. Fig. 17 illustrates the
energy region for a two user MISO WPT scenario with a joint
beamforming and waveform spanning twenty transmit antennas
(M = 20) and ten frequencies (N = 10), obtained by solving
problem (36) [67]. The challenge is that solving (36) in this two
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Fig. 17. The two-user energy region with joint beamforming and waveform
(M = 20 and N = 10) [67].

user setup results in a coupled optimization of the frequency and
the spatial domains. Indeed, while decoupling the spatial and
frequency domains by first designing the spatial beamformer in
each frequency and then designing the power allocation across
subbands is optimal in the single-user/rectenna case, it is clearly
suboptimal in the multi-user/rectenna case [67]. The key take-
away here is that, by optimizing the waveform to jointly transfer
power to multiple users simultaneously, we obtain an energy
region (“weighted sum”) that is larger than that achieved by a
time-sharing approach, such as time-division multiple access
(TDMA), where the transmit waveform and beamforming is
optimized for a single user at a time and each user is scheduled
to receive energy during a fraction of the time. Other multi-user
waveform designs have appeared in [108], [109].

Considering an entire network consisting of many ETs and
ERs (Fig. 2), [7] defines various network architectures. All ETs
can cooperate jointly to design the transmit signals for multiple
ERs (in the form of a coordinated multipoint (CoMP)-based
WPT) or locally coordinate their efforts such that a given ER is
served by a subset of ETs (or, in the simplest scenario, where
each ER is served by a single ET). As a consequence, different
resource allocation strategies (centralized versus distributed) in
terms of CSI sharing and acquisition at the different ETs can be
considered.

In [7], it was shown that distributing antennas (DAS) across
a coverage area (as in Fig. 2) and enabling cooperation among
them distributes energy more evenly in space and, therefore,
enhances the ubiquitous accessibility of wireless power as com-
pared to a co-located deployment. Strong energy beams in the
direction of users are also avoided, which is desirable from a
safety perspective.

Recent experimental results of WPT architecture based on
DAS in [110] show that that WPT DAS can boost P rdc by up
to 30 dB in a single-user setting and the sum of output DC
power by up to 21.8 dB in a two-user setting and broaden the
service coverage area in a low cost, low complexity, and flexible
manner by suitably and dynamically selecting transmit antenna
and frequency. Other DAS WPT studies have been reported
in [111]–[116].

III. WIRELESS INFORMATION AND POWER TRANSFER:
ACHIEVING THE BEST RATE-ENERGY TRADEOFF

Building upon WPT signal design and processing techniques,
we can study how to integrate communications and power into
WIPT. The objective is here to achieve the best R-E tradeoff.

A. Signal and System Model

We focus on a single-user (point-to-point) multi-subband
MIMO SWIPT system (referred to as “SWIPT with co-located
receivers” in Fig. 3). The system model is the same as in
Section II-A though xm,n,k now denotes the complex-valued
information and power carrying symbol, instead of just a power
carrying symbol, since both information and power are transmit-
ted simultaneously. The information is captured in S possible
messages s ∈ M = {1, 2, . . ., S}, where M denotes the set of
messages. The mapping from M to the sequence of complex-
valued transmitted information and power carrying symbols
xm,n,k is denoted by gθT , where θT refers to the set of transmitter
design parameters.

The processing then depends on the exact SWIPT receiver
architecture. One commonality nevertheless exists among all
considered types of receivers. Namely, from an energy perspec-
tive, yrf,q(t) (or a fraction of it) is conveyed to an ER, where
energy is harvested directly from the RF-domain signal. From
an information perspective, an IR downconverts yrf,q(t) (or a
fraction of it) and filters it to produce the baseband signal for
subband n

yq,n(t) = hq,nxn(t) + wq,n(t), (40)

where wq,n(t) is the downconverted received filtered noise and
accounts for both the antenna and the RF-to-baseband process-
ing noise. After sampling at a frequency fw, the sampled outputs
at time instants k (multiples of the sampling period) can be
expressed as

yq,n,k = hq,nxn,k + wq,n,k (41)

with xn,k � [x1,n,k, . . ., xM,n,k]
T . Following the i.i.d. channel

inputs and the discrete memoryless channel assumptions, we
drop the time index k such that

yq,n = hq,nxn + wq,n. (42)

We model wq,n as an i.i.d. and CSCG random variable with
variance σ2, i.e., wq,n ∼ CN (0, σ2), where σ2 = σ2

A + σ2
P is

the total Additive White Gaussian Noise (AWGN) power origi-
nating from the antenna (σ2

A) and the RF-to-baseband processing
(σ2
P ).
The observations from all receive antennas can then be stacked

to obtain

yn = Hnxn +wn, (43)

where yn� [y1,n, . . ., yQ,n]
T , wn� [w1,n, . . ., wQ,n]

T .
The estimated message ŝ is then produced by the information

decoder (ID) which maps the received noisy sequence yn to
ŝ ∈ M through a parametric function denoted by hθR , where
θR refers to the set of receiver design parameters at the ID.

Finally, we assume perfect Channel State Information at the
Transmitter (CSIT) and perfect Channel State Information at the
Receiver (CSIR).
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Fig. 18. Three single-antenna receiver architectures for SWIPT: (a) Ideal
receiver (using the same signal for both the ID and EH receivers); (b) TS receiver
(switching the signal to either ID or EH receiver); and (c) PS receiver (splitting
a portion of the signal to ID receiver and the rest to EH receiver) [9].

B. Receiver Architectures

Several receiver architectures for SWIPT have been proposed
in Fig. 3.

An Ideal Receiver (Fig. 18(a)) assumes the same signal
yrf,q(t) is conveyed to the EH and also simultaneously RF-to-
baseband downconverted and conveyed to the ID [12], [13];
however, no practical circuits can currently realize this opera-
tion. Different R-E tradeoffs could be realized by varying the
design of the transmit signals to favor rate or energy.

A Time Switching (TS) Receiver (Fig. 18(b)) consists of a con-
ventional ID and an EH (following the structure in Section II-C)
that are co-located [14], [17], [19]. The transmission block is
divided into two orthogonal time slots, one for power transfer
and the other for data transfer. In each time slot, the transmit
waveforms are optimized for either WPT or WIT. Accordingly,
the receiver switches its operation periodically between harvest-
ing energy and decoding information in the two time slots. Then,
different R-E tradeoffs are realized by varying the length of the
WPT time slot, jointly with the transmit signals [117].

In a Power Splitting (PS) Receiver (Fig. 18(c)), the EH and
ID receiver components are the same as those of a TS receiver.
The transmitted signals are jointly optimized for information and
energy transfer and the received signal is split into two streams,
where one stream with PS ratio 0 ≤ ρ ≤ 1 is exploited for EH,
and the other with power ratio 1− ρ is utilized for ID [14], [17],
[18]. Hence, assuming perfect matching (as in Section II-C),
the input voltage signals

√
ρRantyrf(t) and

√
(1− ρ)Rantyrf(t)

are respectively conveyed to the EH and the ID. Different R-E
tradeoffs are realized by adjusting the value of ρ jointly with the
transmit signals.

It is common to assume that the power of the processing noise
is much larger than that of the antenna noise, i.e., σ2

P � σ2
A,

such that σ2 = σ2
A + σ2

P ≈ σ2
P . As explained in [14], the above

setting results in the worst-case R-E region for the practical PS
receiver.

C. Rate-Energy Region and Problem Formulation

The R-E region CR−E is defined as the set of all pairs of
rate R and energy E such that simultaneously the receiver can
communicate at rateR and harvested energyE. The R-E region
in general is obtained through a collection of input distributions
p(x0, . . .,xN−1) that satisfies the average transmit power con-
straint P trf ≤ P . Mathematically, we can write

CR−E(P ) �
⋃

p(x0,...,xN−1):
Pt
rf

≤P

{
(R,E) : R ≤

N−1∑
n=0

I (xn,yn) ,

E ≤ P rdc (x0, . . .,xN−1)

}
(44)

where I(xn,yn) refers to the mutual information between the
channel input xn and the channel output yn on subband n and
P rdc is a nonlinear function of x0, . . .,xN−1. For multi-antenna
harvesters based on RF combining, the receive combiner would
also have to be jointly optimized with the input distribution.

One approach to identify the R-E region is to calculate the
capacity (supremization of the mutual information over all pos-
sible input distributions p(x0, . . .,xN−1)) of a complex AWGN
channel subject to an average RF power constraint P trf ≤ P and
a receiver delivered power constraint P rdc(x0, . . .,xN−1) ≥ Ē,
for different values of Ē ≥ 0. Namely,

sup
p(x0,...,xN−1)

N−1∑
n=0

I(xn;yn) (45)

subject to P trf ≤ P, (46)

P rdc(x0, . . .,xN−1) ≥ Ē, (47)

where Ē is interpreted as the minimum required or target deliv-
ered power.

D. Signal Processing Techniques for WIPT

Designing SWIPT3 requires the transmit signals to carry
information and therefore to be subject to some randomness
and this randomness has an impact on the amount of harvested
DC power. This raises interesting questions on how modulated
signals perform in comparison to deterministic signals for WPT,
and consequently on how to design modulation, waveform,
coding and multi-antenna processing for SWIPT. Due to space
limitations, emphasis is put on key single-user (point-to-point)
techniques, though they can be extended to multi-user settings.

3Even though emphasis is put on SWIPT in this section, the analysis and ideas
reviewed in the paper also find applications in WPCN and WPBC.
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Readers are invited to consult [9] for more discussions on
multi-user WIPT.

1) Modulation and Input Distribution: Let us first assume a
SISO (M = Q = 1) single-subband (N = 1) transmission with
a linear HPA (with e1 = 1) and the ideal receiver. The system
model in (42) simplifies to y = hx+ w. Problem (45)-(47)
becomes

sup
p(x)

I(x; y) (48)

subject to E
[|x|2] ≤ P, (49)

P rdc(x) ≥ Ē. (50)

From (13) and Observation 1, P rdc(x) is not only a function
of E[|x|2] but also a function of E[|x|4] and higher order mo-
ments [66], [118].

Interestingly, the higher moments of the input distribution
have a significant impact on the selection of the input distribution
p(x). It was shown in [66] that modulation using CSCG inputs
leads to a higher P rdc(x) compared to an unmodulated input,
despite presenting the same average power P rrf at the rectenna
input. This gain originates from the large higher order (> 2)
moment of CSCG inputs, which is leveraged by the rectifier
nonlinearity and modeled by the higher order terms in (16).
Indeed CSCG inputs x ∼ CN (0, P ) have E[|x|4] = 2P 2 while
unmodulated CW inputs with the same average RF power only
achieve E[|x|4] = P 2 [66].

Even larger gains can be obtained using asymmetric Gaussian
inputs [118] and on-off keying (or also called flash signal-
ing) [119]. Indeed, real Gaussian modulation outperforms CSCG
modulation despite the same average input powerP rrf to the recti-
fier. In [118], assuming general non-zero mean Gaussian inputs
�{x}∼N (μr, Pr) and �{x}∼N (μi, Pi) with Pr + Pi ≤ P ,
it is found that zero mean asymmetric Gaussian inputs with
Pr + Pi = P achieve the supremum in Problem (48)-(50).
CSCG input obtained by equally distributing power between the
real and the imaginary dimensions, i.e., �{x}∼N (0, P/2) and
�{x}∼N (0, P/2) is optimal for rate maximization. However,
as Ē increases, the input distribution becomes asymmetric with
Pr increasing andPi = P − Pr decreasing (or inversely) till the
rate is minimized and the energy is maximized by allocating the
transmit power to only one dimension, e.g. �{x}∼N (0, P ).
This is because a higher fourth moment is obtained by allo-
cating all power to one dimension. Indeed, E[x4] = 3P 2 for
x ∼ N (0, P ) in contrast to E[|x|4] = 2P 2 with x ∼ CN (0, P ).

In Fig. 19, the information rate I(x; y) and (normalized)
output DC power P rdc(x) for complex Gaussian inputs is shown
versus Pr, assuming an ideal receiver. It is observed that the
information rate and output DC power are indeed maximized and
minimized, respectively, for Pi = Pr = P/2. Alternatively the
information rate and output DC power are minimized and max-
imized, respectively when Pi = 0, Pr = P or Pi = P , Pr = 0.
This shows that there is a fundamental R-E tradeoff even in the
simplest SISO AWGN scenario. It is important to recall that
the tradeoff is induced by the presence of the fourth and higher
moments of the received signal yrf(t) in vout. Had we accounted
only for the second term in vout, P rdc(x) in Fig. 19 would
have been replaced by a flat curve. Ignoring the nonlinearity
brought by the higher order terms, there is no tradeoff between

Fig. 19. Mutual information I(x; y) (Red dashed line) and (normalized) out-
put DC power P r

dc(x) (blue solid line) corresponding to the complex Gaussian
inputs with asymmetric power allocation [119]. The transmitted information
rate is maximized for Pi = Pr = P/2 and delivered power is maximized when
Pi = 0, Pr = P or Pi = P , Pr = 0.

R-E andPi = Pr = P/2 simultaneously maximizes the rate and
energy [9], [12], [13].

Relaxing the constraints on Gaussian inputs, it is remarkably
shown in [119] that the capacity of an AWGN channel under
transmit average power and target delivered power constraints
as characterized by Problem (48)-(50) is obtained by adopting a
combination of CSCG and on-off-keying inputs. LetEG denote
the output DC power with the input x ∼ CN (0, P ). For Ē ≤
EG, the capacity is achieved via the unique inputx ∼ CN (0, P ).
For Ē > EG, the capacity is approached by using time sharing
between CSCG distribution and on-off keying, reminiscent of
flash signaling, exhibiting a low probability of high amplitude
signals. Such a combination of CSCG and on-off-keying inputs
achieves a larger R-E region than asymmetric Gaussian inputs.
Writing the complex input as x = rejθ with its phase θ uni-
formly distributed over [0, 2π), such a on-off keying distribution
is given by the following probability mass function

pr(r) =

{
1− 1

l2 , r = 0,
1
l2 , r = l

√
P ,

(51)

with l ≥ 1. Such a distribution has indeed a low probability of
high amplitude signals since r = l

√
P increases and pr(l

√
P )

decreases as l increases. We note that E[|x|4] = l2P 2 and
E[|x|2] = E[r2] = P , hence achieving large higher moments as
l increases while satisfying the average RF power constraint.
Choosing l >

√
3 makes the fourth order moment higher than

the 2P 2 and 3P 2 obtained respectively with real Gaussian
and CSCG inputs. Here again, the benefits of departing from
Gaussian inputs originate from Observation 1 that favors the
use of distributions with large higher moments of the channel
input x.

On-off keying has been shown to significantly boost e3
conversion efficiency over various baselines [74], [119]. In
Fig. 20, we display circuit simulation results of various mod-
ulations using the rectifier of Fig. 6. We note that on-off keying
(l=1,2,3,4,5) provides three times (i.e. gain of over 200%)
more output DC power (P rdc) than conventional communication

Authorized licensed use limited to: University of Maryland College Park. Downloaded on October 10,2021 at 18:58:17 UTC from IEEE Xplore.  Restrictions apply. 



1076 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 15, NO. 5, AUGUST 2021

Fig. 20. Output DC power (P r
dc) of conventional and WPT-optimized modu-

lations [74]. CG refers to CSCG, and RG to real Gaussian. l=1,2,3,4,5 refer to
on-off keying modulations.

modulations such BPSK and 16-QAM despite having the same
average RF input power (P rrf ).

The optimal distribution resulting from the use of on-off
keying discussed so far assumed a linear HPA. In the presence
of nonlinear HPA response as in Fig. 5, high amplitude signals
would be distorted and the optimal distribution would need to be
re-assessed. One solution is to introduce an additional amplitude
constraint in Problem (48)-(50). It was shown in [119] that under
average transmit power, amplitude, and (nonlinear) delivered
output DC power constraints, the optimal capacity achieving
distributions are discrete with a finite number of mass points
for the amplitude and continuous uniform for the phase (see
also [2]). Other SWIPT design to account for HPA nonlinearities
have been discussed in [120], [121] and is further discussed in
Section IV-B1.

Though the above discussion assumed an ideal receiver, con-
clusions on the modulation and input distribution are applicable
to TS and PS receiver. With a TS receiver, the transmitter would
transmit asymmetric Gaussian or preferably on-off keying and
CSCG alternatively on the two orthogonal time slots and the
receiver would switch accordingly. With a PS receiver, the
asymmetry (Pr and Pi values) in the Gaussian input would
have to be optimized jointly with the PS ratio ρ. Similarly a
combination of CSCG and on-off keying jointly optimized with
the PS ratio could be used. Given two fixed distributions, one
based on CSCG and the other based on on-off keying, an ideal
receiver would achieve a larger R-E region than a PS receiver,
which itself has a larger R-E region than a TS receiver.

Other information theoretical studies of SWIPT with nonlin-
ear EH models have appeared in [71], [122], [123].

2) Waveform: Let us now consider the SISO multi-subband
transmission such that (42) becomes yn = hnxn + wn in sub-
band n. The capacity achieving waveform and input distribution
remains an open problem. Nevertheless, interesting results are
known assuming Gaussian inputs. Assuming a linear HPA (with
e1 = 1) and a SISO multi-carrier waveform with a general
non-zero mean Gaussian inputs �{xn}∼N (μnr, Pnr − μ2

nr)
and �{xn}∼N (μni, Pni − μ2

ni) on each carrier/subband n =

Fig. 21. The optimized R-E regions corresponding to ANG, SNG, ZG and
ZGL with an average power constraint P = 100µW and SNR 20 dB for an
ideal receiver [124].

0, . . . , N − 1, withPn = Pnr + Pni and
∑N−1
n=0 Pn ≤ P , prob-

lem (45)-(47) becomes

sup
{μnr,μni,Pnr,Pni}N−1

n=0

N−1∑
n=0

I(xn; yn) (52)

subject to Tr (Q) ≤ P, (53)

P rdc(x0, . . .,xN−1) ≥ Ē. (54)

In [66], [124], problem (52)-(54) was investigated for such
Gaussian inputs. It was shown that, while single-subband favors
asymmetric inputs with a zero mean as described in previous
section, multi-subband favors non-zero mean and asymmetric
inputs.

In Fig. 21, the R-E regions for Asymmetric Non-zero mean
Gaussian (ANG), Symmetric Non-zero mean Gaussian (SNG)
and Zero mean Gaussian (ZG) are illustrated for N = 9 over a
frequency selective channel for no = 4 in (13) [124]. We also
compare with the R-E region corresponding to the optimal power
allocations under the linear model assumption with no = 2,
denoted by Zero mean Gaussian for Linear model (ZGL). As
it is observed in Fig. 21, due to the asymmetric power allocation
in ANG, there is an improvement in the R-E region compared
to SNG. This gain is reminiscent of the gain observed for
single-carrier modulation. Additionally, it is observed that ANG
and SNG achieve larger R-E regions compared to optimized ZG
and that ANG and SNG perform better than ZGL. This highlights
the fact that under EH nonlinearity (no > 2), ZGL is far from
optimal and the R-E region enhancement offered by ANG over
ZGL in Fig. 21 illustrates the gain obtained by accounting for
the EH nonlinearity in SWIPT signal and system design.

The reason why ANG and SNG lead to larger R-E regions is
due to the fact that the fourth order term in (13) (and therefore
the output DC power) is boosted by allowing the mean of the
channel inputs to be non-zero [66], [124]. Hence, in contrast
to ZGL, we note that the EH nonlinearity impacts not only the
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Fig. 22. From (a) to (d), the mean and variance of different inputs correspond-
ing to the points A, B, C and E, respectively [124].

power allocation strategy across subbands but also the input
distribution in each subband.

The superiority of non-zero mean inputs over zero mean
inputs can be qualitatively explained by the fact that a multi-
carrier unmodulated waveform, e.g. multisine, is more efficient
in exploiting the EH nonlinearity and therefore boosting P rdc
compared to a multi-carrier modulated waveform with CSCG
inputs. From analysis and circuit simulations in [64], [66], P rdc
was shown to scale linearly withN for an unmodulated multisine
waveform. This originates from all the carriers being in phase,
which turns on the rectifier diode (and therefore boosts its sen-
sitivity) in the low power level in a periodic manner by sending
high energy pulses every 1/Δf . On the other hand, P rdc scales
at most logarithmically with N for a modulated waveform due
to the independent CSCG randomness (and therefore random
fluctuations of the amplitudes and phases) of the information-
carrying symbols across subbands.

In Fig. 22, from (a) to (d), the optimized inputs in terms of their
complex mean μn, l = 0, . . . , 8 (represented as dots) and their
corresponding variances σ2

nr, σ
2
ni, n = 0, . . . , 8 (represented as

ellipses) are shown for pointsA, B, C andE in Fig. 21, respec-
tively. PointA represents the maximum output DC power. Hence
the waveform obtained in Point A corresponds to the optimal
deterministic multisine WPT waveform of (34) [64]. Point B
represents the performance of a typical input used for power
and information transfer. Point C represents the performance of
an input obtained via the conventional water-filling strategy in
multi-subband communications (the delivered power constraint
is inactive). These three plots show that as we move from point
A to pointC, the means of the different inputs decrease. Also, as
we move to point C, the means get to zero with their variances

increasing asymmetrically until the power allocation reaches the
water-filling solution (where the power allocation between the
real and imaginary components are symmetric).

Point D in Fig. 21 corresponds to the input where all of
the subbands other than the strongest one (in terms of the
maxn=0,...,N−1 |hn|2) are allocated zero power. All the transmit
power is allocated to the strongest subband in an asymmetric
manner to either real or imaginary component of the input [118],
[124]. Note that this is different from the power allocation under
the EH linear model assumption (i.e. ZGL), for which all the
transmit power is allocated to the strongest subband but equally
divided between the real and imaginary components of the input.
Fig. 22 illustrates the variances of the inputs on the different
subbands corresponding to the point E in Fig. 21. As we move
from point D to point C (increasing the information demand at
the receiver) in Fig. 21, the variance of the strongest subband
varies asymmetrically (in its real and imaginary components).

SWIPT with non-zero mean Gaussian inputs translates into
an architecture based on the superposition of two waveforms at
the transmitter: a power waveform comprising a deterministic
multisine (as in section II-E4) and an information waveform
comprising multi-carrier modulated (with CSCG or asymmetric
Gaussian inputs) waveforms. The complex-valued information-
power symbol on subband n can then be explicitly written
as xn = xP,n + xI,n with xP,n = μnr + jμni representing the
deterministic power symbol of the multisine waveform on sub-
band n and xI,n ∼ N (μnr, Pnr − μ2

nr) + jN (μni, Pni − μ2
ni)

representing the zero-mean Gaussian distributed information
symbol of the modulated waveform on subband n.

Since xP,n is deterministic, the receiver could operate with
and without waveform cancellation. In the former case, the con-
tribution of the power waveform is subtracted from the received
signal after down-conversion from RF-to-baseband (BB) and
Analog-to-Digital Conversion (ADC). In the latter case, a power
waveform cancellation operation is not needed and the baseband
receiver decodes the translated version of the symbols.

The above waveform and input distribution discussion, though
introduced for the ideal receiver in Fig. 18, also holds for TS
and PS receivers. Nevertheless, one interesting implication of
the non-zero mean Gaussian inputs is that TS can outperform
PS in multi-subband transmission. It is indeed shown in [66] that
for a sufficiently large N (e.g. N = 16), TS is preferred at low
SNR and PS at high SNR, but in general the largest convex hull
is obtained by a combination of PS and TS. This contrasts with
the single-subband case where PS outperforms TS.

The above discussion relies on Gaussian inputs. Leveraging
the above observations on input distribution, the design of of
multicarrier waveform with finite constellation under EH nonlin-
earity was studied in [125]. The authors adapted PSK modulation
to SWIPT requirements and showed the benefits of asymmetric
PSK modulation to enable a larger R-E region compared to
that obtained with conventional symmetric PSK constellations.
Another SWIPT architecture that leverages the waveform design
can be found in [126].

3) Coding: As we have indicated, there is much insight into
information-theoretic, communication-theoretic, and system de-
sign aspects of WIPT. Yet, there has been limited study of
practical codes for the WIPT problem: practical codes that
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approach or achieve R-E limits have only recently been de-
veloped [127]. A coding theory viewpoint on simultaneously
transmitting information and energy is important in practice.

Constrained codes have been developed for the WIPT prob-
lem [128]–[130], especially in the noiseless setting. When re-
quiring smooth energy delivery, e.g., due to finite-sized battery
at the receiver, run-length limited (RLL) codes may not be
best for WIPT [131], but subblock energy-constrained codes
(SECCs) [132], [133] and skip-sliding window codes [134],
[135] may be better. Initial analyses of constrained code per-
formance over noisy channels indicate they do not achieve
information-theoretic limits.

In establishing fundamental limits of WIPT, notice that a
certain optimal distribution over the transmitted symbols is
required for the receiver to extract a given amount of expected
energy. Further, in a number of important cases, this distribution
on the signaling constellation is not uniform [2], [12], [119].
Non-uniform input distribution requirements for WIPT rules out
linear codes since linear codes can achieve Shannon capacity
only when the optimal input distribution is uniform over the
input alphabet. One might consider nonlinear algebraic codes
like Kerdock codes and Preparata codes [136], but there is
limited understanding of their performance for asymmetric input
distributions and would likely not achieve capacity.

WIPT was also explored using the concatenation of an in-
ner nonlinear trellis code with an outer LDPC code, showing
performance ∼ 0.8 dB away from the capacity of an AWGN
channel [137], but did not achieve the R-E limit.

To achieve information-theoretic R-E limits using practical
codes, [127] built on polar codes for asymmetric channels [138],
[139], and proposed two polar coding techniques that achieve
R-E limits: one technique involved concatenating nonlinear
mappings with linear polar codes, whereas the other involves
using randomized rounding [127]. The work focused on dis-
crete memoryless channels and the AWGN channel with peak
output power constraint, but investigating optimal polar codes
for realistic nonlinear WPT system models is of interest.

4) Multi-Antenna and Intelligent Reflecting Surface: In a
MISO setup yn = hnxn + wn, it can be shown for a general
multi-band transmission that MRT in each subband is opti-
mal [66]. Hence, the optimal input symbol vector can be written
asxn = h̄Hn xn with h̄n = hn/‖h̄n‖ andxn designed according
to the optimal input distribution/waveform of a SISO transmis-
sion.

In a multi-band IRS-aided SWIPT with linear HPA (with e1 =
1), M = 1 and L elements, yn = (hdn

+ hr,nΘhi,n)xn + wn,
and thanks to (24)-(27), the R-E region of (52)-(54) is expanded
as

sup
Θ,{μnr,μni,Pnr,Pni}N−1

n=0

N−1∑
n=0

I(xn; yn) (55)

subject to Tr (Q) ≤ P, (56)

P rdc(x0, . . ., xN−1,Θ) ≥ Ē, (57)

Θ = diag(Θ1,Θ2, . . . ,ΘG), (58)

ΘH
g Θg = ILG

, ∀g, (59)

Θg = ΘT
g , ∀g. (60)

This problem is addressed in [87] under the simpler case of
single connected IRS (i.e. diagonal Θ) and symmetric non-zero
mean Gaussian inputs.

IV. WPT AND WIPT SIGNAL AND SYSTEM DESIGN

METHODOLOGIES

We now reflect on the methodology to design WPT and WIPT.
Two approaches are discussed, namely the “model and optimize”
approach and the “learning” approach.

A. The “Model and Optimize” Approach

All the above communications and signal design/processing
techniques for WPT and WIPT were developed following a
systematic “model and optimize” approach, namely an analyt-
ical (physics-based) nonlinear model of the EH (Section II-C)
was first derived and tools from signal processing, optimization,
communication and information theories were then developed
to design those techniques. As demonstrated in the previous
sections, the “model and optimize” approach that accounts for
the EH nonlinearity provides significant potential and gains
towards efficient WPT/WIPT design. Importantly, all experi-
mental results in [73], [74], [98] so far have validated the theory
and the designs developed in [7], [9], [58], [64], [66]–[68], [75],
[89], [96], [118], [119], [122], [124].

The EH nonlinearity has now appeared through this approach
to play a crucial role and have a profound impact on WPT and
WIPT signal and system designs [9]. Nonlinearity leads to a
WIPT design quite different from that of conventional wireless
communication, and changes the basic characteristics of the
PHY and MAC layers such as input distribution and modulation,
waveform, RF spectrum use, beamforming and multi-antenna,
resource allocation as well as the transmitter and receiver archi-
tecture. Moreover, ignoring the nonlinearity leads to inefficient
designs of WPT and WIPT [9], [64], [73], [75], [89].

The benefits of the “model and optimize” approach are its
ability 1) to identify optimal solution and reliable analytic
performance guarantees on the accuracy of the solution and
2) to interpret the results and get insights into the signal and
system design. Indeed, the approach relies on optimization and
communication/information theories to derive optimal input
signal for WPT/WIPT accounting for nonlinearity, which led to
further insights into implementable approaches. Nevertheless,
the “model and optimize” approach also comes with two severe
limitations.

First, although nonlinearity is incorporated in the harvester
model of Section II-C and can capture the effect of input signal
power and shape, several simplifying assumptions are made
on perfect impedance matching, ideal low pass filter, diode
modeling, parasitics, etc [64]. Departing from those assumptions
makes the model analytically not tractable, preventing to formu-
late the optimization of WPT/WIPT. This is illustrated by two
examples on WPT waveform design, namely 1) in the presence
of imperfect matching: the formulation leads to a chicken-and-
egg problem where the waveform design is a function of the
impedance mismatch and the impedance mismatch is itself a
function of the waveform design due to nonlinearity; 2) in the
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presence of a non-ideal low pass filter: the choice of the load
impacts WPT signal design and one may or may not benefit
from using multisine/modulated signals over CW depending
on the load and input power, though pinpointing the best set
of waveform, input power and load is currently challenging
[140]–[142].

Second, even if mathematical modelling of the EH nonlin-
earity is feasible using approximations, finding the fundamental
limits of WIPT is mathematically extremely challenging and
computationally intensive, as evidenced by works [119], [124].
Generally speaking, identifying optimal inputs of nonlinear
channels is known in information theory to be a complicated
problem [143]. This often leads to situations where no efficient
algorithms are available to solve the problem at hand, and the
typical and straightforward approaches to tackle such problems
are either considering linearized models or obtaining approxi-
mations and lower bounds on capacity [144].

B. The “Learning” Approach

Despite advances in communication and optimization theo-
ries, many systems subject to nonlinear responses are unknown
in terms of their optimal behaviour (e.g. capacity) and sig-
nal/system design. WPT/WIPT are instances of such systems.
Their designs face problems that cannot be mathematically
formulated and/or for which no efficient solutions exist. The
lack of tractable mathematical models of the rectenna, and
more generally of the entire WPT chain (transmitter-receiver,
including HPA), as well as algorithms to solve WPT/WIPT
signal/system optimizations in general settings is a bottleneck
towards efficient WPT/WIPT designs. In this regard, machine
learning (ML) is instrumental since they can be used to circum-
vent these modelling and algorithmic challenges. This calls for
a “learning” approach.

First, let us consider WPT. By collecting data from circuit sim-
ulations and prototypes, we can investigate two different WPT
design strategies. The first strategy consists in fixing the transmit
waveform hypothesis set and learn the rectenna parameters (e.g.
input power level, load). By considering load and input power
levels as inputs to a deep neural network (NN), the output would
be the best waveform taken in a predefined hypothesis class.
For instance, consider two possible waveforms WF1 and WF2,
and a training set consisting of inputs (power level, load) and
output (the best waveform among WF1 and WF2). Supervised
learning (logistic regression) enables to classify under which
input power level and load, WF1 (resp. WF2) is preferred. This
can be generalized to larger hypothesis classes and rectenna
parameters, and tackles the limitations of the current approaches
used in the RF and microwave literature [140]–[142]. The second
strategy consists in fixing the rectenna parameters and learn the
best transmit waveform. For a given load and input power, rein-
forcement learning can then be used to design waveform based
on sequential feedback (measurements) from the environment
(circuit and prototype), despite the presence of nonlinearity,
impedance mismatch, etc. This would tackle the limitations of
the “model and optimize” approach used in [7], [64], [67], [68],
[96].

Second, let us consider WIPT. By drawing data samples
from the model or from measurements, learning can be used
to obtain well performing achievable strategies. For instance, a
combination of supervised learning and reinforcement learning
could be used to learn efficient input distributions for general
nonlinear WIPT. This would tackle the limitations of the “model
and optimize” approach used in [9], [66], [72], [118], [119],
[122], [124].

A “learning” approach towards WPT and WIPT will provide
different perspectives on signal and system design, fundamental
limits, channel estimation and feedback, low-complexity and
efficient strategies. Learning communications systems [145],
[146] seeks to optimize transmitter and receiver jointly without
any artificially introduced block structure, and over any type of
channel without the need for prior mathematical modeling and
analysis. Using ML to address communications-related prob-
lems has been studied in the past [147] and has received renewed
interests due to the development of deep learning (DL) software
libraries [148]–[150], and specialized hardware. Several groups
have in the past few years investigated DL applications in
communications, e.g. interpreting a communication system as an
autoencoder (when the system can be properly modeled) [145],
[146], channel decoding [151]–[153], compression [154], CSI
feedback [155], and optical communications [156], [157]. NNs
can also be trained for RF design to learn the behaviour of
passive/active components and circuits [158].

In view of the above and that large training datasets can
be created from circuit simulations and experiments, learning
appears well suited for WPT/WIPT. Nevertheless, learning is not
a one-size-fits-all solution. Indeed, despite the potential to tackle
the aforementioned limitations of WPT/WIPT, the drawback of
the learning approach, in contrast with the model-and-optimize
approach, is the lack of performance guarantees on the accu-
racy of the solutions and the lack of human-interpretability.
This also calls for developing an interplay between model-
and-optimize and learning approaches to get the best of both
worlds.

A learning approach towards WPT and WIPT signal and
system design, and an integrated approach that leverages the
complementarity and synergy of the learning and the model-
and-optimize approaches, remain largely uncharted research
territories. Some early and promising results on this learning
approach for WPT and WIPT design have appeared in [70],
[159]–[162]. In the sequel, we further discuss some learning
techniques for WPT and WIPT relying on model-based and
data-based end-to-end learning and physics-based learning.

1) Model-Based and Data-Based End-to-End Learning:
Considering a SISO single-subband transmission, the goal is
to design the channel inputs x such that the receiver demand
of information and power is satisfied. Following [70], [159],
[160], we consider the SWIPT system as an NN-based de-
noising autoencoder, where both the transmitter and receiver
are implemented as NNs in order to perform the modulation
and demodulation processes, respectively. A general NN-based
implementation of the point-to-point system with ideal receiver
is illustrated in Fig. 23. At the transmitter, the message s ∈ M
is converted into a binary vector of length �log2(S)� denoted by
sb (�x� returns the smallest integer larger than x). The vector sb
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Fig. 23. NN-based implementation of the SISO single-subband SWIPT [160].

is then processed by the NN and is converted into a codeword
x = gθT(s). Accordingly, the set of transmitter design parame-
ters θT are related to the weights and biases across the encoder
module. To satisfy the power constraint, a power normalization
is performed as the last layer of the transmitter module.

The symbol x is corrupted by the channel noise. At the
receiver, the estimation is performed by mapping the received
noisy observation y to an S-dimensional output probability vec-
tor denoted by ŝo (and estimating the message by returning the
index corresponding to the maximum probability). Accordingly,
θR refers to the set of receiver parameters in terms the weights
and biases across the decoder module.

The delivered DC power at the receiver can be modelled in
two different ways, either based on an analytical model e.g.,
(13) and (14) [70], [159], or by learning its input-signal/output-
power relationship from measurement data [160]. The latter is
particularly powerful, and the larger the amount and diversity
(in terms of a large range of input signal power and shape,
load, etc) of the collected data, the higher the accuracy of the
learned model. An EH model can obtained by applying nonlinear
regression over collected real data [160]. In particular, we study
the data collected from the EH circuit from Fig. 6. The function
we consider for modelling the EH is given as

fLNM(P rin) = σ(W3σ(W2σ(W1P
r
in + w1) + w2) + w3), (61)

where P rin denotes EH instantaneous input power, i.e., P rin =
|y|2. W = {W 3×1

1 , W 2×3
2 , W 1×2

3 , w3×1
1 , w2×1

2 , w1×1
3 } is the

set of parameters to be optimized and σ(·) = tanh(·). In order
to train the parameters we use Gradient Descent optimization
applied over the following objective function

LEH(W) =
1

m

m∑
i=1

(fLNM(P rin)− P rdc)
2, (62)

Fig. 24. Model of an EH based on applying nonlinear regression over collected
real data from rectifier in Fig. 6 with a CW input waveform [160].

whereP rdc is the collected output DC power corresponding to an
instantaneous input power P rin andm is the number of collected
data used for training. In Fig. 24, the learned model (solid blue
line) and the collected data (red dots) are illustrated.4

Note that, since for power delivery purposes, the received RF
signal is directly fed into the EH, the signal is not processed
through the NN. We aim at following a learning approach
and training the structure in Fig. 23 to minimize the objective
function L(θT, θR) given as

L(θT, θR) =
1

|B|
∑
l∈B

L(s(l)o , ŝ(l)o ) +
λ

P rdc(s
(l))

, (63)

where B is a randomly drawn minibatch of training data, which
is assumed to be generated i.i.d. with a uniform distribution
over the message set M and |B| is the cardinality of that batch.
L(s(l)o , ŝ(l)o ) = −∑S

i=1 s
(l)
o,i log ŝ

(l)
o,i is the cross entropy function

between the one-hot representation of the lth training sample
(denoted by s(l)o ) and its corresponding output probability vector
ŝ
(l)
o at the receiver. s(l)o,i and ŝ(l)o,i indicate the ith entry of the vectors

s
(l)
o and ŝ

(l)
o , respectively.

The approach can be extended to coded modulation, in which
case the output of the mapping function is of higher dimen-
sion, i.e., a sequence of symbols x. Similarly, the approach
is extendable to multi-user settings, for instance the broadcast
channel, multiple access channel and the interference channel.
The end-to-end learning of SWIPT in all those types of channels
has been studied in [160]. Further extension to more general
multi-carrier settings remains an open area.

In the sequel, we illustrate the benefit of the above approach
through two examples of modulation design under EH nonlin-
earity under linear and nonlinear HPA regime.

Example 1 - Modulation under Nonlinear EH and Linear
HPA: In Fig. 25, we illustrate the set of constellation points

4The measurements are obtained using Continuous Wave (CW) signals and
assuming that the circuit is operating in steady state (since the effect of the
transient state is negligible). Modulation learning using CW measurements is
justified because amplitude modulation effectively corresponds to a CW with
different power levels.
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Fig. 25. Illustration of learned modulations under EH nonlinearity and linear HPA, respectively, with M = 16, P r
rf = 10µW and SNR= 50 (16.98 dB) for

different values of λ with corresponding P r
dc.

(with M = 16) obtained via end-to-end learning considering
the EH as shown in Fig. 6 and using data-based model (61)
for P rrf = 10μW. We assume that a linear HPA with G = 1 and
As = ∞, and therefore do not need to model it.

By increasing λ, the demand for power at the receiver in-
creases. Accordingly, the modulation loses its symmetry around
the origin in a way that some of the transmitted symbols are
getting away from the origin. As the receiver power demand
increases, the transmit signal modulation is reformed. In the
extreme scenario, where the receiver demand for power is at its
maximum, the symbols possess only two amplitudes (one away
from the origin and the other equal to zero) and becomes an
on-off keying signalling. In this example, since only one symbol
is shooting away, the probability of the on (high amplitude)
signal is 1/16 and the probability of the off (zero amplitude)
signal is 15/16.

An interesting observation about the learned modulations
in Fig. 25 (in particular focusing on the last sub-figure) is
that the channel input empirical distribution approaches to a
distribution with two mass points for the amplitude, one with
“low-probability/high-amplitudes” and the other with “high-
probability/zero-amplitudes”. This result is inline with (51)
where we recall that the information-theoretic optimal channel
input distributions of problem (48)-(50) for large power delivery
(accounting for EH nonlinearity) follow the same behaviour, i.e.,
“low-probability/high-amplitudes” and “high-probability/zero-
amplitudes”.

Though modulation has been computed here using Fig. 24
and illustrated for P rrf = 10μW, the same learning approach can
be applied to model (13) as in [70], [159] and to the curve-fitting
model of [72] as in [159], as well as to other input power levels
P rrf as in [160]. The shape of the constellation would change

depending on the model and the input power level. Interestingly,
a major conclusion of [160] is to utilize learning-based results
to design non learning-based algorithms that perform as well.
In particular, inspired by the results obtained via learning, an
algorithmic approach for coded modulation design has been
proposed, which performs very close to its learning counterparts,
and is significantly superior due to its high real-time adaptability
to new system design parameters.

Example 2 - Modulation under Nonlinear EH and Nonlinear
HPA: In Fig. 26, we revisit the results of Fig. 25 but account for
the HPA nonlinearity of (11) assuming β = 10 and the output
saturation voltageAs = 4.47mV . In Fig. 25, the high amplitude
symbol has an amplitude of 12.64 mV and was left undistorted
by the HPA because its nonlinearity was not modeled. Under
HPA nonlinearity, there is no benefit to increase the voltage
of one symbol above As. Instead, we note from Fig. 26 that
another symbol is moved away from the origin to increase the
EH output power. Comparing Fig. 25 and 26, we also note that
HPA nonlinearity leads to a decrease of P rdc. This illustrates
how deep learning can be used for end-to-end SWIPT design
accounting for both transmit and receive nonlinearities.

2) Physics-Based Learning: Physics-based learning has re-
cently emerged as a way to bring together the benefits of learning
and model-and-optimize approaches, especially in scientific dis-
covery and engineering system design. Though it has not been
used much yet in WPT settings, various manifestations as sur-
veyed in [165] hold promise as compelling research directions.
These manifestations include physics-guided loss functions for
machine learning algorithms, physics-guided initialization of
model parameters as a starting state for data-driven training,
physics-guided neural network architecture design, residual
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Fig. 26. Illustration of learned modulations (output constellation of HPA) under EH nonlinearity and HPA nonlinearity, with M = 16, P r
rf = 10µW and

SNR= 50 (16.98 dB) for different values of λ with corresponding P r
dc.

modeling where the residuals of a physical model are char-
acterized by a data-driven model, and hybrid modeling where
physics-based and data-driven models are used together.

One example where physical knowledge has been used in
WPT is in computing the R-E function for settings where
the EH function is only known from simulation/experimental
samples [25]. To bound the Shannon capacity in this setting, the
known physical smoothness of energy harvesting circuits is used
to reduce the sample complexity needed in learning. A related
idea to reduce sample complexity is to constrain deep learning
algorithms to yield models that are scientifically consistent with
known physics [163], [164].

Another physics-based learning approach is to learn sym-
bolic expressions (a first stage in model-and-optimize) using
data-driven techniques. The standard technique for learning such
physical laws from data is symbolic regression, which typically
yields expressions using basic trigonometric and polynomial
functions [166], [167], and may incorporate prior physical
knowledge [169]. Information lattice learning is related to sym-
bolic regression and also performs human-interpretable knowl-
edge discovery from data, but based on physical knowledge
of basic symmetries [171], [172]. Alternatively, one can first
train black-box deep learning models and then distill simple
scientific laws from them [170]. One can imagine learning the
nonlinear phenomenology of WPT circuits and systems using
these techniques and then optimizing system design.

In machine learning, there is often limited training data avail-
able in certain parts of the space. Moreover, typical black-box
machine learning models lack appropriate metacognition and are
wildly confident in those regions since they are unconstrained

by data. To address this issue, one can combine data-driven
models with models from physical knowledge via algorithm
fusion, whether using a hard switch or soft Bayesian weights
determined by confidence levels estimated from density of train-
ing data. In a way, the physical model acts as a backup to the
data-driven model [168]. This hybrid approach would allow safe
optimization of WPT systems.

V. WIRELESS POWERED INTERNET-OF-THINGS

The next-generation Internet-of-Things (IoT) is expected
to connect tens of billions of edge devices (e.g., sensors,
smartphones, and wearable computing devices) to automate
a wide range of services, such as environmental monitoring,
transportation, healthcare, traffic monitoring, and public-safety
surveillance [173]. Among others, a key challenge is the high
maintenance cost of recharging the batteries of an enormous
number of sensors and devices. WPT is a promising solution.
In this section, we discuss the design of three specific wireless-
powered IoT systems: wireless powered mobile edge comput-
ing, wireless powered crowd sensing, and wireless powered
distributed machine learning.

As a basic operation of mobile edge computing, mobile com-
putation offloading (MCO) refers to offloading computation-
intensive tasks from mobiles to the cloud, thereby reducing
the former’s energy consumption and enriching their capabil-
ities and features [174]. On the other hand, realizing MCO
involves the transmission of data and messages across the air
interface [175]. To rein in the incurred transmission-power cost
has been driving researchers to jointly design algorithms for
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MCO and adaptive transmission under the criterion of maximum
mobile energy savings (see e.g., the survey in [176] and refer-
ences therein). On the other hand, active research is also being
carrierd out on energy-efficient mobile (local) computing. In the
area, a wide range of techniques have been proposed to decrease
mobile energy consumption by e.g., task scheduling [177],
dynamic power management [178], and control of CPU-cycle
frequencies [179]–[182]. In Section V-A, we demonstrate the
design of wireless powered mobile edge computing by jointly
designing three relevant technologies: 1) WPT, 2) MCO, and 3)
local computing using the mobile CPU.

Traditional solutions for wireless sensor networking are lim-
ited in their coverage and scalability, as well as suffer from
high maintenance costs [183]. Recently, leveraging the massive
number of sensors on handheld and wearable equipment has led
to the emergence of mobile crowd sensing (MCS) [184]. The key
MCS challenges include how to prolong devices’ battery lives
and incentivizing users’ involvement. In Section V-B, we discuss
a MCS design that uses WPT as an incentivization mechanism
to recharge the batteries of mobile sensors (MSs) in return for
their participation in MCS.

Recently, the existence of enormous mobile data has been
driving the deployment of algorithms for distributed machine
learning at the network edge to distill the data into intelligence
by training AI models [196]. Federated learning (FL) is arguably
the most popular distributed-learning framework in practice.
Its popularity arises from its preservation of data privacy by
distributing a learning task over multiple edge devices (e.g., sen-
sors and smartphones), which keeps data local [197]. To endow
on edge devices the power of running AI algorithms, a recent
focus in the semiconductor industry is to develop low-power
mobile GPUs. The advancements in this direction and the area
of low-complexity mobile AI make it possible to wire power
devices to participate in FL in the near future. This leads to
the emergence a new research topic, namely wireless-powered
distributed learning, which is discussed Section V-C.

The discussion in the preceding sections targets generic WPT
and WIPT systems. Their designs use generic metrics (e.g.,
communication rates or end-to-end WPT efficiencies) and have
not discussed the energy consumption of the receivers. In con-
trast, the wireless-powered IoT systems discussed in this section
target specific applications. As a result, their designs feature
more detailed energy consumption models for more elaborate
computation and operations (e.g., CPU-cycle frequency con-
trol, sensing, and data compression) and application-specific
performance metrics (e.g., data utility for crowd sensing). Due to
limited space, we consider only three types of wireless-powered
IoT systems, namely MEC, MCS and FL systems. However, the
design approach of jointly optimizing WPT, communication,
and computing is general and can be applied to other types of
IoT systems.

A. Wireless-Powered Mobile Edge Computing

A simple wireless-powered MEC system is illustrated in
Fig. 27(a). The mobile with milliwatt power consumption (e.g.,
mobile sensor and wearable computing device) is equipped
with a single antenna and served by a multi-antenna BS that

Fig. 27. (a) Wirelessly powered MEC system and (b) the mobile operation
modes.

is connected to a cloud. The function of the BS is twofold: 1)
performing WPT to the mobile or 2) offloads a computation
task from it. Alternatively, the task can be also executed locally
at the mobile. On one hand, local computing and WPT are
allowed to coexist in time since only the later need use the
antenna. On the other hand, MCO and WPT requires time
sharing of the antenna given its half-duplex transmission. It is
worth mentioning that a more complex design for the case of
executing a multi-task program will involve partitioning of the
program into multiple tasks with some offloaded and the rest
executed locally. Considering the BS, energy beamforming is
applied for WPT and receive beamforming for receiving the
signal during MCO. For simplicity, we assume the existence of
channel reciprocity. That allows the channel power gain to be
represented as a scalar g = |h|2. Last, the mobile harvests P rdc
energy per time unit.

1) Edge Device Operations:
� Local computing: The task of the edge device is to process

a fixed number of input data within a duration ofT seconds.
Adopting an existing model [181], [182], the required
number of CPU cycles, denoted as X , can be modeled
as a random variable with a given distribution. To specify
the distribution, let pk denote the probability that the data
processing is not completed after k CPU cycles and N the
allowed maximum number of CPU cycles. Mathematically,
pk = Pr(X ≥ k) with k = 1, 2, . . . , N . It is assumed that
mobile has the knowledge of the distribution so as to make
a decision on if the computing task should be offloaded or
not.

� CPU control: The CPU-clock frequency can be con-
trolled and its value directly determines the computation
energy consumption. A single CPU cycle consumes a
certain amount of energy, denoted as E(f clk), which is
a function of the frequency f clk. Based on the model
in [185], E(f clk) = γ(f clk)2 where the given parameter
γ depends on the switched capacitance. The CPU-cycle
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frequencies for the CPU cycle 1, 2, . . . , N are represented
by f clk

1 , f clk
2 , . . . , f clk

N , respectively.
� Computation offloading: The device offloads computa-

tion by transmitting data to the BS to be processed in the
cloud. After that, the computation result is downloaded to
the device. The capacity of the uplink channel (in bit/s) is
denoted as C and can be written as

C =W log

(
1 +

P trfg

σ2

)
(64)

where σ2 is the variance of complex white Gaussian chan-
nel noise and W the channel bandwidth. As the cloud has
practically infinite computational resources, the time for
computing in the cloud is much smaller than offloading
time. The same is downloading time of computation result
because the high BS transmission power keeps the down-
link transmission delay small. In addition, the computation
result usually has a small size and decoding it at the mobile
consumes negligible energy consumption with respect to
that for offloading and local computing.

2) Wireless Powered Local Computing: Consider the case
of executing the computation task using the local CPU. The
objective of energy efficient local computing is to control the
CPU-cycle frequencies, {f clk

k }, so as to minimize the expected
mobile energy consumption, denoted as Ēmob. As the computa-
tion task is likely to be completed with no more than N CPU
cycles,

Ēmob
({f clk

k }Xk=1

) ≈ N∑
k=1

γpk(f
clk
k )2. (65)

The frequency control must satisfy two constraints. The first con-
straint is the computation deadline:

∑N
k=1

1
f clk
k

≤ T . The other
is the well known energy harvesting constraint accounting for
the fact that the consumed energy cannot exceed the harvested
energy at any time instant. The constraint can be decomposed
into N sub-constraints given as

m∑
k=1

γ(f clk
k )2 ≤ P rdc

m∑
k=1

1

f clk
k

, m = 1, 2, . . . , N. (66)

At the left side of the above inequality is the total energy
consumed by the first m CPU cycles while the total energy
harvested by the end of themth cycle is at the right side. Based on
above discussion, the design of energy efficient local computing
can be formulated as the following optimization problem:

min
{f clk

k }

N∑
k=1

γpk(f
clk
k )2 (67)

s.t.
m∑
k=1

γ(f clk
k )2 ≤ P rdc

m∑
k=1

1

f clk
k

, ∀m, (68)

N∑
k=1

1

f clk
k

≤ T, (69)

f clk
k > 0, ∀k. (70)

Though the problem is non-convex, it can be transformed into
an equivalent convex problem by replacing {f clk

k }with a new set
of variables {yk}with yk = 1

f clk
k

. The equivalent problem allows

the application of Lagrange multiplier theory to shed light on the
structure of the optimal policy. To this end, define two positive
constants a and a′ as

a =
γN3

T 3
and a′ =

γ

T 3

(
N∑
k=1

p
1
3

k

)2( N∑
k=1

p
− 2

3

k

)
. (71)

Then the optimal CPU-cycle frequencies {f clk�
1 ,

f clk�
2 , . . . , f clk�

N } that solve the optimization problem in
(67)–(70) have the following properties [187].

1) Low-power regime: If the recovered DC power P rdc < a,
the harvested energy is insufficient for accomplishing the
computation task.

2) Medium-power regime: If the recovered DC power
P rdc ∈ [a, a′), the optimal CPU-cycle frequencies should
be set as

f clk�
k =

[
1

T

N∑
m=1

(pm + λ)
1
3

]
(pk + λ)−

1
3 , ∀k (72)

where the positive constant λ is the Lagrange multiplier
associated with the energy harvesting constraint.

3) High-power regime: If the recovered DC powerP rdc ≥ a′,
{f clk�
k } are independent of P rdc:

f clk�
k =

(
1

T

N∑
m=1

p
1
3
m

)
p
− 1

3

k , ∀k. (73)

3) Wireless Powered Computation Offloading: Consider the
case of offloading the computation task to the cloud. The objec-
tive of energy efficient computation offloading is to maximize
the mobile energy savings, referring to the difference between
harvested energy and transmission energy consumption. As
shown in Fig. 27(b), the time interval [0, T ] is divided into
two parts: [0, t′] and (t,′ T ], corresponding to WPT and of-
floading, respectively. The amount of energy harvested over
the interval [0, t′] can be written as EWPT(t

′) = P rdct
′. Con-

sider offloading. The most energy-efficient data transmission
policy under a deadline constraint as proved in [186] to be
the fixed-rate transmission over the interval (t,′ T ]. Given the
result, let Eoff(t

′) represent the offloading energy consumption

and it can be expressed as Eoff(t
′) = [2

L
B(T−t′) − 1]σ

2

h (T − t′).
It follows that [EWPT(t

′)− Eoff(t
′)] gives the energy savings. As

the function need not be monotone over t′, its maximum can be
found by optimizing the WPT/offloading time partitioning. To
simplify notation, define the offloading duration t = T − t′. We
can write EWPT(t) = P rdc(T − t) and Eoff(t) = (2

L
Bt − 1)σ

2

g t.
This allows the objective function to be simplified as

EWPT(t)− Eoff(t)=P
r
dcT +

(
σ2

g
−P rdc

)
t− σ2

g
t2

L
Bt . (74)

It follows that the design of energy efficient offloading can be
formulated as the following optimization problem:

max
t

EWPT(t)− Eoff(t)

s.t. 0 < t < T,

EWPT(t)− Eoff(t) ≥ 0.

The problem is convex since the objective function can be
easily shown to be a concave function for t ∈ (0,∞). This allows
us to obtain the optimal offloading duration, denoted as t�, in
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Fig. 28. Wireless powered crowd sensing system.

closed form. To this end, define a positive constant a′′ as

a′′ =
σ2

e1

{
1 +

[
L ln 2

WT
+ W̃ (−e−1−L ln2

WT )

]

× exp

(
L ln 2

WT
+ W̃ (−e−1−L ln2

BT ) + 1

)}
(75)

where W̃ (x) is the Lambert function defined as the solution for
W̃ (x)eW̃ (x) = x. Then the optimal offloading duration t� has
the following properties.

1) Low-power regime: If the recovered DC powerP rdc < a′′,
the harvested energy is insufficient for offloading.

2) Sufficient-power regime:If P rdc ≥ a′′, the optimal of-
floading duration

t� =
ln 2× L

W
[
1 + W̃ (

P r
dc

σ2e − 1
e )
] . (76)

4) Optimal Offloading Decision: The optimal offloading
policy aims at maximizing the mobile energy savings. Using
the results obtained in preceding subsections, we are ready to
derive the optimal policy as follows.
� If either offloading or local computing is feasible but not

both, i.e., P rdc ≥ a for local computing or P rdc ≥ a′′ for
offloading, then this mode is chosen.

� If both are feasible, we can select the preferred mode
by comparing their energy savings corresponding to the
optimal polices derived previously.

B. Wireless Powered Crowd Sensing

Fig. 28 illustrates a multi-user WPCS system. There exist
in the system multiple single-antenna mobile sensors (MSs)
connected to a single multi-antenna BS. Consider crowd-sensing
within some time window of interest. It is divided into three
phases: message passing, WPT, and crowd sensing (see Fig. 28),
which are described as follows.
� Message-passing phase: Via feedback, the BS acquires

knowledge of the parameters of each sensor including the
channel state, sensing and compression power. Then the

Fig. 29. Architecture and operations of a mobile sensor.

BS applies the knowledge to jointly control the allocation
of transferred power to MS’s and their operations (i.e.,
data sensing, compression, and transmission). Thereby, the
data utility is maximized while the energy consumption is
minimized. After solving the multi-objective optimization
problem (elaborated in the sequel), the BS applies the
optimal policy to inform each individual MS to control their
compression ratios, sensing-data sizes, and the time sharing
of its operations. We assume that receiving these control
parameters with small sizes consumes a sensor negligible
energy.

� WPT phase: WPT is adopted by the BS to incentivize
MS’s to participate in crowd sensing (see Fig. 28). For the
energy transferred by the BS to each MS, a part is saved
as a reward and the rest is used to execute the sensing task
and transmit sensing data to the BS.

� crowd-sensing phase: Adopting the settings communi-
cated by the BS, the MS’s perform sensing, data compres-
sion, and transmission simultaneously. The data transmis-
sion by MS’s are over parallel OFDM sub-channels as-
signed by the BS. The crowd-sensing duration, represented
by T , is separated into three slots for sensing, compression,
and transmission. Their durations are denoted as t(s)n , t(c)n ,
and tn, respectively. This introduces the following time
constraint:

(Time constraint) t(s)n + t(c)n + tn ≤ T. (77)

Consider the WPT phase lasting T0 (seconds). The BS points
K sharp beams to perform simultaneous WPT to K MSs. The
transmit power of the n-th beam is denoted as P trf,n. The total
transmit power of the BS should not exceed P . Mathematically,

(Power constraint)
K∑
n=1

P trf,n ≤ P. (78)

The channel between the BS and MSn has a power gain denoted
as gn. Then the amount of energy harvested by MS n can be
written as E(h)

n (P trf,n) = e3gnP
t
rf,nT0 = P rdc,nT0.

1) Mobile Sensor Operations: The operations of an arbitrary
sensor, say MS n, are illustrated in Fig. 29 and described as
follows.
� Data sensing: Based on experiments, the total energy

consumption for sensing, denoted asE(s)
n (


(s)
n ), is approx-

imately proportional to the sensing-data size. The size,
denoted as 
(s)n , can written as 
(s)n = snt

(s)
n , where sn

denotes the output data rate and t
(s)
n denotes the sens-

ing duration. Then we can model the sensing energy as
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E
(s)
n = q

(s)
n 


(s)
n = q

(s)
n snt

(s)
n , where q(s)n denotes the sens-

ing energy consumption per bit.
� Data compression: Sensing data is compressed using loss-

less method. Some typical ones include Huffman, run-
length, or Lempel-Ziv encoding. To simplify exposition,
all MSs are assumed to adopt an identical compression
method. It has a maximum compression ratio Rmax. The
MS’s choose their own compression ratios and the choice
of the n-th MS is represented by Rn ∈ [1, Rmax]. The
gives the size of compressed data as 
n = 


(s)
n /Rn. Some

measurement results based on popular compression tech-
niques, i.e., XZ compression, Zlib, and Zstandard [190]
suggest that the number of CPU cycles needed to compress
1-bit of data can be fitted to an exponential function of the
compression ratio Rn:

C(Rn, ε) = eεRn − eε, (79)

where the positive constant ε depends on the specific
compression algorithm. For a sanity check, C(Rn, ε) =
0 for Rn = 1 in the special case of no compression.
The CPU-cycle frequency at MS n is fixed to be f clk

n .
Then we can obtain the compression time duration
as t(c)n = (


(s)
n C(Rn, ε))/f

clk
n . As in the preceding sub-

sections, each CPU cycle consumes the energy of q(c)n =
γ(f clk

n )2. The energy consumption for data compression,
denoted by E

(c)
n (


(s)
n , Rn), is given as E(c)

n (

(s)
n , Rn) =

q
(c)
n 


(s)
n C(Rn, ε) with C(Rn, ε) in (79). As a result,

E(c)
n (
(s)n , Rn)=q

(c)
n 
(s)n (eεRn−eε). (80)

A similar model can be developed for lossy compression
e.g., data truncation after discrete cosine transform.

� Data transmission: After compression, each scheduled
MS uploads sensing data to the BS. For the n-th MS, the
transmission power and time duration are represented by
P̃ trf,n and tn, respectively. Assuming channel reciprocity,
the achievable transmission rate (in bits/s), denoted by

vn, can be given as vn = 
n/tn =W log2(1 +
gnP̃

t
rf,n

σ2 ).
It follows that the transmission energy consumption is

E
(t)
n (
n) = P̃ trf,ntn =

tn
gn
z(
n/tn), where we define the

function z(x) as z(x) = σ2(2
x
W − 1).

2) System Optimization: Both MSs and (system) operator
receive rewards. The reward requested by a MS is in terms of
energy transferred from the BS minus that for supporting the MS
operations. LetE(r)

n denote the energy reward requested by MS
n. It is proportional to the size of sensing data denoted as 
(s)n ,
namely,E(r)

n = q
(r)
n 


(s)
n with q(r)n being a fixed scaling factor. On

the other hand, the net operator’s reward is the utility of the data
collected from MSs minus the energy cost. A commonly model
of data utility is as follows (see e.g., [192]). We can measure the
utility of 
n-bit data provided by MS n using the logarithmic
function an log(1 + bn


(s)
n ), where bn is the loss of information

caused by compression and the weight factor an depends on the
data type. The monotonicity of the function captures the fact
that more information-bearing data gives a higher level of data
utility, e.g., higher machine-learning accuracy [194] or better
image/video resolution [193]. On the other hand, the logarithmic

function has the property of reflecting the diminishing return as
the data size increases, resulting in more repeated and redundant
data. With the model, we write the the sum data utility for the
operator as

U(�(s)) =

K∑
n=1

an log(1 + bn

(s)
n ). (81)

The operator’s reward, denoted byR(�(s),P ), can be modelled
as

R(�(s),P ) =
K∑
n=1

an log(1 + bn

(s)
n )− c

K∑
n=1

P trf,nT0, (82)

where c denotes the price of unit energy as measured against
unit data utility.

The objective of system optimization is to maximize the
operator’s reward under two constraints. One is that the totally
energy harvested by a MS should exceed its spent energy:

E(r)
n + E(s)

n + E(c)
n + E(t)

n ≤ P rdc,nT0, ∀n. (83)

The other is the time constraint per round:



(s)
n

sn
+


(s)
n C(Rn, ε)

f clk
n

+ tn ≤ T. (84)

We can make the observation that if the sensing rate sn and
the CPU-cycle frequency f clk

n are fixed, the partitioning of
crowd-sensing time of sensor n for sensing, compression, and
transmission can be determined by the sensing-data size 
n,
compression ratio Rn, and transmission time tn. Then the sys-
tem operations can be optimized over all or a subset of these
variables.

For example, the problem of jointly optimizing joint power
allocation, sensing, and transmission can be formulated as

max
P t

rf,n≥0,�
(s)
n ≥0,

tn≥0

K∑
n=1

an log(1 + 
(s)n )− c

K∑
n=1

P trf,nT0

s.t.
K∑
n=1

P trf,n ≤ P,

βn

(s)
n + tn ≤ T, ∀n,

ξn

(s)
n +

tn
gn
f

(


(s)
n

Rntn

)
≤ P rdc,nT0, ∀n,

where ξn = q
(r)
n + q

(s)
n + q

(c)
n C(Rn, ε) and βn = 1

sn
+

C(Rn,ε)
f clk
n

. This can be shown to be a convex program and
thus can be solved efficiently using an existing algorithm.
Based on the well-known KKT conditions, some light can be
shed on the optimal policy [188]. In particular, the optimal
sensor-transmission duration is

t�n ∝ T

WRnβn
. (85)

On the other hand, the optimal wireless-power allocation policy
has a threshold-based structure:

P t�rf,n
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=

⎧⎨
⎩

1

e3gnT0

[
t�n
gn
f

(
T−t�n
Rnβnt�n

)
+
ξn(T−t�n)

βn

]
, ϕn ≥ λ�,

0, ϕn < λ�,

where λ� is a Lagrange multiplier and ϕn represents the MS-
scheduling priority function given as

ϕn =
ane3gn

q
(r)
n + q

(s)
n + q

(c)
n C(Rn, ε) +

N0 ln 2
gnBRn

− c. (86)

The result suggests that only the MSs with their priority func-
tional values above the threshold λ� should be scheduled for
participating in the crowd sensing operation and being rewarded
with energy in return. Finally, the optimal sensing-data sizes
{(
(s)n )�} are proportional to the corresponding sensing dura-
tions:

(
(s)n )� =

⎧⎨
⎩
T − t�n
βn

, ϕn ≥ λ�,

0, ϕn < λ�.
(87)

The problem of optimizing all system variables is non-convex.
One low-complexity algorithm for finding a local optimal point
is to iterate between solving convex sub-problems, each of which
is over a subset of variables. For instance, one sub-problem
can be that discussed above and the other being the joint op-
timization of compression and transmission, both of which are
convex [188].

C. Wireless-Powered Federated Learning

A wireless-powered FL system in a circular cell is illustrated
in Fig. 30(a). In the system, a server equipped with an access
point coordinates multiple devices to perform the task of training
an AI model. Dense power-beacon, dedicated WPT stations,
are deployed to reliably delivery energy to the devices. The
randomly distributed beacons can be suitably modeled as a
Poisson point process with a density λpb. If the density is high,
beacons deliver to each device a stable amount of energy within
an arbitrary communication round (or window), say one with
the duration T , which is approximately given as

P rdc =
πα′ρP trfλpb

(α′ − 2)να′−2
(88)

where ν ≥ 1 is a given minimum propagation distance avoiding
singularity in path loss, α′ > 2 is the path-loss exponent of a
WPT link, P trf is the transmission power of power-beacons,
and ρ represents the product of energy-conversion efficiency
and energy-beamforming gain. The efficiency of the beacon
network can be characterized by a single parameter, termed the
spatial-energy density, which is defined as λenergy � P trfλpbT .
It can be interpreted as the amount of energy delivered by
the power-beacon network to an arbitrarily located device in a
single round. The transfer energy is then applied by each device
to computation and communication in the round. The detailed
system operations that implement the FL algorithm are described
in Section V-C1. Essentially, the SGD based algorithm supports
distributed stochastic-gradient estimation using local data at de-
vices. The processor (clock) frequencies as well as their sizes of
mini-batch data used in estimation can be optimized to maximize
the estimation accuracy under the WPT constraint. The details
are presented in Section V-C2. Given the optimal control of local

Fig. 30. (a) Wireless-powered FL system and (b) the system operations.

computation at devices, there exists a fundamental trade-off in
the system between the WPT network parameter (i.e., delivered
energy per unit area) and the learning performance. It is termed
the WPT-learning trade-off and discussed in Section V-C3.

1) System Operations and Models: A typical FL algorithm is
the distributed implementation of the classic iterative stochas-
tic gradient descent (SGD) algorithm (see e.g., [195]). Each
iteration involves broadcasting by the server and uploading by
devices and thus is called a communication round. The FL
algorithm repeats the rounds until the model under training
converges.

To facilitate exposition, some basic definitions are given as
follows. The learning task aims at training a global model,
represented by the high-dimensional parametric vector w. The
accuracy of the model is measured using a so called global
loss function evaluated on the global dataset (aggregation of
all distributed data), denoted as F (w). Its gradient ∇F (w(i)) is
referred to as the ground-truth gradient. The distributed training
process involves training of models at devices using local data,
which are called local models. Each device attempts to estimate
the ground-truth gradient using a mini-batch of local data under
constraints on computation capacity and energy. The results are
called local gradients denoted as g(i)

k for device k and round (i).
Without the constraints, all devices can use all available local
data in estimation; then combining their estimations give the
ground-truth gradient.

As illustrated in Fig. 30(b), the operations of each round,
say round i, and relevant mathematical models are described as
follows.
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1) The server broadcasts the current global model, w(i), to
all devices for computing local gradients.

2) Assume that the model is a deep neural network. Using
the received model, each device computes a local gra-
dient using a data mini-batch and the well known back-
propagation algorithm in the deep-learning literature. The
computation is powered by part of the harvested energy
given in (88). As in the preceding sub-sections, the pro-
cessor clock frequency of each device, denoted as f clk,(i)

k
for device k and round i, is assumed controllable. The
previous computation-energy model can be modified for
a GPU to be [189]

E
(i)
cmp,k = b

(i)
k CkW

(
f

clk,(i)
k

)2

, ∀k (89)

where b
(i)
k denotes the mini-batch size, the coefficient

Ck is a constant characterizing the computation-energy
efficiency of the processor, W is the number of floating
point operations (FLOPs) needed for processing each data
sample in gradient computation. The computation time is

t
(i)
cmp,k =

b
(i)
k W

f
clk,(i)
k

, ∀k. (90)

3) Allocated a bandwidth of B Hz, each device transmits its
local gradient at a data rate of

S
(i)
k =W log2

⎛
⎝1 +

g
(i)
k P

t,(i)
rf,k(

r
(i)
k

)α
σ2

⎞
⎠ , ∀k, (91)

where g(i)k is the channel gain, P t,(i)rf,k represents the trans-
mission power, N0 the power spectrum density of the
additive white Gaussian noise, r(i)k the propagation dis-
tance, and α the path-loss exponent. Assume that each
coefficient is quantized intoQ bits and part of the duration
T , denoted as tcmm

k , is allocated for transmission. Then the
resultant transmission-energy consumption can be shown
to be given as [189]

E
(i)
cmm,k =

(
r
(i)
k

)α
g
(i)
k

ϕ(t
(i)
cmm,k), ∀k, (92)

where the function ϕ(t) � BN0t(2
qQ
Bt − 1).

4) It is desirable for all devices to participate in model updat-
ing in each round. However, some devices may encounter
deep channel fading and as a result do not have sufficient
energy for the purpose. Thus, only a subset of devices,
denoted as a subset M(i) ⊆ K with size M (i) = |M(i)|,
can participate in learning in this specific round. The
server computes the global gradient by aggregating local
gradients received from active devices:

g(i) =

⎧⎨
⎩

1
M(i)

∑
k∈M(i)

g
(i)
k , M (i) > 0

0, M (i) = 0
. (93)

Subsequently, the global model is then updated using SGD
as

w(i+1) = w(i) − ηg(i), (94)

where η is the given learning rate (step size). This com-
pletes one round.

2) Local Computation Optimization: Given fixed computa-
tion time and energy, what should be the optimal mini-batch size
and processor (clock) frequency? Note that from the perspective
of an individual variable, a large value is desired for enhancing
the gradient-estimation accuracy, but their effects on time and
energy need to be balanced. The earlier question can be answered
by formulating an optimization problem for maximizing the
accuracy of local gradient estimation. It is shown in [189] that
the expected deviation of the local gradient from its ground truth
is inversely proportional to the sampled batch size, bk. Then the
desired optimization problem can be formulated as

max
{bk,f clk

k }
bk

s.t. 0 < bkCkW (f clk
k )2 ≤ Ecmp,k,

0 <
bkW

f clk
k

≤ Tcmp,

where Tcmp refers to the duration of the local gradient compu-
tation phase. By integer relaxation of bk and solving the above
problem, the optimal policy is found to be

b�k =
1

W

(
Ecmp,kT

2
cmp

Ck

) 1
3

and f�k =

(
Ecmp,k

CkTcmp

) 1
3

. (95)

3) Optimal Learning-WPT Tradeoff: Given the optimal con-
trol of local computation in the preceding sub-section, we can
study the trade-off between the spatial energy density provided
by the beacon network and the learning performance, thereby
establishing the optimal learning-WPT trade-off.

Essentially, the spatial energy density affects the probability
a device fails to participate in learning. Specifically, the event,
called an outage, occurs when the harvested energy by the device
is insufficient for computation and communication. Given the
transferred power in (92) and assuming server-beamforming
over Rayleigh fading channels, the outage probability can be
shown to be [189]

Pout =
γ(L, ξ)− ξ−

2
α γ(L+ 2

α , ξ)

Γ(L)
, (96)

where γ(·, ·) is the lower incomplete Gamma function, and the
parameter ξ is defined as

ξ =
(α′ − 2)να

′−2Rαϕ(Tcmm)

πα′ρλenergy
(97)

where R is the cell radius and T cmm is the duration of the gra-
dient uploading phase. Note that the the parameter is inversely
proportional to the spatial energy density λenergy. It follows that
the number of active devices, M , has the following binomial
distribution

Pr(M = m) =
1

1− PKout

(
K

m

)
(1− Pout)

mPK−m
out , (98)

where 1 ≤ m ≤ K.
One common metric of measuring the FL (or SGD) per-

formance is the model-convergence speed that is specified
as follows. A sample of the stochastic learning process can
be described by the model realizations {w(i)}. Given N
rounds, the convergence speed is commonly measured in
the literature using the expected average gradient norms,
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E[ 1N
∑N−1
i=0 ‖∇F (w(i))‖2]. Its value, a function of N , is ex-

pected to be sufficiently small if the model is likely to converge
within N rounds. The convergence analysis of FL in the liter-
ature (see e.g., [195]) is modified in [189] to account for the
random number of active devices in each round. As a result, the
optimal learning-WPT trade-off is esablished as follows

E

[
1

N

N−1∑
i=0

‖∇F (w(i))‖2
]

≤ 2
[
F (w(0))− F∗

]
ηN

+
δWCσ(1− Pout)

ρ
1
3K(Tcmp)

2
3 λ

1
3
energy

+Res,

(99)

where the parameterCσ is explained shortly,K the total number

of devices, the constant δ � 4
αB( 23 ,

2
α )(

(α′−2)να′−2

πα′ )
1
3 , and the

residue term Res given as

Res = 2

(
K∑
m=2

Pm−1
out − PKout

K −m+ 1
+ P 2

out

)
Φ. (100)

The constant Cσ is a weighted sum of the computation-energy
efficiencies of all devices: a larger value indicates a high power-
growth rate as the processor frequency is scaled up and vice
versa. From the above result, we can infer the effect of WPT as
follows. Increasing the spatial-energy density leads to a linear
growth of energy harvested by each device. As a result, active
devices can estimate the local gradient with higher accuracy
by using larger mini-batch sizes. Next, due to the gradient
aggregation at the server, increasing K reduces the expected
gradient norm following the scaling law of O( 1

K ). Last, the
term Res captures the loss of convergence rate caused by those
devices in computation-outage. If Pout is small, Res scales as
O(Pout).

VI. CONCLUSION

This article has first provided a tutorial overview of vari-
ous signal processing techniques for WPT and WIPT. It then
discussed the benefits of two different design methodologies
based on model and optimize and learning approaches. Finally
it showed how WPT, computing, sensing, and communica-
tion need to be jointly designed in future wireless powered
applications.

One first conclusion of the paper is to highlight that signal
processing and machine learning techniques have an important
role to play in WPT for future networks, but the techniques need
to be developed in light of the physics and hardware constraints
of WPT. This calls for abandoning naive and oversimplified lin-
ear models and accounting for nonlinearities and non-idealities
at the transmitter and receiver ends.

A second conclusion is that WPT will act an important
enabler for future networks and opens the door to new chal-
lenges and opportunities where communications, computing,
and sensing have to be jointly designed together with WPT. It is
hoped that the signal processing, machine learning, computing,
and sensing techniques presented here will help inspire future
research in this promising area and pave the way for designing

and implementing efficient WPT, WIPT, and wireless-powered
systems and networks in the future.

It is our hope that the ideas and tools discussed and reviewed
in this overview paper will stimulate and encourage further
research in the broad area of wireless power (and information)
transfer for future networks at microwave, millimeter, terahertz,
and visible light frequencies.
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