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Wiretap Channels: Implications of the More Capable
Condition and Cyclic Shift Symmetry
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Abstract—Characterization of the rate-equivocation region of a
general wiretap channel involves two auxiliary random variables:
, for rate splitting and , for channel prefixing. In this paper,

we explore specific classes of wiretap channels for which the eval-
uation of the rate-equivocation region is simpler. We show that if
the wiretap channel is more capable, is optimal and the
boundary of the rate-equivocation region is achieved by varying
rate splitting alone. Conversely, we show under a mild condi-
tion that if the wiretap channel is not more capable, then
is strictly suboptimal. Next, we focus on the class of cyclic shift
symmetric wiretap channels. We show that optimal rate splitting
that achieves the boundary of the rate-equivocation region is

uniform with cardinality and the prefix channel between op-
timal and is expressed as cyclic shifts of the solution of an
auxiliary optimization problem over a single variable. We provide
a special class of cyclic shift symmetric wiretap channels for which

is optimal. We apply our results to the binary-input cyclic
shift symmetric wiretap channels and thoroughly characterize the
rate-equivocation regions of the BSC-BEC and BEC-BSC wiretap
channels.

Index Terms—Channel prefixing, rate-equivocation region, rate
splitting, wiretap channel.

I. INTRODUCTION

W E consider the discrete memoryless wiretap channel
shown in Fig. 1. The capacity region of this channel is

characterized by the rate between the legitimate users Alice
and Bob, and the equivocation at the eavesdropper Eve.
Wyner [1] characterized the rate-equivocation region when
the received signal at Eve is a degraded version of the signal
received at Bob. Csiszár and Körner [2] characterized the
rate-equivocation region for general, not necessarily degraded,
wiretap channels.
Csiszár and Körner’s characterization involves two auxiliary

random variables: , for rate splitting, and , for channel
prefixing. Evaluation of capacity regions involving auxiliary
random variables is generally difficult, and it is desirable to
determine cases where the auxiliary random variables are
either not needed or their optimal selection is simplified. For
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Fig. 1. Wiretap channel.

the wiretap channel, under certain conditions, it is known that
the use of one or both of these auxiliary random variables is
unnecessary. For instance, if the wiretap channel is degraded,
neither rate splitting nor channel prefixing is necessary, i.e.,
the selection and is optimal, for the entire
rate-equivocation region [1]. In fact, the same conclusion holds
if the wiretap channel is less noisy [2, Th. 3]. For general
wiretap channels, for the purposes of characterizing the secrecy
capacity, i.e., the largest equivocation, rate splitting is unnec-
essary, i.e., is optimal [2]; further, if the wiretap channel
is more capable, then channel prefixing as well is unnecessary,
i.e., and are optimal [2].
In this paper, we explore specific classes of wiretap chan-

nels for which calculation of the optimal rate splitting and/or
channel prefixing parameters is simpler. The inclusion relations
among the classes of wiretap channels considered in this paper
are shown in Fig. 2. First, we show that if the wiretap channel is
more capable, then channel prefixing is unnecessary; that is, the
rate-equivocation region can be characterized by rate splitting,
i.e., is optimal and the boundary of the rate-equivoca-
tion region can be traced with optimal only. Conversely,
we prove under a mild condition that, if the channel is not more
capable, then channel prefixing is strictly necessary, i.e.,
is strictly needed.
Next, we study the class of cyclic shift symmetric wiretap

channels.We show that the optimal rate splitting that achieves
the boundary of the rate-equivocation region is uniform with
cardinality and the prefix channel between optimal and
is expressed as cyclic shifts of the solution of an auxiliary

optimization problem over a single variable. This is a consid-
erable reduction in the computation requirement for the calcu-
lation of (the boundary of) the rate-equivocation region. We
provide the cardinality bound on this single auxiliary random
variable appearing in the optimization problem. Then, we for-
mulate the problem as a constrained optimization problem. We
provide a sufficient condition under which rate splitting is un-
necessary, i.e., is optimal and the boundary of the rate-
equivocation region is obtained by varying alone. In partic-
ular, we show that if is maximized at the
uniform distribution, i.e., if the channel is dominantly cyclic
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Fig. 2. Inclusion relations among the classes of wiretap channels.

shift symmetric, then this sufficient condition is satisfied, and
hence, rate splitting is unnecessary. Moreover, we show that if
the main channel is more capable and both channels are cyclic
shift symmetric, then rate-equivocation pair is achiev-
able. We also discuss an extension of the notion of cyclic shift
symmetry for continuous alphabets. Finally, we apply our re-
sults to the binary-input cyclic shift symmetric wiretap chan-
nels. We investigate two examples that illustrate the consid-
ered cases: BSC-BEC and BEC-BSC wiretap channels. We pro-
vide full characterizations for the rate-equivocation regions of
the BSC-BEC and BEC-BSC wiretap channels. In particular,
we find that rate splitting is never necessary for the BSC-BEC
wiretap channel. We also provide a class of wiretap channels
that are dominantly cyclic shift symmetric, more capable and
not less noisy, for which and is optimal.

II. MODEL AND BACKGROUND

As in Fig. 1, Alice communicates with Bob in the presence
of an eavesdropper, Eve. The input and output alphabets, ,
, and , are finite. The main channel is characterized by

and has capacity . Similarly the
wiretapper channel is characterized by and has capacity

. represents the message to be sent to
Bob and kept secret from Eve with .
Alice uses an encoder to map each message to a
channel input of length . Bob uses a decoder .
The probability of error is: . The rate
is achievable with equivocation , if as , and

(1)

Perfect secrecy1 is achieved if and the secrecy
capacity is the highest achievable perfectly secure rate .
The maximum possible equivocation is also .

1We use the weak secrecy notion. However, for discrete wiretap channels,
weak and strong secrecy are equivalent [3], [4].

The input distribution belongs to the dimensional
probability simplex denoted as

(2)

Throughout the paper, denotes the following function of
the input distribution :

(3)

where is an arbitrary parameter. We denote simply
as . Note that is continuous and differentiable in
for all .
Csiszár and Körner [2] characterized the entire rate-equivo-

cation region as stated in the following theorem.

Theorem 1 ([2, Corollary 2]): pair is in the rate-
equivocation region if and only if there exist
, such that , and

(4)

(5)

Further, the secrecy capacity is

(6)

Finally, the cardinality bounds on the alphabets of the auxiliary
random variables are2

(7)

(8)

The rate-equivocation region of a wiretap channel is a convex
region. Therefore, the upper right boundary is traced by solving
the following optimization problem for all , as in Fig. 3:

(9)

Note that this optimization problem is computable due to the
bounds on the sizes of and in (7) and (8) in Theorem 1. In
the sequel, we refer to the solution of the optimization problem
in (9) as the optimal selections , , and . These op-
timal selections depend implicitly on the value of . The optimal
value of the objective function in (9) at is the secrecy ca-
pacity . In this case, is unnecessary, and in fact, we get (6)
[2]. Note that the bounds on the cardinalities of and in (7)
and (8) in Theorem 1 are valid in general. However, the specific
cardinality bound on for (9) when , or equivalently (6),
is

(10)

To see (10), we first note the following:

(11)

2These bounds are originally given in [2] for the general problem with
common messages as and . In this
paper, we do not consider common message.
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Fig. 3. Characterization of the upper right boundary of the rate-equivocation
region.

In view of (11), we use the standard argument that follows from
[5, Lemma 3] and the strengthened Caretheodory theorem of
Fenchel–Eggleston in [6], where real continuous functions
of (defined from to real numbers) necessary in this
argument are , and

. Therefore, cardinality is sufficient
to solve the optimization problem in (6); see also Appendix C
in [7] and [8] for a rigorous justification of this bound.

III. MORE CAPABLE WIRETAP CHANNELS

More capable condition is a partial ordering for discretemem-
oryless channels as formally defined below.

Definition 1 ([2]): is more capable than if
for all .

Awiretap channel is more capable if the main channel is more
capable than the eavesdropping channel.
In [2, Th. 3], Csiszár and Körner observe that if the wiretap

channel is more capable, then channel prefixing is unnecessary,
i.e., is optimal, for achieving the secrecy capacity.
We will strengthen this result. We will prove that if the wiretap
channel is more capable, then channel prefixing is unnecessary
for achieving the entire boundary of the rate-equivocation re-
gion. Conversely, we will prove, under a mild condition, that
if the wiretap channel is not more capable, then is
strictly suboptimal, i.e., there exists that improves the
rate-equivocation region compared to .
Let denote the elementary PMF where all the mass is con-

centrated in the th coordinate, i.e., its th entry is 1 and all
other entries are zero. Note that , , form the
canonical basis for the dimensional Euclidean space, and in
particular, is the convex hull of , . An im-
portant topological property of is stated in the next lemma,
namely a point in the simplex partitions the simplex into
subsimplexes in a specific way.

Lemma 1: Let and be two PMFs in . There exists a
PMF and an index set with
such that

(12)

where for . In particular, if
is an interior point of .

Fig. 4. Partitioning the probability simplex .

Proof: The probability simplex has corner points ,
. Given , we can find a triangulation

[9] of by combining of the

corner points and . Then, we get , where is the
convex hull of , .
If has a zero entry, then some has smaller dimensionality;
however, this does not violate the generality. Hence, a given
PMF resides inside one of . Moreover, if has all nonzero
entries, then it is not in the convex hull of any proper subset of
, . Hence, in this case.

Lemma 1 says that a point in partitions it into sub-
simplexes which are convex hulls of of the vertices
and the point itself. We illustrate this partitioning for in
Fig. 4. As a consequence, any PMF can be expressed as a convex
combination of any other PMF and of the canon-
ical PMFs . In fact, this partition and hence the representation
in (12) is unique. Only the existence of such a representation is
sufficient for our arguments in this paper. In particular, we use
this existence result to prove the main theorem of this section
which is stated next. The proof of this theorem is provided in
Appendix A.

Theorem 2: If the wiretap channel is more capable,
is optimal for the entire boundary of the rate-equivocation re-
gion and the cardinality bound on is . Con-
versely, if the wiretap channel is not more capable,
is strictly suboptimal provided that is maximized at an
interior point of .
As a result, if the wiretap channel is more capable, channel

prefixing is not necessary, and hence, the computation of the
rate-equivocation region is considerably simplified. Moreover,
the bound on the necessary rate splitting reduces by 2 compared
to Csiszár and Körner’s bound (from to ). Another
remark is that the direct part in Theorem 2 immediately extends
for continuous alphabet wiretap channels, i.e., if a continuous
alphabet wiretap channel is more capable, then rate splitting is
unnecessary and optimal . However, the converse part
does not immediately extend as the proof presented for finite
cardinality input alphabets does not directly extend to infinite-
dimensional spaces of probability density functions.
We next review less noisy channels for future reference. Less

noisy condition is a stronger partial ordering than more capable
condition.

Definition 2 ([2]): is less noisy than if
for all , .
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A wiretap channel is less noisy if the main channel is less
noisy than the eavesdropping channel. If a wiretap channel is
less noisy (regions and in Fig. 2), neither rate splitting nor
channel prefixing is necessary for the entire rate-equivocation
region [2, Th. 3].

IV. CYCLIC SHIFT SYMMETRIC WIRETAP CHANNELS

In this section, we focus on cyclic shift symmetric channels.
Let denote the shifter matrix where

otherwise.
(13)

For any input PMF , we call the PMF
, the th cyclic shift of it. Cyclic shift

symmetric channels are defined in terms of cyclic shifts of the
input PMF:

Definition 3 ([10]): is cyclic shift symmetric if
is invariant under any cyclic shift of the input PMF.

Cyclic shift symmetric channels are an important class that
includes binary symmetric, binary erasure, and type-writer
channels. A wiretap channel is cyclic shift symmetric if both
the main channel and the eavesdropping channel are cyclic
shift symmetric. Two key properties of cyclic shift symmetric
channels are 1) the th cyclic shift of the input PMF for

yields the same mutual information
, and 2) uniform distribution maximizes [10,

Th. 2]. We remark that our development specifically uses these
two properties of cyclic shift symmetric channels and it cannot
be extended to the larger class of input invariance symmetric
wiretap channels [10].
In the following theorem, we determine the structure of the

optimal auxiliary random variables and as well as the
channel input for cyclic shift symmetric wiretap channels.
Remarkably, the optimizing rate splitting and channel pre-
fixing parameters can be determined by solving an auxiliary
optimization problem over only one auxiliary random variable.
In addition, the cardinality bounds on and are reduced to

and , respectively, compared to the general case in (7)
and (8). We provide the proof of this theorem in Appendix B.

Theorem 3: In a cyclic shift symmetric wiretap channel, an
optimal selection of the auxiliary random variables and
in (9) has the cardinalities and , respec-
tively, with the following structure:

(14)

(15)

(16)

(17)

where denotes the st cyclic
shift of the distribution . Moreover, the distributions

and with are the
optimizers of the following auxiliary optimization problem:

(18)

where .
We illustrate the specific structure of the optimal auxiliary

random variables and the channel input in Fig. 5. In partic-
ular, each element of generates the optimizing PMF
over elements of . The first elements of generate
the optimizing conditional PMF over . The re-
maining elements of generate cyclic shifts of
over . An equivalent representation for the optimal selections
can be obtained by letting with
:

(19)

(20)

(21)

Note that is a deterministic function of , as stated in [2,
Th. 1]. This is verified easily from the equivalent representation
in (19)–(21). Given ,
with probability 1. However, is a stochastic function of .
These can also be verified from Fig. 5.
The optimization problem in (18) is a constrained optimiza-

tion problem over variables: probability distribu-
tions on , . Each probability distribution
accounts for variables for . In addition,
the distribution for accounts for variables. Let us de-

fine and .

We have , and , . The fol-
lowing is a restatement of the constrained optimization problem
in (18):

(22)

Note that the cyclic shift symmetry assumption on Bob’s and
Eve’s channels brings a significant reduction in the cardinalities
of the auxiliary random variables. In particular, the bound on the
rate splitting variable reduces from to and the bound
on the channel prefixing variable reduces from
to . The problem in (18) for is equivalent to finding
the secrecy capacity . Thus, in cyclic shift symmetric wiretap
channels, solving a problem of the same number of variables
as finding the secrecy capacity is sufficient to characterize the
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Fig. 5. Structure of the optimal for cyclic shift symmetric wiretap channels. and , are the solutions of
the auxiliary optimization problem in (18).

optimal selections of and for any point on the boundary of
the rate-equivocation region.
The structure of the optimal auxiliary selections and

for cyclic shift symmetric wiretap channels in Theorem 3 indi-
cates a sufficient condition for to be an optimal selec-
tion: If the optimizing and ,

in (18) are such that

(23)

then rate splitting is not necessary. In this case, as has
cardinality , each element of generates a cyclic shift of

, and a uniform distribution is generated over
. Therefore, the uniform together with the cyclic prefix

channel in (23) maximizes , and hence,
the objective function in (9) (cf., the proof of Theorem 3 in
Appendix B). In other words, if (23) is satisfied, then
and as selected in (14)–(17) yield a uniform PMF for

for all , i.e., is independent
of . Therefore, if (23) is satisfied, can be selected
without losing optimality, i.e., is not necessary.
Next, we consider a subclass of cyclic shift symmetric chan-

nels, namely dominantly cyclic shift symmetric channels (cf.,
[11, Definition 5]).

Definition 4: A cyclic shift symmetric wiretap channel is
dominantly cyclic shift symmetric if , ,
where is the -dimensional uniform distribution.
Note that from [12, Th. 3] and the fact that the uniform dis-

tribution is capacity achieving for cyclic shift symmetric chan-
nels, a less noisy cyclic shift symmetric wiretap channel is also

dominantly cyclic shift symmetric (see also [13]). We denote
dominantly cyclic shift symmetric channels by the shaded re-
gion in Fig. 2. Note that all cyclic shift symmetric channels in
regions and are shaded. In the following lemma, we prove
the sufficiency of dominant cyclic shift symmetry for having
the solution of (18) satisfy the property in (23). We provide the
proof of this lemma in Appendix C.

Lemma 2: In dominantly cyclic shift symmetric wiretap
channels, rate splitting does not improve the rate-equivoca-
tion region and optimal channel prefixing has the cardinality

. In particular

(24)

We remark here that if the wiretap channel is dominantly
cyclic symmetric, then known inner and outer bounds on the
corresponding broadcast channel capacity region are shown to
coincide in [11]. Therefore, the broadcast channel capacity re-
gion, which is in general an open problem, can be fully char-
acterized for dominantly cyclic shift symmetric channels. We
observe here that dominant cyclic symmetry yields a similar
simplification for the wiretap channel, rendering rate splitting
variable unnecessary. However, note that the class of cyclic
shift symmetric wiretap channels for which rate splitting is un-
necessary is strictly larger than the class of dominantly cyclic
shift symmetric channels. In fact, for all cyclic shift symmetric
channels which satisfy (23), is optimal and dominant
cyclic shift symmetry is just a sufficient but not necessary con-
dition for the property (23). In Section V, we provide examples
for binary-input cyclic shift symmetric wiretap channels that are
not dominantly cyclic shift symmetric but for which rate split-
ting is still unnecessary.
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Note that the secrecy capacity expression in (24) is the solu-
tion of the problem in (18) for . We also remark that (24)
is generally an upper bound for the secrecy capacity:

(25)

(26)

(27)

but it is attained for dominantly cyclic shift symmetric wiretap
channels by Lemma 2.
Next, we consider more capable cyclic shift symmetric

wiretap channels for which Theorems 2 and 3 are both appli-
cable. According to Theorem 3, the optimal and have
the transition probabilities as in (14)–(17) where the solution
of the auxiliary optimization problem in (18) is for all

. We observe that the structure in (14)–(17) with
can be equivalently represented as uniform with cardinality

and , which is compatible with Theorem 2. In
the following corollary, we show that the optimal and

achieve rate-equivocation pair. Furthermore, by
Lemma 2, if the channel is more capable and dominantly cyclic
shift symmetric, pair is achieved by and

. We provide the proof of this corollary in Appendix D.

Corollary 1: In a more capable cyclic shift symmetric
wiretap channel, and the rate-equivocation pair

is achievable. In a more capable dominantly cyclic
shift symmetric wiretap channel, pair is achieved by

and .
More capable cyclic shift symmetric wiretap channels have

already been covered in [12] in the following example:

In [12], it is shown that, for close enough to (depending
on the values of and ), the wiretap channel is more capable.
However, in the same reference, the channel is shown to be not
less noisy for any , , and . We now observe that and

are cyclic shift symmetric channels. Therefore, by Corol-
lary 1, pair is achievable by a nontrivial with uni-
form distribution and when , , and are such that
the wiretap channel is more capable.
We note that the results obtained for discrete alphabet cyclic

shift symmetric channels naturally extend if the alphabets
are bounded continuous intervals. In particular, the definition
of cyclic shift symmetry extends naturally for :
If is invariant under any modular shift in the input
PDF, the channel is cyclic shift symmetric. Typical examples
of continuous alphabet cyclic shift symmetric channels are
modulo additive noise channels [14]. If cyclic shift symmetry
holds, the channel capacity is achieved at uniform distribution

over . Hence, if both the main and eavesdropping channels
are cyclic shift symmetric, then the optimal selections and

have the same structure as in Theorem 3. The definition
of dominant cyclic shift symmetry also extends similarly for
continuous alphabets and rate splitting is not necessary for
continuous alphabet dominantly cyclic shift symmetric wiretap
channels.
The result does not directly extend for unbounded input al-

phabets, i.e., for , with an average power constraint.
Even if the cyclic shift symmetry holds, it may not be possible
to generate Bob’s capacity achieving input PDF by shifting the
solution of the auxiliary optimization problem, and therefore,
the proof method in Theorem 3 is not directly applicable.

V. BINARY-INPUT CYCLIC SHIFT SYMMETRIC
WIRETAP CHANNELS

In this section, we consider cyclic shift symmetric wiretap
channels with binary input: . Note that the cardinality
requirement on to solve the problem in (18) is
for binary input wiretap channels. Let ,

and . Let the resulting input
distribution be . The optimization problem in
(18) and (22) for the binary-input case reduces to

(28)

The necessary optimality conditions for the problem in (28)
are found by taking the derivative of the objective function with
respect to , , and , respectively, and they have the fol-
lowing geometric interpretation as we show in [8]: If or are
optimal and interior to interval, then the line drawn from

and must be tangent to the curve
at both points. If or are 0 or 1, then this tangency does not
have to hold. This geometric interpretation provides a simple
check if a point is one of the optimal selections ,
: Draw the tangent line for at . If this tangent line does not

intersect other than or if it intersects at a point
but it is not tangent at , then cannot be an optimal selection.
Also note that optimality conditions do not rule out the trivial
selection and .

A. BSC-BEC Wiretap Channel

Let the main channel be and the eavesdropper’s
channel be . Note that both BSC and BEC are cyclic
shift symmetric. and . For

and the input distribution , we
have

(29)

where is the binary entropy function. We first investigate
some geometric properties of the function in (29). It
can be shown [11] that when is and is

:
1) If , then Eve is less noisy than Bob.
2) If , Eve is more capable but not less
noisy than Bob.
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Fig. 6. General form of the rate-equivocation region of the BSC-BEC wiretap
channel for .

3) If , the wiretap channel is dominantly cyclic shift
symmetric.

We note that for the BSC-BEC channel for any and ,
for some ; thus, the channel is not more ca-

pable and is always in region in Fig. 2. We observe that for
, case 3 above, is maximized at ,

i.e., the channel satisfies dominant cyclic shift symmetry. By
Lemma 2, rate splitting is not necessary for , and
moreover, the required channel prefixing has with

and ,
, where is an input distribution that maxi-

mizes . The secrecy capacity is

(30)

We give a specific numerical example by fixing and
. Note that and hence this wiretap channel is

dominantly cyclic shift symmetric. For this example, the main
channel capacity is , eavesdropping channel capacity
is , and secrecy capacity is , all in
bits/channel use. Note that due to the gain provided by channel
prefixing, the secrecy capacity is strictly greater than .
We also note that for , case 1 above, Eve is

less noisy than Bob, and the secrecy capacity is [2].
We investigate the remaining case, which is case 2 above, in the
next section.
1) Case : When
in the BSC-BEC channel, neither Eve is less noisy nor

the dominant cyclic shift symmetry holds. Secrecy capacity is
still nonzero in this case and the rate-equivocation region has a
nonempty interior. We verified in [8] that for all and for
all , , ,

(31)

Therefore, the optimal selection is ,
and . Note that this selection satisfies the

property in (23). Therefore, is optimal, and the upper
right boundary of the rate-equivocation region can be traced by
only. However, unlike the case of , if

, there exists such that .
We define as

(32)

For , defined as above cannot improve the objective
function. Thus, trivial is the optimal selection for .
However, the highest achievable equivocation with a trivial
selection is zero as Eve’s channel is more capable with respect to
Bob’s channel in this case. Hence, for , the only possible
achievable point is . The general form of the rate-equiv-
ocation region is given in Fig. 6. The upper right boundary in-
cludes the line segment that combines the point for which the
supporting line slope is and the point. This line seg-
ment has the slope .
In conclusion, rate splitting is not necessary for deter-

mining the rate-equivocation region of the BSC-BEC wiretap
channel and in particular the secrecy capacity is

(33)

Note that (33) is in agreement with (30), as in that case
is achieved at .

B. BEC-BSC Wiretap Channel

Now, let themain channel be and the eavesdropper’s
channel be . and . We
have the following facts [11].
1) If , then Bob is less noisy than Eve.
2) If , then Bob is more capable but not
less noisy than Eve.

Hence, if , the wiretap channel is
in region in Fig. 2. By [2], , and from
Corollary 1, is achievable. If , as both
channels are cyclic shift symmetric, by [12, Th. 3],

and is achievable. We investigate the remaining
case, which is , in the next section.
1) Case : In the BEC-BSC wiretap channel, if

, neither less noisy nor more capable condition holds.
We solve the optimization problem in (28) by inspecting the
tangent lines drawn at interior points and find in
[8] that there are two optimal selections which are represented
as and
where the line segment that combines and is
tangent to the curve . The other optimal selection is

and . The
rate equivocation region is traced by varying and finding
that satisfies the tangency and that yields the optimal value
of the objective function given . In particular, we define as

(34)

For , we use the following and :

(35)

(36)

(37)

(38)

(39)

For , is not necessary as in this case.
We obtain a case similar to the more capable condition and one
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Fig. 7. General form of the rate-equivocation region of the BEC-BSC wiretap
channel when .

can easily show that a nontrivial does not improve the objec-
tive function. As is not used for , the achieved rate

and optimal selection of as in Theorem
3 generates uniform distribution on the channel input , which
is capacity achieving for Bob’s channel. Hence, for ,
is achieved. The general form of the rate-equivocation region is
depicted in Fig. 7. Note that the supporting line with slope is
on the boundary of the rate-equivocation region.

C. Existence of More Capable but Not Less Noisy Dominantly
Cyclic Shift Symmetric Wiretap Channels

For the BSC-BEC and BEC-BSC wiretap channels, we ob-
serve that if the channel is more capable but not less noisy, dom-
inant cyclic symmetry does not hold. Conversely, if dominant
cyclic symmetry holds, the channel is not more capable. We
question whether this property extends for general cyclic shift
symmetric wiretap channels, i.e., we ask whether there exist
more capable not less noisy cyclic shift symmetric wiretap chan-
nels that satisfy dominant cyclic shift symmetry. In this section,
we answer this question in the affirmative direction.
We consider the following class of binary-input cyclic shift

symmetric wiretap channels:

Bob’s channel is . Eve’s channel is param-
eterized by and and if , it reduces to . In [8], we
show that there exist selections of parameters , , and such
that the resulting channel is more capable dominantly cyclic
shift symmetric and not less noisy. One such example is ob-
tained when we choose the parameters as , ,
and . Via this example, we illustrate that there exist
more capable, not less noisy, dominantly cyclic shift symmetric
wiretap channels. Note that such channels lie in the intersec-
tion of the shaded region and region in Fig. 2. These channels
demonstrate a desirable property: by Corollary 1, and

is optimal for these channels, i.e., neither rate splitting
nor channel prefixing is necessary.3

3In a conference version of this work [15], we mistakenly claimed that rate
splitting is strictly necessary for more capable but not less noisy channels. This
also disproves [15, Corollary 1].

VI. CONCLUSION

In this paper, we provided new results on the roles of rate
splitting and channel prefixing auxiliary random variables in
a discrete memoryless wiretap channel. We identified general
classes of wiretap channels in which one or both of these auxil-
iary random variables are not needed. In particular, we showed
that if the wiretap channel is more capable, then channel pre-
fixing is unnecessary and the entire boundary of the rate-equiv-
ocation region is traced by rate splitting alone. Conversely, if
the channel is not more capable, we proved under a mild con-
dition that a nontrivial channel prefixing is strictly necessary.
Next, we showed that for cyclic shift symmetric wiretap chan-
nels, the boundary of the rate-equivocation region is achieved by
a uniform with cardinality and the optimal prefix channel
between and is expressed as cyclic shifts of the solution of
an auxiliary optimization problem in a single variable. A spe-
cific consequence of this result is that if is
maximized at the uniform distribution, i.e., if dominantly cyclic
shift symmetry holds, then rate splitting is unnecessary. We ap-
plied our results to binary-input cyclic shift symmetric wiretap
channels and characterized the boundaries of the rate-equivoca-
tion regions of the BSC-BEC and BEC-BSC wiretap channels.
We found that rate splitting is not necessary for the BSC-BEC
wiretap channel. Finally, we showed the existence of more ca-
pable, not less noisy, dominantly cyclic shift symmetric wiretap
channels for which and are optimal. This
demonstrates that there are larger classes of wiretap channels
than less noisy wiretap channels for which the simple selections

and are optimal.

APPENDIX A
PROOF OF THEOREM 2

Assume that is more capable than . For any
, and , we have

(40)

(41)

(42)

where (40) and (41) follow from the Markov chain
, , and (42) follows from the more capable condition.

Therefore, using a nontrivial channel prefixing yields a loss in
the objective function and

is the optimal selection. In other words, in order to
characterize the entire rate-equivocation region, it suffices to
solve the following optimization problem:

(43)

We claim that is sufficient for the solution of (43).
Given , , we fix the following continuous
functions of : components of ,

and . By
[5, Lemma 3] and the strengthened Caretheodory theorem of
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Fenchel–Eggleston in [6], there exists a random variable
, such that

(44)

Therefore, the optimization problem in (43) can be solved with
the cardinality bound . Note the equivalence of the
operations performed for proving the cardinality bounds in (43)
and (6).
To prove the converse, assume that the wiretap channel is

not more capable and is maximized at an interior point
that has all nonzero entries. Moreover, as the more

capable condition does not hold, for some input
distribution . We use and to construct such
that , and

(45)

and hence show the existence of a nontrivial channel prefixing
that provides a higher secrecy capacity and therefore a larger
rate-equivocation region. Applying Lemma 1 to the distribu-
tions and , there exists a PMF , with such
that

(46)

for some index set with ,
and . We construct with in the following
manner:

(47)

In addition, we select ,
. Evaluating

, we observe that, by (46), the
constructed and the maximizer are the same. However,

because given ,

(48)

while given for ,

(49)

As , we have

(50)

Using (50), and taking , i.e., the secrecy capacity point,
we have for the constructed ,

(51)

(52)

which is (45), the desired result, since the generated input distri-
bution is equal to and the left-hand side of (52) is .

APPENDIX B
PROOF OF THEOREM 3

For given , the optimal selections and are the
solutions of the following optimization problem:

(53)

By using the steps in (40) and (41), we obtain an equivalent
statement for (53) as

(54)

We have the following bound for the objective function in (54):

(55)

(56)

where denotes the -dimensional discrete uniform random
variable, and denotes the mutual information ob-
tained by choosing the PMF of as . In (56), we used the
fact that as Bob’s channel is
cyclic shift symmetric. Moreover, we used the fact that is not
needed, i.e., , for maximizing

. Because, for given
, , we can always pick that

maximizes

(57)

and, therefore, choose a deterministic with , where
is the argument of the maximization in (57). Consequently,

we have

(58)

Note that the right-hand side of (58) is the claimed auxiliary
optimization problem in the statement of the theorem. We use
notation to emphasize that the auxiliary random variables on

the right- and left-hand sides of (58) are different.
Next, we will show that the bound in (56) is satisfied with

equality for any cyclic shift symmetric wiretap channel. Let
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with and , , be the so-
lution of the auxiliary problem in (58). First, we note that it
suffices to consider such that . This follows by
the arguments we have used in the previous cardinality bound
proofs. In particular, given , , we fix
components of , , together with

. By [5, Lemma 3]
and the strengthened Caretheodory theorem of Fenchel–Eggle-
ston in [6], the problem in (58) can be solved with the cardinality
bound . Note the equivalence of the operations per-
formed for proving the bounds in this problem and those in (43)
and (6).
Now, we construct the optimal , by using the optimal
for the auxiliary problem in (58) as in the statement of the

theorem. In particular, we select the cardinalities as
and with the distributions for

and

(59)

(60)

(61)

(62)

(63)

(64)
...

(65)

(66)

(67)

The structure of the construction in (59)–(67) is an expression
of the in Fig. 5. Each element of gen-
erates the optimizing selection for the problem in (58)
over disjoint elements of . Each disjoint element of

generates cyclic shifts of the optimizing selection
for the input . In (59)–(67), we denote the th cyclic shift of
the conditional PMF for the channel input , , as

. Note that the cardinality of is while that
of the optimum is and conditional input PMFs,

, are obtained by cyclic shifts of conditional
input PMFs, .
We first observe that are cyclic shifts of a fixed

PMF over for different . In particular, in the construction in

(59)–(67), we selected as cyclic shifts of
while we kept the same as . Hence, we

have

(68)

where . Note that is
the maximizing input PMF for the auxiliary problem. Therefore,
and generate a uniform PMF for :

(69)

Moreover, by construction of and and the cyclic shift
symmetry of the channels, we observe that, for any given

(70)

(71)

Therefore, we have

(72)

(73)

(74)

(75)

where (75) is obtained by using (71) and the fact that
is nonzero only for . Note that

(76)

(77)
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Hence, given , we have

(78)

As is the maximizing input PMF for the auxiliary
problem, we have

(79)

Since and generate a uniform PMF for by (69),
achieves its maximum, as well. Combining this with

(79), we conclude that the constructed and achieve the
upper bound in (56) and hence are optimal.

APPENDIX C
PROOF OF LEMMA 2

It suffices to show that for dominantly cyclic shift symmetric
wiretap channels, the optimal auxiliary selections satisfy the
property in (23). Let the optimal selection of the auxiliary
in the following problem be :

(80)

We will prove that at least one such satisfies the property in
(23). Due to Theorem 3, we already know that the cardinality of
is bounded by .
Let . First, we obtain an upper bound for

the objective function in (80):

(81)

(82)

where (81) follows from and (82) is
obtained by replacing with
its minimum possible value.
Now, we will show that the upper bound in (82) is

achieved by an auxiliary of cardinality
with the desired property in (23). By the hypothesis,

. Moreover,
let . Note that

is different from the uniform distribution. By cyclic shift
symmetry, there exist other input distributions that
minimize , which are cyclic shifts
of , denoted by for . There-
fore, we define the channel prefixing with
as with transition probabilities

, , and
. Then, the input distribution is

. For this selection of ,
we have

(83)

(84)

Note that (84) is equivalent to the upper bound in (82). More-
over, the specified channel prefixing satisfies the desired
property in (23) by construction.

APPENDIX D
PROOF OF COROLLARY 1

First, we select due to Theorem 2. Next, we note that
there exists at least one input distribution, denoted by , that
maximizes , since it is a bounded continuous functional
of and the probability simplex is compact.
There exist other input distributions (cyclic shifts of
) that achieve the maximum . Let us define the aux-

iliary , with , with marginal distribution
, and transition probabilities ,

, and ,
where denotes the th cyclic shift of .
Evaluating (5) with the specified choice of and

with , we have , since
, where is

the uniform distribution, and since Bob’s channel is cyclic shift
symmetric. On the other hand, evaluating (4) for this specific
choice, we get , since for any

,
. This proves that pair is achievable.
Note that if , i.e., if the channel satisfies dominant

cyclic shift symmetry, then is optimal since any cyclic
shift of is itself, and thus, is independent of .
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