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An Outer Bound for the Vector
Gaussian CEO Problem

Ersen Ekrem and Sennur Ulukus, Member, IEEE

Abstract— We study the vector Gaussian CEO problem, where
there are arbitrary number of agents, each having a noisy obser-
vation of a vector Gaussian source. The goal of the agents is to
describe the source to a central unit, which wants to reconstruct
the source within a given distortion. The rate-distortion region of
the vector Gaussian CEO problem is unknown in general. Here,
we provide an outer bound for the rate-distortion region of the
vector Gaussian CEO problem. We obtain our outer bound by
evaluating an outer bound for the multiterminal source coding
problem by means of a technique relying on the de Bruijn identity
and properties of the Fisher information. Next, we investigate the
tightness of our outer bound. Although our outer bound is tight
for certain cases, we show that our outer bound does not provide
the exact rate-distortion region in general. To this end, we provide
an example and show that the rate-distortion region is strictly
contained in our outer bound for this example.

Index Terms— CEO problem, Gaussian multi-terminal source
coding, entropy power inequality, Fisher information.

I. INTRODUCTION

WE STUDY the vector Gaussian CEO problem, where
there is a vector Gaussian source which is observed

through some noisy channels by an arbitrary number of
agents. The agents process their observations independently
and communicate them to a central unit (the so-called CEO
unit) through orthogonal and rate-limited links (see Figure 1).
The goal of the agents is to describe their observations to the
central unit in a way that the central unit can reconstruct the
source within a given distortion. The fundamental trade-off
between the rate spent by the agents to describe the source
and the distortion attained by the central unit is characterized
by the rate-distortion region, which is unknown in general.

The CEO problem is introduced in [1], where the authors
consider a discrete memoryless setting where the source and
the observations of the agents all come from some discrete
alphabet. In the setting of [1], the central unit is interested in
estimating the source with the minimum expected error fre-
quency which corresponds to the Hamming distance between
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Fig. 1. The vector Gaussian CEO problem.

the source sequence and the central unit’s estimation of the
source sequence. In [1], the authors consider the decay rate
of the error frequency with respect to the rate expenditure of
the agents, and obtain the best possible decay rate when the
number of agents goes to infinity.

The scalar Gaussian CEO problem is studied in [2], where
there is a scalar Gaussian source which is observed through
some linear Gaussian channels by the agents. The agents
describe their observations to the central unit in a way that
the central unit can reconstruct the source within a certain
minimum mean square error (MMSE). In [2], the decay rate
of the MMSE with respect to the rate expenditure of the agents
is considered and shown to be inversely proportional with the
rate expenditure of the agents, when the number of agents
goes to infinity. The scalar Gaussian CEO problem is further
studied in [3] and [4], where instead of the decay rate of the
achievable MMSE, the focus was on the entire rate-distortion
region. In [3] and [4], the entire rate-distortion region for the
scalar Gaussian problem is established. The achievability is
shown by using the Berger-Tung inner bound [5], and the
converse is established by using the entropy-power inequality.
Recently, an alternative proof for the sum-rate of the scalar
Gaussian CEO problem is established in [6] without invoking
the entropy-power inequality.

As pointed out by several works [7], [8], although entropy-
power inequality is a key tool in providing converse proofs
for scalar Gaussian problems, it might be restrictive for vector
Gaussian problems. For the vector Gaussian CEO problem,
this observation is noticed in [9], where the authors provide
a lower bound for the sum-rate of the vector Gaussian CEO
problem by using the entropy-power inequality. This lower
bound is shown to be tight under certain conditions, although it
is not tight in general. Recently, [10] provided an outer bound
for the rate-distortion region of the vector Gaussian CEO
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problem when there are only two agents. They obtain their
outer bound by using an extremal inequality, which can
be viewed as a generalization of the extremal inequality
provided in [11]. The outer bound proposed in [10] holds
for two agents, and hence, can be viewed as a special case
of our outer bound which holds for an arbitrary number of
agents.

In this paper, we consider the vector Gaussian CEO
problem for an arbitrary number of agents and provide an
outer bound for its rate-distortion region. We first consider
the outer bound provided in [12] for the multi-terminal source
coding problem, and evaluate it for the vector Gaussian
CEO problem at hand. In the evaluation of the outer bound
in [12], we use the de Bruijn identity [13], a connection
between the differential entropy and the Fisher information,
along with the properties of the MMSE and the Fisher
information. This evaluation technique which relies on the
de Bruijn identity is useful in the sense that it is able to
alleviate some shortcomings of the entropy-power inequality
in vector Gaussian problems [8], [14].

Next, we investigate the tightness of our outer bound.
Despite being tight for certain cases, our outer bound falls
short of providing the exact rate-distortion region of the vector
Gaussian CEO problem in general. We establish this fact
by considering the parallel Gaussian model, for which we
obtain the entire rate-distortion region explicitly and show that
our outer bound strictly includes this rate-distortion region.
In other words, for the parallel Gaussian model, our outer
bound is not equal to the rate-distortion region, which shows
that our outer bound is not tight in general.

II. PROBLEM STATEMENT AND THE MAIN RESULT

In the CEO problem, there are L sensors, each of which
getting a noisy observation of a source. The goal of the sensors
is to describe their observations to the CEO unit such that the
CEO unit can reconstruct the source within a given distortion.
In the vector Gaussian CEO problem, there is an i.i.d. vector
Gaussian source {Xi}n

i=1 with zero-mean and covariance KX .
Each sensor gets a noisy version of this Gaussian source

Y�,i = Xi + N�,i, � = 1, . . . , L (1)

where {N�,i}n
i=1 is an i.i.d. sequence of Gaussian random

vectors with zero-mean and covariance Σ�. Moreover, noise
among the sensors are independent, i.e., N1,i, . . . ,NL,i are
independent ∀i = 1, . . . , n. In the vector Gaussian CEO
problem, the distortion of the reconstructed vector is measured
by its mean square error matrix

1
n

n∑

i=1

E
[(

Xi − X̂i

)(
Xi − X̂i

)�]
(2)

where X̂n denotes the reconstructed vector.
An (n, R1, . . . , RL) code for the CEO problem consists

of an encoding function at each sensor fn
� : R

M×n →
Bn

� = {1, . . . , 2nR�}, i.e., Bn
� = fn

� (Yn
� ) where Bn

� ∈ Bn
� ,

� = 1, . . . , L, and a decoding function at the CEO unit
gn : Bn

1 × . . . × Bn
L → R

M×n, i.e., X̂n = gn(Bn
1 , . . . , Bn

L),
where M denotes the size of the vector Gaussian source X.

We note that since the mean square error is minimized by
the MMSE estimator, which is the conditional mean, without
loss of generality, the decoding function gn can be chosen as
the MMSE estimator. Consequently, we have

X̂i = E [Xi|Bn
1 , . . . , Bn

L] (3)

using which in (2), we get

1
n

n∑

i=1

E
[(

Xi − X̂i

)(
Xi − X̂i

)�] =

1
n

n∑

i=1

mmse(Xi|Bn
1 , . . . , Bn

L) (4)

In view of (4), a rate tuple (R1, . . . , RL) is said to achieve
the distortion D if there exists an (n, R1, . . . , RL) code such
that

lim
n→∞

1
n

n∑

i=1

mmse(Xi|Bn
1 , . . . , Bn

L) � D (5)

where D is a strictly positive definite matrix. Throughout the
paper, we assume that the distortion matrix D satisfies

(
K−1

X +
L∑

�=1

Σ−1
�

)−1

� D � KX (6)

where the lower bound on the distortion constraint D cor-
responds to the MMSE matrix obtained when the CEO unit
has direct access to the observations of the agents {Y�}L

�=1.
The derivation of this lower bound is provided in Appendix I,
where we also provide insight on the upper bound in (6).
In Appendix I, we also show that imposing the lower bound on

D in (6), i.e., imposing
(
K−1

X +
∑L

�=1 Σ−1
�

)−1

� D, does
not incur any loss of generality, while imposing the upper
bound on D in (6), i.e., imposing D � KX , might incur
some loss of generality.

The rate-distortion region R(D) of the vector Gaussian
CEO problem is defined as the closure of all rate tuples
(R1, . . . , RL) that can achieve the distortion D.

The main result of this paper is the following outer bound on
the rate-distortion region R(D) of the vector Gaussian CEO
problem stated in the following theorem.

Theorem 1: The rate-distortion region of the Gaussian
CEO problem R(D) is contained in the region Ro(D)
which is given by the union of rate tuples (R1, . . . , RL)
satisfying1

∑

�∈A
R�

≥ 1
2

log+

∣∣∣
(
K−1

X +
∑

�∈Ac Σ−1
� −∑�∈Ac Σ−1

� D�Σ−1
�

)−1
∣∣∣

|D|

+
∑

�∈A

1
2

log
|Σ�|
|D�| (7)

1After we have submitted our work [15], [16], it is brought to our attention
that the same result is independently and concurrently obtained in [17].
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for all A ⊆ {1, . . . , L}, where the union is over all positive
semi-definite matrices {D�}L

�=1 satisfying the following
constraints

(
K−1

X +
L∑

�=1

Σ−1
� −

L∑

�=1

Σ−1
� D�Σ−1

�

)−1

� D (8)

0 � D� � Σ�, � = 1, . . . , L (9)

and log+ x = max(log x, 0).
We obtain this outer bound by evaluating the outer bound

given in [12]. In this evaluation, we use the de Bruijn identity,
a differential connection between the Fisher information and
the differential entropy, as well as the semi-definite orders
between the MMSE and the Fisher information. In this regard,
our outer bound is reminiscent of the earlier works on the
CEO problem [3], [10], where the authors also evaluate an
outer bound similar to the single-letter one in [12], by using
either the entropy-power inequality or an extremal inequality.
The difference of our work is the way we evaluate the existing
single-letter outer bound, where, in this evaluation, we use de
Bruijn identity. The proof of Theorem 1 is given in Section V.
Next, we provide the following inner bound for the rate-
distortion region R(D).

Theorem 2: An inner bound for the rate-distortion region
of the vector Gaussian CEO problem is given by the region
Ri(D) which is described by the union of rate tuples
(R1, . . . , RL) satisfying
∑

�∈A
R�

≥ 1
2

log

∣∣∣
(
K−1

X +
∑

�∈Ac Σ−1
� −∑�∈Ac Σ−1

� D�Σ−1
�

)−1
∣∣∣

∣∣∣∣
(
K−1

X +
∑L

�=1 Σ−1
� −∑L

�=1 Σ−1
� D�Σ−1

�

)−1
∣∣∣∣

+
∑

�∈A

1
2

log
|Σ�|
|D�| (10)

for all A ⊆ {1, . . . , L}, where the union is over all positive
semi-definite matrices {D�}L

�=1 satisfying

(
K−1

X +
L∑

�=1

Σ−1
� −

L∑

�=1

Σ−1
� D�Σ−1

�

)−1

� D (11)

0 � D� � Σ�, � = 1, . . . , L (12)
We obtain this inner bound by evaluating the Berger-Tung

inner bound [5] by jointly Gaussian auxiliary random
variables. The proof of Theorem 2 is given in Appendix VII.

III. ALTERNATIVE CHARACTERIZATIONS OF THE BOUNDS

In this section, we provide alternative characterizations for
the outer and inner bounds given in Theorem 1 and Theorem 2,
respectively. To this end, we note that since the rate-distortion
region R(D) is convex, it can be characterized by the tangent
hyperplanes to it, i.e., by solving the following optimization
problem

min
(R1,...,RL)∈R(D)

L∑

�=1

μ�R� (13)

for all μ� ≥ 0, � = 1, . . . , L. Hence, the outer and inner bounds
in Theorem 1 and 2 provide lower and upper bounds for the
optimization problem in (13), respectively. Since both the outer
and inner bounds are also convex, they can also be described
by the tangent hyperplanes to them. In particular, the outer and
inner bounds can be described by the following optimization
problems

min
(R1,...,RL)∈Ro(D)

L∑

�=1

μ�R� (14)

min
(R1,...,RL)∈Ri(D)

L∑

�=1

μ�R� (15)

respectively, where μ� ≥ 0, � = 1, . . . , L. We note that the
optimization problem in (14) corresponds to the alternative
characterization of the outer bound in Theorem 1, and hence,
provides a lower bound for the optimization problem in (13)
that characterizes the rate-distortion region of the vector
Gaussian CEO problem. Similarly, the second optimization
problem in (15) corresponds to the alternative characterization
of the inner bound in Theorem 2, and hence, provides an upper
bound for the optimization problem in (13). Now, by using
the contra-polymatroid structure of the achievable rate region
and the outer bound [3], we state the explicit form of the
optimization problems in (14)-(15) starting with the one for
the outer bound.

Theorem 3: Assume μ1 ≥ · · · ≥ μL ≥ 0. The explicit
form of the optimization problem in (14) is given by (16) (on
the next page) where {D�}L

�=1 are subject to the following
constraints

(
K−1

X +
L∑

�=1

Σ−1
� −

L∑

�=1

Σ−1
� D�Σ−1

�

)−1

�D (17)

0 � D� �Σ�, � = 1, . . . , L (18)

Next, we provide the explicit form of the optimization
problem in (15) as follows.

Theorem 4: Assume μ1 ≥ . . . ≥ μL ≥ 0. The explicit
form of the optimization problem in (14) is given by (19) (on
the next page) where {D�}L

�=1 are subject to the following
constraints

(
K−1

X +
L∑

�=1

Σ−1
� −

L∑

�=1

Σ−1
� D�Σ−1

�

)−1

�D (20)

0 � D� �Σ�, � = 1, . . . , L (21)

Next, we provide some remarks about the outer bound given
in Theorem 3 and the inner bound given in Theorem 4. First,
we note that in both cases, the bounds are to be optimized
over the positive semi-definite matrices {D�}L

�=1, and the
feasible sets for both cases are identical as seen through
(17)-(18) and (20)-(21). On the other hand, rate bounds differ
as seen through (16) and (19). Despite this difference, there
are cases where the outer and inner bounds match, providing
a complete characterization of the rate-distortion region. Here,
we note a general sufficient condition under which the outer
and inner bounds coincide. If the minimum in Theorem 3 is
achieved by positive semi-definite matrices {D∗

�}L
�=1 which
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min
(R1,...,RL)∈R(D)

L∑

�=1

μ�R� ≥ min
(R1,...,RL)∈Ro(D)

L∑

�=1

μ�R�

= min
{D�}L

�=1

L−1∑

�=1

μ� − μ�+1

2
log+

∣∣∣∣
(
K−1

X +
∑L

j=�+1 Σ−1
j (Σj − Dj)Σ−1

j

)−1
∣∣∣∣

|D| +
L∑

�=1

μ�

2
log

|Σ�|
|D�| +

μL

2
log

|KX |
|D| (16)

min
(R1,...,RL)∈R(D)

L∑

�=1

μ�R� ≤ min
(R1,...,RL)∈Ri(D)

L∑

�=1

μ�R�

= min
{D�}L

�=1

L−1∑

�=1

μ� − μ�+1

2
log

∣∣∣∣
(
K−1

X +
∑L

j=�+1 Σ−1
j (Σj − Dj)Σ−1

j

)−1
∣∣∣∣

∣∣∣∣
(
K−1

X +
∑L

j=1 Σ−1
j (Σj − Dj)Σ−1

j

)−1
∣∣∣∣

+
L∑

�=1

μ�

2
log

|Σ�|
|D�|

+
μL

2
log

|KX |∣∣∣∣
(
K−1

X +
∑L

j=1 Σ−1
j (Σj − Dj)Σ−1

j

)−1
∣∣∣∣

(19)

attain the distortion constraint in (17) with equality, then the
optimization problems in Theorem 3 and Theorem 4 yield
identical results, implying the tightness of the outer bound.
One particular example where the outer and inner bounds
match is the scalar Gaussian model considered next.

A. Scalar Gaussian Model

Here, we consider the scalar Gaussian model:

Y�,i = Xi + N�,i, � = 1, . . . , L (22)

where Xi is an i.i.d. Gaussian source with zero-mean and
variance σ2

X . The noise at the �th sensor N�,i is also an i.i.d.
Gaussian random variable sequence with variance σ2

� . For the
scalar model (scalar Gaussian CEO problem), our outer bound
in Theorem 1 reduces to the following form.

Corollary 1: The rate-distortion region of the scalar
Gaussian CEO problem R(D) is contained in the region
Ro(D) which is given by the union of rate tuples
(R1, . . . , RL) satisfying

∑

�∈A
R� ≥ 1

2
log+ 1

D

(
1

σ2
X

+
∑

�∈Ac

σ2
� − D�

σ4
�

)−1

+
∑

�∈A

1
2

log
σ2

�

D�
(23)

for all A ⊆ {1, . . . , L}, where the union is over all {D�}L
�=1

satisfying the following constraints

(
1

σ2
X

+
L∑

�=1

σ2
� − D�

σ4
�

)−1

≤ D (24)

0 ≤ D� ≤ σ2
� , � = 1, . . . , L (25)

Using Theorem 3, our outer bound for the scalar Gaussian
model can be expressed in the following alternative form

min
(R1,...,RL)∈R(D)

L∑

�=1

μ�R� ≥ min
(R1,...,RL)∈Ro(D)

L∑

�=1

μ�R�

(26)

= min
{D�}L

�=1

L−1∑

�=1

μ� − μ�+1

2
log+ 1

D

⎛

⎝ 1
σ2

X

+
L∑

j=�+1

σ2
� − D�

σ4
�

⎞

⎠
−1

+
L∑

�=1

μ�

2
log

σ2
�

D�
+

μL

2
log

σ2
X

D
(27)

where {D�}L
�=1 are subject to the constraints in (24)-(25), and

we assume μ1 ≥ . . . ≥ μL ≥ 0. In [3], it is shown that the
optimal {D∗

�}L
�=1 that minimizes (27) satisfies the constraint

in (24) with equality, i.e., for this optimal {D∗
�}L

�=1, we have

(
1

σ2
X

+
L∑

�=1

σ2
� − D∗

�

σ4
�

)−1

= D (28)

As we pointed out in the previous section, when, for
the outer bound, the distortion constraint is satisfied with
equality, then the outer bound in Theorem 1 and the
inner bound in Theorem 2 match; yielding the rate-
distortion region. Hence, in view of (28), we have the
entire rate-distortion region for the scalar Gaussian CEO
problem.

Theorem 5 ([3], [4]): The rate-distortion region of the
scalar Gaussian CEO problem R(D) is given by the union
of rate tuples (R1, . . . , RL) satisfying

∑

�∈A
R�≥ 1

2
log

1
D

(
1

σ2
X

+
∑

�∈Ac

σ2
� − D�

σ4
�

)−1

+
∑

�∈A

1
2

log
σ2

�

D�

(29)
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for all A ⊆ {1, . . . , L}, where the union
is over all {D�}L

�=1 satisfying the following
constraints

(
1

σ2
X

+
L∑

�=1

σ2
� − D�

σ4
�

)−1

= D (30)

0 ≤ D� ≤ σ2
� , � = 1, . . . , L (31)

We note that since the distortion constraint in (30) is
satisfied with equality, we do not need the positivity operator
in (29).

IV. PARALLEL GAUSSIAN MODEL AND A

COUNTER-EXAMPLE

In this section, first, we consider the parallel Gaussian
model, and obtain its rate-distortion region. Next, we consider
a specific parallel Gaussian model and show that our outer
bound in Theorem 1 is not tight. In other words, we show that,
in general, there are rate tuples (R1, . . . , RL) that lie inside
our outer bound and are not contained in the rate-distortion
region, i.e., in general, our outer bound strictly contains the
rate-distortion region.

In the parallel Gaussian model, the Gaussian source Xi

has a diagonal covariance matrix. In particular, we have
Xi = [ X1,i . . . XM,i ] where {Xm,i}M

m=1 are indepen-
dent Gaussian random variables with zero-mean and variance
{σ2

m}M
m=1, respectively. Moreover, the noise at the �th sensor

N�,i also has a diagonal covariance matrix. In particular, we
have N�,i = [ N�1,i . . . N�M,i ], where {N�m,i}M

m=1 are
independent Gaussian random variables with zero-mean with
variance {σ2

�m}M
m=1, respectively. In the parallel Gaussian

model, there is a separate-distortion constraint on each
component of the source as follows

lim
n→∞

1
n

n∑

i=1

mmse(Xm,i|Bn
1 , . . . , Bn

L) ≤ Dm, m=1, . . . , M

(32)

where we have the following constraints on {Dm}M
m=1

(
1

σ2
m

+
L∑

�=1

1
σ2

�m

)−1

≤ Dm ≤ σ2
m, m = 1, . . . , M (33)

We note that the constraints on Dm in (33) are the scalar
versions of the constraints in (6) that we impose for the
vector Gaussian model. For the parallel Gaussian model, we
establish the rate-distortion region Rp({Dm}M

m=1) as stated
in the following theorem.

Theorem 6: The rate-distortion region Rp({Dm}M
m=1) of

the parallel Gaussian CEO problem is given by the union of
rate tuples (R1, . . . , RL) satisfying

∑

�∈A
R� ≥

M∑

m=1

1
2

log
1

Dm

(
1

σ2
m

+
∑

�∈Ac

σ2
�m − D�m

σ4
�m

)−1

+
M∑

m=1

∑

�∈A

1
2

log
σ2

�m

D�m
(34)

for all A ⊆ {1, . . . , L}, where the union is over all
{D�m}∀�,∀m satisfying the following constraints

(
1

σ2
m

+
L∑

�=1

σ2
�m − D�m

σ4
�m

)−1

= Dm, m = 1, . . . , M (35)

0 ≤ D�m ≤ σ2
�m, � = 1, . . . , L,

m = 1, . . . , M (36)
We note that since the distortion constraints in (35) are met

with equality, the first log(·) in (34) is always positive, and
hence, we do not need a positivity operator. We obtain the
rate-distortion region of the parallel Gaussian CEO problem
in two steps. In the first step, we specialize the outer bound
in [12] to the parallel model. In the second step, we evaluate
the outer bound we obtain in the first step, and show that it
matches the inner bound given in Theorem 2. The details of
the proof are given in Appendix II.

Next, we consider the case L = M = 2, and provide
an example where our outer bound strictly contains the rate-
distortion region, i.e., our outer bound includes rate pairs
which are outside of the rate-distortion region. In the example
we provide, we assume that the following conditions hold2:

μ2

μ1

1
σ2

12

<
1
σ2

2

+
1

σ2
22

− 1
D2

(37)

μ2

μ1 − μ2

1
σ2

2

<
1

σ2
22

(38)

μ1

μ1 − μ2

1
D2

<
1
σ2

2

+
1

σ2
22

(39)

1
D1

(
1
σ2

1

+
1

σ2
21

)−1

>
μ1 − μ2

μ1
D2

(
1
σ2

2

+
1

σ2
22

)
(40)

Under the constraints in (37)-(40), the rate-distortion region
Rp(D1, D2) can be characterized as follows.

Corollary 2: Assume that (37)-(40) hold. Then, we have

Tp = min
(R1,R2)∈Rp(D1,D2)

μ1R1 + μ2R2 (41)

= min
(D11,D21)∈D1

f1(D11, D21) +
μ2

2
log

σ2
2

D2

+
μ2

2
log

1
σ2

22

(
1
σ2

2

+
1

σ2
22

− 1
D2

)−1

(42)

where f1(D11, D21) is given by

f1(D11, D21) =
2∑

�=1

μ�

2
log

σ2
�1

D�1
+

μ2

2
log

σ2
1

D1

+
μ1−μ2

2
log

1
D1

(
1
σ2

1

+
σ2

21 − D21

σ4
21

)−1

(43)

and the set D1 consists of (D11, D21) pairs satisfying

1
σ2

1

+
2∑

�=1

σ2
�1 − D�1

σ4
�1

=
1

D1
(44)

0 ≤ D�1 ≤ σ2
�1, � = 1, 2 (45)

2We note that if one selects σ2
m = σ2

�m = σ2, D1 = 2/5σ2, D2 = 4/5σ2

and μ1/μ2 = 4, the four assumptions in (37)-(40) hold in addition to the
original constraints on (D1, D2) given in (33).
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The proof of Corollary 2 is given in Appendix III. Next,
we find an upper bound for our outer bound in Theorem 1 as
follows.

Corollary 3: Assume that (37)-(40) hold. Then, we have

T+= min
(R1,R2)∈Ro(D1,D2)

μ1R1+μ2R2 (46)

≤ min
(D11,D21)∈D1

f1(D11, D21)+
μ2

2
log

μ1

μ2

1
σ2

22

(
1
σ2

2

+
1

σ2
22

)−1

+
μ2

2
log

σ2
2

D2
+

μ1−μ2

2
log

μ1

μ1−μ2

1
D2

(
1
σ2

2

+
1

σ2
22

)−1

(47)

where the function f1(D11, D21) is given by (43) and the
set D1 is given by the union of (D11, D21) satisfying the
constraints in (44)-(45).

The proof of Corollary 3 is given in Appendix IV.
Now, we are ready to compare our outer bound with the

rate-distortion region for the parallel Gaussian model. Using
Corollary 2 and Corollary 3, we have

T+ − Tp ≤ μ2

2
log

μ1

μ2

1
σ2

22

(
1
σ2

2

+
1

σ2
22

)−1

+
μ1 − μ2

2
log

μ1

μ1 − μ2

1
D2

(
1
σ2

2

+
1

σ2
22

)−1

− μ2

2
log

1
σ2

22

(
1
σ2

2

+
1

σ2
22

− 1
D2

)−1

(48)

=
μ2

2
log

μ1

μ2

(
1 − 1

D2

(
1
σ2

2

+
1

σ2
22

)−1
)

+
μ1 − μ2

2
log

μ1

μ1 − μ2

1
D2

(
1
σ2

2

+
1

σ2
22

)−1

(49)

<
μ1

2
log 1 (50)

= 0 (51)

where (50) follows from the facts that log(·) is strictly
concave, and we have

μ1

μ2

(
1 − 1

D2

(
1
σ2

2

+
1

σ2
22

)−1
)
	= μ1

μ1 − μ2

1
D2

(
1
σ2

2

+
1

σ2
22

)−1

(52)

which is due to the assumption in (39). Equation (51) implies
that there are some rate pairs (R1, R2) in our outer bound
which are outside of the rate-distortion region of the parallel
Gaussian model. Hence, our outer bound strictly contains the
rate-distortion region of the vector Gaussian CEO problem.
In other words, our outer bound is not tight in general.

V. PROOF OF THEOREM 1

The following theorem provides an outer bound for the rate-
distortion region of the CEO problem.

Theorem 7 ([12], Theorem 1): The rate region of the CEO
problem R(D) is contained in the union of rate tuples
(R1, . . . , RL) satisfying
∑

�∈A
R� ≥ I(X; {U�}�∈A|{U�}�∈Ac) +

∑

�∈A
I(Y�; U�|X, W )

(53)

∀A ⊆ {1, . . . , L}, where the union is over all joint distribu-
tions p(x, {y�, u�}L

�=1, w) that can be factorized as

p(x, {y�, u�}L
�=1, w) = p(x)p(w)

L∏

�=1

p(y�|x)p(u�|y�, w) (54)

and satisfies

mmse(X|U1, . . . , UL) � D (55)
In [12], the outer bound is stated in a slightly different form,
where there is a time-sharing random variable T involved in
the description of the outer bound. However, as pointed out
by [12], this time-sharing random variable T can be combined
with other auxiliary random variables (W, U1, . . . , UL) to
obtain the form of the outer bound we stated here.

We now evaluate this outer bound for the vector Gaussian
CEO problem. To this end, we first provide some background
information which will be used in the proof.

A. Background

Lemma 1 ([8]): Let (U,X) be an arbitrarily correlated
random vector with well-defined densities. We assume that
mmse(X|U) 
 0. Then, we have

J(X|U) � mmse−1(X|U) (56)

which is satisfied with equality if (U,X) is jointly Gaussian.
Next, we note the following lemma which will be used

subsequently.
Lemma 2 ([18], [19]): Let (U,X) be an arbitrary random

vector, where the conditional Fisher information of X, condi-
tioned on U , exists. Then, we have

1
2

log |(2πe)J−1(X|U)| ≤ h(X|U) (57)
We also need the following lemma in the upcoming proof.
Lemma 3 ([13]): Let (V1,V2) be an arbitrary random

vector with finite second moments, and N be a zero-mean
Gaussian random vector with covariance ΣN . Assume
(V1,V2) and N are independent. We have

mmse(V2|V1,V2 + N)=ΣN−ΣNJ(V2+N|V1)ΣN (58)

B. Proof

Here, we consider the rate bounds in (53) and obtain a lower
bound for them for a given (W, U1, . . . , UL). First, we consider
the following mutual information terms

I(Y�; U�|X, W ) = h(Y�|X, W ) − h(Y�|X, W, U�) (59)

= h(Y�|X) − h(Y�|X, W, U�) (60)

=
1
2

log |(2πe)Σ�| − h(Y�|X, W, U�) (61)

Using Lemma 2 and the fact that jointly Gaussian
(X, W, U�,Y�) maximizes h(Y�|X, W, U�), we have the fol-
lowing bounds for the second term in (61)

1
2

log |(2πe)J−1(Y�|X, W, U�)| ≤ h(Y�|X, W, U�)

≤ 1
2

log |(2πe)mmse(Y�|X, W, U�)| (62)
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Next, we define the function D�(α�) as follows

D�(α�) = α�J−1(Y�|X, W, U�) + ᾱ�mmse(Y�|X, W, U�)
(63)

where α� = 1 − ᾱ� ∈ [0, 1]. Using the function in (63), the
bounds in (62) can be expressed as follows

1
2

log |(2πe)D�(1)| ≤ h(Y�|X, W, U�)≤1
2

log |(2πe)D�(0)|
(64)

Since log |(2πe)D�(α�)| is continuous in α�, due to the inter-
mediate value theorem, there exists an α∗

� = 1 − ᾱ∗
� ∈ [0, 1]

such that

h(Y�|X, W, U�) =
1
2

log |(2πe)D�(α∗
� )| (65)

Hence, using (65) in (61), we have

I(Y�; U�|X, W ) =
1
2

log
|Σ�|

|D�(α∗
� )|

, � = 1, . . . , L (66)

We note the following bounds on D�(α∗
� )

J−1(Y�|X, W, U�) � D�(α∗
� )�mmse(Y�|X, W, U�) (67)

� mmse(Y�|X) (68)

= Σ� (69)

where (67) is due to Lemma 1 and (68) comes from the fact
that conditioning reduces the MMSE matrix in the positive
semi-definite ordering sense.

Next, we consider the following mutual information term

I(X; {U�}�∈A|{U�}�∈Ac)
= h(X|{U�}�∈Ac) − h(X|U1, . . . , UL) (70)

≥ h(X|{U�}�∈Ac) − 1
2

log |(2πe)mmse(X|U1, . . . , UL)|
(71)

≥ h(X|{U�}�∈Ac) − 1
2

log |(2πe)D| (72)

≥ h(X|{U�}�∈Ac , W ) − 1
2

log |(2πe)D| (73)

where (71) comes from the fact that h(X|U1, . . . , UL) is
maximized by jointly Gaussian (X, U1, . . . , UL), (72) follows
from the monotonicity of log | · | function in positive semi-
definite matrices in conjunction with the distortion constraint
in (55), and (73) comes from the fact that conditioning cannot
increase entropy.

Next, we obtain a lower bound for h(X|{U�}�∈Ac , W ).
To this end, in view of Lemma 2, we note the following lower
bound on h(X|{U�}�∈Ac , W )

h(X|{U�}�∈Ac , W )≥1
2

log |(2πe)J−1(X|{U�}�∈Ac , W )| (74)

which implies that a lower bound on J−1(X|{U�}�∈Ac , W )
will yield a lower bound for h(X|{U�}�∈Ac , W ). To obtain
a lower bound for J−1(X|{U�}�∈Ac , W ), we will use the
connection between the Fisher information and the MMSE
given in Lemma 3. To this end, we note that X can be
decomposed as (see (107) in Appendix I-A)

X =
∑

�∈Ac

A�Y� + NAc (75)

where the matrices {A�}�∈Ac are given by (see (109) in
Appendix I-A)

A� = ΣAcΣ−1
� , � ∈ Ac (76)

In (75), NAc is a zero-mean Gaussian vector with covariance
matrix (see (108) in Appendix I-A)

ΣAc =

(
K−1

X +
∑

�∈Ac

Σ−1
�

)−1

(77)

We also note that NAc is independent of ({Y�, U�}�∈Ac , W )
which implies the following Markov chain

{U�}�∈Ac , W →
∑

�∈Ac

A�Y� → X =
∑

�∈Ac

A�Y� + NAc (78)

In view of this Markov chain, due to Lemma 3, we have

mmse(SAc |X, {U�}�∈Ac , W )
= ΣAc − ΣAcJ(X|{U�}�∈Ac , W )ΣAc (79)

where we define SAc as follows

SAc =
∑

�∈Ac

A�Y� (80)

Next, we obtain the MMSE matrix in (79) in terms of the
individual MMSE matrices {mmse(Y�|X, U�, W )}�∈Ac as
given in the following lemma.

Lemma 4: Under the current conditions, we have

mmse(SAc |X, {U�}�∈Ac , W )

=
∑

�∈Ac

A�mmse(Y�|X, W, U�)A�
� (81)

The proof of this lemma is given in Appendix V.
Hence, using Lemma 4 in (79), we get

ΣAc − ΣAcJ(X|{U�}�∈Ac , W )ΣAc

=
∑

�∈Ac

A�mmse(Y�|X, W, U�)A�
� (82)

�
∑

�∈Ac

A�D�(α∗
� )A

�
� (83)

= ΣAc

(
∑

�∈Ac

Σ−1
� D�(α∗

� )Σ
−1
�

)
ΣAc (84)

where (83) is due to (67), and in (84), we use the definition
of A� given in (76). We note that (84) implies

J−1(X|{U�}�∈Ac , W ) �
(

Σ−1
Ac−
∑

�∈Ac

Σ−1
� D�(α∗

� )Σ
−1
�

)−1
(85)

=

(
K−1

X +
∑

�∈Ac

Σ−1
� −
∑

�∈Ac

Σ−1
� D�(α∗

� )Σ
−1
�

)−1

(86)

where (86) comes from the definition of ΣAc in (77).
In view of (74) and (86), we have the following lower bound
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for h(X|{U�}�∈Ac , W ) as follows

h(X|{U�}�∈Ac , W ) ≥ 1
2

log

∣∣∣∣∣(2πe)

(
K−1

X +
∑

�∈Ac

Σ−1
�

−
∑

�∈Ac

Σ−1
� D�(α∗

� )Σ
−1
�

)−1
∣∣∣∣∣∣

(87)

Hence, using (87) in (73), we get

I(X; {U�}�∈A|{U�}�∈Ac) ≥ 1
2

log
∣∣∣
(
K−1

X +
∑

�∈Ac Σ−1
� −∑�∈Ac Σ−1

� D�(α∗
� )Σ

−1
�

)−1
∣∣∣

|D|
(88)

Moreover, using the non-negativity of the mutual information,
we can improve this lower bound as follows

I(X; {U�}�∈A|{U�}�∈Ac) ≥ 1
2

log+

∣∣∣
(
K−1

X +
∑

�∈Ac Σ−1
� −∑�∈Ac Σ−1

� D�(α∗
� )Σ

−1
�

)−1
∣∣∣

|D|
(89)

where log+ x = max(log x, 0). Using (66) and (89) in the rate
bounds given in (53), we get

∑

�∈A
R� ≥ 1

2
log+

∣∣∣
(
K−1

X +
∑

�∈Ac Σ−1
� −∑�∈Ac Σ−1

� D�(α∗
� )Σ

−1
�

)−1
∣∣∣

|D|
+
∑

�∈A

1
2

log
|Σ�|

|D�(α∗
� )|

(90)

Next, we establish a connection between D and
(D1(α∗

1), . . . ,DL(α∗
L)). To this end, by taking Ac =

{1, . . . , L} in (86), we get

(
K−1

X +
L∑

�=1

Σ−1
� −

L∑

�=1

Σ−1
� D�(α∗

� )Σ
−1
�

)−1

� J−1(X|{U�}L
�=1, W ) (91)

� mmse(X|{U�}L
�=1, W ) (92)

� mmse(X|{U�}L
�=1) (93)

� D (94)

where (92) is due to Lemma 1, (93) comes from the fact that
conditioning reduces the MMSE matrix in the positive semi-
definite ordering sense, and (94) follows from the distortion
constraint in (55). Hence, in view of (90) and (94), we show
that the rate region of the vector Gaussian CEO problem is

included in the union of rate tuples (R1, . . . , RL) satisfying

∑

�∈A
R� ≥ 1

2
log+

∣∣∣
(
K−1

X +
∑

�∈Ac Σ−1
� −∑�∈Ac Σ−1

� D�(α∗
� )Σ

−1
�

)−1
∣∣∣

|D|
+
∑

�∈A

1
2

log
|Σ�|

|D�(α∗
� )|

(95)

for all A ⊆ {1, . . . , L}, where the union is over all positive
semi-definite matrices D1(α∗

1), . . . ,DL(α∗
L) satisfying the

following orders

(
K−1

X +
L∑

�=1

Σ−1
� −

L∑

�=1

Σ−1
� D�(α∗

� )Σ
−1
�

)−1

� D (96)

0 � D�(α∗
� ) � Σ� (97)

where � = 1, . . . , L. The orders in (97) follow from (69).
The region given in Theorem 1 can be obtained from the outer
bound described in (95)-(97) by setting D�(α∗

� ) = D�, which
completes the proof of Theorem 1.

VI. GENERALIZATION OF THE BOUNDS

In this section, we consider the most general form of the
vector Gaussian CEO problem, and generalize the outer and
the inner bounds in Theorem 1 and Theorem 2, respectively.
In the most general form of the vector Gaussian CEO problem,
the observations at the sensors are given by

Y� = H�X + N�, � = 1, . . . , L (98)

where {N�}L
�=1 are i.i.d. zero-mean Gaussian random vectors

with identity covariance matrices. We note that the general
form for the observations in (98) cover the model in (1) we
studied so far. All definitions we introduced in Section II hold
for the general model defined by (98) except for the distortion
constraints in (6). In the general model, the distortion D is
assumed to satisfy

(
K−1

X +
L∑

�=1

H�
� H�

)−1

� D � KX (99)

where the left hand-side is the MMSE matrix obtained when
the CEO unit has access to all observations in (98). Similar to
the model given by (1), here also, imposing the lower bound
constraint on D in (99) does not incur any loss of generality,
while the upper bound constraint on D in (99) might incur
some loss of generality.

Now, we provide an outer bound for the rate-distortion
region R(D) for the general model given by (98), which, in
fact, corresponds to the generalization of the outer bound in
Theorem 1 to the most general form of the vector Gaussian
CEO problem.

Theorem 8: An outer bound for the rate-distortion region
of the general vector Gaussian CEO problem is given by the
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union of rate tuples (R1, . . . , RL) satisfying

∑

�∈A
R� ≥ 1

2
log+

∣∣∣
(
K−1

X +
∑

�∈Ac H�
� (I − D�)H�

)−1
∣∣∣

|D|

+
∑

�∈A

1
2

log
1

|D�| (100)

for all A ⊆ {1, . . . , L}, where the union is over all positive
semi-definite matrices {D�}L

�=1 satisfying the following con-
straints

(
K−1

X +
L∑

�=1

H�
� (I − D�)H�

)−1

� D (101)

0 � D� � I, � = 1, . . . , L (102)
We prove Theorem 8 in two steps. In the first step, we

enhance (improve) the observations at the sensors in a way
that the enhanced observations are in a similar form given
by (1). In the next step, we use Theorem 1 to obtain an outer
bound for the enhanced model, and from this outer bound,
we obtain Theorem 8 by using some limiting arguments. The
details of the proof can be found in Appendix VI.

Now, we introduce an inner bound for the rate-distortion
region R(D) for the general model given by (98), which, in
fact, corresponds to the generalization of the inner bound in
Theorem 2 to the most general form of the vector Gaussian
CEO problem.

Theorem 9: An inner bound for the rate-distortion region
of the general vector Gaussian CEO problem is given by the
union of rate tuples (R1, . . . , RL) satisfying

∑

�∈A
R� ≥ 1

2
log

∣∣∣
(
K−1

X +
∑

�∈Ac H�
� (I − D�)H�

)−1
∣∣∣

∣∣∣∣
(
K−1

X +
∑L

�=1 H�
� (I − D�)H�

)−1
∣∣∣∣

+
∑

�∈A

1
2

log
1

|D�| (103)

for all A ⊆ {1, . . . , L}, where the union is over all positive
semi-definite matrices {D�}L

�=1 satisfying

(
K−1

X +
L∑

�=1

H�
� (I − D�)H�

)−1

� D (104)

0 � D� � I, � = 1, . . . , L (105)
The proof of Theorem 9 is given in Appendix VII.

We obtain this inner bound by evaluating the Berger-Tung
inner bound [5] by jointly Gaussian auxiliary random
variables.

We note that since the outer and the inner bounds in
Theorem 8 and Theorem 9 correspond to the generalizations
of the outer and inner bounds in Theorem 1 and Theorem 2,
respectively, our previous comments and remarks about
Theorem 1 and Theorem 2 hold for Theorem 8 and Theorem 9
as well. In particular, similar to Theorem 1 and Theorem 2,
we can provide alternative characterizations for Theorem 8
and Theorem 9 as well. Moreover, similar to Theorem 1 and
Theorem 2, the bounds in Theorem 8 and Theorem 9 match
when the boundary of the outer bound in Theorem 8 can be

described by the matrices {D�}L
�=1 that satisfy the distortion

constraint in (101) with equality.

VII. CONCLUSIONS

In this paper, we study the vector Gaussian CEO problem
and provide an outer bound for its rate-distortion region.
We obtain our outer bound by evaluating the rather general
outer bound in [12]. We accomplish this evaluation by using
a technique that relies on the de Bruijn identity along with
the properties of the MMSE and Fisher information. Next,
we investigate the tightness of outer bound. Despite being
tight for certain cases, we show that our outer bound does not
provide the exact rate-distortion region in general. We show
this by providing an example where our outer bound strictly
includes the rate-distortion region.

APPENDIX I
DISTORTION LIMITS

In this appendix, we first note some facts about Gaussian
random vectors that are used throughout the paper.

A. Gaussian Random Vectors

Let T be a zero-mean Gaussian random vector with covari-
ance matrix ΣT 
 0. We define the Gaussian random vectors
{T�}L

�=1 as

T� = H�T + N� (106)

where {N�}L
�=1 are zero-mean independent Gaussian random

vectors with covariance matrices {Σ�}L
�=1, which are also

independent of T. We assume Σ� 
 0, � = 1, . . . , L.
For any subset A ⊆ {1, . . . , L}, we have

T =
∑

�∈A
A�T� + NA (107)

where NA is a zero-mean Gaussian random vector with
covariance matrix ΣA given by

ΣA =

(
Σ−1

T +
∑

�∈A
H�

� Σ−1
� H�

)−1

(108)

and is independent of {T�}�∈A. The matrices {A�}�∈A are
given by

A� = ΣAH�
� Σ−1

� , � ∈ A (109)

The decomposition in (107) follows from the MMSE esti-
mation of Gaussian random vectors, which is equivalent to the
linear MMSE estimation. In particular, we have

T̂ = E [T|{T�}�∈A] =
∑

�∈A
A�T� (110)

which is the MMSE, equivalently the linear MMSE, estimator
of T from {T�}L

�=1. The error in estimation is NA, and the
MMSE matrix is

mmse(T|{T�}�∈A) = ΣA (111)
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B. Regarding (6)

We first obtain the lower bound on the distortion
constraint D in (6) as follows

mmse(Xi|Bn
1 , . . . , Bn

L)
� mmse(Xi|Bn

1 , . . . , Bn
L,Yn

1 , . . . ,Yn
L) (112)

= mmse(Xi|Yn
1 , . . . ,Yn

L) (113)

= mmse(Xi|Y1,i, . . . ,YL,i) (114)

=

(
K−1

X +
L∑

�=1

Σ−1
�

)−1

(115)

where (112) follows from the fact that conditioning reduces
the MMSE matrix in the positive semi-definite ordering sense,
(113) is due to the fact that Bn

� is a function of Yn
� , (114)

comes from the independence of (Xi,Y1,i, . . . ,YL,i) across
time, and (115) is due to (108) and (111). Hence, (115) implies

that imposing the constraint D �
(
K−1

X +
∑L

�=1 Σ−1
�

)−1

does not incur any loss of generality.
Next, we consider the upper bound on the distortion

constraint in (55). To this end, we note the following order

mmse(Xi|Bn
1 , . . . , Bn

L) � mmse(X) = KX (116)

where we use the fact that conditioning reduces the
MMSE matrix in the positive semi-definite ordering sense.
Equation (116) implies that all (n, R1, . . . , RL) codes
achieve a distortion which is smaller than KX . In other
words, if D̂ is the distortion achieved by a specific code,
we always have D̂ � KX . In spite of this fact, we still cannot
impose the constraint D � KX without loss of generality.
To demonstrate this point, assume that KX −D is indefinite.
Hence, to be able to impose the constraint D � KX ,
we should find a new distortion constraint D′ which satisfies
D′ � {D,KX} and the rate-distortion regions R(D) and
R(D′) are identical. In other words, there needs to be a
distortion matrix D′ � {D,KX}, and for any code achieving
a distortion D̂ � D, we also have D̂ � D′. However, as we
will show now, this is not possible in general. Assume that
there exist two codes achieving the distortion D̂j , j = 1, 2,
where D̂j � {D,KX}. Hence, D′ needs to satisfy

{D̂1, D̂2} � D′ � {D,KX} (117)

However, there are cases where it is impossible to find
a matrix D′ satisfying the order in (117) as shown in
[20, Appendix I] by a counter-example. Consequently,
imposing the constraint D � KX might incur some loss of
generality.

APPENDIX II
PROOF OF THEOREM 6

We prove Theorem 6 in two steps. In the first step, we
specialize the outer bound in [12] to the parallel model defined
by the following joint distribution

p(xM , {yM
� }L

�=1) =
M∏

m=1

p(xm)
L∏

�=1

p(y�m|xm) (118)

Next, we evaluate the outer bound we obtain in the first step,
and show that it can be attained by the inner bound provided
in Theorem 2.

A. A General Outer Bound

First, we restate the outer bound in [12] for the parallel
model satisfying (118) as follows.

Theorem 10 ([12], Theorem 1): We have Rp({Dm}M
m=1)

⊆ Rp−o({Dm}M
m=1), where Rp−o({Dm}M

m=1) is given by
the union of rate tuples (R1, . . . , RL) satisfying

∑

�∈A
R� ≥ I(XM ; {U�}�∈A|{U�}�∈Ac)

+
∑

�∈A
I(U�; Y M

� |XM , W ) (119)

for all A ⊆ {1, . . . , L}, where the union is over all {U�}L
�=1

satisfying

p(xM , {yM
� }L

�=1, {u�}L
�=1, w)

= p(w)
M∏

m=1

p(xm)
L∏

�=1

p(y�m|xm)p(u�|w, yM
� ) (120)

and

mmse(Xm|U1, . . . , UL) ≤ Dm, m = 1, . . . , M (121)
Next, we define the following auxiliary random variables

U�m = U�X
m−1, � = 1, . . . , L, m = 1, . . . , M (122)

Wm = WXm−1{Y M
�,m+1}L

�=1, m = 1, . . . , M (123)

Using these auxiliary random variables, we will find lower
bounds for the rate constraints in (119). We start with the
following term

I(XM ; {U�}�∈A|{U�}�∈Ac)

=
M∑

m=1

I(Xm; {U�}�∈A|{U�}�∈Ac , Xm−1) (124)

=
M∑

m=1

I(Xm; {U�m}�∈A|{U�m}�∈Ac) (125)

Next, we consider the following term

I(U�; Y M
� |XM , W )

= h(U�|XM , W ) − h(U�|XM , W, Y M
� ) (126)

≥ h(U�|XM , W, {Y M
j }L

j=1,j 	=�)

− h(U�|XM , W, Y M
� ) (127)

= h(U�|XM , W, {Y M
j }L

j=1,j 	=�)

− h(U�|XM , W, {Y M
j }L

j=1) (128)

= I(U�; Y M
� |XM , W, {Y M

j }L
j=1,j 	=�) (129)

=
M∑

m=1

I(U�; Y�m|XM , W, {Y M
j }L

j=1,j 	=�, Y
M
�,m+1) (130)

=
M∑

m=1

h(Y�m|XM , W, {Y M
j }L

j=1,j 	=�, Y
M
�,m+1)

− h(Y�m|XM , W, {Y M
j }L

j=1,j 	=�, Y
M
�,m+1, U�) (131)
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=
M∑

m=1

h(Y�m|Xm, W, {Y M
j,m+1}L

j=1)

− h(Y�m|XM , W, {Y M
j }L

j=1,j 	=�, Y
M
�,m+1, U�) (132)

≥
M∑

m=1

h(Y�m|Xm, W, {Y M
j,m+1}L

j=1)

− h(Y�m|Xm, W, {Y M
j,m+1}L

j=1, U�) (133)

=
M∑

m=1

I(U�; Y�m|Xm, W, {Y M
j,m+1}L

j=1) (134)

=
M∑

m=1

I(U�m; Y�m|Xm, Wm) (135)

where (127) follows from the fact that conditioning cannot
increase entropy, (128) and (132) come from the following
Markov chains

U� → W, Y M
� → XM , {Y M

j }L
j=1,j 	=� (136)

Y�m → Xm → W, Xm−1, XM
m+1, {Y M

j }L
j=1,j 	=�, Y

M
�,m+1

(137)

respectively, which are consequences of the joint distribution
in (120), and (133) is due to the fact that conditioning cannot
increase entropy.

Next, we consider the distortion constraints in (121) as
follows

Dm ≥ mmse(Xm|{U�}L
�=1) (138)

≥ mmse(Xm|{U�}L
�=1, X

m−1) (139)

= mmse(Xm|{U�m}L
�=1) (140)

where we use the fact that conditioning reduces MMSE.
Hence, using (125) and (135), the rate constraints in

Theorem 10 can be expressed as

∑

�∈A
R� ≥

M∑

m=1

I(Xm; {U�m}�∈A|{U�m}�∈Ac)

+
M∑

m=1

∑

�∈A
I(U�m; Y�m|Xm, Wm) (141)

and the distortion constraints in Theorem 10 are

mmse(Xm|{U�m}L
�=1) ≤ Dm (142)

We note that the random variable tuples
{(

Xm, {Y�m, U�m}L
�=1, Wm

)}M

m=1
(143)

might be correlated over the index m. However, neither
the expressions in the rate bounds given by (141) nor the
distortion constraints in (142) depend on the entire joint dis-
tribution of

{(
Xm, {Y�m, U�m}L

�=1, Wm

)}M

m=1
. Instead, both

the expressions in the rate bounds given by (141) and the
distortion constraints in (142) depend only on the distribution
of
(
Xm, {Y�m, U�m}L

�=1, Wm

)
for each m involved. Hence,

without loss of generality, we can assume that
(
Xm, {Y�m, U�m}L

�=1, Wm

)
(144)

and
{(

Xj , {Y�j, U�j}L
�=1, Wj

)}M

j=1,j 	=m
(145)

are independent for all m = 1, . . . , M . Next, we note that
the joint distribution of

(
Xm, {Y�m, U�m}L

�=1, Wm

)
can be

factorized as follows

p(xm, {y�m, u�m}L
�=1, wm)

= p(xm)p(wm)
L∏

�=1

p(y�m|xm)p(u�m|y�m, wm) (146)

whose proof is given in Appendix II-C. In view of (141)-(142)
and (146), we obtain the following outer bound for the parallel
model.

Theorem 11: We haveRp({Dm}M
m=1)⊆Rp−o({Dm}M

m=1),
where Rp−o({Dm}M

m=1) is given by the union of rate tuples
(R1, . . . , RL) satisfying

∑

�∈A
R� ≥

M∑

m=1

I(Xm; {U�m}�∈A|{U�m}�∈Ac)

+
M∑

m=1

∑

�∈A
I(U�m; Y�m|Xm, Wm) (147)

for all A ⊆ {1, . . . , L}, where the union is over all
{U�m}∀�,∀m satisfying

p(xM , {yM
� }L

�=1, {u�}L
�=1, w)

=
M∏

m=1

p(xm)p(wm)
L∏

�=1

p(y�m|xm)p(u�m|wm, y�m) (148)

and

mmse(Xm|{U�m}L
�=1) ≤ Dm, m = 1, . . . , M (149)

B. Evaluation of the Outer Bound

Now, we evaluate the outer bound in Theorem 11 for the
parallel Gaussian model, and show that it is attainable by the
inner bound given in Theorem 2. To this end, we note that
following the analysis in Section V, one can evaluate the outer
bound in Theorem 11 yielding the following outer bound for
the parallel Gaussian model.

Theorem 12: An outer bound for the rate-distortion region
Rp({Dm}M

m=1) of the parallel Gaussian model is given by
R̃p({Dm}M

m=1) which corresponds to the union of rate tuples
(R1, . . . , RL) satisfying

∑

�∈A
R�≥

M∑

m=1

1
2

log+ 1
Dm

(
1

σ2
m

+
∑

�∈Ac

σ2
�m − D�m

σ4
�m

)−1

+
M∑

m=1

∑

�∈A

1
2

log
σ2

�m

D�m
(150)

for all A ⊆ {1, . . . , L}, where the union is over all
{D�m}∀�,∀m satisfying the following constraints
(

1
σ2

m

+
L∑

�=1

σ2
�m−D�m

σ4
�m

)−1

≤ Dm, m = 1, . . . , M (151)

0 ≤ D�m ≤ σ2
�m, � = 1, . . . , L, m = 1, . . . , M

(152)
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Next, we show that there is no loss of generality to assume
that the constraints in (151) are satisfied with equality.
To prove this, we consider an alternative description of
the outer bound in Theorem 12 by means of the tangent
hyperplanes. In other words, we consider the following
optimization problem

min
(R1,...,RL)∈R̃P ({Dm}M

m=1)

L∑

�=1

μ�R� (153)

where we assume μ1 ≥ · · · ≥ μL ≥ 0. Using the fact that the
outer bound is a contra-polymatroid [3], we can express the
optimization problem in (153) as follows

min
(R1,...,RL)∈R̃P ({Dm}M

m=1)

L∑

�=1

μ�R�

= min
{D�m}∀�,∀m

L∑

�=1

μ�

2

M∑

m=1

log
σ2

�m

D�m
+

μL

2

M∑

m=1

log
σ2

m

Dm

+
L−1∑

�=1

μ� − μ�+1

2

M∑

m=1

log+

1
Dm

⎛

⎝ 1
σ2

m

+
L∑

j=�+1

σ2
jm − Djm

σ4
jm

⎞

⎠
−1

(154)

= min
{D�m}∀�,∀m

M∑

m=1

fm({D�m}L
�=1) (155)

=
M∑

m=1

min
{D�m}L

�=1

fm({D�m}L
�=1) (156)

where we define the function fm({D�m}L
�=1) as follows

fm({D�m}L
�=1) =

L∑

�=1

μ�

2
log

σ2
�m

D�m
+

μL

2
log

σ2
m

Dm

+
L−1∑

�=1

μ� − μ�+1

2
log+ 1

Dm

⎛

⎝ 1
σ2

m

+
L∑

j=�+1

σ2
jm − Djm

σ4
jm

⎞

⎠
−1

(157)

and the feasible set of the minimizations in (154)-(156) are
defined by the constraints in (151)-(152). Equation (156)
follows from the fact that fm({D�m}L

�=1) depends only on
{D�m}L

�=1 but not on {D�j}L
�=1, j 	= m.

Next, we note that each minimization

min
{D�m}L

�=1

fm({D�m}L
�=1) (158)

is identical to the optimization problem we encounter for
the scalar Gaussian model in Section III-A, and hence, the
minimum is attained by those {D�m}L

�=1 that satisfy the
constraint in (151) with equality. This implies that the outer
bound in Theorem 12 is attainable; completing the proof of
Theorem 6.

C. Proof of (146)

We first note that

p(xm, {y�m, u�m}L
�=1, wm) = p(xm)p(wm)

(
L∏

�=1

p(y�m|xm)

)

p({u�m}L
�=1|xm, wm, {y�m}L

�=1) (159)

where we use the fact that (Xm, {Y�m}L
�=1) and Wm =

WXm−1{Y M
�,m+1}L

�=1 are independent, which is a conse-
quence of the joint distribution in (120). Next, we consider
the following term

p({u�m}L
�=1|xm, wm, {y�m}L

�=1)

=
∑

∀{ym−1
� }L

�=1

p({u�m}L
�=1, {ym−1

� }L
�=1|xm, wm, {y�m}L

�=1)

(160)

=
∑

∀{ym−1
� }L

�=1

p({ym−1
� }L

�=1|xm, wm, {y�m}L
�=1)

p({u�m}L
�=1|xm, wm, {ym

� }L
�=1) (161)

where the first term in the summation is

p({ym−1
� }L

�=1|xm, wm, {y�m}L
�=1)

=
L∏

�=1

p(ym−1
� |xm, wm, {y�m}L

�=1, {ym−1
j }�−1

j=1) (162)

=
L∏

�=1

p(ym−1
� |wm) (163)

=
L∏

�=1

p(ym−1
� |wm, y�m) (164)

where (163)-(164) come from the following Markov chain

Y m−1
� → Wm → Xm, {Y�m}L

�=1, {Y m−1
j }�−1

j=1 (165)

which is a consequence of the definition of Wm and the joint
distribution in (120).

Next, we consider the second term in the summation given
by (161) as follows

p({u�m}L
�=1|xm, wm, {ym

j }L
j=1)

=
L∏

�=1

p(u�m|xm, wm, {ym
j }L

j=1, {ujm}�−1
j=1) (166)

=
L∏

�=1

p(u�m|wm, ym
� ) (167)

where (167) comes from the following Markov chain

U�m → Wm, Y m
� → Xm, {Y m

j }L
j=1,j 	=�, {Ujm}�−1

j=1 (168)

which is also a consequence of the definition of Wm and the
joint distribution in (120).
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Using (164) and (167) in (161), we get

p({u�m}L
�=1|xm, wm, {y�m}L

�=1)

=
∑

∀{ym−1
� }L

�=1

L∏

�=1

p(ym−1
� |wm, y�m)p(u�m|wm, ym

� ) (169)

=
∑

∀{ym−1
� }L

�=1

L∏

�=1

p(ym−1
� , u�m|wm, y�m) (170)

=
L∏

�=1

p(u�m|wm, y�m) (171)

using which in (159), we get

p(xm, {y�m, u�m}L
�=1, wm) = p(xm)p(wm)

L∏

�=1

p(y�m|xm)p(u�m|wm, y�m)

(172)

which is the desired result in (146); completing the proof.

APPENDIX III
PROOF OF COROLLARY 2

From the analysis in Appendix II-B, when μ1 ≥ μ2 ≥ 0,
we have

min
(R1,R2)∈Rp(D1,D2)

μ1R1 + μ2R2

=
2∑

m=1

min
(D1m,D2m)∈Dm

fm(D1m, D2m) (173)

where the function fm(D1m, D2m) is given by

fm(D1m, D2m) =
2∑

�=1

μ�

2
log

σ2
�m

D�m
+

μ2

2
log

σ2
m

Dm

+
μ1−μ2

2
log

1
Dm

(
1

σ2
m

+
σ2

2m − D2m

σ4
2m

)−1

(174)

and the set Dm consists of (D1m, D2m) pairs satisfying

1
σ2

m

+
2∑

�=1

σ2
�m − D�m

σ4
�m

=
1

Dm
(175)

0 ≤ D�m ≤ σ2
�m, � = 1, 2 (176)

Next, we note that

f2(D12, D22) ≥ f̃2(D12, D22), ∀(D12, D22) ∈ D2 (177)

where the function f̃2(D12, D22) is defined as

f̃2(D12, D22) =
2∑

�=1

μ�

2
log

σ2
�2

D�2
+

μ2

2
log

σ2
2

D2
(178)

This function can be minimized over (D12, D22) ∈ D2 to get

min
(D12,D22)∈D̃2

f̃2(D12, D22) =
μ2

2
log

σ2
2

D2

+
μ2

2
log

1
σ2

22

(
1
σ2

2

+
1

σ2
22

− 1
D2

)−1

(179)

Next, we note that by setting (D∗
12 = σ2

12, D
∗
22 = σ4

22(1/σ2
2 +

1/σ2
22 − 1/D2)) ∈ D2, we get

f2(D∗
12, D

∗
22) = min

(D12,D22)∈D̃2

f̃2(D12, D22) (180)

using which, and (179) in (173), we get

min
(R1,R2)∈Rp(D1,D2)

μ1R1+μ2R2 = min
(D11,D21)∈D1

f1(D11, D21)

+
μ2

2
log

σ2
2

D2
+

μ2

2
log

1
σ2

22

(
1
σ2

2

+
1

σ2
22

− 1
D2

)−1

(181)

which is the desired result in Corollary 2; completing the
proof.

APPENDIX IV
PROOF OF COROLLARY 3

Using Theorem 3 for L = 2, our outer bound for the parallel
Gaussian model can be expressed as follows.

T+ = min
(R1,R2)∈Ro(D1,D2)

μ1R1 + μ2R2 (182)

= min
(D1,D2,D)

2∑

�=1

μ�

2
log

|Σ�|
|D�| +

μ2

2
log

|KX |
|D|

+
μ1 − μ2

2
log+

∣∣∣
(
K−1

X + Σ−1
2 − Σ−1

2 D2Σ−1
2

)−1
∣∣∣

|D|
(183)

where (D1,D2,D) are subject to the following constraints

(
K−1

X +
2∑

�=1

Σ−1
� −

2∑

�=1

Σ−1
� D�Σ−1

�

)−1

� D (184)

0 � D� � Σ�, � = 1, 2 (185)

Dmm ≤ Dm, m = 1, 2 (186)

where Dmm denotes the mth diagonal element of D.
By restricting (D1,D2,D) to be diagonal, we have

T+ ≤ min
{D�m}∀�,∀m

2∑

m=1

μ1

2
log

σ2
1m

D1m
+

μ2

2
log

σ2
2m

D2m

+
μ2

2
log

σ2
m

Dm
+

μ1 − μ2

2
log+

2∏

m=1

1
Dm

(
1

σ2
m

+
1

σ2
2m

− D2m

σ4
2m

)−1

(187)

where {D�m}∀�,∀m are subject to the following constraints

(
1

σ2
m

+
2∑

�=1

1
σ2

�m

− D�m

σ4
�m

)−1

≤ Dm, m = 1, 2 (188)

0 ≤ D�m ≤ σ2
�m, � = 1, 2 m = 1, 2 (189)

Next, we set

D12 = σ2
12 (190)

D22 =
μ2

μ1
σ4

22

(
1
σ2

2

+
1

σ2
22

)
(191)
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which are feasible, i.e., satisfy the constraints in (188)-(189),
due to the assumptions in (38)-(39). Next, we note the
following

2∏

m=1

1
Dm

(
1

σ2
m

+
1

σ2
2m

− D2m

σ4
2m

)−1

=
1

D1

(
1
σ2

1

+
1

σ2
21

− D21

σ4
21

)−1 1
D2

μ1

μ1 − μ2

(
1
σ2

2

+
1

σ2
22

)−1

(192)

≥ 1
D1

(
1
σ2

1

+
1

σ2
21

)−1 1
D2

μ1

μ1 − μ2

(
1
σ2

2

+
1

σ2
22

)−1

(193)

> 1 (194)

where, in (192), we use (190)-(191), (193) follows from the
fact that D21 ≥ 0, and (194) is due to the assumption in (40).
Hence, using (190)-(191) and (193) in (187), we get

T+ ≤ min
(D11,D21)∈D̂1

f1(D11, D21) +
μ2

2
log

σ2
2

D2

+
μ2

2
log

μ1

μ2

1
σ2

22

(
1
σ2

2

+
1

σ2
22

)−1

+
μ1 − μ2

2
log

μ1

μ1 − μ2

1
D2

(
1
σ2

2

+
1

σ2
22

)−1

(195)

where the set D̂1 is defined as the union of (D11, D21) pairs
satisfying

(
1
σ2

1

+
2∑

�=1

1
σ2

�1

− D�1

σ4
�1

)−1

≤ D1 (196)

0 ≤ D�1 ≤ σ2
�1 (197)

We note that D1 ⊆ D̂1, where D1 is the region defined in
Corollary 3. Hence, using this fact in (195), we get

T+ ≤ min
(D11,D21)∈D1

f1(D11, D21) +
μ2

2
log

σ2
2

D2

+
μ2

2
log

μ1

μ2

1
σ2

22

(
1
σ2

2

+
1

σ2
22

)−1

+
μ1 − μ2

2
log

μ1

μ1 − μ2

1
D2

(
1
σ2

2

+
1

σ2
22

)−1

(198)

which is the desired result in Corollary 3; completing the
proof.

APPENDIX V
PROOF OF LEMMA 4

We first note the following Markov chain

(Uj ,Yj) → (W,X) → (U[1:L]\j,Y[1:L]\j) (199)

whose proof is given in Appendix V-A. Next, we note that

E [SAc |X, {U�}�∈Ac , W ] =
∑

�∈Ac

A�E [Y�|X, {U�}�∈Ac , W ]

(200)

=
∑

�∈Ac

A�E [Y�|X, U�, W ] (201)

where (201) follows from the Markov chain in (199). Now,
we consider mmse(SAc |X, {U�}�∈Ac , W ) as follows

mmse(SAc |X, {U�}�∈Ac , W )

= E
[(

SAc − E
[
SAc |X, {U�}�∈Ac , W

])

×
(
SAc − E

[
SAc |X, {U�}�∈Ac , W

])�]
(202)

= E

[( ∑

�∈Ac

A�

(
Y� − E [Y�|X, U�, W ]

))

×
( ∑

�∈Ac

A�

(
Y� − E [Y�|X, U�, W ]

))�
]

(203)

=
∑

�∈Ac

A�mmse(Y�|X, U�, W )A�
�

+
∑

i∈Ac

∑

j∈Ac

j 	=i

AiE
[(

Yi − E [Yi|X, Ui, W ]
)

×(Yj − E [Yj |X, Uj , W ]
)�]

A�
j (204)

where (203) is due to (201). Next, we consider the cross-terms
in (204) as follows

E
[(

Yi − E [Yi|X, Ui, W ]
)(

Yj − E [Yj |X, Uj , W ]
)�]

= E
[
E
[(

Yi − E [Yi|X, Ui, W ]
)

×(Yj − E [Yj |X, Uj , W ]
)�|X, W

]]
(205)

= E
[
E
[(

Yi − E [Yi|X, Ui, W ]
)|X, W

]

×E
[(

Yj − E [Yj |X, Uj , W ]
)�|X, W

]]
(206)

= 0 (207)

where (206) is due to the Markov chain in (199). Using (207)
in (204), we get

mmse(SAc |X, {U�}�∈Ac , W )

=
∑

�∈Ac

A�mmse(Y�|X, U�, W )A�
� (208)

which completes the proof of Lemma 4.

A. Proof of (199)

We first consider the joint distribution in (54) as follows

p(x, {y�, u�}L
�=1, w) = p(x)p(w)

⎛

⎜⎝
L∏

�=1
� 	=j

p(y�|x)p(u�|y�, w)

⎞

⎟⎠

p(yj |x)p(uj |yj , w) (209)

which implies

U� → (Y�, W ) → X, � = 1, . . . , L (210)
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Next, we note that

p(yj |x)p(uj |yj , w) = p(yj |x)p(uj |yj , w,x) (211)

= p(yj |x)
p(uj ,yj , w,x)
p(yj ,x)p(w)

(212)

=
p(uj ,yj , w,x)

p(x)p(w)
(213)

=
p(uj ,yj , w,x)

p(w,x)
(214)

= p(uj ,yj |w,x) (215)

where (211) comes from the Markov chain in (210), (212)
and (214) follow from the fact that (X,Yj) and W are
independent which is a consequence of the factorization in
(209). Using (215) in (209), we get

p(x, {y�, u�}L
�=1, w) = p(x)p(w)

⎛

⎜⎝
L∏

�=1
� 	=j

p(y�|x)p(u�|y�, w)

⎞

⎟⎠

p(uj ,yj |x, w) (216)

which implies the Markov chain in (199); completing the
proof.

APPENDIX VI
PROOF OF THEOREM 8

The singular value decomposition of the matrices {H�}L
�=1

are given by

H� = U�Λ�V�
� , � = 1, . . . , L (217)

where {U�}L
�=1 and {V�}L

�=1 are orthogonal matrices. Next,
we show that without loss of generality, we can assume that
{H�}L

�=1 are square matrices. To this end, we define the
following observations

Ȳ� = U�
� Y� (218)

= Λ�V�X + N̄� (219)

where N̄� is again a zero-mean Gaussian random vector
with an identity covariance matrix. We note that the rate-
distortion region for the observations {Ȳ�}L

�=1 is identical to
the rate-distortion region for the observations {Y�}L

�=1, since
we obtain the observations {Ȳ�}L

�=1 from {Y�}L
�=1 by an

invertible transform. Now, we show that there is no loss of
generality to assume that the matrices {H�}L

�=1 are square
matrices. Assume that H� is an r� ×M matrix. Hence, Λ� is
also an r� × M matrix. First, consider r� > M . In this case,
r�−M entries of Ȳ� consists of only noise. Since the noise N̄�

is i.i.d., we can drop these r� − M entries of the observation
Ȳ� without altering the rate-distortion region. Hence, when
r� > M , there is an equivalent model with the same rate-
distortion region and r� = M . Next, assume r� < M . In this
case, we can add M − r� i.i.d. noise entries to the observation
Ȳ� without altering the rate-distortion region. Hence, when
r� < M , there is also an equivalent model with the same rate-
distortion region and r� = M . Consequently, from now on,
we assume that r1 = . . . = rL = M .

Next, we define

H�,α = U�(Λ� + αI)V�
� , � = 1, . . . , L (220)

where α > 0. We note that {H�,α}L
�=1 are invertible, i.e.,

{H−1
�,α}L

�=1 exist, and in particular, we have

H−1
�,α = V�(Λ� + αI)−1U�

� , � = 1, . . . , L (221)

Using {H�,α}L
�=1, we define an enhanced model as follows

Y�,α = H�,αX + N�, � = 1, . . . , L (222)

Using these enhanced observations in (222), we can rewrite
the original observations in (98) as follows

Y� = H�H−1
�,αY�,α + Ñ�, � = 1, . . . , L (223)

where Ñ� is a zero-mean Gaussian random vector, and inde-
pendent of {Y�,α}L

�=1 and {Ñj}L
j=1,j 	=�. The decomposition

in (223) is possible, since we have

(H�H−1
�,α)(H�H−1

�,α)� = U�Λ2
�(Λ� + αI)−2U�

� � I (224)

Moreover, due to the decomposition in (223), we can assume
that the following holds

p(x, {y�,α,y�}L
�=1) = p(x)

L∏

�=1

p(y�,α|x)p(y�|y�,α) (225)

which implies that the original observations {Y�}L
�=1 are

degraded versions the enhanced observations {Y�,α}L
�=1.

Consequently, we have

R(D) ⊆ Rα(D) (226)

where Rα(D) denotes the rate-distortion region for the
enhanced model defined by (222). Next, we note that the
enhanced model defined by (222) is equivalent to the following
one

Ȳ�,α = H−1
�,αY�,α = X + N̄�,α, � = 1, . . . , L (227)

where the covariance matrix of N̄�,α is given by

Σ�,α =
(
H�

�,αH�,α

)−1
, � = 1, . . . , L (228)

Using Theorem 1, we can obtain an outer bound for the rate-
distortion region of the model defined by (227), which is
equivalent to the enhanced model given by (222). In particular,
we have Rα(D) ⊆ Ro

α(D), where Ro
α(D) is given by the

union of rate tuples (R1, . . . , RL) satisfying
∑

�∈A
R�

≥ 1
2

log+

∣∣∣∣
(
K−1

X +
∑

�∈Ac Σ−1
�,α−

∑
�∈Ac Σ−1

�,αD̃�Σ−1
�,α

)−1
∣∣∣∣

|D|
+
∑

�∈A

1
2

log
|Σ�,α|
|D̃�|

(229)
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for all A ⊆ {1, . . . , L}, where the union is over all {D̃�}L
�=1

satisfying

D �
(

K−1
X +

L∑

�=1

Σ−1
�,α −

L∑

�=1

Σ−1
�,αD̃�Σ−1

�,α

)−1

(230)

Σ�,α � D̃� � 0, � = 1, . . . , L (231)

Next, we set D� = H�,αD̃�H�
�,α, � = 1, . . . , L, using which

in (229)-(231), we can express the outer bound Ro
α(D) as the

union of rate tuples (R1, . . . , RL) satisfying

∑

�∈A
R� ≥ 1

2
log+

∣∣∣∣
(
K−1

X +
∑

�∈Ac H�
�,α(I− D�)H�,α

)−1
∣∣∣∣

|D|

+
∑

�∈A

1
2

log
1

|D�| (232)

for all A ⊆ {1, . . . , L}, where the union is over all {D�}L
�=1

satisfying
(

K−1
X +

L∑

�=1

H�
�,α(I − D�)H�,α

)−1

� D (233)

0 � D� � I, � = 1, . . . , L (234)

In view of (226), we have the following

R(D) ⊆ Ro
α(D), ∀α > 0 (235)

which implies that

R(D) ⊆ lim
α→0

Ro
α(D) (236)

Hence, to obtain an outer bound for the rate-distortion region
of the general model defined by (98), it is sufficient to obtain
the limiting region limα→0 Ro

α(D). To this end, we introduce
the following lemma.

Lemma 5: For all Ac ⊆ {1, . . . , L}, we have

lim
α→0

(
K−1

X +
∑

�∈Ac

H�
�,α(I − D�)H�,α

)−1

=

(
K−1

X +
∑

�∈Ac

H�
� (I − D�)H�

)−1

(237)

The proof of Lemma 5 is given in Appendix VI-A. Using this
lemma in (232)-(234), we obtain the region limα→0 Rα(D)
as the union of rate tuples (R1, . . . , RL) satisfying

∑

�∈A
R� ≥ 1

2
log+

∣∣∣
(
K−1

X +
∑

�∈Ac H�
� (I − D�)H�

)−1
∣∣∣

|D|

+
∑

�∈A

1
2

log
1

|D�| (238)

for all A ⊆ {1, . . . , L}, where the union is over all {D�}L
�=1

satisfying
(

K−1
X +

L∑

�=1

H�
� (I − D�)H�

)−1

� D (239)

0 � D� � I, � = 1, . . . , L (240)

which is the desired result in Theorem 8; completing the proof.

A. Proof of Lemma 5

In the proof of Lemma 5, we use the following fact.
Lemma 6: Let A 
 0. Then we have

lim
B→0

(A + B)−1 = A−1 (241)

Next, we note that
∑

�∈Ac

H�
�,α(I − D�)H�,α =

∑

�∈Ac

H�
� (I − D�)H� + M(α)

(242)

where limα→0 M(α) = 0. We define

MAc = K−1
X +

∑

�∈Ac

H�
� (I − D�)H� (243)

Using (242)-(243) and Lemma 6, we have
(

K−1
X +

∑

�∈Ac

H�
�,α(I − D�)H�,α

)−1

=
(
MAc + M(α)

)−1

(244)

= M−1
Ac (245)

=

(
K−1

X +
∑

�∈Ac

H�
� (I − D�)H�

)−1

(246)

which is the desired end result in Lemma 5; completing the
proof.

APPENDIX VII
PROOFS OF THEOREM 2 AND THEOREM 9

We obtain the inner bound for the rate-distortion region
R(D) by evaluating the Berger-Tung achievable scheme with
jointly Gaussian auxiliary random vectors. For that purpose,
we consider the most general form of the vector Gaussian CEO
model defined by the observations in (98). In other words,
we first obtain an inner bound for the most general form
given by (98), i.e., we prove Theorem 9, and next, show that
Theorem 2 follows from Theorem 9. Let RBT(D) denote the
Berger-Tung inner bound. RBT(D) is given by the union of
rate tuples (R1, . . . , RL) satisfying [5]
∑

�∈A
R� ≥ I(X; {U�}�∈A|{U�}�∈Ac) +

∑

�∈A
I(Y�; U�|X)

(247)

for all A ⊆ {1, . . . , L}, where the union is over all
(U1, . . . , UL) satisfying the Markov chain

Uj → Yj → X → Yk → Uk, j 	= k (248)

and the distortion constraint

mmse(X|U1, . . . , UL) � D (249)

We select the auxiliary random variables {U�}L
�=1 as follows

U� = Y� + N̄�, � = 1, . . . , L (250)

where {N̄�}L
�=1 are zero-mean independent Gaussian random

vectors with covariance matrices {Σ̄�}L
�=1, and are indepen-

dent of {Y�}L
�=1,X. We assume that the covariance matrices
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{Σ̄�}L
�=1 are strictly positive definite, i.e., we have Σ̄� 
 0,

∀� ∈ {1, . . . , L}. This assumption arises from the fact that if
one of these matrices is singular, for example, if Σ̄� is singular,
then, as we will show soon, the corresponding MMSE matrix
mmse(Y�|X, U�) will be singular as well, and consequently,
I(U�;Y�|X) → ∞. When the auxiliary random variables
{U�}L

�=1 are selected to be Gaussian as in (250), the rate bound
in (247) becomes

∑

�∈A
R� ≥ 1

2
log

|mmse(X|{U�}�∈Ac)|
|mmse(X|{U�}L

�=1)|

+
∑

�∈A

1
2

log
1

|mmse(Y�|X, U�)| (251)

where, as it will become clear soon, all MMSE matrices are
strictly positive definite; implying that the rate bounds in (251)
are finite.

Next, we evaluate the MMSE terms in (251). Using the
definition of auxiliary random variables in (250), we have (see
(108) and (111) in Appendix I-A)

D� � mmse(Y�|X, U�) (252)

=
(
I + Σ̄−1

�

)−1
, � = 1, . . . , L (253)

where D� satisfies the following orders

0 ≺ D� � I (254)

where the upper bound on D� follows from the following fact

mmse(Y�|X, U�) = mmse(N�|N� + N̄�) � I (255)

Using (253), we have

Σ̄� =
(
D−1

� − I
)−1

, � = 1, . . . , L (256)

Next, we evaluate the MMSE matrices mmse(X|{U�}�∈Ac)
as follows (see (108) and (111) in Appendix I-A)

mmse(X|{U�}�∈Ac) =

(
K−1

X +
∑

�∈Ac

H�
� (I + Σ̄�)−1H�

)−1

(257)

=

(
K−1

X +
∑

�∈Ac

H�
� (I − D�)H�

)−1

(258)

where we used the following identity
(
I + Σ̄�

)−1 = I− D� (259)

which can be shown by using (256). Hence, using (253) and
(258) in (251), we obtain the inner bound as the union of rate
tuples (R1, . . . , RL) satisfying

∑

�∈A
R� ≥ 1

2
log

∣∣∣
(
K−1

X +
∑

�∈Ac H�
� (I − D�)H�

)−1
∣∣∣

∣∣∣∣
(
K−1

X +
∑L

�=1 H�
� (I − D�)H�

)−1
∣∣∣∣

+
∑

�∈A

1
2

log
1

|D�| (260)

for all A ⊆ {1, . . . , L}, where the union is over all positive
semi-definite matrices {D�}L

�=1 satisfying
(

K−1
X +

L∑

�=1

H�
� (I − D�)H�

)−1

� D (261)

0 � D� � I, � = 1, . . . , L (262)

where the first constraint in (261) is obtained by using (258)
in (249), and the second constraint in (262) comes from (254).
Hence, in view of (260)-(262), we obtain the inner bound given
in Theorem 9; completing the proof.

Next, we show that Theorem 2 follows from Theorem 9.
We note that the observations in (1) are equivalent to the
general form of the observations in (98), when one sets
H� = Σ−1/2

� , � = 1, . . . , L. Using this observa-
tion in (260)-(262) in conjunction with the definition
D� = Σ−1/2

� D̃�Σ
−1/2
� , � = 1, . . . , L, one can get the inner

bound in Theorem 2; completing the proof.
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