IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 6, NOVEMBER 2004

1879

Iterative Transmitter and Receiver Optimization for CDMA Networks
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Abstract—Optimization of the capacity of a single-cell code-divi-
sion multiple-access (CDMA) system, both from the perspective of
the maximum number of users that can be served at a required
quality of service level and from the information theoretic per-
spective, has been recently shown to be achieved by the same joint
transmit and receive strategies. In this paper, we propose an al-
ternating minimization based iterative algorithm that updates the
transmitters and the corresponding receivers of the users. The al-
gorithm is suitable for online implementation, and the objective
function is suitable for extension to multicell networks, both of
which are in contrast with the previously proposed algorithms. We
show that the algorithm is provably convergent to the optimum sig-
nature sequences and the corresponding receivers.

Index Terms—Alternating minimization, code-division multiple
access (CDMA), mean squared error (MSE), optimum signature
sequence sets, sum capacity, Welch bound equality (WBE) se-
quences.

I. INTRODUCTION

APACITY of code-division multiple-access (CDMA) sys-
C tems has been studied extensively [3]-[5]. Reference [3]
defines the user capacity of a CDMA cell as the number of users
that can be accommodated at the required quality of service level
defined in terms of the signal-to-interference ratio (SIR), and
computes the user capacity when random signature sequences
are used in a large system, for matched filter receivers and for
minimum mean squared error (MMSE) receivers [6]. The in-
formation theoretic capacity region of a synchronous CDMA
cell was derived in [4] for a given deterministic set of signature
sequences. Reference [7] identified the set that maximizes the
information theoretic sum capacity with equal power users, as
one where all signature sequences are orthogonal to each other
if possible, i.e., when the number of users is less than or equal
to the processing gain, and as the Welch bound equality (WBE)
sequences, otherwise. More recently [8] identified the optimum
signature sequences for arbitrary (unequal) powers. An impor-
tant result that bridges the two capacity results is given by [5]
where user capacity is considered for deterministic and finite di-
mensional signature sequence sets. It is shown that, for a single
CDMA cell where users have the same required SIR level, the
capacity is achieved with minimum total power by each user
having equal received powers and using the signature sequence
sets that are identified in [7]. Furthermore, when such sets are
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used, the MMSE filters reduce to scalar multiples of matched
filters [5].

Following these developments, iterative algorithms that
converge to the optimum signature sequence sets are proposed
[9]-[11]. Both algorithms proposed in [9]-[11], the MMSE
algorithm [9], [10], and the eigen algorithm [11] work on mini-
mizing the total (weighted) squared correlation, T(W)SC. The
algorithms are distributed and their convergence can be proven
only when the algorithms are run off-line and in a sequential
manner. In this paper, we develop iterative transmitter and
receiver design algorithms, based on the optimization of the
MSE function. The major difference of the MSE from the sum
capacity and the TWSC is that the MSE depends on both the
transmitters (signature sequences) and the receivers (receiver
filters). As we will see, even though minimizing the MSE, min-
imizing the TWSC, and maximizing the sum capacity all yield
the same transmitter—receiver pairs in single-cell synchronous
CDMA systems, minimizing the MSE produces an alternative
iterative algorithm that offers two important advantages over
the existing algorithms that minimize the TWSC: it enables
online and parallel implementations.

The TWSC is a function of the signature sequences only.
Algorithms based on the minimization of the TWSC [9]-[11]
assume either of the following.

a) As the signature sequences are updated, the receiver fil-
ters are changed to be the corresponding matched filters
instantaneously.

b) The iterations are run off-line only in terms of the sig-
nature sequences, and once the signature sequences con-
verge to an optimum set, corresponding matched filters
are deployed as receivers.

Therefore, the existing transmitter design algorithms are not
amenable to an online implementation. In addition, the con-
vergence proofs of the existing algorithms [9]-[11] require
that only one user updates its signature sequence at a time.
Therefore, such algorithms require sequential updates, which
necessitate a careful scheduling of the user updates. Hence, the
existing transmitter design algorithms are not amenable to par-
allel implementations. The introduction of the MSE alleviates
both of these problems. By enabling online implementation,
the adaptive [6], [12], [13] and blind-adaptive [14] implemen-
tations of the MMSE receiver may be used, and by enabling
parallel updates, users would have the flexibility of updating
their signature sequences in a sequential or a parallel fashion.
Even though our model in this paper is strictly limited to a
single-receiver (single-cell) system, another advantage of the
MSE cost function is that it can be generalized to the multire-
ceiver (multicell) networks more readily then the TWSC, since
the MSE cost function can account for the different channel
gains of the users to multiple receiver sites.
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In the following, we develop an iterative transmitter—receiver
update algorithm that is based on the alternating minimization
technique on the MSE cost function, and we prove its conver-
gence to optimum transmit-receiver pairs with online and par-
allel user updates.

II. SYSTEM MODEL AND PERFORMANCE METRIC

We consider the uplink of a single cell synchronous CDMA
system with K users and processing gain N. In the presence of
additive white Gaussian noise, the received vector signal in one
symbol interval is

K
r= Z VDpibisi +n (D
i=1

where, for user ¢, p; is the received power, b; is the information
symbol, and s; is the unit-energy signature sequence, and n is
a zero-mean Gaussian random vector with F [nnT] = oIy,
where Iy denotes the N x N identity matrix.

Previous work showed that the information theoretic sum
capacity of this system is given by [4]

Coum = %log [det (IN + J_ZSPST)] 2)

where S = [sy,...,sk] is an N x K matrix with the users’
signature sequences as its columns and P = diag{p1,...,px}
isa K x K diagonal matrix of the users’ received powers. When
the received powers of the users are the same, p; = p for all 4,
Csum 1s maximized by [7]

STS =1Ix (3)
if K < N and by
K
SST = Iy 4
N 4

if K > N. The signature sequence sets satisfying (3) con-
tain K orthonormal signature sequences in N-dimensional
vector space, and the sequence sets satisfying (4) are the WBE
sequences [7].

For arbitrary (unequal) powers, the signature sequences
that maximize the sum capacity in (2) are identified in [8]. It
was shown that, when K < N, Cy,y, is again maximized by
orthonormal sequences. In the case of K > N, the capacity is
maximized when users with relatively high received powers,
termed as oversized users in [8], are assigned sequences or-
thogonal to all other users, and the remaining users are assigned
generalized WBE sequences in the reduced dimensionality
signal space [8]. Assuming that the users are ordered according
to their powers p; > > pg and the first L users are
oversized, the eigenvalues of SPST with the optimum S are
{(P1o-ospr Ao A}, where A = (X85, p)/(N — L),
and the multiplicity of A is N — L. In other words, the char-
acterization of the optimum signature sequences is that the
eigenvalues of SPST with the optimum signature sequences
are majorized by the eigenvalues of the same matrix with
any other feasible signature sequence set. The eigenvalues of
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SPST corresponding to the optimum signature sequences is
a Schur-minimal element of the space of all feasible eigen-
values corresponding to all possible signature sequence sets.
We will use the fact that a Schur-minimal point maximizes
all Schur-concave functions and minimizes all Schur-convex
functions in the sequel [15].

The MSE incurred by a user, say, user ¢, at the output of a
linear filter c; is

MSE; = E[(r"¢c; — b;)?]
=c] (SPST +0’Iy) ¢; — 2y/pic; si + 1. (5)
Let us define the total mean squared error of the system as

K
MSE = Z MSE;
=1

—tr [CT (SPST +02Iy) C—2CTSPY/2 + IK] 6)

where C = [cq,...,ck] is an N x K matrix containing the
receiver filters of the users in its columns. Consider the MMSE
filters for all users for fixed signature sequences. In this case C
is given as

C=(SPST +0’Iy) 'SP/ %)

Substituting (7) into (6), we obtain the total MMSE of the
system with signature sequence set S as

MMSE = K — tr [SPST (SPST +0°Iy) '] (®)

The TWSC corresponding to this system is

K K

TWSC = Z Zpip]-(s;rsj)2 =tr [(SPST)’]. (9

i=1 j=1

In terms of the eigenvalues of SPST, {\;}

1 A
C(sum = 5 glog <1 + ﬁ)

N

A

MMSE = K — :
; i + o2
N
TWSC = Z A2 (10)
=1

It is easy to see that Cgyy is Schur-concave and MMSE
and TWSC are Schur-convex functions of the eigenvalues of
SPST [15]. Therefore, the signature sequence matrix yielding
Schur-minimal eigenvalues, i.e., one with eigenvalues that are
majorized by all other feasible eigenvalues, which maximizes
Csum, also minimizes the MMSE and the TWSC.

Since our aim is to obtain an online iterative joint re-
ceiver—transmitter update algorithm, we will concentrate on the
MSE criterion given in (6), which is a function of all signature
sequences and receiver filters. Clearly, the minimization of (6)
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over the signature sequences and the receiver filters is equiva-
lent to the minimization of the MMSE in (8) over the signature
sequences. This, in turn, is also equivalent to the minimization
of TWSC and the maximization of Cg,y,, over the signature
sequences.

III. AN ALTERNATING MINIMIZATION ALGORITHM
AND ITS CONVERGENCE

Our aim is to minimize the cost function in (6) over the sig-
nature sequences {s;} and the receivers {c;}. We assume the
received powers are given, and require the resulting signature
sequences to have unit energy. That is, we impose the set of
constraints s;'s; = 1 foralli = 1,..., K. The Lagrangian for

’ ’

this constrained optimization problem is expressed as

K K

L({eid {sid i) = 3D pilel ) =23 (el s:)

i=1 j=1
K K

+0” Y clei+ Y pilsisi—1) (11)
i=1 1=1

where {p;} are the Lagrange multipliers. One can devise an it-
erative algorithm to optimize this function based on the block
coordinate descent method, also known as alternating minimiza-
tion [16]. The idea is to fix the value of all but one of the vector
variables in the function and optimize over that variable. One
then iterates between different variables optimizing one at a
time.

Consider the receiver filters first. As mentioned before, min-
imization of the total MSE with respect to the receiver filter of
user ¢ is equivalent to minimizing MSE;. This is a simple conse-
quence of the fact that a user’s receiver does not affect the MSE
of any other user but itself. Thus, if we keep the signature se-
quences fixed, all receivers need to be set to the MMSE filters
for all users

C;, = \/p_l(SPST +02IN)71 S;. (12)
Note that all users can update their receivers in a parallel fashion,
since the receiver updates are independent of each other.

Next, consider the signature sequence updates. Once again,
for user 4, we need to optimize the Lagrangian by keeping all
other variables fixed. The signature sequence update for user i
is found as

si = /i (piCCT + NiIN)_l c (13)
where p; is the Lagrange multiplier chosen such that the re-
sulting signature sequence s; is of unit energy. Note that the sig-
nature sequence update of user 7 depends on all users’ receiver
filters and not the signature sequences of the other users. Thus,
all users can update their signature sequences in parallel as well.
Note also that each signature sequence update closely resembles
an MMSE-type update. More specifically, the update replaces
the signature sequence of the :th user by a generalized MMSE
receiver filter of a system where the signature sequences of the
users are their receiver filters, and all users have equal powers
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equal to the power of user ¢, p;. Lastly, we note that the signa-
ture sequence update is similar to one of the updates proposed
in [17] for multipath channels. Iterative algorithms that aim at
minimizing the total MSE have previously been presented in
[17] and [18] without any claims on their convergence.

Our algorithm starts with arbitrary initial signature sequences
(S) and receiver filters (C), updates S for fixed C, updates C for
fixed (updated) S, etc. The convergence of the overall algorithm
is established by first observing that each update decreases the
total MSE function which is bounded from below, and then in-
vestigating the properties of the fixed points of the algorithm.
Let us consider a complete cycle of signature sequence and re-
ceiver filter updates for all users S — C — S. Using (12) and
(13)

-1
§:=|SPST (SPST +02Iy) "+ (SPST 4 0’Iy)| s
= B,L'S,L'. (14)
At the fixed point of the algorithm §; = s;, for all 4. This
implies that the signature sequence of user ¢, s;, should be an
eigenvector of B; with eigenvalue 1. Moreover, we note that
the eigenvectors of B; are the eigenvectors of SPST. There-
fore, the fixed-point signature sequences satisfy
SPS's; = \;s; (15)
When the signature sequences satisfy (15), the corresponding
fixed-point receiver filters obtained from S using (12) are scaled
matched filters, i.e., ¢c; = k;s;.

Equation (15) gives a complete description of the set of all
possible fixed points. Fixed points are those for which MSE
or SIR cannot be improved by linear filtering for any user, i.e.,
MMSE filters are scaled matched filters. Unfortunately, the set
of fixed points described by (15) includes a wide spectrum of
signature sequences, ranging from the very best signature se-
quences to which we want our algorithm to converge, to the ab-
solutely worst signature sequences. For instance, the all-equal
signature sequences, i.e., s; = s, which may be considered to
be the worst signature sequences as a set, satisfy (15). Note also
that the best signature sequences that maximize Cy,,,, and min-
imize MSE and TWSC satisfy (15) too [10], [11], [19].

Next, we note that the fixed points of our algorithm are the
same as the fixed points of the MMSE algorithm proposed
in [10] which minimizes the TWSC. It was noted in [10]
that when the algorithm was started from a set of randomly
generated initial signature sequences, it always converged to an
optimum signature sequence set. This claim is supported by a
complete convergence proof in a recent paper [19]. Reference
[19] proves that the suboptimum fixed points of the MMSE
algorithm of [10] are unstable, in that, if the fixed point is
not a global optimum solution, then one can find a signature
sequence set in the e-neighborhood of the fixed-point signature
sequence set which has strictly lower TWSC. Consequently, the
almost sure convergence of the MMSE algorithm to a globally
optimum signature sequence set is ensured by defining a noisy
version of the algorithm in [10], where a small noise is added
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to the deterministic updates. In a similar approach, [20] gives
a method of ensuring the convergence of the eigen algorithm
of [11] to a global optimum point. Reference [20] notes that
the TWSC at the fixed points of the eigen algorithm may take
only a finite number of possible values as each suboptimal
fixed point corresponds to an orthogonal partitioning of the
signature sequence set. Then, [20] provides escape mechanisms
from the suboptimum fixed points; since there are only a
finite number of TWSC levels, the convergence to a global
optimum is guaranteed. The escape mechanisms of [20] and
e-perturbation ideas of [19] are similar; both are based on the
idea of connecting the orthogonal partitions, i.e., perturbing
the signature sequences in the orthogonal sets in a way to
destroy the orthogonality between the sets.

We will use the same ideas here in order to show that the sub-
optimum fixed points of the proposed algorithm are unstable;
hence, a noisy version of the proposed algorithm would ensure
the almost sure convergence to a globally optimum signature se-
quence set and the corresponding receivers. We will follow [19]
and provide the outline of how the results of [19] may be mod-
ified to complete the convergence proof here. To that end, we
modify the results proved for the TWSC (called TSC, in [19])
in [19, Lemmas 14 and 16] for our cost function MSE. The re-
sult in [19, Lemma 15], which is also necessary for the global
convergence in general, is not needed here, as we assumed that
the Gaussian noise is white, i.e., the eigenvalues of the noise
covariance matrix are all equal. However, we note that our al-
gorithm and results can be generalized straightforwardly to the
colored noise case, and in that case, [19, Lemma 15] can be
easily proved for the MSE cost function.

Assume that the signature sequences are partitioned into or-
thogonal sets. Let user 1 with signature sequence sy, power pp,
and eigenvalue )\; be in set S, and user 2 with signature se-
quence so, power ps, and eigenvalue A5 be in set So. All of the
signature sequences in set S; are orthogonal to all of the sig-
nature sequences in S, and within each set, all users have the
same eigenvalue. As in [19, Lemma 14], if A\; > Ao, then we
should have p; > po; otherwise we can perturb the signature
sequences s; and so slightly to decrease the MSE cost function.
Assume otherwise, i.e., Ay > A2 and p1 < po, and use the same

perturbation as in [19, Lemma 14]
S = /1 — sy + sy

51 =V 1—a?s; + ass
(16)

where 3 = —(p1/p2)a, and a = sine. Note that 55, = 1,
55, = 1, and

and

SPST =SPST + A (17)

where

A = (,[32]72 — a2p1)(5151r — SQS;)

+(prav1—a? + pafiy/1 — 32)(s1sy + s8] ). (18)

Reference [19, Lemma 14] shows that, with this perturbation

TWSC(S)—TWSC(g):2%()\1—/\2)(272—271)62”(63) (19)
2
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and, therefore, that the TWSC can be reduced if p; < p2 while
A1 > A2. We assume that, after we perturb the signature se-
quences in the same way, i.e., as in (16), we let all users update
their receiver filters (from C, which were scaled matched filters
for the signature sequences S, to some C, which are the MMSE
receivers for the perturbed signature sequences). It can be shown
by straightforward calculations that

MSE(S, C) — MSE(S, C)
=MMSE(S) — MMSE(S)

)(P2—p1)62+0(63)
(20)

202]£< 1 3 1
p2 \(A2+02)2  (A1+02)2

and, therefore, that the MSE can be reduced if p; < p2 while
A1 > Aol

Assume again that the signature sequences are partitioned
into orthogonal sets. Let users in S; have the eigenvalue A1, and
let us define P, as the diagonal matrix that contains the powers
of usersin S; onits diagonal. Asin [19, Lemma 16],if A\; > Ao,
where A, denotes the eigenvalues of users in another orthogonal
set So, then the number of users in set S; should be smaller than
or equal to the rank of set S;; otherwise, we can perturb all of
the signature sequences in set S; slightly to decrease the MSE
cost function. Assume otherwise, i.e., \; > A2, and the number
of users in S is larger than the rank of the set, and use the same
perturbation as in [19, Lemma 16]

S = cos(ay)sg + sin(ax)q 21
for s, € S; and S = sy, otherwise. Here, q is an eigenvector
of SPST that is orthogonal to the signature sequences of users
in S; and belongs to the dimensions of set So. We choose a, =
evy, where {vy,} are the components of a vector that is chosen
to satisfy S1P;v = 0. Such a v exists because the signature
sequences in S; are assumed to be linearly dependent.

Reference [19, Lemma 16] shows that, with this perturbation

TWSC(S)—TWSC(S) = 2(A; — o) ||P1v |22+ O(€3) (22)

and therefore, that the TWSC can be reduced if A\; > 5. We
assume, as in the generalization of [19, Lemma 14] to the MSE
cost function, that after we perturb the signature sequences, we
let all users update their receiver filters from C to C, the MMSE
filters corresponding to S. Then, it can be shown by straightfor-
ward calculations that

MSE(S, C) — MSE(S, C)
=MMSE(S) — MMSE(S)

) IP1v2e £ O(e?)
(23)

_ 2 ( 1
A\t e?)? (M+0?)

and, therefore, that, the MSE can be reduced if A1 > \s.
These results can be combined as in [19, Theorems 6 and

7] to conclude that the MSE cost function does not have local

minima; that is, there is always a signature sequence set and
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the corresponding receivers in the e-neighborhood of the subop-
timum fixed points of the algorithm which have strictly smaller
MSE. This means that we can either escape the suboptimum
fixed points of the algorithm using the escape methods of [19]
and [20], or use a noisy version [19] of the proposed algorithm to
ensure the almost sure convergence of the algorithm to globally
optimum signature sequences and the corresponding receivers
starting with arbitrary initial transmitters—receivers.

IV. NUMERICAL RESULTS

In this section, we present numerical examples to support our
analysis. We consider example CDMA systems with processing
gain N = 6 and investigate different scenarios. In all experi-
ments, the initial signature sequences are created randomly, and
all users update their receivers in parallel once followed by their
update of the signature sequences in parallel once. Thus a total
of 2K updates are done between iterations 7 and (n+1).
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(a) Total MSE and (b) eigenvalues of SPST, N = 6, K = 10, two oversized users.

Our first example is a system with K = 10 users with equal
received powers which we set to unity. Fig. 1 shows the total
MSE which monotonically decreases and converges to its min-
imum possible value, and the minimum and maximum eigen-
values of SST which converge to K/N = 1.67, verifying that
the resulting signature sequence set satisfies SST = K /NIy,
i.e., it is a WBE set.

Next, we consider the same system where two of the users’
received powers are increased to p; = 10 and po = 5. The re-
maining eight users have unit received powers. It is easy to see
that, in this system, the two users with higher powers are over-
sized [8]. Thus, the optimum signature sequence set dedicates
each of the oversized users their own signal dimensions, and
the rest of the users are assigned generalized WBE sequences in
the remaining four dimensions. The eigenvalues of SPST with
the optimum signature sequence set are A\; = 10, Ao = 5, and
A = 2for k = 3,...,6. Fig. 2 shows the MSE and the evo-
lution of the eigenvalues of SPS T and their convergence to the
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Fig. 3. (a) Total MSE and (b) the eigenvalues of SPST, N = 6, K = 6,p; = i.

optimum values as we run the iterative transmitter receiver op-
timization algorithm.

In the last example, we have K = 6 users and thus the system
is not overloaded. In this case, the optimum signature sequences
are orthogonal to each other irrespective of the received powers.
For this example, we have used the received powers of p; = ¢ for
1 =1,...,6.Fig. 3 shows the MSE values as we run the iterative
algorithm converging to the sum of six single-user MSE values
as the signature sequences converge to an orthonormal set, as
well as the evolution of the eigenvalues of SPST converging to
the optimal values, i.e., the received powers of the users.

V. CONCLUSION

The algorithm proposed in this paper is one where users
iteratively update their transmitters (signature sequences) and
receivers. The receiver updates depend on the signature se-
quences of all users while the transmitter updates depend on
the receivers of all users. Thus, users do not need to be sched-
uled for transmitter updates as is required for the convergence
proof of the TWSC minimization based algorithms [9]-[11].
Furthermore, the algorithm can be implemented online and
receivers can be constructed in an adaptive [6], [12], [13] or
blind-adaptive [14] fashion at each iteration of the algorithm.
The algorithm is shown to converge to the joint optimum
transmitters and receivers with probability one with random
initial points. We have presented numerical results that support
the analysis under different system scenarios.
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