
2 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2024

Timely Cache Updating in Parallel
Multi-Relay Networks

Priyanka Kaswan, Student Member, IEEE, Melih Bastopcu , Member, IEEE, and Sennur Ulukus , Fellow, IEEE

Abstract— We consider a system consisting of a server, which
receives updates for N files according to independent Poisson
processes. The goal of the server is to deliver the latest version
of the files to a user through a parallel network of K caches.
We consider an update received by the user successful, if the
user receives the same file version that is currently prevailing
at the server. We derive an analytical expression for information
freshness at the user. We observe that freshness for a file increases
with increase in consolidation of rates across caches. To solve
the multi-cache problem, we first solve the auxiliary problem of
a single-cache system. We then rework this auxiliary solution to
our parallel-cache network by consolidating rates to single routes
as much as possible. This yields an approximate (sub-optimal)
solution for the original problem. We provide an upper bound
on the gap between the sub-optimal solution and the optimal
solution. We present counterpart expressions and policies for
version age of information by employing a stochastic hybrid
system approach. Numerical results for both timeliness metrics
show that the proposed sub-optimal policy closely follows the
optimal policy.

Index Terms— Age of information, information freshness,
cache updating systems, parallel relay network.

I. INTRODUCTION

IN THE information age, users want instant access to
up-to-date data. Caching is a popular method of pre-storing

data at nodes in a network closer to the users for faster
delivery of latest data. In recent years, various papers have
explored freshness-optimal policies in different settings. Most
works have relied on the age of information (AoI) metric
to measure freshness of data. AoI has been considered in
a wide range of contexts, such as queueing networks [1],
[2], [3], [4], energy harvesting systems [5], [6], [7], [8],
[9], [10], [11], [12], web crawling [13], [14], scheduling
problems [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], UAV systems [28], [29], remote esti-
mation [30], [31], [32], [33], [34], [35], [36], [37], [38],

Manuscript received 22 December 2021; revised 16 May 2022 and
31 October 2022; accepted 25 December 2022. Date of publication 17 January
2023; date of current version 9 January 2024. This work was supported by
NSF under Grant CCF 17-13977 and Grant ECCS 18-07348. An earlier ver-
sion of this paper was presented in part at the IEEE International Symposium
on Information Theory, Melbourne, Australia, July 2021. The associate editor
coordinating the review of this article and approving it for publication was
K. Choi. (Corresponding author: Sennur Ulukus.)

Priyanka Kaswan and Sennur Ulukus are with the Department of Electrical
and Computer Engineering, University of Maryland, College Park, MD 20742
USA (e-mail: pkaswan@umd.edu; ulukus@umd.edu).

Melih Bastopcu is with the Coordinated Science Laboratory, Univer-
sity of Illinois Urbana–Champaign, Urbana, IL 61801 USA (e-mail:
bastopcu@illinois.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TWC.2023.3235971.

Digital Object Identifier 10.1109/TWC.2023.3235971

[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50], [51], gossip networks [52], [53], [54]. A more detailed
literature review on age of information can be found in
references [55], [56], [57].

In this work, we consider information timeliness in par-
allel relay networks. The parallel multi-cache system model
can have important applications in modern vehicular net-
works. For example, in 5G-enabled vehicular networks where
self-sustaining wirelessly connected caching stations are
placed to enhance vehicular network capacity has been consid-
ered in [58]. Especially with a large number of vehicles in an
area and considering in practice that these cache stations may
have limited power capacities, in order to provide continuous
coverage in a vehicular network, multiple caching stations can
be placed such that their coverages may intersect with each
other. In these intersection areas, a vehicle may have access
to multiple base stations to communicate. In such a wirelessly
connected parallel caching systems, in our work, we address
how to enable timely communication with the caches that have
limited communication capacities.

The works that are most closely related to our work here
are [11], [12], [26], [27], [44], [45], [46], [47], [48], [49],
[50], [51], [53], and [54]. In [26], a single-server single-
cache refresh system is considered, where it is shown that
an asymptotically optimal policy updates a cached file in
proportion to the square root of its popularity. The work in [26]
assumes constant file update durations, which is extended
in [27] by considering file update durations to be dependent
on the size and the age of the files. While [26], [27] use the
AoI metric, reference [44] uses a binary freshness metric in a
caching system, and determines the optimum update rates at
the user and the cache. [44] also extends the approach to a
cascade sequence of cache nodes, and [45] generalizes it to
the case of nodes with limited cache capacity. In this paper,
we further generalize [44] to a more complex network which
is composed of parallel caches, shown in Fig. 1(b), where
multiple cache nodes are available for relaying file packets
from source to the user. Contrary to the above-mentioned
works, which optimize timeliness specifically in line networks,
where each node of the network has a unique predecessor node
responsible for supplying it with fresh packets, in parallel net-
works this convenience is not at our disposal anymore, making
the analysis more challenging. The stochastic hybrid system
(SHS) approach has been used to characterize timeliness of
the nodes in gossip networks in [50] and [53] with the version
age metric (introduced in [50] and [51]), and in [54] with the
binary freshness metric. These earlier works [50], [53], [54]
are substantially different from our work and mostly focus on
the scaling of information freshness in gossip networks. In this

1536-1276 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5122-0642
https://orcid.org/0000-0002-8219-8190

KASWAN et al.: TIMELY CACHE UPDATING IN PARALLEL MULTI-RELAY NETWORKS 3

Fig. 1. System models for (a) a single-cache system, and (b) a parallel
multi-cache system.

paper, in addition to presenting closed form expressions and
policies with binary freshness using first principles, we use
the SHS method to set forth parallel formulations for version
age in parallel relay networks. Compared to the earlier works,
this is the first work that considers characterization and then
optimization of the binary freshness and version age metrics
in parallel caching networks.

Other related work that use caching and relaying techniques
for freshness include: [46] where a tradeoff between content
freshness and service latency from the aspect of mobile edge
caching is studied; [47] which considers caching policies in
opportunistic networks; [11] where a cache-enabled aggregator
decides whether to receive a fresh update from an energy har-
vesting sensor or serve the request with a cached update; [48]
where an optimal policy is derived when the current rate of
requests for a file is dependent on both the history of requests
and the freshness of the file; [49] which considers a two-hop
status update system where an optimal scheduling policy is
identified by a constrained Markov decision process approach;
and [12] where a two-hop system with energy harvesting at
source and relay nodes is considered.

The main contributions of our work can be summarized
as follows. In this paper, we consider a parallel network
with multiple cache routes1 between a source and a user;
see Fig. 1(b). In Section II, we first derive a closed-form
expression for freshness at the user. Then, our goal is to
maximize the overall freshness at the user subject to the
constraints on the total update rates at the caches and at the
user. For that, in Section III, we observe from the freshness
formula of the two-cache system that lop-sided distribution of
rates across the routes supports higher freshness. Further, for
the two-route two-file case, restricting at least one of the files
to a single route maximizes the overall freshness of the system.
Moreover, in a K-cache system, restricting a file to fewer
routes improves the freshness. Motivated by these properties,
in Section IV, we solve an auxiliary problem of a single-cache
system and adapt its solution to our parallel cache network to

1The file transfer path from the source node to the user node via cache node
k is referred to as route k in this paper. Further, the words cache, cache node
and relay are used interchangeably.

obtain an approximate (sub-optimal) solution for the original
problem. We provide an upper bound on the gap between the
sub-optimal policy and the optimal policy. The gap is finite
and is independent of the number of files. In Section V,
we extend our results from the binary freshness metric to
the version age of information metric by using the SHS
method. Then, we obtain analogous results in parallel networks
with the version age of information metric. In Section VI,
we optimize the version age metric both in serial and parallel
relay networks. Finally, in Section VII, numerical results for
both timeliness metrics show that the proposed sub-optimal
policies closely approximate the optimal policy.

II. SYSTEM MODEL AND FRESHNESS FUNCTION

This work is based on the system model depicted in
Fig. 1(b). The system consists of a source, K parallel relays
and a user. The source has most up-to-date versions of a
library of N files. Update packets for file i arrive at the source
according to a rate λi Poisson process. The goal is to update
the user through the parallel network of K relays that have
cache memories. The source in turn offers updates for file i to
cache k according to a rate cki Poisson process. We assume
that there is no delay or information loss in any source-cache
links or cache-user links.2 The source is subject to a total
update rate constraint

∑K
k=1

∑N
i=1 cki ≤ C, emanating from

energy or cost limitations in real-world wireless networks. The
cache k sends updates for file i to the user according to a
rate uki Poisson process and is subject to total update rate
constraint

∑N
i=1 uki ≤ Uk, for k = 1, . . . , K .

When a file is updated at the source, the stored versions of
the same file at the caches and at the user become outdated.
Thus, we consider an update received by the user successful,
if the user receives a file version that is currently prevailing at
the server. This will happen when the source updates the cache
and the cache in turn updates the user before the source gets
updated with a newer version. In the following subsections,
we first derive freshness expression for file i in a single-
cache model, and later in a multi-cache model by using a
probabilistic approach.3 For simplicity, we drop subscript i
from λi, cki and uki in the following subsection since the
derivation is valid for all files (for all i).

A. Freshness for File i in the Single-Cache Model

In this subsection, we calculate the freshness expression for
file i for the single-cache system shown in Fig. 1(a). First,
we characterize the freshness at the cache. In Fig. 2(a), the
freshness evolution at the cache is shown between two file
updates at the source. We define the freshness function for
file i at the cache as follows

fc(i, t) =

{
1, if file i at the cache is fresh at time t,

0, otherwise.
(1)

Let Ts(i, j) denote the jth update cycle at the source,
i.e., time interval between the jth and (j + 1)th update for

2Transmission times and information loss in links considered in [59] can be
assumed to be negligible if the distance between the source and the caches are
small and/or the file sizes are relatively small compared to the transmission
capacity as argued in [44] and [60].

3By using the stochastic hybrid system (SHS) approach, we provide an
alternative way to characterize binary freshness in Section V-A.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2024

Fig. 2. Freshness function as a function of time (a) at the cache, and (b) at
the user.

file i. Once the source gets updated, the cache is updated
after duration Wc(i, j) and it remains updated for Tc(i, j) =
Ts(i, j)−Wc(i, j) duration. For simplicity, we drop index i for
variables Ts(i, j), Tc(i, j), and Wc(i, j), as the results in this
subsection pertain to file i. The long term average freshness
of file i at the cache denoted by Fc(i) is equal to

Fc(i) = lim
T→∞

1
T

∫ T

0

fc(i, t)dt. (2)

Let M be the number of update cycles in time duration T .
Provided that the system is ergodic, similar to [44], Fc(i) can
be equivalently written as

Fc(i) = lim
T→∞

M

T

⎛
⎝ 1

M

M∑
j=1

Tc(j)

⎞
⎠ =

E[Tc]
E[Ts]

. (3)

Here, as Tc(j) are independent and identically distributed
(i.i.d.) over j, we drop the index j and denote Tc(j) with the
typical random variable Tc. Similarly, Ts and Wc denote the
typical random variables for Ts(j) and Wc(j), respectively.

Since the files at the source are updated according to Poisson
process, Ts is an exponential random variable with a typical
update rate λ, we have E[Ts] = 1

λ . We define W ′
c as the

waiting time of receiving an update at the cache, which is
exponentially distributed with rate c. Then, we have Wc =
min{W ′

c, Ts}, as Wc either takes a value in between 0 and Ts,
or takes value Ts, i.e., Wc = Ts, and in this case, the cache
is not updated in that cycle. Since Wc is the minimum of two
exponential random variables, Wc is an exponential random
variable with rate λ + c and thus, we obtain E[Wc] = 1

λ+c .
Then, we obtain E[Tc] as

E[Tc] = E[Ts] − E[Wc] =
1
λ
− 1

λ + c
=

c

λ(λ + c)
. (4)

Finally, by substituting (4) into (3), we obtain Fc(i) as

Fc(i) =
E[Tc]
E[Ts]

=
c

λ + c
. (5)

Next, we characterize the freshness at the user. Freshness
evolution at the user in an update cycle is shown in Fig. 2(b).
We define the freshness function for file i at the user as follows

fu(i, t) =

{
1, if file i at the user is fresh at time t,

0, otherwise.
(6)

Once file i is updated at the cache after Wc(j), and the same
file is updated at the user after W̄u(j), file i at the user remains
fresh for a time period of Tu(j). Thus, the total waiting time

for the user to get the freshest version of file i in the jth cycle
is Wu = Wc +W̄u. We denote Fu(i) as the long term average
freshness of file i at the user which is given by

Fu(i) = lim
T→∞

1
T

∫ T

0

fu(i, t)dt

= lim
T→∞

M

T

⎛
⎝ 1

M

M∑
j=1

Tu(j)

⎞
⎠ =

E[Tu]
E[Ts]

, (7)

where Tu denotes the typical random variable for Tu(j) and
M is the number of update cycles in time duration T .

First, we find E[Wu] = E[W̄u] + E[Wc] by using nested
expectations. Similarly, we define W̄ ′

u as the waiting time of
receiving an update at the user. When the jth update arrives
at the source, due to memoryless property of the exponential
distribution, W ′

c and W̄ ′
u are exponentially distributed with

rates c and u, respectively. Hence, the distribution of W ′
u =

W̄ ′
u + W ′

c denoted by fW ′
u
(x) is equal to the convolution of

the distributions of W ′
c and W̄ ′

u,

fW ′
u
(x) = fW̄ ′

u
(x) ∗ fW ′

c
(x)

=
cu

c − u

(
e−ux − e−cx

)
, 0 ≤ x < ∞. (8)

For a given update cycle duration Ts at the source, the
total waiting time Wu = min{W ′

u, Ts} either takes a value
in between 0 and Ts, or Wu = Ts. When Wu = Ts, we note
that the file at the user is not updated in that cycle. Thus,
we have

E[Wu|Ts = t] =
∫ t

0

xfWu(x)dx +
∫ ∞

t

tfWu(x)dx

=
cu

c − u

[
1 − e−ut

u2
− 1 − e−ct

c2

]
. (9)

By using E[Wu] = E[E[Wu|Ts]], we obtain E[Wu] as

E[Wu] =
∫ ∞

0

cu

c − u

[
1 − e−ut

u2
− 1 − e−ct

c2

]
λe−λtdt

=
λ + c + u

(λ + u)(λ + c)
. (10)

Using (10), we obtain E[Tu] as

E[Tu] = E[Ts] − E[Wu] =
1
λ
− λ + c + u

(λ + u)(λ + c)

=
uc

λ(λ + u)(λ + c)
. (11)

Finally, by substituting (11) into (7), we obtain Fu(i) as

Fu(i) =
E[Tu]
E[Ts]

=
u

λ + u

c

λ + c
, (12)

which is equal to the freshness expression in [44]. Above,
we have provided an alternative method (to [44]) to derive
freshness, which will be useful in the multi-cache system next.

B. Freshness of File i in the Multi-Cache Model

In this subsection, we find the freshness expression of file
i for a multi-cache system shown in Fig. 1(b). Again, for
simplicity, we drop file index i from all variables in this
subsection.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

KASWAN et al.: TIMELY CACHE UPDATING IN PARALLEL MULTI-RELAY NETWORKS 5

Each cache sends its updates to the user independent of
other caches. After the file at the source is updated for the
jth time, the file at the user becomes fresh again by the first
successful update by any one of the caches. The file at cache k
is updated after W ′

ck
duration. Cache k updates the same file at

the user after W̄ ′
uk

duration. We denote the random variable
Xk = W ′

ck
+ W̄ ′

uk
as the total waiting time for cache k to

send a successful update to the user. As W ′
ck

and W̄ ′
uk

are
exponentially distributed with rates ck and uk, respectively,
similar to (8), we have fXk

(x) = ckuk

ck−uk
(e−ukx − e−ckx) for

x ≥ 0. For a given update cycle Ts = t, the user is updated
after Wu given by

Wu = min{t, X1, X2, . . . , XK}, (13)

where Wu = t denotes the case where the user is not
updated in that update cycle. The complementary cumulative
distribution function (ccdf) of Xk is given by

P(Xk > x) =

{
ckuk

ck−uk

(
e−ukx

uk
− e−ckx

ck

)
, x ≥ 0,

1, x < 0.
(14)

Since Wu takes only positive values, E[Wu] can be found
by integrating its ccdf as follows

E[Wu|Ts = t] =
∫ ∞

0

P(Wu > x)dx

=
∫ t

0

P(X1 >x)P(X2 >x) · · ·P(XK > x)dx.

(15)

For ease of exposition, let pv = (pi)i∈[k] ∈ Πk{ck, uk} =
Vp, and Sc =

∑K
k=1 �{pk = ck}. Then, we have

E[Wu|Ts = t] =
∏

k ck

∏
k uk∏

k(ck − uk)

×
⎛
⎝ ∑

pv∈Vp

(−1)Sc

(
1 − e−t(�k pk)

)
(
∑

k pk)
∏

k pk

⎞
⎠ .

(16)

Next, we find E[Wu] = E[E[Wu|Ts]] as follows

E[Wu]=
∏

k ck

∏
k uk∏

k(ck − uk)

⎛
⎝ ∑

pv∈Vp

(−1)Sc∏
k pk

1
λ +

∑
k pk

⎞
⎠ . (17)

As given in (7), the long term average freshness of file i at
the user is

Fu(i) =
E[Tu]
E[Ts]

= 1 − λE[Wu]

= 1 −
∏

k ck

∏
k uk∏

k(ck − uk)

⎛
⎝ ∑

pv∈Vp

(−1)Sc∏
k pk

1

1 +
�

k pk

λ

⎞
⎠ .

(18)

Our goal is to maximize the overall freshness at the user, i.e.,∑N
i=1 Fu(i), under the given total update rate constraints at

the caches and at the user. We note that when K = 1, i.e.,
a single-cache system, the user freshness in (18) reduces to
the expression in (12), given by

Fu(i) = 1 − cu

(c − u)

(
1
u

1
1 + u

λ

− 1
c

1
1 + c

λ

)

=
(

u

λ + u

)(
c

λ + c

)
. (19)

When K = 2, i.e., a two-cache system, the user freshness
in (18) reduces to

Fu(i) = 1 − (c1c2)(u1u2)
(c1−u1)(c2−u2)

×
(

1
c1c2

1
1+ c1+c2

λ

− 1
u1c2

1
1+ u1+c2

λ

+
1

u1u2

1
1+ u1+u2

λ

− 1
c1u2

1
1+ c1+u2

λ

)

which can be equivalently written as

Fu(i) =
(u1+u2)(c1+c2)

(λ+u1+u2)(λ+c1+c2)

− λ

(λ+u1+u2)(λ+c1+c2)

×
(

u2c1

λ+u1+c2
+

u1c2

λ+u2+c1

)
. (20)

Interestingly, comparing (12) and (20), we note that fresh-
ness in a two-cache system with update rates (c1, c2) from
the source to the caches and (u1, u2) from caches to the user,
yields a smaller freshness than in a single-cache system with
an update rate c = c1 + c2 from the source to a cache and
u = u1 + u2 from the cache to the user due to the negative
term in (20).

We observe that as λ becomes very large, Fu(i) in (20)
approaches zero, i.e., limλ→∞ Fu(i) = 0. This supports the
intuition that it is difficult to maintain fresh information at
the user when the source keeps getting newer update packets
with high frequency. On the other hand, as λ approaches
zero, which corresponds to the scenario where files never get
updated at the source, Fu(i) becomes 1, since the user needs
to receive each file only once and from that point onwards,
the user forever remains fresh. Further, interestingly, setting
either one of the variables uk and ck for k = 1, 2 to zero
transforms (20) into (19), rendering the route k bereft of any
use and reducing the model to a single cache system.

III. STRUCTURE OF THE OPTIMAL POLICY

In this section, we find the optimum update rate allocation
structure for the most general system with K caches and N
files. First, we consider the system with K = 2 caches and
N = 2 files. We denote route k as the file update path from
source through cache k to the user. Again dropping file index
i for the remainder of the section, let user update rates for
file i be u1 and u2 in route 1 and route 2, respectively, also
let cache update rates in route 1 and route 2 be c1 and c2,
respectively, as shown in Fig. 3. We define the average update
rates arriving to user as ū = u1+u2

2 and arriving to caches as
c̄ = c1+c2

2 , and deviation from these averages as b = u2−u1
2

and a = c2−c1
2 . Thus, u1 = ū − b, u2 = ū + b, c1 = c̄ − a,

and c2 = c̄ + a.
In the next lemma, for given user rates u1 and u2 (therefore,

given ū and b), and the total cache rate 2c̄, we find the optimal
distribution of cache rates to maximize the freshness at the
user, that is, we find the optimal a, a∗, in terms of b, ū and c̄.

Lemma 1: In a cache update system with K = 2 parallel
caches, for given user rates u1 and u2, and the total cache rate

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2024

Fig. 3. Finding optimal cache rates in each route for single file by reshuffling
while keeping total cache rate constant.

2c̄, the optimal cache rates are c∗1 = c̄ − a∗ and c∗2 = c̄ + a∗,
where

a∗ = min
{

b +
(c̄+λ+ū)
b(2c̄+λ)

(
ū(2c̄ + λ + ū) − b2

−
√

(ū2 − b2)((2c̄ + λ + ū)2 − b2)
)

, c̄

}
. (21)

Proof: We write (20) equivalently as follows after insert-
ing ū, c̄, a and b,

Fu(i) =
4c̄ū

(λ + 2c̄)(λ + 2ū)
− λ

(λ + 2c̄)(λ + 2ū)

×
(

(ū − b)(c̄ + a)
c̄ + λ + ū + b−a

+
(ū + b)(c̄ − a)

c̄ + λ + ū + a − b

)
.

(22)

Since ū and c̄ are fixed, the first term and pre-factor of the
second term in (22) are fixed. Taking the derivative of Fu(i)
with respect to a yields

dFu(i)
da

=
λ

(λ + 2c̄)(λ + 2ū)

(
(b − ū)

(b−a + c̄ + λ + ū)

+
(b + ū)

(a−b + c̄ + λ + ū)
+

(a + c̄)(b − ū)
(b−a + c̄ + λ + ū)2

− (b + ū)(a − c̄)
(a−b + c̄ + λ + ū)2

)
. (23)

Setting dFu(i)
da = 0 yields two solutions. Since a values are

restricted in range 0 < a < c̄, there is only one valid solution
which is the first part of the min in (21).

The second derivative of freshness with respect to a is given
by

d2Fu(i)
da2

=
λ

(λ + 2c̄)(λ + 2ū)

(
2(b − ū)

(b−a + c̄ + λ + ū)2

− 2(b + ū)
(a−b + c̄ + λ + ū)2

+
2(a + c̄)(b − ū)

(b−a + c̄ + λ + ū)3

+
2(b + ū)(a − c̄)

(a−b + c̄ + λ + ū)3

)
. (24)

Again, as 0 < b < ū, the valid solution yields ∂2Fu(i)
∂a2 <

0, from which we conclude that a∗ in (21) maximizes the
freshness at the user.

Furthermore, given 0 ≤ x, y ≤ 1 , the inequality 1 − xy −√
(1 − x2)(1 − y2) ≥ 0 holds true, hence, by substituting

x = b/ū and y = b/(2c̄ + λ + ū) in (21), we get

a∗ = b +
(c̄ + λ + ū)
b(2c̄ + λ)

ū(2c̄ + λ + ū)

×
(
1 − xy −

√
(1 − x2)(1 − y2)

)
≥ b. (25)

Differentiating both sides with respect to b gives ∂a∗
∂b ≥ 0, and

thus, a∗ increases monotonically with b, till it reaches c̄, after
which a∗ is equal to c̄, yielding the result provided in (21). �

Next, we define F̃u(i) as the cache-update-rate-optimized
freshness, where for fixed u1, u2, we insert the optimal cache
update rates c∗1 and c∗2 in (20). Note that F̃u(i) is a function
of b, ū and c̄. In the following lemma, we show that as u1,
u2 get more lopsided, i.e., as the difference (u2−u1) increases,
cache-update-rate-optimized freshness F̃u(i) increases.

Lemma 2: F̃u(i) is an increasing function of b.
Proof: We prove the statement by showing dF̃u(i)

db > 0. Here,
we consider two different cases for the value of a.

In the first case, we consider a = a∗ < c̄. Assuming a = a∗
in (22) to get F̃u(i) and using the chain rule, we have

dF̃u(i)
db

=
∂F̃u(i)

∂b
+

∂F̃u(i)
∂a

da

db
=

∂F̃u(i)
∂b

, (26)

where (26) follows from the fact that ∂F̃u(i)
∂a = 0 when a = a∗.

We define F1 as follows

F1 =
(ū − b)(c̄ + a)

(c̄ + λ + ū + b−a)
+

(ū + b)(c̄ − a)
(c̄ + λ + ū + a − b)

, (27)

which can be equivalently written as

F1 =
(2ū + c̄ + λ − a)(c̄ + a)

(λ + ū + c̄ + b − a)
+

(2ū + c̄ + λ + a)(c̄ − a)
(λ + ū + c̄ + a − b)

− 2c̄. (28)

Comparing (28) with (22), we note that proving ∂F̃u(i)
∂b ≥

0 is the same as proving ∂F1
∂b ≤ 0,

∂F1

∂b
=
(−(λ + ū + c̄ + a − b)2(2ū + c̄ + λ − a)(c̄ + a)

+ (λ + ū + c̄ + b − a)2(2ū + c̄ + λ + a)(c̄ − a)
)

× 1
((λ + ū + c̄)2 − (a − b)2)2

. (29)

Denoting A = (λ+ ū+ c̄)2+(a−b)2, B = 2(λ+ ū+ c̄)(a−b),
C = 2ū + c̄ + λ, D = a and E = c̄, the expression for
∂F1
∂b in (29) becomes

∂F1

∂b
= −2(B(CE − D2) + AD(C − E))

((λ + ū + c̄)2 − (a − b)2)2
≤ 0, (30)

where (30) follows from the fact that B ≥ 0 due to (25),
D2 ≤ CE due to D ≤ C and D ≤ E as a < c̄, A ≥ 0 and
E ≤ C, which completes the proof of the first case.

In the second case, we consider a = a∗ = c̄. For this case,
F1 in (28) becomes

F1 =
(

(2ū+λ)
(λ+ū+b) − 1

)
2c̄. (31)

Then, the derivative of F1 in (31) with respect to b becomes

∂F1

∂b
= −(2ū+λ)2c̄

(λ+ū+b)2 ≤ 0. (32)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

KASWAN et al.: TIMELY CACHE UPDATING IN PARALLEL MULTI-RELAY NETWORKS 7

As a result, for both cases, we show that ∂F1
∂b ≤ 0 which

equivalently implies that ∂F̃u(i)
∂b ≥ 0, and thus, F̃u(i) increases

with b. �
Lemma 2 implies that lopsided update rates at the user

increase the freshness. Next, for a K = 2 cache system with
N = 2 files, we show that we should restrict at least one of
the files to a single route, that is, lopside at least one of the
files to an extreme.

Lemma 3: In a cache update system with K = 2 caches
and N = 2 files, in the optimal policy, we need to restrict at
least one file to a single route.

Proof: Let the average rates at the caches and at the user
hold values c̄i = c1i+c2i

2 and ūi = u1i+u2i

2 for i = 1, 2 which
fixes total user rates and total cache rates. Similarly, we have
u1i = ūi−bi and u2i = ūi+bi which satisfies the total update
rate constraints u11 + u12 = U1 and u21 + u22 = U2. Then,
we change the update rates at the user to u′

11 = ū1 − b1 − δ1,
u′

21 = ū1 + b1 + δ1, u′
12 = ū2 − b2 + δ2 and u′

22 = ū2 +
b2 − δ2 such that we have |δ1| = |δ2|, u′

11 + u′
12 = U1, and

u′
21 + u′

22 = U2 still hold. We analyze two cases of shuffling,
shown in Fig. 4.

In the first case, increasing bi for one file leads to increasing
bi value for the other file as shown in Fig. 4(a). As distrib-
ution of user rates for both files become lopsided simultane-
ously, it is a win-win situation for both files. For this case,
we increase bi values of files till one file is completely in a
single route. For example, in Fig. 4(a), the user rates for the
second file (shown in yellow) are ū2−b2 and ū2+b2 in route 1
and route 2, respectively. Then, we increase b2 till ū2 − b2 =
0 in route 1 and the second file is completely restricted to
route 2. Such shuffling also leads to a simultaneous increase
in b1.

In the second case, increasing bi value of one file decreases
bi value of the other file. This case is shown in Fig. 4(b) where
both files have larger user update rates in route 2. In order
to determine which file to prioritize, we compare dF̃u(i)

dbi
for

both files. If dF̃u(1)
db1

> dF̃u(2)
db2

, then we prioritize improving

freshness of file 1. We observe that d2F̃u(i)
db2i

> 0. Thus, the

increase in freshness of file 1 is always larger than the decrease

in freshness of file 2. Similarly, if dF̃u(2)
db2

> dF̃u(1)
db1

, then we
increase the freshness of the second file which decreases the
freshness of the first file. Thus, we need to restrict at least one
file to a single route to obtain the optimum freshness. �

Thus, for a K = 2 cache and N = 2 file system with
a given set of update rates u11, u21, u12 and u22, we can
shuffle these rates to increase the total freshness while keeping
average rates ū1, ū2, c̄1, and c̄2 the same. In this process,
we always end up restricting one of the files to only one route.
Extending this result to a K = 2 cache but arbitrary N files
case, we iteratively choose a pair of files and increase freshness
of the pair by restricting one of these files to a single route.
We repeat this process until we restrict N − 1 files to a single
route each. Thus, for a K = 2 cache, arbitrary N file system,
only at most one file will be updated through both relays, and
the remaining N − 1 files will settle to a single relay.

Lemma 4: Freshness of a file in a K-cache system with
update rates at the cache (c1, c2, c3, . . . , cK), and at the

Fig. 4. Shuffling user rates for improving freshness. (a) Freshness of both
files improve (file 2 only in route 2). (b) In upper branch, freshness of file
1 decreases and of file 2 increases (file 2 only in route 2). In lower branch,
freshness of file 1 increases and of file 2 decreases (file 1 only in route 2).

user (u1, u2, u3, . . . , uK) is smaller than the freshness in a
(K − 1)-cache system with update rates at the cache (c1 +
c2, c3, . . . , cK), and at the user (u1 + u2, u3, . . . , uK).

Proof: With the notation of Section II, since freshness
Fu(i) = 1 − λE[Wu], where E[Wu] =

∫∞
0

E[Wu|Ts =
t]λe−λtdt, we prove the lemma by showing E[WK

u |Ts =
t] − E[WK−1

u |Ts = t] ≥ 0, where K in WK
u denotes the

total waiting time for the user in a K-cache system.
For file i in the K-cache system, Wu in (13) states that

WK
u = min{t, X1, X2, X3, . . . , XK}. (33)

Therefore, similar to (15), we have

E[WK
u |Ts = t] =

∫ ∞

0

P(WK
u > x)dx

=
∫ t

0

P(X1 >x)P(X2 >x) · · ·P(XK >x)dx,

(34)

where Xk is the total waiting time for cache k to send
a successful update to the user which has the following
distribution

P(Xk > x) =

⎧⎨
⎩

cke−ukx − uke−ckx

(ck − uk)
, x ≥ 0,

1, x < 0.

(35)

For file i in (K − 1)-cache system, we have WK−1
u =

min{t, Xp, X3, . . . , XK} where Xp is the total waiting time
in the route having update rate c1 + c2 from source to cache
and u1 + u2 from cache to user, backed by the following
distribution

P(Xp > x)=

���
��

(c1 + c2)e−(u1+u2)x−(u1 + u2)e−(c1+c2)x

((c1 + c2)−(u1 + u2))
, x ≥ 0,

1, x < 0.

(36)

Then, we write E[WK−1
u |Ts = t] as

E[WK−1
u |Ts = t] =

∫ ∞

0

P(WK−1
u > x)dx

=
∫ t

0

P(Xp >x)P(X3 >x) · · ·P(XK >x)dx.

(37)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2024

Hence, we obtain E[WK
u |Ts = t] − E[WK−1

u |Ts = t] as∫ t

0

(P(X1 > x)P(X2 > x) − P(Xp > x))

×P(X3 > x) · · ·P(XK > x)dx. (38)

We prove E[WK
u |Ts = t]−E[WK−1

u |Ts = t] ≥ 0 by showing

G(x) ≥ 0 for all x ≥ 0, where G(x) = P(X1 > x)P(X2 >

x) − P(Xp > x) is given by

G(x) = e−(c1+c2)x

(
(c1e

(c1−u1)x−u1)(c2e
(c2−u2)x−u2)

(c1 − u1)(c2 − u2)

− (c1 + c2)e((c1+c2)−(u1+u2))x−(u1 + u2)
(c1 + c2) − (u1 + u2)

)
.

(39)

Proving G(x) ≥ 0 for all x ≥ 0 is equivalent to proving
G1(x) ≥ 0 for all x ≥ 0, where

G1(x) =
(

(c1e
(c1−u1)x − u1)(c2e

(c2−u2)x − u2)
(c1 − u1)(c2 − u2)

− (c1 + c2)e((c1+c2)−(u1+u2))x−(u1 + u2)
(c1 + c2) − (u1 + u2)

)
.

(40)

Since G1(0) = 0, we prove G1(x) ≥ 0 for x ≥ 0 by
showing that dG1(x)

dx ≥ 0 for x ≥ 0. Then, we obtain
dG1(x)

dx = e((c1+c2)−(u1+u2))xG2(x) where

G2(x) =

(
c1

(
c2 − u2e

−(c2−u2)x
)

(c2 − u2)

+
c2

(
c1 − u1e

−(c1−u1)x
)

c1 − u1
− (c1 + c2)

)
, (41)

for x ≥ 0. Since G2(0) = 0 and dG2(x)
dx = c1u2e

−(c2−u2)x +
c2u1e

−(c1−u1)x ≥ 0, we show that G2(x) ≥ 0 for x ≥
0 which proves that G(x) ≥ 0 for x ≥ 0, and thus, completes
the proof. �

Hence, for given total update rates
∑K

k=1 uki and
∑K

k=1 cki

for file i, the maximum freshness is obtained by concentrating
the rates in a single route to the extent possible. In the next
section, we provide an approximate way of finding total update
rates for files and scheduling them to individual links.

IV. THE OPTIMIZATION OF BINARY FRESHNESS IN

PARALLEL RELAY NETWORKS

Based on the insights obtained for the optimal caching struc-
ture in Section III, in this section, we provide a sub-optimal
solution that finds the cache and user update rates for each file,
and then, propose a way to allocate these rates to the cache
routes. We first write the freshness maximization problem for
our system as,

max
cki,uki

N∑
i=1

Fu(i)

s.t.
K∑

k=1

N∑
i=1

cki ≤ C

N∑
i=1

uki ≤ Uk, k = 1, . . . , K,

cki ≥ 0, uki ≥ 0, k = 1, . . . , K, i = 1, . . . , N. (42)

We note that the problem in (42) is not a convex optimization
problem since the objective function in (42) is not concave.
Moreover, this parallel cache problem is significantly more
complex than the cascade cache problem in [44]. A Lagrangian
approach as in [44] seems prohibitive as it results in highly
nonlinear KKT conditions, and thus, it is difficult to derive
closed form expressions for cki and uki that satisfy the KKT
conditions. For this reason, we pursue an approximate solution
approach utilizing the properties of the optimal solution found
in Lemma 3.

First, we construct a single-cache problem by bringing
all relays together, where the source-to-cache total update
constraint is C and the relay-to-user total update constraint
is U =

∑K
k=1 Uk. The optimal solution of this single-cache

problem forms an upper bound for the optimum solution of our
multi-cache problem, as it allows distributed relays to share
update rate capacities. We denote this upper bound by Fub.

Second, we extract a feasible solution for our multi-cache
problem from the optimum solution of the constructed single-
cache problem. We know from Lemma 4 that files need to
be restricted to single routes for maximum freshness. Thus,
our approximate solution takes the optimum solution of the
constructed single-cache problem, and distributes the update
rates in the multi-cache setting in such a way that each file
is updated only through a single relay to the extent possible.
Let the solution of the single-cache problem be ui which is
ui =

∑K
k=1 uki. We assign the files in order of decreasing ui

to one of the routes. We start with the first route and fit fully
as many files as possible, till we reach a file which will not fit
completely and we make it split rates with the last route (route
K). We follow this for K − 1 routes. If a file rate ui exceeds
route capacity Uk, we first fill maximal full routes with it, then
try to fit the remaining rate fully in the remaining routes. This
leaves us with at most K −1 files that split rates between two
routes. The remaining files go to route K . This approximate
solution gives us a sub-optimal freshness Fso. Denoting the
optimal freshness in our problem in (42) as F ∗, we have

Fso < F ∗ < Fub (43)

which means F ∗−Fso ≤ Fub −Fso, i.e., the gap between the
sub-optimal solution and the optimal solution is bounded by
the gap between the upper bound and the sub-optimal solution.

Next, we bound Fub−Fso. We note that, in the sub-optimal
policy, we assign at most K − 1 files to two routes. From
Lemma 2, freshness for file i increases when bi increases,
with minimum at bi = 0 (a∗ = 0) and maximum at bi =
ūi (a∗ = c̄). Hence, using (22), we find an upper bound on
the maximum freshness loss ratio ρ possible for a file due to
splitting as

ρ =
Fu(i)|(bi,a∗

i)=(ūi,c̄i) − Fu(i)|(bi,a∗
i)=(0,0)

Fu(i)|(bi,a∗
i)=(ūi,c̄i)

=
λi

2(λi + ūi + c̄i)
< 0.5. (44)

Since Fub(i) < 1, the optimality gap is F ∗ − Fso ≤ ρ(K −
1)Fub(i) < 0.5(K−1). These K−1 files have low uis, owing

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

KASWAN et al.: TIMELY CACHE UPDATING IN PARALLEL MULTI-RELAY NETWORKS 9

to very high or very low λis, as observed in [44]. In the former
case, Fub(i) is low, while in the latter case, ρ is very low.

V. THE SHS METHOD TO CHARACTERIZE TIMELINESS IN

PARALLEL CACHE SYSTEMS

The stochastic hybrid system (SHS) approach has been
introduced in [3] as an alternative way to characterize the
timeliness in communication systems. Specifically, by using
the SHS method, timeliness of the nodes in gossip networks
is analyzed with the version age metric in [50] and [53], and
with the binary freshness metric in [54]. In this section, first,
we use the SHS method to provide a different way to find
the binary freshness which is derived in Section II by using
a probabilistic approach. Then, we utilize the SHS method to
characterize the version age in parallel relay networks.

A. The Characterization of Binary Freshness by Using the
SHS Method

We define the set K as K � {1, 2, . . . , K} to denote
cache indices. Then, we denote the collection of all the
subsets of K with m elements as Km. For example, we have
K1 = {{1}, {2}, . . . , {K}}. Next, we drop file index i in the
remainder of the section and denote the freshness of cache k
as Fk(t) and the freshness of any set S ⊆ K ∪ {u}, where
u denotes the index for the user, as FS(t) � maxj∈S Fj(t)
at time t. We define the average freshness of the set S as

FS = limt→∞ E[FS(t)]. Next, by using the [54, Thm. 1],
we write the freshness of the user in K-cache system as

Fu =

∑K
k1=1 uk1F{u}∪{k1}
λ +

∑K
k1=1 uk1

. (45)

Note that F{u}∪{k1} denotes the freshness of the set consisting
of the user and the cache k1, where k1 ∈ K. Then, we write
F{u}∪{k1}, or simply F{u,k1}, as

F{u,k1}=
ck1 +

∑
k2∈K−{k1} uk2F{u,k1}∪{k2}

λ + ck1 +
∑

k2∈K−{k1} uk2

, {k1}∈K1,

(46)

where K− {k1} denotes the subtraction of {k1} from the set
K. Then, we write the freshness expressions for F{u,k1,k2} in
terms of F{u,k1,k2}∪{k3}, and so on. If we continue to write
these sequential equations for the �th time, i.e., F{u,k1,k2,...,k�},
we obtain (47), shown at the bottom of the next page, for
{k1, k2, . . . , k�} ∈ K� where � = 1, 2, . . . , K − 1. At the last
step, we have

F{u,1,2,...,K} =
∑K

k=1 ck

λ +
∑K

k=1 ck

. (48)

After obtaining all these freshness expressions, we start
inserting the value of F{u,1,2,...,�+1} back into F{u,1,2,...,�}
for � = 1, 2, . . . , K − 1, and finally, we obtain the freshness
of the user Fu in (45) by inserting the F{u,k1} values. With
the SHS method, in order to find the freshness of the user Fu

in a parallel K-cache system, we need to find 2K different
freshness expressions. For example, in a K = 2 cache system,
we find the freshness at the user Fu by using 4 equations which
are given as follows

Fu =
u1F{u,1} + u2F{u,2}

λ + u1 + u2
, (49)

where F{u,1} and F{u,2} are given by

F{u,1} =
c1 + u2F{u,1}∪{2}

λ + c1 + u2
,

F{u,2} =
c2 + u1F{u,2}∪{1}

λ + c2 + u1
. (50)

Then, we find F{u,1,2} as

F{u,1,2} =
c1 + c2

λ + c1 + c2
. (51)

Finally, by using F{u,1} and F{u,2} in (50), F{u,1,2} in (51),
we obtain the freshness expression at the user Fu for K =
2 cache system as

Fu =
u1c1 + u2c2

(λ+u1+u2)(λ+c1+c2)
+

1
(λ+u1+u2)(λ+c1+c2)

×
(

u2c1(u1+c2)
λ+u1+c2

+
u1c2(u2+c1)
λ+u2+c1

)
(52)

which is the same as (20). Therefore, the SHS method can be
used as an alternative way to characterize the binary freshness
at the user in a parallel K-cache system.

In the following subsection, we use the SHS method to
characterize the version age of information in a parallel
K-cache system.

B. The Characterization of Version Age by Using
the SHS Method

The version age of information or simply the version age
has been recently introduced in [50] and [51]. Here, each
update at the source is denoted as a new version of the
information, and thus, the version age measures how many
versions a particular node is behind compared to the most
current version at the source. We denote the version of the
information at the source as Ns(t), at cache k as Nk(t),
and at the user as Nu(t) at time t. Then, the version age
is defined at cache k as Δk(t) � Ns(t) − Nk(t), and at the
user as Δu(t) � Ns(t) − Nu(t). When the information at
the source is updated, the version age at the caches and at the
user increases by 1, i.e., Δ′

k(t) = Δk(t) + 1, for all k ∈ K
and Δ′

u(t) = Δu(t) + 1, where Δ′(t) represents the version
age after the transition. When cache k gets an update from
the source, its version age becomes 0, i.e., Δ′

k(t) = 0, as the
source has the latest version of the update. However, when
the user gets an update from cache k, its version age becomes
Δ′

u(t) = min{Δu(t), Δk(t)}. In other words, the user updates
its information only if cache k has more recent version of
the information. We define the version age of any set S as
ΔS(t) � minj∈S Δj(t) at time t. In addition, we define the
average version age of any set S as ΔS = limt→∞ E[ΔS(t)].
Correspondingly, Δk and Δu denote the average version age at
cache k and at the user. Next, using the [50, Thm. 1], we write
the version age of the user in a K-cache system as

Δu =
λ +

∑K
k1=1 uk1Δ{u}∪{k1}∑K

k1=1 uk1

. (53)

Here, Δ{u}∪{k1}, or simply Δ{u,k1}, denotes the version
age of the set containing cache k1 and the user. Next,

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2024

we write Δ{u,k1} as

Δ{u,k1}=
λ+
∑

k2∈K−{k1} uk2Δ{u,k1}∪{k2}
ck1 +

∑
k2∈K−{k1} uk2

, k1 ∈ K1.

(54)

Continuing to write sequential equations for the version age
for the � caches, i.e., Δ{u,k1,k2,...,k�}, we get

Δ{u,k1,k2,...,k�}

=
λ +

∑
k�+1∈K−{k1,k2,...,k�} uk�+1Δ{u,k1,k2,...,k�}∪{k�+1}∑

k̄�+1∈{k1,k2,...,k�} ck̄�+1
+
∑

k�+1∈K−{k1,k2,...,k�} uk�+1

,

(55)

for {k1, k2, . . . , k�} ∈ K� where � = 1, 2, . . . , K − 1. In the
final step, we have

Δ{u,1,2,...,K} =
λ∑K

k=1 ck

. (56)

After obtaining all these version age expressions, by sub-
stituting Δ{u,1,2,...,�+1} back into Δ{u,1,2,...,�} for � =
1, 2, . . . , K−1, and substituting Δ{u,1} in (54) into Δu in (53),
we obtain the version age at the user. Thus, characterizing
version age at the user by using the SHS method requires
solving 2K different equations sequentially.

Next, as an example, we find the version age in a K =
2 cache system. For this system, the version age at the user is
given by

Δu =
λ + u1Δ{u,1} + u2Δ{u,2}

u1 + u2
, (57)

where Δ{u,1} and Δ{u,2} are given by

Δ{u,1} =
λ + u2Δ{u,1}∪{2}

c1 + u2
,

Δ{u,2} =
λ + u1Δ{u,2}∪{1}

c2 + u1
. (58)

Next, we find Δ{u,1,2} as

Δ{u,1,2} =
λ

c1 + c2
. (59)

Finally, we obtain the version age at the user Δu in (57) by
using Δ{u,1} and Δ{u,2} in (58), and Δ{u,1,2} in (59) as

Δu =
λ

u1 + u2
+

λ

c1 + c2
+

λ

(u1 + u2)(c1 + c2)

×
(

u2c1

u1 + c2
+

u1c2

u2 + c1

)
. (60)

In the next section, we optimize the update rates and select
file routes that minimize the average version age of the user
in a parallel relay network.

VI. THE OPTIMIZATION OF VERSION AGE IN PARALLEL

RELAY NETWORKS

In this section, we consider the problem of minimizing
the average version age in parallel relay networks. For this
purpose, before considering the parallel relay problem, let us
first consider the minimization of version age in a serially con-
nected cache system as shown in Fig. 1(a). In Section VI-A,
we first find the optimal update rates to minimize the version
age for the serially connected network. We also utilize these
rates for the optimization of the version age in parallel relay
networks which we consider in Section VI-B. Here, we first
show that it is better to consolidate update rates of the files to a
single route, and propose an approximate solution to minimize
the version age for the multi-cache system.

A. Optimization of Version Age in Serially
Connected Cache Systems

By using the SHS method provided in Section V-B based
on recursive use of [50, Thm. 1], we write the version
age of file i at the user for the serially connected cache
system as Δu(i) = λi

ui
+ Δ{c}∪{u}(i) = λi

ui
+ Δc(i), where

Δc(i) denotes the version age of file i at the cache and
Δ{c}∪{u}(i) = min{Δc(i), Δu(i)} = Δc(i) as the user
obtains its information only via the cache. Then, we find
Δc(i) = λi

ci
. Thus, the version age of file i at the user for

a single-cache system is Δu(i) = λi

ui
+ λi

ci
. We note that the

version age at the user is equal to the sum of the version age at
the cache λi

ci
and the version age of the user with respect to the

cache λi

ui
. Therefore, for a serially connected cache system, the

version age becomes additive. Thus, for a serially connected
K-cache system, the version age at the user is

Δu(i) =
K∑

k=1

λi

cki
+

λi

ui
, (61)

where the first term is equal to the version age at cache k.
When we have a serially connected cache system, we see
in (19) that the binary freshness at the user has a multiplicative
structure whereas the version age in (61) has an additive
structure.4

4If we use the traditional age of information metric for the serially connected
K-cache system with dynamically changing source instead of a source which
is updated according to a Poisson process, the average age of file i at the
user denoted by Δ̂u(i) becomes equal to Δ̂u(i) =

�K
k=1

1
cki

+ 1
ui

as in

[52, (43)]. We note that we can obtain Δ̂u(i) by substituting λi = 1 in the
version age expression in (61). This result is intuitive as the traditional age
metric increases linearly over time with a unit rate as if we have λi = 1 in
the case of version age. Thus, the version age and the traditional age metrics
are closely related.

F{u,k1,k2,...,k�} =

∑
k̄�+1∈{k1,k2,...,k�} ck̄�+1

λ +
∑

k̄�+1∈{k1,k2,...,k�} ck̄�+1
+
∑

k�+1∈K−{k1,k2,...,k�} uk�+1

+

∑
k�+1∈K−{k1,k2,...,k�} uk�+1F{u,k1,k2,...,k�}∪{k�+1}

λ+
∑

k̄�+1∈{k1,k2,...,k�} ck̄�+1
+
∑

k�+1∈K−{k1,k2,...,k�} uk�+1

, (47)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

KASWAN et al.: TIMELY CACHE UPDATING IN PARALLEL MULTI-RELAY NETWORKS 11

Next, we formulate the problem of minimizing the version
age for a single-cache system with N files as follows

min
ci,ui

N∑
i=1

λi

ui
+

λi

ci

s.t.
N∑

i=1

ci ≤ C,

N∑
i=1

ui ≤ U,

ci ≥ 0, ui ≥ 0, i = 1, . . . , N, (62)

where ui and ci are the user and cache update rates, respec-
tively, for file i in a single-cache system. This formulation
highlights some key differences between binary freshness and
version age. Not only is the optimization problem in (62)
convex, but it is also separable as the optimal uis and cis
can be found independently of each other. This is not the case
with the binary freshness metric where the objective function
is non-convex and the update rates found via alternating max-
imization based method might not be globally optimal [44].
We separate the problem in (62), and write the problem for
finding the optimal cache rates as follows

min
ci

N∑
i=1

λi

ci

s.t.
N∑

i=1

ci ≤ C,

ci ≥ 0, i = 1, . . . , N. (63)

Similarly, we can write an optimization problem to determine
the optimal user update rates in (62). The solution to the
optimization problem in (63) is (see also [34]),

cj =
C
√

λj∑N
i=1

√
λi

, uj =
U
√

λj∑N
i=1

√
λi

. (64)

Thus, the optimal policy for the version age in a single-cache
system is a square-root policy, which means that every file
gets updated proportional to the square-root of the respective
file update rate at the source.5 In contrast, the policy for the
binary freshness in [44] is a threshold based policy, where the
files updated frequently at the source may not get updated by
the cache and by the users.

B. Optimization of Version Age in Parallel
Connected Cache Systems

In this section, we provide an approximate solution for the
problem of minimizing the version age in a parallel connected
cache system shown in Fig. 1(b). In the following lemma,
we show that the version age of a file is smaller in the
single-cache system compared to the multi-cache system when
the total update rates are kept the same.

5Even for arbitrarily connected networks, whenever a cache is serially
connected to a preceding cache, the version age becomes additive, and thus,
the optimization problem becomes separable. Therefore, for these caches,
independent of file update rates, or the connection types in the preceding
cache layers, the optimal updating policy for the serially connected caches
is to update the files that are updated in the preceding cache based on the
square-root policy obtained in this work.

Fig. 5. Update rates (a) for a single-cache system, and (b) for a parallel
multi-cache system considered in Lemma 5.

Lemma 5: Version age of a file in a K-cache system with
update rates at the cache (c1, c2, . . . , cK), and at the user
(u1, u2, . . . , uK) is higher than the freshness in a single-cache
system with update rates at the cache

∑K
k=1 ck, and at the

user
∑K

k=1 uk.
Proof: We demonstrate the caching systems considered

in this lemma in Fig. 5, where we drop subscript i for file
i in the remainder of the section for ease of exposition.
We denote Δsingle

S and Δmulti
S as the version age of a set S in

a single-cache system shown in Fig. 5(a) and in a multi-cache
system shown in Fig. 5(b), correspondingly. As all the rates
for a file are consolidated in a single route, such that the user
rate in the route is

∑K
k=1 uk and the cache rate is

∑K
k=1 ck,

as in Fig. 5(a), the version age expression at the cache is

Δsingle
c =

λ∑K
k=1 ck

, (65)

and the version age at the user is

Δsingle
u =

λ∑K
k=1 uk

+
λ∑K

k=1 ck

. (66)

Next, let us consider the K-cache system where route k
has user rate uk and cache rate ck. Then, by using the SHS
method developed in Section V-B employing [50, Thm. 1]
recursively, we have

Δmulti
u =

λ∑K
k=1 uk

+

∑K
k=1 ukΔmulti

{u,ck}∑K
k=1 uk

. (67)

Note that for all k, Δmulti
{u,ck} = min{Δmulti

ck
, Δmulti

u } ≥
min{Δmulti

c1
, Δmulti

c2
, . . . , Δmulti

cK
, Δmulti

u } =
Δmulti

{c1,...,cK ,u} = Δsingle
c Thus, from (67), we have

Δmulti
u ≥ λ∑K

k=1 uk

+ Δmulti
{c1,...,cK ,u}

=
λ∑K

k=1 uk

+ Δsingle
c = Δsingle

u . (68)

Thus, the version age at the user is smaller when all rates are
consolidated in a single route. �

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2024

Specifically, comparing the version age for the two-cache
system in (60) with the corresponding single-cache case hav-
ing version age λ

u1+u2
+ λ

c1+c2
from (66), we observe that the

two-cache case has an extra positive term, and hence, a higher
version age.

Similar to the analysis applied to (20) in Section III,
we rewrite (60) in terms of u1 = ū−b, u2 = ū+b, c1 = c̄−a,
and c2 = c̄ + a. Then, for given user rates u1 and u2, and the
total cache rate 2c̄, we obtain a∗

v that minimizes the version
age as follows

a∗
v = min

{
b +

c̄ + ū

2bc̄

(
ū(2c̄ + ū) − b2

−
√

(ū2 − b2)((2c̄ + ū)2 − b2)
)

, c̄

}
. (69)

Therefore, for given user rates u1 and u2, the optimal cache
rates are c∗1 = c̄ − a∗

v and c∗2 = c̄ + a∗
v . We use a∗

v in (69) in
the simulation results provided in Section VII. The expression
obtained for a∗

v in (69) is intuitive as the portion of third term
dependent on a and b variables in (20) is similar to (60), with
λ replaced with 0. Note that there is no negative sign in the
third term in (60), since our goal is to minimize version age,
as opposed to maximizing the binary freshness in (20).

Lemma 5 shows that instead of updating a file over multiple
routes, it is better to update it over a single route with the
same total update rates at the cache and at the user. Parallel
to the solution method proposed for the binary freshness in
Section IV, here, we propose an approximate solution for the
version age. First, for a single-cache system with the total
update rates C and

∑K
k=1 Uk, we find the optimal update rates

at the cache and at the user based on the square-root policy
obtained in Section VI-A. Then, we use the method employed
in Section IV to distribute these optimal rates across the K
routes to get an approximate solution, with the objective of
assigning each file to only a single route as much as possible.

Due to Lemma 5, the optimal solution obtained for a
single-cache system lower bounds the optimal solution for the
multi-cache system. Therefore, by looking at the difference
between the optimum version age value for the single-cache
system and the version age value as a result of the approximate
solution proposed in this section, we can have an upper bound
on the optimality gap for the multi-cache problem. In the
following section, we provide numerical results for the binary
freshness and version age metrics for multi-cache systems.

VII. NUMERICAL RESULTS

In the first numerical result, we choose number of routes
K = 5, number of files N = 30, total update rate at source
C = 50 and at caches U = 100 where each route has Uk =
20. We use update arrival rates λi = bqi at the source for
i = 1, . . . , N , where b > 0, q = 0.7, and

∑N
i=1 λi = a, with

a = 100. Note that since q < 1, the update arrival rates at the
source λi decrease with the file index, i.e., λi > λj for i < j.

In the first numerical result, we use the binary fresh-
ness metric. We apply alternating maximization approach
described in [44] to solve the auxiliary single-cache problem

to obtain total update rate for file i at the user
∑K

k=1 uki and at

the caches
∑K

k=1 cki as shown in Fig. 6(c). The total cache
update rate constraint, i.e.,

∑K
k=1

∑N
i=1 cki ≤ C, is already

Fig. 6. Total user rates and total cache rates for the uniform update rate
policies (a) without consolidation, (b) with consolidation, (c) total user rates
and total cache rates obtained from the auxiliary solution. Route allocations
for files (d) for the uniform update policy without consolidation, (e) for the
uniform update policy with consolidation, and (f) for our proposed strategy
(files with blue rates in single routes). Freshness obtained for the uniform
update policy (g) with and without consolidating update rates into single
cache, (h) for the single-cache and parallel cache systems.

satisfied by both problems. In a parallel cache system, each
route has its own total update rate constraint

∑N
i=1 uki ≤ Uk,

whereas the single-cache system has only one total update
rate constraint for the user, i.e.,

∑K
k=1

∑N
i=1 uki ≤ U where

U =
∑K

k=1 Uk. Thus, we need to choose the user rate
allocation for all files in each route as described in Section IV,
with corresponding cache rates found by (21) which are shown
in Fig. 6(f). In order to compare the performance of our
proposed algorithm, we consider two different cache updating
schemes with uniform update rates. For both of these schemes,
we choose the update rates as

∑K
k=1 cki = C

N ,
∑K

k=1 uki = U
N

which is shown in Fig. 6(a)-(b). In the first updating scheme
called uniform updating policy without consolidation, all the
files are updated by all the caches as shown in Fig. 6(d), and

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

KASWAN et al.: TIMELY CACHE UPDATING IN PARALLEL MULTI-RELAY NETWORKS 13

we denote the freshness obtained by this updating scheme by
Funi. In the second updating scheme called uniform updating
policy with consolidation, we consolidate the file update rates
into a single cache as shown in Fig. 6(e) and denote Funi,con

as the freshness obtained by this scheme. We denote the
freshness at the user for the single-cache system obtained by
the method in [44] as F̄ub. We plot Funi, Funi,con in Fig. 6(g)
and F̄ub and Fso in Fig. 6(h). Among these three updating
schemes, the uniform updating policy without consolidation
performs the worst and the total freshness obtained by this
scheme is

∑N
i=1 Funi(i) = 17.8004. As we observed from

Section III that consolidating update rates into a single cache
increases the freshness. With the uniform updating policy
with consolidation, the freshness obtained from all files is
equal to

∑N
i=1 Funi,con(i) = 19.4495. Lastly, if we further

optimize the update rates among the files and use the proposed
algorithm in Section IV, we obtain the total freshness as∑N

i=1 Fso(i) = 21.0692 which significantly outperforms both
of the uniform updating schemes. Even though we split the
update rates among different routes for K − 1 = 4 files
that have some of the highest freshness (files 26, 28, 29,
30), their freshness loss is negligible as shown in Fig. 6(c).
In this system, since F̄ub = 21.0718, the total freshness loss,
i.e., F̄ub−Fso, is equal to 0.0026, which is much smaller than
the theoretical upper bound 0.5(K − 1) = 2.

To get more perspective on these freshness values, a more
loose upper bound can be obtained by removing the relay-to-
user update constraint rate U in the single cache problem by
setting U = ∞, which allows each ui = ∞, thereby giving
limui→∞ Fu(i) = limui→∞ ui

λi+ui

ci

λi+ci
= ci

λi+ci
. Denoting

freshness of this system model by Fu,d(i), the corresponding
freshness maximization problem for the system with no cache
is a convex optimization problem stated as

max
{ci}

N∑
i=1

Fu,d(i) =
N∑

i=1

ci

λi + ci

s.t.
N∑

i=1

ci ≤ C,

ci ≥ 0, i = 1, . . . , N, (70)

for which the optimum update rates cis are given by ci =

λi

(
1√
θλi

− 1
)+

, where θ > 0 is the Lagrange multiplier

satisfying total update rate constraint, i.e.,
∑N

i=1 ci ≤ C, and
corresponding total optimum freshness is F ∗

u,d = 22.5096,
which is close to the total freshness obtained by our algorithm
Fso. Note that from (7), for a set of 30 files, the maximum
possible freshness value is 30, when fu(i, t) = 1 for all i and t,
which is achieved when all constraints are relaxed. In that case
uki = cki = ∞, and as a result files are instantly delivered
from source through the caches to the user. In this example,
we choose λi as a monotonically decreasing function of i,
which gives a diverse set of source update rates. Instead, if all
files have the same update rate λi = a

N , a = 100, such that∑
i λi = a as before, we get Funi,con = Fso = Fub = 5, since

the update rates ui, ci are the same for all files and all these
policies support consolidation. However, Funi = 2.0072 is
lower due to lack of rate consolidation across routes as a
result of the uniform updating policy without consolidation.
This further supports the key insights of our work.

Fig. 7. Total user rates and total cache rates obtained from the auxiliary
solution (a) with binary freshness, and (b) with version age. (c) Route
allocations for files (files with blue rates in single routes) with version age,
and (d) version age for the single-cache and parallel cache systems.

In the second numerical result, we consider the version
age metric for a multi-cache system. We choose number of
files N = 10, and keep the rest of the parameters the same
as in the first numerical result. We repeat the process of
finding the update rates of files in the first numerical result,
with the difference that we use (64), which is the square-root
policy found in Section VI-A, to solve the auxiliary single-
cache problem. This difference is highlighted in Fig. 7(a)
and Fig. 7(b). We see that in order to maximize the binary
freshness, the cache and the user may not update the files that
are frequently changing at the source as shown in Fig. 7(a),
whereas in order to minimize the version age, each file is
updated at the cache and at the user proportional to the
square-root of file change rate at the source shown in Fig. 7(b).
As a result, although both metrics measure the information
freshness in different ways, we see that depending on the
metric selection, the optimal rate allocation policy may differ
significantly. We provide the user rate allocation in Fig. 7(c)
where 4 files (files 7, 8, 9, 10) are split across two routes.
For the files that are updated across two caches, we have
derived the specific formula in (60) which we use in this
numerical result to find the corresponding version age, with
corresponding cache rates found by (69). The single-cache
system gives the lower bound for the version age denoted
by Δlb =

∑n
i=1 Δlb(i), where Δlb(i) is the version age

corresponding to file i. Let the approximate policy give the
sub-optimal version age Δso =

∑n
i=1 Δso(i). We plot Δlb

and Δso in Fig. 7(d). In this numerical result, the total version
age increase, i.e., Δso−Δlb, is equal to 0.2334, which is small
compared to the Δlb = 24.0257 and Δso = 24.2591.

VIII. CONCLUSION

In this work, we considered timeliness of files in a paral-
lel cache network via the binary freshness and version age
metrics. First, for the binary freshness metric, we derived
a closed form expression for the system and observed that

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 1, JANUARY 2024

freshness for a file is maximum when it does not have to
split its rates across multiple routes. We further analyzed
that when number of files is large, most files are restricted
to single routes in the optimal update policy. We used this
observation to find an approximate policy for assigning rates
to all files, by solving the alternate problem of a single-
cache system. We further found an upper bound for the gap
between the optimal policy and the approximate policy. Next,
with the help of the SHS approach, we derived a closed
form expression for the version age of information of the
system, and determined the counterpart properties in a parallel
relay network. Numerical results showed that the proposed
sub-optimal policy closely approximates the optimal policy
for both timeliness metrics.

REFERENCES

[1] E. Najm, R. Yates, and E. Soljanin, “Status updates through M/G/1/1
queues with HARQ,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2017, pp. 131–135.

[2] A. Soysal and S. Ulukus, “Age of information in G/G/1/1 sys-
tems,” in Proc. Asilomar Conf. Signals, Syst., Comput., Nov. 2019,
pp. 2022–2027.

[3] R. D. Yates and S. K. Kaul, “The age of information: Real-time status
updating by multiple sources,” IEEE Trans. Inf. Theory, vol. 65, no. 3,
pp. 1807–1827, Mar. 2019.

[4] P. Zou, O. Ozel, and S. Subramaniam, “Optimizing information fresh-
ness through computation–transmission tradeoff and queue manage-
ment in edge computing,” IEEE/ACM Trans. Netw., vol. 29, no. 2,
pp. 949–963, Apr. 2021.

[5] S. Farazi, A. G. Klein, and D. R. Brown, “Average age of information
for status update systems with an energy harvesting server,” in Proc.
IEEE INFOCOM Conf. Comput. Commun. Workshops, Apr. 2018,
pp. 112–117.

[6] X. Wu, J. Yang, and J. Wu, “Optimal status update for age of information
minimization with an energy harvesting source,” IEEE Trans. Green
Commun. Netw., vol. 2, no. 1, pp. 193–204, Mar. 2018.

[7] A. Baknina, O. Ozel, J. Yang, S. Ulukus, and A. Yener, “Sending
information through status updates,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2018, pp. 2271–2275.

[8] S. Leng and A. Yener, “Age of information minimization for an energy
harvesting cognitive radio,” IEEE Trans. Cogn. Commun. Netw., vol. 5,
no. 2, pp. 427–439, Jun. 2019.

[9] A. Arafa, J. Yang, S. Ulukus, and H. V. Poor, “Age-minimal transmission
for energy harvesting sensors with finite batteries: Online policies,” IEEE
Trans. Inf. Theory, vol. 66, no. 1, pp. 534–556, Jan. 2020.

[10] M. A. Abd-Elmagid, H. S. Dhillon, and N. Pappas, “A reinforce-
ment learning framework for optimizing age of information in RF-
powered communication systems,” IEEE Trans. Commun., vol. 68, no. 8,
pp. 4747–4760, Aug. 2020.

[11] N. Pappas, Z. Chen, and M. Hatami, “Average AoI of cached status
updates for a process monitored by an energy harvesting sensor,” in
Proc. 54th Annu. Conf. Inf. Sci. Syst. (CISS), Mar. 2020, pp. 1–5.

[12] A. Arafa and S. Ulukus, “Timely updates in energy harvesting two-hop
networks: Offline and online policies,” IEEE Trans. Wireless Commun.,
vol. 18, no. 8, pp. 4017–4030, Jun. 2019.

[13] J. Cho and H. Garcia-Molina, “Effective page refresh policies for web
crawlers,” ACM Trans. Database Syst., vol. 28, no. 4, pp. 390–426,
Dec. 2003.

[14] A. Kolobov, Y. Peres, E. Lubetzky, and E. Horvitz, “Optimal freshness
crawl under politeness constraints,” in Proc. 42nd Int. ACM SIGIR Conf.
Res. Develop. Inf. Retr., Jul. 2019, pp. 495–504.

[15] E. T. Ceran, D. Gunduz, and A. Gyorgy, “A reinforcement learning
approach to age of information in multi-user networks,” in Proc. IEEE
29th Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC),
Sep. 2018, pp. 1967–1971.

[16] M. Bastopcu and S. Ulukus, “Minimizing age of information with soft
updates,” J. Commun. Netw., vol. 21, no. 3, pp. 233–243, Jun. 2019.

[17] I. Kadota, A. Sinha, E. Uysal-Biyikoglu, R. Singh, and E. Modiano,
“Scheduling policies for minimizing age of information in broad-
cast wireless networks,” IEEE/ACM Trans. Netw., vol. 26, no. 6,
pp. 2637–2650, Dec. 2018.

[18] Y.-P. Hsu, “Age of information: Whittle index for scheduling stochastic
arrivals,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2018,
pp. 2634–2638.

[19] A. M. Bedewy, Y. Sun, S. Kompella, and N. B. Shroff, “Age-optimal
sampling and transmission scheduling in multi-source systems,” in
Proc. 20th ACM Int. Symp. Mobile Ad Hoc Netw. Comput., Jul. 2019,
pp. 121–130.

[20] E. Ozfatura, B. Buyukates, D. Gunduz, and S. Ulukus, “Age-based coded
computation for bias reduction in distributed learning,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2020, pp. 1–6.

[21] H. H. Yang, A. Arafa, T. Q. S. Quek, and H. V. Poor, “Age-based
scheduling policy for federated learning in mobile edge networks,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2020, pp. 8743–8747.

[22] N. Rajaraman, R. Vaze, and G. Reddy, “Not just age but age and
quality of information,” IEEE J. Sel. Areas Commun., vol. 39, no. 5,
pp. 1325–1338, May 2021.

[23] M. Bastopcu and S. Ulukus, “Age of information for updates with dis-
tortion: Constant and age-dependent distortion constraints,” IEEE/ACM
Trans. Netw., vol. 29, no. 6, pp. 2425–2438, Dec. 2021.

[24] O. Ayan, M. Vilgelm, M. Klugel, S. Hirche, and W. Kellerer, “Age-of-
information vs. value-of-information scheduling for cellular networked
control systems,” in Proc. 10th ACM/IEEE Int. Conf. Cyber-Phys. Syst.,
Apr. 2019, pp. 109–117.

[25] S. Banerjee, R. Bhattacharjee, and A. Sinha, “Fundamental limits of age-
of-information in stationary and non-stationary environments,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2020, pp. 1741–1746.

[26] R. D. Yates, P. Ciblat, A. Yener, and M. Wigger, “Age-optimal con-
strained cache updating,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2017, pp. 141–145.

[27] H. Tang, P. Ciblat, J. Wang, M. Wigger, and R. D. Yates, “Age of
information aware cache updating with file- and age-dependent update
durations,” in Proc. IEEE WiOpt, Jun. 2020, pp. 1–6.

[28] J. Liu, X. Wang, B. Bai, and H. Dai, “Age-optimal trajectory planning for
UAV-assisted data collection,” in Proc. IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), Apr. 2018, pp. 553–558.

[29] M. A. Abd-Elmagid and H. S. Dhillon, “Average peak age-of-
information minimization in UAV-assisted IoT networks,” IEEE Trans.
Veh. Technol., vol. 68, no. 2, pp. 2003–2008, Feb. 2019.

[30] M. Bastopcu and S. Ulukus, “Timely group updating,” in Proc. CISS,
Mar. 2021, pp. 1–6.

[31] B. Buyukates, A. Soysal, and S. Ulukus, “Age of information scaling
in large networks with hierarchical cooperation,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.

[32] B. Buyukates, A. Soysal, and S. Ulukus, “Age of information in multihop
multicast networks,” J. Commun. Netw., vol. 21, no. 3, pp. 256–267,
2019.

[33] M. Wang, W. Chen, and A. Ephremides, “Reconstruction of counting
process in real-time: The freshness of information through queues,” in
Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.

[34] M. Bastopcu and S. Ulukus, “Who should Google scholar update more
often?” in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM
WKSHPS), Jul. 2020, pp. 696–701.

[35] Y. Sun, Y. Polyanskiy, and E. Uysal-Biyikoglu, “Remote estimation of
the Wiener process over a channel with random delay,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 321–325.

[36] M. Bastopcu and S. Ulukus, “Timely tracking of infection status of
individuals in a population,” in Proc. IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), May 2021, pp. 1–7.

[37] J. Yun, C. Joo, and A. Eryilmaz, “Optimal real-time monitoring of an
information source under communication costs,” in Proc. IEEE Conf.
Decis. Control (CDC), Dec. 2018, pp. 4767–4772.

[38] C. Kam, S. Kompella, and A. Ephremides, “Age of incorrect information
for remote estimation of a binary Markov source,” in Proc. IEEE
Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), Jul. 2020,
pp. 1–6.

[39] J. Chakravorty and A. Mahajan, “Remote estimation over a packet-drop
channel with Markovian state,” IEEE Trans. Autom. Control, vol. 65,
no. 5, pp. 2016–2031, Jul. 2020.

[40] P. Mayekar, P. Parag, and H. Tyagi, “Optimal source codes for timely
updates,” IEEE Trans. Inf. Theory, vol. 66, no. 6, pp. 3714–3731,
Jun. 2020.

[41] M. Bastopcu, B. Buyukates, and S. Ulukus, “Selective encoding policies
for maximizing information freshness,” IEEE Trans. Commun., vol. 69,
no. 9, pp. 5714–5726, Sep. 2021.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

KASWAN et al.: TIMELY CACHE UPDATING IN PARALLEL MULTI-RELAY NETWORKS 15

[42] D. Ramirez, E. Erkip, and H. V. Poor, “Age of information with finite
horizon and partial updates,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2020, pp. 4965–4969.

[43] B. Buyukates and S. Ulukus, “Timely distributed computation with
stragglers,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5273–5282,
Jun. 2020.

[44] M. Bastopcu and S. Ulukus, “Information freshness in cache updating
systems,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1861–1874,
Mar. 2021.

[45] M. Bastopcu and S. Ulukus, “Maximizing information freshness in
caching systems with limited cache storage capacity,” in Proc. 54th
Asilomar Conf. Signals, Syst., Comput., Nov. 2020, pp. 423–427.

[46] S. Zhang, J. Li, H. Luo, J. Gao, L. Zhao, and X. S. Shen, “Towards fresh
and low-latency content delivery in vehicular networks: An edge caching
aspect,” in Proc. 10th Int. Conf. Wireless Commun. Signal Process.
(WCSP), Oct. 2018, pp. 1–6.

[47] W. Gao, G. Cao, M. Srivatsa, and A. Iyengar, “Distributed maintenance
of cache freshness in opportunistic mobile networks,” in Proc. IEEE
32nd Int. Conf. Distrib. Comput. Syst., Jun. 2012, pp. 132–141.

[48] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “Information freshness and popularity in mobile
caching,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2017,
pp. 136–140.

[49] Y. Gu, Q. Wang, H. Chen, Y. Li, and B. Vucetic, “Optimizing infor-
mation freshness in two-hop status update systems under a resource
constraint,” IEEE J. Sel. Areas Commun., vol. 39, no. 5, pp. 1380–1392,
May 2021.

[50] R. D. Yates, “The age of gossip in networks,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jul. 2021, pp. 2984–2989.

[51] B. Abolhassani, J. Tadrous, A. Eryilmaz, and E. Yeh, “Fresh caching for
dynamic content,” in Proc. IEEE Conf. Comput. Commun., May 2021,
pp. 1–10.

[52] R. D. Yates, “The age of information in networks: Moments, dis-
tributions, and sampling,” IEEE Trans. Inf. Theory, vol. 66, no. 9,
pp. 5712–5728, Sep. 2020.

[53] B. Buyukates, M. Bastopcu, and S. Ulukus, “Age of gossip in networks
with community structure,” in Proc. IEEE 22nd Int. Workshop Signal
Process. Adv. Wireless Commun. (SPAWC), Sep. 2021, pp. 326–330.

[54] M. Bastopcu, B. Buyukates, and S. Ulukus, “Gossiping with binary
freshness metric,” in Proc. IEEE Globecom Workshops (GC Wkshps),
Dec. 2021, pp. 1–6.

[55] A. Kosta, N. Pappas, and V. Angelakis, “Age of information: A new con-
cept, metric, and tool,” Found. Trends Netw., vol. 12, no. 3, pp. 162–259,
Nov. 2017.

[56] Y. Sun, I. Kadota, R. Talak, and E. Modiano, “Age of information:
A new metric for information freshness,” Synth. Lectures Commun.
Netw., vol. 12, no. 2, pp. 1–224, Dec. 2019.

[57] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE J.
Sel. Areas Commun., vol. 39, no. 5, pp. 1183–1210, May 2021.

[58] S. Zhang, N. Zhang, X. Fang, P. Yang, and X. S. Shen, “Self-sustaining
caching stations: Toward cost-effective 5G-enabled vehicular networks,”
IEEE Commun. Mag., vol. 55, no. 11, pp. 202–208, Nov. 2017.

[59] Z. Gu, H. Lu, M. Zhang, H. Sun, and C. W. Chen, “Association
and caching in relay-assisted mmWave networks: A stochastic geom-
etry perspective,” IEEE Trans. Wireless Commun., vol. 20, no. 12,
pp. 8316–8332, Dec. 2021.

[60] B. T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of informa-
tion under energy replenishment constraints,” in Proc. Inf. Theory Appl.
Workshop (ITA), Feb. 2015, pp. 25–31.

Priyanka Kaswan (Student Member, IEEE)
received the B.Tech. degree in electrical engineering
from the Indian Institute of Technology, Delhi,
in 2017. She is currently pursuing the Ph.D. degree
with the Department of Electrical and Computer
Engineering, University of Maryland, College
Park. Her research interests include information
freshness, gossip algorithms, resource allocation,
and low latency wireless communication systems.

Melih Bastopcu (Member, IEEE) received the B.S.
degree in electrical and electronics engineering from
Bilkent University, Turkey, in 2016, and the M.Sc.
and Ph.D. degrees in electrical engineering from the
University of Maryland, College Park, MD, USA,
in 2020 and 2021, respectively. He is currently a
Post-Doctoral Research Associate with the Coor-
dinated Science Laboratory, University of Illinois
Urbana–Champaign. His research interests include
age of information, resource allocation, low latency
systems, communication network design, dissemina-

tion of misinformation, and social networks.

Sennur Ulukus (Fellow, IEEE) received the B.S.
and M.S. degrees in electrical and electronics engi-
neering from Bilkent University and the Ph.D.
degree in electrical and computer engineering
from the Wireless Information Network Laboratory
(WINLAB), Rutgers University. She is currently the
Anthony Ephremides Professor in information sci-
ences and systems with the Department of Electrical
and Computer Engineering, University of Maryland,
College Park, where she also holds a joint appoint-
ment with the Institute for Systems Research (ISR).

Prior to joining UMD, she was a Senior Technical Staff Member at the AT&T
Laboratories-Research. Her research interests are in information theory, wire-
less communications, machine learning, and signal processing and networks;
with recent focus on private information retrieval, age of information, machine
learning for wireless, distributed coded computing, group testing, physical
layer security, energy harvesting communications, and wireless energy and
information transfer.

She is also a Distinguished Scholar-Teacher of the University of Maryland.
She received the 2003 IEEE Marconi Prize Paper Award in Wireless Com-
munications, the 2019 IEEE Communications Society Best Tutorial Paper
Award, the 2020 IEEE Communications Society Women in Communica-
tions Engineering (WICE) Outstanding Achievement Award, the 2020 IEEE
Communications Society Technical Committee on Green Communications
and Computing (TCGCC) Distinguished Technical Achievement Recognition
Award, the 2005 NSF Career Award, the 2011 ISR Outstanding Systems
Engineering Faculty Award, and the 2012 ECE George Corcoran Outstanding
Teaching Award. She was a Distinguished Lecturer of the IEEE Informa-
tion Theory Society (2018–2019). She has been an Area Editor of the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS since 2019 and
a Senior Editor of the IEEE TRANSACTIONS ON GREEN COMMUNICA-
TIONS AND NETWORKING since 2020. She was an Area Editor of the
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING

(2016–2020), an Editor of the IEEE JOURNAL ON SELECTED AREAS
IN COMMUNICATIONS-SERIES ON GREEN COMMUNICATIONS AND NET-
WORKING (2015–2016), an Associate Editor of the IEEE TRANSACTIONS

ON INFORMATION THEORY (2007–2010), and an Editor of the IEEE TRANS-
ACTIONS ON COMMUNICATIONS (2003–2007). She was a Guest Editor of
the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS (2008,
2015, and 2021), Journal of Communications and Networks (2012), and the
IEEE TRANSACTIONS ON INFORMATION THEORY (2011). She is also the
TPC Chair of 2021 IEEE GLOBECOM and was the TPC Co-Chair of 2019
IEEE ITW, 2017 IEEE ISIT, 2016 IEEE GLOBECOM, 2014 IEEE PIMRC,
and 2011 IEEE CTW.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:05:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

