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Abstract
Communications systems to date are primarily 

designed with the goal of reliable transfer of digital 
sequences (bits). Next generation (NextG) commu-
nication systems are beginning to explore shifting 
this design paradigm to reliably executing a given 
task, such as in task-oriented communications. In 
this article, wireless signal classification is considered 
as the task for the NextG Radio Access Network 
(RAN), where edge devices collect wireless signals 
for spectrum awareness and communicate with the 
NextG base station (gNodeB) that needs to identify 
the signal label. Edge devices may not have suffi-
cient processing power and may not be trusted to 
perform the signal classification task, whereas the 
transfer of signals to the gNodeB may not be feasi-
ble due to stringent delay, rate, and energy restric-
tions. Task-oriented communications is considered 
by jointly training the transmitter, receiver, and clas-
sifier functionalities as an encoder-decoder pair for 
the edge device and the gNodeB. This approach 
improves the accuracy compared to the separated 
case of signal transfer followed by classification. 
Adversarial machine learning poses a major secu-
rity threat to the use of deep learning for task-ori-
ented communications. A major performance loss 
is shown when backdoor (Trojan) and adversarial 
(evasion) attacks target the training and test pro-
cesses of task-oriented communications.

Introduction
The goal of conventional communications is to 
transfer information from sources to destinations. 
To achieve this goal, communication functions 
are traditionally divided into separate blocks that 
are individually designed: source coding, chan-
nel coding, and modulation on the transmitter 
side and source decoding, channel decoding, 
and demodulation on the receiver side. The per-
formance is measured by the bit/symbol error 
rate or a signal distortion metric, such as mean 
squared error, to quantify the fidelity of informa-
tion reconstruction at the destination. It is possible 
to improve this performance with the joint design 
of communication functions, for example, joint 
source-channel coding [1], that can be trained as 
deep neural networks (DNNs) to learn from and 
adapt to the channel effects. In addition, transmit-
ter functions of channel coding and modulation 
and the corresponding receiver functions can be 

jointly optimized as an autoencoder for end-to-
end communications [2].

Conventional communications ignores the 
semantics of information by assuming that all sym-
bols/bits are created and treated equal, while the 
goal remains to be the high fidelity recovery of sym-
bols/bits at destinations. Next generation (NextG) 
communication systems are finding applications 
to challenge this traditional design paradigm. For 
example, semantic communications has emerged as 
a new paradigm to reliably communicate the mean-
ings of messages (instead of symbols) by minimizing 
the semantic error [3] to best preserve the meaning 
of recovered messages. Another game changing 
approach is to consider the significance of infor-
mation transfer that is pertinent to an underlying 
task [4]. Accordingly, task-oriented communications 
aims to optimize the communication functions in 
order to perform a task (e.g., classification of sig-
nals captured by an edge device) that is the main 
reason why communication functions (e.g., wireless 
connections from the edge devices to a decision 
center) are needed in the first place.

Machine learning has been considered a key 
enabler for NextG communications systems. Start-
ing with 5G, key complex tasks are envisioned to 
be solved by machine learning, including resource 
allocation and admission control for network slic-
ing, massive MIMO optimization, channel esti-
mation/tracking, dynamic spectrum sharing, user 
equipment (UE) identification, and authentication. 
In previous generations of communications sys-
tems, rule based solutions have been primarily 
adopted that cannot meet the growing demand 
for communications and computation resources. In 
addition, NextG communications aims to connect 
edge devices/sensors and provide new services 
with additional computational needs, such as in 
autonomous driving that benefit from the use of 
machine learning. To that end, NextG communi-
cation systems are envisioned to be task-oriented. 
Starting with 5G, meeting the quality of experience 
(QoE) needs has become the main objective in 
NextG communications systems that are designed 
to serve tasks for diverse applications (ranging from 
virtual/augmented reality to autonomous driving). 
These tasks are orchestrated as network slices in 
the radio access network (RAN), such as enhanced 
Mobile Broadband (eMBB), massive machine-type 
communications (mMTC), and ultra-reliable low-la-
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TASK-ORIENTED COMMUNICATIONS FOR FUTURE WIRELESS NETWORKS tency communications (urLLC)). Therefore, task-ori-
ented communications has emerged as a natural 
approach to perform the emerging tasks involved 
in NextG communications systems [5, 6].

As an integral component of NextG communi-
cations systems, edge devices are relied upon to 
perform a variety of signal intelligence and spec-
trum awareness tasks in the RAN, such as user 
equipment (UE) identification (e.g., for initiation 
of sidelink communications or fault diagnostics) 
and authentication (at the physical layer), detec-
tion of jammers and intruders, and recognition of 
background emitters to enable spectrum coexis-
tence of NextG communications with incumbent 
users, such as radar signals in the 3.5GHz Citi-
zens Broadband Radio Service (CBRS) band. In 
all these cases, the underlying task for the NextG 
base station (gNodeB) is a machine learning task 
to classify the wireless signal captured by an edge 
device that needs to communicate to the gNodeB 
through a wireless channel, as illustrated in Fig. 1a. 
While wireless signals (data samples) are collect-
ed at edge devices (to provide larger and more 
refi ned coverage), the task of wireless signal classi-
fi cation needs to be completed at the NextG base 
station. To that end, task-oriented communications 
enables the completion of the task at the receiver 
while the data originally resides at the transmitter 
(edge device). The location of input data (namely, 
the edge device) and the location of fi nal task out-
come (namely, the gNodeB) are physically separat-
ed. Therefore, a joint communication-computation 
approach is needed in the context of task-oriented 
communications, as illustrated in Fig. 1b. 

In this article, we consider the wireless signal 
classifi cation as the task to perform in the NextG 
RAN. Edge devices that act as spectrum sensors 
of the Environmental Spectrum Capability (ESC) 
collect wireless signals that need to be classifi ed 
with respect to waveform or radio characteris-
tics to detect a signal of interest, for example, an 
incumbent user, such as radar in the CBRS band. 
One approach is to classify the wireless signals 
right away at the edge device and then communi-
cate the classifi cation outcome (namely, the label) 
to the gNodeB via conventional communications. 
However, edge devices may not have sufficient 
processing power to classify the wireless signals 
on its own. Also, edge devices may not be trusted 
as they may reveal critical information (e.g., when 
the radar is on in the CBRS band) if captured or 
hacked by adversaries. Therefore, the wireless 
signal classification task needs to be performed 
at a more secure place, namely at the gNodeB. 
For that purpose, the edge device can communi-
cate the captured wireless signal in its entirety to 
the gNodeB, and then, the gNodeB can classify 
this wireless signal. However, the fi rst step in this 
approach is conventional communications and 
requires that excessive amount of information is 
carried wirelessly at a high rate that is not delayed 
or energy-efficient. However, spectrum sensing 
for NextG situational awareness comes with strin-
gent latency requirements that may eliminate the 
feasibility of transferring the entire spectrum sens-
ing data (that is potentially generated at a high 
sampling rate) to the receiver.

To overcome these limitations, we propose to 
apply task-oriented communications in the form 
of joint communication and computation to per-

form the task of having wireless signals (that are 
captured by an edge device) classified at the 
gNodeB. The transmitter operations at the edge 
device (source encoding, channel encoding, and 
modulation) and the receiver operations at the 
gNodeB (source decoding, channel decoding, 
demodulation, and classification) are optimized 
altogether by jointly training two deep neural net-
works (one for the edge device and the other for 
the gNodeB), as illustrated in Fig. 1c. This approach 
accounts for both spectrum sensing data charac-
teristics and communication channel eff ects in the 
joint design of transmitter, receiver, and classifi-
er functions. Also, task-oriented communications 
provides privacy benefits since an eavesdropper 
cannot learn about the task outcome unless it has 
the same encoder and observes the same chan-
nel conditions. We will discuss the diff erences and 
advantages of the proposed task-oriented commu-
nications approach relative to conventional and 
autoencoder communications. We will present 
how to achieve high classifier accuracy (close to 
the ideal case without channel eff ects) while using 
smaller classifi er architectures.

As task-oriented communications heavily relies 
on machine learning, it is susceptible to different 
levels of attacks exploiting the input-output relation-
ships of classifiers in training and test (inference) 
times. These attacks are studied under adversarial 
machine learning (AML). The open nature of the 
NextG RAN software development (e.g., O-RAN) 
has been the main force behind the collaborative 
progress of the RAN technologies. Machine learn-
ing algorithms for the NextG RAN are envisioned 

FIGURE 1. a) Operational NextG communications scenario; b) Formulation as 
task-oriented communications; c) Proposed approach for NextG task-ori-
ented communications.
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to be released in the form of xApps for the near 
real-time RAN intelligent controller (RIC). Howev-
er, smart adversaries may exploit this open environ-
ment and manipulate the classifier operations.

The AML attacks can target the classifier opera-
tions in both training and test time:
•	 Backdoor (Trojan) attacks poison some of the 

training data samples with triggers, such as phase 
shifts, and activates these triggers in test time to 
cause classification error on select test samples.

•	 Adversarial (evasion) attacks that use carefully craft-
ed perturbations to fool the classifier into making 
wrong decisions (for all or some target labels). 
We present the vulnerabilities of NextG task-ori-

ented communications to these AML attacks, and 
demonstrate the major decrease in the wireless 
signal classification accuracy under these practi-
cal attacks. Jamming attacks, such as transmitting 
Gaussian noise, are considered primarily in con-
ventional communications. However, the power 
of jamming signal should be large enough relative 
to signal strength to be effective and significantly 
reduce the performance. In attacks on task-orient-
ed communications, a small trigger, such as a small 
phase shift or a small perturbation signal (even rel-
atively smaller than the noise floor), are shown to 
be sufficient to effectively reduce the performance. 
The analysis of these novel attack vectors raises 
the need to protect task-oriented communications 
against smart adversaries before its safe adoption 
to perform critical tasks for NextG. 

The novelty of this article stems from its technical 
contributions to end-to-end optimization of task-ori-
ented communications for spectrum awareness in 
NextG communication systems, and characteriza-
tion of the attack surface due to adversarial machine 

learning when adversarial and backdoor attacks are 
launched against task-oriented communications.

The remainder of this article is organized as 
follows: The next section presents the proposed 
approach for task-oriented communications and 
its differences from conventional communications. 
Then we discuss related work. Following that, we 
present how to apply task-oriented communica-
tions to wireless signal classification in NextG. Then 
we present the vulnerabilities of task-oriented com-
munications to the AML attacks. Following that, 
we highlight future research directions. The final 
section concludes the article. 

Related Work
To preserve the meaning during information trans-
fer, semantic communications has been applied to 
the transmission of various data modalities, such 
as text [7, 8], speech [9], image [10], etc.; see [10, 
11] for recent overviews of semantic communica-
tions from various perspectives. Task-oriented com-
munications follows from preserving the success 
of a task completion during information transfer. 
In [12], task-oriented communications has been 
considered to complete the task of edge inference, 
when low-end edge devices transmit the encoded 
feature vectors of local data samples to a server. 
Task-oriented communications has been applied 
to image transmission (for scene classification in 
unmanned aerial systems) in [13] and to multimod-
al data communications, such as image and text 
transmissions from multiple users in [14].

Task-oriented communications relies on the 
DNNs to represent transmitter, receiver, and classi-
fier functions. While the use of the DNNs achieves 
high task performance, it raises a novel security 
threat due to the AML attacks that can directly tar-
get the DNNs in training and test times, as well as 
fool them into making wrong task decisions. The 
complex decision process of the DNNs is known 
to be highly susceptible to adversarial inputs. AML 
attacks have been studied in various data modal-
ities, including wireless communications [15], 
where adversarial perturbations have been shown 
to reduce the wireless signal classifier accuracy 
much more than conventional jamming attacks 
with Gaussian noise.

From Conventional Communications to  
Task-Oriented Communications

The goal is to perform a task at one location (e.g., 
the receiver as the gNodeB) based on the data avail-
able at another location (e.g., the transmitter as an 
edge device, such as the UE). These two locations 
are separated with a wireless channel. The task is a 
machine learning task, in particular, a wireless sig-
nal (e.g., modulation) classification task. Below, we 
describe two baseline approaches incorporating 
conventional communications and its autoencoder 
extensions in separation from the underlying classifi-
cation task, and then, present the task oriented-com-
munications approach. Figure 2 summarizes the 
operations of these three approaches.

Baseline Approach 1: First Classify, Then Communicate
Approach 1, shown in Fig. 2a, performs the clas-
sification task first at the point of data collection, 
namely the edge device, and then communicates 
the classification outcome (the label) to the other 

FIGURE 2. Comparison of task-oriented commu-
nications with conventional communication 
approaches: a) Approach 1: Classify + commu-
nicate; b) Approach 2: Communicate + classify; 
c) Task-oriented communications.
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point, namely the gNodeB, over a wireless chan-
nel. The first step requires the edge device to run 
a DNN with two potential labels (e.g., BPSK and 
QPSK) as the output. The second step is to trans-
mit one bit that represents the label, for exam-
ple, as a BPSK-modulated signal, over the wireless 
channel. This approach is impractical as the edge 
device may not have the necessary processing 
power. It is also a security concern to trust the 
edge device with the full knowledge of the clas-
sifier model and grant access to the classification 
outcome since the edge device may be physical-
ly captured in the field or hacked through cyber 
means by the adversaries.

Baseline Approach 2: First Communicate, Then Classify
Approach 2, shown in Fig. 2b, swaps the classifi-
cation and communication functions. It first com-
municates all the received wireless signals from 
the edge device to the gNodeB over a wireless 
channel and then applies a DNN at the gNodeB 
to classify the signals. The first step can be per-
formed by an extension of autoencoder com-
munications as a viable alternative with potential 
performance gains compared to conventional 
communications that considers separate designs 
of communication blocks. Autoencoder com-
munications typically combines channel coding 
and modulation at the transmitter and demodu-
lation and channel decoding at the receiver [2]. 
Approach 2 incorporates source coding at the 
transmitter, and source decoding at the receiv-
er to the joint design. It also maps the signal 
received by the edge device to the reconstruct-
ed signal at the gNodeB by training a regression 
model. Two DNNs are jointly trained, one for the 
edge device and the other for the gNodeB, while 
accounting for the channel between them. Then, 
a third DNN is trained separately to classify the 
signals that are reconstructed as the output of the 
first DNN at the gNodeB. 

Task-Oriented Communications and Its Advantages
The task-oriented communications trains two 
DNNs (Fig. 2c) (one at the edge device and 
another at the gNodeB) jointly to perform the 
necessary task as the end-to-end goal rather than 
separating the communication functions from the 
classification task (as done for Approach 1 and 
Approach 2). In task-oriented communications 
and Approach 2, the input of the DNN at the 
edge device is the received signal. Each data sam-
ple consists of a number of I/Q data samples. For 
numerical results below, we combine 64 I/Q sam-
ples to build a 128-dimensional data sample. The 
output of this DNN is a lower-dimensional signal 
that is transmitted over the channel. We assume 
that the output layer of this DNN is two, that is, 
only one I/Q sample needs to be transmitted 
over the wireless channel so that a wireless signal 
of 64 I/Q samples is classified at the gNodeB. 

The main difference between task-orient-
ed communications and Approach 2 lies in the 
gNodeB’s DNN structures. The gNodeB has two 
DNNs in Approach 2 and one DNN in task-ori-
ented communications. The input of the first 
DNN in Approach 2 is the same as the DNN in 
task-oriented communications, namely the output 
of the edge device’s DNN induced with channel 
effects. However, their model types and outputs 

are different. In Approach 2, the first DNN at the 
gNodeB is a larger regression model and its output 
is the constructed signal with the same dimension 
as the signal received by the edge device. A third 
DNN is used to classify the reconstructed signals. 
In task-oriented communications, the DNN at the 
gNodeB is a smaller classifier model that outputs 
a label, namely the type (e.g., modulation) of the 
signal captured by the edge device. Task-oriented 
communications serves the signal classification task 
without carrying any unnecessary information over 
the wireless channel. Therefore, it can use smaller 
DNNs that are computationally more efficient to 
store, train, and run in test time. 

Use Case: Task-Oriented Communications 
for Wireless Signal Classification in  

NextG Systems
The task we consider for NextG communications 
is for the gNodeB to classify wireless signals that 
are captured by the edge devices, such as the UEs. 
Two potential applications are described below.

Incumbent User Detection for Spectrum 
Co-Existence: One real-word scenario is the 
3.5GHz CBRS band, which was originally reserved 
for federal use, such as the tactical radar, and was 
recently opened for commercial use. To enable 
spectrum coexistence with the incumbent user, the 
edge devices form the ESC network and collect 
wireless signals as spectrum sensors. If an incum-
bent signal is detected, the Spectrum Access Sys-
tem (SAS) as a cloud-based service manages the 
wireless communications of devices transmitting in 
the CBRS band to prevent interference to incum-
bent users. In this setting, the edge devices need to 
communicate with the gNodeB in the RAN before 
the classification outcome is used by the SAS.

UE Identification and Authentication: With 
proliferation of edge devices equipped with low 
processing capabilities, such as in massive Internet 
of Things (IoT), physical layer authentication has 
become a viable solution (as an alternative to key 
distribution) to authenticate edge devices before 
they are granted access to the NextG communica-
tions services. Wireless signals can be used for RF 
fingerprinting to distinguish between their transmit-
ters with respect to waveform, channel, and radio 
hardware effects. 

To illustrate how task-oriented communications 
can be applied to the NextG systems, both use 
cases are abstracted as in Fig. 1b, where an edge 
device collects wireless signals and the gNodeB 
needs to classify them. We consider the task of 
classifying signals with respect to its modulation 
types (BPSK vs. QPSK), and incorporate two lev-
els of channels effects, one for the spectrum sens-
ing data collected at the edge device and another 
for communications from the edge device to the 
gNodeB. In this setting, additive white Gaussian 
noise (AWGN) channels are considered, where 
SNRs and SNRc denote the signal-to-noise-ratio 
(SNR) of the wireless signals received by the edge 
device and the gNodeB, respectively. Random 
phase shifts can then be added to represent the 
hardware impairments. Wireless signal samples, 
each with a randomly selected modulation type 
(BPSK or QPSK), are generated as inputs to the 
edge device. Each data sample has 128 dimensions 

Task-oriented com-
munications serves the 
signal classification task 

without carrying any 
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combining 64 I/Q samples. 5000 data samples are 
generated and split into 80 percent and 20 percent 
to construct the training and test datasets, respec-
tively. Feedforward neural networks (FNNs) are 
considered as the DNN models. The DNN archi-
tectures used for different approaches are summa-
rized in Fig. 3 and described in detail below.

DNN for Approach 1: The DNN at the edge 
device is a classifier. The input size is 128. The 
DNN has six hidden layers with 128, 64, 32, 16, 
8, and 4 neurons. The hidden layers have ReLU 
as the activation function and are separated with 
dropout layers (with dropout ratio of 0.2) to pre-
vent overfitting. The output layer has a dimen-
sion of 2 and uses Softmax activation. This DNN 
has 27,558 trainable parameters. The categorical 
cross-entropy is used as the loss function. Note 
that this DNN is used for both Approach 1 and the 
case of no channel (only classification is performed 
at the edge device without communicating over 
the channel).

DNNs for Approach 2: There are three DNNs. 
The first two DNNs, one for the encoder and anoth-
er one for the decoder, correspond to a regression 
model and are jointly trained. The input size of the 
first DNN is 128. There is one hidden layer that has 
128 neurons and uses ReLU activation. The size of 
the output layer is 128 and uses a linear activation, 
that is, 64 I/Q samples are transmitted for each 
output sample of the first DNN. The second DNN 
that is separated from the first one with a wireless 
channel consists of one hidden layer that has 128 
neurons and uses ReLU activation. The size of the 
output layer is 128 (corresponding to the recon-

structed signal of 64 I/Q samples) and uses linear 
activation. The mean squared error (MSE) is used 
as the loss function to jointly train the two DNNs to 
reconstruct signals. These two DNNs have 66,048 
trainable parameters. A third DNN is used as the 
classifier. This DNN has the same structure as the 
DNN used in Approach 1 and, therefore, the cat-
egorical cross-entropy is used as the loss function. 
Overall, there are 93,606 trainable parameters for 
the three DNNs used in Approach 2. Even though 
Approach 2 uses much larger DNNs, the perfor-
mance remains worse than the other approaches, 
as we will see later in this section.

DNNs for Task-Oriented Communications: 
There are two DNNs, one for the encoder and 
another one for the decoder, that are jointly 
trained as an end-to-end classifier model. The input 
size of the first DNN is 128. There are two hidden 
layers of 128 neurons with ReLU activation func-
tion and 64 neurons with Tanh activation function. 
The output layer has a dimension of 2 and uses lin-
ear activation, that is, only one I/Q sample is trans-
mitted for each output sample of the first DNN. 
The second DNN that is separated from the first 
one with a wireless channel consists of two hidden 
layers of 32 and 8 neurons, each with ReLU acti-
vation. The size of the output layer is 2 and uses 
SoftMax activation. The categorical cross-entropy 
is used as the loss function to jointly train the two 
DNNs that have 25,276 trainable parameters in 
total (least among all approaches considered).

In training of all the DNNs, Adam is used as the 
optimizer. The end-to-end classification accuracy 
results are shown in Fig. 4 as a function of SNRc 
and SNRs. Task-oriented communications and 
Approach 1 (where classification is impractically 
limited to the transmitter only) achieve very close 
performance. Therefore, Approach 1 is not shown 
in Fig.4. On the other hand, task-oriented com-
munications significantly outperforms Approach 2 
for all SNRc and SNRs, and closely tracks the case 
without channel effects (that uses the same classifi-
er architecture as in Approach 1). In all approach-
es, the classification accuracy improves and the 
performance gap from the case without channel 
effects closes for task-oriented communications, 
when SNRc and SNRs increase.

Adversarial Machine Learning for  
Task-Oriented Communications

As deep learning has been considered as the pri-
mary engine for task-oriented communications, 
it has become vulnerable to attacks built upon 
adversarial machine learning. There are two 
DNNs used in task-oriented communications (one 
at the edge device and the other at the gNodeB).
Thus, there are two places where the adversaries 
can attack the DNNs. As shown in Fig. 5, either 
the input (sensing data) data at the edge device 
or the input data at the gNodeB (after passing the 
wireless channel from the edge device) can be 
manipulated by the adversaries. These attacks can 
be launched in training time, such as in poisoning 
(causative) attacks; in test time, such as in adver-
sarial (evasion) attacks; or in both training and 
test times, such as in backdoor (Trojan) attacks. 
In this article, we present backdoor and adversar-
ial attacks as two examples of novel attacks on 
task-oriented communications.

FIGURE 3. Classifier, encoder, and decoder architectures of the DNNs.

D
dropout rate: 0.2

Dense Layer:

Input:
128

128
ReLU

64
ReLU

32
ReLU

16
ReLU

8
ReLU

4
ReLU

2
Softmax

Label LabelChannel

Channel

Input:
128

128
ReLU

128
Linear

Input:
128

Classifier
from 
Approach 1

128
ReLU

128
Linear

Label

Encoder Decoder

Channel

Input:
128

32
ReLU

2
Softmax

Input:
2

Label

128
ReLU

2
Linear

Encoder
Decoder

Approach 1

Approach 2

Task-Oriented 
Communications

D

64
Tanh

8
ReLU

layer size
activation function

Dropout Layer:

Classifier

Classifier

D

D D DDDD

Authorized licensed use limited to: University of Maryland College Park. Downloaded on November 04,2023 at 21:30:43 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Wireless Communications • June 2023 57

bAckdoor (troJAn) AttAck
This attack proceeds in two stages. In the first 
stage, the adversary manipulates some of the 
training data samples by adding triggers (i.e., back-
doors or Trojans) to samples with victim label and 
changing their labels to a target label. In the case 
of signal classifi cation, the trigger may be a phase 
shift (without changing the signal amplitude) 
and the modulation label may be changed, for 
example, from BPSK to QPSK. The two DNNs of 
task-oriented communications are jointly trained 
with these poisoned training samples. In the sec-
ond stage, the adversary transmits signals corre-
sponding to samples of victim label that have the 
same phase shifts added as triggers. Then, task-ori-
ented communications is fooled into classifying 
these poisoned test samples as the target label 
(e.g., BPSK signals is classifi ed as QPSK). On the 
other hand, the classifi cation works reliably (sim-
ilar to the case without backdoor attack) for the 
unpoisoned test samples without triggers. Hence, 
this is a stealth attack that is hard to detect as it 
only attacks a (potentially small) portion of train-
ing and test samples.

The open-source software development of the 
O-RAN paradigm for 5G and beyond communica-
tion systems raises new vulnerabilities against back-

door attacks. The RAN software codes are released 
in the form of xApps for the near real-time RIC to 
serve signal classification functions, such as user 
UE identifi cation and incumbent signal detection. 
The adversary may hide backdoors in these codes 
by using the DNNs trained with poisoned training 
samples, and release these codes that operate reli-

FIGURE 4. Task accuracy for diff erent SNRc and SNRs (“TOC” stands for task-oriented communications, “Comm+Class” stands for 
autoencoder communications followed by classifi cation (Approach 2), and “No Channel” stands for classifi cation only without 
communications): a) Task accuracy when we vary SNRc and fi x SNRs to 0dB or 3dB; b) Task accuracy when we vary SNRc and fi x 
SNRs to 5dB or 10dB; c) Task accuracy when we vary SNRs and fi x SNRc to 0dB or 3dB; d) Task accuracy when we vary SNRs and 
fi x SNRc to 5dB or 10dB.
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FIGURE 5. AML-based security threats against task-oriented communications in 
training and test times. 
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ably without raising a red flag until a signal with the 
trigger is received as the input. We denote by q the 
phase shift added to poison data samples and by t 
the ratio of poisoned training data samples (name-
ly, the Trojan ratio).

The success of the backdoor attack is measured 
by the classifier accuracy, namely the probability of 
correct classification for:
•	 Poisoned test samples of victim label.
•	 Unpoisoned samples of victim label.
•	 Unpoisoned samples of target label. 

The lower the accuracy for poisoned test sam-
ples is, the more effective the backdoor attack 
becomes. On the other hand, the higher the accu-
racy for unpoisoned test samples is, the stealth-
ier the backdoor attack remains. For numerical 
results, we take BPSK and QPSK as victim and 
target labels, respectively, that is, the adversary 
aims to fool the classifier into classifying the BPSK 
signals as QPSK. We assume q = p/5 and vary t 
from 0.1 to 0.4. The upper half of Table 1 shows 
the effect of backdoor attack on task-oriented 
communications. The performance is averaged 
over SNRs and SNRc that are varied from 0dB to 
10dB. We observe that as t increases, the accura-
cy drops for poisoned test samples (i.e., the attack 
becomes more effective). On the other hand, the 
accuracy for unpoisoned samples of victim label 
also drops (i.e., the attack loses its stealthiness). 
In the meantime, the accuracy for unpoisoned 
samples of victim label increases as the poisoned 
model learns to classify test samples more likely 
as target label. Overall, the Trojan ratio should 
be neither too low or too high for an effective 
backdoor attack. When we vary SNRs and SNRc, 
we also observe that the attack becomes more 
effective (the accuracy for poisoned samples 
decreases and the accuracy for unpoisoned sam-
ples increases) when SNRs or SNRc increases. The 
reason is that the backdoors reach the receiver 
better when the data involves less noise due to 
sensing and communications.

Adversarial Attack
This attack only takes place in test time. The adver-
sary transmits carefully crafted adversarial perturba-
tions (over the air) that are added as interference 
to the input of the edge device’s DNN (when the 
attack is launched during the sensing data collec-
tion), or the gNodeB’s DNN (when the attack is 
launched during the communications from the 
edge device to the gNode). In this article, we con-
sider the first case to illustrate adversarial attack on 
task-oriented communications.

This attack aims to find the perturbation with 
the minimum power that causes a given sample 
input to the edge device to be misclassified at 
the gNodeB. The underlying optimization is hard 
to solve due to the nonlinearity of the DNNs. A 
computationally efficient method is to approximate 
the adversarial perturbation by linearizing the loss 
function of the end-to-end classifier. For example, 
the Fast Gradient Sign Method (FGSM) computes 
the gradients of (categorical cross-entropy) loss 
function with respect to the input signal sample 
and uses the sign of the gradients to create a new 
adversarial input that either maximizes the loss in 
the non-targeted attack that aims to cause misclas-
sification for any label, or minimizes the loss for 
a target label in the targeted attack that aims to 
cause misclassification for a specific label.

To ensure that the adversarial perturbations 
have small power (relative to the Gaussian noise 
power in the spectrum sensing data), we impose a 
perturbation-to-noise ratio (PNR), measured in dB. 
The lower half of Table 1 shows the effect of adver-
sarial attack on task-oriented communications. The 
performance is averaged over SNRs and SNRc that 
are varied from 0dB to 10dB. We consider both 
the targeted attack (to cause misclassification of 
BPSK signals as QPSK) and non-targeted attack 
(to cause any classification). The adversarial attack 
is highly effective in reducing the classification 
accuracy and the attack performance improves as 
the PNR increases. Overall, the adversary is more 

TABLE 1. Effects of backdoor attack and adversarial attack on task-oriented communications.

Backdoor attack Accuracy for poisoned test 
samples (victim label)

Accuracy for unpoisoned test 
samples (victim label)

Accuracy for unpoisoned 
test samples (target label)Trojan ratio

0.1 0.11 0.89 0.93

0.2 0.07 0.87 0.94

0.3 0.05 0.83 0.95

0.4 0.04 0.80 0.96

Adversarial 
attack

PNR (dB) Accuracy under targeted attack
Accuracy under  

non-targeted attack

Adversarial 
perturbations 
with FGSM

–5 0.19 0.27

–3 0.13 0.22

–1 0.09 0.17

0 0.07 0.16

Gaussian noise as 
perturbations

–5 0.88 0.91

–3 0.84 0.89

–1 0.77 0.86

0 0.72 0.83
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successful in flipping labels from BPSK to QPSK 
than the other way around. So, the accuracy under 
the targeted attack with the target label QPSK is 
lower than the accuracy of the non-targeted attack, 
where we average the performance for both labels. 

As a baseline, we consider the Gaussian noise 
as the perturbation signal (as typically done in con-
ventional jamming). From Table 1, Gaussian noise 
is not effective as a perturbation. Averaged over 
all PNRs considered in Table 1, the targeted and 
non-targeted attacks can reduce the classification 
accuracy up to 85 percent and 76 percent below 
the accuracy achieved under Gaussian noise.

Overall, these attacks are different from their 
counterparts launched against image classification 
tasks. In backdoor attacks, perturbations are added 
to the pixels in the case of image classification, 
whereas the phase of the wireless signals can be 
shifted in the case of wireless signal classification. 
In adversarial attacks, perturbations are directly 
added to pixels in the case of image classification, 
whereas adversarial perturbations can be transmit-
ted over the air in the case of wireless signal clas-
sification to interfere with the received signal by 
exploiting the broadcast nature of wireless systems.

Future Research Directions
Security threats for deep learning include other 
attacks, such as data and model poisoning attacks, 
where the adversary aims to falsify the training 
data such that the DNN that is trained with the 
poisoned data is fooled into making wrong deci-
sions for all input samples compared to selec-
tive backdoor attacks that differentiate the input 
samples of certain labels to attack. In addition to 
security concerns, the use of DNN makes task-ori-
ented communication susceptible to various pri-
vacy threats such as membership inference and 
model inversion attacks. A membership inference 
attack aims to infer whether a given sample has 
been used in training data, or not, whereas a 
model inversion attack aims to infer additional pri-
vate information, such as recovering data that has 
been used for training. Overall, there is an emerg-
ing need to protect task-oriented communications 
against the security and privacy threats.

While the focus of this article is on the classifi-
cation of spectrum sensing data, task-oriented com-
munications can be applied to other data modalities 
and tasks, such as image classification and image 
retrieval. One example is the inter-vehicle network 
of autonomous driving vehicles, where each vehi-
cle can take images to monitor traffic, weather, and 
other emergency conditions. Instead of exchanging 
these images, each vehicle can transmit to its neigh-
bor vehicle a limited number of features (to better 
utilize limited bandwidth or avoid privacy issues) so 
that each vehicle can complete the task of image 
classification, for example, identify traffic signs, 
without the need to receive images themselves. 
Then the adversaries can launch attacks in multiple 
domains (either individually or jointly), by adding 
perturbations directly to images and/or adding per-
turbations over the air to wireless signals.

A related concept is semantic communications. 
The goal of task-oriented communications is to 
facilitate the completion of a task at the receiv-
er rather than the information transfer itself. On 
the other hand, semantic communications aims 
to preserve the semantic (meaning) of informa-

tion during the information transfer. Whether the 
meaning has been preserved can be verified by a 
classifier at the receiver. Then the encoder at the 
transmitter as well as the decoder and the classifier 
at the receiver can be jointly trained. To that end, 
there is also a critical need to study similar end-to-
end optimization solutions and adversarial machine 
learning threats for semantic communications.

Conclusion
We present a novel approach of task-oriented 
communications to perform NextG wireless sig-
nal classification tasks. The spectrum sensing data 
is distributed across edge devices that need to 
communicate with the gNodeB, where the signal 
classification outcome is used for various applica-
tions such as, UE identification and authentication, 
and incumbent user detection. Task-oriented com-
munications captures the meanings of messages 
through the significance of the underlying task to 
be performed. We utilize joint training of DNNs 
to integrate source (de)coding, channel (de)cod-
ing, (de)modulation, and classification functional-
ities. Even with the use of small DNNs for practical 
implementation, this approach achieves high classi-
fication accuracy. On the other hand, the reliance 
on the DNNs makes these approaches susceptible 
to the AML attacks that target the DNNs in training 
and test times. We present novel attack vectors 
based on backdoor and adversarial attacks, and 
show that task-oriented communications is highly 
vulnerable to stealth manipulations of smart adver-
saries. As these attacks are made more feasible 
due to the open nature of NextG RAN software 
development, we draw attention to the need for 
security mechanisms to support the safe adoption 
of task-oriented communications for NextG. 
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