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Stochastic Power Control for Cellular Radio Systems

Sennur Ulukus Student Member, IEEEand Roy D. YatesMember, IEEE

Abstract—For wireless communication systems, iterative power which need only path gains that can be obtained by local
control algorithms have been proposed to minimize transmit- measurements [5]-[9]. Variations of the ordinary power control
ter powers while maintaining reliable communication between problem can be found in references [10]-[13]

mobiles and base stations. To derive deterministic convergence Th trol algorith that h b d | dt

results, these algorithms require perfect measurements of one e power CPU r(_) _agor' ms that have een_ eveloped 1o
or more of the f0||owing parameters: ]_) the mobile’s signa|_ date aredeterministicin the sense that they require the exact

to-interference ratio (SIR) at the receiver; 2) the interference knowledge or perfect estimates of some deterministic quanti-
experienced by the mobile; and 3) the bit-error rate. However, tjes such as: 1) signal-to-interference ratio (SIR); 2) received
these quantities are often difficult to measure an_d deterministic interference power; or 3) bit-error rate. Unfortunately, none of
convergence results neglect the effect of stochastic measurements, e . o
In this work we develop distributed iterative power control al- those quantities is easy to estimate pe_rfectly, and determlnls_tlc
gorithms that use readily available measurements. Two classes ofconvergence results are no longer valid when these determin-
power control algorithms are proposed. Since the measurements istic variables are replaced with their random estimates. This
are random, the proposed algorithms evolve stochastically and ghservation highlights the need for the study of new power

we define the convergence in terms of the mean-squared error .| gigorithms that make use of available measurements,
(MSE) of the power vector from the optimal power vector that

is the solution of a feasible deterministic power control problem. €VOIve stochastically, and converge in a stochastic sense.
For the first class of power control algorithms using fixed step  In code-division multiple-access (CDMA) systems, conven-
size sequences, we obtain finite lower and upper bounds for the tional receivers consist of matched filters that are matched to
mSE bby ap(pj)ropriz?te selec_tionl of the step size. V\_’et?]'SOMSSth that the signature sequences of the users in the system. Squares
ese bounas go to zero, Im INg convergence In the sense . . .
as the step sizg goes to zeroF.) )léorg the secc?nd class of power contro‘?f the matcheq flltgr outputs are unbiased estimates for the
algorithms, which are based on the stochastic approximations received energies, in the sense that the expected value of the
method and use time-varying step size sequences, we prove thasquare of a matched filter output is equal to the received energy
the MSE goes to zero. Both classes of algorithms are distributed through that matched filter. The randomness over which the ex-
in the sense that each user needs only to know its own channelpectation is taken is due to the randomness of the information
gain to its assigned base station and its own matched filter output bits transmitted by the users (i.e., multiaccess interference) and

at its assigned base station to update its power. . . . .
g P P that of the ambient Gaussian channel noise. The deterministic

Index Terms—CDMA, power control. power control approach assumes that this expectation is taken
and a perfect estimate for the interference is available at
I. INTRODUCTION each power control update. Although the expectation can

N CELLULAR wireless communication systems the ain?e approximated by a sample average measurement of the

. . .. outputs, perfect estimates require an average over an infinite
of power control is to assign each user a transmltterumberof bits between power updates. When the measurement
power level such that all users satisfy their quality—of—servic'?e P P '

(Q0S) requirements. The power control algorithms that ha\l/sedone only over a finite number of bits, the estimates are still

been developed to date may be classified as centralizedr%?dom guantities and the deterministic convergence results
distributed, synchronous or asynchronous, iterative or naP ained with perfect estimate assumptions are no longer valid.

iterative, constrained or unconstrained. Earlier work [1]-[4 For a CDMA system based on 1S-95, [14] simulates a

identified the power control problem as an eigenvalue proble oc(:jhastglg owtgr ctontr'ol algotrr:thm. thaé[ :esul'ts. ‘;Tor.': us;ng
for nonnegative matrices. The optimal power vector w ndom estimates in an otherwise deterministic iteration.

found by inversion of a matrix which was composed o e mapping between an available observation and actual

channel gains of all users. Those algorithms were noniterati AR .neede'd in the power control updates IS glso dgtermmed
simulation. In this paper we will work with a simpler

synchronous, and centralized in the sense that all the po Ky .
vector components were found by a matrix inversion. D ste.m model, propose an observation basgd power control
to the computational complexity of these centralized pow gorithm, and prove its convergence analytically. Thus, the

control algorithms, distributed versions have been developreoélln contnbyhon of_th|s paper is to present practical power
control algorithms with provable convergence.
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of the power vector at any iteration from the optimal powescheme. We assume that the users are already assigned to their
vector. The optimal power vector is the fixed point of théase stations and do not consider the base station assignment
deterministic power control problem where each user transmiioblem. The number of users and the number of base stations
with as little as possible power while all the users are satisfyirge represented by and M, respectively. For each usgrwe

their SIR-based QoS requirements. Conditions for obtainingep; to denote its transmitted power. The channel gain of user
lower and upper bounds on the MSE are identified. j to the assigned base station of usés represented by, .

In this paper two types of stochastic power control algo- Users have preassigned unique signature sequences which
rithms are proposed. These algorithms differ only in terms tiey use to modulate their information bits. The signature
the step size sequence being used. As we shall see, the stapeform of uset is denoted by, (¢), which is nonzero only
size scales the random correction term added to the curremthe bit interval[0, 7;] and is normalized to unit energy, i.e.,
power to obtain the next power. If a fixed step size sequenfo@ s2(t)dt = 1. The receiver consists of a set of matched
is used, we prove that the fixed step size value can alwaysfiders that are matched to the signature waveforms of the
chosen small enough to have finite lower and upper bounds@ers. The only synchronism assumed is between each user
the MSE given that the deterministic power control problemnd its assigned base station, i.e., the matched filter ofiuser
is feasible. We also show that these lower and upper bournglssynchronized to the arrival delay of userFor each user
on the MSE go to zero, implying an exact convergence inall other users in the same cell and the users in other cells
the MSE sense, as the step size value goes to zero. If theate interference asynchronously. The relative delays of the
step size sequence is allowed to depend on the iteration indgsers, which can have any value not exceeding the bit duration
we show that, for a particular class of step size sequencgg, do not change with time. For tHéh bit of a given uset,
the measurement-based power control algorithm converggsinterfering user creates interference by either(bits ) and
in the MSE, i.e., MSE goes to zero, again conditioned gnor bits/ and (! + 1), depending on whether the interfering
deterministic power control problem being feasible. user has a positive or negative delay relative to usdn

The variable step size stochastic power control algorithRig. 1 two possible situations are depicted. The delay of user
is based on the idea of stochastic approximations, a methpeelative to the matched filter of uséiis represented by, ;.
first introduced by Robbins and Monro [15], who solved & Fig. 1 userj has a positive delay relative to usgrand
deterministic problem with unknown parameters by observirgeates interference to ttith bit of useri with bits (1—1) and
the random outputs of a controllable experiment. They defingdSimilarly, userk has a negative relative delay with respect
a problem in whichM () was the expected value of a certaino user; and creates interference to tké bit of useri with
experiment conducted at input level For a fixed targety, bits [ and (I + 1). In order to express left, right, and same-
their aim was to find that value of for which M (x) = a.  bit interferences, we define three types of cross correlations
They assumed that the exact functional formdi(x) was between the signature sequences of any two usensd j:
not known by the experimenter, but the input levelat T;, I';;, andfij. If d;; > 0 (case of usey in Fig. 1), then
which the experiment was run could be controlled. They

. . . . dij
propo§ed an iterative methqd of changing the input IeveI_ of the T, = / si(t)s;(Th — dij + 1) dt
experiment by only observing the outputs of the experiment. 0

They showed that the sequenceaofalues generated by the T

iterative algorithm converged to the solution &f(z) = « in Ly = / si(t)s;(t — dij) dt

the mean-square sense. Generalizations of the Robbins—Monro - dis

method can be found in [16]-[21]. Ly =0 1

In the application of stochastic approximation methods

to the power control problem, the random experimen’f"snd if di; < O (case of usek in Fig. 1)

are the transmissions of information bits from users to the =0
base stations. Those experiments are stochastic due to the ’ Tytdi;
randomness of the transmitted bits and to the existence of L :/ si(t)s;(t —dij)dt
additive white Gaussian noise (AWGN). The experiments OT
; ; ; L
are controlled by_ the iterative update of the transmitter [y = / si(B)s;(t =Ty — diy) dt. @)
powers of the active users. Tytds;

The proposed power control algorithms are distributed in
the sense that users need to know observations only relat&ste from (1) to (2) that for each user, eithEy; or fij, is
to themselves. In particular, a user needs to know only tvegjual to zero, implying_*ijfij =0 for all ¢, j. Note also that
parameters to update its power: 1) the output of its own, = 1 andT;; = [;; = 0. The matched filter output for the
receiver filter (matched filter) at its assigned base station apid [ of useri is

2) its own channel gain to its assigned base station. N
vi) =Y iV his
j=1

We consider the uplink of a wireless multicell CDMA ’ [Fiibj(l_ 1)+ Lijby (1) + Ligby (I + 1)} +ni(l)
system with a binary phase-shift keying (BPSK) modulation 3)

Il. SYSTEM MODEL
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user i G [ | (D It is not difficult to show that if the SIR targets/{’s) are
[ ] I \ feasible, then the power vector which satisfiesilinequali-
ig ties with equality in (6) minimizes the sum of the transmitted
user B l D powers (see [9], [10], or [22, Appendix]). Therefore,Aif,
' | ] ! | t=1,-.., N are feasible, a power control algorithm finds (in
dy . . .
- the iterative case converges to) the solution of
user k (& | ! | (1) |
| . | \ p="YH '(Ap + cu). 9)
Fig. 1. Asynchronous CDMA model. The existence of a nonnegative solution to (9) is specified

by the following two theorems on eigenvalues of nonnegative
matrices by Perron and Frobenius [23].

Theorem 1:If S is a square nonnegative matrix, there exists
an eigenvaluep called the Perron—Frobenius eigenvalue of
. . N S such that: 1)p is real and nonnegative; 2) with can
bij (1) =Lib;(1 = 1) +Ty0;(1) +1'550;(14+1)  (4) be associated nonnegative left and right eigenvectors; and 3)
p >| A | for any eigenvalue\ of S.

Theorem 2: For an irreducible nonnegative matix « —

whereb, (1) is the information bit of usef (+1 equiprobably)
in the Ith bit interval andn, is a sample of AWGN having
zero mean and? variance. Defining

we can write (3) as

N . . .
. Sz + ¢ has a nonnegative solution for any nonnegative
yi(l) = Z VPi v hijbisl) +ni(l). (5) nonzeroe iff the Perron—Frobenius eigenvalpeof S satisfies
j=1
p < 1.
Note that althoughb,;(I) and b;(I + k) are independent for Thus, (9) and Theorem 2 imply the following result.
k#0, ?)ij(l) and ?;ij(l + k) are not fork = +1. Lemma 1: The SIR targets;, i =1,---, N are feasible iff
p < 1, wherep is the Perron—Frobenius eigenvalue of matrix
lIl. DETERMINISTIC POWER CONTROL TH'A.

The aim of a power control algorithm is to minimize the For the remainder of this paper, we will assume that the

users’ transmitted powers while maintaining a certain QoS fge'izirrr]mmstlc power control problem is feasible. From (9), we

each user. Typically, QoS is defined in terms of the probabilig/
of bit error, which in turn is assumed to be a monotonically (I-YHAp=0?YH 'u. (10)
decreasing function of SIR. Therefore, the QoS requirement ) ) ] o

directly translates to the SIR being larger thataeget SIR. Note that, if the relative delays, correlation coefficients, and
Let v¢ denote the SIR target of usér The power control channel gains are known, then from (10), the optimal power

problem can be stated as follows: vector can be found as

N p=0’B'YH 'u (11)
min i
;p where
st — pilii - >~*, fori=1,---,N. B=I-YH'A (12)
B (T2 T2 472 ) 402
2_pihi (F” +F”+F”)+a with I the N x N identity matrix. However, using (11) to

s solve the power control problem is a centralized approach that

(6) requires exact knowledge of all channel gains, relative delays,
Defining the diagonal matriX¥’ with sth diagonal element and corresponding correlation coefficients of all users in the
T, = ~F, the transmitted power vectgrwith ith elementp;, system.

and nonnegative matrice$ = [A;;|nx v andH = [H;j]nxn In [9], iterative distributed deterministic power control al-
as gorithms were defined in general as
0 1=7 _
D 5 p(n+ 1) = T(p(n)). (13)
Aij = { hij (1%' +I% + Fz‘Qj)v i £ .
When the current power vector ig(n), 1;(p(n)), the jth
and o component of’(p(n)) is the interference that usgis required
Hij = { hi, = (7) toovercome. If the SIR targetg’, ¢ = 1,..-, N are feasible,
0, i FJ then the algorithm (13) will converge to the optimal solution
the QoS requirements in (6) can be written as the vec®r= T(p) if T(p) is astandardinterference function; see [9].
inequality In the notation of the present paper the interference function is
P> YH '(Ap+0ow) ®) T(p) = YH™"(Ap + o*u). (14)
wherew = [1---1]T. We say that the set of SIR targes, WhenT(p) is of the form of (14), the iteration (13) is the
1=1,--., N are feasible if there is a nonnegative finite vectquower control algorithm of Foschini and Miljanic [7, eq. (18)].

p that satisfies (8). Implicit in the iteration (13) is that the normalized interference
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T;(p) that userj must overcome is measured perfectly. Hence, Defining vectorsy and w with »; and w; as their ith
the convergence of the iteration proceeds deterministically éelements, and using power vecigr(17) becomes

the fixed pointp. In the next section we introduce stochastic 9
power control by using the random squared matched filter v=(A+Hp+outw (19)

outputs to measure the interference functifp). From (16), it follows thatE[w;(I)] = 0 since the transmitted
bits are independent and equiprobahly, and the zero mean
IV. STOCHASTIC POWER CONTROL noisen; is independent of the bits and has varianéeHence

We consider arL-bit interval (window) in which users keep E[w] =0 (20)
their transmitter powers fixed. We defing(n,[) to be the _ 9
squared value of the matched filter output of useat its El] =(A+H)p+o7u. (21)

assigne.d b?se Station at the end Of Mheb”: intel’val in the From (21) we see thaE[UZ] equa's the total received power

nth L-bit window y;(n,!). From (3), squaring the matchedthrough the matched filter for useat its assigned base station.

filter outputy;(n,l) yields By applying (14) to (21), we can express the interferefi¢g)
vi(n, 1) =y2(n, 1) in terms of E[v] as

N ~ T(p) = -Yp+ YH 'Efv]. (22)
J=1 Equation (22) effectively subtracts the signal component from
(15) the total received power to obtain the interference. In [9] the

o ) ) ) following deterministic power control algorithm was given:
The contribution of the noise and the transmitted bits to the

squared correlator output is p(n+1) = (1-e)p(n) + L'(p(n)). (23)

N _ . The algorithm (23) is called interference averaging because
wiln,1) = > B/ hiLibi(D[Tigh; (= 1) + Tijb;(1+ 1] the required powed’(p(n)) at iterationn is averaged with the
j=1 current powep(n) to yield the new power vectg(n+1). The

N . R motivation given in [9] for interference averaging is that in real
+ Z Z VPiVPeA Pij v hibi (Db (1) systemsT(p(n)) must be measured and if that measurement
J=1k#j is not accurate, then it may be desirable to make only a small

N R ) ) adjustment in the transmitter power. By inserting (22) into
+2n,(1) Y /P Vhiihi() + n3(1) —o®]  (16) (23), the interference averaging algorithm becomes
j=1

D=(1- -Y YH'E . (24
where we dropped the common indexfrom the terms in pnt1)={1=e)p(n)+e[-Tp(n)+ pin)l. (24)
(16) for convenience. In a more careful statement of (16) The deterministic iteration (24) requirgserfect knowledge

b;(1), bi;(1), and n;(1) should be written ag;(n), b;j(n,l), of the total received poweE[v]. In practice we must use
bi;(n,1), andn;(n,1), respectively. We define the average ogstimates of£/[v]. Thus, we propose the following stochastic

the squared matched filter outputs of usat its assigned base power control algorithm in which we replade[v] in (24) by

station at the end of theth L-bit interval as the unbiased estimate:
L —1
+1)=(1- +¢-T +YTH . (25
) =23 p(n+1) = (1= p(n) + [~ Yp(n) v(n)]. (25)
=1 We note that (25) is a special case of the following more

general algorithm:

p(n+1)=(1—a,)p(n)+a,[-Xp(n) + YH  v(n)] (26)

j=1
where where the fixed step sizeis replaced with a variable step size
L sequencer,, that may be a function of the iteration index
w;(n) = 1 Z w;(n,1). (18) Therefore, (25) corresponds to a special case of the algorithm
L =1 (26) whena,, = € for all n. The iteration (26) can be rewritten

Note that in deriving (17) we assumed that the power levell the form

of the interfering users do not change in thebit window p(n+1)=[1—=a,(I+X)p(n) + an‘rH—lv(n)_ (27)
of the ith user. Since the relative delay of any interfering
user is at most 1 bit, this assumption is valid only if usefdefore investigating the convergence properties of the stochas-
have oneidle bit, an information bit that is unused fortic power control algorithm (27), we write it component wise
power control measurements, between each of tiiebit DY using the definitions off, Y, andv(n) as
measurement windows. That is, all users keep their transmitter 1 X

=1

powers fixed for one more bit after evefybit power control  p;(n+1)=[1 — an(1+fyj)]pi(n)+anz_i
the performance of the overall system significantly. (28)

window. For practical values df, this idle bit will not affect
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Equation (28) defines the power update rule for usés seen be written as

from (28), the stochastic power control algorithndistributed

in the sense that in order to update its power level at iteratiorP(n + 1) = p(n) — an[p(n) + Yp(n) — YH 'v(n)]. (30)
(n + 1), useri needs only to know the average of the squares )

of its own matched filter output at its assigned base stati§hom (19), at timen, we have

1/L>,_, v?(n,0) and its own channel gain to its assigned

bésez':sica%iom(ﬁ. l\iote that there are a total & matched filter v(n) = (A+ H)p(n) + o*u +w(n). (31)
outputs in the system, one corresponding to each user, an
user needs to know only its own matched filter output at i

assigned base station to update its power. Also note that é%Jrl):p(n)_a [Bp(n) — 2 YH 'u—YH 'w(n)] (32)
a single uset, there areM associated channel gains to eac "

of M base stations, but useneeds to know only the gain ©0here B was defined in (12). It will be mathematically
its assigned base station. The remaining three parameters ({yenient to define

(28)—the users power value in the previous iterafigim ), its

SIR target valuey;, and step size sequenag—are trivially n(n) = YH 'w(n). (33)
known by the user.

Also seen from (28) is the fact that the base station of eablote thatzn(n) represents a normalized form of the random
user needs to transmit the average value of the user's matchemhponent of the noise contributiag(n). Also note from
filter outputs back to the user evefybit. Each user keeps its (20) that E[n(n)] = 0. Inserting (33) to (32) and observing
transmitter power level fixed until this feedback from its baseom (11) thatBp = 02X H 'u, we obtain
station arrives and then updates its transmitter power according
to (28). As we shall see, the convergence proof for (28) will p(n+1) =p(n) — a,[Blp(n) —p] —n(n)].  (34)
be valid for any value of, but the selection of an appropriate
L will have a significant impact on the system performanc@s stated in the previous section, we will prove the conver-
If a small L is chosen, the power control updates will be morgence in the mean-squared sense. The norm used in (29) is the
frequent and thus the convergence will be faster. Howevaigual Euclidean norm defined || = (=" )!/2. Although at
frequent transmission of the feedback on the downlink wilhe end we will prove convergence in terms of the Euclidean
effectively decrease the capacity of the system since mdl@m, the lack of symmetry in the system (in particult,
system resources (bandwidth) will have to be used for pow§rnot symmetric) dictates that we start our proof witlta
control. norm|jz||¢ = (x' Gz)*/? for a specifically chosen symmetric

Since the matched filter outputg(n,i)’s depend on the and positive—definite matrixs. The necessary results about
transmitted bits and the Gaussian channel noise, the conyBf matrices and matrix norms, including Lyapunov’s result on
gence of (28) will be stochastic and will be specified in termigability of matrices and the Rayleigh quotient, are summarized

Sp%lying (31) to (30), we obtain

of the MSE at iteratiorn in Appendix A.
In Appendix B we prove the following lemma as a simple
MSE(n) = E[||p(n) — ||]. (29) consequence of the Rayleigh quotient [see (72)].
Lemma 2:If lim,—.c E[lp(n) — Bll4] = 0, then

We will prove that under certain conditions an,, the se- limn—oo Efllp(n) —plI] = 0.
quencep(n) converges to the optimal power vectprin the  Lemma 2 verifies that it is sufficient to prove convergence
mean-square sense. In particular, we will prove that: for a G-norm with a suitably chosen symmetric matigk
1) if a,, = ¢ and if ¢ is chosen sufficiently small, then From (,34)’ we see that convergencg will depeqd on the
we will have finite lower and upper bounds on MS roperties of the matrixB. In Appendix B we verify the

as the number of iterations grows. In the limiting cas Ill_owmg rg_sll\J/:t' . . ble iff the d L
ase — 0 both lower and upper bounds on the limiting emma 3: Matrix —B Is stable iff the deterministic power

MSE as well as the limiting MSE itself go to zero; control_proplem (6) is feasible. i
2) if a, = € but e is chosen too large, then the MSE may To simplify our convergence proofs, we defingn) =

diverge even if the deterministic power control algorithnf("?) —P and study the convergence:(n) to the zero vector.

would converge: Subtractingp from both sides of (34) yields
3) if a,, = a/n, then the algorithm converges to the optimal

power vectorp in the sense thdim,, ... MSE(n) = 0,

irrespective of other system parameters.

z(n+1) = 2(n) — an[Bz(n) — n(n)]. (35)

Taking and squaring thé&-norms of both sides of (35) we
obtain

V. STOCHASTIC CONVERGENCE RESULTS T
n thi _ o dert d z(n+1) Gx(n+1)
n this section we will derive mean-squared convergence _ T _ T T
results starting with the most general form of the stochastic =z(n) Gx(i) an(n) Q[GBJ_FFBT Gla(n)
power control iteration (27) [equivalent component-wise rep- + 2a,2(n) " Gn(n) — 2a,z(n) B Gn(n)
resentation was given in (28)]. Equation (27) can equivalently + a2x(n) " BTGBx(n) + a’n(n) " Gy(n). (36)
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By taking the conditional expectation of both sides of (36e will derive the convergence results for two cases: 1) the

conditioned onz(n) = x, and observing thab[n(n) | £(n) = constant coefficient sequeneg = ¢ and 2) the iteration index
z] = 0, we obtain dependent coefficient sequeneg, which depends om. In
9 _ both cases we will start the convergence proof by the bounds
Efllz(n + Dllg | 2(n) = =] on MSE given in (44) and (45).

= |lz|% - anz [GB+ B Gz
+ a2z " B"GBx + A2 E[|ln(n)||% | (n) =x]. (37) A. Convergence Results for Fixeg

Our proof of convergence will proceed by bounding the We now consider the fixed step size stochastic iteration (25).
individual terms on the right-hand side of (37). As proveRY defining

in Lemma 3, the feasibility of t_he deterministic power cohtrol ao=1— koe + (k| + c1)é? ar=1—khe+kie?  (46)
problem guarantees the stability efB. By Theorem 3 in

Appendix A, stability of matrix—B, in turn, guarantees thewe can write the lower and upper bounds (44) and (45) on the
existence of a symmetric positive—definite matiXx as a nonnegative sequends, as

solution of 5 5
a1y, +€do < bpy1 < aobn + € o 47

GB+B'G=C (38)
Therefore, the nonnegative sequerigeis sandwiched be-
for any symmetric and positive—defini@. Therefore, selec- tween two sequences generated accordintf,tg = aob}, +
tion of the G-norm allows us to develop the following bounds:2¢, and V! 1 = aib], +e*dy. Those two sequences converge
for the second term in (37) by using Lemma 6 in Appendix 4o finite numbers iffe is chosen such that ag |< 1 and
and the fact that bott¥B + B' G and B' GB are symmetric | o; |< 1.

positive—definite matri_ces. N We note thatyg and; are equal to one at= 0. We also
Lemma 4: There exist positive constanks, kj, 0 < ko < note that bothyy and«; are locally decreasing asincreases
ky < oo andky, ki, 0 < k; < k| < oo such that since
Bollsly <sT[GB+ BTGl < lllal @) dao| _ o dul L g
kx| <z BTGBz < K,||z|/%. (40) de {.—o de {.—o

This means that we can always choose a small honzem

For our convergence proof, we nekgland k) to be nonneg- . .
g P o 0 g t|ag] < 1 and || < 1, in which case the sequences

ative and if we used the usual Euclidean norm by choosiﬁ@a P S _

G = I, Lemma 4 would not hold since, in gener#,+ BT Un and convergg and the limiting7-norm MSE, i.e.,

is not a positive—definite matrix, even though the real paritn—e bn, has finite lower and upper bounds. From the

of the eigenvalues o8 are guaranteed to be positive by th&andwich theorem, we have

feasibility of the power control problem. e2dy ) eZeo
Our next lemma is more difficult to prove because of the 1—ay < nlggo bn < 1—ao

indirect way in which the power vectgn) interacts with the

noise vectom(n). The proof can be found in Appendix B.

Lemma 5: There exist positive constant, cg, and ¢,

(49)

We can evaluate the values of the lower and upper bounds in
the extreme case when— 0 as

0 < dy < ¢y < oo such that lim Sdy = lim edo  _ 0
e—0] — _e—>0]€/—k6_
do < Ella(ml | 2(n) =] < co + calells. (4D Ca e
. 0 _ 0 _
Using Lemmas 4 and 5, we obtain the following upper and b ag Gy ko — (K} +e1)e !

lower bounds from (37):
37) Therefore, for arbitrarily smal, both lower and upper bounds

El|lz(n+ D)3 | 2(n) =] < ||2||Z = anko|lz||% for b,, approach zero, implying that the limiting-norm MSE

+ a2 {k}||=]|% + co + c1||=||%} goes to zero as well. In this case Lemma 2 implies that the
(42) limiting MSE goes to zero and the stochastic power control
) ) Lo algorithm (25) converges to the unique optimal power vector
Elllz(n + Dllg [ #(n) = 2] 2 [l2llG — ankollzllc p. However, asc approaches zeray, and a; approach one,

+ a2 {k1||z||% + do}. (43) which slows the convergence rate. Thus, it is undesirable to
choosec¢ too small. Furthermore, it is also undesirable to
Ehoose: too large. In particular, we observe thati& 1, then
aq = 1—k{+k:. Note thaf«; | may not be less than unity even
if the deterministic power control problem is feasible. In this

brg1 < {1 = koay, + (k] + Cl)aﬁ}bn + aﬁCo (44) case the lower bound derived above dogs n_ot converge, and the
b1 > {1 — kban + klai}bn + aido- (45) I|m_|t|ng G-norm MS_E an_d therefore the limiting MS_E d|verge.
This unfortunate situation reflects the fact that in practical
Note thath,, is the MSE of the power vector at iteratiarfrom  systems power control with unreliable measurements can be
the optimal power vectop. In the following two subsections unstable even if the SIR targets are feasible.

Taking the expectation of both sides of the final inequal
ties (42) and (43), with respect to(n) and lettingb,, =
E[||z(n)||%], we obtain
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In order to solve for the value of that gives rise to infinity and we haveim, .. Sx.n—1 = 0. This implies that
acceptable values afg and «; in terms of the convergenceb,, 3., ».—1 on the right-hand side of (53) goes to zeroras
rate and lower and upper bounds on limiting MSE, one neegses to infinity. Now we will investigate the second term.
to know the constant&,, k{, k1, k1, andc;, which depend Let «(x) be the unit step function whose value is one for
on the global system parameters such as the eigenvaluesa@inegativer and zero otherwise. Then
matrix YH ' A. Finding these numbers is difficult because
it requires the knowledge of relative delays, corresponding . 9
cross correlations, and channel gains of all users, and is very A co Z it 1,1
computationally expensive as the number of ugéiacreases. h=no -
In order to overcome this difficulty, we propose to use a _ . 2
coefficient sequence,, that is a fungtion oleza. P = co lim Z e L (56)

n—1

k=ng

B. Convergence Results for Varying = ¢ Z a2 lim Bry1n_1u(n—1—k)=0 (57)
In this section we will examine the variable step size k=nq

iteration (27). We will show that if the coefficient sequence. . -
. . . since _ .n—1 = 0. We could exchange the limit and
a, satisfies the following two conditions: im0 Fn—1 = 0 9

summation to obtain (57) from (56) because the sum on the
nd nd 5 right side of (56) is absolutely convergent. Finally, combining
Z n = 0 Z Uy < 00 (50)  the result in (57) andim,,— B,n—1 = 0, and the fact that
n=1 n=1 b, is a nonnegative sequence, we obtim, .., b, = O.

then the power control algorithm (27) converges to the optimdking this result and Lemma 2, we conclude that the algorithm

power vectorp in the mean-square sense. Note #at= a/n  converges to the unique global optimal power vector in the

satisfies conditions given in (50). It was shown in [20] thahean-squared sense, i.Bm,—.. E[||p(n) — p||?] = 0.

by that selection ofz,,, the convergence rate is proportional

to 1/n. In particular, we will choose: = 1.

We will follow Sakrison’s approach [20, pp. 60—-61] in the
following derivation. We will need only the upper bound given Throughout this paper it is assumed that the channel gains
in (44). Sinces,, is a monotonically decreasing sequence, thegge fixed. In general, the channel gains change randomly in
existsng andé, 0 < § < 1 such that forn > ng time as a result of lognormal or fast fading. In order to cope

, 5 with the random nature of the channel gains, it was suggested
[1 = koan + (k +cr)an] < [1 = (1 = §)koay]. G in [24] to use larger SIR target values than needed allowing

Furthermore, we can choosg such that fom > no, we have for a fade margin. In this paper we only deal with difficulty
[1 — (1 = 8)koan] > 0. Forn > ny, the inequality (44) can of estimating the interference arising from the randomness

VI. DISCUSSION

be further bounded as of transmitted bits and ambient channel noise. The fact that
) the channel gains are changing randomly is not particular to
bnt1 < {1 = (1 = 8)koan }bn + a;co. (52)  stochastic power control, but it is a problem of deterministic

Starting atn = no and executing the recursion repeatedi ower control as well. In the following we will discuss the
ixed channel gain case assuming that the SIR targgts (

ields
y i = 1,..., N) are chosen properly to compensate for the
i fading
by < b, B +¢ Z ap (53) ' -
n = Ynotng,n—1 T 0 kPk+ln—1 The proposed algorithms need only a subset of the channel
k=m0 gains. Each user ha®/ channel gains, one corresponding to
where each one oM/ base stations, and only one of them, namely the
n channel gain of the user to its assigned base station, is needed
3. _ H[l —a;(1—&)ko), 0<k<n 54 to be used in the power update equations. The convergence
Pren = j=k (54) results are developed with the assumption that the required
1, k> n. channel gaing; for ¢ = 1, ---, N are known or estimated

perfectly by the users. In this section we will show that if

For0 < =z < 1, we can use the inequalitn(l — z) < —z ) X )
quality( )< the users use unbiased estimates of the random channel gains,

to show then the proposed algorithms converge to effective target SIR’s
1 which are different than the intended ones.
Prn = exp Zln[l = a;j(1 = 6)ko] Let the estimate of the channel gain used by uskr the
J=k power updates bé,;. Then, from (28), the modified power
n update equation for usércan be written as
Sexpq —(1=8)ko Y _a;p. (55)
j=k

L
* e
| o pi(n+1) = [L=a, (142 lpi (n)+an 2 fzy%’(n,o].
By the first condition in (50) and the fact that — é)ko > hii =1
0, the exponent in the above equation diverges to negative (58)
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Let H denote a diagonal matrix with;; as itsith diagonal 000 —e———— - - - .
element. The modified version of (30), reflecting the estimation R x*xjo W o g
error in the channel gains, is given as o R R N
. a0k o« % B T .
A — x x x % x X% X xx % X x
p(n+1) =p(n)—a, [p(n) +Yp(n)—TH v(n)} (59) T S g <o T
Note that the iteration (59) converges to a point where expecteadboo}: o " PR > N w
x R x x X X % N M
value of the term in the square brackets on the right-hand :% ORI T R N
x X . X % x %
side of (59) is equal to zero since it is the fixed point of the g X oy X e T L
iteration [15], [20]. Calculation of this expected value requires2000f . " “x x o " . x0T ek %
. .1 . . x o . x . . x
the calculation ofE[H "]. Since f(z) = 1/x is a convex e S T RIS o
function forz > 0, Jensen’s inequality [25] yields M. DL . SF
1 1 1 1000 x N x XX ix x * x:(x } . % L x 7]
x XXX ><>< LI « =% xx X < x y
|:A—:| > —— =y — (60) %o X . ® xx );:o X g ox* “f
hi; Elhii] hii L s e N x
o .—X X Xy x X | X x X % ¢
0 1000
for some«; > 1. The equality in (60) follows from the 200 %% 4000 5000

assumptlon thah” is an unbiased estimate, i. E{h”] = hi. Fig. 2. Simulation environment faN = 500. Symbolso and x denote the
Deflnlng a dlagonal matrixA Wlth Az = ;, the expected base stations and the users, respectively.

value of H  can be written asZ[H ] = AH™!. Therefore,

from (21), the expected value of the term in the squared VII
brackets on the right-hand side of (59) is equal to

. SIMULATION RESULTS

In our simulations we consider a general multicell CDMA
p+Yp—YAH *Ap— YAp—-o*YAH 'u. (61) system on a rectangular grid. There al¢ = 25 base
] ) ] ) ) stations with(z, y) coordinates(1000: + 500, 10005 + 500)
Equating (61) to zero yields the fixed-point solution for 0 < 4, j < 4. Thez andy coordinates of each user are
{[I+ Y(I—A)]- -rAH—lA}p — ?YAH 'u.  (62) independent uniformly distributed random variables between
0-5000 m. The experiments are conducted for number of users
Defining (V) between 200-500. Fig. 2 shows the positions of users
. . and the base stations with symbotsand o, respectively, for
T=[I+Y{I-A)]"TA (63) N = 500. Each user is assigned to its nearest base station.
The path loss exponent used while calculating the channel
gains of the users is taken to be= 4. At the beginning of
(I-YH 'Ap=0*YH 'u. (64) the iterations, the power vector is always initialized to zero.
5 The simulations are over 10000 bits. Fbibit measurement
Comparing (10) and (64), we observe thatis the matrix of averaging, the number of power control iterations is 10000/
modified SIR targets. With algorithm (5~8), the SIR of usger We chose the processing gain to@e= 150, and a random

(62) can be written equivalently as

converges to théth diagonal element o, ;" sighature sequence of lengt chips was assigned to each
. ] user. Although the convergence theorems permit individual
Vi = m (65) sIR targetsy; for each uset, for the simulations we chose a
¢ common SIR target’ = 4 (=~ 6 dB) for all users. The AWGN
instead of the originally intended SIR target. noise power equaled? = 10~1* W, corresponding roughly

As a simple example, consider the case where the chaniela 1-MHz bandwidth.
gain estimate of usef, h;; is uniformly distributed in the  First we investigate the performance of the stochastic power

interval betweerfl—¢;)h;; and(1+¢;)h;;. Note thatE[h;;] =  control algorithms forV = 200. The normalized squared error
h;; and h;; is an unbiased estimate, and (NSE), which we define as
P[] - u(i8) L ) NSE(n) = [jp(n) ~ /71" 67

is plotted as a function of iteration index in Fig. 3. The
and, thereforeq; = 1/(2&;)1n[(1 + &)/(1 — &)]. Note that curves of Fig. 3 show the performance of the stochastic power
«; monotonically increases witfy, the percentage error. Alsocontrol for a, = ¢ (for ¢ = 1072, 10~2, 10~%) and for
note from (65) thaty,* > ~; for all v; > 1 and;* increases a, = 1/n. Figs. 4 and 5 show the same performance criteria
with «;. Therefore, usei aims for an effective SIR which is when averaging is implemented with = 10 and L. = 100,
more than its original objective. Clearly, users get these neespectively.

SIR targets if they are feasible, otherwise the powers of theWe observe the tradeoff between the convergence rate and
users increase without bound as a sign of the infeasibility of thee value of the limiting NSE—wheais large,«y and«; are
power control problem. Therefore, a large value of uncertaingynaller, and the convergence rate is fast but the limiting NSE
(estimation error variance) may transform a feasible powirlarger. Therefore, we observe an initial fast decrease in the
control problem into an infeasible one. NSE but then oscillations around the limiting NSE; see the
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a=e=10°
n
i
!/\/\
A
~ ;}
L1 L=100 {
_. 3 1 | 1 L i ! L | ‘
‘03 L 1 1 3 1 L L L I 10 0 10 20 2
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 30 0 50 60 70 80 90 100

iteration index (n) iteration index ()

Fig. 3. NSE as a function of for stochastic power control algorithms with Fig- 5. NSE as a function of. for stochastic power control algorithms
an = 1/n anda, = e for e = 10=2, 10=3, 10=*. No averaging is used, With ¢» = 1/n anda, = « for e = 107", 1077, 107". Averaging over
L =1. ' L = 100 b is implemented.

Average SIR

L=1

a =1/n
a'=e=10"2
N , a ==10"°
- —4
a =e=10

53 5 3

L s

; | | o e L i PR f
0 100 200 300 400 500 600 700 800 900 1000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iteration index (n} time (n)

L ! L I L . 1. L L

Fig. 4. NSE as a function of for stochastic power control algorithms with Fig. 6. Average SIR as a function of for stochastic power control algo-
an = 1/n anda, = efore=10"2, 1073, 10~ *. Averaging overL. = 10  rithms witha,, = 1/n anda, = efore = 1072,1073,10—*. No averaging
b is implemented. is used,L = 1.

¢ = 102 curve in Fig. 3. On the other hand, dfis close to Fig. 6 is calculated as
zero, then the limiting value of the NSE is smaller, but singe 1
anda; are close to one, the convergence rate is very slow. In N Z 7B(n) (68)
this case we observe a slowly but steadily decreasing NSE with i=1
little oscillation; see the: = 10~* curve in Fig. 3. Also, we and the average deviation of the SIR’s from the target SIR
observe from Figs. 3-5 that the performance of the stochasfigtted in Fig. 7 is calculated as
power control algorithm witlw,, = € is almost the same as the
performance of the stochastic power control algorithm which 1 X 9
uses averaging ovek bits with a,, = Le. NZ(%‘IB(”) — %) (69)

To show the convergence of the users’ SIR’s to the target =1
SIR, we ran the stochastic power control algorithm witijve observed that withe, = 1 /n, SIR’s converge to the
a, = 1/n and witha,, = ¢ for ¢ = 1072, 1073, and10~* and target SIR as expected; the average SIR goes to the target
plotted the average of SIR’s of all users and average deviati8IR (see Fig. 6) and the deviation of SIR’s from the target
of the SIR’s of all users from the target SIR in Figs. 6 and BIR decreases steadily as number of iterations grows (see
respectively, as a function of the iteration indexIf v!B(n) Fig. 7). For fixeda, = ¢, we observed the tradeoff between
andfy;*dB denote the SIR of usérat iterationn and the target the convergence rate and oscillations around the convergence
SIR of the same user in decibels, the average SIR plottedpaint. As ¢ increases, the convergence rate increases, the
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Fig. 7. Average deviation of the SIR’s from the target SIR as a function @fig. 9. Average deviation of SIR’s from the target SIR as a functiom of

n for stg:hastl% powie4r control algorithms with, = 1/n anda, = € for o stochastic power control algorithm with, = 1/n for no quantization

e =10"%,107", 107*. No averaging is used, = 1. (infinite precision) and for quantization with 2, 3, and 4 bits. Averaging over
L = 100 is implemented.

7.5 T T T T T T T

between~* and 4*. From (66),«; = 1.03 for all . With

~* = 4 (=6 dB), the common convergence point SIR for
S e L L s s - all users is calculated to b&* = 4.73 (= 6.75 dB) from

il ] (65). Other parameters of this experiment are the same as the
previous one, i.e.N = 200, ¢ = 10~!3, G = 150. In Fig. 8
GV&WA—MW*“”*‘—* the average SIR of all of the users, which is defined as in
(68), is plotted for the stochastic power control algorithm with
551 1 a, = 1/n.

In a practical system, averaged matched filter outputs are
fed back from the base stations to the mobiles and the
term 1/L Ele yZ(n,1) in (28) needs to be quantized. The
8 simulation results presented up to this point assumed infinite
precision on this feedback (no quantization). Also in a practical
: system, a high value of measurement averagiyqnéeds to be

4O 1060 20l00 3060 4600 5600 60‘00 7000 SOKOO QO!OO 10000 . . .
time (n) used to keep the number of power control bits per information

Fig. 8. Average SIR of all users as a function of iteration index for the ca@t small. In Fig. 9 W? presgnt results for a practical Ver.SK_Jn

with (¢, = € = 0.3) and without £; = ¢ = 0) channel estimation error. Of the proposed algorithm. Fig. 9 shows the average deviation

Stochastic power control algorithm Wlthl = 1/n is used forNV = 200 and Of the SlR’S from the SlR target for no quantlza“()n and for

~v* = 4 (=6 dB). Converging point SIR* = 4.73 (x6.75 dB). Horizontal i . - . ..

dotted lines show the levels* and5* in dB. quantization with 2, 3, and 4 bits. It is seen that quantizing the
average of matched filter outputs with 3 bits (eight quantization

levels) gives quite satisfactory results and that the performance

average SIR approaches to the target SIR faster, and methe proposed algorithm with 4-bit quantization (16 quan-

average deviation initially decreases faster. However, the Stllﬁatlon levels) is not distinguishable from the case where

. A no quantization is applied (infinite precision on the feedback
sequences oscillate around the target value with increasi q PP ( P

litude- th deviati level off and t|H{;{)rmation). Since the averaging interval Is = 100 bits,
ampiitu .e, e_ average deviation curves fevel oft an S_%th 3 (4) bits of quantization, the ratio of information bits to
decreasing as increases. Two extreme cases worth compari

"y ) "Wower control bits isl00/3 = 33.3(100/4 = 25).
are as follows. Foe = 1077, the average SIR increases toward |, the current 1S-95 CDMA system [26] 800 power control

the target SIR faster and the average deviation decreases fa\%%lrates occur in each second. Every update uses a single bit to
initially, but flattens after about 500 iterations. ko= 107, command the mobile unit to increase or decrease its transmitter
the average SIR increases slowly toward the target value gilver by a fixed amount. A 9.6-kbit/s uplink connection has
the average deviation decreases slowly but steadily. an effective data rate of 28.8 kbit/s since the uplink data
Fig. 8 shows the effect of estimation error in the channghdergo a rate 1/3 convolutional encoding. Thus, the ratio of
gains. The channel gain estimates are uniformly distribut@gformation bits to power control bits for the current 1S-95
around the correct counterparts wigh= 0.3 for all <. This system is28 800/800 = 36, which is roughly the same as the
relatively large value is chosen to create a distinguishable gapio found above for the proposed algorithm with= 100

Average SIR

4.5~
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fraction of users
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time (n) / 1000 time (n) / 1000

Fig. 10. Fraction of users fail to converge to within 10% (0.4 dB) of thé&ig. 11. Fraction of users who fail to converge to within 10% (0.4 dB) of
target SIR versus number of iterations divided by 1000, for the stochastiee SIR target versus time{1000) for the stochastic power control algorithm
power control algorithm with,, = 1/n. No averaging is used, = 1. N =  with a,, = 1/n. Number of users in the system§ = 200. Different curves
number of users. correspond toL = 1,10,100.

and 3-bit quantization of the feedback information. It should 1o : : :
be noted, however, that in the 1S-95 system the power control |
information is transmitted more frequently but with fewer bits
at a time (1 bit) as opposed to the proposed algorithm where
more power control bits are transmitted at a time (3, 4 bits) but
less frequently. In the current 1S-95 system the power control
bits overwrite the downlink data bits which are recovered by
the error correction coding. If the same scheme is used i,
the proposed algorithm, a suitable coding scheme which ca
correct burst bit errors should be chosen, since a power contrél
update will, in general, consist of a few bits as discussed above.
The rest of the simulations examine the stochastic power
control algorithm witha,, = 1/n. The performance measure N=400
used was the fraction of users who fail to converge to within
10% or, equivalently, 0.4 dB, of their SIR target over 500 . ‘ . 1 ‘ ‘ ‘ ‘ ‘
realizations of the random signature sequences and positions ! 2 3 4 S 0 7 8 9 10
of the mobiles. In Fig. 10, we varied the number of users _ _ .
between 200-500 with increments of 100. We observed ﬂf@ 12. Fraction of users who fail to converge to within 10% (0.4 dB) of

. . . SIR target versus time{1000) for the stochastic power control algorithm
the convergence rate decreases with increasing numberw@f 4, = 1/n. Number of users in the systemé = 400. Different curves

users. correspond td. = 1,10, 100 where L is the number of bits over which the
We implemented the stochastic power control algorithfipservations are averaged.
with L = 1, 10, and 100 bits of measurement averaging for
N = 200 and N = 400 users. The fraction of users whofirst class andz,, = 1/n in the second class. We investigated
fail to converge within 10% of their SIR target is plotted inhe conditions under which we can have lower and upper
Fig. 11 for N = 200 and in Fig. 12 forN = 400. In general, bounds on the limiting value of MSE for the first class of
we observed that when the system is lightly loaded (case f¥hchastic power control algorithms. We also investigated the
N = 200), M/L iterations of the stochastic power controkffect of averaging on the MSE. For the second class of
algorithm with averaging oveL bits performs as well a8/  a|gorithms witha,, = 1/n coefficient sequence, we showed
iterations of the stochastic power control algorithm withoyhat the limiting value of MSE goes to zero, given that the
averaging. However, when the system is highly loaded (cagsterministic power control problem is feasible.
of N = 400), averaging over a large number of bitsslows  The proposed algorithms are distributed in the sense that
the convergence. they require each user know only its own channel gain to its
assigned base station and its own matched filter output at its
assigned base station.
We have proposed two classes of stochastic power controWe observe that the convergence of the algorithm may
algorithms, using a fixed coefficient sequenge= ¢ in the seem slow compared to existing deterministic power control

VIIl. CONCLUSION
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algorithms [27], [28], but one should note that deterministic APPENDIX B

algorithms require perfect measurements of parameters such ADDITIONAL PROOFS

as SIR or the interference experienced by each user. If these

quantities are not readily available (which is the case in a Proof:

typical application), one needs to estimate them possibly viaLemma 2: From (72), for any realization of the random
an iterative algorithm. Therefore, when we account for theariables, we have

time needed for this estimation, seemingly faster algorithms

may become drastically slower. _ =
d d <o lpn) — Bl < lp(n) ~ Bl < 55 llptn) 2

(75)
APPENDIX A
MATRIX PROPERTIES Applying the expectation operator and taking the limit as
n — oo Yyields

The definition of astablematrix given below can be found
in [29, p. 403]. 1 E B2 < Lim E o2

Definition 1: A real matrix § is stable iff all of its eigen- ~ A§, »— S lip(n) = Plc] < 0o Lp(n) = 7I°]
values have negative real parts. < i E 12

We also state the classical result of Lyapunov; see [29, p. A nmbo (lle(n) —pllc]

Theorem 3: A matrix —S is stable iff for any pos-
itive—definite symmetric matrixC, there exists a posi-

. , e
tive—definite symmetric matri such that By the hypothesis of the lemmm,, .o E{l[p(n) ~pllc] = 0

and our desired result follows. O
. Proof:
S5 G+GS=C. (70) Lemma 3: Using \; and; to denote the eigenvalues Bf

and YH ! A, respectively, we note that; = 1 — ;. If the
The following simple theorem on vector norms can be four@deterministic power control problem is feasible, Theorem 1

in [31, p. 352—-354]. and Lemma 1 implyjz;| < 1. Hence,|Re{u;}| < 1 and the
Theorem 4:1f G is an N x N symmetric posmve—deflnlte result follows. O
matrix, then||z|l¢ = (T Gz)'/? is a norm onR" Proof:
For any matrixM, we will use \M. and M. to denote  Lemma 5: We observe that(n) = z iff p(n) =z+p =p.

the smallest and largest eigenvaluesMf The relationship As a convenience, we express our conditioningp@s) =
between the norni-|| and the Euclidean norm is clarified byFirst, we prove the upper bound in Lemma 5. SirGeis
use of the following result, known as the Rayleigh quotierRfymmetric positive—definiten(n)Gn(n) < XS n(n)Tn(n)

[32, p. 349]. for all realizations of the random vectg(n). Therefore, we
Theorem 5: For any vector: and symmetric matrixp/ have
M 2 T M 2
Aiallel” < 2 M < A lel™ T Bllnm) 2 | p0)=p] < XS Elln(n) | | () =] (77)

In terms of the eigenvalues of the symmetric positive— deﬁmte

matrix G, the Rayleigh quotient states that From (33), [ln(n)|* = [ TH"w(n)|* so that applying

Corollary 1 and taking the conditional expectation yields

mmeH2 < ||'1'.||G < )‘ﬁaXH:"’HQ (’Y )2
and . . Ellln(m)|* | p(n) = p) < ~55==El|[w(m)||* | p(n) = pl.
o llzliE < lal* < so—llall3 (72) 78)
We combine (72) and the Rayleigh quotient in the followingn deriving (78) we note that the eigenvalues of diagonal
useful results. matricesY and H™! are equal to their diagonal elements.
Lemma 6: For any symmetric positive—definite matr& Therefore, the largest eigenvalues ¥fand H~* are equal
and symmetric matrixyf to vk .. and 1/hy;, where~% . and h,,;, are defined as
W Ny VE o = max; ) and hyy, = min; k;;. Combining the results
)\gmn ||.’L'||é < .’L'TM.’L' < xgaxnxné (73) of (77) and (78) yle'dS
. . 9 (GRS N
Corollary 1: For any matrixS and vectorz Elln()||% | pin) =p] < ma;;? max ZE =p).

min

A 2112 < 1S3l < A5 ] (74) (79)

1m1in max
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Using (18), E[w?(n) | p(n)
E[wi(n) | p(n)

1 L
EAPY

= p] can be expressed as

=p|

wi(n,1)|p(n) = pl

ZZ [wi(n, Dwi(n, k)|p(n) = p]}- (80)
=1 kil

Thus, we need to evaluate the expectatiaii@?(n,[)|p(n) =

p] and E[w;(n, Dw;(n, k)|p(n) = p] for k # [. This requires
the computation of cross correlations betwefgf(l) terms.
Note from the definition of;ij(l) given in (4) that

0, J#k
R N 0, j=kl—-m|>1
E[b“ (l)bZk(m)] = Fz (FU +FU) Jj= k, |l - m| =1
F2+F2 +1“§J, i=kl=m
(81)
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To find E[vZ(n,l) | p(n) = p|, we note that?(n,l) is as
given in (85), shown at the bottom of the page. To find
the expected value of7, we note that the expected value
of bi; (Db, (Dbis (b (1) is nonzero for{ = k, s = ¢, j # s),

G=sk=tj#%kK G==ttkk=s34 # k) and
(j = k = s = t). Therefore, using (81) and (82)
E[Ty | p(n) = p|
N
=3> > pipkhihi(T5 + T3 + 1)
J=1 k#j

N
(T 4T +Th) + Zp§h1‘2j

@ 4T T3 4y + 1)) (89)
From (81) and the fact thaE[n?(l)] = o2
E[T; | p(n) =p| = E[T5 | p(n) = pl
_O—QZPJ ZJ ZJ +F2 +F2) (87)

Sincen; (1) andb;;(I) are independent and have zero mean

Note also that E[Ty | p(n) = p] = E[Ts | p(n) = p] = 0. (88)
o — y s N And finally
and fork # I We obtainE[vZ(n, l) | p(n ) ?] py combining the results of
(86)—(89) and insert the result in (84) to get
BB (k)] = (TF + 1% +12)% (83) Elw}(n, l) | p(n) = p|
— 2 2
First we will evaluateE[w?(n, )|p(n) = p|]. From (15) = 22:1 ;pﬂ’khwhzk G+
J J
N
2 —
= Efvi (n,) | p(n) = p] i=1
2 N
ij i r2 _|_r2 +r2) (84) +4022p1 ij “—i-FQ +F2)+2a4. (90)
j=1
N N N N . R R
=2 >3 > EiRVE BV hig Vi hig Richig (Dbis (Dbis (1D bie (1)
j=1lk=1 s=1 t=1
7
N N
+4nF() D D> VEiVIEV RV hiebi(Dbia (1) + 0 (1)
J=1 k=1 \'}:’
b
N N N
+4niD) > > VBVIVPsVhig ViV hisbi (Db (Dbis ()
j=1 k=1 s=1
T4
N N N
+207(1)Y Y /PivPr Vi V hiabig (Dbir (1) +2 13 Z (85)

j=1k=1

<,

-

-~

15
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By similar manipulations, it can be shown that changing its coefficient fromLo? to 6Lo?. Finally, we upper
Elwi(n, Dwi(n,1— 1) | p(n) = p] bound2Lo? with 3Lo? to get
N
= 22 ijpkhijhikrijrik(Fij + D) Tk +Lir)  (91) E[w?(n) | p(n) =p] < = [ij T8 +T% +T8) + 07
=1 k#j
and for|l — k| > 1
E[w;(n, Dw;(n, k) | p(n) = p] = 0. (92) Zth;iF;i (T3 +13).  (98)
By using the result (92) we observe thafw?(n) | p(n) = p|
given in (80) simplifies to

2

Note that the expression |n the parenthesis on the right-
) hand side of (96) is equal to thé&h element of vector
Elwi(n )Ip( ) =7 [(A+ H)p + o%u]. Inserting (96) into (79) yields

{LE (n,1) | p(n) = p|

L 1) Bl (n s 1—1) | o) g} (83) Emn(n)né|p<n>:p1se{3||<A+H>p+aQu||2

Inserting (90) and (91) into (93) yields NN
Ewi(n) | p(n) =p] += ZZ PRRET (T3 +1%)
1 N Z—lj 1
=1z 20 > piprhijha (97)
_ =1 kA wheref = (v .. A s/ (h2,L). Let ' be a diagonal matrix
ST 05+ D5 @5 + 5 + T with its jth diagonal elementy; = S= | h2I%(T% +I3).
N Then the last summation in (97) becomes equalpfd?‘p
+4L prhfjl“fj (T3 +T3) +4L6 Y pihi; Note that F" is positive—definite since alF;; > 0. Then,
J=1 from Theorem 5 in Appendix A, we can conclugé Fp <
. (rgj + rgj +I2)+2L0* + 4(L - 1) AP |Ip||*, where \E_ is the largest eigenvalue df. Then
N we can further bound (97) as
. Z ijpkhijhikl“ijl“ik(fij + fzj)(FZk + fzk)} E[H"(”)Hé | p(n) :P]
§=L k#j

4
< 63||(A+H 2>+ 2\E 2}. 98
ot < o{slla+ Byp o ulP+ PALulpl? . 08
Combining the second and the last terms in (94) yields ~ Note that for any two vectora andb, |ja + b||* < 2(]|a||* +

b||2). Applying this to the first term in (98), and noting that
Efwi(n) | p(n) = p] Hu||||2) ! F;\F;y; g i in (98) ing

1 E[|ln(m)l& | p(n) = pl

:—2 QLZZpkah“hzk “—FFQ +F2)
=i <o{liA+ B +o* N1+ LA EulplP | (99)
— - Using Corollary 1 and denoting the largest eigenvalue of
2 2 212 12 /72 2
(T + 5+ 1 +4Zp1hufu (T4 +1%) (A+H)"(A+ H) asp, we obtain
N Ellln(m)||Elp(n) = pl
2 2 4
+4Lo* > pihiy (I +1% + 1) + 2Lo < 26{30lpl? + o*N) + ALlolP
J=1
N 2 =20{u|lp|* + 30° N} (100)
+4(L - 1) ZthZJFZJ(FU + fll) . (95) Whereﬂl — 3N+2)‘111ax/L' Note tha'thH2 = ||p_ﬁ+ﬁ||2 <
i=1 2(|lp - 21> + |[p||*) from the inequalityi|a + b|* < 2(]|al* +

I||b||2). Applying this and then (72) to (100) yields the desired

Now we will derive an upper bound for (95). First we wil result

include the terms corresponding jo= k& in the first double
summation on the right-hand side of (95). Since the included  E[|n(n)|I | p(n) = p] < co + cillp — BlIZ- (101)
terms are nonnegative, this process ylelds an upper bound anNow we prove the lower bound in Lemma 5. From (33)
the double sum becomes equal}s ; p;h:;[T%+1%+1%])%.  and (72), we obtain

In order to derive an ypper bognd for the~Iast term in (95), e - )

we note thal;;(T';; +I';;) < $(T% + % + %) for all i, j In()IE > Aol YH w(n)|?. (102)
from the simple inequality:b < < (a? +b2)/2 and the fact that Applying Corollary 1 and noting thak,,.. = max; hi;, we
T;;Ty; = 0. Upper bounding the coefficiedZ — 1) of this

term with 4. and combining this term with the first term, G e 2

we get3L[Y" . p;hi;(T% + I'}; + %)% Since the third term ()12 > MHW(”)HQ- (103)
(single sum) in (95) is nonnegatlve we can upper bound it by - A ax
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Taking the expectation conditioned aiin) = «, or, equiva- [15]
lently, p(n) = p, yields

[16]
)‘gin ,Y;(;lin 2 & 17
Elln(n) s | pln) =p)> s in)” S g2 ) | py =g,
max i=1 [18]

(104)
We note from (95) that (19]
5 204 [20]

Elw;(n) | p(n) =p| > I (105)

: - . 21
since all of the remaining terms are nonnegative. Applyln[g ]

this result to (104) and expressing our conditioning yields the
desired result 22]

NG, * V2N g4
Bl fatn) = 21> Pamainl X0 g, o) 29
max [24]
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