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Abstract—For wireless communication systems, iterative power
control algorithms have been proposed to minimize transmit-
ter powers while maintaining reliable communication between
mobiles and base stations. To derive deterministic convergence
results, these algorithms require perfect measurements of one
or more of the following parameters: 1) the mobile’s signal-
to-interference ratio (SIR) at the receiver; 2) the interference
experienced by the mobile; and 3) the bit-error rate. However,
these quantities are often difficult to measure and deterministic
convergence results neglect the effect of stochastic measurements.
In this work we develop distributed iterative power control al-
gorithms that use readily available measurements. Two classes of
power control algorithms are proposed. Since the measurements
are random, the proposed algorithms evolve stochastically and
we define the convergence in terms of the mean-squared error
(MSE) of the power vector from the optimal power vector that
is the solution of a feasible deterministic power control problem.
For the first class of power control algorithms using fixed step
size sequences, we obtain finite lower and upper bounds for the
MSE by appropriate selection of the step size. We also show that
these bounds go to zero, implying convergence in the MSE sense,
as the step size goes to zero. For the second class of power control
algorithms, which are based on the stochastic approximations
method and use time-varying step size sequences, we prove that
the MSE goes to zero. Both classes of algorithms are distributed
in the sense that each user needs only to know its own channel
gain to its assigned base station and its own matched filter output
at its assigned base station to update its power.

Index Terms—CDMA, power control.

I. INTRODUCTION

I N CELLULAR wireless communication systems the aim
of power control is to assign each user a transmitter

power level such that all users satisfy their quality-of-service
(QoS) requirements. The power control algorithms that have
been developed to date may be classified as centralized or
distributed, synchronous or asynchronous, iterative or non-
iterative, constrained or unconstrained. Earlier work [1]–[4]
identified the power control problem as an eigenvalue problem
for nonnegative matrices. The optimal power vector was
found by inversion of a matrix which was composed of
channel gains of all users. Those algorithms were noniterative,
synchronous, and centralized in the sense that all the power
vector components were found by a matrix inversion. Due
to the computational complexity of these centralized power
control algorithms, distributed versions have been developed
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which need only path gains that can be obtained by local
measurements [5]–[9]. Variations of the ordinary power control
problem can be found in references [10]–[13].

The power control algorithms that have been developed to
date aredeterministicin the sense that they require the exact
knowledge or perfect estimates of some deterministic quanti-
ties such as: 1) signal-to-interference ratio (SIR); 2) received
interference power; or 3) bit-error rate. Unfortunately, none of
those quantities is easy to estimate perfectly, and deterministic
convergence results are no longer valid when these determin-
istic variables are replaced with their random estimates. This
observation highlights the need for the study of new power
control algorithms that make use of available measurements,
evolve stochastically, and converge in a stochastic sense.

In code-division multiple-access (CDMA) systems, conven-
tional receivers consist of matched filters that are matched to
the signature sequences of the users in the system. Squares
of the matched filter outputs are unbiased estimates for the
received energies, in the sense that the expected value of the
square of a matched filter output is equal to the received energy
through that matched filter. The randomness over which the ex-
pectation is taken is due to the randomness of the information
bits transmitted by the users (i.e., multiaccess interference) and
that of the ambient Gaussian channel noise. The deterministic
power control approach assumes that this expectation is taken
and a perfect estimate for the interference is available at
each power control update. Although the expectation can
be approximated by a sample average measurement of the
outputs, perfect estimates require an average over an infinite
number of bits between power updates. When the measurement
is done only over a finite number of bits, the estimates are still
random quantities and the deterministic convergence results
obtained with perfect estimate assumptions are no longer valid.

For a CDMA system based on IS-95, [14] simulates a
stochastic power control algorithm that results from using
random SIR estimates in an otherwise deterministic iteration.
The mapping between an available observation and actual
SIR needed in the power control updates is also determined
by simulation. In this paper we will work with a simpler
system model, propose an observation based power control
algorithm, and prove its convergence analytically. Thus, the
main contribution of this paper is to present practical power
control algorithms with provable convergence.

Starting from a simple extension of the deterministic power
control algorithms given in [7] and [9], this paper introduces
a class of stochastic power control algorithms that are based
on the observation of the matched filter outputs. Since the
matched filter outputs are random, the proposed algorithms
evolve in a stochastic fashion. The convergence of the algo-
rithms is defined in terms of the mean-squared error (MSE)
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of the power vector at any iteration from the optimal power
vector. The optimal power vector is the fixed point of the
deterministic power control problem where each user transmits
with as little as possible power while all the users are satisfying
their SIR-based QoS requirements. Conditions for obtaining
lower and upper bounds on the MSE are identified.

In this paper two types of stochastic power control algo-
rithms are proposed. These algorithms differ only in terms of
the step size sequence being used. As we shall see, the step
size scales the random correction term added to the current
power to obtain the next power. If a fixed step size sequence
is used, we prove that the fixed step size value can always be
chosen small enough to have finite lower and upper bounds on
the MSE given that the deterministic power control problem
is feasible. We also show that these lower and upper bounds
on the MSE go to zero, implying an exact convergence in
the MSE sense, as the step size value goes to zero. If the
step size sequence is allowed to depend on the iteration index,
we show that, for a particular class of step size sequences,
the measurement-based power control algorithm converges
in the MSE, i.e., MSE goes to zero, again conditioned on
deterministic power control problem being feasible.

The variable step size stochastic power control algorithm
is based on the idea of stochastic approximations, a method
first introduced by Robbins and Monro [15], who solved a
deterministic problem with unknown parameters by observing
the random outputs of a controllable experiment. They defined
a problem in which was the expected value of a certain
experiment conducted at input level. For a fixed target ,
their aim was to find that value of for which .
They assumed that the exact functional form of was
not known by the experimenter, but the input levelat
which the experiment was run could be controlled. They
proposed an iterative method of changing the input level of the
experiment by only observing the outputs of the experiment.
They showed that the sequence ofvalues generated by the
iterative algorithm converged to the solution of in
the mean-square sense. Generalizations of the Robbins–Monro
method can be found in [16]–[21].

In the application of stochastic approximation methods
to the power control problem, the random experiments
are the transmissions of information bits from users to the
base stations. Those experiments are stochastic due to the
randomness of the transmitted bits and to the existence of
additive white Gaussian noise (AWGN). The experiments
are controlled by the iterative update of the transmitter
powers of the active users.

The proposed power control algorithms are distributed in
the sense that users need to know observations only related
to themselves. In particular, a user needs to know only two
parameters to update its power: 1) the output of its own
receiver filter (matched filter) at its assigned base station and
2) its own channel gain to its assigned base station.

II. SYSTEM MODEL

We consider the uplink of a wireless multicell CDMA
system with a binary phase-shift keying (BPSK) modulation

scheme. We assume that the users are already assigned to their
base stations and do not consider the base station assignment
problem. The number of users and the number of base stations
are represented by and , respectively. For each user, we
use to denote its transmitted power. The channel gain of user

to the assigned base station of useris represented by .
Users have preassigned unique signature sequences which

they use to modulate their information bits. The signature
waveform of user is denoted by , which is nonzero only
in the bit interval and is normalized to unit energy, i.e.,

. The receiver consists of a set of matched
filters that are matched to the signature waveforms of the
users. The only synchronism assumed is between each user
and its assigned base station, i.e., the matched filter of user
is synchronized to the arrival delay of user. For each user
, all other users in the same cell and the users in other cells

create interference asynchronously. The relative delays of the
users, which can have any value not exceeding the bit duration

, do not change with time. For theth bit of a given user,
an interfering user creates interference by either bits and

or bits and , depending on whether the interfering
user has a positive or negative delay relative to user. In
Fig. 1 two possible situations are depicted. The delay of user

relative to the matched filter of useris represented by .
In Fig. 1 user has a positive delay relative to userand
creates interference to theth bit of user with bits and
. Similarly, user has a negative relative delay with respect

to user and creates interference to theth bit of user with
bits and . In order to express left, right, and same-
bit interferences, we define three types of cross correlations
between the signature sequences of any two usersand :

, , and . If (case of user in Fig. 1), then

(1)

and if (case of user in Fig. 1)

(2)

Note from (1) to (2) that for each user, either or , is
equal to zero, implying for all . Note also that

and . The matched filter output for the
bit of user is

(3)
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Fig. 1. Asynchronous CDMA model.

where is the information bit of user ( equiprobably)
in the th bit interval and is a sample of AWGN having
zero mean and variance. Defining

(4)

we can write (3) as

(5)

Note that although and are independent for
, and are not for .

III. D ETERMINISTIC POWER CONTROL

The aim of a power control algorithm is to minimize the
users’ transmitted powers while maintaining a certain QoS for
each user. Typically, QoS is defined in terms of the probability
of bit error, which in turn is assumed to be a monotonically
decreasing function of SIR. Therefore, the QoS requirement
directly translates to the SIR being larger than atarget SIR.
Let denote the SIR target of user. The power control
problem can be stated as follows:

s.t.
i

for

(6)

Defining the diagonal matrix with th diagonal element
, the transmitted power vectorwith th element ,

and nonnegative matrices and
as

and

(7)

the QoS requirements in (6) can be written as the vector
inequality

(8)

where . We say that the set of SIR targets
are feasible if there is a nonnegative finite vector

that satisfies (8).

It is not difficult to show that if the SIR targets (’s) are
feasible, then the power vector which satisfies allinequali-
ties with equality in (6) minimizes the sum of the transmitted
powers (see [9], [10], or [22, Appendix]). Therefore, if

are feasible, a power control algorithm finds (in
the iterative case converges to) the solution of

(9)

The existence of a nonnegative solution to (9) is specified
by the following two theorems on eigenvalues of nonnegative
matrices by Perron and Frobenius [23].

Theorem 1: If is a square nonnegative matrix, there exists
an eigenvalue called the Perron–Frobenius eigenvalue of

such that: 1) is real and nonnegative; 2) with can
be associated nonnegative left and right eigenvectors; and 3)

for any eigenvalue of .
Theorem 2: For an irreducible nonnegative matrix,

has a nonnegative solution for any nonnegative
nonzero iff the Perron–Frobenius eigenvalueof satisfies

.
Thus, (9) and Theorem 2 imply the following result.
Lemma 1: The SIR targets are feasible iff

, where is the Perron–Frobenius eigenvalue of matrix
.

For the remainder of this paper, we will assume that the
deterministic power control problem is feasible. From (9), we
obtain

(10)

Note that, if the relative delays, correlation coefficients, and
channel gains are known, then from (10), the optimal power
vector can be found as

(11)

where

(12)

with the identity matrix. However, using (11) to
solve the power control problem is a centralized approach that
requires exact knowledge of all channel gains, relative delays,
and corresponding correlation coefficients of all users in the
system.

In [9], iterative distributed deterministic power control al-
gorithms were defined in general as

(13)

When the current power vector is , the th
component of is the interference that useris required
to overcome. If the SIR targets are feasible,
then the algorithm (13) will converge to the optimal solution

if is a standardinterference function; see [9].
In the notation of the present paper the interference function is

(14)

When is of the form of (14), the iteration (13) is the
power control algorithm of Foschini and Miljanic [7, eq. (18)].
Implicit in the iteration (13) is that the normalized interference
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that user must overcome is measured perfectly. Hence,
the convergence of the iteration proceeds deterministically to
the fixed point . In the next section we introduce stochastic
power control by using the random squared matched filter
outputs to measure the interference function .

IV. STOCHASTIC POWER CONTROL

We consider an -bit interval (window) in which users keep
their transmitter powers fixed. We define to be the
squared value of the matched filter output of userat its
assigned base station at the end of theth bit interval in the

th -bit window . From (3), squaring the matched
filter output yields

(15)

The contribution of the noise and the transmitted bits to the
squared correlator output is

(16)

where we dropped the common indexfrom the terms in
(16) for convenience. In a more careful statement of (16),

, , and should be written as , ,
, and , respectively. We define the average of

the squared matched filter outputs of userat its assigned base
station at the end of theth -bit interval as

(17)

where

(18)

Note that in deriving (17) we assumed that the power levels
of the interfering users do not change in the-bit window
of the th user. Since the relative delay of any interfering
user is at most 1 bit, this assumption is valid only if users
have one idle bit, an information bit that is unused for
power control measurements, between each of their-bit
measurement windows. That is, all users keep their transmitter
powers fixed for one more bit after every-bit power control
window. For practical values of , this idle bit will not affect
the performance of the overall system significantly.

Defining vectors and with and as their th
elements, and using power vector, (17) becomes

(19)

From (16), it follows that since the transmitted
bits are independent and equiprobably, and the zero mean
noise is independent of the bits and has variance. Hence

(20)

(21)

From (21) we see that equals the total received power
through the matched filter for userat its assigned base station.
By applying (14) to (21), we can express the interference
in terms of as

(22)

Equation (22) effectively subtracts the signal component from
the total received power to obtain the interference. In [9] the
following deterministic power control algorithm was given:

(23)

The algorithm (23) is called interference averaging because
the required power at iteration is averaged with the
current power to yield the new power vector . The
motivation given in [9] for interference averaging is that in real
systems must be measured and if that measurement
is not accurate, then it may be desirable to make only a small
adjustment in the transmitter power. By inserting (22) into
(23), the interference averaging algorithm becomes

(24)

The deterministic iteration (24) requiresperfect knowledge
of the total received power . In practice we must use
estimates of . Thus, we propose the following stochastic
power control algorithm in which we replace in (24) by
the unbiased estimate:

(25)

We note that (25) is a special case of the following more
general algorithm:

(26)

where the fixed step sizeis replaced with a variable step size
sequence that may be a function of the iteration index.
Therefore, (25) corresponds to a special case of the algorithm
(26) when for all . The iteration (26) can be rewritten
in the form

(27)

Before investigating the convergence properties of the stochas-
tic power control algorithm (27), we write it component wise
by using the definitions of , , and as

(28)
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Equation (28) defines the power update rule for user. As seen
from (28), the stochastic power control algorithm isdistributed
in the sense that in order to update its power level at iteration

, user needs only to know the average of the squares
of its own matched filter output at its assigned base station

and its own channel gain to its assigned
base station . Note that there are a total of matched filter
outputs in the system, one corresponding to each user, and a
user needs to know only its own matched filter output at its
assigned base station to update its power. Also note that for
a single user, there are associated channel gains to each
of base stations, but userneeds to know only the gain to
its assigned base station. The remaining three parameters of
(28)—the users power value in the previous iteration , its
SIR target value , and step size sequence—are trivially
known by the user.

Also seen from (28) is the fact that the base station of each
user needs to transmit the average value of the user’s matched
filter outputs back to the user everybit. Each user keeps its
transmitter power level fixed until this feedback from its base
station arrives and then updates its transmitter power according
to (28). As we shall see, the convergence proof for (28) will
be valid for any value of , but the selection of an appropriate

will have a significant impact on the system performance.
If a small is chosen, the power control updates will be more
frequent and thus the convergence will be faster. However,
frequent transmission of the feedback on the downlink will
effectively decrease the capacity of the system since more
system resources (bandwidth) will have to be used for power
control.

Since the matched filter outputs ’s depend on the
transmitted bits and the Gaussian channel noise, the conver-
gence of (28) will be stochastic and will be specified in terms
of the MSE at iteration

(29)

We will prove that under certain conditions on , the se-
quence converges to the optimal power vectorin the
mean-square sense. In particular, we will prove that:

1) if and if is chosen sufficiently small, then
we will have finite lower and upper bounds on MSE
as the number of iterations grows. In the limiting case
as both lower and upper bounds on the limiting
MSE as well as the limiting MSE itself go to zero;

2) if but is chosen too large, then the MSE may
diverge even if the deterministic power control algorithm
would converge;

3) if , then the algorithm converges to the optimal
power vector in the sense that ,
irrespective of other system parameters.

V. STOCHASTIC CONVERGENCERESULTS

In this section we will derive mean-squared convergence
results starting with the most general form of the stochastic
power control iteration (27) [equivalent component-wise rep-
resentation was given in (28)]. Equation (27) can equivalently

be written as

(30)

From (19), at time , we have

(31)

Applying (31) to (30), we obtain

(32)

where was defined in (12). It will be mathematically
convenient to define

(33)

Note that represents a normalized form of the random
component of the noise contribution . Also note from
(20) that . Inserting (33) to (32) and observing
from (11) that , we obtain

(34)

As stated in the previous section, we will prove the conver-
gence in the mean-squared sense. The norm used in (29) is the
usual Euclidean norm defined as . Although at
the end we will prove convergence in terms of the Euclidean
norm, the lack of symmetry in the system (in particular,
is not symmetric) dictates that we start our proof with a-
norm for a specifically chosen symmetric
and positive–definite matrix . The necessary results about
the matrices and matrix norms, including Lyapunov’s result on
stability of matrices and the Rayleigh quotient, are summarized
in Appendix A.

In Appendix B we prove the following lemma as a simple
consequence of the Rayleigh quotient [see (72)].

Lemma 2: If , then
.

Lemma 2 verifies that it is sufficient to prove convergence
for a -norm with a suitably chosen symmetric matrix.
From (34), we see that convergence will depend on the
properties of the matrix . In Appendix B we verify the
following result.

Lemma 3: Matrix is stable iff the deterministic power
control problem (6) is feasible.

To simplify our convergence proofs, we define
and study the convergence of to the zero vector.

Subtracting from both sides of (34) yields

(35)

Taking and squaring the -norms of both sides of (35) we
obtain

(36)
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By taking the conditional expectation of both sides of (36),
conditioned on , and observing that

, we obtain

(37)

Our proof of convergence will proceed by bounding the
individual terms on the right-hand side of (37). As proven
in Lemma 3, the feasibility of the deterministic power control
problem guarantees the stability of . By Theorem 3 in
Appendix A, stability of matrix , in turn, guarantees the
existence of a symmetric positive–definite matrix as a
solution of

(38)

for any symmetric and positive–definite. Therefore, selec-
tion of the -norm allows us to develop the following bounds
for the second term in (37) by using Lemma 6 in Appendix A
and the fact that both and are symmetric
positive–definite matrices.

Lemma 4: There exist positive constants
and such that

(39)

(40)

For our convergence proof, we needand to be nonneg-
ative and if we used the usual Euclidean norm by choosing

, Lemma 4 would not hold since, in general,
is not a positive–definite matrix, even though the real parts
of the eigenvalues of are guaranteed to be positive by the
feasibility of the power control problem.

Our next lemma is more difficult to prove because of the
indirect way in which the power vector interacts with the
noise vector . The proof can be found in Appendix B.

Lemma 5: There exist positive constants , , and ,
such that

(41)

Using Lemmas 4 and 5, we obtain the following upper and
lower bounds from (37):

(42)

(43)

Taking the expectation of both sides of the final inequali-
ties (42) and (43), with respect to and letting

, we obtain

(44)

(45)

Note that is the MSE of the power vector at iterationfrom
the optimal power vector. In the following two subsections

we will derive the convergence results for two cases: 1) the
constant coefficient sequence and 2) the iteration index
dependent coefficient sequence, which depends on . In
both cases we will start the convergence proof by the bounds
on MSE given in (44) and (45).

A. Convergence Results for Fixed

We now consider the fixed step size stochastic iteration (25).
By defining

(46)

we can write the lower and upper bounds (44) and (45) on the
nonnegative sequence as

(47)

Therefore, the nonnegative sequence is sandwiched be-
tween two sequences generated according to

and . Those two sequences converge
to finite numbers iff is chosen such that and

.
We note that and are equal to one at . We also

note that both and are locally decreasing asincreases
since

(48)

This means that we can always choose a small nonzeroso
that and , in which case the sequences

and converge and the limiting -norm MSE, i.e.,
, has finite lower and upper bounds. From the

sandwich theorem, we have

(49)

We can evaluate the values of the lower and upper bounds in
the extreme case when as

Therefore, for arbitrarily small, both lower and upper bounds
for approach zero, implying that the limiting-norm MSE
goes to zero as well. In this case Lemma 2 implies that the
limiting MSE goes to zero and the stochastic power control
algorithm (25) converges to the unique optimal power vector
. However, as approaches zero, and approach one,

which slows the convergence rate. Thus, it is undesirable to
choose too small. Furthermore, it is also undesirable to
choose too large. In particular, we observe that if , then

. Note that may not be less than unity even
if the deterministic power control problem is feasible. In this
case the lower bound derived above does not converge, and the
limiting -norm MSE and therefore the limiting MSE diverge.
This unfortunate situation reflects the fact that in practical
systems power control with unreliable measurements can be
unstable even if the SIR targets are feasible.
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In order to solve for the value of that gives rise to
acceptable values of and in terms of the convergence
rate and lower and upper bounds on limiting MSE, one needs
to know the constants , , , , and , which depend
on the global system parameters such as the eigenvalues of
matrix . Finding these numbers is difficult because
it requires the knowledge of relative delays, corresponding
cross correlations, and channel gains of all users, and is very
computationally expensive as the number of usersincreases.
In order to overcome this difficulty, we propose to use a
coefficient sequence that is a function of .

B. Convergence Results for Varying

In this section we will examine the variable step size
iteration (27). We will show that if the coefficient sequence

satisfies the following two conditions:

(50)

then the power control algorithm (27) converges to the optimal
power vector in the mean-square sense. Note that
satisfies conditions given in (50). It was shown in [20] that
by that selection of , the convergence rate is proportional
to . In particular, we will choose .

We will follow Sakrison’s approach [20, pp. 60–61] in the
following derivation. We will need only the upper bound given
in (44). Since is a monotonically decreasing sequence, there
exists and such that for

(51)

Furthermore, we can choose such that for , we have
. For , the inequality (44) can

be further bounded as

(52)

Starting at and executing the recursion repeatedly
yields

(53)

where

(54)

For , we can use the inequality
to show

(55)

By the first condition in (50) and the fact that
, the exponent in the above equation diverges to negative

infinity and we have . This implies that
on the right-hand side of (53) goes to zero as

goes to infinity. Now we will investigate the second term.
Let be the unit step function whose value is one for
nonnegative and zero otherwise. Then

(56)

(57)

since . We could exchange the limit and
summation to obtain (57) from (56) because the sum on the
right side of (56) is absolutely convergent. Finally, combining
the result in (57) and , and the fact that

is a nonnegative sequence, we obtain .
Using this result and Lemma 2, we conclude that the algorithm
converges to the unique global optimal power vector in the
mean-squared sense, i.e., .

VI. DISCUSSION

Throughout this paper it is assumed that the channel gains
are fixed. In general, the channel gains change randomly in
time as a result of lognormal or fast fading. In order to cope
with the random nature of the channel gains, it was suggested
in [24] to use larger SIR target values than needed allowing
for a fade margin. In this paper we only deal with difficulty
of estimating the interference arising from the randomness
of transmitted bits and ambient channel noise. The fact that
the channel gains are changing randomly is not particular to
stochastic power control, but it is a problem of deterministic
power control as well. In the following we will discuss the
fixed channel gain case assuming that the SIR targets (

) are chosen properly to compensate for the
fading.

The proposed algorithms need only a subset of the channel
gains. Each user has channel gains, one corresponding to
each one of base stations, and only one of them, namely the
channel gain of the user to its assigned base station, is needed
to be used in the power update equations. The convergence
results are developed with the assumption that the required
channel gains for are known or estimated
perfectly by the users. In this section we will show that if
the users use unbiased estimates of the random channel gains,
then the proposed algorithms converge to effective target SIR’s
which are different than the intended ones.

Let the estimate of the channel gain used by userin the
power updates be . Then, from (28), the modified power
update equation for usercan be written as

(58)
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Let denote a diagonal matrix with as its th diagonal
element. The modified version of (30), reflecting the estimation
error in the channel gains, is given as

(59)

Note that the iteration (59) converges to a point where expected
value of the term in the square brackets on the right-hand
side of (59) is equal to zero since it is the fixed point of the
iteration [15], [20]. Calculation of this expected value requires

the calculation of . Since is a convex
function for , Jensen’s inequality [25] yields

(60)

for some . The equality in (60) follows from the
assumption that is an unbiased estimate, i.e., .
Defining a diagonal matrix with , the expected

value of can be written as . Therefore,
from (21), the expected value of the term in the squared
brackets on the right-hand side of (59) is equal to

(61)

Equating (61) to zero yields the fixed-point solution

(62)

Defining

(63)

(62) can be written equivalently as

(64)

Comparing (10) and (64), we observe thatis the matrix of
modified SIR targets. With algorithm (58), the SIR of user
converges to theth diagonal element of

(65)

instead of the originally intended SIR target.
As a simple example, consider the case where the channel

gain estimate of user is uniformly distributed in the
interval between and . Note that

and is an unbiased estimate, and

(66)

and, therefore, . Note that
monotonically increases with , the percentage error. Also

note from (65) that for all and increases
with . Therefore, user aims for an effective SIR which is
more than its original objective. Clearly, users get these new
SIR targets if they are feasible, otherwise the powers of the
users increase without bound as a sign of the infeasibility of the
power control problem. Therefore, a large value of uncertainty
(estimation error variance) may transform a feasible power
control problem into an infeasible one.

Fig. 2. Simulation environment forN = 500. Symbols� and� denote the
base stations and the users, respectively.

VII. SIMULATION RESULTS

In our simulations we consider a general multicell CDMA
system on a rectangular grid. There are base
stations with coordinates
for . The and coordinates of each user are
independent uniformly distributed random variables between
0–5000 m. The experiments are conducted for number of users
( ) between 200–500. Fig. 2 shows the positions of users
and the base stations with symbolsand , respectively, for

. Each user is assigned to its nearest base station.
The path loss exponent used while calculating the channel
gains of the users is taken to be . At the beginning of
the iterations, the power vector is always initialized to zero.
The simulations are over 10 000 bits. For-bit measurement
averaging, the number of power control iterations is 10 000/.

We chose the processing gain to be , and a random
signature sequence of length chips was assigned to each
user. Although the convergence theorems permit individual
SIR targets for each user, for the simulations we chose a
common SIR target ( 6 dB) for all users. The AWGN
noise power equaled W, corresponding roughly
to a 1-MHz bandwidth.

First we investigate the performance of the stochastic power
control algorithms for . The normalized squared error
(NSE), which we define as

(67)

is plotted as a function of iteration index in Fig. 3. The
curves of Fig. 3 show the performance of the stochastic power
control for (for ) and for

. Figs. 4 and 5 show the same performance criteria
when averaging is implemented with and ,
respectively.

We observe the tradeoff between the convergence rate and
the value of the limiting NSE—whenis large, and are
smaller, and the convergence rate is fast but the limiting NSE
is larger. Therefore, we observe an initial fast decrease in the
NSE but then oscillations around the limiting NSE; see the
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Fig. 3. NSE as a function ofn for stochastic power control algorithms with
an = 1=n andan = � for � = 10

�2; 10�3; 10�4. No averaging is used,
L = 1.

Fig. 4. NSE as a function ofn for stochastic power control algorithms with
an = 1=n andan = � for � = 10

�2; 10�3; 10�4. Averaging overL = 10

b is implemented.

curve in Fig. 3. On the other hand, ifis close to
zero, then the limiting value of the NSE is smaller, but since
and are close to one, the convergence rate is very slow. In
this case we observe a slowly but steadily decreasing NSE with
little oscillation; see the curve in Fig. 3. Also, we
observe from Figs. 3–5 that the performance of the stochastic
power control algorithm with is almost the same as the
performance of the stochastic power control algorithm which
uses averaging over bits with .

To show the convergence of the users’ SIR’s to the target
SIR, we ran the stochastic power control algorithm with

and with for , , and and
plotted the average of SIR’s of all users and average deviation
of the SIR’s of all users from the target SIR in Figs. 6 and 7,
respectively, as a function of the iteration index. If
and denote the SIR of userat iteration and the target
SIR of the same user in decibels, the average SIR plotted in

Fig. 5. NSE as a function ofn for stochastic power control algorithms
with an = 1=n and an = � for � = 10

�1; 10�2; 10�3. Averaging over
L = 100 b is implemented.

Fig. 6. Average SIR as a function ofn for stochastic power control algo-
rithms withan = 1=n andan = � for � = 10

�2;10�3;10�4. No averaging
is used,L = 1.

Fig. 6 is calculated as

(68)

and the average deviation of the SIR’s from the target SIR
plotted in Fig. 7 is calculated as

(69)

We observed that with , SIR’s converge to the
target SIR as expected; the average SIR goes to the target
SIR (see Fig. 6) and the deviation of SIR’s from the target
SIR decreases steadily as number of iterations grows (see
Fig. 7). For fixed , we observed the tradeoff between
the convergence rate and oscillations around the convergence
point. As increases, the convergence rate increases, the
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Fig. 7. Average deviation of the SIR’s from the target SIR as a function of
n for stochastic power control algorithms withan = 1=n andan = � for
� = 10

�2; 10�3; 10�4. No averaging is used,L = 1.

Fig. 8. Average SIR of all users as a function of iteration index for the case
with (�i = � = 0:3) and without (�i = � = 0) channel estimation error.
Stochastic power control algorithm withan = 1=n is used forN = 200 and

� = 4 (�6 dB). Converging point SIR~
� = 4:73 (�6.75 dB). Horizontal
dotted lines show the levels
� and ~
� in dB.

average SIR approaches to the target SIR faster, and the
average deviation initially decreases faster. However, the SIR
sequences oscillate around the target value with increasing
amplitude; the average deviation curves level off and stop
decreasing as increases. Two extreme cases worth comparing
are as follows. For , the average SIR increases toward
the target SIR faster and the average deviation decreases faster
initially, but flattens after about 500 iterations. For ,
the average SIR increases slowly toward the target value and
the average deviation decreases slowly but steadily.

Fig. 8 shows the effect of estimation error in the channel
gains. The channel gain estimates are uniformly distributed
around the correct counterparts with for all . This
relatively large value is chosen to create a distinguishable gap

Fig. 9. Average deviation of SIR’s from the target SIR as a function ofn,
for stochastic power control algorithm withan = 1=n for no quantization
(infinite precision) and for quantization with 2, 3, and 4 bits. Averaging over
L = 100 is implemented.

between and . From (66), for all . With
( 6 dB), the common convergence point SIR for

all users is calculated to be ( 6.75 dB) from
(65). Other parameters of this experiment are the same as the
previous one, i.e., , , . In Fig. 8
the average SIR of all of the users, which is defined as in
(68), is plotted for the stochastic power control algorithm with

.
In a practical system, averaged matched filter outputs are

fed back from the base stations to the mobiles and the
term in (28) needs to be quantized. The
simulation results presented up to this point assumed infinite
precision on this feedback (no quantization). Also in a practical
system, a high value of measurement averaging () needs to be
used to keep the number of power control bits per information
bit small. In Fig. 9 we present results for a practical version
of the proposed algorithm. Fig. 9 shows the average deviation
of the SIR’s from the SIR target for no quantization and for
quantization with 2, 3, and 4 bits. It is seen that quantizing the
average of matched filter outputs with 3 bits (eight quantization
levels) gives quite satisfactory results and that the performance
of the proposed algorithm with 4-bit quantization (16 quan-
tization levels) is not distinguishable from the case where
no quantization is applied (infinite precision on the feedback
information). Since the averaging interval is bits,
with 3 (4) bits of quantization, the ratio of information bits to
power control bits is .

In the current IS-95 CDMA system [26] 800 power control
updates occur in each second. Every update uses a single bit to
command the mobile unit to increase or decrease its transmitter
power by a fixed amount. A 9.6-kbit/s uplink connection has
an effective data rate of 28.8 kbit/s since the uplink data
undergo a rate 1/3 convolutional encoding. Thus, the ratio of
information bits to power control bits for the current IS-95
system is , which is roughly the same as the
ratio found above for the proposed algorithm with
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Fig. 10. Fraction of users fail to converge to within 10% (0.4 dB) of the
target SIR versus number of iterations divided by 1000, for the stochastic
power control algorithm withan = 1=n. No averaging is used,L = 1. N =

number of users.

and 3-bit quantization of the feedback information. It should
be noted, however, that in the IS-95 system the power control
information is transmitted more frequently but with fewer bits
at a time (1 bit) as opposed to the proposed algorithm where
more power control bits are transmitted at a time (3, 4 bits) but
less frequently. In the current IS-95 system the power control
bits overwrite the downlink data bits which are recovered by
the error correction coding. If the same scheme is used in
the proposed algorithm, a suitable coding scheme which can
correct burst bit errors should be chosen, since a power control
update will, in general, consist of a few bits as discussed above.

The rest of the simulations examine the stochastic power
control algorithm with . The performance measure
used was the fraction of users who fail to converge to within
10% or, equivalently, 0.4 dB, of their SIR target over 500
realizations of the random signature sequences and positions
of the mobiles. In Fig. 10, we varied the number of users
between 200–500 with increments of 100. We observed that
the convergence rate decreases with increasing number of
users.

We implemented the stochastic power control algorithm
with , , and bits of measurement averaging for

and users. The fraction of users who
fail to converge within 10% of their SIR target is plotted in
Fig. 11 for and in Fig. 12 for . In general,
we observed that when the system is lightly loaded (case of

), iterations of the stochastic power control
algorithm with averaging over bits performs as well as
iterations of the stochastic power control algorithm without
averaging. However, when the system is highly loaded (case
of ), averaging over a large number of bitsslows
the convergence.

VIII. C ONCLUSION

We have proposed two classes of stochastic power control
algorithms, using a fixed coefficient sequence in the

Fig. 11. Fraction of users who fail to converge to within 10% (0.4 dB) of
the SIR target versus time (n/1000) for the stochastic power control algorithm
with an = 1=n. Number of users in the system isN = 200. Different curves
correspond toL = 1; 10;100.

Fig. 12. Fraction of users who fail to converge to within 10% (0.4 dB) of
the SIR target versus time (n/1000) for the stochastic power control algorithm
with an = 1=n. Number of users in the system isN = 400. Different curves
correspond toL = 1; 10;100 whereL is the number of bits over which the
observations are averaged.

first class and in the second class. We investigated
the conditions under which we can have lower and upper
bounds on the limiting value of MSE for the first class of
stochastic power control algorithms. We also investigated the
effect of averaging on the MSE. For the second class of
algorithms with coefficient sequence, we showed
that the limiting value of MSE goes to zero, given that the
deterministic power control problem is feasible.

The proposed algorithms are distributed in the sense that
they require each user know only its own channel gain to its
assigned base station and its own matched filter output at its
assigned base station.

We observe that the convergence of the algorithm may
seem slow compared to existing deterministic power control
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algorithms [27], [28], but one should note that deterministic
algorithms require perfect measurements of parameters such
as SIR or the interference experienced by each user. If these
quantities are not readily available (which is the case in a
typical application), one needs to estimate them possibly via
an iterative algorithm. Therefore, when we account for the
time needed for this estimation, seemingly faster algorithms
may become drastically slower.

APPENDIX A
MATRIX PROPERTIES

The definition of astablematrix given below can be found
in [29, p. 403].

Definition 1: A real matrix is stable iff all of its eigen-
values have negative real parts.

We also state the classical result of Lyapunov; see [29, p.
405] or [30, p. 224].

Theorem 3: A matrix is stable iff for any pos-
itive–definite symmetric matrix , there exists a posi-
tive–definite symmetric matrix such that

(70)

The following simple theorem on vector norms can be found
in [31, p. 352–354].

Theorem 4: If is an symmetric positive–definite
matrix, then is a norm on .

For any matrix , we will use and to denote
the smallest and largest eigenvalues of. The relationship
between the norm and the Euclidean norm is clarified by
use of the following result, known as the Rayleigh quotient
[32, p. 349].

Theorem 5: For any vector and symmetric matrix

(71)

In terms of the eigenvalues of the symmetric positive–definite
matrix , the Rayleigh quotient states that

and

(72)

We combine (72) and the Rayleigh quotient in the following
useful results.

Lemma 6: For any symmetric positive–definite matrix
and symmetric matrix

(73)

Corollary 1: For any matrix and vector

(74)

APPENDIX B
ADDITIONAL PROOFS

Proof:
Lemma 2: From (72), for any realization of the random

variables, we have

(75)

Applying the expectation operator and taking the limit as
yields

(76)

By the hypothesis of the lemma,
and our desired result follows.

Proof:
Lemma 3: Using and to denote the eigenvalues of

and , respectively, we note that . If the
deterministic power control problem is feasible, Theorem 1
and Lemma 1 imply . Hence, and the
result follows.

Proof:
Lemma 5: We observe that iff .

As a convenience, we express our conditioning as .
First, we prove the upper bound in Lemma 5. Sinceis
symmetric positive–definite,
for all realizations of the random vector . Therefore, we
have

(77)

From (33), so that applying
Corollary 1 and taking the conditional expectation yields

(78)

In deriving (78) we note that the eigenvalues of diagonal
matrices and are equal to their diagonal elements.
Therefore, the largest eigenvalues of and are equal
to and where and are defined as

and . Combining the results
of (77) and (78) yields

(79)
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Using (18), can be expressed as

(80)

Thus, we need to evaluate the expectations
and for . This requires

the computation of cross correlations between terms.
Note from the definition of given in (4) that

(81)

Note also that

(82)

and for

(83)

First we will evaluate . From (15)

(84)

To find , we note that is as
given in (85), shown at the bottom of the page. To find
the expected value of , we note that the expected value
of is nonzero for ( ),
( ), ( ), and
( ). Therefore, using (81) and (82)

(86)

From (81) and the fact that

(87)

Since and are independent and have zero mean

(88)

And finally

(89)

We obtain by combining the results of
(86)–(89) and insert the result in (84) to get

(90)

(85)
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By similar manipulations, it can be shown that

(91)

and for

(92)

By using the result (92) we observe that
given in (80) simplifies to

(93)

Inserting (90) and (91) into (93) yields

(94)

Combining the second and the last terms in (94) yields

(95)

Now we will derive an upper bound for (95). First we will
include the terms corresponding to in the first double
summation on the right-hand side of (95). Since the included
terms are nonnegative, this process yields an upper bound and
the double sum becomes equal to .
In order to derive an upper bound for the last term in (95),
we note that for all
from the simple inequality and the fact that

. Upper bounding the coefficient of this
term with and combining this term with the first term,
we get . Since the third term
(single sum) in (95) is nonnegative, we can upper bound it by

changing its coefficient from to . Finally, we upper
bound with to get

(96)

Note that the expression in the parenthesis on the right-
hand side of (96) is equal to theth element of vector

. Inserting (96) into (79) yields

(97)

where . Let be a diagonal matrix
with its th diagonal element .
Then the last summation in (97) becomes equal to .
Note that is positive–definite since all . Then,
from Theorem 5 in Appendix A, we can conclude

, where is the largest eigenvalue of . Then
we can further bound (97) as

(98)

Note that for any two vectors and ,
. Applying this to the first term in (98), and noting that

, yields

(99)

Using Corollary 1 and denoting the largest eigenvalue of
as , we obtain

(100)

where . Note that
from the inequality

. Applying this and then (72) to (100) yields the desired
result

(101)

Now we prove the lower bound in Lemma 5. From (33)
and (72), we obtain

(102)

Applying Corollary 1 and noting that , we
have

(103)
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Taking the expectation conditioned on , or, equiva-
lently, , yields

(104)

We note from (95) that

(105)

since all of the remaining terms are nonnegative. Applying
this result to (104) and expressing our conditioning yields the
desired result

(106)
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