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Abstract—We consider a secure lossless source coding problem
with a rate-limited helper. In particular, Alice observes an inde-
pendent and identically distributed (i.i.d.) source and wishes
to transmit this source losslessly to Bob over a rate-limited link of
capacity not exceeding . A helper, say Helen, observes an i.i.d.
correlated source and can transmit information to Bob over
another link of capacity not exceeding . A passive eavesdropper
(say Eve) can observe the coded output of Alice, i.e., the link from
Alice to Bob is public. The uncertainty about the source at Eve
(denoted by ) is measured by the conditional entropy ,
where is the coded output of Alice and is the block length.
We completely characterize the rate-equivocation region for this
secure source coding model, where we show that Slepian–Wolf bin-
ning of with respect to the coded side information received
at Bob is optimal. We next consider a modification of this model
in which Alice also has access to the coded output of Helen. We
call this model as the two-sided helper model. For the two-sided
helper model, we characterize the rate-equivocation region. While
the availability of side information at Alice does not reduce the rate
of transmission from Alice, it significantly enhances the resulting
equivocation at Eve. In particular, the resulting equivocation for
the two-sided helper case is shown to be , i.e., one
bit from the two-sided helper provides one bit of uncertainty at
Eve. From this result, we infer that Slepian–Wolf binning of is
suboptimal and one can further decrease the information leakage
to the eavesdropper by utilizing the side information at Alice. We,
finally, generalize both of these results to the case in which there
is additional uncoded side information available at Bob and
characterize the rate-equivocation regions under the assumption
that forms a Markov chain.

Index Terms—Equivocation, helper problem, lossless source
coding.

I. INTRODUCTION

T HE study of information-theoretic secrecy was initiated
by Shannon in [1]. Following Shannon’s work, significant

contributions were made byWyner [2] who established the rate-
equivocation region of a degraded broadcast channel. Wyner’s
result was generalized to the case of a general broadcast channel
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Fig. 1. One-sided helper.

by Csiszar and Korner [3]. Recently, there has been a resurgence
of activity in studyingmultiterminal and vector extensions of [2]
and [3].
In this paper, we investigate a secure transmission problem

from a source coding perspective. In particular, we first con-
sider a simple setup consisting of four terminals. Terminal 1 (say
Alice) observes an i.i.d. source which it intends to transmit
losslessly to terminal 2 (say Bob). A malicious but passive user
(say Eve) can observe the coded output of Alice. In other words,
the communication link between Alice and Bob is public (or in-
secure). It is clear that since the malicious user gets the same
information as the legitimate user, there cannot be any positive
secret rate of transmission, i.e., some information about will
be leaked to Eve. On the other hand, if there is a helper, say
Helen, who observes an i.i.d. source which is correlated with
the source and transmits information over a secure rate-lim-
ited link to Bob, then one can aim for creating uncertainty at
the eavesdropper (see Fig. 11). For the model shown in Fig. 1,
we completely characterize the rate-equivocation region. From
our result, we observe that the classical achievability scheme of
Ahlswede and Korner [4] and Wyner [5] for source coding with
rate-limited side information is robust in the presence of a pas-
sive eavesdropper. By robust, we mean that in the presence of a
passive adversary, there is no need to change the original scheme
as it achieves the maximum possible equivocation at Eve.
Next, we consider the model where Alice also has access

to the coded output of Helen and completely characterize the
rate-equivocation region. We will call this model the two-sided
helper model (see Fig. 2). From our result, we observe that the
availability of additional coded side information at Alice allows
her to increase uncertainty of the source at Eve even though the
rate needed by Alice to transmit the source losslessly to Bob re-
mains the same. This observation is in contrast with the case of
insecure source coding with side information where providing
coded side information to Alice is of no value in terms of re-
ducing Alice’s transmission rate [4].
We finally extend these results to the case in which there is

additional uncoded correlated side information available

1In Figs. 1 and 2, secure links are shown by bold lines.
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Fig. 2. Two-sided helper.

to Bob. We completely characterize the rate-equivocation re-
gion for this model when forms a Markov
chain. We explicitly compute the rate-equivocation region for
the cases of one-sided helper and two-sided helper for a pair
of binary symmetric sources. We show that having access to
Helen’s coded output at Alice yields a strictly larger equivoca-
tion than the case of one-sided helper.
Related Work: The secure source coding setup shown in

Fig. 1 was considered in [6] where it was also assumed that
Eve has access to additional correlated side information .
Inner and outer bounds for the rate-equivocation region were
provided for this setup, which do not match in general. The
rate-equivocation region was completely characterized in [6]
for the case when Bob has complete uncoded side informa-
tion and Eve has additional side information . This
result also follows from [7] where a similar three terminal
setup was studied and the maximum uncertainty at Eve was
characterized under the assumption of no rate constraint in the
lossless transmission of the source to Bob. A similar model
was also studied in [8] where Bob intends to reconstruct both

and losslessly. It was shown that Slepian–Wolf binning
suffices for characterizing the rate-equivocation region when
the eavesdropper does not have additional correlated side infor-
mation. This setup was generalized in [9] to the case when the
eavesdropper has additional side information , and inner and
outer bounds were provided, which do not match in general.
In [10], a multireceiver secure broadcasting problem was

studied, where Alice intends to transmit a source to
legitimate users. The th user has access to a correlated source
, where , for , and the eaves-

dropper has access to , where , and the
noise sequences are mutually independent
and also independent of the source . Furthermore, it was
assumed that Alice also has access to . For sources
with such modulo-additive structure, it was shown that to
maximize the uncertainty at the eavesdropper, Alice cannot do
any better than describing the error sequences
to the legitimate users. This model is related to the two-sided
helper model shown in Fig. 2; see Section II-B for details.
Extensions of the lossless secure source coding problems to the
case of lossy secure source coding settings have been recently
investigated in [15] and [16].
Summary of Main Results: In Section II-A, we present the

rate-equivocation region for the case of one-sided helper. We
show that Slepian–Wolf binning alone at Alice is optimal for
this case. We present the rate-equivocation region for the case

of two-sided helper in Section II-B. For the case of two-sided
helper, Alice utilizes the coded-side information received from
Helen as follows: she can narrow down the set of uncertainty
about -sequences at Bob given the output received from
Helen. She only sends the residual information necessary to de-
code at Bob. We show that the resulting equivocation of
this scheme is , i.e., one secure (two-sided) bit
from Helen results in one bit of equivocation at Eve. From this
result, we demonstrate the insufficiency of Slepian–Wolf bin-
ning at Alice by explicitly utilizing the side information at Alice.
This observation is further highlighted in Section III where we
compare the rate-equivocation regions of two-sided helper and
one-sided helper cases for a pair of binary symmetric sources.
For this example, we show that for all , the information
leakage to the eavesdropper for the two-sided helper is strictly
less than the case of one-sided helper. We finally generalize
these results to the case when there is additional side informa-
tion at Bob. For the case in which , we
characterize the tradeoff of rates and equivocation. For the case
of two-sided helper, the optimal resulting equivocation at Eve is

, i.e., the net equivocation resulting
from coded and uncoded side information is additive in nature.
By additive, we mean the following: suppose that was not
present, then the equivocation would be from
our result of two-sided helper. On the other hand, if ,
then we know from [7] that the optimal equivocation is given
by . Thus, in the presence of both uncoded and coded
side-information, the net equivocation is till it
saturates to . Parts of this paper have been presented in
[11].

II. MAIN RESULTS

A. One-Sided Helper

We consider the following source coding problem. Alice ob-
serves an -length source sequence , which is intended to be
transmitted losslessly to Bob. The coded output of Alice can be
observed by the malicious user Eve. Moreover, Helen observes
a correlated source and there exists a noiseless rate-limited
channel from Helen to Bob. We assume that the link from Helen
to Bob is a secure link and the coded output of Helen is not ob-
served by Eve (see Fig. 1). The sources are generated
i.i.d. according to , where is defined over the fi-
nite product alphabet . The aim of Alice is to create max-
imum uncertainty at Eve regarding the source while loss-
lessly transmitting the source to Bob.
An code for this model consists of an

encoding function at Alice, , an en-
coding function at Helen, , and a de-
coding function at Bob,
. The uncertainty about the source at Eve is

measured by . The probability of
error in the reconstruction of at Bob is defined as

. A triple is
achievable if for any , there exists a code
such that and . We denote the
set of all achievable rate triples as 1-sided.
The main result is given in the following theorem.
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Theorem 1: The set of achievable rate triples sided for
secure source coding with one-sided helper is given as

1-sided (1)

(2)

(3)

where the joint distribution of the involved random variables is
as follows:

(4)

and it suffices to consider such distributions for which
.

The proof of Theorem 1 is given in the Appendix.
We note that inner and outer bounds for source coding model

considered in this section were presented in [6, Th. 3.1] al-
though these bounds do not match in general. These bounds
match when Bob has complete uncoded side information ,
i.e., when .
The achievability scheme which yields the rate region de-

scribed in Theorem 1 is summarized as follows.
1) Helen describes the source to Bob through a coded
output .

2) Alice performs Slepian–Wolf binning of the source
with respect to the coded side information, , available
at Bob.

Therefore, this result shows that the achievable scheme of
Ahlswede and Korner [4] and Wyner [5] is optimal in the
presence of an eavesdropper. Moreover, upon dropping the
security constraint, Theorem 1 yields the result of [4] and [5].

B. Two-Sided Helper

We next consider the following modification of the
model considered in Section II-A. In this model, Alice
also has access to the coded output of Helen besides the
source sequence (see Fig. 2). An code
for this model consists of an encoding function at Alice,

, an encoding
function at Helen, , and a decoding
function at Bob, .
The uncertainty about the source at Eve is mea-
sured by . The probability of error
in the reconstruction of at Bob is defined as

. A triple
is achievable if for any , there exists a
code such that and . We
denote the set of all achievable rate triples as

2-sided.
The main result is given in the following theorem.

Theorem 2: The set of achievable rate triples 2-sided for
secure source coding with two-sided helper is given as

2-sided (5)

(6)

(7)

where the joint distribution of the involved random variables is
as follows:

(8)

and it suffices to consider such distributions for which
.

The proof of Theorem 2 is given in the Appendix.
The achievability scheme which yields the rate region de-

scribed in Theorem 2 is summarized as follows.
1) Helen describes the source to both Bob and Alice
through a coded output .

2) Given the coded output , Alice can narrow down the set
of conditionally typical -sequences, which are approx-
imately . Furthermore, for sufficiently large,
the observed -sequence would belong to this set with
high probability. Alice sends the index of the observed se-
quence corresponding to the conditionally typical set for
the received coded output.

Therefore, the main difference between the achievability
schemes for Theorems 1 and 2 is at the encoding at Alice.
Our encoding scheme at Alice for the case of two-sided helper
comprises of the following key step: using the coded side
information and the source sequence, Alice narrows down
the uncertainty at Bob by considering the set of typical -se-
quences given the coded output from Helen. She then transmits
the index to which the observed -sequence falls in this set.
The key observation is that the helper’s output is two-sided and
secure (i.e., only available at Alice and Bob), and Eve only gets
to observe the index of the sequence sent by Alice. Without
any knowledge of the -sequence, from Eve’s point of view,
the correct -sequence could have resulted from any of the

conditionally typical sets, each corresponding to the total
number of -sequences, and thus, the resulting equivocation
at Eve is .

Remark 1: Besides reflecting the fact that the uncertainty at
Eve can be strictly larger than the case of a one-sided helper,
Theorem 2 has another interesting interpretation. If Alice and
Helen can use sufficiently large rates to securely transmit the
source to Bob, then the helper can simply transmit a secret
key of entropy to both Alice and Bob. Alice can then use
this secret key to losslessly transmit the source to Bob in per-
fect secrecy by using a one-time pad [1]. In other words, when

and are larger than , one can immediately obtain
this result from Theorem 2 by selecting to be independent of

and uniformly distributed on . Perhaps the
most interesting aspect of the result in Theorem 2 is that for an
arbitrary , the two-sided coded output plays the dual role of
providing security and reducing rate of transmission fromAlice.

Remark 2: Now consider the model where the side informa-
tion is of the form , where , and

is independent of . Moreover, assume that the side in-
formation is available to both Alice and Bob in an uncoded
manner. For this model, it follows from [10] that, to maximize
the uncertainty at the eavesdropper, Alice cannot do any better
than describing the error sequence to Bob. Note that our
two-sided helper model differs from this model in two aspects:
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first, in our case, the common side information available to Alice
and Bob is coded and rate-limited, second, the sources in our
model do not have to be in modulo-additive form.

C. Additional Uncoded Side Information at Bob

We next present extensions of Theorems 1 and 2 to the case in
which Bob has additional correlated side information , and
we assume that forms a Markov chain.

Theorem 3: The set of achievable rate triples 1-sided for
secure source codingwith one-sided helper and side information
at Bob is given as

1-sided (9)

(10)

(11)

where the joint distribution of the involved random variables is
as follows:

(12)

and it suffices to consider such distributions for which
.

Theorem 4: The set of achievable rate triples 2-sided for
secure source coding with two-sided helper and side informa-
tion at Bob is given as

2-sided (13)

(14)

(15)

where the joint distribution of the involved random variables is
as follows:

(16)

and it suffices to consider such distributions for which
.

The proofs of Theorems 3 and 4 are given in the Appendix.

III. EXAMPLE: BINARY SYMMETRIC SOURCES

In this section, we compare the rate-equivocation tradeoffs
presented in Theorems 1 and 2 for a pair of binary sources.
Let and be binary sources with ,

and , where . For this pair of
sources, the region described in Theorem 1 can be completely
characterized as

1-sided

(17)

and the region in Theorem 2 can be completely characterized as

2-sided
(18)

where is the binary entropy function, and
.

We start with the derivation of (17). Without loss of gener-
ality, we assume that . Achievability follows by
selecting , where , where

(19)

Substituting, we obtain

(20)

(21)

which completes the achievability. Note that is independent
of , and the random variables , , and form a Markov
chain, i.e., . Using this Markov chain, the con-
verse follows by simple application of Mrs. Gerber’s lemma
[12] as follows. Let us be given . We have

(22)

(23)

(24)

which implies . Mrs. Gerber’s lemma states
that for , with , if , then

. We, therefore, have

(25)

(26)

and
(27)

(28)

(29)

(30)

This completes the converse.
The rate from Alice, and the equivocation for the cases

of one-sided and two-sided helper are shown in Fig. 3 for the
case when . For the one-sided helper, we can ob-
serve a tradeoff in the amount of information Alice needs to
send versus the uncertainty at Eve. For small values of ,
Alice needs to send more information thereby leaking out more
information to Eve. The amount of information leaked (i.e.,

) has a one to one relationship to the
information sent by Alice. On the other hand, for the case of
two-sided helper, the uncertainty at the eavesdropper is always
strictly larger than the uncertainty in the one-sided case. Also
note that for this pair of sources, perfect secrecy is possible for
the case of two-sided helper when which is not
possible for the case of one-sided helper.

IV. CONCLUSION

In this paper, we considered several secure source coding
problems. We first provided the characterization of the rate-
equivocation region for a secure source coding problem with
coded side information at the legitimate user. We next extended
this result to the case in which the helper is two-sided, i.e., its
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Fig. 3. Rate-equivocation region for a pair of binary symmetric sources.

output is available at both Alice and Bob. We characterized
the rate-equivocation region for the case of two-sided helper.
The value of two-sided coded side information is emphasized
by comparing the respective equivocations for a pair of binary
sources. It is shown that Slepian–Wolf binning alone is insuf-
ficient and using our achievable scheme, one attains strictly
larger uncertainty at the eavesdropper than the case of one-
sided helper. Finally, these results are extended to the case in
which Bob has access to additional uncoded side information
. Under the assumption that forms a Markov

chain, the rate-equivocation tradeoffs have been characterized
for both one-sided and two-sided scenarios.

APPENDIX

Proof of Theorem 1:
A) Achievability: Fix the distribution

.
1) Codebook generation at Helen: From the con-
ditional probability distribution compute

. Generate codewords
independently according to , where

.
2) Codebook generation at Alice: Randomly bin the se-
quences into bins and index these bins as

, where .
3) Encoding at Helen: On observing the sequence , Helen
tries to find a sequence such that are jointly
typical. From rate-distortion theory, we know that there
exists one such sequence as long as . Helen
sends the index of the sequence .

4) Encoding at Alice: On observing the sequence , Alice
finds the bin index in which the sequence falls and
transmits the bin index .

5) Decoding at Bob: On receiving and the bin index
, Bob tries to find a unique sequence in bin

such that are jointly typical. This is possible
since the number of sequences in each bin is roughly

which is . The existence of an
such that are jointly typical is guaranteed by

the Markov lemma [13] and the uniqueness is guaranteed
by the properties of jointly typical sequences [13].

6) Equivocation:

(31)

(32)

(33)

(34)

(35)

(36)

Therefore

(37)

is achievable. This completes the achievability part.
B) Converse: Let the output of the helper be , and the

output of Alice be , i.e.,

(38)

(39)

First note that, for noiseless reconstruction of the sequence
at the legitimate decoder, we have by Fano’s inequality

(40)

We start by obtaining a lower bound on , the rate of Alice,
as follows:

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

where (44) follows by (40). In (47), we have defined

(50)

In (49), we have defined

(51)

where is uniformly distributed on and is indepen-
dent of all other random variables.
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Next, we obtain a lower bound on , the rate of the helper,

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

where (55) follows from the Markov chain

(60)

and in (59), we have defined .
We now have the main step, i.e., an upper bound on the equiv-

ocation rate of the eavesdropper

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)

(69)

(70)

where (63) follows from the Markov chain

(71)

and (65) follows from (40). This implies

(72)

Also note that the following is a Markov chain:

(73)

Therefore, the joint distribution of the involved random vari-
ables is

(74)

From support lemma [14], it can be shown that it suffices to
consider such joint distributions for which .
In (50), we have defined the auxiliary random variable as

. We remark here that the converse for The-
orem 1 can also be proved by defining, as
in [13, Sec. 14.8]. Note that due to the fact that the sources

are generated in an i.i.d. manner, the following is a
Markov chain:

(75)

This is due to the fact that does not carry any extra informa-
tion about that is not there in .
Therefore, (75) implies that the following are also valid Markov
chains:

(76)

(77)

and the converse for Theorem 1 can be proved by defining
or .

Proof of Theorem 2:
A) Achievability: Fix the distribution

.
1) Codebook generation at Helen: From the con-
ditional probability distribution compute

. Generate codewords
independently according to , where

.
2) Encoding at Helen: On observing the sequence , Helen
tries to find a sequence such that are jointly
typical. If there exists such a sequence , it sends the
index to Alice and Bob; otherwise, it sends a fixed index

.
3) Encoding at Alice: The key difference from the one-sided
helper case is in the encoding at Alice. Let denote
the event that the encoding at Helen succeeds, i.e., there
exists at least one such that . The prob-
ability of this event can be made arbitrarily close to 1, for
sufficiently large as long as . If ,

Alice receives the index of the sequence , otherwise
it receives the fixed index .
Conditioned on the event , we note the following:
a) , for ,
i.e., any of the indices are approximately equally
likely2 to be sent given for sufficiently
large.

b) For each possible sequence received from Helen,
and given that , we denote the set
of conditional typical -sequences given as

, for .
c) From Markov lemma, we have that

, where as
, i.e., the observed sequence at Alice will

2Formally, by the notation , we refer to the following:
, for some sequence such that

as .
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belong to the conditional typical set with high
probability.

d) For sufficiently large, we have

. Enumerate the sequences as
.

e) The set of -sequences belonging to
are approximately uniformly distributed, i.e.,

.
f) For any , the sets and are dis-
joint, i.e., , where as

.
On observing the sequence and obtaining from
Helen, Alice sends the index corresponding to the condi-
tionally typical set .

4) Decoding at Bob: On receiving the pair from
Alice and Helen, Bob declares its estimate of as the
th -sequence belonging to the set . For suf-
ficiently large, decoding at Bob will succeed with high
probability.

5) Equivocation:

(78)

(79)

(80)

Next, we note that given and , can take
values, i.e., there are a total of -sequences,

each corresponding to the th sequence in the (approxi-
mately) disjoint sets , for , and each
equally likely. Therefore, we have

. Using this, we next lower bound
each of the conditional entropy terms appearing in the sum-
mation of (80) as follows:

(81)

(82)

(83)

(84)

Substituting (84) into (80), we obtain

(85)

(86)

(87)

Normalizing (87) by and taking the limit , we
obtain

(88)

(89)

B) Converse: The only difference in the converse part for
the case of two-sided helper is for the equivocation at the eaves-
dropper:

(90)

(91)

(92)

(93)

(94)

where (92) follows from Fano’s inequality. Furthermore, we
have the trivial upper bound .
This implies the desired bound for equivocation:

(95)

Proofs of Theorems 3 and 4:
A) Converse Proofs: The proofs for lower bounds on

and for both Theorems 3 and 4 are the same and we present
these jointly. Later in this section, we present separate proofs
for equivocation for each of the theorems.
Let the coded output of the helper be denoted as , and the

output of Alice be denoted as , i.e.,

(96)

First note that, for noiseless reconstruction of the sequence
at Bob, we have by Fano’s inequality

(97)
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We start by obtaining a lower bound on , the rate of Alice, as
follows:

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

where (101) follows by (97) and (104) follows from the fol-
lowing Markov chain:

(108)

and in (106), we have defined

(109)

We next obtain a lower bound on :

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

where in (115) and (116), we have used the Markov chain

(119)

which follows from the fact that the sources
are generated i.i.d., and is a function of .
1) Equivocation: one-sided helper
We have the following sequence of upper bounds on the
equivocation rate of the eavesdropper:

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

(129)

(130)

(131)

2) Equivocation: two-sided helper
We have the following sequence of upper bounds on the
equivocation rate of the eavesdropper:

(132)

(133)

(134)

(135)

(136)

(137)

where (134) follows from (97), and (135) follows from the
fact that , and hence ,
since is a function of .
Furthermore, we have the trivial upper bound

. This implies the
desired bound for equivocation:

(138)

B) Achievability:
1) Achievability for two-sided Helper
The achievability proof for Theorem 4 closely follows that
of Theorem 2.
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1) Encoding at Helen: As in the proof for Theorem 2,
Helen generates i.i.d. sequences, from
the distribution . Next, she independently bins
these sequences in bins; and enumer-
ates these bin indices as .
Upon observing , she searches for a such that

are joint typical. If successful, it trans-
mits the bin-index of the chosen -sequence. The
number of sequences in each bin is approximately

and thus upon receiving the bin-index
from Helen, Bob can correctly decode the

-sequence (using joint typical decoding). Also, since
, we have , and

hence Alice can also correctly decode the -sequence.
As in the previous section, we denote as
the event that Helen’s encoding is successful, the
probability of which can be made arbitrarily close
to 1 by making sufficiently large and by choosing

.
2) Encoding at Alice: Given that , a random

sequence will belong to the conditional typ-
ical set , where is the -sequence that
Alice decodes upon receiving the bin-index .
Alice further bins the set of -sequences belonging
to into bins and denotes these

as , so that the number of
-sequences in each bin is approximately .
Alice sends the bin-index in which the observed
-sequence falls corresponding to the conditionally

typical set . The total rate required by Alice is
therefore .

3) Decoding at Bob: Upon receiving from
Helen and from Alice, Bob first decodes
by searching for a unique such that
are joint typical. The probability of decoding error in
estimating at Bob goes to 0 as since the
number of sequences in each bin is approximately

. Bob then looks in the th bin in the
set ; and searches for a unique in this set such
that are joint typical. This step will lead
to a successful decoding at Bob since the number
of -sequences in each such bin is approximately

.
4) Equivocation: As in the proof for Theorem 2, we
follow the same sequence of lower bounds to arrive at

(139)

We next note that conditioned on the event
, and given , there are a total

of sequences in each of the bins;
and each bin could have resulted from any of the

-sequences. Thus, there are a total of

equally
likely -sequences conditioned on and

. We therefore have
. Using this, we can

bound

(140)

Upon substituting (140) into (139), and letting
, we obtain at the resulting equivocation

of this scheme as

(141)

(142)

2) Achievability for one-sided Helper.
Encoding at Helen remains the same as the two-sided
helper case, i.e., Helen quantizes to and per-
forms binning with respect to . The encoding at
Alice is to independently and uniformly bin the set of
-sequences in bins and it sends the bin

index . The only difference is in the equivoca-
tion proof:

(143)

(144)

(145)

(146)

(147)

(148)

where in (145), we used the fact that is a de-
terministic function of . We, therefore, have

(149)
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