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Secure Lossy Transmission of Vector
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Abstract—We study the secure lossy transmission of a vector
Gaussian source to a legitimate user in the presence of an eaves-
dropper, where both the legitimate user and the eavesdropper have
vector Gaussian side information. The aim of the transmitter is to
describe the source to the legitimate user in a way that the legit-
imate user can reconstruct the source within a certain distortion
level while the eavesdropper is kept ignorant of the source as much
as possible as measured by the equivocation. We obtain an outer
bound for the rate, equivocation and distortion region of this se-
cure lossy transmission problem. This outer bound is tight when
the transmission rate constraint is removed. In other words, we
obtain the maximum equivocation at the eavesdropper when the
legitimate user needs to reconstruct the source within a fixed dis-
tortion level while there is no constraint on the transmission rate.
This characterization of the maximum equivocation involves two
auxiliary random variables. We show that a nontrivial selection
for both random variables may be necessary in general. The ne-
cessity of two auxiliary random variables also implies that, in gen-
eral, Wyner–Ziv coding is suboptimal in the presence of an eaves-
dropper. In addition, we show that, even when there is no rate con-
straint on the legitimate link, uncoded transmission (deterministic
or stochastic) is suboptimal; the presence of an eavesdropper ne-
cessitates the use of a coded scheme to attain the maximum equiv-
ocation.

Index Terms—Secure lossy source coding, vector Gaussian
source, Wyner–Ziv coding.

I. INTRODUCTION

I NFORMATION theoretic secrecywas initiated byWyner in
[1], where he studied the secure lossless transmission of a

source over a degraded wiretap channel, and obtained the neces-
sary and sufficient conditions. Later, his result was generalized
to arbitrary, i.e., not necessarily degraded, wiretap channels in
[2]. In recent years, information theoretic secrecy has gathered a
renewed interest, wheremostly channel coding aspects of secure
transmission is considered, in other words, secure transmission
of uniformly distributed messages is studied.
Secure source coding problem has been studied for both loss-

less and lossy reconstruction cases in [3]–[16]. Secure lossless
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source coding problem is studied in [3]–[9]. The common theme
of these works is that the legitimate receiver wants to reconstruct
the source in a lossless fashion by using the information it gets
from the transmitter in conjunction with its side information,
while the eavesdropper is being kept ignorant of the source as
much as possible. Secure lossy source coding problem is studied
in [10]–[16]. In these works, unlike the ones focusing on secure
lossless source coding, the legitimate receiver does not want to
reconstruct the source in a lossless fashion, but within a distor-
tion level.
The most relevant works to our work here are [15], [16].

In [15], the author considers the secure lossy transmission of
a source over a degraded wiretap channel while both the le-
gitimate receiver and the eavesdropper have side information
about the source. In [15], in addition to the degradedness that
the wiretap channel exhibits, the source and side information
also have a degradedness structure such that given the legiti-
mate user’s side information, the source and the eavesdropper’s
side information are independent. For this setting, in [15], a
single-letter characterization of the distortion and equivocation
region is provided. In particular, the optimality of a separation-
based approach, i.e., the optimality of a code that concatenates
a rate-distortion code and a wiretap channel code, is shown. In
[16], the setting of [15] is partially generalized such that in [16],
the source and side information do not have any degradedness
structure. On the other hand, as opposed to the noisy wiretap
channel of [15], in [16], the channel between the transmitter and
receivers is assumed to be noiseless. For this setting, in [16], a
single-letter characterization of the rate, equivocation, and dis-
tortion region is provided.
Here, we consider the setting of [16] for jointly Gaussian

source and side information. In particular, we consider the
model where the transmitter has a vector Gaussian source
which is jointly Gaussian with the vector Gaussian side infor-
mation of both the legitimate receiver and the eavesdropper. In
this model, the transmitter wants to convey information to the
legitimate user in a way that the legitimate user can reconstruct
the source within a distortion level while the eavesdropper
is being kept ignorant of the source as much as possible as
measured by the equivocation. A single-letter characterization
of the rate, equivocation, and distortion region for this setting
exists due to [16]. Although we are unable to evaluate this
single-letter characterization for the vector Gaussian source
and side information case to obtain the corresponding rate,
equivocation, distortion region explicitly, we obtain an outer
bound for this region. We obtain this outer bound by optimizing
the rate and equivocation constraints separately. We note that a
joint optimization of the rate and equivocation constraints for
a fixed distortion level would yield the exact achievable rate
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Fig. 1. Secure lossy source coding with side information.

and equivocation region for this fixed distortion level. Thus,
optimizing the rate and equivocation constraints separately
yields a larger region, i.e., an outer bound. We show that this
outer bound is tight when we remove the rate constraint at the
transmitter. In other words, we obtain the maximum achievable
equivocation at the eavesdropper when the legitimate user
needs to reconstruct the vector Gaussian source within a fixed
distortion while there is no constraint on the transmission rate.
We note some implications of this result. First, we note that

since there is no rate constraint on the transmitter, it can use an
uncoded scheme to describe the source to the legitimate user,
and, indeed, it can use any instantaneous (deterministic or sto-
chastic) encoding scheme for this purpose. However, we show
through an example that even when there is no rate constraint
on the transmitter, to attain the maximum equivocation at the
eavesdropper, in general, the transmitter needs to use a coded
scheme. Hence, the presence of an eavesdropper necessitates the
use of a coded scheme even in the absence of a rate constraint
on the transmitter. Second, we note that the maximum equivo-
cation expression has two different covariance matrices origi-
nating from the presence of two auxiliary random variables in
the single-letter expression. We show through another example
that both of these covariance matrices, in other words, both of
these two auxiliary random variables, are needed in general to
attain the maximum equivocation at the eavesdropper. The ne-
cessity of two covariance matrices, and hence two auxiliary
random variables, implies that, in general, Wyner–Ziv coding
scheme [17] is not sufficient to attain the maximum equivoca-
tion at the eavesdropper.

II. SECURE LOSSY SOURCE CODING

Here, we describe the secure lossy source coding problem
(see Fig. 1) and state the existing results. Let
denote i.i.d. tuples drawn from a distribution . The
transmitter, the legitimate user, and the eavesdropper observe

and , respectively. The trans-
mitter wants to convey information to the legitimate user in
a way that the legitimate user can reconstruct the source
within a certain distortion, and meanwhile the eavesdropper is
kept ignorant of the source as much as possible as measured
by the equivocation. We note that if there was no eavesdropper,
this setting would reduce to the Wyner–Ziv problem [17], for
which a single-letter characterization for the minimum trans-
mission rate of the transmitter for each distortion level exists.

The distortion of the reconstructed sequence at the legitimate
user is measured by the function where
denotes the legitimate user’s reconstruction of the source .
We consider the function that has the following
form:

(1)

where is a nonnegative finite-valued function. The con-
fusion of the eavesdropper is measured by the following equiv-
ocation term:

(2)

where , which is a function of the source , denotes
the signal sent by the transmitter.
An code for secure lossy source coding consists of

an encoding function at the
transmitter and a decoding function at the legitimate user

. A rate, equivocation, and distortion tuple
is achievable if there exists an code satisfying

(3)

(4)

The set of all achievable tuples is denoted by
which is given by the following theorem.
Theorem 1 ([16, Theorem 1]): iff

(5)

(6)

(7)

for some satisfying the following Markov chain:

(8)

and a function .
The achievable scheme that attains the region has the

same spirit as the Wyner–Ziv scheme [17] in the sense that
both achievable schemes use binning to exploit the side infor-
mation at the legitimate user, and consequently, to reduce the
rate requirement. The difference of the achievable scheme that
attains comes from the additional binning necessitated by
the presence of an eavesdropper. In particular, the transmitter
generates sequences and bins both sequences. The
transmitter sends these two bin indices. Using these bin indices,
the legitimate user identifies the right sequences, and
reconstructs within the required distortion. On the other
hand, using the bin indices of , the eavesdropper iden-
tifies only the right sequence, and consequently, does not
contribute to the equivocation, see (6)1. Indeed, this achievable
scheme can be viewed as if it is using a rate-splitting technique
to send the message , since has two coordinates, one for

1The fact that the eavesdropper can decode sequence can be obtained by
observing that for a selection, if , there is no loss
of optimality of setting which will yield a larger region.
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the bin index of , and one for the bin index of . This per-
spective reveals the similarity of the achievable scheme that at-
tains and the one that attains the capacity-equivocation re-
gion of the wiretap channel [2] where also rate-splitting is used.
In particular, in the latter case, the message is divided into
two parts such that is sent by the sequence
and is sent by the sequence . The eavesdropper decodes

whereas the other message contributes to the secrecy.
We note that Theorem 1 holds for continuous

by replacing the discrete entropy term with the dif-
ferential entropy term . To avoid the negative equivo-
cation that might arise because of the use of differential entropy,
we replace equivocation with the mutual information leakage to
the eavesdropper defined by

(9)

Once we are interested in the mutual information leakage to the
eavesdropper, a rate, mutual information leakage, and distortion

tuple is said to be achievable if there exists an
code such that

(10)

(11)

The set of all achievable tuples is denoted by .
Using Theorem 1, the region can be stated as follows.
Theorem 2 ([16]): iff

(12)

(13)

(14)

for some satisfying the following Markov chain:

(15)

and a function .

III. VECTOR GAUSSIAN SOURCES

Now we study the secure lossy source coding problem for
jointly Gaussian (see Fig. 2) where the tuples

are independent across time, i.e., across the
index , and each tuple is drawn from the same jointly Gaussian
distribution . In other words, we consider the case
where is a zero-mean Gaussian random vector with covari-
ance matrix 2 and the side information at the legitimate
user and the eavesdropper are jointly Gaussian with the
source . In particular, we assume that have the fol-
lowing form:

(16)

(17)

2 means that the difference between the matrices and , i.e.,
, is strictly positive definite; and means that the difference

between the matrices and , i.e., , is positive semidefinite.

Fig. 2. Secure lossy source coding with side information for jointly Gaussian
source and side information.

where and are independent zero-mean Gaussian
random vectors with covariance matrices and ,
respectively, and and are independent. We
note that the side information given by (16)–(17) are not in the
most general form. In the most general case, we have

(18)

(19)

for some matrices. However, until Section V, we con-
sider the form of side information given by (16)–(17), and ob-
tain our results for this model. In Section V, we generalize our
results to the most general case given by (18)–(19). We note that
since the rate, information leakage, and distortion region is in-
variant with respect to the correlation between and ,
the correlation between and is immaterial.
The distortion of the reconstructed sequence is mea-

sured by the mean square error matrix

(20)

Hence, the distortion constraint is represented by a positive
semidefinite matrix , which is achievable if there is an
code such that

(21)

Throughout the paper, we assume that where
is the conditional covariance matrix of conditioned on

:

(22)

Since the mean square error is minimized by the minimummean
square error (MMSE) estimator which is given by the condi-
tional mean, we assume that the legitimate user applies this op-
timal estimator, i.e., the legitimate user selects its reconstruction
function as

(23)
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Once the estimator of the legitimate user is set as (23), using
Theorem 2, a single-letter description of the region for a
vector Gaussian source can be given as follows.
Theorem 3: iff

(24)

(25)

(26)

for some satisfying the following Markov chain:

(27)

We also define the region as the union of the
pairs that are achievable when the distortion constraint matrix is
set to . Our main result is an outer bound for the region ,
hence for the region .
Theorem 4: When , we have

(28)

where is given by the union of that satisfy

(29)

(30)

and .
We will prove Theorem 4 in Section IV. In the remainder of

this section, we provide interpretations and discuss some impli-
cations of Theorem 4.
The outer bound in Theorem 4 is obtained by minimizing the

constraints on and individually, i.e., the rate lower bound
in (29) is obtained by minimizing the rate constraint in (24)
and the mutual information leakage lower bound in (30) is ob-
tained by minimizing the mutual information leakage constraint
in (25) separately. However, to characterize the rate and mutual
information leakage region , one needs to minimize the
rate constraint in (24) and the mutual leakage information con-
straint in (25) jointly, not separately. In particular, since the re-
gion is convex in the pairs as per a time-sharing
argument, joint optimization of the rate constraint in (24) and
the mutual information leakage constraint in (25) can be carried
out by considering the tangent lines to the region , i.e., by
solving the following optimization problem:

(31)

(32)

for all values of , where . As of
now, we have been unable to solve the optimization problem

for all values of . However, as stated in
Theorem 4, we solve the optimization problems
and by showing the optimality of jointly Gaussian

to evaluate the corresponding cost functions. In other
words, our outer bound in Theorem 4 can be written as follows:

(33)

(34)

We note that the constraint in (29), and hence , gives
us the Wyner–Ziv rate distortion function [17] for the vector
Gaussian sources. Moreover, we note that gives us
the minimum mutual information leakage to the eavesdropper
when the legitimate user wants to reconstruct the source within
a fixed distortion constraint while there is no concern on the
transmission rate . Denoting the minimum mutual informa-
tion leakage to the eavesdropper when the legitimate user needs
to reconstruct the source within a fixed distortion constraint
by , the corresponding result can be stated as follows.
Theorem 5: When , we have

(35)

where .
Theorem 5 implies that if the transmitter’s aim is to minimize

the mutual information leakage to the eavesdropper without
concerning itself with the rate it costs as long as the legitimate
receiver is able to reconstruct the source within a distortion
constraint , the use of jointly Gaussian is optimal.
Since in Theorem 5, there is no rate constraint, one natural
question to ask is whether can be achieved by an
uncoded transmission scheme. Now, we address this question
in a broader context by letting the encoder use any instanta-
neous encoding function in the form of where
can be a deterministic or a stochastic mapping. When is
chosen to be stochastic, we assume it to be independent across
time. We note that the uncoded transmission can be obtained
from instantaneous encoding by selecting to be a linear
function. Similarly, uncoded transmission with artificial noise
can be obtained from instantaneous encoding by selecting

, where denotes the noise. Hence, if the en-
coder uses an instantaneous encoding scheme, the transmitted
signal is given by . Let be
the minimum information leakage to the eavesdropper when
the legitimate user is able to reconstruct the source with a
distortion constraint while the encoder uses an instantaneous
encoding. The following example demonstrates that, in general,

cannot be achieved by instantaneous encoding.
Example 1: Consider the scalar case, where the side infor-

mation at the legitimate user and the eavesdropper are given as
follows:

(36)

(37)
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where , and are zero-mean Gaussian random
variables with variances , and , respectively.

, and are independent. We
assume that , which implies that we can assume

since the scalar model in (36)–(37) is statistically
degraded, or in other words, the correlation between and

does not affect the achievable region. Using
Theorem 3, for the scalar Gaussian channel under
consideration can be found as follows:

(38)

(39)

where in (39), we used the Markov chain
.

As shown in Appendix A, the information leakage to the
eavesdropper when the encoder uses an instantaneous mapping
is given by

(40)

(41)

where (41) is obtained by using the Markov chain
.
Using (39) and (41), we have

(42)

(43)

(44)

where (44) comes from the Markov chain . Next,
we note the following lemma.
Lemma 1: For jointly Gaussian satisfying the

Markov chain and , if ,
we have

(45)

The proof of Lemma 1 can be found in Appendix B. The proof
of Lemma 1 starts with the observation that (45) is zero iff we
have the Markov chain . On the other hand, since
we already have the Markov chain , and

and are not identical, we show in Appendix B that theMarkov
chain is possible iff and are independent.
However, if , any that is independent of is not
feasible. Hence, Lemma 1 follows. Lemma 1 implies that in
general, we have , i.e., cannot be
achieved by instantaneous encoding.
This example shows that an uncoded transmission is not op-

timal even when there is no rate constraint. This is due to the
presence of an eavesdropper; the presence of an eavesdropper
necessitates the use of a coded scheme.
Another question that Theorem 5 brings about is whether

the minimum in (35) is achieved by a nontrivial . By
a trivial selection for , we mean either
or . The former corresponds to the selection

and the latter corresponds to the selection . We
note that although (35) is monotonically decreasing in in
the positive semidefinite sense, (35) is neither monotonically in-
creasing nor monotonically decreasing in in the positive
semidefinite sense. Hence, due to this lack of monotonicity of
(35) in , in general, we expect that both and
may be necessary to attain the minimum in (35). The following
example demonstrates that in general and may
be necessary.
Example 2: Consider the Gaussian source

where and are independent. The side information at the
legitimate receiver and the eavesdropper are given by

(46)

(47)

where and are zero-mean Gaussian random variables
with variances and , respectively. Moreover, and

are independent, and also so are and . We as-
sume that noise variances satisfy

(48)

(49)

which, in view of the fact that correlation between the noise at
the legitimate receiver and the noise at the eavesdropper does
not affect the rate, distortion, and information leakage region,
lets us assume the following Markov chains:

(50)

(51)

Moreover, we assume that the distortion constraint is a diag-
onal matrix with diagonal entries and . In this case, the
minimum information leakage is given by

(52)

whose proof can be found in Appendix C. The minimum infor-
mation leakage in (52) corresponds the selections
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and , where and are indepen-
dent. This selection of corresponds to neither nor

.
Next, we obtain the minimum information leakage that arises

when we set either or , and show that the
minimum information leakage arising from these selections are
strictly larger than the minimum information leakage in (52),
which will imply the suboptimality of and .When
we set , the minimum information leakage is given by

(53)

whose proof is given in Appendix D. When we set , the
minimum information leakage is given by

(54)

whose proof can be found in Appendix D.
Now, we compare the minimum information leakage in (52)

with (53) and (54) to show that the selections and
are suboptimal in general. Using (52) and (53), we obtain

(55)

(56)

(57)

(58)

(59)

where (57)–(58) follow from the Markov chain:

(60)

and (59) comes from Lemma 1. Thus, in general, we have
, or in other words, in

general, is suboptimal.

Next, we consider the selection . Using (52) and (54),
we have

(61)

(62)

(63)

(64)

(65)

where (63)–(64) follow from the Markov chain

(66)

and (65) comes from Lemma 1. Thus, in general, we have
, or in other words, in

general, is suboptimal.
Example 2 shows that, in general, we might need two covari-

ance matrices, and hence two different auxiliary random vari-
ables, to attain the minimum information leakage. Indeed, if we
have either or , the corresponding achievable
scheme is identical to the Wyner–Ziv scheme [17]. Hence, the
necessity of two different auxiliary random variables implies
that, in general, Wyner–Ziv scheme [17] is suboptimal.

IV. PROOF OF THEOREM 4

We now provide the proof of Theorem 4. As mentioned in the
previous section, this outer bound is obtained by minimizing
the rate constraint in (24) and the mutual information leakage
constraint in (25) separately.We first consider the rate constraint
in (24) as follows:

(67)

(68)

(69)

(70)

(71)

where (70) comes from the fact that is maximized
by jointly Gaussian , and (71) comes from the mono-
tonicity of in positive semidefinite matrices. Now we intro-
duce the following lemma.
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Lemma 2:

(72)

The proof of Lemma 2 is given in Appendix E. Lemma 2 and
(71) imply (29).
Next, we consider the mutual information leakage constraint

in (25) as follows:

(73)

(74)

We note that the cost function of can be rewritten as
follows:

(75)

(76)

where (75) comes from the Markov chain and
(76) comes from the Markov chain . We note
that the first term in (76) is minimized by a jointly Gaussian

as we already showed in obtaining the lower bound for
the rate given by (29) above in (67)–(71). On the other hand,
the remaining term of (76) in the bracket is maximized by a
jointly Gaussian as shown in [18]. Thus, a tension be-
tween these two terms arises if is selected to be jointly
Gaussian. In spite of this tension, we will still show that a jointly
Gaussian is the minimizer of . Instead of di-
rectly showing this, we first characterize the minimum mutual
information leakage when is restricted to be jointly
Gaussian, and show that this cannot be attained by any other
distribution for . We note that any jointly Gaussian

can be written as

(77)

(78)

where are zero-mean Gaussian random vectors with
covariance matrices , respectively. Moreover,
are independent of but can be dependent on each other.
Before characterizing the minimummutual information leakage
when is restricted to be jointly Gaussian, we introduce
the following lemma.
Lemma 3: When and is Gaussian, we have

the following facts:
1) , i.e., is positive definite, and hence,
nonsingular.

2) We have the following equivalence:

(79)

The proof of Lemma 3 is given in Appendix F. Using
Lemma 3, the minimum mutual information leakage to the

eavesdropper when is restricted to be jointly Gaussian
can be written as follows:

(80)
We note that the minimization in (80) can be written as

a minimization of the cost function in (80) over all possible
matrices by expressing and in

terms of . Instead of considering this tedious
optimization problem, we consider the following one:

(81)

We note that due to the Markov chain , we al-
ways have . A proof of this fact is given in
Appendix G. Besides this inequality, and might
have further interdependencies which are not considered in the
optimization problem in (81). Since neglecting these further in-
terdependencies among and enlarges the feasible
set of the optimization problem in (80), we have, in general,

(82)

On the other hand, it can be shown that the value of can
be obtained by some jointly Gaussian satisfying the
Markov chain , as stated in the following lemma.
Lemma 4:

(83)

The proof of Lemma 4 is given in Appendix H.
Now we study the optimization problem in (81) in more

detail. Let and be the minimizers for the optimiza-
tion problem . They need to satisfy the following KKT con-
ditions.
Lemma 5: If and are the minimizers for the

optimization problem , they need to satisfy

(84)

(85)

(86)

(87)

(88)

for some positive semidefinite matrices .
The proof of Lemma 5 is given in Appendix I.
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Next, we use channel enhancement [19]. In particular, we en-
hance the legitimate user’s side information as follows:

(89)

This new covariance matrix has some useful properties
which are listed in the following lemma.
Lemma 6: We have the following facts.
1)
2)
3)

4)

5)

6) .
The proof of Lemma 6 is given in Appendix J. Using this new

covariance , we define the enhanced side information at the
legitimate user as follows:

(90)

where is a zero-mean Gaussian random vector with covari-
ance matrix . Since we have and as
stated in the second statement of Lemma 6, without loss of gen-
erality, we can assume that the following Markov chain exists:

(91)

Assuming that the Markov chain in (91) exists does not incur
any loss of generality because the rate, mutual information
leakage, and distortion region depends only on the condi-
tional marginal distributions but not on the
conditional joint distribution . Now, we define the
following optimization problem:

(92)
We note that we have due to the
Markov chain in (91), which leads to the following fact:

(93)

Moreover, unlike the original optimization problem in
(74), we can find theminimizer of the new optimization problem
explicitly, as stated in the following lemma.
Lemma 7:

(94)
We note that Lemma 7 implies that and a Gaussian
leading to is the minimizer of the optimization
problem . The proof of Lemma 7 is given in Appendix K.

Next, we show that indeed which, in view of
(93), will imply . To this end, using
Lemma 7, we have

(95)

(96)

(97)

(98)

(99)

(100)

where (96) comes from the last statement of Lemma 6, (97)
follows from the fifth statement of Lemma 6, and (98) comes
from the fourth statement of Lemma 6. In view of (93), (100)
implies that ; completing the proof of Theorem 4
as well as the proof of Theorem 5 due to the fact that

.

V. GENERAL CASE

We now consider the general case where the side information
are given by

(101)

(102)

where without loss of generality, we can assume that the covari-
ance matrices of Gaussian vectors and are given by
identity matrices. We denote the singular value decomposition
of and by and ,
respectively. Since any invertible transformation applied to
the side information does not change the rate, information
leakage, and distortion region, the side information given by
(101)–(102) and the side information obtained by multiplying
(101)–(102) by , respectively, yield the same rate,
information leakage, and distortion region. In other words, the
side information given by (101)–(102) and the side information
given by

(103)

(104)

yield the same rate, information leakage, and distortion region,
where the covariance matrices of are given by identity
matrices. Next, we claim that there is no loss of generality to as-
sume that the side information and have the same length as
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the source . To this end, assume that the length of is smaller
than the length of . In this case, simply, we can concatenate
with some zero vector to ensure that both and have the

same length. Next, assume that the length of is larger than
the length of . In this case, will definitely have at least

diagonal elements which are zero, and
hence the corresponding entries in will come from only the
noise. Since noise components are independent, dropping these
elements of does not change the rate, information leakage,
and distortion region. Thus, without loss of generality, we can
assume that , and hence without loss
of generality, we can assume that is a square matrix. The
same argument applies to the eavesdropper’s side information,
and hence, without loss of generality, we can also assume that

is a square matrix. Next, we define the following side infor-
mation:

(105)

(106)

where . We note that and are
invertible matrices. Since multiplying the side information in
(105)–(102) by some invertible matrices does not change the
rate, information leakage, and distortion region, the side infor-
mation in (105)–(106) and the following side information:

(107)

(108)

have the same rate, information leakage, and distortion region,
where the covariance matrices of and are given by

(109)

(110)

respectively. For a given distortion constraint , we denote the
rate and information leakage region for the side information
model given in (101)–(102) by , where the subscript
stands for the “original system,” and for the side information
model given in (107)–(108) by . We have the following
relationship between and .
Lemma 8:

(111)

The proof of Lemma 8 is given in Appendix L. Next,
using Theorem 4, we obtain an outer bound for the region

, where this outer bound also serves as an
outer bound for the region due to Lemma 8. The
corresponding result is stated in the following theorem.

Theorem 6: If , any satisfies

(112)

(113)

where .
The proof of Theorem 6 is given in Appendix M. We prove

Theorem 6 in two steps. In the first step, by using Theorem 4, we
obtain an outer bound for the region , and in the second
step, we obtain the limit of this outer bound as . As the
outer bound in Theorem 6 basically comes from the outer bound
in Theorem 4, all our previous comments and remarks about
Theorem 4 are also valid for the outer bound in Theorem 6.
Similar to Theorem 4, Theorem 6 also provides theminimum in-
formation leakage to the eavesdropper when the rate constraint
on the transmitter is removed. Denoting the corresponding min-
imum information leakage by , we have the following
theorem.
Theorem 7: If , we have

(114)

where .
As Theorem 7 basically comes from Theorem 5, all our pre-

vious comments and remarks about Theorem 5 are also valid for
Theorem 7.

VI. CONCLUSION

In this paper, we study secure lossy source coding for vector
Gaussian sources, where the transmitter sends information
about the source in a way that the legitimate user can recon-
struct the source within a distortion level by using its side
information. Meanwhile, the transmitter wants to keep the
mutual information leakage to the eavesdropper to a minimum,
where the eavesdropper also has a side information about
the source. We obtain an outer bound for the achievable rate,
mutual information leakage, and distortion region. Moreover,
we obtain the minimum mutual information leakage to the
eavesdropper when the legitimate user needs to reconstruct the
source within a certain distortion while there is no constraint
on the transmission rate.
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APPENDIX A
PROOF OF (40)

We first define the following function:

(115)

which is monotonically decreasing, continuous, and convex in
. Next, we note that when an instantaneous encoding scheme

is used, the minimum-mean-square-error estimator is given by

(116)

(117)

where (117) comes from the independence of
across time. Consequently, when an instantaneous encoding
scheme is used, the minimum-mean-square-error is given by

(118)

Assume that there exists an instantaneous encoding scheme that
achieves the distortion level :

(119)

We now obtain a lower bound for the minimum information
leakage for this instantaneous encoding scheme as follows:

(120)

(121)

(122)

(123)

(124)

(125)

(126)

where (121) comes from the independence of
across time, (122) follows by setting , (123) comes
from the definition of , (124) is due to the convexity of

in , (125) follows from the fact that is continuous
in , and (126) comes from (119) and the fact that is
monotonically decreasing in .

APPENDIX B
PROOF OF LEMMA 1

We first introduce two lemmas that will be used in the proof
of Lemma 1. In this appendix, we use notation to denote
“ and are independent” to shorten the presentation.

Lemma 9: Let be arbitrary random variables. If
we have the Markov chain and .
Then, we have .

Proof: Since a set of random variables is independent iff
their joint characteristic function is the product of their indi-
vidual characteristic functions, to prove Lemma 9, it is sufficient
to show the following:

(127)
We can show this as follows:

(128)

(129)

(130)

(131)

(132)

(133)

(134)

where (130) comes from the Markov chain
and (132) follows from the fact that . Equation (134)
implies the independence between and ; completing
the proof of Lemma 9.

Lemma 10: Let be random variables satisfying
and . Then, we have .

Proof: Similar to the proof of Lemma 9, here also we use
the fact that a set of random variables is independent iff their
joint characteristic function is the product of their individual
characteristic functions. To this end, since , we
have

(135)
If we set in (135), we obtain

(136)
On the other hand, since , we have

(137)

(138)

where (138) comes from the fact that . In view of (136)
and (138), we have

(139)

which implies that ; completing the proof of Lemma 10.
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We now prove Lemma 1. We note that we have
iff the Markov chain holds. We prove by con-

tradiction that when , the Markov chain
is not possible. To this end, we note that the side information at
the eavesdropper can be written as

(140)

or in other words, we have where is a
Gaussian random variable independent of with vari-
ance . Next, we note that the Markov chain

implies in view of Lemma
9. Since are jointly Gaussian, can be written as

(141)

where , and as a consequence of this
choice, we have . Hence, if we have the Markov
chain

(142)

then, Lemma 9 implies that , where is

(143)

Since , we have ,
and also due to the assumption
that the Markov chain holds. Hence, in view of
Lemma 10, we have . Moreover, since we have the
Markov chain , implies that

. Hence, if , we have .
However, if , is not feasible, and this implies
that the Markov chain is not possible; completing
the proof of Lemma 1.

APPENDIX C
PROOF OF (52)

Here, we provide the proof of (52). To this end, we consider
a slightly more general case where the joint distribution of the
source and side information is given by

(144)

and the distortion constraint is imposed with a diagonal matrix
whose diagonal entries are denoted by . From

Theorem 3, the minimum information leakage is given by

(145)

We first introduce the following auxiliary random variables:

(146)

(147)

which satisfy the Markov chain

(148)

which follows from (144) and the Markov chain
.

Next, we introduce the following two lemmas.
Lemma 11([2, Lemma 7]): Let be length- random

vectors, and be an arbitrary random variable. We have

(149)

Using Lemma 11, the following lemma can be proved.
Lemma 12:

(150)

Now, we proceed with (145) as follows:

(151)

(152)

(153)

(154)

(155)

(156)

(157)

(158)
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where (152) comes from the Markov chain
, (153) follows from Lemma 12, (154) and (155) are due to

(144), (156) follows from the definitions of in (146) and
(147), respectively, (157) comes from (148), and (158) follows
from

(159)

(160)

(161)

where (159) follows from the fact that conditioning reduces
MMSE (see Appendix G for a proof), (160) comes from the
following Markov chain:

(162)

which is a consequence of (144) and the Markov chain
, and (161) is due to the definition of given

in (147). Hence, (158) implies that when the joint distribution
of the source and side information can be factorized as in (144),
the minimum information leakage is given by

(163)

We now specialize (163) for the case given in Example 2, where
and we have the following Markov chains:

(164)

(165)

Under these conditions, is given by

(166)

where is given by

(167)
where

. Using the Markov chains

(168)

(169)

in and , respectively, we obtain

(170)

(171)

Plugging (170) and (171) into (166), we obtain the desired result
in (52); completing the proof.

APPENDIX D
PROOFS OF (53) AND (54)

We first prove (53). To this end, we note that when the joint
distribution of the source and side information is given by

(172)

and the distortion constraint is imposed by a diagonal matrix
with diagonal entries , the minimum information

leakage is given by

(173)

as shown in Appendix C (in particular, see (163)). When we set
, in other words, when we set ,

(173) reduces to

(174)

which is the desired result in (53).
Next, we prove (54) by using (173). When we set , in

other words, when we set in (173), we
obtain

(175)
which is the desired result in (54).

APPENDIX E
PROOF OF LEMMA 2

We note that since are jointly Gaussian, we have [20,
p. 155]

(176)

(177)

(178)

where (177) comes from the fact that . Next, we
have the following chain of equalities:

(179)

(180)

(181)

where (180) follows from the definition of , i.e.,
. Equation (181) implies (72); com-

pleting the proof of Lemma 2.
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APPENDIX F
PROOF OF LEMMA 3

We first prove the first statement of the lemma. To this end,
using (178), we have

(184)

(185)

Hence, using (185), the constraint can be expressed
as

(186)

which is
(187)

where implying .
Hence, is nonsingular, and exists.
Next, we prove the second statement of the lemma. To this

end, we note that since are jointly Gaussian,
, and is independent of , is given by [20,

p. 155]

(188)

where is given by
(189)

Using block matrix inversion lemma [21, p. 45], can be
obtained as

(190)
where is given by

(191)

(192)

(193)

where the last equality follows from the fact that
. Using (190) and (193), we obtain

(194)

using this in conjunction with (193), we obtain

(195)

Using (195) in (188), we have

(196)

(197)

where (197) follows from (193). Thus, using (197), the con-
straint can be expressed as follows:

(198)

from which, since , the following order can be
obtained:

(199)

which completes the proof of Lemma 3.

APPENDIX G
CONDITIONING REDUCES MMSE

Here, we prove that conditioning reducesMMSE. To this end,
we introduce the following lemma.

Lemma 13: Let and be any two -dimensional
random vectors and . Then,

(200)

Proof: The proof of this lemma comes from the fact given
in (182)–(183), at the bottom of this page.
We now prove the fact that conditioning reduces MMSE.
Lemma 14: If , then .
Proof: We have

(201)

(202)

(203)

(204)

where (203) comes from Lemma 13 and (204) comes from the
following fact:

(205)

which is a consequence of the Markov chain .

(182)

(183)
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APPENDIX H
PROOF OF LEMMA 4

We now prove Lemma 4. Since any jointly Gaussian
triple satisfying the Markov chain

also satisfies due to Lemma 14, the feasible
set of already contains all jointly Gaussian pairs
satisfying the Markov chain . Hence, we have

. Next, we show that to complete the
proof of Lemma 4. To do so, we need to show that for any
jointly Gaussian with conditional covariance ma-
trices and satisfying
and , there exists another jointly Gaussian

pair such that this pair has the following properties:

1) .
2) .
3) .
To this end, we note that can be represented as

(206)

(207)

where and are independent, are zero-
mean Gaussian random vectors with identity covariance ma-
trices. The cross covariance of and is given by

, which needs to be selected accordingly to ensure
that we have the following Markov chain:

(208)

The conditional covariance is given by [20, p. 155]

(209)

Since we are seeking a such that , we set
in (209) yielding

(210)

(211)

which is equivalent to

(212)
Next, we note the Woodbury matrix identity [22].

Lemma 15 ([22, p. 17]):

(213)

Using Woodbury matrix identity, we obtain

(214)

using which in (212), we obtain

(215)

(216)

(217)

(218)

(219)

(220)

which implies
(221)

which, in turn, implies

(222)

Hence, if we select as satisfying (222), we obtain
. Similarly, if we select to satisfy

(223)

then, we also have .
Next, we will explicitly construct and matrices to

satisfy (222) and (223), respectively. To this end, we introduce
the following lemma, which will be used subsequently.

Lemma 16 ([23]): Let be two real symmetric positive
semidefinite matrices. Then, there exists a nonsingular matrix
such that

(224)

(225)

where and are diagonal matrices.
Lemma 16 states that two real symmetric positive semi-def-

inite matrices can be diagonalized simultaneously. Using this
fact in (222)–(223), we obtain

(226)

(227)

for some nonsingular matrix , and diagonal matrices .
Since we have , which, in view
of (226)–(227) imply

(228)

Since is nonsingular, (228) implies that

(229)

Finally, we choose

(230)

(231)
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which, in view of (222)–(223) and (226)–(227), imply
and .

Next, we show that a proper selection of the cross-covariance
matrix would yield the desired Markov chain

(232)

To this end, we introduce the following matrix:

(233)

where the diagonal matrix is defined as follows:

otherwise
(234)

Since , we have . Hence, we have

(235)

We also note the following:

(236)

since .
Now, we are ready to show that and satisfy the

Markov chain by specifying . We set
as follows:

(237)

where is a zero-mean Gaussian random vector with covari-
ance matrix , and is independent of . In view
of (237), we have

(238)

(239)

(240)

which implies that satisfy the Markov chain
; completing the proof.

APPENDIX I
PROOF OF LEMMA 5

The Lagrangian for the optimization problem is given as
follows:

(241)

where the positive semidefinite matrices
are the Lagrange multipliers for the following constraints:

(242)

(243)

(244)

(245)

respectively. Let and be the minimizers of the op-
timization problem . Using (241), the KKT conditions can
be found as follows:

(246)

(247)

(248)

(249)

(250)

(251)

We first note that we have , otherwise .
Hence, using the fact that if , , and
(248), we obtain . Next, using the fact that
in (246), we obtain the KKT condition given in (84). Equation
(247) implies (85). Finally, using the fact that ,

in (249)–(251), we can obtain the KKT
conditions given in (86)–(88), respectively.

APPENDIX J
PROOF OF LEMMA 6

We start with the second statement of the lemma. To this end,
we note that (85) and (89) imply the following:

(252)

(253)

Next, using the fact that if , and , we
have in conjunction with the fact that

, we can obtain the second statement of the lemma
from (252)–(253).
Next, we consider the third statement of the lemma as fol-

lows:

(254)

(255)

(256)

(257)
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(258)

(259)

(260)

(261)

(262)

(263)

where (254) comes from (252), (257) and (261) follow from
(86).
Now, we consider the fourth statement of the lemma as fol-

lows:

(264)

(265)

(266)

(267)

where (265) follows from (252), and (266) comes from (86).
Next, we consider the fifth statement of the lemma as follows:

(268)

(269)

(270)

(271)

where (269) comes from (253) and (270) is due to (88).
Now, we prove the last statement of the lemma. To this end,

we note that the third statement of this lemma and (84) imply
the following:

(272)

which will be used in the sequel. Now, the last statement of this
lemma follows from

(273)

(274)

(275)

(276)

where (274) comes from (272) and (275) is due to (87).
Finally, we note that (272) also implies the first statement of

the lemma; completing the proof.

APPENDIX K
PROOF OF LEMMA 7

A) Background: We need some properties of the Fisher in-
formation and the differential entropy, which are provided next.

Definition 1 ([24, Definition 3]): Let be an arbi-
trarily correlated length- random vector pair with well-defined
densities. The conditional Fisher information matrix of given
is defined as

(277)

where the expectation is over the joint density , and the
conditional score function is

(278)
We first present the conditional form of the Cramer–Rao in-

equality, which is proved in [24].
Lemma 17 ([24, Lemma 13]): Let be arbitrarily cor-

related random vectors with well-defined densities. Let the con-
ditional covariance matrix of be , then we
have

(279)

which is satisfied with equality if is jointly Gaussian
with conditional covariance matrix .
The following lemma will be used in the upcoming proof.

The unconditional version of this lemma, i.e., the case ,
is proved in [24, Lemma 6].

Lemma 18 ([24, Lemma 6]): Let be random
vectors such that and are independent. More-
over, let be Gaussian random vectors with covariance
matrices such that . Then, we have

(280)

The following lemmawill also be used in the upcoming proof.
Lemma 19 ([24, Lemma 8]): Let be positive

semidefinite matrices satisfying , and be a
matrix-valued function such that for .
Moreover, is assumed to be gradient of a scalar field.
Then, we have

(281)
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The following generalization of the de Bruijn identity [25],
[26] is due to [27], where the unconditional form of this identity,
i.e., , is proved. Its generalization to this conditional form
for an arbitrary is rather straightforward, and is given in [24,
Lemma 16].

Lemma 20 ([24, Lemma 16]): Let be an arbitrarily
correlated random vector pair with finite second order moments,
and also be independent of the random vector which is zero-
mean Gaussian with covariance matrix . Then, we have

(282)

The following lemma provides a connection between the con-
ditional covariance matrix and the Fisher information matrices
of a random vector.

Lemma 21: Let be two arbitrary random vectors
with finite second moments, and be a zero-mean Gaussian
random vector with covariance matrix . Let .
Assume and are independent. We have

(283)

Lemma 21 is proved in [27] for . Its generalization
to the current conditional form can be obtained by using the
conditional Fisher information and Lemma 20.

B) Proof: We first consider the cost function of the opti-
mization problem

(284)

(285)

(286)

(287)

(288)

where (285)–(286) come from the following Markov chain:

(289)

and (288) comes from the nonnegativity of the mutual infor-
mation. On the other hand, (288) can be obtained from (92) by
choosing , i.e., we have

(290)

Hence, (288) and (290) imply the following:

(291)

(292)

where (292) comes from the Markov chain .
We note that the optimization problem in (292) is similar to
the one we already studied in (67)–(71). Indeed, if the con-
straint in (292) was , both opti-
mization problems would be identical, and using the analysis
in (67)–(71), we could conclude that (292) is minimized by a
Gaussian satisfying . However, the difference
between these two constraints necessitates a new proof, and in-
deed, showing the optimality of Gaussian for the optimization
problem in (292) is not as straightforward as showing the opti-
mality of Gaussian for the optimization problem in (67).
We find the minimizer for the optimization problem in two

steps. In the first step, for a given feasible , we explicitly con-
struct a feasible Gaussian which provides the same value for
the cost function of as the original does. Thus, this first step
implies that restricting to be Gaussian does not change the
optimum value of the optimization problem . Consequently,
in the second step of the proof, we minimize over all feasible
Gaussian . To this end, we note that the cost function of the
optimization problem can be written as

(293)

for some constant , which is independent of . From now on,
we focus on the difference of the two differential entropy terms
in (293). Next, we note that using Lemma 20, we have

(294)

where is zero-mean Gaussian random vector with covariance
matrix satisfying . Next, we find upper and lower
bounds for (294). We note that Lemma 18 implies the following
upper bound for :

(295)

Using (295) in (294) in conjunction with Lemma 19, we obtain

(296)

We note that due to Lemma 17, we have ,
i.e., (296) is well defined. Similarly, using Lemma 18, we have

(297)

for all , which implies

(298)

Using (298) in (294) in conjunction with Lemma 19, we obtain

(299)
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Now, we rewrite the bounds in (296) and (299). To this end, we
define the following function:

(300)

where the matrix is given as follows:

(301)
Hence, using in (300), the bounds in (296) and (299) can
be rewritten as follows:

(302)

Since is continuous in , there exists such that

(303)

(304)

where is bounded as follows:

(305)

(306)

where we used the fact that and Lemma 18. Thus,
(304) implies that if we pick a Gaussian satisfying

, it provides the same value for the cost function of as
the original does.
Next, we check whether this Gaussian is feasible, i.e.,

whether it satisfies . To this end, using Lemma
21, we obtain

(307)

Since is Gaussian, Lemma 17 implies that

(308)

(309)

where (309) follows from the fact that and are
independent. Moreover, due to (306), we have

, which together with (309) imply the fol-
lowing:

(310)

Using (310) in (307), we obtain

(311)

(312)

(313)

where (312) follows from Lemma 21 and (313) is due to the as-
sumption that is feasible, i.e., . Equation (313)
implies that the constructed Gaussian random vector is fea-
sible, i.e., for each feasible , there exists a feasible Gaussian
which provides the same value for the cost function of ; com-
pleting the first step of the proof.

Hence, in view of this first step of the proof, we can restrict
to be Gaussian which leads to the following form for :

(314)

(315)

(316)

(317)

where (315) follows from Lemma 3, and (317) comes from the
fact that

(318)

is monotonically decreasing in the positive semidefinite ma-
trices ; completing the proof of Lemma 7.

APPENDIX L
PROOF OF LEMMA 8

We note that due to Theorem 3, we already have single-letter
descriptions for the regions and . Thus, to prove
Lemma 8, it suffices to show that for any given feasible ,
these two regions satisfy the relationship given in Lemma 8. We
first note the following Markov chains:

(319)

(320)

Next, we show that any feasible for the region
is also feasible for the region . To this end, we
note that

(321)

(322)

(323)

where (322) is due to the fact that conditioning reduces MMSE
and (323) follows from the Markov chain in (319). Moreover,
it can be shown that exists and is equal to

. Hence, this observation and (323) imply that
is also feasible for the region .
Next, we show that for a given , any rate inside the

region is also inside . To this end, for
a given , we denote the minimum achievable rates in

and by and , respectively. Due to The-
orem 3, we have

(324)

(325)

(326)

(327)
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where (326) comes from the Markov chain in (319). Equation
(326) implies that any achievable rate within the region
is also included in the region .
Finally, we show that for a given , any achievable

information leakage inside the region is also inside
. To this end, for a given , we denote the

minimum information leakage in and by
and , respectively. Due to Theorem 3, we have

(328)

(329)

(330)

(331)

(332)

(333)

(334)

(335)

where (330) comes from the Markov chain in (319) and (332)
follows from the Markov chain in (320). Equation (335) implies
that

(336)

(337)

(338)

(339)

where (337) comes from the continuity of the determinant in
positive semidefinite matrices. Equation (339) implies that any
achievable information leakage in the region is also

inside the region ; completing the proof of
Lemma 8.

APPENDIX M
PROOF OF THEOREM 6

We start the proof of Theorem 6 by first expressing Theorem
4 for the side information model given by (107)–(108). In other
words, we first provide an outer bound for the region
by using Theorem 4. To this end, to be able to use Theorem 4,
we need . However, since we originally have

and , where the latter one follows from
the Markov chain and the fact that conditioning
reduces MMSE, might be indefinite. However, the
only place we use the condition is to be able to show
the equivalence between and for
Gaussian in Lemma 3. In particular, we only need the fact that

is nonsingular to show this equivalence, and which is
implied by . However, still there might be distortion
matrices for which although we have nonsingular ,
the condition is not satisfied. Hence, if we can find
an such that

(340)

we can still use Theorem 4 to obtain an outer bound for the
region . Now, we establish the existence of such an .
Using the assumption , we have

(341)

where the equality follows from (221). Equation (341) implies
that

(342)

(343)

where we use the singular value decomposition of . Thus,
since is strictly positive definite, there exists

such that

(344)

(345)

which implies

(346)

which, in turn, implies the existence of an such that

(347)

Hence, using the definition of in (347), we obtain

(348)

which is equivalent to the desired condition in (340) which is
needed to use Theorem 4 to obtain an outer bound for the region

. Hence, assuming that , an outer bound
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for the region can be written as the union of rate and
information leakage pairs satisfying

(349)

(350)

where . We now
find the limiting region that comes from the one described by
(349)–(350) as . To this end, we introduce the following
lemma that will be used subsequently.

Lemma 22:
(351)

(352)

The proof of Lemma 22 is given in Appendix N.
We first consider the rate bound in (349) as follows:

(359)

which follows from the continuity of the determinant in posi-
tive semidefinite matrices and (351). Similarly, for the second
expression in the rate bound in (349), we have

(360)

which follows from the derivation given by (353)–(358), which
is at the bottom of the page. In this derivation, (353) is due to the
continuity of the determinant in positive semidefinite matrices
and (352), (354) comes from the definition of , (357) comes
from the continuity of the determinant in positive semidefinite
matrices and (352), and (358) is obtained by using the singular
value decomposition of . Hence, (359) and (360) imply that
any rate inside the region satisfies

(361)

(362)

Following a similar analysis, the limit of the information
leakage in (350) can be found as

(363)

which implies that any information leakage inside the re-
gion should be larger than (363); completing
the proof of Theorem 6.

APPENDIX N
PROOF OF LEMMA 22

We first prove the following lemma which will be used sub-
sequently.

(353)

(354)

(355)

(356)

(357)

(358)
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Lemma 23: Let ,
where and is continuous
in . Then, we have

(364)

Proof: In the proof of this lemma, we use the fact that if
, we have

(365)

where [21, p. 19]. Now, we consider

(366)

(367)

where due to , we have

(368)

which implies

(369)

Hence, we can use (365) in (367) to obtain

(370)
which implies

(371)

(372)

(373)

(374)

where (373) comes from (365); completing the proof of Lemma
23.
We now consider (351) in Lemma 22 as follows:

(375)

(376)

(377)

(378)

where . Equation (375) comes from (178), (377) is
due to the definition of . We note that

(379)

and thus, can be selected to ensure that

(380)

for all . Hence, we can use Lemma 23 in (378) to
obtain

(381)

(382)

(383)

(384)

where (383) comes from the singular value decomposition of
and (384) is due to (221); completing the proof of (351).

Next, we consider (352) in Lemma 22 as follows:

(385)

(386)

(387)

(388)

(389)

(390)

(391)

where . Equation (388) comes from the definition of
and (391) is obtained by using the singular value decom-

position of . We note that is strictly positive
definite as (342) indicates, and hence, there exists an such
that

(392)

for all . Consequently, we can use Lemma 23 in
(391) to obtain

(393)

which completes the proof of Lemma 22.
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