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Secure Degrees of Freedom of One-Hop
Wireless Networks

Jianwei Xie, and Sennur Ulukus, Member, IEEE

Abstract— We study the secure degrees of freedom (d.o.f.)
of one-hop wireless networks by considering four fundamen-
tal wireless network structures: 1) Gaussian wiretap chan-
nel; 2) Gaussian broadcast channel with confidential messages;
3) Gaussian interference channel with confidential messages;
and 4) Gaussian multiple access wiretap channel. The secrecy
capacity of the canonical Gaussian wiretap channel does not
scale with the transmit power, and hence, the secure d.o.f. of
the Gaussian wiretap channel with no helpers is zero. It has
been known that a strictly positive secure d.o.f. can be obtained
in the Gaussian wiretap channel by using a helper, which sends
structured cooperative signals. We show that the exact secure
d.o.f. of the Gaussian wiretap channel with a helper is % Our
achievable scheme is based on real interference alignment and
cooperative jamming, which renders the message signal and the
cooperative jamming signal separable at the legitimate receiver,
but aligns them perfectly at the eavesdropper preventing any
reliable decoding of the message signal. Our converse is based
on two key lemmas. The first lemma quantifies the secrecy penalty
by showing that the net effect of an eavesdropper on the system
is that it eliminates one of the independent channel inputs. The
second lemma quantifies the role of a helper by developing a
direct relationship between the cooperative jamming signal of
a helper and the message rate. We extend this result to the
case of M helpers, and show that the exact secure d.o.f. in this
case is ML_H We then generalize this approach to more general
network structures with multiple messages. We show that the sum
secure d.o.f. of the Gaussian broadcast channel with confidential
messages and M helpers is 1, the sum secure d.o.f. of the two-
user interference channel with confidential messages is %, the sum
secure d.o.f. of the two-user interference channel with confidential
messages and M helpers is 1, and the sum secure d.o.f. of the

K -user multiple access wiretap channel is %
Index Terms— Wiretap channel, secure degrees of freedom,
cooperative jamming, interference alignment.

I. INTRODUCTION

E STUDY secure communications in one-hop wire-
less networks from an information-theoretic point of
view. Wyner introduced the wiretap channel [1], in which a
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legitimate transmitter wishes to send a message to a legit-
imate receiver secret from the eavesdropper. The capacity-
equivocation region was originally found for the degraded
wiretap channel by Wyner [1], then generalized to the general
wiretap channel by Csiszar and Korner [2], and extended
to the Gaussian wiretap channel by Leung-Yan-Cheong and
Hellman [3]. Multi-user versions of the wiretap channel
have been studied recently, e.g., broadcast channels with
confidential messages [4], [5], multi-receiver wiretap chan-
nels [6]-[8] (see also a survey on extensions of these to
MIMO channels [9]), two-user interference channels with
confidential messages [4], [10], multiple access wiretap
channels [11]-[15], relay eavesdropper channels [16]-[21],
compound wiretap channels [22], [23]. Since in most multi-
user scenarios it is difficult to obtain the exact secrecy capacity
region, achievable secure degrees of freedom (d.o.f.) at high
signal-to-noise ratio (SNR) cases have been studied for several
channel structures, such as the K -user Gaussian interference
channel with confidential messages [24], [25], the K-user
interference channel with external eavesdroppers [24], [26],
the Gaussian wiretap channel with one helper [27], [28], the
Gaussian multiple access wiretap channel [29], [30], and the
wireless X network [31].

In the Gaussian wiretap channel, the secrecy capacity is the
difference between the channel capacities of the transmitter-
receiver and the transmitter-eavesdropper pairs. It is well-
known that this difference does not scale with the SNR, and
hence the secure d.o.f. of the Gaussian wiretap channel is
zero, indicating a severe penalty due to secrecy in this case.
Fortunately, this does not hold in multi-user scenarios. In a
multi-user network, focusing on a specific transmitter-receiver
pair, other (independent) transmitters can be understood as
helpers which can improve the individual secrecy rate of
this specific pair by cooperatively jamming the eavesdropper
[11], [12], [15], [32]." These cooperative jamming signals
also limit the decoding performance of the legitimate receiver.
It is also known that if the helper nodes transmit independent
identically distributed (i.i.d.) Gaussian cooperative jamming
signals in a Gaussian wiretap channel, then the secure d.o.f. is
still zero [11], [12], [30], [32]. Such i.i.d. Gaussian signals,
while maximally jam the eavesdropper, also maximally hurt
the legitimate user’s decoding capability. Therefore, we expect

'Note that, if reliability was the only concern, then in order to maximize the
reliable rate of a given transmitter-receiver pair, all other independent trans-
mitters must remain silent. However, when secrecy in addition to reliability is
a concern, then independent helpers can improve the secrecy rate of a given
transmitter-receiver pair by transmitting signals [11], [12], [15], [32].
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Fig. 1. Gaussian wiretap channel with one helper.

that strictly positive secure d.o.f. may be achieved with some
weak jamming signals. Confirming this intuition, [27], [28]
achieved positive secure d.o.f. by using nested lattice codes
in a Gaussian wiretap channel with a helper. In this paper,
we obtain the exact secure d.o.f. of several Gaussian network
structures, including the Gaussian wiretap channel with a
helper, by characterizing this trade-off in the cooperative
jamming signals of the helpers.

We start by considering the Gaussian wiretap channel with a
single helper, as shown in Fig. 1. In this channel model, secure
d.o.f. with i.i.d. Gaussian cooperative signals is zero [32], and
strictly positive secure d.o.f. can be obtained, for instance, by
using nested lattice codes [27], [28]. Considering this model
as a special case of other channel models, we can verify that %
secure d.o.f. can be achieved as a symmetric individual rate on
the two-user interference channel with external eavesdroppers
[24], [26] and on the multiple access wiretap channel [29].
References [33] and [28, Th. 5.4, p. 126] showed that with
integer lattice codes a secure d.o.f. of % can be achieved if the
channel gains are irrational algebraic numbers. While such
class of channel gains has zero Lebesgue measure, the idea
behind this achievable scheme can be generalized to much
larger set of channel gains. The enabling idea behind this
achievable scheme is as follows: If the cooperative jamming
signal from the helper and the message signal from the
legitimate user can be aligned in the same dimension at the
eavesdropper, then the secrecy penalty due to the information
leakage to the eavesdropper can be upper bounded by a con-
stant, while the information transmission rate to the legitimate
user can be made to scale with the transmit power. Following
this insight, we propose an achievable scheme? based on real
interference alignment [34], [35] and cooperative jamming to
achieve % secure d.o.f. for almost all channel gains. This
constitutes the best known achievable secure d.o.f. for the
Gaussian wiretap channel with a helper. The cooperative
jamming signal from the helper can be distinguished from the
message signal at the legitimate receiver by properly designing
the structure of the signals from both transmitters; meanwhile,
they can be aligned together at the observation space of the
eavesdropper to ensure undecodability of the message signal,

%In this paper, by an achievable scheme, we mean that we design specific
forms for the auxiliary random variables and the channel inputs, and evaluate
well-known random-coding based achievable expressions with our selected
random variables.
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hence secrecy (see Fig. 7). Intuitively, the end result of
1

5 secure d.o.f. comes from the facts that the cooperative
jamming signal and the message signal should be of about
the same size to align at the eavesdropper, and they should be
separable at the legitimate receiver, who can decode at most a
total of 1 d.o.f. We analyze the rate and equivocation achieved
by this scheme by using the Khintchine-Groshev theorem of
Diophantine approximation in number theory.

For the converse for this channel model, the best known
upper bound is % [28, Th. 5.3, p. 126] which was obtained
by adding virtual nodes to the system and using the upper
bound developed in [36]. Reference [36] developed upper
bounds for the secure d.o.f. of the multiple-antenna compound
wiretap channel by exploring the correlation between the
n-letter observations of a group of legitimate receivers and a
group of eavesdroppers, instead of working with single-letter
expressions. Our converse works with n-letter observations as
well. Our converse has two key steps. First, we upper bound
the secrecy rate by the difference of the sum of differential
entropies of the channel inputs of the legitimate receiver and
the helper and the differential entropy of the eavesdropper’s
observation. This shows that, the secrecy penalty due to the
eavesdropper’s observation is tantamount to eliminating one
of the independent channel inputs. As a result, the final upper
bound involves only the differential entropy of the channel
input of the independent helper. In the second step, we develop
a relationship between the cooperative jamming signal from
the independent helper and the message rate. The goal of the
cooperative jamming signal is to further confuse the eaves-
dropper. However, the cooperative jamming signal appears in
the channel output of the legitimate user also. Intuitively, if the
legitimate user is to reliably decode the message signal which
is mixed with the cooperative jamming signal, there must exist
a constraint on the cooperative jamming signal. Our second
step identifies this constraint by developing an upper bound
on the differential entropy of the cooperative jamming signal
in terms of the message rate. These two steps give us an upper
bound of % secure d.o.f. for the Gaussian wiretap channel with
a helper, which matches our achievable lower bound. This
concludes that the exact secure d.o.f. of the Gaussian wiretap
channel with a helper is % for almost all channel gains.

We then generalize our result to the case of M independent
helpers. We show that the exact secure d.o.f. in this case is
% Our achievability extends our original achievability for
the one-helper case in the following manner: The transmitter
sends its message by employing M independent sub-messages,
and the M helpers send independent cooperative jamming
signals. Each cooperative jamming signal is aligned with one
of the M sub-messages at the eavesdropper to ensure secrecy
(see Fig. 8). Therefore, each sub-message is protected by
one of the M helpers. Our converse is an extension of the
converse in the one-helper case. In particular, we upper bound
the secrecy rate by the difference of the sum of the differential
entropies of all of the channel inputs and the differential
entropy of the eavesdropper’s observation. The secrecy penalty
due to the eavesdropper’s observation eliminates one of the
channel inputs, which we choose as the legitimate user’s
channel input. We then utilize the relationship we developed
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between the differential entropy of each of the cooperative
jamming signals and the message rate. The upper bound so
developed matches the achievability lower bound, giving the
exact secure d.o.f. for the M -helper case.

As an important extension of the single-message one-helper
problem, we consider the broadcast channel with confidential
messages and one-helper, where a transmitter wishes to send
two messages securely to two users on a broadcast channel
while keeping each message secure from the unintended
receiver. Without a helper, the sum secure d.o.f. of this channel
model is zero. We show that with one helper, the exact sum
secure d.o.f. is 1. The sum secure d.o.f. remains the same as
more helpers are added. The achievability for the one-helper
case is as follows: The transmitter sends the channel input
by putting two messages on different rational dimensions.
Meanwhile, the cooperative jamming signal from the helper
is designed in such a way that it aligns with the unintended
message, but leaves the intended message intact, at each
receiver (see Fig. 9). The converse for this case follows from
the converse without any secrecy constraints for the Gaussian
broadcast channel, which is 1.

Cooperative jamming based achievable schemes are intuitive
for the independent-helper problems due to the fact that the
helpers do not have messages of their own. Such schemes
can be extended to multiple-transmitter (with independent
messages) settings, such as, interference channels with con-
fidential messages and multiple access wiretap channel, etc.
All previous works extended this approach in the following
way: Each transmitter simply sends one message signal, and
the message signals from all of the transmitters are aligned
together at the eavesdropper. Due to the mixture of the
message signals, the eavesdropper is confused regarding any
one of the message signals, and a positive secure d.o.f. is
achievable. However, this approach is sub-optimal. To achieve
optimal secure d.o.f., we need to design the structure of
the channel inputs more carefully. We propose the following
transmission structure: Besides the message carrying signal,
each transmitter also sends a cooperative jamming signal.® The
exact number and the structure of the message signals and the
cooperative jamming signals depend on the specific network
structure.

For the two-user Gaussian interference channel with con-
fidential messages, previously known lower bounds for the
sum secure d.o.f. are % [31] and O [24], which come from
the general results for the K-user case: 211((__11 [31] and
% [24]. The individual secure d.o.f. of % achieved
in [33] and [28, Th. 5.4, p. 126] in the context of the wiretap
channel with a helper (for the class of algebraic irrational
channel gains) can also be understood as a lower bound for the
sum secure d.o.f. for the two-user interference channel with
confidential messages. We show that, by using interference
alignment and cooperative jamming at both transmitters, we
can achieve a sum secure d.o.f. of % for almost all channel
gains, which is better than all previously known achievable

3This addition of a cooperative jamming signal to the message carrying
signal can be interpreted as channel prefixing [2] which introduces a further
randomization from the message carrying signal to the channel input on top
of stochastic encoding [1] which maps every message to multiple codewords.
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secure d.o.f. We design an achievable scheme in which each
transmitter sends a mixed signal containing the message
signal and a cooperative jamming signal. These two compo-
nents have the same signaling structure, and are separable at
the intended receiver. Furthermore, the cooperative jamming
signal is perfectly aligned with the message signal from the
other transmitter (see Fig. 10).* Our converse starts with con-
sidering transmitter 2 as a helper for transmitter-receiver pair 1.
In contrast to the single-message case, since transmitter 2 also
intends to deliver a message W5 to receiver 2, in the second
step, we treat transmitter 1 as the helper for the transmitter-
receiver pair 2 and upper bound the differential entropy of its
channel input by using its relationship with the message rate
of Ws. The converse matches the achievability lower bound,
giving the exact secure d.o.f. for the two-user interference
channel with confidential messages as %

We then generalize this result to the case with one helper,
i.e., two-user Gaussian interference channel with confidential
messages and one helper. We show that a sum secure d.o.f. of
1 is achievable. The structure of the channel inputs in the
corresponding achievable scheme is simpler than in the cases
of previous channel models. Each transmitter sends a signal
carrying its message. Almost surely, these two signals are
not in the same rational dimension at the receivers. On the
other hand, the cooperative jamming signal from the helper
can be aligned with the unintended message at each receiver
while leaving the intended message intact (see Fig. 11). The
converse for this case follows from the converse without
any secrecy constraints for the two-user Gaussian interference
channel [37], which is 1. This concludes that the exact sum
secure d.o.f. of the two-user Gaussian interference channel
with confidential messages and one helper is 1. Since utilizing
one helper is sufficient to achieve the upper bound, the sum
secure d.o.f. remains the same for arbitrary M helpers.

For the K-user multiple access wiretap channel, the best
known lower bound for the sum secure d.o.f. is % [29]
which gives % for K = 2. In addition, for K = 2,
the individual secure d.o.f. of % achieved in [33] and
[28, Th. 5.4, p. 126] in the context of the wiretap channel
with a helper (for the class of algebraic irrational channel
gains) can also be understood as a lower bound for the
sum secure d.o.f. for the two-user multiple access wiretap
channel. We show that, by using interference alignment and
cooperative jamming at all transmitters simultaneously, we can
achieve a sum secure d.o.f. of % for the K-user
multiple access wiretap channel, for almost all channel gains,
which is better than all previously known achievable secure
d.o.f. In particular, for K = 2, our achievable scheme gives a
sum secure d.o.f. of % In order to obtain this sum secure
d.o.f., we need a more detailed structure for each channel
input. Each transmitter sends a mixed signal containing the
message signal and a cooperative jamming signal. Specifically,
each transmitter divides its own message into K — 1 sub-
messages each of which having the same structure as the

4An interesting observation here is that each transmitter jams its own
receiver to protect the message of the other transmitter. This scheme achieves
the largest (optimum) sum secure d.o.f. for the system.
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TABLE I
SUMMARY OF THE MAIN RESULTS OF THIS PAPER

Channel model (Sum) secure d.o.f.
Wiretap channel with one helper 3

Wiretap channel with M helpers #ﬂ
Broadcast channel with CM and M helpers 1
Two-user interference channel with confidential messages %
Two-user interference channel with confidential messages and M helpers 1

K-user multiple access wiretap channel K[((I((Iiz)lil

cooperative jamming signal. By such a scheme, the total K
cooperative jamming signals from the K transmitters span the
whole space at the eavesdropper’s observation, in order to
hide each one of the message signals from the eavesdropper.
On the other hand, to maximize the sum secrecy d.o.f., the
cooperative jamming signals from all of the transmitters are
aligned in the same dimension at the legitimate receiver to
occupy the smallest space (see Fig. 12). Our converse is a
generalization of our converse used in earlier channel models.
We first show that the sum secrecy rate is upper bounded by the
sum of differential entropies of all channel inputs except the
one eliminated by the eavesdropper’s observation. Then, we
consider each channel input as the jamming signal for all other
transmitters and upper bound its differential entropy by using
its relationship with the sum rate of the messages belonging to
all other transmitters. This gives us a matching converse and

shoz)vs th)at the exact sum secure d.o.f. for this channel model is
K(K-1
K(K—1)+1° ) ) ) )

Table I summarizes the main results of this paper in a tabular

form.

II. SYSTEM MODEL AND DEFINITIONS

In this paper, we consider four fundamental channel models:
wiretap channel with helpers, broadcast channel with confi-
dential messages and helpers, two-user interference channel
with confidential messages and helpers, and multiple access
wiretap channel. In this section, we give the channel models
and relevant definitions. All the channels are additive white
Gaussian noise (AWGN) channels. All the channel gains
are time-invariant, and independently drawn from continuous
distributions.

A. Wiretap Channel With Helpers

The Gaussian wiretap channel with helpers (see Fig. 2) is
defined by,

M+1

Yi = hi X1+ Z h; X; + N (€))
j=2
M+1

Yo =g X1+ Y g;X;+ N, ©)

j=2

w

Fig. 2.

Gaussian wiretap channel with M helpers.

where Y; is the channel output of the legitimate receiver, Y5 is
the channel output of the eavesdropper, X is the channel input
of the legitimate transmitter, X;, for i = 2,..., M +1, are the
channel inputs of the M helpers, h; is the channel gain of
the ¢th transmitter to the legitimate receiver, g; is the channel
gain of the ith transmitter to the eavesdropper, and N7 and N;
are two independent zero-mean unit-variance Gaussian random
variables. All channel inputs satisfy average power constraints,
E[X?| <P fori=1,...,M+1.

Transmitter 1 intends to send a message W, uniformly
chosen from a set W, to the legitimate receiver (receiver 1).

The rate of the message is R 2 Llog|W|, where n is
the number of channel uses. Transmitter 1 uses a stochastic
function f : W — X; to encode the message, where
X3 2 X7 is the n-length channel input.> The legitimate
receiver decodes the message as W based on its observa-
tion Y;. A secrecy rate R is said to be achievable if for any
€ > 0 there exists an n-length code such that receiver 1 can
decode this message reliably, i.e., the probability of decoding
error is less than e,

Pr [W#W] <e 3)

. A
SWe use boldface letters to denote n-length vector signals, e.g., X1 = X7,
A A
Y1 =Y Yo =Y, etc



XIE AND ULUKUS: SECURE DEGREES OF FREEDOM OF ONE-HOP WIRELESS NETWORKS

and the message is kept information-theoretically secure
against the eavesdropper,

1 1

i.e., that the uncertainty of the message W, given the observa-
tion Y5 of the eavesdropper, is almost equal to the entropy of

the message. The supremum of all achievable secrecy rates is
the secrecy capacity Cs and the secure d.o.f., Dy, is defined as

D, 2 lim - Cs (5)
P—oo 5 10gP

Note that Dy < 1 is an upper bound. To avoid trivial cases,
we assume that h; # 0 and g; # 0. Without the independent
helpers, i.e., M = 0, the secrecy capacity of the Gaussian
wiretap channel is known [3]

1 1
Cy = 5 log (1+hiP) = S log (1 + g1 P) (6)

and from (5) the secure d.o.f. is zero. Therefore, we assume
M > 1. If there exists a j (j = 2,...,M + 1) such that
hj =0 and g; # 0, then a lower bound of 1 secure d.o.f. can
be obtained for this channel by letting this helper jam the
eavesdropper by i.i.d. Gaussian noise of power P and keeping
all other helpers silent. This lower bound matches the upper
bound, giving the secure d.o.f. On the other hand, if there
existsaj (j = 2,...,M+1)suchthat h; # 0 and g; = 0, then
this helper can be removed from the channel model without
affecting the secure d.o.f. Therefore, in the rest of the paper,
for the case of Gaussian wiretap channel with M helpers,
we assume that M > 1 and h; # 0 and g; # O for all
j=1,...,M+1.

B. Broadcast Channel With Confidential Messages
and Helpers

The Gaussian broadcast channel with confidential messages
and helpers (see Fig. 3 for one helper) is defined by,

MA+1
Yi = hi X1+ Z h; X; + N @)

j=2

MA+1
Yo = g1 X + Zngj“‘NQ (8)

j=2
In this model, transmitter 1 has two independent messages,
W1 and Wh, intended for receivers 1 and 2, respectively.
Messages W1 and W5 are independently and uniformly chosen

from sets WW; and W, respectively. The rates of the messages
are R, 2 %10g|W1| and Rs 2 %log|WQ|. Transmitter 1

uses a stochastic function f : W; x W, — X to encode the
messages. The messages are said to be confidential if only the
intended receiver can decode each message, i.e., each receiver
is an eavesdropper for the other. Transmitters 2,3, ..., M +1
are the independent helpers. Similar to (3) and (4), we define
the reliability and secrecy of the messages as,

PI‘[Wl 75 Wl] S € (9)
Pr[Wy # Wa) < e (10)
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Wy Wy — X,

Fig. 3. Gaussian broadcast channel with confidential messages and M = 1
helper.
;Vl
ha, l A a
e T en W

hi2

]1,2?1
LVQ — X2

\
\XAHg’
N

Fig. 4. Two-user Gaussian interference channel with confidential messages
and M helpers.

1 1
—H(W1|Y2) Z —H(Wl) — € (11)
n n
1 1
—H(W3|Y1) > —H(W) —e (12)
n n

The sum secure d.o.f. for this channel model is defined as

Ri+ Ry

VAN
D.x = 1i - = 13
.z = lim sup Tlog P (13)

where the supremum is over all achievable secrecy rate pairs

(R1, R2).

C. Interference Channel With Confidential Messages
and Helpers
The two-user Gaussian interference channel with confiden-
tial messages and helpers (see Fig. 4) is defined by,
M+2
Vi =hiaXi+honXo+ Y hinX;+ N
j=3
M+2
Yo = h12X1 + hooXo + Z hjoX;+ No
j=3

(14)

5)

where X1, Xo,..
dent.

.y Xpr+2, N1 and Ny are mutually indepen-
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Fig. 5. Two-user Gaussian interference channel with confidential messages.

One special, but important, case is the two-user Gaussian
interference channel with confidential messages, i.e., M = 0,
which is shown in Fig. 5 and defined by,

Yi = i1 Xi+ho1 Xo+ Ny
Yo = h12X1 + hooXo + N>

(16)
A7)

In the two-user interference channel with confidential mes-
sages, each transmitter wishes to send a confidential message
to its own receiver. Transmitter 1 has message W; uniformly

chosen from set W,;. The rate of the message is R; 2
Llog|Wi|. Transmitter 1 uses a stochastic function fi :
W; — X to encode the message. Similarly, transmitter 2
has message W5 (independent of W) uniformly chosen from
set Ws. The rate of the message is Ro = %log|WQ|.
Transmitter 2 uses a stochastic function fy : Wo — Xy to
encode the message. The messages are said to be confidential
if only the intended receiver can decode each message, i.e.,
each receiver is an eavesdropper for the other. Transmitters
3,...,M + 2 are the independent helpers. Similar to (3) and
(4), we define the reliability and secrecy of the messages as,

Pr[W, # W1] < e (18)
Pr[Wy # Wa) < e (19)
1 1
—H(W1|Y2) Z —H(Wl) — € (20)
1 1
—H(W3|Y1) > —H(W,) —¢ 21
n n

The sum secure d.o.f. for this channel model is defined as

Ri + Ry

A
Dyx = li — 22
sz = lim sup Tlog P (22)

where the supremum is over all achievable secrecy rate pairs

(R1, R2).

D. Multiple Access Wiretap Channel

The K-user Gaussian multiple access wiretap channel
(see Fig. 6) is defined by,

K

Yi=> X+ M (23)
i=1
K

Yo = giXi+ No (24)
i=1

In this channel model, each transmitter ¢ has a message W;
intended for the legitimate receiver whose channel output
is Y7. All of the messages are independent. Message W; is

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 6, JUNE 2014
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Fig. 6. K-user Gaussian multiple access wiretap channel.

uniformly chosen from set W,;. The rate of message % is
A . . . .
R; = Llog|W;|. Transmitter i uses a stochastic function

i T n
fi + W; — X, to encode its message. All of the messages
are needed to be kept secret from the eavesdropper, whose
channel output is Ys.

Similar to (3), the reliability of the messages is defined by

Pr (Wl,...,WK);é(Wl,...,WK)}ge (25)

and similar to (4) the secrecy constraint (for the entire message
set) is defined as

1
EH(W17W27" 7WK|Y2) >

—_

H(Wl,WQ,...,WK)—G

(26)

n

Note that this definition implies the secrecy for any subset of
the messages, including individual messages, i.e.,

1
—I(Ws;Y2)
n

1 1
= EI(Wl,WQ, .. .,WK;YQ) — EI(WSC;Y2|WS) (27)

IN

1
EI(Wl,WQ,...,WK;YQ) (28)
€ (29)

IN

for any S C {1,2,...,K}. The sum secure d.o.f. for this
channel model is defined as

K
SR
Dsx 2 F}im sup@ (30)

—00 % log P

where the supremum is over all achievable secrecy rate tuples
(Ry,...,RK).

III. GENERAL CONVERSE RESULTS AND PRELIMINARIES

In this section, we give two lemmas, Lemmas 1 and 2,
that will be used in the converse proofs and another lemma,
Lemma 3, that will be used in the achievability proofs in later
sections.

A. Secrecy Penalty

Consider the channel model formulated in Section II-A,
where transmitter 1 wishes to have secure communication with
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receiver 1, in the presence of an eavesdropper (receiver 2)
and M helpers (transmitters 2 through M + 1). We propose
a general upper bound for the secrecy rate between trans-
mitter 1 and receiver 1 by working with n-letter signals,
and introducing new mutually independent Gaussian random
variables {N;}M 11 which are zero-mean and of variance &2
where 67 < min(1/h?,1/g?), and are independent of all
other random variables. Each vector N; is an i.i.d. sequence
of N i

In the following lemma, we give a general upper bound
for the secrecy rate. This lemma states that the secrecy rate
of the legitimate pair is upper bounded by the difference
of the sum of differential entropies of all channel inputs
(perturbed by small noise) and the differential entropy of
the eavesdropper’s observation; see (31). This upper bound
can further be interpreted as follows: If we consider the
eavesdropper’s observation as the secrecy penalty, then the
secrecy penalty is tantamount to the elimination of one of
the channel inputs in the system; see (32).

Lemma 1: The secrecy rate of the legitimate pair is upper
bounded as

M+1
nR < Z h(X;) — h(Ys2) + ne (31)
J\1+1 ~
Z h(X;) + nd (32)
i=1,i#j

where Xz = X; —I—Nifori =1,2,...,M + 1, and Nz is
an iid. sequence (in time) of random variables N; which
are independent Gaussian random variables with zero-mean
and variance &7 with 67 < min(1/h?,1/g?). In addition,
c and ¢ are constants which do not depend on P, and j €
{1,2,..., M + 1} could be arbitrary.

Proof: We use notation c¢;, for ¢« > 1, to denote constants
which are independent of the power P. We start as follows:

nR=HW)=HW|Y1)+I(W;Y1) (33)
< I(W;Y1)+na (34)
< I(W;Yq1)—I(W;Y2) + nce (35)

where we used Fano’s inequality and the secrecy constraint
in (4). By providing Y5 to receiver 1, we further upper bound
nR as

nR < I(W;Y1,Y2) — I(W;Y3) + ncy (36)
=I(W;Y1|Y2) + nco 37

= h(Y1|Y2) — h(Y1|Y2, W) + nca (38)

< h(Y1]Y2) + nes (39)

where (39) is due to

h(Y1|Y2, W) > h(Y1]X1,Xo,..., Xn41, Yo, W) (40)
= h(N1|X1,X2,..., Xpp1, Yo, W) (41)

= h(Ny) (42)

= glog 2Te (43)

which is independent of P. Here, (42) is due to the fact that
N; is independent of (X1, Xo, ..., Xpr41, Yo, W).
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In the next step, we introduce random \iariables sz ~vvhich
are noisy versions of the channel inputs X; = X; + N; for

1=1,2,..., M + 1. Thus, starting from (39),
nR < h(Y [Y2) + nes (44)
h(Y1,Y2) — h(Y2) + nes (45)
h(X1,Xg,..., X1, Y1, Ys)
—h(Xl, Xo, .., Xarg1|Y1,Ys) — h(Ys2) + nes (46)
< h(X1,Xa, .., Xare1, Y1, Y2)
—h(X1,Xo, ..., Xarg1|Y1, Yo, XM
—h(Ys2) + nes 47)
= h(X1,Xa,...,Xar41, Y1, Y2)
—h(N1,Na, ..., Ny Y1, Yo, XM
—h(Ysa) + nes (48)
= h(X1,Xg,..., X411, Y1, Y2)
—h(N1,Ny,...,Nar1) — h(Y2) 4 nes (49)
< (X1, Xo, . X1, Y1, YY) — h(Ys) +nes (50)
= h(X1,X2,..., Xnr41)
+h(Y1, Yo X1, X, ..., Xarp1) — h(Ys) +ney (51)
< h(X1,Xo, .., Xorg1) — h(Ya) + nes (52)
M+1
= Z h(X;) — h(Y2) + ncs (53)
where XM+1 (X1,X2,...,Xa41), (49) is due to the fact

that (Nl, No... NM+1) is independent of (Y1, Yo, Xiwﬂ)
and (52) is due to h(Y1,Y2|X 1, Xo,...,X11) < ncg. The
intuition behind this is that, given all (slightly noisy versions
of) the channel inputs, (at high SNR) the channel outputs can
be reconstructed.® To show this formally, we have

h(Y1, Yo X1, X, ..., Xai1)
< h(Y1|X1, Xo, .., Xars1)
+h(Y2|X1, XQ, R X]erl) (54)
M+1
—h(Zh +N1X1,X2,...,XM+1>

M1
+h (Z 9i(X;—N;)+N;

X1, Xo, ... ,XM+1> (55)

i=1
M+1 ~ ~ ~ ~
=h <—Z hiN; + Ny X17X27~~~7XM+1>
i=1
M+1 ~ ~ ~ ~
h (— > giNi + N2 Xy, X, ... ,XM+1> (56)
i=1
M+1 B M+1 ~
<h (—Z hiN; + N1>X+h <— > giNi+ N2> (57)
i=1 i=1
2 e (58)

which completes the proof of (31).

5By reconstructed, we_mean that the conditional differential entropy
h(Y1,Y2|X1,Xo,...,Xa41) does not grow with P.
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Finally, we show (32). To this end, fixing a j, which could
bp arbitrary, we express Y5 in a stochastically equivalent form
Y2, i.e.,

M+1
Yo = g;X; + Z 9:X; + No
i=1,i#j
M+1
Yo =g;X; + Z 9:X; + N}
i=1,i#j

(59)

(60)

have the same distribution, where N is an i.i.d. sequence of
a random variable N which is Gaussian with zero-mean and
variance (1 — g?&jz), and is independent of all other random
variables. Then, we have

h(Ys) = h(Ys) (61)
~ M+1
=h|gX;+ Y 9Xi+ Ny (62)
i=1,i#j
> 1 (9,%;) (63)
= nloglgj| + h(X;) (64)

where (63) is due to the differential entropy version of
[38, Problem 2.14]. Substituting this into (31) gives us
(32).

B. Role of a Helper

Intuitively, a cooperative jamming signal from a helper may
potentially increase the secrecy of the legitimate transmitter-
receiver pair by creating extra equivocation at the eavesdrop-
per. However, if the helper creates too much equivocation,
it may also hurt the decoding performance of the legitimate
receiver. Since the legitimate receiver needs to decode message
W by observing Y, there must exist a constraint on the coop-
erative jamming signal of the helper. To this end, we develop a
constraint on the differential entropy of (the noisy version of)
the cooperative jamming signal of any given helper, helper j
in (65), in terms of the differential entropy of the legitimate
user’s channel output and the message rate H (W), in the
following lemma. The inequality in this lemma, (65), can
alternatively be interpreted as an upper bound on the mes-
sage rate, i.e., on H(W), in terms of the difference of the
differential entropies of the channel output of the legitimate
receiver and the channel input of the jth helper; in particular,
the higher the differential entropy of the cooperative jamming
signal the lower this upper bound will be. This motivates not
using i.i.d. Gaussian cooperative jamming signals which have
the highest differential entropy.

Finally, we note as an aside that, since this upper bound
is derived based on the reliability of the legitimate user’s
decoding (not involving any secrecy constraints), it can be used
in d.o.f. calculations in settings not involving secrecy. We show
an application of this lemma in a non-secrecy context by
developing an alternative proof for the multiplexing gain of the
K-user Gaussian interference channel, which was originally
proved in [37], in Appendix A.

Lemma 2: For reliable decoding at the legitimate receiver,
the differential entropy of the input signal of helper j, X,
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must satisfy

h(X; +N) < (Y1) — HW) + nc (65)

where c is a constant which does not depend on P, and Nisa
new Gaussian noise independent of all other random variables
with 012\7 < h% and N is an i.i.d. sequence of N.

J

Proof: To reliably decode the message at the legitimate
receiver, we must have

= h(Y1) = h(Y1]|Xy) (67)
M+1

=h(Y1)—h <Z hiX; + N1> (68)
=2

< h(Y1) = h(h;X; +Ny) (69)

< h(Y1) = b (hX; + 1N (70)

— h(Y)) —h(xj +N) tne (D)

where (69) and (70) are due to the differential entropy version
of [38, Problem 2.14]. In going from (69) to (70), we also used
the infinite divisibility of Gaussian distribution and expressed
N, in its stochastically equivalent form as N; = th + N’
where IN is an i.i.d. sequence of random variable N’ which is
Gaussian with zero-mean and appropriate variance, and which
is independent of all other random variables. H

Note that, although we develop the inequality in (65) for the
message of transmitter-receiver pair 1, this result also holds
for the message of any transmitter-receiver pair in a multiple-
message setting provided that the zero-mean Gaussian noise
N has an appropriately small variance.

C. Real Interference Alignment

In this subsection, we review pulse amplitude modulation
(PAM) and real interference alignment [34], [35], similar to
the review in [36, Sec. III]. The purpose of this subsection
is to illustrate that by using real interference alignment, the
transmission rate of a PAM scheme can be made to approach
the Shannon achievable rate at high SNR. This provides a
universal and convenient way to design capacity-achieving
signalling schemes at high SNR by using PAM for different
channel models as will be done in later sections.

1) Pulse Amplitude Modulation: For a point-to-point scalar

Gaussian channel,
Y=X+7 (72)

with additive Gaussian noise Z of zero-mean and variance o2,
and an input power constraint E [X?] < P, assume that the
input symbols are drawn from a PAM constellation,

C(an):a{_Qv_Q+1v"'aQ_1aQ}

where () is a positive integer and a is a real number to
normalize the transmit power. Note that, a is also the min-
imum distance dyin(C) of this constellation, which has the

probability of error
a2
—— ) (74
p < 802) (74)

(73)

A d? .
Pr(e) = Pr [X #X} < exp (—%) =ex
o
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where X is an estimate for X obtained by choosing the closest
point in the constellation C(a, @) based on observation Y.
The transmission rate of this PAM scheme is

R=10g(2Q + 1) (75)

since there are 2(Q) + 1 signalling points in the constellsation.
1—

For any small enough § > 0, if we choose Q = Pz and

a= 'yP%, where v is a constant independent of P, then

,YQP(i
8o2

2

Pr(e) < exp (— log P (76)

) and R >
and we can have Pr(e) — 0 and R — £ log P as P — oo. That
is, we can have reliable communication at rates approaching
% log P.

Note that the PAM scheme has small probability of error
(i.e., reliability) only when P goes to infinity. For arbitrary P,
the probability of error Pr(e) is a finite number. Similar to
the steps in [39] and [35], we connect the PAM transmission
rate to the Shannon rate in the following derivation. We note
that Shannon rate of I(X;Y") is achieveable with arbitrary
reliability using a random codebook:

R = I(X;Y) (77)
> I(X;X) (78)
= H(X) - H(X|X) (79)
=log(2Q + 1) — H(X|X) (80)
> log(2Q + 1) — 1 — Pr(e) log(2Q + 1) (81)
> [1 —Pr(e)] ——logP—1 (82)

where we use the Markov chain X — Y — X and bound
H(X|X) using Fano’s inequality. Therefore, we can achieve
the rate in (82) with arbitrary reliability, where for any fixed P,
Pr(e) in (82) is the probability of error of the PAM scheme
given in (76), which is a well-defined function of P. For a
finite P, while Pr(e) may not be arbitrarily small, the rate
achieved in (82), which is smaller than the rate of PAM in (75),
is achieved arbitrarily reliably. We finally note that as P goes
to infinity Pr(e) goes to zero exponentially, and from (82), both
PAM transmission rate and the Shannon achievable rate have
the same asymptotical performance, i.e., PAM transmission
rate has 1 Shannon d.o.f.

2) Real Interference Alignment: This PAM scheme for the
point-to-point scalar channel can be generalized to multiple
data streams. Let the transmit signal be

L
z=a’b= E a;b;
i=1

where ai,...,a; are rationally independent real numbers’
and each b; is drawn independently from the constellation
C(a, Q) in (73). The real value x is a combination of L data
streams, and the constellation observed at the receiver consists
of (2Q + 1) signal points.

(83)

7

ai,...,ar are rationally independent if whenever q1, . .., gy, are rational

numbers then Zle g;a; = 0 implies ¢; = 0 for all .
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By using the Khintchine-Groshev theorem of Diophantine
approximation in number theory, [34], [35] bounded the min-
imum distance d,,;, of points in the receiver’s constellation:
For any § > 0, there exists a constant kg, such that
k'(;a

dmin > W

(84)
for almost all rationally independent {a;}~ ,, except for a set
of Lebesgue measure zero. Since the minimum distance of the
receiver constellation is lower bounded, with proper choice of
a and @), the probability of error can be made arbitrarily small,
with rate R approaching %log P. This result is stated in the
following lemma, as in [36, Proposition 3].

Lemma 3 ([34], [35]): For any small enough § > 0, there
exists a positive constant v, which is independent of P, such
that if we choose

1-45
= 2(L+9) — A
Q="r =77
then the average power constraint is satisfied, 1i.e.,
E [XQ} < P, and for almost all {ai}le, except for a set
of Lebesgue measure zero, the probability of error is bounded

by

and (85)

Pr(e) < exp (—n,yP‘s) (86)

where 1., is a positive constant which is independent
of P.

Furthermore, as a simple extension, if b; are sampled inde-
pendently from different constellations C;(a, @;), the lower
bound in (84) can be modified as

ksa
dmin > (o, Q)L 110 87

IV. WIRETAP CHANNEL WITH ONE HELPER

In this section, we consider the Gaussian wiretap channel
with one helper as formulated in Section II-A for the case
M = 1. In this section, we will show that the secure d.o.f. is %
for almost all channel gains as stated in the following theorem.
The converse follows from the general secrecy penalty upper
bound in Section III-A and the cooperative jamming signal
upper bound in Section III-B. The achievability is based on
cooperative jamming with discrete signaling and real interfer-
ence alignment.

Theorem 1: The secure d.o.f. of the Gaussian wiretap chan-
nel with one helper is %for almost all channel gains.

A. Converse

We start with (32) of Lemma 1 with M = 1 and by choosing
J=1

M+1

nR< > h(X;)+nd (88)
i=1,i#j]

= h(Xy) + nc (89)

< W(Y1) = HW) + ner (90)

< glogP—H(W)—Fang 1)
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Fig. 7. Tllustration of interference alignment for the Gaussian wiretap channel
with one helper.

where (90) is due to Lemma 2. By noting H(W) = nR and

using (5), (91) implies that
D. <1
T2
which concludes the converse part of the theorem.

92)

B. Achievable Scheme

To show the achievability by interference alignment, we
slightly change the notation. Let X 2 g1X1, X = g2 X2,
« 2 hi/g1, and 8 2 ha/ga. Then, the channel model becomes

Y1 = OtXl +ﬁX2 +N1 (93)
Y2:X1+X2+N2 94)

Here X is the input signal carrying the message W of
the legitimate transmitter and X5 is the cooperative jamming
signal from the helper. Our goal is to properly design X and
X5 such that they are distinguishable at the legitimate receiver,
meanwhile they align together at the eavesdropper. To prevent
decoding of the message signal at the eavesdropper, we need
to make sure that the cooperative jamming signal occupies the
same dimensions as the message signal at the eavesdropper;
on the other hand, we need to make sure that the legitimate
receiver is able to decode Xo, which in fact, is not useful.
Intuitively, secrecy penalty is almost half of the signal space,
and we should be able to have a secure d.o.f. of % This is
illustrated in Fig. 7, and proved formally in the sequel.

We choose both of the input symbols X; and X, indepen-
dent and uniformly distributed over the same PAM constella-
tion in (73). Since X is an i.i.d. sequence and is independent
of X, the following secrecy rate is always achievable [2]

Cs > I(X1;Y1) — 1(X1;Y5) (95)

In order to show that Dg > %, it suffices to prove that this
1

lower bound provides 3 secure d.o.f. d.o.f. To this end, we
need to find a lower bound for I(X;;Y7) and an upper bound

for I(X1;Y5). It is clear that
H(X1) = H(X3) = log|C(a, Q)| = log(2Q + 1)

Also, note that, besides the additive Gaussian noise, the
observation at receiver 1 is a linear combination of X; and
Xg, i.e.,

(96)

Y: — N1 = aX; + X2 o7

where « and (3 are rationally independent almost surely.
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By Lemma 3, for any small enough § > 0, there exists a
positive constant -, 1wglich is independent of P, such that if
we choose Q = P22+ and a = WP%/Q, then the average
power constraint is satisfied and the probability of error is
bounded by

Pr [Xl ” Xl} < exp (=, P?) (98)
where 7, is a positive constant which is independent of P and
X, is the estimate for X; obtained by choosing the closest
point in the constellation based on observation Y7.

By Fano’s inequality and the Markov chain X; — Y —
X 1, we know that

H(X, Y1) < H(X|X) (99)
< 1+4exp (—n,P°)log(2Q +1) (100)

which means that
I(X1;Yh) = H(Xy) — H(X1|1) (101)

> [1—exp (-1, P?)] log(2Q + 1) — 1 (102)
On the other hand,

I(X1;Y2) < I(X1; Xy + Xo) (103)
= H(X1 + X2) — H(X3|X1) (104)
— H(X, + X5) — H(X,) (105)
< log(4Q +1) —log(2Q +1)  (106)
= log ;lg I 1 (107)
<1 (108)

where (106) is due to the fact that entropy of the sum X + X5
is maximized by the uniform distribution which takes values
over a set of cardinality 4¢Q) + 1.
Combining (102) and (108), we have
Co > I(X1:Y1) — I(X1: ) (109)
> [1—exp (=1, P)] log(2Q + 1) — 2 (110)
[1 — exp (—n.YP‘S)} log (2P2(12_+56> + 1) —2 (111)

_ 1= (% 1ogP> + o(log P)

— 112
2456 (112)
where the o(+) is the little-o function. If we choose § arbitrarily
small, then we can achieve secure d.o.f., which concludes the
achievability part of the theorem.

V. WIRETAP CHANNEL WITH M HELPERS

In this section, we consider the Gaussian wiretap channel
with M helpers as formulated in Section II-A for general
M > 1. In this section, we will show that the secure
d.of. is % for almost all channel gains as stated in the
following theorem. This shows that even though the helpers
are independent, the secure d.o.f. increases monotonically with
the number of helpers M. The converse follows from the
general secrecy penalty upper bound in Section III-A and
the cooperative jamming signal upper bound in Section III-B.
The achievability is based on cooperative jamming of M
helpers with discrete signaling and real interference alignment.
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Fig. 8. Illustration of interference alignment for the Gaussian wiretap channel with M helpers. Here, M = 2.
Theorem 2: The secure d.o.f. of the Gaussian wiretap Then, the observations of the receivers are
chqnnel with M helpers is 7 for almost all channel i1, . M1
: 10k
gains i=) Vit [ DY Ui |+ M (121)
= g1l —
= j=2
A. Converse M+l
k
. . . . Vo= 3 (Vi Uk) + N (122)
We again start with (32) of Lemma 1 with the selection of o hi

J=1

M+1
nR< > h(X;)+nd (113)
i=1,i#j
M+1
= > h(X;) +nd (114)
1=2
< M[h(Y1) = H(W)] + nco (115)

where (115) is due to Lemma 2 for each jamming signal X,
1=2,3,...,M+ 1. By noting H(W) = nR, (115) implies
that

(M +1)nR < Mh(Y1) + ncg (116)
n
<M (5 1ogP) + newo (117)
which further implies from (5) that
M
D, < 118
T M+1 (118)

which concludes the converse part of the theorem.

B. Achievable Scheme

Let {Va, V3, ..., Vary1, Uz, Us, ..., Upry1} be mutu-
ally independent discrete random variables, each of which
uniformly drawn from the same PAM constellation C(a, Q)
in (73), where a and @ will be specified later. We

choose the input signal of the legitimate transmitter
as
M+1
xi=Y 2y (119)
= g1l

and the input signal of the jth helper, j = 2,3,..., M +1, as

(120)

The intuition here is as follows. We use M independent
sub-signals Vi, k = 2,3,..., M + 1, to represent the sig-
nals carrying the original message W. The input signal X
is a linear combination of Vis. To cooperatively jam the
eavesdropper, each helper k aligns the cooperative jamming
signal Uy, in the same dimension as the sub-signal V}, at the
eavesdropper. At the legitimate receiver, all of the cooperative
jamming signals Uys are well-aligned such that they occupy

a small portion of the signal space. Since, almost surely,

higs higs hignia
Y gihe’ gihs’ """ gihym4a

} are rationally independent, sig-

nals {Vg, Vs, ooy Vs, Zj‘i;l Uj} can be distinguished by
the legitimate receiver. As an example, the case of M = 2 is
shown in Fig. 8.

Since, for each j # 1, X; is an iid. sequence and
independent of X, the following secrecy rate is achievable [2]

Cs > I(X1; Y1) — I(X1; Ya) (123)

Now, we first bound the probability of decoding error.
Note that the space observed at receiver 1 consists of
(2Q + HM(2MQ + 1) points in M + 1 dimensions, and
the sub-signal in each dimension is drawn from a con-
stellation of C(a, M Q). Here, we use the property that
C(a,Q) C C(a,MQ). By Lemma 3, for any small
enough § > 0 and for almost all rationally independent
{ , legz, le}glj e Zifﬁ:i }, except for a set of Lebesgue
measure zero, there exists a positive constant 0 y\ghich is
independent of P, such that if we choose () = P2@37+1+5 and
a = 'yP%/ @, then the average power constraint is satisfied
and the probability of error is bounded by

Pr [Xl #* )A(l} < exp (—n.YP‘s)

(124)

where 7, is a positive constant which is independent of P and
where X is the estimate of X; by choosing the closest point
in the constellation based on observation Y;.
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By Fano’s inequality and the Markov chain X; — Y7 —
X1, we know that

H(X,|Y1) < (X1|X1) (125)
< 1+ exp (=1, P°) log(2Q + 1) (126)
which means that
I(X1;Y1) = H(X1) — H(X1|Y1) (127)
> [1—exp (1, P°)] log(2Q + 1) —1 (128)
On the other hand,
M+1
I(X1;Ys) < T <X1; > Z—:(Vk +Uk)> (129)
k=2
M+1 g
k
=H = (Vg ,
(Z I (Vi + Uk))
k=2
M+1 g
-H Ik ‘X 130
<Z (Vi +U) 1> (130)
k=2
M+1 p
k
=H = (Vg ,
(Z I (Vi + Uk))
k=2
M+1 ”
-H =0 131
(ko) o
< log(4Q + )™ —log(2Q + )™ (132)
4Q +1
= M log 133
2Q +1 (133)
<M (134)
where (132) is due to the fact that entropy of the sum
2”21 Z’“ (Vi + Uy) is maximized by the uniform distribution

which takes values over a set of cardinality (4Q + 1)
Combining (128) and (134), we have

Cs > I(X1; Y1) — I(X1:Y2) (135)
> [1—exp (—n,P°)]log(2Q + 1) — (M +1) (136)
Z [1 — exp ( 77 )} P2(1\/I+1+,§) + 1)1\1
(M +1) (137)
_ MO -9)

where o(-) is the little-o function. If we choose ¢ arbitrarily
small, then we can achieve ML_H secure d.o.f., which concludes
the achievability part of the theorem.

VI. BROADCAST CHANNEL WITH CONFIDENTIAL
MESSAGES AND M HELPERS

In this section, we consider the Gaussian broadcast channel
with confidential messages and M helpers formulated in
Section II-B. When there are no helpers, i.e., M = 0, due
to the degradedness of the underlying Gaussian broadcast
channel, one of the users (stronger) has the secrecy capacity
which is equal to the secrecy capacity of the Gaussian wiretap
channel, and the other user (weaker) has zero secrecy capacity.
Therefore, for both users, the secure d.o.f. is zero, implying
that the sum secure d.o.f. of the system is zero. Therefore,
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we consider the case M > 1. In this section, we will show
that the sum secure d.o.f. is 1 for any M > 1, as stated in the
following theorem.

Theorem 3: The sum secure d.o.f. of the Gaussian broad-
cast channel with confidential messages and M > 1 helpers
is 1 for almost all channel gains.

A. Converse

An immediate upper bound for the secure d.o.f. of this
problem is 1, i.e., Dy s» <1 for any M. This comes from the
fact that the d.o.f. for the Gaussian broadcast channel without
any secrecy constraints is 1, and this constitutes an upper for
the sum secure d.o.f. also.

B. Achievable Scheme

In the following, we will show that a sum secure d.o.f. of
1 can be achieved for the case of M = 1. Since the
achievable scheme with a single helper achieves the upper
bound D, s; < 1, the sum secure d.o.f. for all M > 1 is 1.
Therefore, if we have more than one helper, then all but one
helper may remain silent.

We use the equivalent channel expression in (93) and (94).
Let V1,V> and U be three mutually independent random
variables which are identically and uniformly distributed over
the constellation C(a, @) in (73), where a and Q will be

specified later. We assign channel inputs as X =n+2 Vs
and Xo = U. Then, the observations at the two recelvers
are:
Yi=aVi +B(Va+U)+ Ny (139)
%=t 0)+ v, (140)

We use two independent variables V; and V5 to be the signals
carrying the messages W; and W, that go to the two receivers.
In order to ensure that the messages are kept secure against the
unintended receiver, we align the cooperative jamming signal
U from the helper in the dimension of V5 at receiver 1, and
in the dimension of V; at receiver 2. This is illustrated in
Fig. 9.

Since X is an i.i.d. sequence, the following secrecy rate
pair is achievable [4, Th. 4]

Ry > I(V1; Y1)
Ry > I(Va;Ys) —

— I(V4;Ya|Va)
I(Va; Y1[V1)

(141)
(142)

By Lemma 3, it is easy to verify that, almost surely,
receiver ¢ can decode V;, for ¢ = 1,2 with arbitrarily small
probability of decoding error, i.e., for any small enough
d > 0 and for almost all rationally independent {«, 3}, except
for a set of Lebesgue measure zero, there exists a positive
constant 7, which is independent of P, such that if we choose
Q = P2+ aq = 'yP% /@, then the average power constraint
is satisfied and the probability of error is bounded by

Pr |V # Vi < exp (=, P?) (143)
where 7, is a positive constant which is independent of P and
V; is the estimate for V; by choosing the closest point in the
constellation based on observation Y;.
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By Fano’s inequality and the Markov chain V; — Y; — Vi,
we know that

H\Vi|Y;) < H(Vi|V;) (144)
< 1+exp(—n,P°)log(2Q +1) (145)
which means that
I(Vi; Vi) = H(V;) — H(Vi|Y;) (146)
> [1—exp (—n,P?)]log(2Q +1) —1 (147)
1-6 /1
for7=1 or 2.
On the other hand, for 7 = 1, we have
HMJWQ<IQQM+U+§%M) (149)
=HW+U)-H() (150)
<1 (151)
Similarly, for ¢ = 2, we have
1V Yi[h) < T (VasaVi + BV + U)[VA)  (152)
= H(Va +U) - H(U) (153)
<1 (154)

which implies that the following sum secrecy rate is achievable

2-29 <%1ogP> +o(logP)  (155)

R Ry >

1+ Ry > 219

If we choose § small enough, then we can have Dy s > 1.

Combining this with the upper bound D, 5; < 1, we conclude
that

Dy =1 (156)

for almost all channel gains.

VII. TWO-USER INTERFERENCE CHANNEL WITH
CONFIDENTIAL MESSAGES AND NO HELPERS

In this section, we consider the two-user Gaussian inter-
ference channel with confidential messages formulated in
Section II-C for the case of no helpers, i.e., M = 0. The
case of M > 1 will be presented in Section VIII. For the case
of no helpers, we show that the sum secure d.o.f. is % as stated
in the following theorem.

lustration of interference alignment for the Gaussian broadcast channel with confidential messages and one helper.

Theorem 4: The sum secure d.o.f. of the two-user Gaussian
interference channel with confidential messages is % for almost
all channel gains.

A. Converse
We first start with (31) of Lemma 1 to upper bound the
individual rate R; of message W3
’I’LRl S h(Xl) + h(Xg) — h(Yg) + nc (157)
< W(X1) 4+ h(Y1) — HW) — h(Ya) 4+ neiy (158)
< h(Y2) = H(W2) + h(Y1) — H(Wh)
—h(Yg) + ncio (159)
where (158) is due to applying Lemma 2 for h(X5) and (159)

is due to applying Lemma 2 once again for h(Xl). By noting

that H(W1) = nR; and H(Ws) = nRs, from (159), we have
2nR1 +nRy < h(Yl) + ncio (160)

We use the same method to get a symmetric upper bound on
the individual rate Ry of message W5 as

nRy + 2nRs < h(Y2) + neis (161)
Then, combining (160) and (161), we get
3(nR1 +nR2) < h(Y1)+h(Ys) +ncia  (162)
<2 (g 1ogP) + nes (163)
which means
Doy <> (164)

which concludes the converse part of the theorem.

B. Achievable Scheme

Let {V4,U1, Va,Us} be mutually independent discrete ran-
dom variables. Each of them is uniformly and independently
drawn from the same constellation C(a, @) in (73), where a
and @ will be specified later. Here, the role of V; is the signal
carrying message W;, and the role of U; is the cooperative
jamming signal to help the transmitter-receiver pair j # i. We
choose the input signals of the transmitters as:

h
Xy = Vi + =Us

165
P (165)
h

Xy = Vo4 2 (166)
h2 2
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With these input signal selections, observations of the receivers
are

ha,1h12

Y1 = h1aVi + hea (U + V) + Uy + N1 (167)
2,2
ho1h

Ya = hooVa + hio(Usz + Vi) + %Ul + Ny (168)
1,1

Since, for each 7 and j # 4, V; and U; are not in the same
dimension at both receivers, we align U; in the dimension of
V; at receiver ¢ such that V; is secure and V; can occupy a
larger space. This is illustrated in Fig. 10.

By [4, Th. 2], we know that the following secrecy rate pair
is achievable

Ry > I(Vi; Y1) = I(Vi; Ya|Va)
Ry > I(V; Ya) = I(Va; Y1 |Vh)

(169)
(170)

For receiver 1, by Lemma 3, for any small enough ¢ > 0 and
for almost all rationally independent {hm,hgyl, hz,’::;’z
except for a set of Lebesgue measure zero, there exists a
positive constant -, IWEIiCh is independent of P, such that if
we choose Q = P2G+5 and a = 'yP%/Q, then the average
power constraint is satisfied and the probability of error is
bounded by

bl

Pr[Vi # Vi < exp (=, P) (171)

where 7, is a positive constant which is independent of P and
Vi is the estimate of V; by choosing the closest point in the
constellation based on observation Y7.

To lower bound the achievable rate {1, we first note that

I(Vi; Y1) > I(Vi; V) (172)
= H(Vi) — H(Vi|V1) (173)
> [1—exp (—n,P%)]log(2Q + 1) — 1 (174)
= ;—;(; (% logP) + o(log P) (175)
On the other hand,
I(V1;Ya|Va) < I1(Vh; Y2, UslVa) (176)
= I(V1;Y2|Va,Uy) (177)
< I (Vishio(Uz + V1)[V2,Ur)  (178)
= H(Uy + V1) — H(Us) (179)
<log(4Q +1) —log(2Q +1)  (180)
<1 (181)

Illustration of interference alignment for the two-user Gaussian interference channel with confidential messages (no helpers).

Combining (175) and (181), we obtain

Ry > I(Vi; Y1) — I(V1; Ya|Va) (182)
1—-6 /1
>_—— [ =logP log P 1
_3+5(2 og >+o(og ) (183)

By applying this same analysis to rate Ry, we can obtain a
symmetric result for Ry. Then, by choosing § arbitrarily small,

we can achieve 2 sum secure d.o.f.

3

VIII. TWO-USER INTERFERENCE CHANNEL WITH
CONFIDENTIAL MESSAGES AND M HELPERS

In this section, we consider the two-user Gaussian inter-
ference channel with confidential messages formulated in
Section II-C for the general case of M > 1 helpers. For this
general case, we show that the sum secure d.o.f. is 1 as stated
in the following theorem.

Theorem 5: The sum secure d.o.f. of the two-user Gaussian
interference channel with confidential messages and M > 1
helpers is 1 for almost all channel gains.

A. Converse

An immediate upper bound for the secure d.o.f. of this
problem is 1, i.e., Dy s < 1 for any M. This comes from the
fact that the d.o.f. for the two-user interference channel without
any secrecy constraints is 1, and this constitutes an upper for
the sum secure d.o.f. also. The fact that the d.o.f. of the two-
user interference channel is 1 was first proved in [37]. We
provide an alternative proof to this fact using the techniques
developed in this paper in Appendix A.

B. Achievable Scheme

In the following, we will show that a sum secure d.o.f. of
1 can be achieved for the case of M 1. Since the
achievable scheme with a single helper achieves the upper
bound D, sy < 1, the sum secure d.o.f. for all M > 1 is 1.
Therefore, if we have more than one helper, then all but one
helper may remain silent.

Let {V1,Va,U} be mutually independent discrete random
variables. Each of them is uniformly and independently drawn
from the same constellation C(a, Q) in (73), where a and
@ will be specified later. Here, the role of V; is the signal
carrying message W;, and the role of U is the cooperative
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Fig. 11. Tlustration of interference alignment for the two-user Gaussian

interference channel with confidential messages and one helper.

jamming signal from the helper. We choose the input signals
of the transmitters as:

h

X, = 22y, (184)
h12
h

Xy = 2Ly, (185)
h2 1

Xy =U (186)

With these input signal selections, observations of the receivers
are

h3 2h1 1

Y, = 0 —=——V1 + hs, 1(U+V2) + N (187)
1,2
h3z1ha 2
Y, = : ———==Vo + h32(U + V1) + N2 (188)
2,1

For each 7 and j # i, we align U in the dimension of V; at
receiver ¢ such that V; is secure and V; can be decoded. This
is illustrated in Fig. 11.

Since U is an i.i.d. sequence, by [4, Th. 2], we know that
the following secrecy rate pair is achievable

Ry > I(Vi; Y1) — I(Vi; Ya|Va)
Ry > I(Va;Yo) — I(Va; Y1|Vh)

(189)
(190)

For receiver 1, by Lemma 3, for any small enough ¢ > 0 and
for almost all rationally independent {%, h371}, except
for a set of Lebesgue measure zero, there exists a positive
constant 'y{iv;/hich is independent of P, such that if we choose
Q = P2e%9 and a = 'yP%/Q, then the average power
constraint is satisfied and the probability of error is bounded
by

Pr Vi £ 4| < exp (—n, P

where 7, is a positive constant which is independent of P and
V1 is the estimate of V; by choosing the closest point in the
constellation based on the observation Y;.

To lower bound the achievable rate 12;, we first note that

(191)

I(Vi; Y1) > I(Vi; W) (192)
= H(W) - H(W|h) (193)
> [1—exp (=1, P?)]log(2Q + 1) — 1 (194)
1-6
=355 ( logP> + o(log P) (195)
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On the other hand,

I(Vi: Ya| Vo) < I(Vl; ha.o(U + V3)|V2) (196)
=HU+V,)—-H(U) (197)
<log(4Q +1) —log(2Q +1)  (198)
<1 (199)

Combining (195) and (199), we obtain
Ry > I(Vi; Y1) — I(Vh; Yz |Va) (200)
1
> 7T g ( 1ogP> + o(log P) (201)

By applying this same analysis to rate Ry, we can obtain a
symmetric result for Ry. Then, by choosing § arbitrarily small,
we can achieve 1 sum secure d.o.f. for almost all channel gains
for the M =1 case.

IX. K-USER MULTIPLE ACCESS WIRETAP CHANNEL

In this section, we consider the K-user multiple access
wiretap channel formulated in Section II-D. We show that the
sum secure d.o.f. of this channel is % as stated in the
following theorem.

Theorem 6: The sum secure d.o.f. of the K-user Gaussian

. . T K(K—1)
multiple access wiretap channel is RO+ T for almost all
channel gains.

A. Converse

We start with the sum rate and derive an upper bound similar
to Lemma 1

K K
nY Ry =Y H(W;)=HW) (202)
=1 =1
< I(WE Y1, YS) — IWE; YY) + neys (203)
= I(W[;Y1[Y3) + ness (204)
< I(XF5Y1[Y2) + ness (205)
= h(Y1|Y2) = h(Y1] Y3, X{) +ncis (206
= h(Y1Y2) — h(N Yo, XE) £ ncis (207)
= h(Y1]Y2) — h(N1) + negs (208)
< h(Y1[Y2) + neig (209)
= h(Yl, YQ) (Yg) “+ ncyy (210)
= h(X1,Xs,..., X, Y1, Y5)
—h(X1, X, ..., Xg|Y1,Ys)
—h(Yg) “+ neyy 211)

where (208) is due to the fact that N; is independent of
(Y2, XK). Besides, W 2 {W; 1, XK £ (Xy,..., Xk),
and, for each j, ~Xj = X; + NJ Here N, is an
i.i.d. sequence and Nj is a Gaussian noise with variance 02 <
min(1 /h?, 1/g7 2). Also, {N; } * , are mutually 1ndependent
and are independent of all other random variables. Thus,
K
nZRZ = h(Xl,Xg, NN ,XK,Yl,YQ)
i=1
~h(X1,Xa, ...,
—h(Yg) + neir

Xk|Y1,Y2)
212)
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< h(X1,Xa,..., Xk, Y1,Ys)
—h(X1,Xo,..., Xg|Y1, Y, XE)
—h(Y2) + nciz (213)
= h(X1,Xs,.... Xk, Y1,Y5)
—h(N, Ny, ..., Ng|Y, Yy, XK)
—h(Y2) + nciz (214)
= h(X1,Xs,.... Xk, Y1,Y5)
—h(N,Ny,...,Ng) — h(Y2) + neir (215)
< h(X1,Xa,..., Xk, Y1,Ys)
—h(Y2) + ncig (216)
= h(X1,Xg,...,Xg)
+h(Y1, Yo X, Xo, ..., Xk)
—h(Y2) + ncig (217)
< h(X1,Xo,...,Xg)—h(Y2) +ncig (218)
K
=Y " h(X;) = h(Y2) + nex (219)
j=1
K
<Y h(X;) + nea (220)
j=2

where (215) is due to the fact that (N1, ..., Ng) is indepen-
dent of (Y1, Y2, XK), (218) follows similar to (52), and (220)
is due to

h(Xl) < h(1 X1 + Nao) + neae < h(Y2) +neze (221)

which is similar to going from (31) to (32) in Lemma 1 by
using derivations in (59)-(64).

On the other hand, for each j, we have a bound similar to
Lemma 2

Z H(W, H(Wxj) (222)
i#]
I(W;,g]‘; Yl) + nco3 (223)
<I ZhiXi;Yl + ncas (224)
i#£]
=h(Y)—-h|Y, Z X | +nees  (225)
i#£j

=h (Yl) —h (thj + Nl) —+ ncag (226)
< h(Y1) = h(X;) + neaa (227)
where W, 2 {W;}E \{W;} which forms the Markov chain
Wy; — Xyzj — 2245 hiXi — Y. Therefore, for each j,

we have
h(X;) < h(Y1) =Y H(W;) + neas (228)

i#]

Now, continuing from (220) and incorporating (228), we
have

K ~
Z (X;) + neos (229)

K
n) R
i=1
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+ ncog  (230)

] >

-y HW)

j=2 i#]

Noting that H(W;) = nR;, this is equivalent to,

K-1) ZnR

We then apply this upper bound for each ¢ by eliminating
a different h(X;) each time in the same way that it was done
for h(X;) in (221) and have K upper bounds in total:

—1ZnR<

K. Thus,

nRy + )h(Yl) + nceg (231)

nR; + ) (Y1)+7L626 (232)

fori=1,2,...,

K
[K(K 1)+ 1} S nR; < K(K — D)h(Y1) +nezr (233)
j=1
<KK-1) (glogp) —+ ncag
(234)
that is,
K(K —1)
SRR T4

which concludes the converse part of the theorem.

D (235)

B. Achievable Scheme

In the Gaussian wiretap channel with M helpers, our achiev-
ability scheme divided the message signal into M parts, and
each one of the M helpers protected a part at the eavesdropper.
On the other hand, in the interference channel with confidential
messages, since each user had its own message to send, each
transmitter sent a combination of a message and a cooper-
ative jamming signal. We combine these two approaches to
propose the following achievability scheme in this K-user
multiple access wiretap channel. Each transmitter ¢ divides
its message into (K — 1) mutually independent sub-signals.
In addition, each transmitter ¢ sends a cooperative jamming
signal U;. At the eavesdropper Y3, each sub-signal indexed
by (i,7), where j € {1,2,..., K}\{i}, is aligned with a
cooperative jamming signal U;. At the legitimate receiver
Y1, all of the cooperative jamming signals are aligned in
the same dimension to occupy as small a signal space as
possible. This scheme is illustrated in Fig. 12 for the case
of K = 3.

We use in total K2 mutually independent random variables
which are

(236)
(237)

V;,j7
Ukv

i,5€{1,2,...,K},j#i
ke{l,2,...,K}

Each of them is uniformly and independently drawn from the
same constellation C(a, Q) in (73), where a and @ will be
specified later. For each ¢ € {1,2,..., K}, we choose the
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input signal of transmitter 7 as
S 9j
X; = iyt Ly,
? Z h] ,J h
Jj=1,j#i
With these input signal selections, observations of the receivers
are

(238)

K K gihi K
_ j
=3 > o Ve S U +N (239
=1 j=1,j#i k=1
K K i
_ 9iy, iy
e DOl Sl AES 3 R
i=1 j=1,j7#1¢
K K
=Y F U+ Y Vi |+ N (241)
j=1 " i=1,i#j
By [29, Th. 1], we can achieve the following sum secrecy
rate
K
sup » R; > I(V;Yh) — I(V;Ya) (242)
i=1
where V2 (Vi 1,5 € {1,2,... , K},j #i}.

Now, we first bound the probability of decoding error.
Note that the space observed at receiver 1 consists of
(2Q + 1)KE-D(2KQ +1) points in K(K — 1) + 1 dimen-
sions, and the sub-signal in each dimension is drawn from
a constellation of C(a, KQ). Here, we use the property that
C(a,Q) C C(a,KQ). By Lemma 3, for any small enough
0 > 0 and for almost all rationally independent factors in
Y] except for a set of Lebesgue measure zero, there exists
a positive constant 7, Wthh 1s independent of P, such that
if we choose Q = Pm and a = 'yP /Q, then
the average power constraint is satisfied and the probability of
error is bounded by

Pr {V ” \7} < exp (=15 PY) (243)

where 7, is a positive constant which is independent of
P and V is the estimate of V by choosing the closest point
in the constellation based on observation Y;.

Tllustration of interference alignment for the K -user Gaussian multiple access wiretap channel. Here, K = 3.

By Fano’s inequality and the Markov chain V — Y} — v,
we know that

H(V|Yy) < H(V|V)
< 1l+exp (

(244)
P°)log(2Q + 1)K =1 (245)

which means that

I(V;Y1) = H(V)—- H(V|Y7) (246)
> [1—exp (—n,P%)] log(2Q + 1)K &1 _
[1- exp (=, P)] ey
On the other hand,
K K
Ivive) <1 (Vi %o+ Y vy, (248)
j=1"" i=1,i#j
9j -
=H|Y Ui+ Y Vi
j=1"" i=1,i#j
K K
—H ZZ—J Ui+ Y Vi [V] 49
j=1""1 i=1,i#j
K 7 K
—H Zh—J Ui+ Y. Vi,
j=1""1 i=1,i#j
K .
- Z%UJ (250)
j=1"
2KQ + 1
< Klog ——— 251
=0 1 @1
< KlogK (252)

where (250) is due to the fact that entropy is maximized
by the uniform distribution which takes values over a set of
cardinality (2K Q + 1)¥
Combining (247) and (252), we obtain
K
sup » R; > I(V; Y1)
i=1

—I(V;Yy) (253)

vV

[1—exp (—nvP‘s)} log(2Q + 1)K (E-D
1-KlogK (254)
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KK -1)(1-9)
TKE-1)+1+0

(% log P> +o(logP)  (255)

where o(-) is the little-o function. If we choose ¢ arbitrarily
small, then we can achieve % sum secure d.o.f. for

+1
almost all channel gains.

X. DIScUSSION
A. CSI of the External Eavesdropper

The results in this paper are all critically dependent on
the availability of all channel state information (CSI) at
all entities. We utilize this CSI information to design the
transmitter signals so that they align at the legitimate receiver
and the eavesdropper in a certain desired manner. Availability
of legitimate receiver’s CSI can be justified by the feedback
links. Availability of the eavesdropper CSI can be justified
only when the eavesdropper is also a legitimate user of the
system, as in the case of interference channel with confidential
messages. For the case of external eavesdroppers, generally,
the CSI of the eavesdropper link will not be available, as
the eavesdropper will not feed her CSI back, and even when
she does, she will not be truthful. Therefore, studying the
case where eavesdropper CSI is not available is practically
important (and also theoretically challenging). There have
been some recent results on this topic [24], [40]-[42]; see
also, e.g., [43] and [44], for the multiple-input multiple-output
(MIMO) setting.

References [24] and [40] utilized interference alignment to
obtain secure d.o.f. for ergodic fading channel models with
secrecy constraints. Although it is infeasible to put all of the
signals into the same sub-space at the eavesdropper without
eavesdropper CSI, the total d.o.f. the eavesdropper can observe
is limited to 1. Since mixing signals together already provides
a certain amount of secrecy to those signals, even when the
eavesdropper CSI is not known at the transmitter(s), secure
d.o.f. can be obtained as shown in [24] and [40].

More recently, references [41] and [42] introduced the
concept of blind cooperative jamming to deal with the absence
of eavesdropper CSI in a system where the legitimate receiver
CSl is available. In such a system, [41], [42] let all cooperative
jamming signals span the entire space at the eavesdropper to
limit the information leakage to the eavesdropper, while align-
ing the cooperative jamming signals in the same dimension
at the legitimate receiver using only the legitimate receiver
CSI. More specifically, as an extension of this work, [42]
showed that with the new blind cooperative jamming scheme,
for the M-helper wiretap channel described in Section II-A
and analyzed in Section V, the same secure d.o.f. of MLH
can be achieved with no eavesdropper CSI and only with
legitimate receiver CSI. Since this is also an upper bound,
this implies that the exact secure d.o.f. of such as system
is 2. However, the problem remains open in all other

M+1
channel models, including the multiple access wiretap channel.

B. Discontinuity of the Secure d.o.f. in the
Channel Gain Space

We next comment on the term “for almost all channel gains”
that appears in all achievability proofs in this paper. This term
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is due to real interference alignment [34], [35], which is based
on Diophantine approximation in number theory. The field
of Diophantine approximation in number theory deals with
approximation of real numbers with rational numbers.
[34, Th. 1 (Khintchine-Groshev)] states that such approxima-
tion, which is closely related to our decoding problem, has a
lower bound except for a set A with zero Lebesgue measure.
The set Q of all rational numbers (channel gains) falls into
the set A. In addition, even some sets of irrational numbers
(channel gains) also fall into this subset. For example, consider
the Gaussian wiretap channel with one helper. If the channel
between the transmitters and the eavesdropper is stochastically
degraded with respect to the channel between the transmitters
and the legitimate receiver, then the coefficients o and [
in (97) are equal, which results this case falling into the set Q
of rational channel gains® and thereby falling into the set A,
even though they are irrational numbers. In fact, the exact
secure d.o.f. for this case is known to be zero due to [11].
This leads to an interesting observation: the secure d.o.f. is
discontinuous along the whole o = 3 line in the channel gain
space, in addition to at all rational number points. We note that
the secure d.o.f. with rational channel gains remains unknown.
We also remark that a similar discontinuity phenomenon was
investigated without secrecy constraints in [39]. For the K-user
fully-connected Gaussian interference channel, it is widely
known that the sum d.o.f. is K/2 for almost all channel
gains [45]. However, in [39], the d.o.f. for any Gaussian
interference channel with nonzero rational channel gains is
shown to be strictly smaller than K/2.

C. Complex Channel Gains

In the literature, wireless communication channels are
generally modeled either as time-varying or time-invariant
(constant), and channel gains are modeled either to come
from complex numbers or real numbers. Generally, converse
proofs carry over to one another in these domains. In the
complex case, the scaling of rates with %logP needs to be
replaced with log P due to real and imaginary components.
Achievability techniques also carry over from one setting to
another. To the best of our knowledge, there almost always
exists a one-to-one connection between interference alignment
for time-varying complex channels (with symbol extension)
and time-invariant channels (with real interference alignment).
Examples include: the K-user Gaussian interference chan-
nels in [45] and [35]; the K-user Gaussian interference
compound wiretap channel in [24, Sec. IV] and [26]; and
the 2 x 2 x 2 interference channel in [46, Sec. III.A] and
[46, Sec. III.B]. The channel models we have investigated
in this paper fall into the class of time-invariant (constant)
real channel gains. However, we believe that the techniques
and results in this paper can be applied to the models
with time-varying and/or complex channel gains. In addition,
[28, Th. 5.6, p. 154] provided an interesting achievable scheme
achieving the same 0.5 secure d.o.f. for the Gaussian wiretap

8This is due to the approximation nature of the decoding problem (see [34,
Eqn. (8))).
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channel with a helper where the channel gains are complex
and constant.

XI. CONCLUSION

We determined the secure d.o.f. of several fundamental
channel models in one-hop wireless networks. We first con-
sidered the Gaussian wiretap channel with one helper. While
the helper needs to create interference at the eavesdropper,
it should not create too much interference at the legitimate
receiver. Our approach is based on understanding this trade-off
that the helper needs to strike. To that purpose, we developed
an upper bound that relates the entropy of the cooperative jam-
ming signal from the helper and the message rate. In addition,
we developed an achievable scheme based on real interference
alignment which aligns the cooperative jamming signal from
the helper in the same dimension as the message signal. This
ensures that the information leakage rate is upper bounded by
a constant which does not scale with the power. In addition,
to help the legitimate user decode the message, our achiev-
able scheme renders the message signal and the cooperative
jamming signal distinguishable at the legitimate receiver. This
essentially implies that the message signal can occupy only
half of the available space in terms of the d.o.f. Consequently,
we showed that the exact secure d.o.f. of the Gaussian wiretap
channel with one helper is % by these matching achievability
and converse proofs. We then generalized our achievability
and converse techniques to the Gaussian wiretap channel
with M helpers, Gaussian broadcast channel with confidential
messages and helpers, two-user Gaussian interference channel
with confidential messages and helpers, and K -user Gaussian
multiple access wiretap channel. In the multiple-message set-
tings, transmitters needed to send a mix of their own messages
and cooperative jamming signals, which can be interpreted as
applying channel prefixing. We determined the exact secure
d.o.f. in all of these system models.

APPENDIX A
AN ALTERNATIVE PROOF FOR THE MULTIPLEXING GAIN
OF THE K -USER GAUSSIAN INTERFERENCE CHANNEL

The original proof for this setting is given by [37]. Here,
we provide an alternative proof for the K = 2 case by using
Lemma 2, and then extend it to the case of general K.

For K = 2, the channel model for the two-user Gaussian
interference channel is

Yi = hi1 Xi+ho1 Xo+ Ny (256)
Yy = h12X1 + ho 2o Xo + N> (257)

We start with the definition of the sum rate
nRy +nRy = H(W1, W) (258)

= H(W17W2|Y1,Y2) + I(W17W2;Y1,Y2)

(259)
< I(Wi, Wa; Y1, Y2) + neag (260)
— h(Y1,Y2) — (Y1, Yo Wi, Wa) + nesg
261)
< h(Y1,Y3)
—h(Y1,Y2|Xq,Xg, Wi, Wa) +ncag (262)
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< h(Y1,Y32) + nesp (263)
= h(X1,X5,Y1,Yy)
—h(X1,X5|Y1,Y3) + neso (264)
< h(X1;X27Y17Y2)
—h(X1,X5Y1, Y2, X1, Xo) +neso (265)
< h(X1,X2,Y1,Ys) + nesy (266)
= h(Xl, Xg) + h(Y1, Y2|X1, Xz) + ncsy
(267)
< h(xh Xz) + ncse (268)

where the last inequality follows similar to (52) after a
derivation similar to (54)-(58), and, for each j, Xj =X +Nj.
Here Nj is an i.i.d. sequence of Nj, which is Gaussian
with variance 0? < min(1/h2,1/h2,). Also, {N;}<, are
mutually independent, and are independent of all other random
variables.

Then, we apply Lemma 2 to characterize the interference
from X; to transmitter-receiver pair 2 and from Xs to
transmitter-receiver pair 1

nRy +nRy < h(Xy,X3) + ness (269)
= h(X1) 4 h(X32) 4 ncss (270)
< h(Y2) = H(W2) 4+ h(Y1)

—H(W1) + ness (271)

By noting that H(W;) = nRy and H(W3) = nRy, we have

2(7”LR1 + TLRQ) < h(Yg) + h(Yl) + ncas 272)
n
<2 (5 log P) + nes (273)
which implies that
Ds 2 lim sup L R (274)
P—oo 5 log P

i.e., the multiplexing gain of the two-user Gaussian interfer-
ence channel is not greater than 1. By the argument in [37,
Proposition 1], we can conclude that the multiplexing gain of
the K -user Gaussian interference channel is at most %
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