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Secure Degrees of Freedom of One-Hop Wireless
Networks With No Eavesdropper CSIT

Pritam Mukherjee, Jianwei Xie, and Sennur Ulukus, Fellow, IEEE

Abstract— We consider three channel models: the wiretap
channel with M helpers, the K -user multiple access wiretap
channel, and the K -user interference channel with an external
eavesdropper, when no eavesdropper’s channel state informa-
tion (CSI) is available at the transmitters. In each case, we
establish the optimal sum secure degrees of freedom (s.d.o.f.)
by providing achievable schemes and matching converses.
We show that the unavailability of the eavesdropper’s channel
state information at the transmitter (CSIT) does not reduce
the s.d.o.f. of the wiretap channel with helpers. However, there
is loss in s.d.o.f. for both the multiple access wiretap channel
and the interference channel with an external eavesdropper. In
particular, we show that in the absence of eavesdropper’s CSIT,
the K -user multiple access wiretap channel reduces to a wiretap
channel with (K − 1) helpers from a sum s.d.o.f. perspective,
and the optimal sum s.d.o.f. reduces from K(K−1)

K(K−1)+1 to K−1
K .

For the interference channel with an external eavesdropper, the
optimal sum s.d.o.f. decreases from K(K−1)

2K−1 to K−1
2 in the

absence of the eavesdropper’s CSIT. Our results show that the
lack of eavesdropper’s CSIT does not have a significant impact
on the optimal s.d.o.f. for any of the three channel models,
especially when the number of users is large. This implies that
physical layer security can be made robust to the unavailability
of eavesdropper CSIT at high signal-to-noise ratio regimes by the
careful modification of the achievable schemes as demonstrated
in this paper.

Index Terms— Wiretap channel, multiple access channel,
interference channel, secure degrees of freedom, channel state
information, cooperative jamming, interference alignment.

I. INTRODUCTION

THE availability of channel state information at the trans-
mitters (CSIT) plays a crucial role in securing wire-

less communication in the physical layer. In most practical
scenarios, the channel gains are measured by the receivers
and then fed back to the transmitters, which use the CSI to
ensure security. A passive eavesdropper, however, cannot be
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expected to provide CSI for its channel. In this paper, we
investigate how the unavailability of the eavesdropper’s CSIT
affects the optimal secure rates for three important channel
models: the wiretap channel with helpers, the multiple access
wiretap channel, and the interference channel with an external
eavesdropper.

For each of these channel models, the secrecy capacity
regions remain unknown, even with full eavesdropper CSIT.
In the absence of exact capacity regions, we study the secure
degrees of freedom (s.d.o.f.) of each channel model in the
high signal-to-noise (SNR) regime. For the wiretap channel
with M helpers and full eavesdropper CSIT, references [1], [2]
determine the optimal s.d.o.f. to be M

M+1 . Further, ref-
erences [2], [3] determine the optimal sum s.d.o.f. for
the K -user multiple access wiretap channel with full eaves-
dropper CSIT to be K (K−1)

K (K−1)+1 . For the interference channel
with an external eavesdropper, the optimal sum s.d.o.f. is
shown to be K (K−1)

2K−1 in references [4], [5], with full eaves-
dropper CSIT. In this paper, we focus on the case when no
eavesdropper CSIT is available. We show that for the wiretap
channel with M helpers, an s.d.o.f. of M

M+1 is achievable
even without eavesdropper’s CSIT; thus, there is no loss of
s.d.o.f. due to the unavailability of eavesdropper CSIT in
this case. For the multiple access wiretap channel and the
interference channel with an external eavesdropper, however,
the optimal s.d.o.f. decreases when there is no eavesdropper
CSIT. In particular, without eavesdropper CSIT, the K -user
multiple access wiretap channel reduces to a wiretap channel
with (K − 1) helpers and the optimal sum s.d.o.f. decreases
from K (K−1)

K (K−1)+1 to K−1
K . For the interference channel with

an external eavesdropper, the optimal sum s.d.o.f. decreases
from K (K−1)

2K−1 to K−1
2 in the absence of eavesdropper

CSIT.
In order to establish the optimal sum s.d.o.f., we propose

achievable schemes and provide matching converse proofs for
each of these channel models. We note that any achievable
scheme for the wiretap channel with (K − 1) helpers is also
an achievable scheme for the K -user multiple access wiretap
channel. Further, a converse for the K -user multiple access
wiretap channel is an upper bound for the wiretap channel with
(K −1) helpers as well. Thus, we provide achievable schemes
for the wiretap channel with helpers and a converse for the
multiple access wiretap channel. We consider both fixed and
fading channel gains. For the wiretap channel with helpers and
the multiple access wiretap channel, we present schemes based
on real interference alignment [6] and vector space align-
ment [7] for fixed and fading channel gains, respectively. For
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the interference channel, our achievable schemes are based on
asymptotic real alignment [6], [8] and asymptotic vector space
alignment [7] for fixed and fading channel gains, respectively.
For every channel model, we design our achievable schemes
such that, the structure of the real alignment based scheme for
the case of fixed channel gains is similar to that of the vector
space alignment based scheme for the case of fading channels.
Thus, our achievable schemes indicate a loose correspondence
between the real and vector space alignment techniques.

For the interference channel with an external eavesdropper,
as in [5], every transmitter sacrifices a part of its message
space to transmit cooperative jamming signals in the form of
artificial noise. However, instead of one artificial noise block
as in [5], our scheme requires two noise blocks from each
transmitter. The 2K noise blocks from the K transmitters are
then aligned at each legitimate receiver to occupy only (K +1)
block dimensions out of the full space of 2K dimensions,
thus, achieving K−1

2K s.d.o.f. per receiver. At the eavesdropper,
however, the noise blocks do not align, and therefore, occupy
the full space of 2K block dimensions, ensuring security of the
message blocks. To the best of our knowledge, this is the first
scheme in the literature which uses two noise blocks at each
transmitter and aligns them in an optimal way to maximize the
desired signal space at each legitimate receiver. An interesting
aspect of our proposed schemes for the interference channel
is that they provide confidentiality of the messages not only
from the external eavesdropper but also from the unintended
legitimate receivers. Thus, our schemes for both fixed and
fading channel gains achieve the optimal sum s.d.o.f. for the
K -user interference channel with both confidential messages
and an external eavesdropper, with no eavesdropper CSIT.

To prove the converse, we combine techniques from [2], [5],
and [9]. We exploit a key result in [9] that the output entropy
at a receiver whose CSIT is not available is at least as large
as the output entropy at a receiver whose CSIT is available,
even when the transmitters cooperate and transmit correlated
signals. This result is similar in spirit to the least alignment
lemma in [10], where only linear transmission strategies are
considered. Intuitively, no alignment of signals is possible
at the receiver whose CSIT is unavailable; therefore, the
signals occupy the maximum possible space at that receiver.
We combine this insight with the techniques of [2] and [5].
Specifically, we use discretized versions of the secrecy penalty
lemma, which quantifies the loss of rate due to the presence
of an eavesdropper, and the role of a helper lemma, which
captures the trade-off, arising out of decodability constraints,
between the message rate and the entropy of an independent
helper signal. Together, these techniques enable us to establish
the optimal sum s.d.o.f. for the multiple access wiretap channel
with no eavesdropper CSIT to be K−1

K and the optimal
sum s.d.o.f. for the interference channel with an external
eavesdropper and no eavesdropper CSIT to be K−1

2 .

A. Related Work

The secrecy capacity of the discrete memoryless wire-
tap channel is established in [11] and [12]. The s.d.o.f. of
the single antenna Gaussian wiretap channel [13], and its
variants [14]–[18] with different fading models and CSI

availability conditions, is zero. In multi-user scenarios, how-
ever, positive s.d.o.f. values can be achieved. Each transmitters
may have independent messages of its own, as in multiple
access wiretap channels introduced in [19] and [20] and
interference channels with confidential messages introduced
in [21], or may act as helpers as in [22] and [23] . While
cooperative jamming strategies can improve the achievable
rates [19], i.i.d. Gaussian cooperative jamming signals limit
the decoding performance of the legitimate receiver as well,
and the s.d.o.f. achieved is still zero. Positive s.d.o.f. can
be obtained by either structured signaling [24] or non-
i.i.d. Gaussian signaling [25]. The exact optimal sum s.d.o.f. of
the wiretap channel with M helpers and the K -user multi-
ple access wiretap channel are established to be M

M+1 and
K (K−1)

K (K−1)+1, respectively in [2], when full eavesdropper’s CSIT
is available. In this paper, we show that without eavesdropper’s
CSIT, the optimal s.d.o.f. for the wiretap channel with M
helpers is still M

M+1 , while the optimal sum s.d.o.f. of the
K -user multiple access wiretap channel decreases to K−1

K .
The K -user interference channel with an external eaves-

dropper is studied in [26]. When the eavesdropper’s CSIT is
available, [26] proposes a scheme that achieves sum s.d.o.f. of
K−1

2 . The optimal s.d.o.f. in this case, however, is established
in [5] to be K (K−1)

2K−1 , using cooperative jamming signals along
with interference alignment techniques. When the eavesdrop-
per’s CSIT is not available, reference [26] proposes a scheme
that achieves a sum s.d.o.f. of K−2

2 . In this paper, we establish
the optimal s.d.o.f. in this case to be K−1

2 .
A related line of research investigates the wiretap channel,

the multiple access wiretap channel, and the broadcast channel
with an arbitrarily varying eavesdropper [27]–[29], when
the eavesdropper CSIT is not available. The eavesdropper’s
channel is assumed to be arbitrary, without any assumptions on
its distribution, and security is guaranteed for every realization
of the eavesdropper’s channel. This models an exceptionally
strong eavesdropper, which may control its own channel in
an adversarial manner. Hence, the optimal sum s.d.o.f. is
zero in each case with single antenna terminals, since the
eavesdropper’s channel realizations may be exactly equal to
the legitimate user’s channel realizations. On the other hand,
in our model, the eavesdropper’s channel gains are drawn
from a known distribution, though the realizations are not
known at the transmitters. We show that, with this mild
assumption, strictly positive s.d.o.f. can be achieved even
with single antennas at each transmitter and receiver for
almost all channel realizations for helper, multiple access, and
interference networks.

II. SYSTEM MODEL AND DEFINITIONS

In this paper, we consider three fundamental channel mod-
els: the wiretap channel with helpers, the multiple access
wiretap channel, and the interference channel with an exter-
nal eavesdropper. For each channel model, we consider two
scenarios of channel variation: a) fixed channel gains, and
b) fading channel gains. For the case of fixed channel gains,
we assume that the channel gains are non-zero and have
been drawn independently from a continuous distribution with
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Fig. 1. Wiretap channel with M helpers.

bounded support and remain fixed for the duration of the
communication. On the other hand, in the fading scenario,
we assume a fast fading model, where the channel gains
vary in an i.i.d. fashion from one symbol period to another.
In each symbol period, the channel gains are non-zero and are
drawn from a common continuous distribution with bounded
support. The common continuous distribution is known at all
the terminals in the system. While we consider only real
channel gains in this paper, we believe our results can be
extended for complex channel gains; for further discussion,
see [2, Sec. X].

Let � denote the collection of all channel gains in n channel
uses. We assume full CSI at the receivers, that is, both the
legitimates receivers and the eavesdropper know �. In the
following subsections we describe each channel model and
provide the relevant definitions.

A. Wiretap Channel With Helpers

The wiretap channel with M helpers, see Fig. 1, is
described by,

Y (t) = h1(t)X1(t) +
M+1∑

i=2

hi (t)Xi (t) + N1(t) (1)

Z(t) = g1(t)X1(t) +
M+1∑

i=2

gi(t)Xi (t) + N2(t) (2)

where X1(t) denotes the channel input of the legitimate trans-
mitter, and Y (t) denotes the channel output at the legitimate
receiver, at time t . X (i), i = 2, . . . , M + 1, are the channel
inputs of the M helpers, and Z(t) denotes the channel output
at the eavesdropper, at time t . In addition, N1(t) and N2(t)
are white Gaussian noise variables with zero-mean and unit-
variance. Here, hi (t), gi(t) are the channel gains of the users
to the legitimate receiver and the eavesdropper, respectively,
and gi(t)s are not known at any of the transmitters. All
channel inputs are subject to the average power constraint
E[Xi (t)2] ≤ P , i = 1, . . . , M + 1.

The legitimate transmitter wishes to transmit a message
W which is uniformly distributed in W . A secure rate R,
with R = log |W |

n is achievable if there exists a sequence of
codes which satisfy the reliability constraints at the legitimate
receiver, namely, Pr[W �= Ŵ ] ≤ εn , and the secrecy constraint,

Fig. 2. K -user multiple access wiretap channel.

namely,

1

n
I (W ; Zn,�) ≤ εn (3)

where εn → 0 as n → ∞. The supremum of all achievable
secure rates R is the secrecy capacity Cs and the s.d.o.f., ds ,
is defined as

ds = lim
P→∞

Cs
1
2 log P

(4)

B. Multiple Access Wiretap Channel

The K -user multiple access wiretap channel, see Fig. 2, is
described by,

Y (t) =
K∑

i=1

hi (t)Xi (t) + N1(t) (5)

Z(t) =
K∑

i=1

gi (t)Xi (t) + N2(t) (6)

where Xi (t) denotes the i th user’s channel input, Y (t) denotes
the legitimate receiver’s channel output, and Z(t) denotes the
eavesdropper’s channel output, at time t . In addition, N1(t) and
N2(t) are white Gaussian noise variables with zero-mean and
unit-variance. Here, hi (t), gi (t) are the channel gains of the
users to the legitimate receiver and the eavesdropper, respec-
tively, and gi (t)s are not known at any of the transmitters.
All channel inputs are subject to the average power constraint
E[Xi (t)2] ≤ P , i = 1, . . . , K .

The i th user transmits message Wi which is uniformly
distributed in Wi . A secure rate tuple (R1, . . . , RK ), with
Ri = log |Wi |

n is achievable if there exists a sequence of
codes which satisfy the reliability constraints at the legitimate
receiver, namely, Pr[Wi �= Ŵi ] ≤ εn , for i = 1, . . . , K , and
the secrecy constraint, namely,

1

n
I (W K ; Zn,�) ≤ εn (7)

where εn → 0 as n → ∞. Here, W K denotes the set of all the
messages, i.e., {W1, . . . , WK }. An s.d.o.f. tuple (d1, . . . , dK ) is
said to be achievable if a rate tuple (R1, . . . , RK ) is achievable
with di = lim

P→∞
Ri

1
2 log P

. The sum s.d.o.f., ds , is the largest

achievable
∑K

i=1 di .
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Fig. 3. K -user interference channel with an external eavesdropper.

C. Interference Channel With External Eavesdropper

The K -user interference channel with an external eaves-
dropper, see Fig. 3, is described by

Yi (t) =
K∑

j=1

h j i (t)X j (t) + Ni (t), i = 1, . . . , K (8)

Z(t) =
K∑

j=1

g j (t)X j (t) + NZ (t) (9)

where Yi (t) is the channel output of receiver i , Z(t) is the
channel output at the eavesdropper, X j (t) is the channel input
of transmitter j , h j i(t) is the channel gain from transmitter j
to receiver i , g j (t) is the channel gain from transmitter j to
the eavesdropper, and {N1(t), . . . , NK (t), NZ (t)} are mutually
independent zero-mean unit-variance white Gaussian noise
random variables, at time t . The channel gains to the eaves-
dropper, gi (t)s are not known at any of the transmitters.
All channel inputs are subject to the average power constraint
E[Xi (t)2] ≤ P , i = 1, . . . , K .

Transmitter i wishes to send a message Wi , chosen uni-
formly from a set Wi , to receiver i . The messages W1, . . . , WK

are mutually independent. A secure rate tuple (R1, . . . , RK ),
with Ri = log |Wi |

n is achievable if there exists a sequence
of codes which satisfy the reliability constraints at all the
legitimate receivers, namely, Pr[Wi �= Ŵi ] ≤ εn , for
i = 1, . . . , K , and the security condition

1

n
I (W K ; Zn,�) ≤ εn (10)

where εn → 0, as n → ∞. An s.d.o.f. tuple (d1, . . . , dK ) is
said to be achievable if a rate tuple (R1, . . . , RK ) is achievable
with di = lim

P→∞
Ri

1
2 log P

. The sum s.d.o.f., ds , is the largest

achievable
∑K

i=1 di .

III. MAIN RESULTS AND DISCUSSION

In this section, we state the main results of this paper.
We have the following theorems:

Theorem 1: For the wiretap channel with M helpers and no
eavesdropper CSIT, the optimal sum s.d.o.f., ds , is given by,

ds = M

M + 1
(11)

for fading channel gains and almost surely, for fixed channel
gains.

Theorem 2: For the K -user multiple access wiretap channel
with no eavesdropper CSIT, the optimal sum s.d.o.f., ds , is
given by,

ds = K − 1

K
(12)

for fading channel gains and almost surely, for fixed channel
gains.

Theorem 3: For the K -user interference channel with an
external eavesdropper with no eavesdropper CSIT, the optimal
sum s.d.o.f., ds , is given by,

ds = K − 1

2
(13)

for fading channel gains and almost surely, for fixed channel
gains.

We present the proofs of Theorems 1 and 2 in Section IV
and the proof of Theorem 3 in Section V. Let us first state a
corollary obtained from Theorems 1 and 2, which establishes
the entire s.d.o.f. region of the K -user multiple access wiretap
channel with no eavesdropper CSIT.

Corollary 1: The s.d.o.f. region of the K -user multiple
access wiretap channel with no eavesdropper CSIT is given
by,

di ≥ 0, i = 1, . . . , K , and
K∑

i=1

di ≤ K − 1

K
(14)

The proof of Corollary 1 follows directly from
Theorems 1 and 2. In particular, we can treat the K -user
multiple access wiretap channel as a (K − 1) helper wiretap
channel with transmitter i as the legitimate transmitter, and
the remaining transmitters as helpers. This achieves the corner
points di = K−1

K and d j = 0 for j �= i from Theorem 1.
Therefore, given the sum s.d.o.f. upper bound in Theorem 2,
and that each corner point with s.d.o.f. of K−1

K for a single
user is achievable, the region in Corollary 1 follows.

It is useful, at this point, to compare our results to the cases
when the eavesdropper’s CSI is available at the transmitter.
Table I shows a comparison of the optimal s.d.o.f. values
with and without eavesdropper CSIT. Interestingly, there is
no loss in s.d.o.f. for the wiretap channel with helpers due to
the absence of eavesdropper’s CSIT.

However, for the multiple access wiretap channel and the
interference channel with an external eavesdropper, the opti-
mal s.d.o.f. decreases due to the unavailability of eavesdropper
CSIT. For the multiple access wiretap channel, as the number
of users, K increases, the optimal sum s.d.o.f. approaches 1
as ∼ 1

K 2 with eavesdropper’s CSIT but only as ∼ 1
K without

eavesdropper’s CSIT. Therefore, the loss of s.d.o.f. as a
fraction of the optimal sum s.d.o.f. with eavesdropper CSIT is
∼ 1

K for large K .
For the interference channel with an external eavesdropper

too, there is a loss in s.d.o.f. due to the unavailability of
the eavesdropper’s CSIT. However, in this case, the opti-
mal s.d.o.f. without eavesdropper CSIT closely tracks the
s.d.o.f. with eavesdropper CSIT. In fact, it can be verified that
the s.d.o.f. loss is bounded by 1

4 , which implies that the loss of



1902 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 3, MARCH 2017

TABLE I

SUMMARY OF S.D.O.F. VALUES WITH AND WITHOUT EAVESDROPPER CSIT

s.d.o.f. as a fraction of the optimal s.d.o.f. with eavesdropper
CSIT is ∼ 1

K for large K , in this case also.
For the multiple access wiretap channel, we also consider

the case where some of the transmitters have the eavesdrop-
per’s CSI. We state our achievable s.d.o.f. in this case in the
following theorem.

Theorem 4: In the K -user MAC-WT, where 1 ≤ m ≤
K transmitters have eavesdropper CSI, and the remaining
K − m transmitters have no eavesdropper CSI, the following
sum s.d.o.f. is achievable,

ds = m(K − 1)

m(K − 1) + 1
(15)

for fading channel gains and almost surely, for fixed channel
gains.

We present the proof of Theorem 4 in Section VI. In this
case, we note that when only one user has eavesdropper CSIT,
i.e., m = 1, our achievable rate is the same as when no user has
eavesdropper CSIT as in Theorem 2. On the other hand, when
all users have eavesdropper CSIT, i.e., m = K , our achievable
rate is the same as the optimal sum s.d.o.f. in [2]. We note that
our achievable sum s.d.o.f. varies from the no eavesdropper
CSIT result in Theorem 2 to the full eavesdropper CSIT sum
s.d.o.f. in [2] as m increases from 1 to K .

IV. PROOFS OF THEOREMS 1 AND 2

First, we note that an achievable scheme for Theorem 1
implies an achievable scheme for Theorem 2, since the K -user
multiple access wiretap channel may be treated as a wiretap
channel with (K −1) helpers. Further, we note that a converse
for Theorem 2 suffices as a converse for Theorem 1. Thus, we
will only provide achievable schemes for Theorem 1 and a
converse proof for Theorem 2. An alternate converse for The-
orem 1 also follows from the converse presented in [2] for the
wiretap channel with M helpers and with eavesdropper CSIT,
as the converse for the case of known eavesdropper CSIT
serves as a converse for the case of unknown eavesdropper
CSIT.

Next, we note that under our fixed and fading channel
models, it suffices to provide an achievable scheme for the
case of fixed channel gains and prove a converse for the case
of fading channel gains. In general, the optimal sum s.d.o.f. ds

for fixed channel gains may depend on the channel realization,
and we denote by d f ixed

s (ω), the optimal sum s.d.o.f. for the

fixed channel realization ω
�= (h, g), where h and g denote

the channel realizations of the legitimate receivers’ channels
and the eavesdropper’s channel, respectively. We provide, in
Section IV-A, a real alignment based achievable scheme for
the wiretap channel with M helpers, and thus, show that the
optimal sum s.d.o.f. d f ixed

s (ω) ≥ K−1
K for almost all channel

gains ω. Now, we show that

dvar
s ≥ Eω[d f ixed

s (ω)] (16)

where dvar
s is the optimal sum s.d.o.f. in the fading channel

gains case, by showing that a sum s.d.o.f. of Eω[d f ixed
s (ω)] is

achievable on the fading channel. To that end, we argue along
the lines of [30]. Essentially, we quantize the (finite) range of
each legitimate user’s channel gain hi , i = 1, . . . , K into m
equal intervals [hk

i , hk+1
i ), k = 1, . . . , m. This results in the

quantization of h into mK rectangles R j , j = 1, . . . , mK .
Let n j be the number of channel uses when the chan-
nel realization h ∈ R j . Due to the i.i.d. nature of channel
variation,

n j
n → P(h ∈ R j ), as n → ∞. When the channel

realization h ∈ R j , one can achieve the s.d.o.f. given by
ess infh∈R j d f ixed

s (h, g), almost surely, over n j channel uses
as n j → ∞, where ess inf denotes the essential infimum.
Therefore, over n channel uses, one can achieve an s.d.o.f. of
at least

∑mK

j=1 ess infh∈R j d f ixed
s (h, g)P(h ∈ R j ) which con-

verges to Eω[d f ixed
s (ω)] as m → ∞, using the fact that∑mK

j=1 ess infh∈R j d f ixed
s (h, g)I(h ∈ R j ) converges pointwise

almost everywhere to d f ixed
s (h, g), and noting that for each

m,
∑mK

j=1 ess infh∈R j d f ixed
s (h, g)I(h ∈ R j ) is bounded by 1

for the multiple access wiretap channel.
Next, we prove the converse for the multiple access wiretap

channel with fading channel gains in Section IV-B, and show
that

dvar
s ≤ K − 1

K
(17)

Combining (16), (17) and the fact that d f ixed
s (ω) ≥ K−1

K for
almost all ω, we have

dvar
s = K − 1

K
(18)

In order to determine the optimal sum s.d.o.f. in the fixed
channel gains case, we first note using (16) and (18) that

Eω[d f ixed
s (ω)] ≤ dvar

s = K − 1

K
(19)

Combined with the fact that d f ixed
s (ω) ≥ K−1

K for almost all
channel gains ω, which follows from the achievable scheme
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Fig. 4. Illustration of the alignment scheme for the Gaussian wiretap channel with M helpers with no eavesdropper CSI.

we provide in Section IV-A, we have that

d f ixed
s (ω) = K − 1

K
(20)

for almost all channel gains ω.
Thus, the achievable scheme for the wiretap channel with

M helpers and fixed channel gains in Section IV-A, and
the converse for the multiple access wiretap channel with
fading channel gains in Section IV-B suffice for the proofs
of Theorems 1 and 2.

A. Achievability for the Wiretap Channel With Helpers

We now present achievable schemes for the wiretap channel
with M helpers for fixed channel gains. We provide an
achievable scheme for the case of fading channel gains in
Appendix VII. Although one can utilize the achievable scheme
developed for the fixed channel gains case on a symbol-by-
symbol basis in the fading channel gains case, the alternative
scheme provided in Appendix A is worth examining as it is
designed to reveal similarities in the achievable schemes for
the fixed and fading channel gains cases.

For fixed channels, we use the technique
of real interference alignment [6], [8]. Let
{V2, V3, · · · , VM+1, U1, U2, U3, · · · , UM+1} be mutually
independent discrete random variables, each of which
uniformly drawn from the same PAM constellation C(a, Q)

C(a, Q) = a{−Q,−Q + 1, . . . , Q − 1, Q} (21)

where Q is a positive integer and a is a real number used to
normalize the transmission power, and is also the minimum
distance between the points belonging to C(a, Q). Exact
values of a and Q will be specified later. We choose the input
signal of the legitimate transmitter as

X1 = 1

h1
U1 +

M+1∑

k=2

αk Vk (22)

where {αk}M+1
k=2 are rationally independent among themselves

and also rationally independent of all channel gains. The input
signal of the j th helper, j = 2, · · · , M + 1, is chosen as

X j = 1

h j
U j (23)

Note that, neither the legitimate transmitter signal in (22) nor
the helper signals in (23) depend on the eavesdropper CSI
{gk}M+1

k=1 . With these selections, observations of the receivers
are given by,

Y =
M+1∑

k=2

h1αk Vk +
⎛

⎝
M+1∑

j=1

U j

⎞

⎠+ N1 (24)

Z =
M+1∑

k=2

g1αk Vk +
M+1∑

j=1

g j

h j
U j + N2 (25)

The intuition here is as follows: We use M independent
sub-signals Vk , k = 2, · · · , M + 1, to represent the original
message W . The input signal X1 is a linear combination of
Vks and a jamming signal U1. At the legitimate receiver, all
of the cooperative jamming signals, Uks, are aligned such
that they occupy a small portion of the signal space. Since
{1, h1α2, h1α3, · · · , h1αM+1} are rationally independent for
all channel gains, except for a set of Lebesgue measure
zero, the signals

{
V2, V3, · · · , VM+1,

∑M+1
j=1 U j

}
can be dis-

tinguished by the legitimate receiver. This is similar to the case
when there is full eavesdropper CSIT [2]. However, unlike
the scheme in [2], we can no longer align signals at the
eavesdropper due to lack of eavesdropper CSIT. Instead, we
observe that

{
g1
h1

, · · · ,
gM+1
hM+1

}
are rationally independent, and

therefore, {U1, U2, · · · , UM+1} span the entire space at the
eavesdropper; see Fig. 4. Here, by the entire space, we mean
the maximum number of dimensions that the eavesdropper is
capable of decoding, which is (M + 1) in this case. Since the
entire space at the eavesdropper is occupied by the cooperative
jamming signals, the message signals {V2, V3, · · · , VM+1} are
secure, as we will mathematically prove in the sequel.

The following secrecy rate is achievable [12]

Cs ≥ I (V; Y ) − I (V; Z) (26)

where V �= {V2, V3, · · · , VM+1}. Note that since � is known
at both the legitimate receiver and the eavesdropper, it can be
considered to be an additional output at both the legitimate
receiver and the eavesdropper. Further, since V is chosen to
be independent of �, � should appear in the conditioning of
each of the mutual information quantities in (26). We keep
this in mind, but drop it for the sake of notational simplicity.
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First, we use Fano’s inequality to bound the first term
in (26). Note that the space observed at receiver 1 consists of
(2Q+1)M (2M Q+2Q+1) points in (M +1) dimensions, and
the sub-signal in each dimension is drawn from a constellation
of C(a, (M +1)Q). Here, we use the property that C(a, Q) ⊂
C(a, (M + 1)Q). By using the Khintchine-Groshev theorem
of Diophantine approximation in number theory [6], [8], we
can bound the minimum distance dmin between the points in
receiver 1’s space as follows: For any δ > 0, there exists a
constant kδ such that

dmin ≥ kδa

((M + 1)Q)M+δ
(27)

for almost all rationally independent
{1, h1α2, h1α3, · · · , h1αM+1}, except for a set of Lebesgue
measure zero. Then, we can upper bound the probability of
decoding error of such a PAM scheme by considering the
additive Gaussian noise at receiver 1,

P

[
V �= V̂

]
≤ exp

(
−d2

min

8

)
(28)

≤ exp

(
− a2k2

δ

8((M + 1)Q)2(M+δ)

)
(29)

where V̂ is the estimate of V by choosing the closest point
in the constellation based on observation Y . For any δ > 0,

if we choose Q = P
1−δ

2(M+1+δ) and a = γ P
1
2 /Q, where γ is a

constant independent of P , then

P

[
V �= V̂

]
≤ exp

(
− k2

δ γ
2(M + 1)2 P

8((M + 1)Q)2(M+δ)+2

)
(30)

= exp

(
− k2

δ γ
2(M + 1)2 Pδ

8(M + 1)2(M+1+δ)

)
(31)

and we can have P

[
V �= V̂

]
→ 0 as P → ∞. To satisfy the

power constraint at the transmitters, we can simply choose

γ ≤ min

⎧
⎨

⎩

[
1

|h1| +
M+1∑

k=2

|αk |
]−1

, |h2|, |h3|, · · · , |hM+1|
⎫
⎬

⎭

(32)

By Fano’s inequality and the Markov chain V → Y → V̂, we
know that

H (V|Y ) ≤ H (V|V̂) (33)

≤ 1 + exp

(
− k2

δ γ
2(M + 1)2 Pδ

8(M + 1)2(M+1+δ)

)
log(2Q + 1)M

(34)

= o(log P) (35)

where δ and γ are fixed, and o(·) is the little-o function. This

means that

I (V; Y ) = H (V) − H (V|Y ) (36)

≥ H (V) − o(log P) (37)

= log(2Q + 1)M − o(log P) (38)

≥ log P
M(1−δ)

2(M+1+δ) − o(log P) (39)

= M(1 − δ)

M + 1 + δ

(
1

2
log P

)
− o(log P) (40)

Next, we need to bound the second term in (26),

I (V; Z) = I (V, U; Z) − I (U; Z |V) (41)

= I (V, U; Z) − H (U|V) + H (U|Z , V) (42)

= I (V, U; Z) − H (U) + H (U|Z , V) (43)

= h(Z) − h(Z |V, U) − H (U) + H (U|Z , V) (44)

= h(Z) − h(N2) − H (U) + H (U|Z , V) (45)

≤ h(Z) − h(N2) − H (U) + o(log P) (46)

≤ 1

2
log P − 1

2
log 2πe − log(2Q + 1)M+1

+ o(log P) (47)

≤ 1

2
log P − (M + 1)(1 − δ)

2(M + 1 + δ)
log P + o(log P)

(48)

= (M + 2)δ

M + 1 + δ

(
1

2
log P

)
+ o(log P) (49)

where U
�= {U1, U2, · · · , UM+1}, and (46) is due to the fact

that given V and Z , the eavesdropper can decode U with
probability of error approaching zero since

{
g1
h1

, · · · ,
gM+1
hM+1

}

are rationally independent for all channel gains, except for
a set of Lebesgue measure zero. Then, by Fano’s inequality,
H (U|Z , V) ≤ o(log P) similar to the step in (35). In addition,
h(Z) ≤ 1

2 log P +o(log P) in (47), since all the channel gains
are drawn from a known distribution with bounded support.

Combining (40) and (49), we have

Cs ≥ I (V; Y ) − I (V; Z) (50)

≥ M(1 − δ)

M + 1 + δ

(
1

2
log P

)
− (M + 2)δ

M + 1 + δ

(
1

2
log P

)

− o(log P) (51)

= M − (2M + 2)δ

M + 1 + δ

(
1

2
log P

)
− o(log P) (52)

where again o(·) is the little-o function. If we choose δ
arbitrarily small, then we can achieve M

M+1 s.d.o.f. for this
model where there is no eavesdropper CSI at the transmitters.

B. Converse for the Fading Multiple Access Wiretap Channel

We combine techniques from [2] and [9] to prove the
converse. Here, we use Xi to denote the collection of all
channel inputs {Xi (t), t = 1, . . . , n} of transmitter i . Sim-
ilarly, we use Y and Z to denote the channel outputs at the
legitimate receiver and the eavesdropper, respectively, over n
channel uses. We further define XK

1 as the collection of all
channel inputs from all of the transmitters, i.e., {Xi , i =
1 . . . , K }. Finally, for a fixed j , we use X− j to denote all
channel inputs from all transmitters except transmitter j ,
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i.e., {Xi , i �= j, i = 1 . . . , K }. Since all receivers know �,
it appears in the conditioning in every entropy and mutual
information term below. We keep this in mind, but drop it
for the sake of notational simplicity. We divide the proof into
three steps.

1) Deterministic Channel Model: We will show that there
is no loss of s.d.o.f. in considering the following integer-input
integer-output deterministic channel in (53)-(54) instead of the
one in (5)-(6)

Y (t) =
K∑

i=1


hi (t)Xi (t)� (53)

Z(t) =
K∑

i=1


gi(t)Xi (t)� (54)

with the constraint that

Xi ∈
{

0, 1, . . . ,
⌊√

P
⌋}

(55)

To that end, we will show that given any codeword
tuple (XG

1 , . . . , XG
K ) for the original channel of (5)-(6),

we can construct a codeword tuple (XD
1 , . . . , XD

K ) with
X D

i (t) = ⌊
X G

i (t)
⌋

mod 
√P�, for the deterministic channel
of (53)-(54), that achieves an s.d.o.f. no smaller than the
s.d.o.f. achieved by (XG

1 , . . . , XG
K ) on the original channel.

Let us denote by YG and ZG , the outputs of the origi-
nal channel of (5)-(6), when (XG

1 , . . . , XG
K ) is the input,

that is,

Y G(t)
�=

K∑

i=1

hi (t)X G
i (t) + N1(t) (56)

Z G(t)
�=

K∑

i=1

gi (t)X G
i (t) + N2(t) (57)

Similarly, define

Y D(t)
�=

K∑

i=1

⌊
hi (t)X D

i (t)
⌋

(58)

Z D(t)
�=

K∑

i=1

⌊
gi (t)X D

i (t)
⌋

(59)

It suffices to show that

I (Wi ; YG) ≤ I (Wi ; YD) + no(log P) (60)

I (W K ; ZD) ≤ I (W K ; ZG) + no(log P) (61)

for every i = 1, . . . , K . Here, (60) states that the information
rate to the legitimate receiver in the discretized channel is at
least as large as the information rate in the original Gaussian
channel, and (61) states that the information leakage to the
eavesdropper in the discretized channel is at most at the level
of the information leakage in the original Gaussian channel,
both of which quantified within a o(log P).

The proof of (60) follows along similar lines as the
proof presented in [9] and [31]; we include a sketch
here for completeness. First, note that there is no loss of
d.o.f. due to integer inputs and outputs. To see this, define

Ȳ D(t) = ∑K
i=1

⌊
hi (t)

⌊
X G

i (t)
⌋⌋

, and E(t) = Y G(t) − Ȳ D(t).
We have

I (Wi ; Y G |�) = I (Wi ; Ȳ
D + E|�) (62)

≤ I (Wi ; Ȳ
D
, E|�) (63)

= I (Wi ; Ȳ
D|�) + I (Wi ; E|Ȳ D

,�) (64)

≤ I (Wi ; Ȳ
D|�) + h(E|�)

− h(E|Ȳ D
, Wi , X K

1 ,�) (65)

≤ I (Wi ; Ȳ
D|�) − h(N1)

+
n∑

t=1

E�

[
1

2
log

(
K∑

i=1

(hi (t) + 1)2 + 1

)]

(66)

≤ I (Wi ; Ȳ
D|�) + no(log P) (67)

Next, we show that imposing per-symbol power constraints
as in (55) does not incur any additional loss of d.o.f. It suffices
to prove:

I (Wi ; Ȳ
D|�) − I (Wi ; Y D|�) ≤ no(log P) (68)

We define X̂i (t) = ⌊
X G

i (t)
⌋− X D

i (t) and Ŷ = Ȳ D − Y D, and

I (Wi ; Ȳ
D|�) ≤ I (Wi ; Y D, Ŷ |�) (69)

≤ I (Wi ; Y D|�) + H (Ŷ |�) (70)

≤ I (Wi ; Y D|�) +
n∑

t=1

H (Ŷ (t)|�) (71)

≤ I (Wi ; Y D|�)+
n∑

t=1

K∑

i=1

H (X̂i(t))+no(log P)

(72)

Now, it can be shown that H ((X̂i(t)) ≤ o(log P) using the
steps in [9, eqs. (138)–(158)]. Thus, (68) is proved. This
concludes the sketch of proof of (60).

To prove (61), we first define

Z̄(t)
�=

K∑

i=1

⌊
gi(t)

⌊
X G

i (t)
⌋⌋

(73)

Ẑ(t)
�= Z̄(t) − Z D(t) (74)

Z̃(t)
�=
⌊

Z G(t)
⌋

− Z̄(t) − 
N2(t)� (75)

Then, we have,

I (W K ; ZD) ≤ I (W K ; ZD, ZG , Z̄) (76)

= I (W K ; ZG) + I (W K ; Z̄|ZG)

+ I (W K ; ZD|Z̄, ZG) (77)

≤ I (W K ; ZG) + H (Z̄|ZG) + H (ZD|Z̄, ZG)

(78)

≤ I (W K ; ZG) + H (Z̄|
ZG�) + H (ZD|Z̄)

(79)

≤ I (W K ; ZG) + H (Z̄|Z̄ + Z̃ + 
N2�) + H (Ẑ)

(80)
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≤ I (W K ; ZG) +
n∑

t=1

H (Ẑ(t))

+
n∑

t=1

H (Z̄(t)|Z̄(t) + Z̃(t) + 
N2(t)�) (81)

≤ I (W K ; ZG) + no(log P) (82)

where 
ZG� = (
Z G(1)�, . . . , 
Z G(n)�). Here, (82) fol-
lows since H (Ẑ(t)) ≤ o(log P) following the steps
of the proof in [9, Appendix A.2]. In addition, recall-
ing that � appears in the conditioning of each term
in (81), note that H (Z̄(t)|Z̄(t) + Z̃(t) + 
N2(t)� ,�) ≤
E

[
H (Z̄(t)|Z̄(t) + Z̃(t) + 
N2(t)� , gK

1 = g̃K
1 )
]
. To bound

this term, in going from (81) to (82), we have used the
following lemma [32, Lemma E.1, Appendix E]

Lemma 1: Consider integer valued random variables x, r
and s such that

x ⊥ r (83)

s ∈ {−L, . . . , 0, . . . , L} (84)

P(|r | ≥ k) ≤ e− f (k) (85)

for all positive k, for some integer L and a function f (.). Let

y = x + r + s (86)

Then,

H (x |y) ≤ log(2L + 1) + 2 log2 e

( ∞∑

k=1

f (k)e− f (k)

)

+ 2L + 1

2
+ N f (87)

where

N f =
∣∣∣∣
{

n ∈ Z
+|e− f (n) >

1

2

}∣∣∣∣ (88)

Note that, in our case, Z̃(t) is integer valued and is bounded
by

∑K
i=1 g̃i(t)+ K + 1 for each realization g̃i (t) of gi (t), and

we have

P(| 
N2(t)� | > k) = P(|N2(t) − {N2(t)} | > k) (89)

≤ P(|N2(t)| + | {N2(t)} | > k) (90)

≤ P(|N2(t)| + 1 > k) (91)

≤ e
(k−1)2

2 (92)

Thus, using the choice f (k) = (k−1)2

2 , N f is clearly bounded
and thus, H (Z̄(t)|Z̄(t) + Z̃(t) + 
N2(t)� ,�) ≤ o(log P),
which is the step going from (81) to (82).

Therefore, the s.d.o.f. of the deterministic channel
in (53)-(54) with integer channel inputs as described in (55) is
no smaller than the s.d.o.f. of the original channel in (5)-(6).
Consequently, any upper bound (e.g., converse) developed for
the s.d.o.f. of (53)-(54) will serve as an upper bound for the
s.d.o.f. of (5)-(6). Thus, we will consider this deterministic
channel in the remaining part of the converse.

2) An Upper Bound on the Sum Rate: We begin as in
the secrecy penalty lemma in [2], i.e., [2, Lemma 1]. Note
that, unlike [2, Lemma 1], channel inputs are integer here and
satisfy (55):

n
K∑

i=1

Ri ≤ I (W K ; Y) − I (W K ; Z) + nε (93)

≤ I (W K ; Y|Z) + nε (94)

≤ I (XK
1 ; Y|Z) + nε (95)

≤ H (Y|Z) + nε (96)

= H (Y, Z) − H (Z) + nε (97)

≤ H (XK
1 , Y, Z) − H (Z) + nε (98)

= H (XK
1 ) − H (Z) + nε (99)

≤
K∑

k=1

H (Xk) − H (Z) + nε (100)

where (99) follows since H (Y, Z|XK
1 ) = 0 for the channel

in (53)-(54). Also, to ensure decodability at the legitimate
receiver, we use the role of a helper lemma in [2], i.e.,
[2, Lemma 2],

n
∑

i �= j

Ri ≤ I (W− j ; Y) + nε′ (101)

≤ I (X− j ; Y) + nε′ (102)

= H (Y) − H (Y|X− j) + nε′ (103)

= H (Y) − H

(
K∑

i=1


hi Xi� |X− j

)
+ nε′ (104)

= H (Y) − H (
⌊
h j X j

⌋
) + nε′ (105)

= H (Y) − H (
⌊
h j X j

⌋
, X j ) + H (X j |

⌊
h j X j

⌋
)

+ nε′ (106)

≤ H (Y) − H (X j ) + H (X j |
⌊
h j X j

⌋
) + nε′ (107)

≤ H (Y) − H (X j )

+
n∑

t=1

H (X j(t)|
⌊

h j (t)X j (t)
⌋
) + nε′ (108)

≤ H (Y) − H (X j ) + nε′ + nc (109)

where h j X j
�= {

h j (t)X j (t), t = 1, . . . , n
}
, and recalling that

� appears in the conditioning of each term in (108), (109)
follows using the following lemma.

Lemma 2: Let X be an integer valued random variable
satisfying (55), and h be drawn from a distribution F(h)

satisfying
∫∞
−∞ log

(
1 + 1

|h|
)

d F(h) ≤ c for some c ∈ R. Then,

H (X | 
h X� , h) ≤ c (110)
The proof of this lemma is presented in Appendix C. The
constraint imposed in Lemma 2 is a mild technical condition.
A sufficient condition for satisfying the constraint is that there
exists an ε > 0 such that the probability density function (pdf)
is bounded in the interval (−ε, ε). This is due to the fact that
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log
(

1 + 1
|h|
)

≤ log
(

1 + 1
|ε|
)

, when |h| > ε and following:
∫ ε

−ε
f (h) log

(
1 + 1

|h|
)

dh ≤ M
∫ ε

−ε
log

(
1 + 1

|h|
)

dh

(111)

≤ 2M

[∫ ε

0
log (1 + h) dh

+
∫ ε

0
| log h|dh

]
(112)

≤ c (113)

where f (h) ≤ M on (−ε, ε), and the last step follows
since both integrals in (112) are bounded. Most common
distributions such as Gaussian, exponential and Laplace satisfy
this condition.

Eliminating H (X j )s using (100) and (109), we get,

K n
K∑

i=1

Ri ≤ K H (Y) − H (Z) + nK (ε′ + c) + nε (114)

≤ (K − 1)
n

2
log P + (H (Y) − H (Z)) + nε′′

(115)

where ε′′ = o(log P). Dividing by n and letting n → ∞,

K
K∑

i=1

Ri ≤ (K − 1)
1

2
log P + ε′′ + lim

n→∞
1

n
(H (Y) − H (Z))

(116)

Now dividing by 1
2 log P and taking P → ∞,

K∑

i=1

di ≤ K − 1

K
+ 1

K
lim

P→∞ lim
n→∞

H (Y) − H (Z)
n
2 log P

(117)

3) Bounding the Difference of Entropies: We now upper
bound the difference of entropies H (Y) − H (Z) in (117) as:

H (Y) − H (Z) ≤ sup
{Xi }:Xi |� X j

H (Y) − H (Z) (118)

≤ sup
{Xi }

H (Y) − H (Z) (119)

where X |� Y is used to denote that X and Y are statisti-
cally independent and (119) follows from (118) by relaxing
the condition of independence in (118). Since the Xi s in
(119) may be arbitrarily correlated, we can think of the
K single antenna terminals as a single transmitter with K
antennas. Thus, we wish to maximize H (Y) − H (Z), where
Y and Z are two single antenna receiver outputs, under the
constraint that the channel gains to Z are unknown at the
transmitter. This brings us to the K -user MISO broadcast
channel setting of [9], where it is shown that the difference
of entropies, H (Y) − H (Z) cannot be larger than no(log P),
if the channel gains to the second receiver are unknown, even
without security constraints. Indeed, we have the following
lemma.

Lemma 3: For the deterministic channel model stated in
(53)-(55), with the channel gains to Z unknown at the trans-
mitter, we have

H (Y|�) − H (Z|�) ≤ no(log P) (120)

The proof of Lemma 3 follows along the lines of
[9, eqs. (75)–(103)]; in order to make our proof self-
contained,1 we provide a sketch of the relevant steps in
Appendix D.

Using (120) in (117), we have

K∑

i=1

di ≤ K−1
K (121)

This completes the converse proof of Theorem 2.

V. PROOF OF THEOREM 3

In this section, we present the proof of Theorem 3. We first
present separate achievable schemes for fixed and fading chan-
nel gains and then present the converse. For the interference
channel, we require asymptotic schemes with both real [8], and
vector space alignment [7] techniques. The converse combines
techniques from [4] and [9].

A. Achievability for the Interference Channel

An achievable scheme for the interference channel with
an external eavesdropper and no eavesdropper CSIT is pre-
sented in [26, Th. 3]. That scheme achieves sum s.d.o.f. of
K−2

2 . Here, we present the optimal schemes which achieve
K−1

2 sum s.d.o.f for fixed channel gains. In this section, we
focus on the case when K = 3, which highlights the main
ideas of the general K -user scheme for fixed channel gains.
We present a corresponding vector space alignment scheme for
fading channel gains in Appendix E. We present the general
K -user schemes for both fixed and fading channel gains in
Appendix F. As in the achievability for the wiretap channel
with helpers, we use real interference alignment techniques
for fixed channel gains. However, unlike the case of wiretap
channel with helpers, we need to use asymptotic alignment in
each case.

We use the technique of asymptotic real interference align-
ment introduced in [8]. Fig. 5 shows the desired signal
alignment at the receivers and the eavesdropper. In the figure,
the boxes labeled by V denote the message symbols, while the
hatched boxes labeled with U denote artificial noise symbols.
We observe from Fig. 5 that 4 out of 6 signal dimensions are
buried in the artificial noise. Thus, heuristically, the s.d.o.f. for
each legitimate user pair is 2

6 = 1
3 , and the sum s.d.o.f. is,

therefore, 3 × 1
3 = 1, as expected from our optimal sum

s.d.o.f. expression K−1
2 = 3−1

2 = 1.
In the K -user case, we have a similar alignment scheme.

Each transmitter sends two artificial noise blocks along with
(K − 1) message blocks. At each legitimate receiver, the 2K
noise blocks from the K transmitters align such that they
occupy only (K+1) block dimensions. This is done by aligning
Ũk with Uk+1 for k = 1, . . . , (K − 1), at each legitimate
receiver. The unintended messages at each legitimate receiver
are aligned underneath the (K +1) artificial noise dimensions.
To do so, we use two main ideas. First, two blocks from
the same transmitter cannot be aligned at any receiver. This

1Based on the suggestion of an anonymous reviewer.



1908 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 3, MARCH 2017

Fig. 5. Alignment for the interference channel with K = 3.

is because if two blocks from the same transmitter align
at any receiver, they align at every other receiver as well,
which is clearly not desirable. Secondly, each message block
aligns with the same artificial noise block at every unintended
receiver. Thus, in Fig. 5, V21 and V24 appear in different
columns at each receiver. Further, V21 appears underneath U1
at both of the unintended legitimate receivers 1 and 2. It can
be verified that these properties hold for every message block.
As an interesting by-product, this alignment scheme provides
confidentiality of the unintended messages at the legitimate
transmitters for free. The (K − 1) intended message blocks at
a legitimate receiver occupy distinct block dimensions; thus,
achieving a d.o.f. of K−1

2K for each transmitter-receiver pair.
At the eavesdropper, no alignment is possible since its CSIT
is unavailable. Thus, the 2K artificial noise blocks occupy the
full space of 2K block dimensions. This ensures security of
the messages at the eavesdropper.

Note that we require two artificial noise blocks to be
transmitted from each transmitter. When the eavesdropper
CSIT is available, the optimal achievable scheme, presented
in [5], requires one artificial noise block from each transmitter;
the K noise blocks from the K transmitters are aligned with
the messages at the eavesdropper in order to ensure security.
In our case, however, the eavesdropper’s CSIT is not available.
Thus, in order to guarantee security, we need a total of 2K
noise blocks to occupy the full space of 2K block dimensions
at the eavesdropper. This is achieved by sending two artificial
noise blocks from each transmitter. Further, to achieve an
s.d.o.f. of K−1

2K per user pair, we need to create (K −1) noise-
free message block dimensions at each legitimate receiver.
We ensure this by systematically aligning the 2K noise
symbols to occupy only (K + 1) block dimensions at each

legitimate receiver. To the best of our knowledge, this is
the first achievable scheme in the literature that uses two
artificial noise blocks from each transmitter and then aligns
them to maximize the noise-free message dimensions at each
legitimate receiver.

Let us now present the 3-user scheme in more detail. Let m
be a large integer. Also, let c1, c2, c3 and c4 be real constants
drawn from a fixed continuous distribution with bounded
support independently of each other and of all the channel
gains. This ensures that the ci s are rationally independent of
each other and of the channel gains. Now, we define four sets
Ti , i = 1, . . . , 4, as follows:

T1
�= {

hr11
11 hr12

12 hr13
13 hr21

21 hr31
31 hr32

32 hr32
23 cs

1 :
r jk, s ∈ {1, . . . , m}} (122)

T2
�=
{

hr21
21 hr22

22 hr23
23

(
h12

h11

)r12
(

h13

h11

)r13

hr31
31 hr32

32 cs
2 :

r jk, s ∈ {1, . . . , m}
}

(123)

T3
�=
{

hr31
31 hr32

32 hr33
33

(
h21

h22

)r21
(

h23

h22

)r23

hr12
12 hr13

13 cs
3 :

r jk, s ∈ {1, . . . , m}
}

(124)

T4
�= {

hr31
31 hr32

32 hr33
33 hr21

21 hr12
12 hr13

13 hr23
23 cs

4 :
r jk, s ∈ {1, . . . , m}} (125)

Let Mi be the cardinality of the set Ti . Note that all the Mi s
are the same, which we denote by M , which is given as,

M
�= m8 (126)
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We subdivide each message Wi into 2 independent sub-
messages Vij , j = 1, . . . , 4, j �= i, i + 1. For each transmitter
i , let pi j be the vector containing all the elements of Tj ,
for j �= i, i + 1. For any given (i, j) with j �= i, i + 1,
pi j represents the dimension along which message Vij is
sent. Further, at each transmitter i , let qi and q̃i be vectors
containing all the elements in sets Ti and βi Ti+1, respectively,
where

βi =
{

1
hii

, if i = 1, 2

1, if i = 3
(127)

The vectors qi and q̃i represent dimensions along which
artificial noise symbols Ui and Ũi , respectively, are sent.
We define a 4M dimensional vector bi by stacking the pi j s,
qi and q̃i as

bT
i =

[
pT

i1 . . . pT
i(i−1) pT

i(i+2) . . . pi4 qi q̃i

]
(128)

The transmitter encodes Vij using an M dimensional vector
vi j , and the cooperative jamming signals Ui and Ũi using M
dimensional vectors ui and ũi , respectively. Each element of
vi j , ui and ũi are drawn in an i.i.d. fashion from C(a, Q)
in (21). Let

aT
i =

[
vT

i1 . . . vT
i(i−1) vT

i(i+2) . . . vi4 ui ũi

]
(129)

The channel input of transmitter i is then given by

xi = aT
i bi (130)

Let us now analyze the structure of the received sig-
nals at the receivers. For example, consider receiver 1. The
desired signals at receiver 1, v13 and v14 arrive along dimen-
sions h11T3 and h11T4, respectively. Since only Ti (and not
Tj , j �= i ) contains ci , these dimensions are rationally inde-
pendent. Thus, they appear along different columns in Fig. 5.
The artificial noise symbols u1, u2, u3 and ũ3 arrive along
dimensions h11T1, h21T2, h31T3 and h31T4, respectively. Again
they are all rationally separate and thus, appear along different
columns in Fig. 5. Further, they are all separate from the
dimensions of the desired signals, because T3 and T4 do not
contain h11, while T1 and T2 do not contain either c3 or c4.
On the other hand, the unintended signals v21 and v31 arrive
along h21T1 and h31T1, and since T1 contains powers of h21
and h31, they align with the artificial noise u1 in T̃1, where,

T̃1
�= {

hr11
11 hr12

12 hr13
13 hr21

21 hr31
31 hr32

32 hr32
23 cs

1 :
r jk, s ∈ {1, . . . , m + 1}} (131)

Similarly, we define

T̃2
�=
{

hr21
21 hr22

22 hr23
23

(
h12

h11

)r12
(

h13

h11

)r13

hr31
31 hr32

32 cs
2 :

r jk, s ∈ {1, . . . , m + 1}
}

(132)

T̃3
�=
{

hr31
31 hr32

32 hr33
33

(
h21

h22

)r21
(

h23

h22

)r23

hr12
12 hr13

13 cs
3 :

r jk, s ∈ {1, . . . , m + 1}
}

(133)

T̃4
�= {

hr31
31 hr32

32 hr33
33 hr21

21 hr12
12 hr13

13 hr23
23 cs

4 :
r jk, s ∈ {1, . . . , m + 1}} (134)

We note that the unintended signals v32 and v24 arrive along
h31T2 and h21T4 and thus, align with u2 and ũ3, respectively,
in T̃2 and T̃4. Thus, they appear in the same column in Fig.5.
Finally, the artificial noise symbols ũ1 and ũ2 align with u2
and u3, respectively.

At receiver 2, the desired signals v21 and v24 arrive along
rationally independent dimensions h22T1 and h22T4, respec-
tively. The artificial noise symbols u1, u2, u3 and ũ3 arrive
along dimensions h12T1, h22T2, h32T3 and h32T4, respectively.
Thus, they lie in dimensions T̃1, T̃2, T̃3 and T̃4, respectively.
They are all separate from the dimensions of the desired
signals, because T̃1 and T̃4 do not contain h22, while T̃2 and T̃3
do not contain either c1 or c4. The artificial noise symbols ũ1

and ũ2 arrive along dimensions
(

h12
h11

)
T2 and T3, respectively;

thus, they align with u2 and u3 in T̃2 and T̃3, respectively. The
unintended signals v13 and v14 arrive along h12T3 and h12T4,
respectively, and lie in T̃3 and T̃4, respectively. Similarly, v31
and v32 lie in T̃1 and T̃2, respectively. A similar analysis is
true for receiver 3 as well.

At the eavesdropper, there is no alignment, since the channel
gains of the eavesdropper are not known at the transmitters.
In fact, the artificial noise symbols all arrive along different
dimensions at the receiver. Thus, heuristically, they exhaust the
decoding capability of the eavesdropper almost completely.

We note that the interference at each receiver is confined to
the dimensions T̃1, T̃2, T̃3 and T̃4. Further, these dimensions are
separate from the dimensions occupied by the desired signals
at each receiver. Specifically, at receiver i , the desired signals
occupy dimensions hii Tj , j �= i, i + 1. These dimensions are
separate from T̃i and T̃i+1, since only Tj contains powers of
c j . Further, T̃ j , j �= i, i + 1 do not contain powers of hii .
Thus, the set

S =
⎛

⎝
⋃

j �=i,i+1

hii Tj

⎞

⎠
⋃

⎛

⎝
4⋃

j=1

T̃ j

⎞

⎠ (135)

has cardinality

MS = 2m8 + 4(m + 1)8 (136)

Intuitively, out of these MS dimensions, 2m8 dimensions carry
the desired signals. Thus, the s.d.o.f. of each legitimate user
pair is 2m8

2m8+4(m+1)8 which approaches 1
3 as m → ∞. Thus,

the sum s.d.o.f. is 1. We omit the formal calculation of the
achievable rate here and instead present it in Appendix F-A
for the general K -user case. Further, note that the unintended
messages at each receiver are buried in artificial noise, see
Fig. 5. Thus, our scheme provides confidentiality of messages
from unintended legitimate receivers as well.

B. Converse for the Interference Channel

The steps of the converse are similar to that of the proof
in Section IV-B. The notation here is also the same as in
Section IV-B. Again, we divide the proof into three steps.
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1) Deterministic Channel Model: We consider the deter-
ministic channel given as,

Yk(t) =
K∑

i=1


hik (t)Xi (t)� (137)

Z(t) =
K∑

i=1


gi (t)Xi (t)� (138)

for k = 1, . . . , K , with the constraint that

Xi (t) ∈
{

0, 1, . . . ,
⌊√

P
⌋}

(139)

We can show that there is no loss of s.d.o.f. in considering
the channel in (137)-(138) instead of the one in (8)-(9), as
in Section IV-B.1. Thus, we will consider this deterministic
channel in the remaining part of the converse. Since all
receivers know �, it appears in the conditioning in every
entropy and mutual information term below. We keep this in
mind, but drop it for the sake of notational simplicity.

2) An Upper Bound on the Sum Rate: We begin as in the
secrecy penalty lemma in [2], i.e., [2, Lemma 1]. Note that,
unlike [2, Lemma 1], channel inputs are integer here:

n
K∑

i=1

Ri ≤ I (W K ; YK
1 ) − I (W K ; Z) + nε (140)

≤ I (W K ; YK
1 |Z) + nε (141)

≤ I (XK
1 ; YK

1 |Z) + nε (142)

≤ H (YK
1 |Z) + nε (143)

= H (YK
1 , Z) − H (Z) + nε (144)

≤ H (XK
1 , YK

1 , Z) − H (Z) + nε (145)

= H (XK
1 ) − H (Z) + nε (146)

≤
K∑

k=1

H (Xk) − H (Z) + nε (147)

where (146) follows since H (YK
1 , Z|XK

1 ) = 0 for the channel
in (137)-(138).

Also, to ensure decodability at the legitimate receiver, we
use the role of a helper lemma in [2], i.e., [2, Lemma 2],

n Ri ≤ I (Wi ; Yi ) + nε′ (148)

≤ I (Xi ; Yi ) + nε′ (149)

= H (Yi) − H (Yi |Xi ) + nε′ (150)

= H (Yi) − H (
⌊
h j X j

⌋
) + nε′ (151)

= H (Yi) − H (
⌊
h j X j

⌋
, X j ) + H (X j |

⌊
h j X j

⌋
)

+ nε′ (152)

≤ H (Yi) − H (X j) + H (X j |
⌊

h j X j
⌋
) + nε′ (153)

≤ H (Yi) − H (X j) +
n∑

t=1

H (X j (t)|
⌊
h j (t)X j (t)

⌋
)

+ nε′ (154)

≤ H (Yi) − H (X j) + nε′ + nc (155)

for every i �= j , where (155) follows using Lemma 2.

Let 
 be any derangement of (1, . . . , n), and let j = 
(i).
Then, using (155), we obtain,

K∑

k=1

H (Xk) ≤
K∑

k=1

H (Yk) − n
K∑

k=1

Rk + nK (ε′ + c) (156)

Using (156) in (147), we get,

2n
K∑

i=1

Ri ≤
K∑

k=1

H (Yk) − H (Z) + nK (ε′ + c) + nε (157)

≤ (K − 1)
n

2
log P + (H (YK ) − H (Z)) + nε′′

(158)

where ε′′ = o(log P). Dividing by n and letting n → ∞,

2
K∑

i=1

Ri ≤ (K − 1)
1

2
log P + ε′′

+ lim
n→∞

1

n
(H (YK ) − H (Z)) (159)

Now dividing by 1
2 log P and taking P → ∞,

K∑

i=1

di ≤ K − 1

2
+ 1

2
lim

P→∞ lim
n→∞

H (YK ) − H (Z)
n
2 log P

(160)

3) Bounding the Difference of Entropies: As we did in
Section IV-B.3, we enhance the system by relaxing the
condition that channel inputs from different transmitters are
mutually independent, and think of the K single antenna
terminals as a single transmitter with K antennas. Thus, we
wish to maximize H (YK ) − H (Z), where YK and Z are two
single antenna receiver outputs, under the constraint that the
channel gains to Z are unknown at the transmitter. Using
Lemma 3, the difference of entropies, H (YK )− H (Z) cannot
be larger than no(log P), if the channel gains to the second
receiver is unknown. Thus,

H (YK ) − H (Z) ≤ no(log P) (161)

Using (161) in (160), we have

K∑

i=1

di ≤ K−1
2 (162)

This completes the converse proof of Theorem 3.

VI. PROOF OF THEOREM 4

As in the previous section, we focus on the fixed channel
gains case and defer the achievable scheme for the fading
channel gains to Appendix G. Our scheme achieves a sum
s.d.o.f. of m(K−1)

m(K−1)+1 , when m of the K transmitters have
eavesdropper’s CSI for almost all fixed channel gains.

In particular, it achieves the
s.d.o.f. tuple (d1, . . . , dm, dm+1, . . . , dK ) =(

K−1
m(K−1)+1 , . . . , K−1

m(K−1)+1 , 0, . . . , 0
)

. We employ
m(K − 1) + K mutually independent random variables:

Vij , i = 1, . . . , m, j = 1, . . . , K , j �= i

U j , j = 1, . . . , K
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Fig. 6. Alignment of signals when K = 3 and m = 2.

uniformly drawn from the same PAM constellation C(a, Q)
in (21). Transmitter i , i = 1, . . . , m transmits:

Xi =
K∑

j=1, j �=i

g j

h j gi
Vi j + 1

hi
Ui , i = 1, . . . , m (163)

while transmitters (m + 1) to K transmit

Xi = 1

hi
Ui , i = m + 1, . . . , K (164)

The channel outputs are given by,

Y =
m∑

i=1

∑

j �=i

hi g j

h j gi
Vi j +

K∑

i=1

Ui + N1 (165)

Z =
K∑

i=1

gi

hi

⎛

⎝Ui +
m∑

j=1, j �=i

V j i

⎞

⎠+ N2 (166)

Intuitively, every Vij gets superimposed with U j at the eaves-
dropper, thus securing it. This is shown in Fig. 6. The proof of
decodability and security guarantee follows exactly the proof
in [2, Sec. IX-B ] and is omitted here.

VII. CONCLUSIONS

In this paper, we established the optimal sum s.d.o.f. for
three channel models: the wiretap channel with M helpers,
the K -user multiple access wiretap channel, and the K -user
interference channel with an external eavesdropper, in the
absence of eavesdropper’s CSIT. While there is no loss in
the s.d.o.f. for the wiretap channel with helpers in the absence
of the eavesdropper’s CSIT, the s.d.o.f. decreases in the cases
of the multiple access wiretap channel and the interference
channel with an external eavesdropper. We show that in the
absence of eavesdropper’s CSIT, the K -user multiple access
wiretap channel is equivalent to a wiretap channel with (K −1)
helpers from a sum s.d.o.f. perspective. The question of
optimality of the sum s.d.o.f. when some but not all of the
transmitters have the eavesdropper’s CSIT remains a subject
of future work.

APPENDIX A
ACHIEVABLE SCHEME FOR THE FADING WIRETAP

CHANNEL WITH HELPERS

We present an achievable scheme for the wiretap channel
with helpers for the case of fading channel gains, i.e., when

the channel gains vary in an i.i.d. fashion from one time slot
to another. In this scheme, the legitimate transmitter sends M
independent Gaussian symbols, V = {V2, . . . , VM+1} securely
to the legitimate receiver in (M + 1) time slots. This is done
as follows:

At time t = 1, . . . , M + 1, the legitimate transmitter sends
a scaled artificial noise, i.e., cooperative jamming, symbol U1
along with information symbols as,

X1(t) = 1

h1(t)
U1 +

M+1∑

k=2

αk(t)Vk (167)

where the αk(t)s are chosen such that the (M + 1) × (M + 1)
matrix T , with entries Ti j = αi ( j)h1( j), where α1( j) = 1

h1( j ) ,
is full rank. The j th helper, j = 2, . . . , M + 1, transmits:

X j (t) = 1

h j (t)
U j (168)

The channel outputs at time t are,

Y (t) =
M+1∑

k=2

h1(t)αk(t)Vk +
⎛

⎝
M+1∑

j=1

U j

⎞

⎠+ N1(t) (169)

Z(t) =
M+1∑

k=2

g1(t)αk(t)Vk +
M+1∑

j=1

g j (t)

h j (t)
U j + N2(t) (170)

Note the similarity of the scheme with that of the real
interference scheme for fixed channel gains, i.e., the similar-
ity between (169)-(170) and (24)-(25). Indeed the alignment
structure after (M+1) channel uses is exactly as in Fig. 4. Note
also how the artificial noise symbols align at the legitimate
receiver over (M + 1) time slots. At high SNR, at the
end of the (M + 1) slots, the legitimate receiver recovers
(M+1) linearly independent equations with (M+1) variables:
V2, . . . , VM+1,

∑M+1
j=1 U j . Thus, the legitimate receiver can

recover V �= (V2, . . . , VM+1) within noise variance.

Formally, let us define U
�= (U1, . . . , UM+1), Y

�=
(Y (1), . . . , Y (M + 1)), and Z

�= (Z(1), . . . , Z(M + 1)). The
observations at the legitimate receiver and the eavesdropper
can then be compactly written as

Y = (AV , AU )

(
VT

UT

)
+ N1 (171)

Z = (BV , BU )

(
VT

UT

)
+ N2 (172)
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where AV is a (M + 1) × M matrix with (AV )i j =
h1(i)α j+1(i), AU is a (M +1)×(M +1) matrix with all ones,
BV is a (M +1)× M matrix with (BV )i j = g1(i)α j+1(i), and

BU is a (M + 1) × (M + 1) matrix with (BU )i j = g j (i)
h j (i)

. N1

and N2 are (M + 1) dimensional vectors containing the noise
variables N1(t) and N2(t), respectively, for t = 1, . . . , M +
1. To calculate differential entropies, we use the following
lemma.

Lemma 4: Let A be an M × N dimensional matrix and let
X = (X1, . . . , X N )T be a jointly Gaussian random vector with
zero-mean and variance PI. Also, let N = (N1, . . . , NM )T be
a jointly Gaussian random vector with zero-mean and variance
σ 2I, independent of X. If r = rank(A), then,

h(AX + N) = r

(
1

2
log P

)
+ o(log P) (173)

We present the proof of Lemma 4 in Appendix B.
Using Lemma 4, we compute

I (V; Y) = h(Y) − h(Y|V) (174)

= (M + 1)
1

2
log P − h(AU UT + N1) + o(log P)

(175)

= (M + 1)

(
1

2
log P

)
− 1

2
log P + o(log P) (176)

= M

(
1

2
log P

)
+ o(log P) (177)

where (175) follows since U and N1 are independent of V and
since (AV , AU ) has rank (M + 1) due to the choice of αi (t)s,
and (176) follows since AU clearly has rank 1. We also have,

I (V; Z) = h(Z) − h(Z|V) (178)

= (M + 1)
1

2
log P − h(BU UT + N2) + o(log P)

(179)

= (M + 1)
1

2
log P − (M + 1)

1

2
log P + o(log P)

(180)

= o(log P) (181)

where we have used the fact that both (BV , BU ) and BU have
rank (M + 1), almost surely, since the αi (t)s do not depend
on the gi (t)s and since both the gi (t)s and hi (t)s come from a
continuous distribution. Note that, in both calculations above,
we have implicitly used the fact that � is known to both the
legitimate receiver and the eavesdropper, and that it appears in
the conditioning of each mutual information and differential
entropy term. Equation (181) means that the leakage to the
eavesdropper does not scale with log P .

Now, consider the vector wiretap channel from V to Y
and Z, by treating the M + 1 slots in the scheme above as
one channel use. Similar to (26), the following secrecy rate is
achievable

Cvec
s ≥ I (V; Y) − I (V; Z) (182)

= M

(
1

2
log P

)
+ o(log P) (183)

Since each channel use of this vector channel uses (M + 1)
actual channel uses, the achievable rate for the actual channel

is,

Cs ≥ M

M + 1

(
1

2
log P

)
+ o(log P) (184)

Thus, the achievable s.d.o.f. of this scheme is M
M+1 . The results

in (52) and (184) complete the achievability of Theorem 1, for
fixed and fading channel gains, respectively.

APPENDIX B
PROOF OF LEMMA 4

Since AX + N is a jointly Gaussian random vector with
zero-mean and covariance PAAT + σ 2I, we have [33],

h(AX + N) = 1

2
log(2πe)M

∣∣∣PAAT + σ 2I
∣∣∣ (185)

= 1

2
log(2πe)M

∣∣∣PW�WT + σ 2I
∣∣∣ (186)

= 1

2

r∑

i=1

log
(
λi P + σ 2

)
+ o(log P) (187)

= r

(
1

2
log P

)
+ o(log P) (188)

where we note that AAT is positive semi-definite, with an
eigenvalue decomposition W�WT , where � is a diagonal
matrix with r non-zero entries λ1, . . . , λr .

APPENDIX C
PROOF OF LEMMA 2

First, note that

H (X | 
h X� , h) = Eh

[
H (X | 
h X� , h = h̃)

]
(189)

Now, for a fixed h, let us define Sh(ν) as the set of all
realizations of X such that 
h X� = ν, i.e., Sh(ν)

�={
i ∈

{
1, . . . , 
√P�

}
: 
ih� = ν

}
. Then,

H
(

X | 
h X� , h = h̃
)

≤ log |Sh̃(
h̃ X�)| (190)

For any ν, we can upper-bound |Sh̃(ν)| as follows: Let, i1 and
i2 be the minimum and maximum elements of Sh̃(ν). Then,

i1h̃� = 
i2h̃� implies that (i2 − i1)|h̃| < 1, which means
(i2 − i1) < 1

|h̃| . Hence,

|Sh̃(ν)| ≤ i2 − i1 + 1 (191)

< 1 + 1

|h̃| (192)

Thus, using (189) and (190), we have,

H (X | 
h X� , h) ≤ Eh

[
log

(
1 + 1

|h|
)]

≤ c (193)

where c is a constant independent of P .
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APPENDIX D
PROOF OF LEMMA 3

Recall that we wish to prove that for the deterministic
channel model stated in (53)-(55), with the channel gains to
Z unknown at the transmitter, we have

H (Y|�) − H (Z|�) ≤ no(log P) (194)

We first note that we can bound H (Y|�) − H (Z|�) as:

H (Y|�) − H (Z|�) ≤ sup
{Xi }:Xi |� X j

H (Y|�) − H (Z|�) (195)

≤ sup
{Xi }

H (Y|�) − H (Z|�) (196)

where X |� Y is used to denote that X and Y are statistically
independent and (196) follows from (195) by relaxing the
condition of independence in (195). Since the Xi s in (196)
may be arbitrarily correlated, we can think of the K single
antenna terminals as a single transmitter with K antennas.
Thus, we wish to maximize H (Y|�) − H (Z|�), where
Y and Z are two single antenna receiver outputs, under the
constraint that the channel gains to Z are unknown at the
transmitter. This brings us to the K -user MISO broadcast
channel setting of [9]. The proof then follows by following
the steps of [9, eqs. (75)–(103)]; however, we present it here
for completeness. The proof has the following steps:

Functional Dependence: For a given channel realization

of H
�= {

hn
i , i = 1, . . . , K

}
, there may be multiple vectors

(X1, . . . , X K ) that cast the same image at Y . Thus, the
mapping from Y , H to one of these vectors (X1, . . . , X K )
is random. We denote this map as L, i.e.,

(X1, . . . , X K ) = L(Y , H) (197)

Now, we note that

H (Z|�) ≥ H (Z|�,L) (198)

≥ min
L∈{L}

H (Z|�,L = L) (199)

Let the minimizing mapping be L0. We choose this to be the
deterministic mapping

(X1, . . . , X K ) = L0(Y , H) (200)

Essentially, for a given Y and H , we choose the mapping that
minimizes the entropy at Z. Note that this mapping makes
Z a deterministic function of (Y ,�), which we denote by
Z(Y ,�), and that while H (Y |�) is not affected, this choice
of Z minimizes H (Z|�), i.e.,

H (Y |�) − H (Z|�) ≤ H (Y |�) − H (Z(Y ,�)|�) (201)

Further, note that this selection can be done irrespective of
any security or decodability constraints.

Aligned Image Sets: For a given channel realization �,
define the aligned image set A(�) as the set of all Y that
have the same image in Z:

Aν(�) = { y : Z(y,�) = Z(ν,�)} (202)

Bounding Difference of Entropies via Size of Aligned Sets:
We have

H (Y |�) = H (Y, Z(Y ,�)|�) (203)

= H (Z(Y ,�)|�) + H (Y |Z(Y ,�),�) (204)

= H (Z(Y ,�)|�) + H (AY (�)|�) (205)

≤ H (Z(Y ,�)|�) + E[log |AY (�)|] (206)

≤ H (Z(Y ,�)|�) + log E[|AY (�)|] (207)

Therefore, we have,

H (Y |�) − H (Z(Y ,�)|�) ≤ E[|AY (�)|] (208)

Bounding the Probability of Alignment: Given the channel
H and two realizations y and y′ of Y , such that X j (y, H) =
x j , and X ′

j (y′, H) = x′
j , we bound the probability of image

alignment at Z. Note that for alignment, we must have for all
t = 1, . . . , n,

K∑

i=1


gi(t)xi (t)� =
K∑

i=1

⌊
gi (t)x ′

i (t)
⌋

(209)

which implies

gi∗(t)(t)(x ′
i∗ (t) − xi∗(t))

∈
K∑

i=1,i �=i∗ (t)


gi(t)xi (t)� − ⌊
gi(t)x ′

i (t)
⌋+ � (210)

where � ∈ (−1, 1), and

i∗(t) = arg max
i

|(x ′
i(t) − xi (t)| (211)

Therefore, for any t such that x ′
i∗(t) �= xi∗(t), gi∗(t)(t) must

lie within an interval of length 2
|x ′

i∗ (t)−xi∗ (t)| . If fmax is the

maximum of 1 and an upper bound on the probability density
function of gi (t) (note that the probability density is assumed
to be bounded), we have,

P
(

y′ ∈ Ay(�)
) ≤ f n

max

∏

t :x ′
i∗(t)(t)
�=

xi∗(t)(t)

2

|x ′
i∗(t)(t) − xi∗(t)(t)| (212)

We now express this probability in terms of y(t) and y′(t)
as follows: We note

y ′(t) − y(t) =
K∑

i=1

(
hi (t)xi (t)� − ⌊
hi (t)x ′

i (t)
⌋)

(213)

≤
K∑

i=1

⌊
hi (t)(xi (t) − x ′(t))

⌋+ (−K , K ) (214)

Therefore, we have

|y ′(t) − y(t)| ≤ |x ′
i∗(t)(t) − xi∗(t)(t)|

K∑

i=1

|hi (t)| + K (215)

which implies

1

|x ′
i∗(t)(t) − xi∗(t)(t)| ≤

K∑
i=1

|hi (t)|
|y′(t)−y(t)|−K

(216)
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whenever |y ′(t) − y(t)| > K . Thus, we have

P
(

y′ ∈ Ay(�)
) ≤ h̄n f n

max

∏

t :|y′(t)−y(t)|>K

1

|y ′(t) − y(t)| − K

(217)

where

h̄n = max

⎛
⎜⎝1,

∏

t :x ′
i∗(t)(t) �=xi∗(t)(t)

2
K∑

i=1

|hi (t)|
⎞
⎟⎠ (218)

Bounding the Size of the Aligned Image Set:

E[|Ay(�)|] =
∑

y′
P
(

y′ ∈ Ay(�)
)

(219)

≤ h̄n f n
max

n∏

t=1

⎛

⎝
∑

y′(t):|y′(t)−y(t)|≤K

1

+
∑

y′(t):K<|y′(t)−y(t)|≤Q y(t)

1

|y ′(t) − y(t)| − K

⎞

⎠

(220)

≤ h̄n f n
max

(
log

√
P + o(log P)

)n
(221)

where Qy(t) ≤ √
P
∑K

i=1 |hi (t)| + K . Therefore, taking
logarithms, we have

log E[|Ay(�)|] ≤ no(log P) (222)

Now, combining (201), (208) and (222), we have the desired
result, i.e.,

H (Y|�) − H (Z|�) ≤ no(log P) (223)

which completes the proof of Lemma 3.

APPENDIX E
ACHIEVABILITY FOR K = 3 WITH FADING CHANNEL

GAINS

Our scheme uses asymptotic vector space alignment intro-
duced in [7]. Let � = (K −1)2 = (3−1)2 = 4. We use Mn =
2n�+4(n+1)� channel uses to transmit 6n� message symbols
securely to the legitimate receivers in the presence of the
eavesdropper. Thus, we achieve a sum s.d.o.f. of 6n�

2n�+4(n+1)�
,

which approaches 1 as n → ∞.
First, at transmitter i , we divide its message Wi into 2

sub-messages Vij , j = 1, . . . , 4, j �= i, i + 1. Each Vij

is encoded into n� independent streams vi j (1), . . . , vi j (n�),

which we denote as vi j
�= (

vi j (1), . . . , vi j (n�)
)T

. We also
require artificial noise symbols Ui and Ũi at each transmitter
i . We encode the artificial noise symbols Ui and Ũi as

ui
�= (

ui (1), . . . , ui ((n + 1)�)
)T

, i = 1, 2, 3 (224)

ũi
�= (

ũi (1), . . . , ũi (n
�)
)T

, i = 1, 2 (225)

ũ3
�= (

ũi (1), . . . , ũi ((n + 1)�)
)T

(226)

In each channel use t ≤ Mn , we choose precoding column
vectors pi j (t), qi (t) and q̃i (t) with the same number of

elements as vi j , ui and ũi , respectively. In channel use t ,
transmitter i sends

Xi (t) =
∑

j �=i,i+1

pi j (t)
T vi j + qi (t)

T ui + q̃i (t)
T ũi (227)

where we have dropped the limits on j in the summation for
notational simplicity. By stacking the precoding vectors for all
Mn channel uses, we let,

Pi j =
⎛

⎜⎝
pi j (1)T

...

pT
i j (Mn)

⎞

⎟⎠ , Qi =
⎛

⎜⎝
qi (1)T

...

qi (Mn)T

⎞

⎟⎠ (228)

and,

Q̃i =
⎛
⎜⎝

q̃i (1)T

...

q̃i (Mn)T

⎞
⎟⎠ (229)

Now, letting Xi = (Xi (1), . . . , Xi (Mn))T , the channel input
for transmitter i over Mn channel uses can be compactly
represented as

Xi =
∑

j

Pi j vi j + Qi ui + Q̃i ũi (230)

Recall that, channel use t , the channel output at receiver l
and the eavesdropper are, respectively, given by

Yl(t) =
3∑

k=1

hkl (t)Xk(t) + Nl (t) (231)

Z(t) =
3∑

k=1

gk(t)Xk(t) + NZ (t) (232)

Let Hkl
�= diag (hkl (1), . . . , hkl (Mn)). Similarly, define Gk =

diag (gk(1), . . . , gk(Mn)). The channel outputs at receiver l
and the eavesdropper over all Mn channel uses, Yl =
(Yl(1), . . . , Yl(Mn))T and Z = (Z(1), . . . , Z(Mn))T , respec-
tively, can be represented by

Yl =
3∑

k=1

HklXk + Nl (233)

=
3∑

k=1

Hkl

⎛

⎜⎜⎝
4∑

j=1
j �=k,k+1

Pkj vkj + Qkuk + Q̃k ũk

⎞

⎟⎟⎠+ Nl (234)

=
4∑

j=1
j �=l,l+1

HllPl j vl j +
3∑

k=1
k �=l

4∑

j=1
j �=k,k+1

Hkl Pkj vkj

+
3∑

k=1

Hkl

(
Qkuk + Q̃k ũk

)
+ Nl (235)
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TABLE II

SUMMARY OF ALIGNMENT EQUATIONS

TABLE III

VALUES OF Ti j

and,

Z =
3∑

k=1

GkXk + NZ (236)

=
3∑

k=1

4∑

j=1
j �=k,k+1

GkPkj vkj +
3∑

k=1

Gk

(
Qkuk + Q̃k ũk

)

+ NZ (237)

Now, receiver l wants to decode vl j , j = 1, . . . , 4, j �= l,
l+1. Thus, the remaining terms in (235) constitute interference
at the lth receiver. Let C S(X) denote the column space
of matrix X. Then, Il denoting the space spanned by this
interference is given by

Il =
⎛

⎝
⋃

k �=l, j �=k,k+1

C S
(
HklPkj

)
⎞

⎠
⋃

(
3⋃

k=1

C S (HklQk)

)

⋃
(

3⋃

k=1

C S
(

HklQ̃k

))
(238)

Note that there are 2n� symbols to be decoded by each
legitimate receiver in 2n� + 4(n + 1)� channel uses. Thus,
for decodability, the interference can occupy a subspace of
rank at most 4(n + 1)�, that is,

rank(Il) ≤ 4(n + 1)� (239)

To that end, we align the noise and message subspaces at each
legitimate receiver appropriately. Note that no such alignment
is possible at the external eavesdropper since the transmitters
do not have its CSI. In addition, note that we have a total of
2n� + 4(n + 1)� artificial noise symbols which will span the

full received signal space at the eavesdropper and secure all
the messages.

Fig. 5 shows the alignment we desire. We remark that
the same figure represents the alignment of signals both for
real interference alignment and the vector space alignment
schemes. Now, let us enumerate the conditions for the desired
signal alignment at each receiver. From Fig. 5, it is clear that
there are 6 alignment equations at each legitimate receiver,
corresponding to four unintended messages and two artificial
noise symbols Ũ1 and Ũ2. Table II shows the alignment
equations for each legitimate receiver.

Now, me make the following selections:

P21 = P31
�= P̃1 (240)

P32
�= P̃2 (241)

P13
�= P̃3 (242)

P14 = P24
�= P̃4 (243)

Q̃1 = H−1
11 H31P̃2 (244)

Q̃2 = H−1
22 H12P̃3 (245)

Note that (244) and (245) imply that the artificial noises ũ1
and ũ2 align exactly with unintended message symbols v32 and
v13 at receivers 1 and 2, respectively. With these selections, it
suffices to find matrices P̃i , i = 1, . . . , 4, Qi , i = 1, 2, 3, and
Q̃3. The alignment equations may now be written as

Ti j P̃i � Qi , i = 1, 2, 3, j = 1, . . . , 4 (246)

T4 j P̃4 � Q̃3, j = 1, . . . , 4 (247)

where the Ti j s are tabulated in Table III, and the notation A �
B is used to denote that C S(A) ⊆ C S(B) for matrices A and
B where C S(X) refers to the column space of the matrix X.
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We can now construct the matrices P̃i , i = 1, . . . , 4, Qi , i =
1, . . . , 3 and Q̃3 as in [7]

P̃i =
⎧
⎨

⎩

⎛

⎝
4∏

j=1

T
α j
i j

⎞

⎠wi : α j ∈ {1, . . . , n}
⎫
⎬

⎭ (248)

Qi =
⎧
⎨

⎩

⎛

⎝
4∏

j=1

T
α j
i j

⎞

⎠wi : α j ∈ {1, . . . , n + 1}
⎫
⎬

⎭ (249)

Q̃3 =
⎧
⎨

⎩

⎛

⎝
4∏

j=1

T
α j
i j

⎞

⎠w4 : α j ∈ {1, . . . , n + 1}
⎫
⎬

⎭ (250)

where each wi is the Mn × 1 column vector containing
elements drawn independently from a continuous distribution
with bounded support. Note that an element in Pi is the
product of powers of some channel coefficients and an extra
random variable, just like an element in the sets Ti defined
for the real interference scheme. Further, the set of channel
coefficients appearing in Pi is the same as those contained in
set Ti . Thus, there is a loose correspondence between the real
and vector space alignment techniques.

Now, consider the decodability of the desired signals at
the receivers. For example, consider receiver 1. Due to the
alignment conditions in Table II, the interference subspace at
receiver 1 is given by

I1 =
[
H11Q1 H21Q2 H31Q3 H31Q̃3

]
(251)

The desired signal subspace, on the other hand, is

D1 =
[
H11P̃3 H11P̃4

]
(252)

For decodability, it suffices to show that

�1 = [D1 I1] (253)

is full rank. To do so, we use [34, Lemmas 1 and 2]. Consider
any row m of the matrix �1. Note that the mth row of Hi1Qi

contains the term wmi with exponent 1, but no wmj for i �= j ,
where wmi denotes the element in the mth row of wi . In fact,
for i = 1, . . . , 4, the term wmi occurs nowhere else in the
matrix �l except in Hi1Qi (H31Q̃3, when i = 4) and H11P̃i .
This shows that D1 and I1 have full column ranks individually.
Further, the matrix

[
H11P̃3 H31Q3

]
has full column rank

because Q3 does not contain any elements of H11. Similarly,[
H11P̃4 H31Q̃3

]
is full column rank for the same reason.

Thus, �1, which is a Mn × Mn matrix, is full column rank,
and hence full rank. This ensures decodability of the desired
signals at receiver 1. a similar analysis holds for the other
receivers as well.

The security of the message signals at the eavesdropper is
ensured by the fact that the artificial noises Qi and Q̃i , i =
1, 2, 3, do not align at the eavesdropper, and instead span the
full received signal space at the eavesdropper. Indeed, the Mn×
Mn matrix

IE =
[
G1Q1 G2Q2 G3Q3 G1Q̃1 G2Q̃2 G3Q̃3

]
(254)

is full rank. Thus, if Vi = {
vi j , j �= i, i + 1

}
denotes

the collection of all messages of transmitter i , and uT =

[
uT

1 , uT
2 , uT

2 , ũT
1 , ũT

2 , ũT
3

]
,

I (V3
1; Z) = h(Z) − h(Z|V3

1) (255)

= h(Z) − h(IE u) (256)

≤ Mn

2
log P − Mn

2
log P + o(log P) (257)

= o(log P) (258)

In the above calculation, we have dropped the conditioning
on � for notational simplicity. Now, by treating all Mn

channel uses as 1 vector channel use, and using [4, Th. 2],
an achievable rate for the vector channel is

RMn
i = I (Vi ; Yi ) − I (Vi ; Z|V−i ) (259)

= 2n� log P − o(log P) (260)

where (260) follows since the 2n� symbols are decodable
within noise variance, and since I (Vi ; Z|V−i ) ≤ I (V3

1; Z) ≤
o(log P). Thus, the rate 2n�

Mn
is achievable per user pair per

channel use, which gives a sum s.d.o.f. of 6n�

2n�+4(n+1)�
, which

approaches 1, as n → ∞.

APPENDIX F
ACHIEVABILITY FOR THE K -USER INTERFERENCE

CHANNEL WITH AN EXTERNAL EAVESDROPPER

Here, we present the general achievable schemes for the
K -user interference channel with an external eavesdropper.

A. Fixed Channel Gains

Let m be a large constant. We pick (K + 1) points
c1, . . . , cK+1 in an i.i.d. fashion from a continuous distribu-
tion with bounded support. Then, c1, . . . , cK+1 are rationally
independent almost surely. Let us define sets Ti , for i =
1, . . . , K + 1, which will represent dimensions as follows:

T1
�=
⎧
⎨

⎩

(
K∏

k=1

hr1k
1k

)⎛

⎝
K∏

j,k=1, j �=1,k

h
r jk
j k

⎞

⎠ cs
1 :

r jk, s ∈ {1, . . . , m}
⎫
⎬

⎭ (261)

Ti
�=

⎧
⎪⎨

⎪⎩

(
K∏

k=1

hrik
ik

)(
K∏

k=2

(
h(i−1)k

h(i−1)1

)r(i−1)k
)

⎛

⎜⎝
K∏

j,k=1
j �=i,i−1,k

h
r jk
j k

⎞

⎟⎠ cs
i : r jk, s ∈ {1, . . . , m}

⎫
⎪⎬

⎪⎭
,

i = 2, . . . , K − 1 (262)

TK
�=

⎧
⎪⎨

⎪⎩

(
K∏

k=1

hrK k
K k

)⎛

⎝
K∏

k=1,k �=2

(
h(K−1)k

h(K−1)2

)r(K−1)k

⎞

⎠

⎛

⎜⎝
K∏

j,k=1
j �=K ,K−1,k

h
r jk
j k

⎞

⎟⎠ cs
K : r jk, s ∈ {1, . . . , m}

⎫
⎪⎬

⎪⎭

(263)
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TK+1
�=
⎧
⎨

⎩

(
K∏

k=1

hrK k
K k

)⎛

⎝
K∏

j,k=1, j �=K ,k

h
r jk
j k

⎞

⎠ cs
K+1 :

r jk, s ∈ {1, . . . , m}
⎫
⎬

⎭ (264)

Let Mi be the cardinality of Ti . Note that all Mi are the same,
thus we denote them as M ,

M
�= m2+K (K−1) (265)

First, we divide each message into many sub-messages; specif-
ically, the message of the i th transmitter, Wi , is divided into
(K − 1) sub-messages Vij , j = 1, . . . , K + 1, j �= i, i + 1.
For each transmitter i , let pi j be the vector containing all
the elements of Tj , for j �= i, i + 1. For any given (i, j)
with j �= i, i + 1, pi j represents the dimension along which
message Vij is sent. Further, at each transmitter i , let qi and
q̃i be vectors containing all the elements in sets Ti and βi Ti+1,
respectively, where

βi =

⎧
⎪⎨

⎪⎩

h(i+2)1
hi1

, if 1 ≤ i ≤ K − 2
h12
hi2

, if i = K − 1

1, if i = K

(266)

The vectors qi and q̃i represent dimensions along which
artificial noise symbols Ui and Ũi , respectively, are sent. We
define a (K +1)M dimensional vector bi by stacking the pi j s,
qi and q̃i as

bT
i =

[
pT

i1 . . . pT
i(i−1) pT

i(i+2) . . . pi(K+1) qi q̃i

]
(267)

The transmitter encodes Vij using an M dimensional vector
vi j , and the cooperative jamming signals Ui and Ũi using M
dimensional vectors ui and ũi , respectively. Each element of
vi j , ui and ũi are drawn in an i.i.d. fashion from C(a, Q)
in (21). Let

aT
i =

[
vT

i1 . . . vT
i(i−1) vT

i(i+2) . . . vi(K+1) ui ũi

]
(268)

The channel input of transmitter i is then given by

xi = aT
i b (269)

Let us now analyze the structure of the received signals at
the legitimate receivers. The alignment of the interfering signal
spaces at receiver i is shown in Fig. 7. The i th row depicts
the signals originating from transmitter i . The signals in the
same column align together at the receiver. For simplicity of
exposition, let us consider receiver 1.

At the first receiver, the desired signals v13, . . ., v1(K+1)

come along dimensions h11T3, . . ., h11TK+1, respectively.
These dimensions are separate almost surely, since Ti contains
powers of ci while Tj , j �= i does not. Thus, they correspond
to separate boxes in the Fig. 5 for K = 3. For the same reason,
cooperative jamming signals u1, . . ., uK , ũK , which arrive
along the dimensions h11T1, . . ., hK 1TK , hK 1TK+1 occupy
different dimensions almost surely. Further, the message sig-
nals v13, . . . , v1(K+1), and the cooperative jamming signals
u1, . . . , uK , ũK do not overlap, since none of T3 . . . , TK+1
contain h11. Thus, they appear as separate boxes in Fig. 5.

Now, let us consider the signals that are not desired at
receiver 1. A signal vkl , k �= 1, K + 1 arrives at receiver 1
along hk1Tl . If we define

T̃1
�=
⎧
⎨

⎩

(
K∏

k=1

hr1k
1k

)⎛

⎝
K∏

j,k=1, j �=1,k

h
r jk
j k

⎞

⎠ cs
1 :

r jk, s ∈ {1, . . . , m + 1}
⎫
⎬

⎭ (270)

T̃i
�=

⎧
⎪⎪⎨

⎪⎪⎩

(
K∏

k=1

hrik
ik

)(
K∏

k=2

(
h(i−1)k

h(i−1)1

)r(i−1)k
)

⎛

⎜⎜⎝
K∏

j,k=1
j �=i,i−1,k

h
r jk
j k

⎞

⎟⎟⎠ cs
i : r jk, s ∈ {1, . . . , m + 1}

⎫
⎪⎪⎬

⎪⎪⎭
,

i = 2, . . . , K − 1 (271)

T̃K
�=

⎧
⎪⎪⎨

⎪⎪⎩

(
K∏

k=1

hrK k
K k

)
⎛

⎜⎜⎝
K∏

k=1,k �=2
m=K−1

(
hmk

hm2

)rmk

⎞

⎟⎟⎠

⎛

⎜⎜⎝
K∏

j,k=1
j �=K ,K−1,k

h
r jk
j k

⎞

⎟⎟⎠ cs
K : r jk, s ∈ {1, . . . , m + 1}

⎫
⎪⎪⎬

⎪⎪⎭

(272)

T̃K+1
�=
⎧
⎨

⎩

(
K∏

k=1

hrK k
K k

)⎛

⎝
K∏

j,k=1, j �=K ,k

h
r jk
j k

⎞

⎠ cs
K+1 :

r jk, s ∈ {1, . . . , m + 1}
⎫
⎬

⎭ (273)

we notice that the dimensions in hk1Tl , k �= 1 are subsets
of T̃l , as is hl1Tl for every l = 1, . . . , K . Thus, each vkl

aligns with ul in T̃l , for l = 1, . . . , K , as is shown in
Fig. 7. Further, a signal vk(K+1), k �= 1, K , arrives along
the dimensions hk1TK+1, k �= 1 which is a subset of T̃K+1,
as is hK 1TK+1, along which ũK arrives. Thus, each vk(K+1),
k �= 1, K aligns with ũK , see Fig. 7. Finally, the cooperative
jamming signals ũ1, . . . , ũK−2, and ũK−1 arrive at receiver 1
along dimensions h31T2, . . ., hK 1TK−1, and h12

(
h(K−1)1
h(K−1)2

)
TK ,

respectively, which are all in T̃2 . . ., T̃K−1 and T̃K , respectively.
Thus, the signal ũi , i = 1, . . . , K − 1 align with ui+1 in T̃i+1,
which is seen in Fig. 5 for K = 3, and in Fig. 7 for general K .

We further note that the sets h11T3, . . ., h11TK+1, T̃1, . . .,
T̃K+1 are all separable since only Ti and T̃i (and not Tj or T̃ j )
contain powers of ci , and none of T̃3, . . ., T̃K+1 contains h11.
A similar observation holds for the received signal at any of
the remaining receivers. Thus, the set

S =
(

K+1⋃

i=3

h11Ti

)
⋃

(
K+1⋃

i=1

T̃i

)
(274)
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Fig. 7. Alignment of interference signals at receiver i .

has cardinality given by

Ms = (K − 1)mK (K−1)+2 + (K + 1)(m + 1)K (K−1)+2

(275)

At the external eavesdropper, there is no alignment and the
cooperative jamming signals occupy the full space, thereby
exhausting the decoding capability of the eavesdropper. This
secures all the messages at the external eavesdropper.

We next provide an analysis for the achievable sum rate.
Since we have only one eavesdropper, we use [4, Th. 2] and
observe that the rate

Ri = I (Vi ; Yi ) − I (Vi ; Z |V−i ) (276)

is achievable, where Vi ia an auxiliary random variable sat-
isfying Vi → Xi → Y, Z , and V−i denotes the collection{
Vj , j �= i

}
. Note that since � is known at all the legitimate

receivers and the eavesdropper, and since Vi s are chosen to
be independent of �, � should appear in the conditioning of
each of the mutual information quantities in (276). We keep
this in mind, but drop it for the sake of notational simplicity.

First, we can upper bound the probability of error at each
receiver. Let

Vi
�= (

vi1 . . . vi(i−1) vi(i+2) . . . vi(K+1)

)
(277)

Then, for any δ > 0, there exists a positive constant γ , which

is independent of P , such that if we choose Q = P
1−δ

2(MS+δ) and

a = γ P
1
2

Q , then for almost all channel gains the average power
constraint is satisfied and the probability of error is bounded
by

Pr(Vi �= V̂i ) ≤ exp
(−ηγi Pδ

)
(278)

where ηγi is a positive constant which is independent of P
and V̂i is the estimate for Vi obtained by choosing the closest
point in the constellation based on observation Yi .

By Fano’s inequality and the Markov chain Vi → Yi → V̂i ,
we know that,

I (Vi ; Yi ) ≥ I (Vi ; V̂i ) (279)

= H (Vi) − H (Vi |V̂i ) (280)

= log(|Vi |) − H (Vi |V̂i ) (281)

≥ log(|Vi |) − 1 − Pr(Vi �= V̂i ) log(|Vi |) (282)

=
[
1 − Pr(Vi �= V̂i )

]
log(|Vi |) − 1 (283)

= log(|Vi |) − o(log P) (284)

= (K − 1)M(1 − δ)

MS + δ

(
1

2
log P

)
+ o(log P) (285)

where o(·) is the little-o function, Vi is the alphabet of Vi

and, in this case, the cardinality of Vi is (2Q + 1)(K−1)M =
(2Q + 1)(K−1)mK (K−1)+2

. Here, M is defined in (265).
Now, we bound the second term in (276). Let

U
�= {ui , ũi , i = 1, . . . , K } (286)

We have,

I (Vi ; Z |V−i) = I (Vi , U ; Z |V−i ) − I (U ; Z |V K
1 ) (287)

= h(Z) − h(Z |U, V K
1 ) − H (U |V K

1 )

+ H (U |Z , V K
1 ) (288)

≤ 1

2
log P − h(NZ ) − H (U) + o(log P) (289)

= 1

2
log P − H (U) + o(log P) (290)

= 1

2
log P − log(2Q + 1)2K M + o(log P)

(291)

= 1

2
log P − (1 − δ)2K M

2(MS + δ)
log P + o(log P)

(292)
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Now, combining (285) and (292), we have,

Ri ≥ (K − 1)M(1 − δ)

MS + δ

(
1

2
log P

)

− 1

2
log P + (1 − δ)2K M

2(MS + δ)
log P + o(log P) (293)

By choosing δ small enough and choosing m large enough, we
can make Ri arbitrarily close to K−1

2K . Thus, the sum s.d.o.f. of
K−1

2 is achievable with fixed channel gains.

B. Fading Channel Gains

Here, we present a scheme that achieves K−1
2 s.d.o.f. using

asymptotic vector space alignment with channel extension. Let
� = (K −1)2. We use Mn = (K −1)n�+(K +1)(n+1)� chan-
nel uses to transmit K (K − 1)n� message symbols securely
to the legitimate receivers in the presence of the eavesdropper.
Thus, we achieve a sum s.d.o.f. of K (K−1)n�

(K−1)n�+(K+1)(n+1)�
, which

gets arbitrarily close to K−1
2 as n → ∞.

First, we divide each message into many sub-messages;
specifically, the message of the i th transmitter, Wi , is
divided into (K − 1) sub-messages Vij , j = 1, . . . , K +
1, j �= i, i + 1. Each Vij is encoded into n� indepen-

dent streams vi j (1), . . . , vi j (n�), which we denote as vi j
�=(

vi j (1), . . . , vi j (n�)
)T

. We also require artificial noise sym-
bols Ui and Ũi at each transmitter i . Again, we encode the
artificial noise symbols Ui and Ũi as

ui
�= (

ui (1), . . . , ui ((n + 1)�)
)T

, i = 1, . . . , K (294)

ũi
�= (

ũi (1), . . . , ũi (n
�)
)T

, i = 1, . . . , K − 1 (295)

ũK
�= (

ũi (1), . . . , ũi ((n + 1)�)
)T

(296)

In each channel use t ≤ Mn , we choose precoding column
vectors pi j (t), qi (t) and q̃i (t) with the same number of
elements as vi j , ui and ũi , respectively. In channel use t ,
transmitter i sends

Xi (t) =
∑

j

pi j (t)
T vi j + qi (t)

T ui + q̃i (t)
T ũi (297)

where we have dropped the limits on j in the summation for
notational simplicity. By stacking the precoding vectors for all
Mn channel uses, we let,

Pi j =
⎛

⎜⎝
pi j (1)T

...

pT
i j (Mn)

⎞

⎟⎠, Qi =
⎛

⎜⎝
qi (1)T

...

qi (Mn)T

⎞

⎟⎠ (298)

and

Q̃i =
⎛
⎜⎝

q̃i (1)T

...

q̃i (Mn)T

⎞
⎟⎠ (299)

Now, letting Xi = (Xi (1), . . . , Xi (Mn))T , the channel input
for all transmitter i over Mn channel uses can be compactly
represented as

Xi =
∑

j

Pi j vi j + Qi ui + Q̃i ũi (300)

Recall that, channel use t , the channel output at receiver l
and the eavesdropper are, respectively, given by

Yl(t) =
K∑

k=1

hkl (t)Xk(t) + Nl (t) (301)

Z(t) =
K∑

k=1

gk(t)Xk(t) + NZ (t) (302)

Let Hkl
�= diag (hkl (1), . . . , hkl (Mn)). Similarly, define Gk =

diag (gk(1), . . . , gk(Mn)). The channel outputs at receiver l
and the eavesdropper over all Mn channel uses, Yl =
(Yl(1), . . . , Yl(Mn))T and Z = (Z(1), . . . , Z(Mn))T , respec-
tively, can be represented by

Yl =
K∑

k=1

HklXk + Nl (303)

=
K∑

k=1

Hkl

⎛

⎜⎜⎝
K+1∑

j=1
j �=k,k+1

Pkj vkj + Qkuk + Q̃k ũk

⎞

⎟⎟⎠+ Nl

(304)

=
K+1∑

j=1
j �=l,l+1

Hll Pl j vl j +
K∑

k=1
k �=l

K+1∑

j=1
j �=k,k+1

HklPkj vkj

+
K∑

k=1

Hkl

(
Qkuk + Q̃k ũk

)
+ Nl (305)

and,

Z =
K∑

k=1

GkXk + NZ (306)

=
K∑

k=1

K+1∑

j=1
j �=k,k+1

GkPkj vkj

+
K∑

k=1

Gk

(
Qkuk + Q̃k ũk

)
+ NZ (307)

Note that receiver l wants to decode vl j , j = 1, . . . , K +
1, j �= l, l + 1. Thus, the remaining terms in (305) constitute
interference at the lth receiver. Recall that C S(X) denotes the
column space of the matrix X. Then, Il denoting the space
spanned by this interference is

Il =
⎛

⎝
⋃

k �=l, j �=k,k+1

C S
(
Hkl Pkj

)
⎞

⎠
⋃

(
K⋃

k=1

C S (HklQk)

)

⋃
(

K⋃

k=1

C S
(

HklQ̃k

))
(308)

Note that there are (K −1)n� symbols to be decoded by each
legitimate receiver in (K −1)n�+(K +1)(n+1)� channel uses.
Thus, for decodability, the interference can occupy a subspace
of rank at most (K + 1)(n + 1)� , that is,

rank(Il) ≤ (K + 1)(n + 1)� (309)
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To that end, we align the noise and message subspaces at each
legitimate receiver appropriately. Note that no such alignment
is possible at the external eavesdropper since the transmitters
do not have its CSI. However, note that we have a total of
(K − 1)n� + (K + 1)(n + 1)� artificial noise symbols which
will span the full received signal space at the eavesdropper
and secures all the messages.

Fig. 5 shows the alignment for K = 3 receivers. For
the general K -user case, Fig. 7 shows the alignment in the
interfering signal dimensions. At receiver l, it is as follows:
First, the artificial noise symbols ũk is aligned with uk+1, for
every k = 1, . . . , K − 1. Thus, we have,

HklQ̃k � H(k+1)lQ(k+1), k = 1, . . . , K − 1 (310)

where A � B is used to denote that C S(A) ⊆ C S(B). Thus,
the subspace spanned by the artificial noise symbols can have
a rank of at most (K + 1)(n + 1)� .

The unwanted message symbols vkj , k �= l, are aligned with
u j if j ≤ K , or ũK otherwise. Thus,

HklPkj � H j lQ j , j ≤ K (311)

Hkl Pk(K+1) � HK lQ̃K (312)

for each k �= l. Since, the unwanted messages at each receiver
are aligned under the artificial noise subspaces, they do not
increase the rank of Il any further.

We can group the alignment equations for the artificial noise
uk , k = 1, . . . , K , and ũK for all K legitimate receivers. For
u1, we have,

HklPk1 � H1lQ1, k ∈ {2, . . . , K } , l ∈ {1, . . . , K } , l �= k

(313)

Clearly, these are (K −1)2 alignment equations. Similarly, we
have (K − 1)2 alignment equations for ũK , given by

HklPk(K+1) � HK lQ̃K , k ∈ {1, . . . , K − 1} ,

l ∈ {1, . . . , K } , l �= k (314)

For the artificial noises uk, k = 2, . . . , K , we have the
following alignment equations:

H(k−1)lQ̃k−1 � HklQk (315)

Hil Pik � HklQk, i �= k − 1, k, l �= i (316)

Thus, there are (K − 1)2 + 1 alignment equations for each
uk, k = 2, . . . , K . Now we make the following selections:

Pk1 = P̃1, k = 2, . . . , K (317)

Pk(K+1) = P̃K+1, k = 1, . . . , K − 1 (318)

Pik = P̃k, i �= k − 1, k, k = 2, . . . , K (319)

H(k−1)1Q̃k−1 = H(k+1)1P̃k, k = 2, . . . , K − 1 (320)

H(K−1)2Q̃K−1 = H12P̃K (321)

Now, note that it suffices to choose the matrices
P̃k , k = 1, . . . , K + 1 in order to specify all the precoding
matrices. Using these selections in our alignment equations
in (313), (314), (315) and (316), we have (K − 1)2 alignment
equations for each uk , k = 1, . . . , K and ũK , given by,

Tk P̃k � Qk, Tk ∈ τk, k = 1, . . . , K (322)

TK+1P̃K+1 � Q̃K , TK+1 ∈ τK+1 (323)

where the sets τk , k = 1, . . . , K + 1 are given by

τ1 =
{

H−1
1l Hkl , k ∈ {2, . . . , K } , l ∈ {1, . . . , K } ,

l �= k
}

(324)

τK+1 =
{

H−1
K l Hkl , k ∈ {1, . . . , K − 1} , l ∈ {1, . . . , K } ,

l �= k
}

(325)

τk = τ P
k

⋃
τ

Q
k (326)

where,

τ P
k =

{
H−1

kl Hil , i /∈ {k − 1, k} , l �= i, l ∈ {1, . . . , K }
}

(327)

τ
Q
k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
H−1

kl H(k−1)lH
−1
(k−1)1H(k+1)1, l ∈ {1, . . . , K }

}
,

if k ∈ {2, . . . , K − 1}{
H−1

K l H(K−1)lH
−1
(K−1)2H12, l ∈ {1, . . . , K }

}
,

if k = K

(328)

We can now construct the matrices P̃k, k = 1, . . . , K + 1,
Qk, k = 1, . . . , K and Q̃K as in [7]

P̃k =
⎧
⎨

⎩

⎛

⎝
∏

T∈τk

TαT

⎞

⎠wk : αT ∈ {1, . . . , n}
⎫
⎬

⎭ (329)

Qk =
⎧
⎨

⎩

⎛

⎝
∏

T∈τk

TαT

⎞

⎠wk : αT ∈ {1, . . . , n + 1}
⎫
⎬

⎭ (330)

Q̃K =
⎧
⎨

⎩

⎛

⎝
∏

T∈τK+1

TαT

⎞

⎠wK+1 : αT ∈ {1, . . . , n + 1}
⎫
⎬

⎭

(331)

where each wk is the Mn × 1 column vector containing
elements drawn independently from a continuous distribution
with bounded support. This completes the description of our
scheme.

Decodability: By our construction, the interference space at
legitimate receiver l is given by,

Il =
(

K⋃

k=1

C S(HklQk)

)
⋃(

C S(HK lQ̃K )
)

(332)

and clearly,

rank(Il) ≤ (K + 1)(n + 1)� (333)

We only need to show that desired signals vl j , j �= l, l +1 fall
outside Il . The desired signal space at receiver l is given by

Dl =
[
Hll P̃1 . . . Hll P̃l−1 Hll P̃l+2 . . . , Hll P̃K

]
(334)

We want to show that the matrix

�l =
[
Dl Ĩl

]
(335)

where,

Ĩl =
[
H1lQ1 . . . HK lQK HK lQ̃K

]
(336)
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is full rank almost surely. To do so, we will use
[34, Lemmas 1 and 2]. Note that the mth row of Hkl Qk

contains the term wmk with exponent 1, but no wmk′ for
k �= k ′, where wmk denotes the element in the mth row of wk .
In fact, the term wmk occurs nowhere else in the matrix �l

except in HklQk and Hll P̃k . This shows, using [34, Lemmas
1, 2], that Dl and Ĩl are full rank almost surely. Further,
it suffices to show that the matrices

[
Hll P̃k HklQk

]
, k =

1, . . . , K , and
[
Hll P̃K+1 HK lQ̃K

]
are all full column rank.

First,
[
Hll P̃1 Hkl Q1

]
is full column rank since HklQ1 misses

the term Hll . Similarly,
[
Hll P̃K+1 HK lQ̃1

]
is full column

rank. Further, if k �= l, l + 1, HklQk does not contain Hll and
hence

[
Hll P̃k HklQk

]
is full column rank. Finally, note that

the lth transmitter does not transmit any message signals along
P̃k , when k = l, l + 1. Thus, the matrix �l is full rank almost
surely. This ensures decodability of the desired signals at each
receiver.

Security Guarantee: Let v = {
vi j , i, j ∈ {1, . . . , K } , j

�= i, i + 1}, that is, v is the collection of all legitimate mes-
sages to be secured from the eavesdropper. Also, let u =
{uk, ũk, k = 1, . . . , K }, that is u is the collection of all the
artificial noise symbols. We note that

I (v; Z) = h(Z) − h(Z|v) (337)

≤ Mn

2
log P − h(Au) + o(log P) (338)

= Mn

2
log P − Mn

2
log P + o(log P) (339)

= o(log P) (340)

where A is a Mn × Mn full rank matrix, and we have used
Lemma 4 in (337). Also, we have implicitly used the fact
that � appears in the conditioning of each mutual information
and differential entropy term in the above calculation. Now,
as before, by treating the vector channel with Mn slots as one
channel use, and using wiretap channel codes, we get,

Ri ≥ (K − 1)n�

Mn
log P + o(log P) (341)

for each i = 1, . . . , K , which gives us the required sum
s.d.o.f. of K (K−1)n�

(K−1)n�+(K+1)(n+1)�
, which approaches K−1

2 as
n → ∞.

APPENDIX G
ACHIEVABLE SCHEME FOR THE MULTIPLE ACCESS

WIRETAP CHANNEL WITH PARTIAL CSIT AND FADING

CHANNEL GAINS

We construct a scheme that achieves the desired sum
s.d.o.f. of m(K−1)

m(K−1)+1 with fading channel gains. With-
out loss of generality, assume that the first m transmit-
ters have eavesdropper CSI, while the remaining trans-
mitters have no eavesdropper CSI. We provide a scheme
to achieve the rate tuple (d1, . . . , dm, dm+1, . . . , dK ) =(

K−1
m(K−1)+1 , . . . , K−1

m(K−1)+1 , 0, . . . , 0
)

, thus, achieving the

required sum s.d.o.f. of m(K−1)
m(K−1)+1 . For each i = 1, . . . , m,

transmitter i sends Vi = {
Vij , , j �= i, j = 1, . . . , K

}
symbols

in m(K −1)+1 time slots. Let V = {Vi , i = 1, . . . , K }. Fig. 6
illustrates the alignment of the signals at the end of the scheme
when K = 3 and m = 2. The scheme is as follows:

At time t ∈ {1, . . . , m(K − 1) + 1}, the i th transmitter, i =
1, . . . , K , sends,

Xi (t) =

⎧
⎪⎨

⎪⎩

K∑
j=1, j �=i

g j (t)
h j (t)gi(t)

Vij + 1
hi (t)

Ui , 1 ≤ i ≤ m

1
hi (t)

Ui , m + 1 ≤ i ≤ K

(342)

where Ui is an artificial noise symbol. This ensures that
the noise symbols Ui all align at the legitimate receiver.
On the other hand, the artificial noise symbol from the j th
transmitter U j protects all the messages Vij for every i , at the
eavesdropper. The channel outputs are given by,

Y (t) =
m∑

i=1

∑

j �=i

hi (t)g j (t)

h j (t)gi (t)
Vij +

K∑

i=1

Ui + N1(t) (343)

Z(t) =
K∑

i=1

gi(t)

hi (t)

⎛

⎝Ui +
m∑

j=1, j �=i

V j i

⎞

⎠+ N2(t) (344)

After the m(K − 1) + 1 time slots, the legitimate receiver
ends up with m(K − 1) + 1 linearly independent equations
with m(K − 1) + 1 variables:

∑K
i=1 Ui and the m(K − 1)

variables
{

Vij
}
. Thus, it can decode all the m(K −1) message

symbols Vij . Defining Y = {Y (t), t = 1, . . . , m(K − 1) + 1}
and Z similarly as Y, this means that I (V; Y) = m(K − 1)
1
2 log P + o(log P), and also I (V; Z) ≤ o(log P), concluding
the achievability proof.
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