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Secure Degrees of Freedom of K -User Gaussian
Interference Channels: A Unified View

Jianwei Xie and Sennur Ulukus, Member, IEEE

Abstract— We determine the exact sum secure degrees
of freedom (d.o.f.) of the K -user Gaussian interference
channel. We consider three different secrecy constraints:
1) K -user interference channel with one external eavesdrop-
per (IC-EE); 2) K -user interference channel with confidential
messages (IC-CM); and 3) K -user interference channel with con-
fidential messages and one external eavesdropper (IC-CM-EE).
We show that for all of these three cases, the exact sum
secure d.o.f. is K(K − 1)/(2K − 1). We show converses for
IC-EE and IC-CM, which imply a converse for IC-CM-EE.
We show achievability for IC-CM-EE, which implies achievability
for IC-EE and IC-CM. Our converse is based on developing
a direct relationship between the differential entropies of the
channel inputs and the rates of the users, and quantifying the
effect of eavesdropping on the rates in terms of the differential
entropies of the eavesdroppers’ observations. Our achievability is
based on structured signaling, structured cooperative jamming,
channel prefixing, and asymptotic real interference alignment.
While the traditional interference alignment provides some
amount of secrecy by mixing unintended signals in a smaller
subspace at every receiver, in order to attain the optimum sum
secure d.o.f., we incorporate structured cooperative jamming into
the achievable scheme, and intricately design the structure of all
of the transmitted signals jointly.

Index Terms— Wiretap channel, interference channel, secure
degrees of freedom, cooperative jamming, interference alignment.

I. INTRODUCTION

IN THIS paper, we study secure communications in
multi-user interference networks from an information-

theoretic point of view. The security of communication was
first studied by Shannon via a noiseless wiretap channel [1].
Noisy wiretap channel was introduced by Wyner who
determined its capacity-equivocation region for the degraded
case [2]. His result was generalized to arbitrary, not necessarily
degraded, wiretap channels by Csiszar and Korner [3],
and extended to Gaussian wiretap channels by
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Fig. 1. K -user Gaussian interference channel with secrecy constraints.

Leung-Yan-Cheong and Hellman [4]. This line of research
has been subsequently extended to many multi-user settings,
e.g., broadcast channels with confidential messages [5], [6],
multi-receiver wiretap channels [7]–[10] (see also a survey
on extensions of these to MIMO channels [11]), interference
channels with confidential messages [5], [12], interference
channels with external eavesdroppers [13], multiple
access wiretap channels [14]–[18], wiretap channels
with helpers [19], relay eavesdropper channels [20]–[25],
compound wiretap channels [26], [27], etc. While the channel
models involving a single transmitter, such as broadcast
channels with confidential messages and multi-receiver
wiretap channels, are relatively better understood, the channel
models involving multiple independent transmitters, such
as interference channels with confidential messages and/or
external eavesdroppers, multiple access wiretap channels,
wiretap channels with helpers, and relay-eavesdropper
channels, are much less understood. The exact secrecy
capacity regions of all these multiple-transmitter models
remain unknown, even in the case of simple Gaussian
channels. In the absence of exact secrecy capacity regions,
achievable secure degrees of freedom (d.o.f.) at high
signal-to-noise ratio (SNR) regimes has been studied in the
literature [28]–[41]. In this paper, we focus on the K -user
interference channel with secrecy constraints, and determine
its exact sum secure d.o.f.

The K -user Gaussian interference channel with secrecy
constraints consists of K transmitter-receiver pairs each
wishing to have secure communication over a Gaussian inter-
ference channel (IC); see Fig. 1. We consider three different
secrecy constraints: 1) K -user interference channel with one
external eavesdropper (IC-EE), where K transmitter-receiver
pairs wish to have secure communication against an external
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Fig. 2. The receiver sides of the three channel models: (a) K -user IC-EE, (b) K -user IC-CM, and (c) K -user IC-CM-EE,

where W K−i
�= {W1, . . . , Wi−1, Wi+1, . . . , WK }.

eavesdropper, see Fig. 2(a). 2) K -user interference channel
with confidential messages (IC-CM), where there are no
external eavesdroppers, but each transmitter-receiver pair
wishes to secure its communication against the remain-
ing K − 1 receivers, see Fig. 2(b). 3) K -user interfer-
ence channel with confidential messages and one external
eavesdropper (IC-CM-EE), which is a combination of the
previous two cases, where each transmitter-receiver pair
wishes to secure its communication against the remaining
K − 1 receivers and the external eavesdropper, see Fig. 2(c).

In the Gaussian wiretap channel, the secrecy capacity is the
difference between the channel capacities of the transmitter-
receiver and the transmitter-eavesdropper pairs [4]. It is
well-known that this difference does not scale with the SNR,
and hence the secure d.o.f. of the Gaussian wiretap channel is
zero, indicating a severe penalty due to secrecy in this case.
Fortunately, this does not hold in most multi-user scenarios,
including the interference channel. Reference [28] showed
that nested lattice codes and layered coding are useful in
providing positive sum secure d.o.f. for the K -user IC-CM;
their result gave a sum secure d.o.f. of less than 3

4 for K = 3.
Reference [29] used interference alignment to achieve a sum
secure d.o.f. of K (K−2)

2K−2 for the K -user IC-CM, which gave
3
4 for K = 3. Based on the same idea, [29], [30] achieved
a sum secure d.o.f. of K (K−1)

2K for the K -user IC-EE, which
gave 1 for K = 3. The approach used in [29] and [30] is basi-
cally to evaluate the secrecy performance of the interference
alignment technique [42] devised originally for the K -user
interference channel without any secrecy constraints. Since
the original interference alignment scheme puts all of the
interfering signals into the same reduced-dimensionality
sub-space at a receiver, it naturally provides a certain amount
of secrecy to those signals as an unintended byproduct,
because the interference signals in this sub-space create uncer-
tainty for one another and make it difficult for the receiver to
decode them. However, since the end-goal of [42] is only to
achieve reliable decoding of the transmitted messages at their
intended receivers, the d.o.f. it provides is sub-optimal when
both secrecy and reliability of messages are considered.

Recently, the exact sum secure d.o.f. of the two-user
IC-CM was obtained to be 2

3 in [38]. This reference showed

that while interference alignment is a key ingredient in
achieving positive secure d.o.f., a more intricate design of
the signals is needed to achieve the simultaneous end-goals
of reliability at the desired receivers and secrecy at the
eavesdroppers. In particular, in [38], each transmitter sends
both message carrying signals, as well as cooperative jamming
signals. This random mapping of the message carrying signals
to the channel inputs via cooperative jamming signals may be
interpreted as channel prefixing [3]. Both the message carrying
signals and the cooperative jamming signals come from the
same discrete alphabet, and hence are structured. In addition,
the signals are carefully aligned at the legitimate receivers
and the eavesdroppers using real interference alignment [43].
In particular, at each receiver, the unintended message and
both jamming signals are constrained in the same interference
sub-space, providing an interference-free sub-space for the
intended message. Further, inside the interference sub-space,
each unintended message is protected by aligning it with the
jamming signal from the other transmitter. Such a perfect
alignment provides a constant upper bound for the information
leakage rate.

In this paper, we generalize the results in [38] to the case
of K -user interference channel, for K > 2. Our generalization
has three main components:

1) While [38] considered IC-CM only, we consider both
IC-CM and IC-EE and their combination IC-CM-EE in a
unified framework. To this end, we show converses
separately for IC-EE and IC-CM, which imply
a converse for IC-CM-EE; and we show achievability for
IC-CM-EE, which implies achievability for IC-EE and
IC-CM. The achievability and converse meet giving an
exact sum secure d.o.f. of K (K−1)

2K−1 for all three
models.

2) For achievability: In the case of two-user IC-CM
in [38], each message needs to be delivered reliably
to one receiver and needs to be protected from another
receiver. This requires alignment at two receivers, which
is achieved in [38] by simply choosing transmission
coefficients properly, which cannot be extended to the
K -user case here. In the K -user IC-CM-EE case,
we need to deliver each message to a receiver,
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while protecting it from K other receivers. This requires
designing signals in order to achieve alignment at
K + 1 receivers simultaneously: at one receiver (desired
receiver) we need alignment to ensure that the largest
space is made available to message carrying signals for
their reliable decodability, and at K other receivers, we
need to align cooperative jamming signals with message
carrying signals to protect them. These requirements
create two challenges: i) aligning multiple signals simul-
taneously at multiple receivers, and ii) upper bound-
ing the information leakage rates by suitable functions
which can be made small. We overcome these challenges
by using an asymptotical approach [44], where we
introduce many signals that carry each message and
align them simultaneously at multiple receivers only
order-wise (i.e., align most of them, but not all of
them), and by developing a method to upper bound the
information leakage rate by a function which can be
made small. In contrast to the constant upper bound
for the information leakage rate in [38], here the upper
bound is not constant, but a function which can be
made small. This is due to the non-perfect (i.e., only
asymptotical) alignment.

3) For the converse: To the best of our knowledge, the
only known upper bound for the sum secure d.o.f. of
the K -user interference channel with secrecy constraints
is K

2 , which is the upper bound with no secrecy
constraints [42]. The upper bounding technique for the
two-user IC-CM in [38] considers one single confidential
message against the corresponding unintended receiver
each time, since in that case the eavesdropping rela-
tionship is straightforward: for each message there is
only one eavesdropper and for each eavesdropper there
is only one confidential message. However, in the case
of K -user IC, each message is required to be kept secret
against multiple eavesdroppers and each eavesdrop-
per is associated with multiple unintended messages.
To develop a tight converse, we focus on the eaves-
dropper as opposed to the message. In the converse for
IC-EE, we consider the sum rate of all of the messages
eavesdropped by the external eavesdropper. We sequen-
tially apply the role of a helper lemma in [38] to each
transmitter by treating its signal as a helper to another
specific transmitter. In the converse for IC-CM, for each
receiver (which also is an eavesdropper), we consider the
sum rate of all unintended messages, and again apply the
role of a helper lemma in a specific structure.

II. SYSTEM MODEL, DEFINITIONS AND THE RESULT

The input-output relationships for a K -user Gaussian
interference channel with secrecy constraints (Fig. 1) are
given by

Yi =
K∑

j=1

h j i X j + Ni , i = 1, . . . , K (1)

Z =
K∑

j=1

g j X j + NZ (2)

where Yi is the channel output of receiver i , Z is the channel
output of the external eavesdropper (if there is any), Xi is
the channel input of transmitter i , h j i is the channel gain of
the j th transmitter to the i th receiver, g j is the channel gain
of the j th transmitter to the eavesdropper (if there is any),
and {N1, . . . , NK , NZ } are mutually independent zero-mean
unit-variance Gaussian random variables. All the channel gains
are independently drawn from continuous distributions.1 Once
they are generated, the channel gains are fixed (time-invariant)
throughput the communication session and are known to all
entities. We further assume that all h j i are non-zero, and
all g j are non-zero if there is an external eavesdropper. All
channel inputs satisfy average power constraints, E

[
X2

i

] ≤ P ,
for i = 1, . . . , K .

Each transmitter i intends to send a message Wi , uniformly
chosen from a set Wi , to receiver i . The rate of the message

is Ri
�= 1

n log |Wi |, where n is the number of channel uses.
Transmitter i uses a stochastic function fi : Wi → Xi to

encode the message, where Xi
�= Xn

i is the n-length channel
input of user i . We use boldface letters to denote n-length

vector signals, e.g., Xi
�= Xn

i , Y j
�= Y n

j , Z
�= Zn , etc.

The legitimate receiver j decodes the message as Ŵ j based
on its observation Y j . A rate tuple (R1, . . . , RK ) is said to
be achievable if for any ε > 0, there exist joint n-length
codes such that each receiver j can decode the corresponding
message reliably, i.e., the probability of decoding error is less
than ε for all messages,

max
j

Pr
[
W j �= Ŵ j

]
≤ ε (3)

and the corresponding secrecy requirement is satisfied.
We consider three different secrecy requirements:

1) In IC-EE, Fig. 2(a), all of the messages are kept
information-theoretically secure against the external
eavesdropper,

H (W1, . . . , WK |Z) ≥ H (W1, . . . , WK ) − nε (4)

2) In IC-CM, Fig. 2(b), all unintended messages are kept
information-theoretically secure against each receiver,

H (W K−i |Yi ) ≥ H (W K−i) − nε, i = 1, . . . , K (5)

where W K−i
�= {W1, . . . , Wi−1, Wi+1, . . . , WK }.

3) In IC-CM-EE, Fig. 2(c), all of the messages are kept
information-theoretically secure against both the K − 1
unintended receivers and the eavesdropper, i.e., we
impose both secrecy constraints in (4) and (5).

The supremum of all sum achievable secrecy rates is the
sum secrecy capacity Cs,� , and the sum secure d.o.f., Ds,� , is
defined as

Ds,�
�= lim

P→∞
Cs,�

1
2 log P

= lim
P→∞ sup

R1 + · · · + RK
1
2 log P

(6)

The main result of this paper is stated in the following theorem.
Theorem 1: The sum secure d.o.f. of the K -user IC-EE,

IC-CM, and IC-CM-EE is K (K−1)
2K−1 for almost all channel

gains.

1For a discussion about complex channel gains, please see [38, Sec. X-C].
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We now remark on the for almost all channel gains
statement in Theorem 1. Our converse proof is valid for all
fixed channel gains. On the other hand, our achievability is
valid for almost all channel gains. Similar to the discussion
in [38, Sec. X.B], there exists a set of channel gains A in the
space of all channel gains, where our achievability proof is
not valid. Such an example set of channel gains is obtained
when all of the channel gains are the same, e.g.,

h j i = g j = 1 ∀i, j (7)

In this case, we have zero sum secure d.o.f. since all
the receivers have statistically identical observations. More
generally, the achievability proof does not work for
rational channel gains. This is typical of achievability
schemes that use real interference alignment, see for
instance [36], [44]–[46]. Fortunately, such a set A has zero
Lebesgue measure, and this is what we mean by for almost
all channel gains.2

III. PRELIMINARIES

A. Role of a Helper Lemma

For completeness, we repeat [38, Lemma 2] here, which
is called role of a helper lemma. This lemma identifies a
constraint on the signal of a given transmitter, based on the
decodability of another transmitter’s message at its intended
receiver.

Lemma 1 ([38]): For reliable decoding of the kth transmit-
ter’s signal at the kth receiver, the channel input of transmitter
i �= k, Xi , must satisfy

h(Xi + Ñ) ≤ h(Yk) − n Rk + nc (8)

where c is a constant which does not depend on P, and Ñ is
a new Gaussian random variable independent of all other
random variables with σ 2

Ñ
< 1

h2
ik

, and Ñ is an i.i.d. sequence

of Ñ .
Lemma 1 gives an upper bound on the differential entropy

of (a noisy version of) the signal of any given transmitter,
transmitter i in (8), in terms of the differential entropy of
the channel output and the message rate n Rk = H (Wk), of a
user k, based on the decodability of message Wk at its intended
receiver. The inequality in this lemma, (8), can alternatively
be interpreted as an upper bound on the message rate,
i.e., on n Rk , in terms of the difference of the differential
entropies of the channel output of a receiver k and the channel
input of a transmitter i ; in particular, the higher the differential
entropy of the signal coming from user i , the lower this
upper bound will be on the rate of user k. This motivates not
using i.i.d. Gaussian signals which have the highest differential
entropy. Also note that this lemma does not involve any
secrecy constraints, and is based only on the decodability of
the messages at their intended receivers.

2This will be reflected by qualifier for almost all channel gains in
equations (107), (121), and (129) during the achievability proof, i.e., these
equations are only correct if the channel gains are not in the set A, i.e., they
are correct for almost all channel gains.

B. Real Interference Alignment

In this subsection, we review pulse amplitude
modulation (PAM) and real interference alignment [43], [44],
similar to the review in [36, Sec. III] and [38, Sec. III.C].
The purpose of this subsection is to illustrate that by using
real interference alignment, the transmission rate of a PAM
scheme can be made to approach the Shannon achievable rate
at high SNR. This provides a universal and convenient way
to design capacity-achieving signalling schemes at high SNR
by using PAM for different channel models as will be done
in Section VI.

1) Pulse Amplitude Modulation: For a point-to-point scalar
Gaussian channel,

Y = X + N (9)

with additive Gaussian noise N of zero-mean and variance σ 2,
and an input power constraint E

[
X2
] ≤ P , assume that the

input symbols are drawn from a PAM constellation,

C(a, Q) = a {−Q,−Q + 1, . . . , Q − 1, Q} (10)

where Q is a positive integer and a is a real number to
normalize the transmit power. Note that, a is also the minimum
distance dmin(C) of this constellation, which has the
probability of error

Pr(e) = Pr
[

X �= X̂
]

≤ exp

(
−d2

min

8σ 2

)
= exp

(
− a2

8σ 2

)
(11)

where X̂ is an estimate for X obtained by choosing the closest
point in the constellation C(a, Q) based on observation Y.

The transmission rate of this PAM scheme is

R = log(2Q + 1) (12)

since there are 2Q + 1 signalling points in the constellation.
For any small enough δ > 0, if we choose Q = P

1−δ
2 and

a = γ P
δ
2 , where γ is a constant independent of P , then

Pr(e) ≤ exp

(
−γ 2 Pδ

8σ 2

)
and R ≥ 1 − δ

2
log P (13)

and we can have Pr(e) → 0 and R → 1
2 log P as

P → ∞. That is, we can have reliable communication at
rates approaching 1

2 log P .
Note that the PAM scheme has small probability of error

(i.e., reliability) only when P goes to infinity. For arbitrary P ,
the probability of error Pr(e) is a finite number. Similar to
the steps in [44] and [46], we connect the PAM transmission
rate to the Shannon rate in the following derivation. We note
that Shannon rate of I (X; Y ) is achieveable with arbitrary
reliability using a random codebook:

R′ = I (X; Y ) (14)

≥ I (X; X̂) (15)

= H (X) − H (X |X̂) (16)

= log(2Q + 1) − H (X |X̂) (17)

≥ log(2Q + 1) − 1 − Pr(e) log(2Q + 1) (18)

≥
[
1 − Pr(e)

]1 − δ

2
log P − 1 (19)
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where we use the Markov chain X → Y → X̂ and bound
H (X |X̂) using Fano’s inequality. Therefore, we can achieve
the rate in (19) with arbitrary reliability, where for any fixed P ,
Pr(e) in (19) is the probability of error of the PAM scheme
given in (13), which is a well-defined function of P . For a
finite P , while Pr(e) may not be arbitrarily small, the rate
achieved in (19), which is smaller than the rate of PAM in (12),
is achieved arbitrarily reliably. We finally note that as P goes
to infinity Pr(e) goes to zero exponentially, and from (19), both
PAM transmission rate and the Shannon achievable rate have
the same asymptotical performance, i.e., PAM transmission
rate has 1 Shannon d.o.f.

2) Real Interference Alignment: This PAM scheme for the
point-to-point scalar channel can be generalized to multiple
data streams. Let the transmit signal be

x = cT b =
L∑

i=1

ci bi (20)

where c1, . . . , cL are rationally independent real numbers,3

and each bi is drawn independently from the constella-
tion C(a, Q) in (10). The real value x is a combination of
L data streams, and the constellation observed at the receiver
consists of (2Q + 1)L signal points.

By using the Khintchine-Groshev theorem of Diophantine
approximation in number theory, [43], [44] bounded the
minimum distance dmin of points in the receiver’s
constellation: For any δ > 0, there exists a constant kδ,
such that

dmin ≥ kδa

QL−1+δ
(21)

for almost all rationally independent {ci }L
i=1, except for a set

of Lebesgue measure zero. Since the minimum distance of the
receiver constellation is lower bounded, with proper choice of
a and Q, the probability of error can be made arbitrarily small,
with rate R approaching 1

2 log P . This result is stated in the
following lemma, as in [36, Proposition 3].

Lemma 2 ( [43], [44]): For any small enough δ > 0, there
exists a positive constant γ , which is independent of P, such
that if we choose

Q = P
1−δ

2(L+δ) and a = γ
P

1
2

Q
(22)

then the average power constraint is satisfied,
i.e., E

[
X2
] ≤ P, and for almost all {ci}L

i=1, except for
a set of Lebesgue measure zero, the probability of error is
bounded by

Pr(e) ≤ exp
(−ηγ Pδ

)
(23)

where ηγ is a positive constant which is independent of P.
Furthermore, as a simple extension, if bi are drawn

independently from different constellations Ci (a, Qi ), the
lower bound in (21) can be modified as

dmin ≥ kδa

(maxi Qi )L−1+δ
(24)

3c1, . . . , cL are rationally independent if whenever q1, . . . , qL are rational
numbers then

∑L
i=1 qi ci = 0 implies qi = 0 for all i .

IV. CONVERSE FOR IC-EE

In this section, we develop a converse for the K -user
IC-EE (see Fig. 2(a)) defined in (1) and (2) with the secrecy
constraint (4). We start with the sum rate:

n
K∑

i=1

Ri =
K∑

i=1

H (Wi) = H (W K
1 ) (25)

≤ I (W K
1 ; YK

1 ) − I (W K
1 ; Z) + nc0 (26)

≤ I (W K
1 ; YK

1 , Z) − I (W K
1 ; Z) + nc0 (27)

= I (W K
1 ; YK

1 |Z) + nc0 (28)

≤ I (XK
1 ; YK

1 |Z) + nc0 (29)

= h(YK
1 |Z) − h(YK

1 |Z, XK
1 ) + nc0 (30)

= h(YK
1 |Z) − h(NK

1 |Z, XK
1 ) + nc0 (31)

≤ h(YK
1 |Z) + nc1 (32)

= h(YK
1 , Z) − h(Z) + nc1 (33)

where W K
1

�= {W j }K
j=1, XK

1
�= {X j }K

j=1, YK
1

�= {Y j }K
j=1, and

all the ci s in Sections IV and V are constants which do not
depend on P .

For each j , we introduce X̃ j = X j + Ñ j , where Ñ j is an
i.i.d. sequence of Ñ j which is a zero-mean Gaussian random
variable with variance σ 2

j < min(mini 1/h2
j i , 1/g2

j ). Also,

{Ñ j }K
j=1 are mutually independent, and are independent of all

other random variables. Continuing from (33),

n
K∑

i=1

Ri ≤ h(X̃K
1 , YK

1 , Z) − h(X̃K
1 |YK

1 , Z) − h(Z)

+ nc1 (34)

≤ h(X̃K
1 , YK

1 , Z) − h(X̃K
1 |XK

1 , YK
1 , Z) − h(Z)

+ nc1 (35)

= h(X̃K
1 , YK

1 , Z) − h(ÑK
1 ) − h(Z) + nc1 (36)

≤ h(X̃K
1 , YK

1 , Z) − h(Z) + nc2 (37)

= h(X̃K
1 ) + h(YK

1 , Z|X̃K
1 ) − h(Z) + nc2 (38)

≤ h(X̃K
1 ) − h(Z) + nc3 (39)

where X̃K
1

�= {X̃ j }K
j=1 , and the last inequality is due to the

fact that h(YK
1 , Z|X̃K

1 ) ≤ nc′, i.e., given all the channel inputs
(disturbed by small Gaussian noises), the channel outputs can
be reconstructed, which is shown as follows

h(YK
1 , Z|X̃K

1 ) ≤
⎡

⎣
K∑

j=1

h(Y j |X̃K
1 )

⎤

⎦+ h(Z|X̃K
1 ) (40)

=
⎡

⎣
K∑

j=1

h

(
K∑

i=1

hi j (X̃i − Ñi ) + N j

∣∣∣∣X̃
K
1

)⎤

⎦

+ h

(
K∑

i=1

gi(X̃i − Ñi ) + NZ

∣∣∣∣X̃
K
1

)
(41)

=
⎡

⎣
K∑

j=1

h

(
−

K∑

i=1

hi j Ñi + N j

∣∣∣∣X̃
K
1

)⎤

⎦

+ h

(
−

K∑

i=1

gi Ñi + NZ

∣∣∣∣X̃
K
1

)
(42)
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≤
⎡

⎣
K∑

j=1

h

(
−

K∑

i=1

hi j Ñi + N j

)⎤

⎦

+ h

(
−

K∑

i=1

gi Ñi + NZ

)
(43)

�= nc4 (44)

Next, we note, for j = 1, . . . , K ,

h(X̃ j ) ≤ h(g j X j + NZ ) + nc5 ≤ h(Z) + nc5 (45)

where the inequalities are due to the differential entropy
version of [47, Problem 2.14]. Inserting (45) into (39), for
any j = 1, . . . , K , we get

n
K∑

i=1

Ri ≤ h(X̃K
1 ) − h(Z) + nc3 (46)

≤
K∑

i=1

h(X̃i ) − h(Z) + nc3 (47)

≤
K∑

i=1,i �= j

h(X̃i ) + nc6 (48)

which means that the net effect of the presence of an
eavesdropper is to eliminate one of the channel inputs;
we call this the secrecy penalty.

We apply the role of a helper lemma, Lemma 1, to each X̃i

with k = i + 1 (for i = K , k = 1), in (48) as

n
K∑

i=1

Ri ≤ h(X̃1) + h(X̃2) + · · · + h(X̃ j−1)

+ h(X̃ j+1) + · · · + h(X̃K ) + nc7 (49)

≤ [h(Y2) − n R2] + [h(Y3) − n R3]

+ · · · + [h(Y j ) − n R j
]+ [h(Y j+2) − n R j+2

]

+ · · · + [h(YK ) − n RK ] + [h(Y1) − n R1] + nc8

(50)

By noting that h(Yi ) ≤ n
2 log P + nc′

i for each i , we have

2n
K∑

i=1

Ri ≤ (K − 1)
(n

2
log P
)

+ n R( j+1) mod K + nc9 (51)

for j = 1, . . . , K . Therefore, we have a total of K bounds
in (51) for j = 1, . . . , K . Summing these K bounds, we
obtain:

(2K − 1)n
K∑

i=1

Ri ≤ K (K − 1)
(n

2
log P
)

+ nc10 (52)

which gives

Ds,� ≤ K (K − 1)

2K − 1
(53)

completing the converse for IC-EE.

V. CONVERSE FOR IC-CM

In this section, we develop a converse for the K -user
IC-CM (see Fig. 2(b)). We focus on the secrecy constraint (5)
at a single receiver, say j , as an eavesdropper, and start with
the sum rate corresponding to all unintended messages at
receiver j :

n
K∑

i=1,i �= j

Ri =
K∑

i=1,i �= j

H (Wi) = H (W K− j ) (54)

≤ I (W K− j ; YK− j ) − I (W K− j ; Y j ) + nc11 (55)

≤ I (W K− j ; YK− j , Y j ) − I (W K− j ; Y j ) + nc11 (56)

= I (W K− j ; YK− j |Y j ) + nc11 (57)

≤ I (XK− j ; YK− j |Y j ) + nc11 (58)

= h(YK− j |Y j ) − h(YK− j |Y j , XK− j ) + nc11 (59)

≤ h(YK− j |Y j ) − h(YK− j |Y j , XK
1 ) + nc11 (60)

= h(YK− j |Y j ) − h(NK− j |Y j , XK
1 ) + nc11 (61)

≤ h(YK− j |Y j ) + nc12 (62)

= h(YK− j , Y j ) − h(Y j ) + nc12 (63)

= h(YK
1 ) − h(Y j ) + nc12 (64)

where W K− j
�= {Wi }K

i=1,i �= j is the message set containing
all unintended messages with respect to receiver j ,

XK− j
�= {Xi }K

i=1,i �= j and YK− j
�= {Yi }K

i=1,i �= j .

For each j , we introduce X̃ j = X j + Ñ j , where Ñ j is
an i.i.d. sequence of Ñ j which is a zero-mean Gaussian ran-
dom variable with variance σ 2

j < mini 1/h2
j i . Also, {Ñ j }K

j=1
are mutually independent, and are independent of all other
random variables. Continuing from (64),

n
K∑

i=1,i �= j

Ri ≤ h(X̃K
1 , YK

1 ) − h(X̃K
1 |YK

1 ) − h(Y j )

+ nc12 (65)

≤ h(X̃K
1 , YK

1 ) − h(X̃K
1 |YK

1 , XK
1 ) − h(Y j )

+ nc12 (66)

= h(X̃K
1 , YK

1 ) − h(ÑK
1 ) − h(Y j ) + nc12 (67)

≤ h(X̃K
1 , YK

1 ) − h(Y j ) + nc13 (68)

= h(X̃K
1 ) + h(YK

1 |X̃K
1 ) − h(Y j ) + nc13 (69)

≤ h(X̃K
1 ) − h(Y j ) + nc14 (70)

where the last inequality is due to the fact that
h(YK

1 |X̃K
1 ) ≤ nc′, i.e., given all the channel inputs

(disturbed by small Gaussian noises), the channel outputs can
be reconstructed, which is shown as follows

h(YK
1 |X̃K

1 ) ≤
K∑

j=1

h(Y j |X̃K
1 ) (71)

=
K∑

j=1

h

(
K∑

i=1

hi j (X̃i − Ñi ) + N j

∣∣∣∣X̃
K
1

)
(72)

=
K∑

j=1

h

(
−

K∑

i=1

hi j Ñi + N j

∣∣∣∣X̃
K
1

)
(73)
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≤
K∑

j=1

h

(
−

K∑

i=1

hi j Ñi + N j

)
(74)

�= nc15 (75)

We apply the role of a helper lemma, Lemma 1, to each X̃i

with k = i + 1 (for i = K , k = 1), in (70) as

n
K∑

i=1,i �= j

Ri ≤ h(X̃K
1 ) − h(Y j ) + nc14 (76)

≤
K∑

i=1

h(X̃i ) − h(Y j ) + nc14 (77)

≤
K−1∑

i=1

[
h(Yi+1) − n Ri+1

]
+
[
h(Y1) − n R1

]

− h(Y j ) + nc16 (78)

=
K∑

i=1

[
h(Yi ) − n Ri

]
− h(Y j ) + nc16 (79)

By noting that h(Yi ) ≤ n
2 log P + nc′

i for each i , we have

n R j + 2n
K∑

i=1,i �= j

Ri ≤
K∑

i=1,i �= j

h(Yi ) + nc16 (80)

≤ (K − 1)
(n

2
log P
)

+ nc17 (81)

for j = 1, . . . , K . Therefore, we have a total of K bounds
in (81) for j = 1, . . . , K . Summing these K bounds, we
obtain:

(2K − 1)n
K∑

i=1

Ri ≤ K (K − 1)
(n

2
log P
)

+ nc18 (82)

which gives

Ds,� ≤ K (K − 1)

2K − 1
(83)

completing the converse for IC-CM.

VI. ACHIEVABILITY

In this section, we provide achievability for the K -user
IC-CM-EE (see Fig. 2(c)), which will imply achievability for
K -user IC-EE and K -user IC-CM. We will prove that, for
almost all channel gains, a sum secure d.o.f. lower bound of

Ds,� ≥ K (K − 1)

2K − 1
(84)

is achievable for the K -user IC-CM-EE.

A. Background

In this section, we will summarize the achievability scheme
for the two-user IC-CM in [38], motivate the need for simul-
taneous alignment of multiple signals at multiple receivers in
this K -user case, and provide an example of simultaneously
aligning two signals at two receivers via asymptotic real
alignment [44]. We provide the general achievable scheme
for K > 2 in Section VI-B via cooperative jamming and

asymptotic real alignment, and show that it achieves the
sum secure d.o.f. in (84) via a detailed performance analysis
in Section VI-C.

In the achievable scheme for K = 2 in [38], four mutually
independent discrete random variables {V1, U1, V2, U2} are
employed (see [38, Fig. 10]). Each of them is uniformly and
independently drawn from the discrete constellation C(a, Q)
given in (10). The role of Vi is the signal carrying message Wi ,
and the role of Ui is to cooperatively jam receiver i to help
transmitter-receiver pair j , where j �= i , for i, j = 1, 2.
By carefully selecting the transmit coefficients, U1 and V2
are aligned at receiver 1, and U2 and V1 are aligned at
receiver 2; and therefore, U1 protects V2, and U2 protects V1.
By this signalling scheme, information leakage rates are upper
bounded by constants, and the message rates are made to scale
with power P , reaching the secure d.o.f. capacity of the
two-user IC-CM which is 2

3 .
Here, for the K -user IC-CM-EE, we employ a total of K 2

random variables,

Vij , i, j = 1, . . . , K , j �= i (85)

Uk, k = 1, . . . , K (86)

which are illustrated in Fig. 3 for the case of K = 3. The
scheme proposed here has two major differences
from [38]: 1) Instead of using a single random variable to
carry a message, we use a total of K − 1 random variables to
carry each message. For transmitter i , K −1 random variables
{Vij } j �=i , each representing a sub-message, collectively carry
message Wi . 2) Rather than protecting one message at one
receiver, each Uk simultaneously protects a portion of all
sub-messages at all required receivers. More specifically,
Uk protects {Vik}i �=k,i �= j at receivers j , and at the eavesdropper
(if there is any). For example, in Fig. 3, U1 protects
V21 and V31 where necessary. In particular, U1 protects V21 at
receivers 1, 3 and the eavesdropper; and it protects V31 at
receivers 1, 2 and the eavesdropper. As a technical challenge,
this requires U1 to be aligned with the same signal, say V21,
at multiple receivers simultaneously, i.e., at receivers 1, 3
and the eavesdropper. These particular alignments are circled
by ellipsoids in Fig. 3. We do these simultaneous alignments
using asymptotic real alignment technique proposed in [44]
and used in [30] and [36].4

For illustration purposes, in the rest of this section, we
demonstrate how we can align two signals at two receivers
simultaneously; in particular, we will align U1 with V21 at
Y1 and Y3, simultaneously. Towards this end, we will further
divide the random variable V21, which represents a sub-
message, into a large number of random variables denoted

as V21
�= {v21t : t = 1, . . . , |T1|}. We then send each one

of these random variables after multiplying it with one of the
coefficients in the following set which serves as the set of

4The achievability scheme developed in this paper relies on the perfect
knowledge of the channel state information (CSI) of all channels at all
terminals. References [39], [40] developed a blind cooperative jamming
scheme that utilizes only the legitimate receiver’s CSI. In particular, [40]
achieved the optimum secure d.o.f. (i.e., secure d.o.f. with complete CSI of
all terminals) by using only the legitimate receiver’s CSI in a helper network.
Extension of such schemes to an interference network is an open problem.
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Fig. 3. Illustration of alignment for 3-user IC-CM-EE. U1 and V21 are
marked to emphasize their simultaneous alignment at Y1, Y3 and Z .

dimensions:

T1 =
{

hr11
11 hr21

21 hr13
13 hr23

23 : r11, r21, r13, r23 ∈ {1, . . . , m}
}

(87)

where m is a very large constant. To perform the align-
ment, we let U1 have the same detailed structure as V21,
i.e., U1 is also divided into a large number of random variables

as U1
�= {u1t : t = 1, . . . , |T1|}. At receiver 1, the elements

of U1 from transmitter 1 occupy the dimensions h11T1 and
the elements of V21 from transmitter 2 occupy the dimen-
sions h21T1. Although these two sets are not the same, their
intersection contains nearly as many elements as T1, i.e.,

|h11T1 ∩ h21T1| = m2(m − 1)2 ≈ m4 = |T1| (88)

when m is large, i.e., almost all elements of U1 and V21 are
asymptotically aligned at receiver 1. The same argument
applies for receiver 3. At receiver 3, the elements of U1 from
transmitter 1 occupy the dimensions h13T1 and the elements
of V21 from transmitter 2 occupy the dimensions h23T1. Again,
although these two sets are not the same, their intersection
contains nearly as many elements as T1. Therefore, almost
all elements of U1 and V21 are aligned at receivers 1 and 3,
simultaneously. These simultaneous alignments are depicted
in Fig. 4. In the following section, we use this basic idea
to align multiple signals at multiple receivers simultaneously.
This will require a more intricate design of signals and
dimensions.

B. General Achievable Scheme via Asymptotic Alignment

Here, we give the general achievable scheme for the K -user
IC-CM-EE. Let m be a large constant. Let us define sets Ti ,
for i = 1, . . . , K , which will represent dimensions as follows:

Ti
�=
{

hrii
ii

( K∏

j,k=1, j �=k

h
r jk
j k

)( K∏

j=1

g
s j
j

)
:

rii , r jk, s j ∈ {1, . . . , m}
}

(89)

Fig. 4. Illustration of alignment at multiple receivers.

Let Mi be the cardinality of Ti . Note that all Mi are the same,
thus we denote them as M ,

M
�= m1+K (K−1)+K = mK 2+1 (90)

For each transmitter i , for j �= i , let ti j be the vector
containing all the elements in the set Tj . Therefore, ti j is
an M-dimensional vector containing M rationally independent
real numbers in Tj . The sets ti j will represent the dimensions
along which message signals are transmitted. In particular, for
any given (i, j) with i �= j , ti j will represent the dimensions
in which message signal Vij is transmitted. In addition, for
each transmitter i , let t(i) be the vector containing all the
elements in the set Ti . Therefore, t(i) is an M-dimensional
vector containing M rationally independent real numbers
in Ti . The sets t(i) will represent the dimensions along which
cooperative jamming signals are transmitted. In particular,
for any given i , t(i) will represent the dimensions in which
cooperative jamming signal Ui is transmitted. Let us define
a K M dimensional vector bi by stacking ti j and t(i) as

bT
i = [tT

i1, . . . , tT
i,i−1, tT

i,i+1, . . . , tT
i K , tT

(i)

]
(91)

Then, transmitter i generates a vector ai , which contains a
total of K M discrete signals each identically and indepen-
dently drawn from C(a, Q). For convenience, we partition this
transmitted signal as

aT
i = [vT

i1, . . . , vT
i,i−1, vT

i,i+1, . . . , vT
i K , uT

i

]
(92)

where vi j represents the information symbols in Vij , and ui

represents the cooperative jamming signal in Ui . Each of these
vectors has length M , and therefore, the total length of ai

is K M . The channel input of transmitter i is

xi = aT
i bi (93)

Before we investigate the performance of this signalling
scheme in Section VI-C, we analyze the structure of the
received signal at the receivers. Without loss of generality
we will focus on receiver 1; by symmetry, a similar structure
will exist at all other receivers. We observe that in addition
to the additive Gaussian noise, receiver 1 receives all the
vectors v j k for all j, k ( j �= k) and ui for all i . All of these
signals get multiplied with the corresponding channel gains
before they arrive at receiver 1. Due to the specific signalling
structure used at the transmitters, and the multiplications
with different channel gains over the wireless communication
channel, the signals arrive at the receiver lying in various
different dimensions.
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To see the detailed structure of the received signals at the
receivers, let us define T̃i as a superset of Ti , as follows

T̃i
�=
{

hrii
ii

(∏K
j,k=1, j �=k h

r jk
j k

)(∏K
j=1 g

s j
j

)
:

rii , r jk, s j ∈ {1, . . . , m + 1}
}

(94)

The information symbols coming from transmitter 1 are in
vectors v12, v13, . . . , v1K which are multiplied by coefficients
in t12, t13, . . . , t1K before they are sent. These coefficients
come from sets T2, T3, . . . , TK , respectively. After going
through the channel, all of these coefficients get
multiplied by h11. Therefore, the receiving coefficients
of v12, v13, . . . , v1K are h11t12, h11t13, . . . , h11t1K , which
are the dimensions in the sets h11T2, h11T3, . . . , h11TK ,
respectively. By construction, since each Ti has powers of hii

in it (but no h j j ), these dimensions are separate almost
surely. These correspond to separate boxes of V12 and V13 at
receiver 1 in Fig. 3 for the example case of K = 3.

On the other hand, all of the cooperative jamming signals
from all of the transmitters u1, u2, . . . , uK come to receiver 1
with received coefficients h11t(1), h21t(2), . . . , hK 1t(K ), which
are the dimensions in the sets h11T1, h21T2, . . . , hK 1TK ,
respectively. We note that almost surely all of these dimensions
are separate among themselves, and they are separate from the
dimensions of the message signals coming from transmitter 1.
That is, all of the dimensions in h11T2, h11T3, . . . , h11TK

and h11T1, h21T2, . . . , hK 1TK are all mutually different, again
owing to the fact that each Ti contains powers of hii in it.
These correspond to separate boxes of V12, V13, U1, U2 and U3
at receiver 1 in Fig. 3 for the example case of K = 3.

Next, we note that each ui is aligned together with all of
the v j i coming from the j th transmitter, with j �= i and j �= 1,
at receiver 1. Note that ui occupies dimensions hi1Ti and v j i

(for any j �= i and j �= 1) occupies dimensions h j1Ti at
receiver 1. From the arguments in Section VI-A, ui and v j i

(with j �= i and j �= 1) are asymptotically aligned.
More formally, we note that ui occupies dimensions hi1Ti

which is contained in T̃i . Similarly, all v j i , with j �= i and
j �= 1, occupy dimensions h j1Ti , respectively, which are
all contained in T̃i . Therefore, ui and all v j i (with j �= i
and j �= 1) are all aligned along T̃i . These alignments
are shown as U1 being aligned with V21 and V31; U2 being
aligned with V32; and U3 being aligned with V23 at receiver 1
in Fig. 3 for the example case of K = 3. Further, we note
that, since only Ti and T̃i contain powers of hii , the
dimensions h11T2, h11T3, . . . , h11TK , T̃1, T̃2, . . . , T̃K are all
separable. This implies that all the elements in the set

S1
�=
⎛

⎝
K⋃

j=2

h11Tj

⎞

⎠
⋃
⎛

⎝
K⋃

j=2

T̃ j

⎞

⎠
⋃

T̃1 (95)

are rationally independent, and thereby the cardinality of S1 is

MS
�= |S1| (96)

= (K − 1)m1+K (K−1)+K + K (m + 1)1+K (K−1)+K (97)

= (K − 1)mK 2+1 + K (m + 1)K 2+1 (98)

C. Performance Analysis

We will compute the secrecy rates achievable with the
asymptotic alignment based scheme proposed in Section VI-B
by using the following theorem.

Theorem 2: For K -user interference channels with confi-
dential messages and one external eavesdropper, the following
rate region is achievable

Ri ≥ I (Vi ; Yi ) − max
j∈K0,−i

I (Vi ; Y j |V K−i ), i = 1, . . . , K (99)

where for convenience we denote Z by Y0, V K−i
�= {Vj }K

j=1, j �=i
and K0,−i = {0, 1, . . . , i − 1, i + 1, . . . , K }. The auxiliary
random variables {Vi }K

i=1 are mutually independent, and for
each i , we have the following Markov chain Vi → Xi →
(Y0, Y1, . . . , YK ).

In developing the achievable rates in Theorem 2, we focus
on a single transmitter, say i , and consider the compound
setting associated with message Wi , where this message needs
to be secured against a total of K eavesdroppers, with K − 1
of them being the other legitimate receivers ( j �= i ) and
the remaining one being the external eavesdropper ( j = 0).
A proof of this theorem is given in Appendix.

We apply Theorem 2 to our alignment based scheme
proposed in Section VI-B by selecting Vi used in (99) as

Vi
�= (vT

i1, . . . , vT
i,i−1, vT

i,i+1, . . . , vT
i K ) (100)

for i = 1, . . . , K . By Lemma 2, for any δ > 0, there exists a
positive constant γ , which is independent of P , such that if

we choose Q = P
1−δ

2(MS+δ) and a = γ P
1
2

Q , then for almost all
channel gains the average power constraint is satisfied and the
probability of error is bounded by

Pr(Vi �= V̂i ) ≤ exp
(−ηγi Pδ

)
(101)

where ηγi is a positive constant which is independent
of P and V̂i is the estimate for Vi obtained by choosing the
closest point in the constellation based on observation Yi .

By Fano’s inequality and the Markov chain Vi → Yi → V̂i ,
we know that,

I (Vi ; Yi ) ≥ I (Vi ; V̂i ) (102)

= H (Vi) − H (Vi |V̂i ) (103)

= log(|Vi |) − H (Vi |V̂i ) (104)

≥ log(|Vi |) − 1 − Pr(Vi �= V̂i ) log(|Vi |) (105)

=
[
1 − Pr(Vi �= V̂i )

]
log(|Vi |) − 1 (106)

= log(|Vi |) − o(log P) (107)

= (K − 1)mK 2+1(1 − δ)

MS + δ

(
1

2
log P

)

+ o(log P) (108)

= (K − 1)(1 − δ)

K − 1 + K
(
1 + 1

m

)K 2+1 + δ

mK 2+1

(
1

2
log P

)

+ o(log P) (109)

where o(·) is the little-o function, Vi is the alphabet
of Vi and, in this case, the cardinality of Vi
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is (2Q + 1)(K−1)M = (2Q + 1)(K−1)mK 2+1
. Here, M is

defined in (90). This provides a lower bound for the first term
in (99).

Next, we need to derive an upper bound for the second item
in (99), i.e, the secrecy penalty. For any i ∈ K = {1, . . . , K }
and j ∈ K−i = {1, . . . , i − 1, i + 1, . . . , K }, by the Markov
chain Vi → (

∑K
k=1 hkj Xkj , V K−i ) → Y j ,

I (Vi ; Y j |V K−i ) ≤ I

(
Vi ;

K∑

k=1

hkj Xk

∣∣∣V K−i

)
(110)

= H

(
K∑

k=1

hkj Xk

∣∣∣V K−i

)
− H

(
K∑

k=1

hkj Xk

∣∣∣V K
1

)

(111)

where V K
1 = {V1, . . . , VK }. The first term in (111) can be

rewritten as

H

(
K∑

k=1

hkj Xk

∣∣∣V K−i

)

= H

( K∑

k=1

hkj uT
k t(k) +

K∑

k=1
k �=i

hi j vT
ik tik

)
(112)

= H

(
hi j uT

i t(i) +
K∑

k=1
k �=i

[
hi j vT

ik tik + hkj uT
k t(k)

])
(113)

Note that, for a given k, the vectors tik and t(k) represent the
same dimensions Tk , and hi j , hkj ∈ Tk for all k �= i , which
implies that hi j Tk, hkj Tk ∈ T̃k . In addition, for each k,
we note that a large part of the two sets hi j Tk and hkj Tk

are the same, i.e.,
∣∣∣hi j Tk

⋂
hkj Tk

∣∣∣ = mK 2−1(m − 1)2 �= Mδ (114)

Therefore, the first term in (111) can be further upper
bounded as

H

(
K∑

k=1

hkj Xk

∣∣∣V K−i

)

= H

(
hi j uT

i t(i) +
K∑

k=1
k �=i

[
hi j vT

ik tik + hkj uT
k t(k)

])
(115)

≤ log
[
(2Q + 1)M (4Q + 1)(K−1)Mδ

× (2Q + 1)2(K−1)(M−Mδ)
]

(116)

≤ log
[

QM+(K−1)Mδ+2(K−1)(M−Mδ)
]

+ o(log P) (117)

≤
{

[M + (K − 1)Mδ + 2(K − 1)(M − Mδ)] (1 − δ)

(K − 1)mK 2+1 + K (m + 1)K 2+1 + δ

×
(

1

2
log P

)}
+ o(log P) (118)

which implies that the first term in (111) can be upper bounded
by (119) (on bottom of the page).

The second term in (111) is exactly the entropy of
{uk}K

k=1 vectors, i.e.,

H

(
K∑

k=1

hkj Xk |V K
1

)

= H

(
K∑

k=1

hkj uT
k t(k)

)
(120)

= log(2Q + 1)K M (121)

= K mK 2+1(1 − δ)

(K − 1)mK 2+1 + K (m + 1)K 2+1 + δ

(
1

2
log P

)

+ o(log P) (122)

= K (1 − δ)

K − 1 + K
(
1 + 1

m

)K 2+1 + δ

mK 2+1

(
1

2
log P

)

+ o(log P) (123)

where (121) is true for almost all channel gains.
Substituting (119) and (123) into (111), we get

I (Vi ; Y j |V K−i )

≤ H

(
K∑

k=1

hkj Xk

∣∣∣V K−i

)
− H

(
K∑

k=1

hkj Xk

∣∣∣V K
1

)
(124)

≤ K 2m−1
m2 (1 − δ)

K − 1 + K
(
1 + 1

m

)K 2+1 + δ

mK 2+1

(
1

2
log P

)

+ o(log P) (125)

We note that by choosing m large enough, the factor before the
1
2 log P term can be made arbitrarily small. Due to the
non-perfect (i.e., only asymptotical) alignment, the upper
bound for the information leakage rate is not a constant
as in [38], but a function which can be made to approach
zero d.o.f.

For any i ∈ K and j = 0, i.e., Y0 = Z the external
eavesdropper, we should derive a new upper bound for the
second term in (111), i.e., I (Vi ; Z |V K−i ). By similar steps, we
have

I (Vi ; Z |V K−i) ≤ I

(
Vi ;

K∑

k=1

gk Xk

∣∣∣V K−i

)
(126)

= H

(
K∑

k=1

gk Xk

∣∣∣V K−i

)
− H

(
K∑

k=1

gk Xk

∣∣∣V K
1

)

(127)

= H

(
K∑

k=1

gk Xk

∣∣∣V K−i

)
− H

(
K∑

k=1

gkuT
k t(k)

)

(128)

= H

(
K∑

k=1

gk Xk

∣∣∣V K−i

)
−log(2Q + 1)KM (129)

H

(
K∑

k=1

hkj Xk

∣∣∣V K−i

)
≤
{

1 + (K − 1)
(
1 − 1

m

)2 + 2(K − 1)
[
1 − (1 − 1

m

)2]}
(1 − δ)

K − 1 + K
(
1 + 1

m

)K 2+1 + δ

mK 2+1

(
1

2
log P

)
+ o(log P) (119)
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where (129) is true for almost all channel gains. Here, we need
to upper bound the first item in (129). We first observe that

H

(
K∑

k=1

gk Xk

∣∣∣V K−i

)

= H

( K∑

k=1

gkuT
k t(k) +

K∑

k=1
k �=i

givT
ik tik

)
(130)

= H

(
giuT

i t(i) +
K∑

k=1
k �=i

[
gkuT

k t(k) + gi vT
iktik

])
(131)

Firstly, note that, t(k) and tik represent the same set Tk .
Therefore, for different k, the dimensions are distinguishable.
Secondly, due to reasons similar to (114), we conclude that

H

(
K∑

k=1

gk Xk

∣∣∣V K−i

)

= H

(
giuT

i t(i) +
K∑

k=1
k �=i

[
gkuT

k t(k) + gi vT
ik tik

])
(132)

≤ log
[
(2Q + 1)M (4Q + 1)(K−1)Mδ

× (2Q + 1)2(K−1)(M−Mδ)
]

(133)

≤ log
[

QM+(K−1)Mδ+2(K−1)(M−Mδ)
]

+ o(log P) (134)

≤
{

[M + (K − 1)Mδ + 2(K − 1)(M − Mδ)] (1 − δ)

(K − 1)mK 2+1 + K (m + 1)K 2+1 + δ

×
(

1

2
log P

)}
+ o(log P) (135)

Substituting (135) into (129), we attain an upper bound which
is the same as the upper bound for I (Vi ; Y j |V K−i ), i.e.,

I (Vi ; Z |V K−i) ≤ K 2m−1
m2 (1 − δ)

K − 1 + K
(
1 + 1

m

)K 2+1+ δ

mK 2+1

(
1

2
log P

)

+ o(log P) (136)

Substituting (109), (125), and (136) into (99), we obtain a
lower bound for the achievable secrecy rate Ri as

Ri ≥
[
(K − 1) − K

(
2m−1

m2

)]
(1 − δ)

K − 1 + K
(
1 + 1

m

)K 2+1 + δ

mK 2+1

(
1

2
log P

)

+ o(log P) (137)

By choosing m → ∞ and δ → 0, we can achieve secrecy sum
rates arbitrarily close to K−1

2K−1

( 1
2 log P

)
, thereby achieving the

sum secure d.o.f. lower bound in (84).

VII. CONCLUSION

In this paper, we studied secure communications in K -user
Gaussian interference networks from an information-theoretic
point of view, and addressed three important channel models:
IC-EE, IC-CM and their combination IC-CM-EE in
a unified framework. We showed that, for all three models,

the sum secure d.o.f. is exactly K (K−1)
2K−1 . Our achievabil-

ity is based on structured signalling, structured cooperative
jamming, channel prefixing and asymptotic real interference
alignment. The key insight of the achievability is to carefully
design the structure of all of the signals at the transmitters so
that the signals are received at both legitimate receivers and
eavesdroppers in most desirable manner from a secure com-
munication point of view. In particular, cooperative jamming
signals protect information carrying signals via alignment,
and the information carrying signals are further aligned to
maximize secure d.o.f.

APPENDIX

We first provide an outline of the proof. Our proof will
combine and extend techniques from [5] and [26]. Our
approach has three main components. First, as in [5],
we condition the mutual information representing the secrecy
leakage rate on the signals that carry the messages of other
transmitter-receiver pairs. That is, for any given i , we condition
the subtracted mutual information term in (99) on V K−i . This
creates enhanced eavesdroppers. If we can guarantee secrecy
against these enhanced eavesdroppers, we can guarantee
secrecy against the original eavesdroppers. More specifically,
for the leakage rate of message of transmitter i at receiver j ,
with j �= i , we use

I (Vi ; Y j |V K−i ) = I (Vi ; Y j , V K−i )
�= I (Vi ; Ỹ j ) (138)

where Ỹ j
�= (Y j , V K−i ) is the output of an enhanced eaves-

dropper with respect to message Wi . Second, as in [26],
we consider the secrecy rate achievable against the strongest
enhanced eavesdropper for each message. Therefore, as argued
in [26, Appendix A], if we can guarantee a secrecy rate against
the strongest eavesdropper, we can guarantee this secrecy rate
against the original eavesdroppers. More specifically, let
Y (i) be an element of the set {Y1, . . . , Yk, Z}\{Yi } such that

I (Vi ; Y (i)|V K−i ) = max
j∈K0,−i

I (Vi ; Y j |V K−i ) (139)

That is, Y (i) is the strongest eavesdropper with respect to
transmitter i . The achievable rate in (99) considers the
strongest eavesdropper for each message. Therefore, for each
transmitter i , we construct a compound wiretap code as in [26].
Third, we prove secrecy for each message Wi , via the
following equivocation inequality

H (Wi |Y(i), VK−i ) ≥ H (Wi) − nε(i), i = 1, . . . , K (140)

for some arbitrarily small number ε(i). Here, as in the main
body of the paper, we denote n-length sequences with boldface
letters. The secrecy constraints in (140) fit the created equiv-
alent view of the channel better. As we show next, secrecy
constraints in (140) imply our original secrecy constraints
in (4) and (5).

Towards this end, first note that, for each i ,

H (Wi |Y j , VK−i ) ≥ H (Wi |Y(i), VK−i ) ≥ H (Wi) − nε(i) (141)

for all j ∈ K0,−i since Y (i) is the strongest eavesdropper
with respect to transmitter i and by using the enhanced
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eavesdropper argument in [26, Appendix A]. Then, the fact
that (140) for all i implies the original secrecy constraints
in (4) and (5) follows from the following derivation:

H (W K− j |Y j ) ≥ H (W K− j |Y j , W j ) (142)

≥
∑

i �= j

H (Wi |Y j , W K−i ) (143)

≥
∑

i �= j

H (Wi |Y j , VK−i , W K−i ) (144)

=
∑

i �= j

H (Wi |Y j , VK−i ) (145)

≥
∑

i �= j

H (Wi |Y(i), VK−i ) (146)

≥
∑

i �= j

[
H (Wi) − nε(i)

]
(147)

= H (W K− j ) − nε(− j ) (148)

where (145) is due to the Markov chain W K−i →
(Y j , VK−i ) → Wi . Similarly,

H (W K |Z) ≥
∑

i

H (Wi |Z, W K−i ) (149)

≥
∑

i

H (Wi |Z, VK−i , W K−i ) (150)

=
∑

i

H (Wi |Z, VK−i ) (151)

≥
∑

i

H (Wi |Y(i), VK−i ) (152)

≥
∑

i

[
H (Wi) − nε(i)

]
(153)

= H (W K ) − nε(Z) (154)

where ε(Z) is small for sufficiently large n.
We start by choosing the following rates for the secure and

confusion messages of transmitter i:

Ri = I (Vi ; Yi ) − I (Vi ; Y (i)|V K−i ) − ε (155)

Rc
i = I (Vi ; Y (i)|V K−i ) − ε (156)

Transmitter i generates 2n(Ri +Rc
i ) independent sequences each

with probability

p(vi ) =
n∏

t=1

p(vit ) (157)

and constructs a codebook as

Ci
�=
{

vi (wi , w
c
i ) : wi ∈ {1, . . . , 2nRi }, wc

i ∈ {1, . . . , 2nRc
i }
}

(158)

To transmit a message wi , transmitter i chooses an element vi

from the sub-codebook Ci (wi )

Ci (wi )
�=
{

vi (wi , w
c
i ) : wc

i ∈ {1, . . . , 2nRc
i }
}

(159)

and generates a channel input sequence based on

p(xi |vi ) (160)

Due to the code construction, we have Ri + Rc
i < I (Vi ; Yi ),

for all i . Therefore, for sufficiently large ni , we can find a
codebook such that the probability of error at the correspond-
ing receiver i can be upper bounded by an arbitrarily small
number, i.e., Pr(ei )

(ni ) ≤ ε. Then, let n = maxi ni , which
gives maxi Pr(ei )

(n) ≤ ε.
For the equivocation calculation, we consider the following

conditional entropy as discussed before:

H (Wi |Y(i), VK−i )

= H (Wi , Y(i)|VK−i ) − H (Y(i)|VK−i ) (161)

= H (Wi , Vi , Y(i)|VK−i ) − H (Vi |Wi , Y(i), VK−i )

− H (Y(i)|VK−i ) (162)

= H (Wi , Vi |VK−i ) + H (Y(i)|Wi , Vi , VK−i )

− H (Vi |Wi , Y(i), VK−i ) − H (Y(i)|VK−i ) (163)

= H (Wi , Vi |VK−i ) − H (Vi |Wi , Y(i), VK−i )

+H (Y(i)|Vi , VK−i ) − H (Y(i)|VK−i ) (164)

where the last equality is due to the Markov chain
Wi → (Vi , VK−i ) → Y(i).

The first term in (164) is exactly the entropy of
codebook Ci:

H (Vi) = n(Ri + Rc
i ) (165)

To bound the second term in (164), we have the following
observation: Given the message Wi = wi and the
received sequences Y(i) = y(i) and genie-aided sequences
VK−i = vK−i , receiver Y (i) can decode the codeword vi (wi , w

c
i )

with arbitrarily small probability of error λ(wi )
(n) as n gets

very large. More formally: by giving Wi = wi , VK−i = vK−i ,
receiver Y (i) decodes Vi if there is a unique wc

i such that
(
vi (wi , w

c
i ), y(i)) ∈ T (n)

ε (PV1,Y (i)|V K−i
)(vK−i ) (166)

Otherwise, the receiver declares an error. Without loss of
generality, we assume that vi(wi , w

c
1) is sent and denote

the event
{
(vi (wi , w

c
j ), y(i)) ∈ T (n)

ε (PV1,Y (i)|V K−i
)(vK−i )

}
as E j .

Therefore, the probability of error λ(wi )
(n) can be bounded as

λ(wi )
(n) ≤ Pr(Ec

1) +
∑

j �=1

Pr(E j ) (167)

where the probability here is conditioned on the event that
vi (wi , w

c
1) is sent. By joint typicality, we know that

Pr(Ec
1) ≤ ε1 for sufficiently large n, and

Pr(E j ) ≤ 2nH(Vi ,Y (i) |V K−i )−nH(Vi )−nH(Y (i) |V K−i )−nε2

= 2−nI (VI ;Y (i)|V K−i )−nε2 (168)

where ε1, ε2, . . . in this section are small positive numbers for
sufficiently large n.

Hence,

λ(wi )
(n) ≤ ε1 + 2nRc

i 2−nI (VI ;Y (i) |V K−i )−nε2 (169)

Note that Rc
i = I (Vi ; Y (i)|V K−i ) − ε. Therefore, we can

conclude that λ(wi )
(n) ≤ ε3 for sufficiently large n, which
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H (Y(i)|Vi , VK−i ) =
∑

vi ,vK−i

Pr(Vi = vi)Pr(VK−i = vK−i )H (Y(i)|Vi = vi , VK−i = vK−i ) (171)

≥
∑

(vi ,vK−i )∈T (n)
ε (P

Vi ,V
K−i

)

[
Pr(Vi = vi )Pr(VK−i = vK−i )H (Y(i)|Vi = vi , VK−i = vK−i )

]
(172)

≥
∑

(vi ,vK−i )∈T (n)
ε (P

Vi ,V
K−i

)

[
Pr(Vi = vi )Pr(VK−i = vK−i )

∑

(a,b)∈Vi×VK−i

N(a, b|vi , vK−i )
∑

y(i)∈Y (i)

− p(y(i)|a, b) log p(y(i)|a, b)

]
(173)

≥
∑

(vi ,vK−i )∈T (n)
ε (P

Vi ,V
K−i

)

[
Pr(Vi = vi )Pr(VK−i = vK−i )

∑

(a,b)∈Vi×VK−i

n
(

Pr(Vi = a, V K−i = b) − ε5

)

∑

y(i)∈Y (i)

−p(y(i)|a, b) log p(y(i)|a, b)

]
(174)

≥
∑

(vi ,vK−i )∈T (n)
ε (P

Vi ,V
K−i

)

n
[
Pr(Vi = vi )Pr(VK−i = vK−i )H (Y (i)|Vi , V K−i ) − ε6

]
(175)

≥ (1 − ε7)nH (Y (i)|Vi , V K−i ) − nε8 (176)

≥ nH (Y (i)|Vi , V K−i ) − nε9 (177)

by Fano’s inequality further implies that

H (Vi |Wi , Y(i), VK−i ) ≤
(

1 + λ(wi )
(n) log 2n(Ri+Rc

i )
)

≤ nε4 (170)

The third term in (164) can be lower bounded as
in (177) (on top of the page).

To compute the forth term in (164), we define

Ŷ(i) =
{

Y(i), if (vK−i , y(i)) ∈ T (n)
ε (PV K−i ,Y

(i) )

arbitrary, otherwise
(178)

Then, we obtain

H (Y(i)|VK−i )

=
∑

vK−i

Pr(VK−i = vK−i )H (Y(i)|VK−i = vK−i ) (179)

≤
∑

vK−i

Pr(VK−i = vK−i )H (Y(i), Ŷ(i)|VK−i = vK−i ) (180)

=
∑

vK−i

Pr(VK−i = vK−i )
[

H (Ŷ(i)|VK−i = vK−i )

+ H (Y(i)|VK−i = vK−i , Ŷ(i))
]

(181)

≤ nH (Y (i)|V K−i ) + nε1

+
∑

vK−i

[
Pr(VK−i = vK−i )H (Y(i)|VK−i = vK−i , Ŷ(i))

]

(182)

Combining Fano’s inequality and the fact that

Pr(Y(i) �= Ŷ(i)) ≤ Pr
{
(VK−i , Y(i)) �∈ T (n)

ε (PV K−i ,Y
(i) )
}

(183)

is arbitrarily small for sufficiently large n, (182) implies

H (Y(i)|VK−i ) ≤ nH (Y (i)|V K−i ) + nε1 + nε2 (184)

Substituting (165), (170), (178), and (184) into (164), we
conclude that

H (Wi |Y(i), VK−i ) ≥ H (Wi) − nε(i) (185)

where ε(i) is small for sufficiently large n, which completes
the proof.
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