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Abstract—We consider the block Rayleigh fading multiple-
input multiple-output (MIMO) wiretap channel with no prior
channel state information (CSI) available at any of the terminals.
The channel gains remain constant within a coherence interval of
T symbols, and then change to another independent realization
in the next coherence interval. The transmitter, the legitimate
receiver, and the eavesdropper have nt , nr, and ne antennas, respec-
tively. We determine the exact secure degrees of freedom (s.d.o.f.)
of this system when T ≥ 2min(nt ,nr). We show that, in this case,
the s.d.o.f. is exactly equal to (min(nt ,nr)−ne)

+(T −min(nt ,nr))/T .
The first term in this expression can be interpreted as the eaves-
dropper with ne antennas taking away ne antennas from both the
transmitter and the legitimate receiver. The second term can be
interpreted as a fraction of the s.d.o.f. being lost due to the lack
of CSI at the legitimate receiver. In particular, the fraction loss,
min(nt ,nr)/T , can be interpreted as the fraction of channel uses
dedicated to training the legitimate receiver for it to learn its own
CSI. We prove that this s.d.o.f. can be achieved by employing a
constant norm channel input, which can be viewed as a general-
ization of discrete signalling to multiple dimensions.

Index Terms—Physical layer secrecy, wiretap channel, secure
degrees of freedom, multiple-input multiple-output (MIMO),
Rayleigh block fading, non-coherent communications.

I. INTRODUCTION

W E consider the wiretap channel where a legitimate
transmitter wishes to have information-theoretically se-

cure communication with a legitimate receiver in the presence
of an eavesdropper. The wiretap channel was introduced by
Shannon [1] for the case of noiseless channels, where it was
shown that secure keys and one-time-pad encryption were
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necessary for secure communications. The noisy wiretap chan-
nel was introduced by Wyner, who determined the capacity-
equivocation region for the degraded case [2]. Csiszár and
Körner generalized his result to arbitrary, not necessarily de-
graded, wiretap channels [3]. Leung-Yan-Cheong and Hellman
determined the capacity-equivocation region of the Gaussian
wiretap channel and showed that Gaussian signalling is optimal
[4]. The secure degrees of freedom (s.d.o.f.) of the scalar
Gaussian wiretap channel is zero.

The multiple-input multiple-output (MIMO) wiretap channel
where the legitimate entities and the eavesdropper have multi-
ple antennas was considered for the 2-2-1 case in [5] and the
general case in [6]–[8]. These references determined the exact
secrecy capacity of the MIMO wiretap channel for the case
of full channel state information (CSI) at all terminals, and
showed that no channel prefixing is necessary and Gaussian
signalling is optimal. It can be deduced from these works
that the s.d.o.f. of the MIMO wiretap channel with full CSI
is min((nt − ne)

+,nr), where nt , nr, and ne are the number
of antennas at the transmitter, the legitimate receiver, and the
eavesdropper, respectively, and (x)+ = max(x,0).

The fading wiretap channel with a single antenna at all
terminals, where all parties have perfect CSI of all links, was
considered in [9]–[12]. Modeling the fading wiretap under
full CSI as a bank of independent parallel channels, these
references showed that independent Gaussian signalling in all
parallel channels, together with water-filling of the total power
over these channels, is optimal. Reference [13] considered
the single antenna wiretap channel where the transmitter has
the legitimate receiver’s CSI but no eavesdropper CSI under
the assumption of infinite coherence times for channel fading,
and showed that Gaussian signalling is optimal in this case.
Reference [14] considered the same model under a fast fading
condition (single symbol coherence time), and showed that M-
QAM signalling or Gaussian signalling with added Gaussian
artificial noise may outperform plain Gaussian signalling. In
the single antenna fading channel, under all CSI conditions, the
s.d.o.f. is zero, since it is zero under perfect CSI.

Using multiple antennas at the legitimate users however, non-
zero s.d.o.f. may be achieved even under partial CSI conditions.
Reference [15] showed that in a MIMO wiretap channel with
perfect CSI at the receivers, but only a statistical CSI at the
transmitter, under a fast fading Rayleigh channel, the s.d.o.f.
of the system is (min(nt ,nr)− ne)

+. Note that this may be
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less than the s.d.o.f. achievable under perfect CSI, which is
min((nt −ne)

+,nr). A comparison of these two s.d.o.f. may be
interpreted as the eavesdropper taking away ne antennas only
from the transmitter in the case of perfect CSI [5]–[8], but ne

antennas from both the transmitter and the legitimate receiver
in the case of partial CSI [15]. More strongly, reference [16]
considered the case of an arbitrarily varying eavesdropper in
a MIMO wiretap channel and showed that the same s.d.o.f. of
(min(nt ,nr)− ne)

+ can be achieved in this case. In [16], the
CSI of the legitimate receiver is assumed known at the trans-
mitter, however, nothing is known about the eavesdropper CSI,
not even its probability distribution. This is an exceptionally
strong modeling of the eavesdropper, where secrecy must be
guaranteed for every realization of the eavesdropper channel;
in a way, the eavesdropper may be thought to be controlling its
channel adversarially.

All of the above work considered that some (either perfect or
partial) CSI is available at some of the terminals. In practice,
typically, the way CSI becomes available at the terminals
is via the receivers measuring it and feeding it back to the
transmitters. It is reasonable to assume that no CSI is known
at the outset before the start of the communication. One must
then take into consideration the cost of acquiring the CSI.
In addition, the assumption of perfect CSI is an idealization;
in reality, the terminals may only have an estimate of the
channel in a delayed manner as discussed in [17]–[19]. Further,
in most cases, eavesdropper CSI will not be available at the
transmitter, because she will not feed her measurement back,
and even if she does, she will not be truthful. Thus, it is more
practical to assume that no CSI is available at any terminal
a priori. Recently, reference [20] studied the case where no
CSI is available at any terminal and the coherence time of the
Rayleigh fading channel is one symbol duration. Reference [20]
determined the exact secrecy capacity in this case and showed
that discrete signalling is optimal. As in all other single antenna
cases, the s.d.o.f. in [20] is zero. It can be shown that, even when
multiple antennas are added, s.d.o.f. in the case of fast fading in
[20] is still zero.

In this paper, we consider the MIMO wiretap channel under
block Rayleigh fading, where the channel gains of both the
legitimate receiver and the eavesdropper remain fixed for a
coherence interval of T symbols, and then change to another
independent realization in the next coherence interval. This
models a Rayleigh fading wireless communication channel
with a coherence time of T symbol durations. We consider
the case where neither the transmitter nor the receivers have
any CSI. This can be considered as an extension of [20] to
the case of multiple antennas and larger (than one) coherence
times. A similar channel model without any secrecy constraints
was considered in [21], [22], where in [21] the structure of the
optimal input distribution was found, and in [22] the degrees
of freedom (d.o.f.) was determined to be m(1−m/T ) where
m = min(nt ,nr,�T/2�). Our work can also be considered as a
wiretap version of [21], [22].

We show that when the coherence time T satisfies T ≥
2min(nt ,nr), the s.d.o.f. of this system is exactly (min(nt ,nr)−
ne)

+(T − min(nt ,nr))/T . Compared to the MIMO wiretap
channel results in [15], [16], where the legitimate receiver

knows its channel gain, the s.d.o.f. in our case is exactly
the same as those in [15], [16] except for a factor of (T −
min(nt ,nr))/T . Intuitively, at high signal-to-noise ratio (SNR),
the legitimate receiver needs min(nt ,nr) channel uses out of T
channel uses to learn its channel. Therefore, the factor (T −
min(nt ,nr))/T intuitively accounts for the number of channel
uses lost for estimating the channel at the legitimate receiver.
As in the cases of [15], [16], due to no CSI at the transmitter, the
eavesdropper takes away ne antennas from both the transmitter
and the receiver, i.e., ne is subtracted from min(nt ,nr), as
opposed to being subtracted only from nt as in the case of full
CSI at the transmitter [5]–[8]. In comparison to the case without
any secrecy constraints in [21], [22], here we have a subtraction
of ne from the first term in the d.o.f. due to the presence of the
eavesdropper.

Finally, it is interesting to note that one cannot achieve a
positive s.d.o.f with either a long coherence time in a single
antenna system [13] or with multiple antennas in a very short
(T = 1) coherence time channel [20]; however, with some
moderate coherence (T ≥ 2min(nt ,nr)) and use of multiple
antennas, it is possible to achieve positive s.d.o.f., as we show
in this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wiretap channel that consists of a transmitter
with nt antennas, a legitimate receiver with nr antennas, and
an eavesdropper with ne antennas. The channel between the
transmitter and the legitimate receiver is denoted by matrix
H ∈ Cnr×nt and the channel between the transmitter and the
eavesdropper is denoted by matrix G ∈ Cne×nt . The channels
are Rayleigh fading, i.e., entries of the channel matrices are in-
dependent and identically distributed (i.i.d.) complex Gaussian
random variables with zero-mean and unit-variance denoted
by CN(0,1). The channels are block fading, i.e., the channel
coefficients remain constant throughout a coherence interval T
and change independently across different intervals according
to the same distribution.

Let X ∈ Cnt×T denote the signal transmitted by the transmit-
ter during a coherence interval. The transmitted signal is subject
to an average power constraint as,

1
T
E

[
tr(XX†)

]
≤ P, (1)

where tr(·) denotes the trace function. The received signals at
the legitimate receiver and the eavesdropper are

Y =HX+Nr, (2)

Z =GX+Ne, (3)

respectively, where Nr ∈Cnr×T and Ne ∈Cne×T are their respec-
tive additive Gaussian noise terms. The entries of Nr and Ne are
i.i.d. with distributions CN(0,σ2

r ) and CN(0,σ2
e), respectively.

The CSI, i.e., the realizations of H and G, are not known to any
of the terminals.

A (2nR,n) code consists of an encoder fn at the transmitter

that maps each secret message, say W ∈W
Δ
= {1, . . . ,2nR} into
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a length-n codeword and a decoder gn at the legitimate receiver
that maps its received signal into a message estimate Ŵ ∈ W.
Each codeword is transmitted over multiple coherence intervals
[21] and n is chosen as a multiple of T .

A secrecy rate R is said to be achievable if there exists
an encoder fn and a decoder gn such that the probability of
error at the legitimate receiver P[W �= Ŵ ] goes to zero and
the average equivocation at the eavesdropper measured by
1
n H(W |Zn) approaches 1

n H(W ), as the codeword length n → ∞,
where Zn denotes the signal received at the eavesdropper over
n channel uses. The secrecy capacity Cs is the supremum of all
such achievable secrecy rates. From [3], the secrecy capacity of
the MIMO wiretap channel with no CSI at any terminal is

Cs =
1
T

max
V,X

I(V ;Y)− I(V ;Z), (4)

where V is an auxiliary random variable that satisfies the
Markov chain V → X → Y,Z. Determining the optimal joint
distribution of (V,X) and the resulting exact secrecy capacity
expression is challenging, instead, in this paper, we focus on
determining the s.d.o.f. which is defined as,

Ds = lim
P→∞

Cs

logP
. (5)

The s.d.o.f. characterizes how the secrecy capacity scales with
log(P) for large P, i.e., it is the pre-log factor of the secrecy
capacity at high SNR.

III. SUMMARY OF THE MAIN RESULTS

In this section, we first summarize our main results; the
proofs will be provided in the following sections. The results
are encapsulated in the following lemmas and theorem.

Lemma 1: For the MIMO wiretap channel in (2) and (3),
with no CSI at any terminal,

Ds = 0, if nr ≤ ne. (6)

This implies a negative result that when the eavesdropper has
more antennas than the legitimate user, i.e., nr ≤ ne, the s.d.o.f.
Ds is always zero. No matter how long the coherence time T is
and how many transmitter antennas the system has, the secrecy
capacity does not scale with the SNR. However, we show in the
following lemmas that a positive s.d.o.f. can be achieved, for
nr > ne and T ≥ 2min(nt ,nr).

Lemma 2: When nr > ne, nr ≤ nt , and T ≥ 2nr, the s.d.o.f.
is given by

Ds = (nr −ne)

(
T −nr

T

)
. (7)

Lemma 3: When nr > ne, nr > nt , and T ≥ 2nt , the s.d.o.f. is
given by

Ds = (nt −ne)
+

(
T −nt

T

)
. (8)

Lemma 2 considers the case where the transmitter has more
antennas than the receiver, whereas Lemma 3 considers the

opposite case. Note that, in the latter case, a positivity operator
(·)+ is required since nt may be less than ne. We combine the
above three lemmas to obtain the following main result of our
paper.

Theorem 1: For the MIMO wiretap channel in (2) and (3),
with no CSI at any terminal, when T ≥ 2min(nt ,nr), the s.d.o.f.
is given by

Ds = (min(nt ,nr)−ne)
+

(
T −min(nt ,nr)

T

)
. (9)

Note that when no secrecy constraint is considered, i.e.,
ne = 0, the s.d.o.f. in Theorem 1 reduces to the d.o.f. of the
noncoherent MIMO Rayleigh block fading channel [22]. Our
s.d.o.f. is affected by two factors: the first factor (min(nt ,nr)−
ne)

+ is the s.d.o.f of the case where perfect CSI is available
at the receivers [15] (i.e., where there is no cost due to lack
of channel knowledge at the receiver), and the second factor
(1−min(nt ,nr)/T ) reflects the loss in efficiency due to the lack
of knowledge of the CSI at the legitimate receiver. One can view
the ratio min(nt ,nr)/T as the cost of channel estimation at the
legitimate receiver from the point of view of a training based
scheme. Note that, even though Lemmas 2 and 3 (and, thus,
Theorem 1) hold only for the case where T ≥ 2min(nt ,nr),
the signalling scheme adopted in their achievability proofs can
also be used to derive an achievable s.d.o.f. for the case where
T < 2min(nt ,nr), as given in the following lemma.

Lemma 4: For arbitrary coherence time T , the s.d.o.f. satis-
fies

Ds ≥ (K −ne)
+

(
T −K

T

)
, (10)

where K = min(nt ,nr,(T +ne)/2).
Lemma 4 shows that, for given coherence time T and the

number of eavesdropper’s antennas ne, the achievable s.d.o.f.
for the case where T < 2min(nt ,nr) increases with the number
of legitimate antennas nt until it reaches nr or (T + ne)/2.
Even though more antennas at the transmitter and the legitimate
receiver provides more dimensions for communication, it also
implies that more resource is needed to cope with the lack of
CSI at the receiver, which is reflected in the term (T −K)/T .
More details can be found in Section VII.

The above main results can be visualized in Fig. 1. Here,
we show the s.d.o.f. of the case with no CSI anywhere (i.e.,
Theorem 1 and Lemma 4) and compare with that of the case
with perfect CSIR but no CSIT (or statistical CSIT) [15]. In
Fig. 1(a), the number of receive antennas at the legitimate
receiver and the eavesdropper (i.e., nr and ne, respectively)
and the coherence time T are fixed and are chosen such that
nr > ne and 2nr > T + ne. By varying the number of transmit
antennas nt , Theorem 1 shows that the s.d.o.f. with no CSI
anywhere is zero when nt ≤ ne, but increases with the number
of transmit antennas when ne < nt ≤ T/2. The increase is
nonlinear as opposed to the case with perfect CSIR. However,
as nt increases beyond T/2, Theorem 1 no longer applies and
the achievable s.d.o.f. in Lemma 4 is plotted instead (in dotted
line). We can see that the achievable s.d.o.f. continues to in-
crease with nt when T/2 < nt < (T +ne)/2 and saturates when
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Fig. 1. Illustrations of the s.d.o.f. derived in Theorem 1 and Lemma 4. (a) The
s.d.o.f. versus the number of transmit antennas nt for nr > ne and 2nr > T +ne.
(b) The s.d.o.f. versus coherence time T for min(nt ,nr)> ne.

nt ≥ (T + ne)/2. In Fig. 1(b), we show the s.d.o.f. versus
coherence time T for the case where min(nt ,nr)> ne. For T ≥
2min(nt ,nr), the s.d.o.f. is given by Theorem 1 and is shown
to approach that of the case with perfect CSIR as T increases.
This is due to the fact that, when coherence time is sufficiently
large, the impact due to lack of CSI can be neglected. Similarly,
when T < 2min(nt ,nr), the achievable s.d.o.f. in Lemma 4 is
plotted instead.

IV. PROOF OF LEMMA 1

To prove Lemma 1, we will in fact prove the following
stronger result for this case:

Cs ≤
[

ne log

(
1+

P
σ2

r

)
−ne log

(
1+

P
σ2

e

)]+
. (11)

To derive the upper bound (11) on the secrecy capacity, we
first note that for a fixed ne, the secrecy capacity of the MIMO
wiretap channel with nr = ne is always greater than or equal to
that of the case with nr < ne. Hence, it suffices to upper bound
the secrecy capacity of the system with nr = ne, which we will
call the enhanced wiretap channel.

For the enhanced wiretap channel, if σ2
r ≥ σ2

e , it is clear that
the legitimate receiver is stochastically degraded with respect
to the eavesdropper. Hence, the secrecy capacity in this case is
zero. However, if σ2

r < σ2
e , using the two conditions nr = ne

and σ2
r < σ2

e , we can construct a physically degraded wiretap
channel whose marginal distributions are identical to those of
(2) and (3). The received signals of the equivalent degraded
wiretap channel are

Y =HX+Nr, (12)

Z′ =HX+Nr +N′
e = Y+N′

e, (13)

where the entries of N′
e ∈ Cne×T are i.i.d. Gaussian with zero-

mean and variance σ2
e −σ2

r , and N′
e is independent of X, H, and

Nr. Since the secrecy capacity depends only on the conditional
marginal probabilities p(Y|X) and p(Z|X), and H and G are
statistically the same, the physically degraded channel in (12)
and (13) has the same secrecy capacity as the original stochasti-
cally degraded channel in (2) and (3). Due to the degradedness
of the equivalent model in (12) and (13), we know, from [2], [3],
that V = X is optimal (i.e., no channel prefixing is needed) and,
thus, the secrecy capacity of the equivalent degraded wiretap
channel is

Cs =
1
T

max
pX∈SpX

I(X;Y)− I(X;Z′), (14)

where SpX denotes the set of all input distributions which satisfy
the power constraint in (1).

To derive an upper bound we first rewrite (14) as

T ·Cs = max
pX∈SpX

h(Y)−h(Z′)−h(Y|X)+h(Z′|X). (15)

Now we note that if nr = ne and σ2
r < σ2

e , we have the following
inequality for the wiretap channel in (12) and (13),

h(Y|X)−h(Z′|X)≥ h(Y|X,H)−h(Z′|X,H). (16)

This is a vector generalization of [20, eqn. (12)], and can be
proved by observing that (16) holds if and only if

I(Y;H|X)≥ I(Z′;H|X) (17)

which is true since,

I(Y;H|X = X̃) =nr log

∣∣∣∣IT +
X̃†X̃
σ2

r

∣∣∣∣
≥ne log

∣∣∣∣IT +
X̃†X̃
σ2

e

∣∣∣∣
= I(Z′;H|X = X̃), (18)

where X̃ denotes a realization of the random matrix X. In
deriving (18), we used the fact that nr = ne, σ2

r < σ2
e and that

given X, Y and H are jointly Gaussian and so are Z and H.
If Yi denotes the ith row of Y, then Yi is a Gaussian vector
independent of Y j, for all i �= j, and the covariance matrix of Yi

is X̃†X̃+σ2
r IT , for all i.
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Using (16) and (13) in (15), we obtain

T ·Cs ≤ max
pX∈SpX

h(Y)−h
(
Y+N′

e

)
−h(Y|X,H)+h(Z′|X,H) (19)

= max
pX∈SpX

h(Y)−h
(
Y+N′

e

)
+neT log

(
σ2

e

σ2
r

)
(20)

≤ max
pX∈SpX

h(Y)−neT log
(

e
1

neT h(Y) + e
1

neT h(N′
e)

)

+neT log

(
σ2

e

σ2
r

)
(21)

≤h(YG)−neT log
(

e
1

neT h(YG) + e
1

neT h(N′
e)

)

+neT log

(
σ2

e

σ2
r

)
(22)

=T ne log

(
1+

P
σ2

r

)
−T ne log

(
1+

P
σ2

e

)
, (23)

where (21) follows from the entropy power inequality [23], and
(22) follows from the fact that the right-hand-side of (21) is
monotonically increasing in h(Y), and that for a fixed total
power constraint E[tr(YY†)]≤ (P+σ2

r )neT , a Gaussian matrix
YG ∈ Cne×T with entries that are i.i.d. Gaussian with zero-mean
and variance P+ σ2

r maximizes the differential entropy. This
gives us the desired result in (11), completing the proof of
Lemma 1.

V. PROOF OF LEMMA 2

The proof of Lemma 2 is a bit more involved than that of
Lemma 1. For clarity, we outline the steps of the proof here and
leave the details to Appendix A. We first prove the converse and
then provide a scheme that achieves the s.d.o.f. upper bound.

A. Converse Proof of Lemma 2

To find an upper bound for the s.d.o.f. Ds, we only need to
consider the case where σ2

r < σ2
e , since, with all other channel

parameters remaining the same, the wiretap channel in (2) and
(3) with σ2

r < σ2
e yields a larger secrecy capacity than that with

σ2
r ≥ σ2

e . Under the assumption σ2
r < σ2

e , we can once again
construct a degraded equivalent channel (as we did in (12) and
(13) for nr = ne), without changing Cs by selecting ne row
vectors from nr rows of the legitimate channel matrix H to
form a statistically marginally identical eavesdropper channel.
For any fixed partition p1 ∪ p2 = {1, . . . ,nr} where |p1| = ne

and p2 = {1, . . . ,nr} \ p1, we construct a degraded equivalent
channel for (2) and (3) as follows:

Y =HX+Nr, (24)

Zp1 =Hp1X+Nr,p1 +N′
e = Yp1 +N′

e, (25)

where Hp1 , Nr,p1 , and Yp1 denote the collection of row vectors
with indices belonging to p1 from H, Nr, and Y, respectively,
and Zp1 denotes the equivalent eavesdropper’s received signal

constructed from Yp1 . For any partition (p1,p2), as in the proof
of Lemma 1, the secrecy capacity of the degraded wiretap
channel in (24) and (25) is

Cs =
1
T

max
pX∈SpX

I(X;Y)− I(X;Zp1). (26)

From above, the optimization problem in (4) is transformed
to a simpler problem which needs to be optimized only
with respect to X as in (26). However, it is still hard to
find the optimal input distribution pX. Instead, we charac-
terize the optimal input structure with respect to (26) for
the equivalent degraded channel given in (24) and (25).
This helps us restrict possible inputdistributions and simpli-
fies the problem. Interestingly, we show in the sequel that,
due to the degradedness of the equivalent wiretap chan-
nel in (24) and (25) and the concavity of the secrecy rate
in the input distribution for degraded channels [20], the
optimal input structure in (26) is the same as the optimal input
structure in the channel without secrecy constraints in [21].

Recall that a random matrix M ∈ CN×T where T ≥ N is
isotropically distributed (i.d.) if p(M) = p(MU), for all deter-
ministic T ×T unitary matrices U. The optimal input structure
for the equivalent degraded wiretap channel in (24) and (25) is
characterized in the following lemma.

Lemma 5: When nr > ne and σ2
r < σ2

e , for the equivalent
channel in (24) and (25), the optimal input distribution that
maximizes Cs in (26) has the structure

X =ΛΛΛΘΘΘ, (27)

if T ≥ nt , where ΛΛΛ is an nt × T diagonal random matrix with
real and non-negative diagonal elements, and ΘΘΘ is a T ×T i.d.
unitary matrix which is independent of ΛΛΛ.

We provide a proof for Lemma 5 in Appendix A.
Although we cannot completely characterize the optimal X,

the result in Lemma 5 suffices to derive a useful upper bound
for Ds. We can rewrite the secrecy capacity given in (26) and
upper bound it as

T ·Cs = max
pX∈S∗pX

I(X;Y)− I(X;Zp1) (28)

= max
pX∈S∗pX

h(Yp1)+h(Yp2 |Yp1)−h(Y|X)

−h
(
Yp1 +N′

e

)
+h(Zp1 |X) (29)

≤ max
pX∈S∗pX

h(Yp2 |Yp1)−h(Y|X)+h(Zp1 |X), (30)

where S∗pX
in (28) denotes the set of all input distributions hav-

ing the optimal structure described in Lemma 5 and satisfying
the power constraint in (1), matrix Yp2 in (29) is the collection
of row vectors of Y with indices belonging to p2 = {1, . . . ,nr}\
p1, and the inequality (30) follows from h(Yp1)≤ h(Yp1 +N′

e).
Now continuing from (30), we derive the desired upper

bound in three steps.
Step 1: We derive an upper bound for h(Yp2 |Yp1) in terms of

h(Y) so that we can focus only on h(Y) later. This upper bound
can be derived by using the following lemma.

Lemma 6: Given an m × T random matrix M with differ-
ential entropy h(M), for all n ∈ {1, . . . ,m}, there must exist
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a partition (p1,p2) where p1 ∪ p2 = {1, . . . ,m}, |p1| = n, and
|p2|= m−n such that

h(Mp2 |Mp1)≤
m−n

m
h(M), (31)

where Mp1 and Mp2 denote the collection of row vectors of M
with indices belonging to p1 and p2, respectively.

We provide a proof for Lemma 6 in Appendix B.
Now, from Lemma 6 and (30), we have

T ·Cs ≤ max
pX∈S∗pX

nr −ne

nr
h(Y)−h(Y|X)+h(Zp1 |X), (32)

which follows from the fact that, for any partition (p1,p2), (30)
is a valid upper bound. A similar inequality for (31) has been
derived in [17] under the entropy symmetric condition which
is not required in Lemma 6. However, it is necessary to note
that the result in [17] is also applicable here since our problem
coincidentally satisfies the entropy symmetric condition as
well.

Step 2: We derive an upper bound for h(Y) in (32), as given
in the following lemma.

Lemma 7: With the distribution of the channel input X
satisfying the optimal structure in Lemma 5, the corresponding
differential entropy of the legitimate receiver signal Y in (12)
can be upper bounded as

max
pX∈S∗pX

h(Y)≤ n2
r logP+(T −nr)E

[
logdetYY†

]
+o(logP),

(33)

where limP→∞ o(logP)/ logP = 0.
We provide a proof for Lemma 7 in Appendix C.
Note that given the input signal X, each row vector of Y and

Zp1 are i.i.d. Gaussian vectors, under the optimal input structure
imposed by Lemma 5, the conditional differential entropy
h(Y|X) and h(Zp1 |X) in (32) can be explicitly computed as

h(Y|X) =nr

nt

∑
i=1

E
[
logπe

(
‖Xi‖2 +σ2

r

)]
+nr(T −nt) logπeσ2

r , (34)

h(Zp1 |X) =ne

nt

∑
i=1

E
[
logπe

(
‖Xi‖2 +σ2

e

)]
+ne(T −nt) logπeσ2

e , (35)

where Xi is the ith row of the given input signal X.
Now, by Lemma 7 and (32)–(35), we can further upper bound

the secrecy capacity in (32) as

T ·Cs ≤ max
pX∈S∗pX

{
nr −ne

nr
(T −nr)E

[
logdetYY†

]

− (nr −ne)
nt

∑
i=1

E
[
log

(
‖Xi‖2 +σ2

r

)]
+ne

nt

∑
i=1

E

[
log

(
‖Xi‖2 +σ2

e

‖Xi‖2 +σ2
r

)]

+(nr −ne)nr logP+o(logP)

}
. (36)

Furthermore, by using the fact that log(1+ x) ≤ x, it follows
that

E

[
log

(
‖Xi‖2 +σ2

e

‖Xi‖2 +σ2
r

)]
≤ E

[
σ2

e −σ2
r

‖Xi‖2 +σ2
r

]
≤ σ2

e −σ2
r

σ2
r

, (37)

where the right-hand-side of (37) is a constant independent of
P. Therefore, by (36) and (37), we can upper bound the secrecy
capacity T ·Cs as

T ·Cs ≤ max
pX∈S∗pX

{
(nr −ne)

(
(T −2nr)

nr
E

[
logdetYY†

]

+E

[
logdetYY†

]
−

nt

∑
i=1

E
[
log

(
‖Xi‖2 +σ2

r

)])

+(nr −ne)nr logP+o(logP)

}
. (38)

By the assumptions T ≥ 2nr and nr > ne, we obtain a further
upper bound for (38) by developing upper bounds separately for
E[logdetYY†] and E[logdetYY†]− ∑nt

i=1E[log(‖Xi‖2 + σ2
r )],

respectively. This is the task of step 3.
Step 3: We derive upper bounds for the two terms

E[logdetYY†] and E[logdetYY†]−∑nt
i=1E[log(‖Xi‖2+σ2

r )] in
(38) separately using the following two lemmas.

Lemma 8: With the distribution of the channel input X
satisfying the optimal structure in Lemma 5, and with nt ≥ nr,
the legitimate received signal Y in (12) satisfies

max
pX∈S∗pX

E

[
logdetYY†

]
≤ nr logP+o(logP), (39)

where limP→∞ o(logP)/ logP = 0.
Lemma 9: With the distribution of the channel input X

satisfying the optimal structure in Lemma 5, and with nt ≥ nr,
the legitimate received signal Y in (12) satisfies

max
pX∈S∗pX

E

[
logdetYY†

]
−

nt

∑
i=1

E
[
log

(
‖Xi‖2 +σ2

r

)]
≤ k, (40)

where k is a constant which is independent of P.
We provide proofs for Lemmas 8 and 9 in Appendices D

and E, respectively. It should be mentioned that here we focus
on the setting where nt ≥ nr, and the random channel matrix
H is not full column rank. Thus, the results of [22] cannot be
directly applied to prove Lemmas 8 and 9. More discussion on
this can be found at the end of Appendix E. In addition, in [22],
where the conventional MIMO channel with no eavesdroppers
was examined, a key step in proving the converse of the d.o.f.
was the upper-bounding of the mutual information I(X;Y).
However, when proving the s.d.o.f. of wiretap channels, one
instead needs to derive upper bounds for the difference in
mutual information I(X;Y)− I(X;Z). The results in [22] do not
apply in this case and, thus, new upper-bounding techniques are
developed here.

Finally, using Lemmas 8 and 9 in (38), we obtain the desired
upper bound on the s.d.o.f. as

Ds ≤ (nr −ne)

(
T −nr

T

)
, (41)
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which completes the converse part of Lemma 2.

B. Achievability Proof of Lemma 2

Here, we show that a constant norm channel input [21], [22]
transmitted on nr antennas can achieve the s.d.o.f. upper bound
given in (41). Specifically, let the channel input Xc be constant
norm over nr transmitter antennas and zero over the rest of the
nt −nr antennas, i.e.,

Xc =

[√
PT
nr

Inr 0
0 0

]
ΘΘΘ, (42)

where ΘΘΘ is an T × T i.d. unitary matrix and Inr denotes the
identity matrix with nr dimension. We can lower bound the
achievable secrecy rate Rs as follows:

T ·Rs = I(Xc;Y)− I(Xc;Z) (43)

= h(Y)−h(Z)−h(Y|Xc)+h(Z|Xc) (44)

= h(Y)−h(Z)

−nr

nr

∑
i=1

log

(
PT
nr

+σ2
r

)
−nr(T −nt) logπeσ2

r

+ne

nr

∑
i=1

log

(
PT
nr

+σ2
e

)
+ne(T −nt) logπeσ2

e (45)

≥ h(Y)−h(Z)− (nr −ne)nr logP+o(logP), (46)

where (45) follows by applying (42) into (34) and (35), respec-
tively.

Since E[tr(ZZ†)] ≤ (P + σ2
e)neT , the differential entropy

h(Z) of Z can be upper bounded by the differential entropy of
an i.i.d. Gaussian matrix as

h(Z)≤ neT log
(
πe

(
P+σ2

e

))
= neT logP+o(logP), (47)

and, the differential entropy h(Y) can be lower bounded as

h(Y)≥h(HXc) (48)

=h(CHXc)+ log |G(nr,T )|

+(T −nr)E
[
logdetHXcX†

cH†
]

(49)

=h

(√
PT
nr

Ha

)
+ log |G(nr,T )|

+(T −nr)E

[
logdet

PT
nr

HaH†
a

]
(50)

=n2
r logπe

PT
nr

+log|G(nr,T )|+(T−nr)log

(
PT
nr

)nr

+(T −nr)E
[
logdetHaH†

a

]
(51)

=nrT logP+o(logP), (52)

where Ha denotes the collection of the first nr columns of ma-
trix H and |G(nr,T )| is the volume of the Grassmann Manifold
G(nr,T ) (c.f. Appendix C), which is a finite constant. Note
that (49) is obtained by applying Lemma 15 in Appendix C.

A similar derivation, for the case where nt = nr, can be found
in the proof of Lemma 15 in [22]. Therefore, from (46), (47),
and (52), we have the following lower bound on the secrecy rate

T ·Rs ≥ (nr −ne)(T −nr) logP+o(logP), (53)

which implies that

Ds ≥ (nr −ne)

(
T −nr

T

)
. (54)

Together with the upper bound in (41), we conclude that, the
exact s.d.o.f. for the case nt ≥ nr > ne and T ≥ 2nr, is

Ds = (nr −ne)

(
T −nr

T

)
, (55)

which completes the proof of Lemma 2.
As a final remark, we note that when nt ≥ nr and T ≥ 2nr,

we can use only nr transmitter antennas to achieve the optimal
s.d.o.f in (55). Having more than nr transmit antennas gives us
no improvements, at least, as far as the s.d.o.f. is concerned.

VI. PROOF OF LEMMA 3

The proof is based on the key observation that, when nt < nr,
the receiver can use only nt of its antennas without losing any
s.d.o.f. That is, for a fixed nt , the s.d.o.f. in the case where nt <
nr is, in fact, equal to the s.d.o.f. in the case with nr = nt . This
fact is shown in the following lemma.

Lemma 10: For the MIMO legitimate channel (2), if nt < nr,
for any input signal X satisfying the power constraint in (1), we
have

I(X;Y)− I(X;Ynt )≤ o(logP), (56)

where Ynt denotes the collection of arbitrary nt row vectors of
the received signal matrix Y.

We provide a proof for Lemma 10 in Appendix F.
To derive an upper bound for the s.d.o.f., we first focus on the

case σ2
r < σ2

e . When nr > ne and σ2
r < σ2

e , we can construct the
same equivalent degraded channel in (24) and (25), in which
case, the secrecy capacity can be written as in (26). The only
difference here is that now the number of transmitter antennas
is less than the number of legitimate receiver antennas, i.e., nt <
nr. If we denote Cnt<nr

s as the secrecy capacity of the wiretap
channel in (2) and (3) with σ2

r < σ2
e and nt < nr, and X∗ as the

corresponding optimal input, we have

T ·Cnt<nr
s = I(X∗;Y)− I(X∗;Z) (57)

≤ I(X∗;Ynt )− I(X∗;Z)+o(logP) (58)

≤ max
pX∈SpX

[I(X;Ynt )− I(X;Z)]+o(logP) (59)

= T ·Cnt=nr
s +o(logP), (60)

where (58) follows from Lemma 10, and Cnt=nr
s in (60) is the

secrecy capacity of the wiretap channel in (2) and (3) with
smaller nr as nt = nr. It is worthwhile to note that, in [22], a
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result similar to (56) but with more restrictions was given as

max
pX∈SpX

I(X;Y)− max
pX∈SpX

I(X;Ynt )≤ o(logP). (61)

The inequality in (61) is useful to prove the results in [22]
for conventional MIMO channels, but is not sufficient for the
proofs in MIMO wiretap channels. This is because, in (61), an
upper bound was obtained when the input distribution is the
one that maximizes I(X;Y). However, to obtain the inequality
in (59), the input distribution must be one that maximizes the
difference I(X;Ynt )− I(X;Z) instead. Thus, the more general
result in Lemma 10 is required.

We already know the s.d.o.f. when nr = nt and T ≥ 2nr. For
nr = nt > ne, the s.d.o.f. Ds is given by (55) from Lemma 2, and
for nr = nt ≤ ne, Ds = 0 from Lemma 1. Thus, when nt < nr and
T ≥ 2nt , we get the required upper bound as

Ds ≤ (nt −ne)
+

(
T −nt

T

)
. (62)

Furthermore, in the case where σ2
r ≥ σ2

e , one can upper bound
the secrecy capacity by increasing σ2

e in the eavesdropper’s
channel. Thus, the upper bound (62) is still valid.

The achievability of the above upper bound follows by using
a constant norm channel input over nt transmitter antennas as
described in Section V-B. However, at the legitimate receiver,
only nt receiver antennas are needed and we can ignore the
remaining (nr − nt) row vectors of the received signal matrix
Y while decoding at high SNR. These matching converse and
achievability results complete the proof of Lemma 3.

VII. SECURE DEGREES OF FREEDOM FOR

SHORT COHERENCE TIME SYSTEMS

In this section, we provide some insights for the s.d.o.f.
of short coherence time systems (i.e., systems with T <
2min{nt ,nr}). Recall that, when nr ≤ ne, we know from
Lemma 1 that the s.d.o.f. is zero regardless of the coherence
time T . However, when nr > ne, our results in Theorem 1 hold
only for the case with sufficiently large coherence time, i.e.,
for T ≥ 2min(nt ,nr). To study the s.d.o.f of short coherence
time systems, we first consider a special case where T = 1 (i.e.,
fast fading channels). We show, in the following lemma, that
the s.d.o.f. of the MIMO fast fading wiretap channel is zero
regardless of how many antennas the terminals have. This is a
generalization of [20] to the case of multiple antennas.

Lemma 11: For the MIMO wiretap channel in (2) and (3),
with no CSI at any terminal and T = 1, we have Ds = 0.

Proof: Here, we focus only on the case where nr > ne

since the s.d.o.f. is zero when nr ≤ ne (c.f., Lemma 1). Specifi-
cally, let us first consider the case where nr > ne and σ2

r ≤ σ2
e .

In this case, the MIMO wiretap channel can be converted to an
equivalent degraded wiretap channel as in (24) and (25), similar
to what was done in Section V, and its secrecy capacity can be
written as in (26). Following the result in [21], we note in the
following lemma that, when nt ≥ T , which is always the case
when T = 1, the secrecy capacity of the equivalent degraded

wiretap channel can be achieved by using only nt = T transmit
antennas.

Lemma 12: Suppose that nt > T and that the nt × T input
signal X with distribution pX generates mutual informations
I(X;Y) and I(X;Zp1) on the main and the eavesdropper chan-
nels, respectively, described in (24) and (25). Then, there exists
an T ×T input signal X′, i.e., an input signal that utilizes only T
transmit antennas, that generates the same mutual informations,
i.e., I(X;Y) = I(X′;Y) and I(X;Zp1) = I(X′;Zp1).

This lemma is a straightforward extension of [21, Theorem 1]
and, thus, its proof is omitted here. The main idea is that both
conditional probability density functions p(Y|X) and p(Zp1 |X)
depend on X only through X†X. Hence, for any nt × T input
matrix X, we can obtain the same mutual informations by using
a T ×T input matrix X′ such that X′†X′ = X†X.

It follows from Lemma 12 that, when T = 1, the secrecy
capacity is the same as the secrecy capacity with a single
transmit antenna only, i.e., nt = 1. Moreover, by Lemma 10, we
know that having more receive antennas than transmit antennas,
i.e., having nr > nt , does not improve the s.d.o.f. Thus, when
nr > ne, σ2

r < σ2
e and T = 1, the s.d.o.f. of the MIMO wiretap

channel is the same as the secrecy capacity of the SISO case,
i.e., nt = nr = 1, which is zero, as shown in [20]. Finally, since
the secrecy capacity for the case with σ2

r ≤ σ2
e is greater than

that with σ2
r >σ2

e , we conclude that the s.d.o.f. of the fast fading
wiretap channel, i.e., the case with T = 1, is zero regardless of
the number of antennas at the terminals. �.

For the general case, the exact s.d.o.f. is unknown. However,
as stated in Lemma 4, we can show that, by using constant norm
input, the achievable s.d.o.f. can be given by

(K −ne)
+

(
T −K

T

)
, (63)

where K
Δ
= min(nt ,nr,(T + ne)/2). To show this, we first note

from Lemma 12 that, when T < nt , the secrecy capacity can be
achieved by using only T out of the nt transmit antennas. That
is, no further improvement in secrecy capacity can be obtained
by using all nt antennas. Therefore, in the following, we focus
only on the case where nt ≤ T .

Suppose that the constant norm input is applied over m ≤
min(nt ,nr) transmitter antennas (c.f. in Section V-B) and let the
channel input signal be written as

X =

[√
PT
m Im 0
0 0

]
ΘΘΘ. (64)

Moreover, let us also assume that only m antennas are used at
the legitimate receiver to receive the signal. Then, by following
the same arguments as in Section V-B, we can show that the
s.d.o.f. achieved by using (64) is given by

(m−ne)
+

(
T −m

T

)
. (65)

Note that (65) is a quadratic function that increases with m
when ne < m < (T + ne)/2 and reaches its maximum value at
the point m = (T + ne)/2. Thus, together with the condition
m ≤ min(nt ,nr), the number of transmit and receive antennas
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that should be used to transmit the constant norm input signal
is m = K and the resulting achievable s.d.o.f. is given by
(63). However, whether or not (63) is the maximum achievable
s.d.o.f. is still an open problem.

VIII. CONCLUSION

We considered the Rayleigh block fading wiretap channel
with no a priori CSI at any of the terminals. We constructed
a degraded equivalent channel, and determined its secrecy
capacity. We determined the exact s.d.o.f. of this channel
model, when T ≥ 2min(nt ,nr), to be (min(nt ,nr)− ne)

+(T −
min(nt ,nr))/T . When min(nt ,nr) ≤ ne, the s.d.o.f. is zero no
matter how long the coherence time T is; an example of this is
the scalar wiretap channel where nt = nr = ne = 1. When T = 1,
the s.d.o.f. is zero no matter how many antennas the transmitter
and the legitimate receiver may have. We showed in this paper
that when we have some moderate channel coherence together
with multiple antennas at the legitimate entities, we can have
non-zero s.d.o.f. The needed condition for this is that the
legitimate entities have more antennas than the eavesdropper.

APPENDIX A
PROOF OF LEMMA 5

We first introduce the following two lemmas which will be
useful for the proof of Lemma 5. These lemmas are straightfor-
ward extensions of Lemmas 1 and 3 of [21].

Lemma 13: Suppose that the input signal X with distribution
pX generates mutual informations I(X;Y) and I(X;Zp1) on
the main and the eavesdropper channels described in (24) and
(25). For any m×m deterministic unitary matrix V and T ×T
deterministic unitary matrix U, the input signal V†XU generates
the same mutual informations, i.e., I(X;Y) = I(V†XU;Y) and
I(X;Zp1) = I(V†XU;Zp1).

Lemma 14: Suppose that the input signal X with singular
value decomposition X =ΨΨΨ†ΛΦΛΦΛΦ generates the mutual informa-
tions I(X;Y) and I(X;Zp1) on the main and the eavesdropper
channels described in (24) and (25). Then, the input signal
X′ = ΛΦΛΦΛΦ also generates the same mutual informations, i.e.,
I(X;Y) = I(X′;Y) and I(X;Zp1) = I(X′;Zp1).

Note that, the above lemmas hold separately for I(X;Y) and
I(X;Zp1) irrespective of the degradedness relation, and relies
only on the fact that their respective channels, i.e., pY|X and
pZp1 |X, are Gaussian. Using the above two lemmas, we will
show that, for any input X with distribution pX, there exists
input signal X∗, satisfying the structure in (27) in Lemma 5, that
achieves a higher secrecy rate for the degraded MIMO wiretap
channel given in (24) and (25), i.e.,

1
T

(
I(X;Y)− I(X;Zp1)

)
≤ 1

T

(
I(X∗;Y)− I(X∗;Zp1)

)
.

To do this, let us define the left-hand-side as the secrecy rate
function Rs(pX) =

1
T (I(X;Y)− I(X;Zp1)) where pX denotes

the probability distribution of X. Note that Rs is a concave
function of the input probability distribution [24] since the
eavesdropper’s channel (25) is degraded with respect to the
main channel (24). Then, for any input signal X = ΨΨΨ†ΛΦΛΦΛΦ,

we can let X′ = ΛΦΛΦΛΦ and X∗ = ΛΦΛΦΛΦΘΘΘ′ with ΘΘΘ′ being a T × T
i.d. unitary matrix which is independent of X (independent of
(ΨΨΨ,ΛΛΛ,ΦΦΦ)), and upper bound the secrecy rate with the input X
as follows

Rs(pX) =Rs(pX′) (66)

=Rs(pX∗|ΘΘΘ′=Θ̃ΘΘ′) (67)

=
∫

Rs(pX∗|Θ̃ΘΘ′) dF(Θ̃ΘΘ′
) (68)

≤Rs

(∫
pX∗|Θ̃ΘΘ′ dF(Θ̃ΘΘ′

)

)
(69)

=Rs(pX∗), (70)

where (66) follows from Lemma 14 and the equality in (67)
follows from Lemma 13 with V being the identity matrix and U
being the given realization ΘΘΘ′, and (69) follows from Jensen’s
inequality since Rs is concave.

Now let ΘΘΘ = ΦΘΦΘΦΘ′ such that X∗ = ΛΦΛΦΛΦΘΘΘ′ = ΛΘΛΘΛΘ. The rest of
the proof is to show that ΘΘΘ is also an i.d. unitary matrix and is
independent of ΛΛΛ. First, we have

pΘΘΘ(Θ̃ΘΘ) =
∫

pΘΘΘ|ΦΦΦ(Θ̃ΘΘ|Φ̃ΦΦ) dF(Φ̃ΦΦ) (71)

=
∫

pΘΘΘ′|ΦΦΦ(Φ̃ΦΦ
−1Θ̃ΘΘ|Φ̃ΦΦ) dF(Φ̃ΦΦ) (72)

=
∫

pΘΘΘ′(Φ̃ΦΦ−1Θ̃ΘΘ) dF(Φ̃ΦΦ) (73)

=
∫

pΘΘΘ′(Θ̃ΘΘ) dF(Φ̃ΦΦ) (74)

= pΘΘΘ′(Θ̃ΘΘ), (75)

where (73) comes from the fact that ΘΘΘ′ is independent of
(ΨΨΨ,ΛΛΛ,ΦΦΦ) and (74) comes from the fact that ΘΘΘ′ is i.d. unitary
[21]. Therefore, we show that ΘΘΘ has the same distribution as ΘΘΘ′,
and then ΘΘΘ is also i.d. unitary. For the independence between ΘΘΘ
and ΛΛΛ, we have

pΘΘΘ|ΛΛΛ(Θ̃ΘΘ|Λ̃ΛΛ) =
∫

pΘΘΘ|ΛΛΛ,ΦΦΦ(Θ̃ΘΘ|Λ̃ΛΛ,Φ̃ΦΦ)pΦΦΦ|ΛΛΛ(Φ̃ΦΦ|Λ̃ΛΛ)dΦ̃ΦΦ (76)

=
∫

pΘΘΘ′|ΛΛΛ,ΦΦΦ(Φ̃ΦΦ
−1Θ̃ΘΘ|Λ̃ΛΛ,Φ̃ΦΦ)pΦΦΦ|ΛΛΛ(Φ̃ΦΦ|Λ̃ΛΛ)dΦ̃ΦΦ (77)

=
∫

pΘΘΘ′(Φ̃ΦΦ−1Θ̃ΘΘ)pΦΦΦ|ΛΛΛ(Φ̃ΦΦ|Λ̃ΛΛ)dΦ̃ΦΦ (78)

=
∫

pΘΘΘ′(Θ̃ΘΘ)pΦΦΦ|ΛΛΛ(Φ̃ΦΦ|Λ̃ΛΛ)dΦ̃ΦΦ (79)

= pΘΘΘ′(Θ̃ΘΘ) (80)

= pΘΘΘ(Θ̃ΘΘ), (81)

where (78) and (79) follow by the same reasoning as (73) and
(74), respectively, and (81) comes from the fact that ΘΘΘ and ΘΘΘ′

have the same distribution. By (75) and (81), we conclude that
ΘΘΘ is an i.d. unitary matrix and is independent of ΛΛΛ, completing
the proof of Lemma 5.
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APPENDIX B
PROOF OF LEMMA 6

To show (31), we first define a function Π : S → S with S =
{1, . . . ,m} as follows to order the row vectors of M

Π(1) = argmax
i∈S

h(Mi),

Π(2) = arg max
i∈S\{Π(1)}

h
(
Mi|MΠ(1)

)
,

Π(3) = arg max
i∈S\{Π(1),Π(2)}

h
(
Mi|MΠ(1),MΠ(2)

)
,

...

Π(m−1) = arg max
i∈S\

{⋃m−2
j=1 Π( j)

}h

(
Mi

∣∣∣∣∣
m−2⋃
j=1

MΠ( j)

)
,

Π(m) = arg max
i∈S\

{⋃m−1
j=1 Π( j)

}h

(
Mi

∣∣∣∣∣
m−1⋃
j=1

MΠ( j)

)
,

where Mi denotes the ith row vector of M. Note that if we order
the row vectors by this function Π, we have

h

(
MΠ(k)

∣∣∣∣∣
k−1⋃
j=1

MΠ( j)

)
≥h

(
MΠ(k+1)

∣∣∣∣∣
k−1⋃
j=1

MΠ( j)

)
(82)

≥h

(
MΠ(k+1)

∣∣∣∣∣
k⋃

j=1

MΠ( j)

)
, (83)

for all k ∈ {1, . . . ,m − 1}, where (82) comes from the def-
inition of Π, and (83) is due to the fact that the additional
conditioning on MΠ(k) will reduce the differential entropy.
The inequality in (83) implies that the conditional differential
entropy h(MΠ(k)|

⋃k−1
j=1 MΠ( j)) is non-increasing with respect to

the index k.
Now, for any given number n < m, we can select p1 =

{⋃n
j=1 Π( j)} and p2 = {⋃m

j=n+1 Π( j)} which form a partition
of S = {1, . . . ,m}. We have

h(Mp2 |Mp1) =
m

∑
k=n+1

h

(
MΠ(k)

∣∣∣∣∣
k−1⋃
j=1

MΠ( j)

)
(84)

≤(m−n)h

(
MΠ(n+1)

∣∣∣∣∣
n⋃

j=1

MΠ( j)

)
(85)

≤(m−n)
1
n

n

∑
k=1

h

(
MΠ(k)

∣∣∣∣∣
k−1⋃
j=1

MΠ( j)

)
(86)

=
(m−n)

n
h(Mp1), (87)

where (84) comes from the chain rule of differential entropy;
and both (85) and (86) follow from (83). More specifically, (85)

follows from the fact that the largest term inside the summation
of (84) is the conditional differential entropy with index k = n+
1 and (86) follows from the fact that the conditional differential
entropy with index k = n+1 is smaller than each term inside the
summation of (86). Finally, by adding (m−n)h(Mp2 |Mp1)/n to
both sides of (87), we obtain

m
n

h(Mp2 |Mp1)≤
m−n

n

(
h(Mp1)+h(Mp2 |Mp1)

)
, (88)

which results in (31), completing the proof of Lemma 6.

APPENDIX C
PROOF OF LEMMA 7

Before showing the proof of Lemma 7, we first introduce
some background from [22]. A n×T matrix M where T ≥ n,
can be represented by a change of coordinate system as

M → (ΩΩΩM,CM), (89)

where the subspace ΩΩΩM is generated by its own row vectors
Mis, ∀i ∈ {1, . . . ,n}, and the n× n matrix CM represents each
row vector Mi with respect to an orthonormal basis of ΩΩΩM. The
mapping in (89) changes the coordinate system of matrix M
from Cn×T to G(T,n)× Cn×n where G(T,n) is a Grassmann
manifold with n(T − n) d.o.f. Now we can state a result given
in [22] as follows.

Lemma 15: For a random matrix M ∈ Cn×T , T ≥ n, which is
i.d., the differential entropy of M can be written as

h(M) = h(CM)+ log |G(T,n)|+(T −n)E
[
logdetMM†

]
,

where the n×n matrix CM and the Grassmann manifold G(T,n)
are defined following (89).

To prove Lemma 7, note that due to Lemma 5, the received
signal Y is i.d. Then, from Lemma 15, we have

h(Y) =h(CY)+ log |G(T,nr)|+(T −nr)E
[
logdetYY†

]

≤n2
r logπe

((
P+σ2

r

)
T

nr

)
+ |G(T,nr)|

+(T −nr)E
[
logdetYY†

]
, (90)

where the inequality comes from upper bounding h(CY) by
assuming that each element of CY is i.i.d. Gaussian with vari-
ance (P+σ2

r )T/nr. Now, note that the volume of Grassmann
manifold G(T,nr) is a finite constant which is independent
of P as

|G(T,n)|=
∏T

i=T−n+1
2π2

(i−1)!

∏n
i=1

2π2

(i−1)!

. (91)

Combining (90) and (91) completes the proof of Lemma 7.
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APPENDIX D
PROOF OF LEMMA 8

First, we introduce a few useful lemmas from [25].
Lemma 16: If Ma ∈ Cm×m and Mb ∈ Cm×m are both Hermi-

tian matrices, then

m

∑
i=1

(λi(Mb)−λi(Ma))
2 ≤ ‖Mb −Ma‖2

2, (92)

where λi(A) denotes the ith largest eigenvalue of matrix A and
‖ · ‖2 is the Frobenius norm.

Lemma 17: Let Ma and Mb be both m×m Hermitian matri-
ces. Assume that Mb −Ma is positive semi-definite. We have

λi(Mb)≥ λi(Ma), ∀i ∈ {1, . . . ,m}. (93)

Lemma 18: For any matrix Ma ∈ Cm×n and Mb ∈ Cn×m

where m ≥ n,

λi(MaMb) = λi(MbMa), ∀i ∈ {1, . . . ,n}. (94)

From Lemmas 16 and 17, we can infer the following result.
Corollary 1: Let Ma and Mb be both m × m Hermitian

matrices and assume Mb −Ma is positive semi-definite. Then,

λi(Mb)−λi(Ma)≤ ‖Mb −Ma‖2, ∀i ∈ {1, . . . ,m}. (95)

To derive the upper bound on E[logdetYY†] given in
Lemma 8, we first recall that, given X = X̃, where X̃ denotes
a realization of X, the row vectors of Y are i.i.d. Gaussian
vectors with covariance matrix X̃†X̃+σ2

r IT . Let Qnr ,T ∈ Cnr×T

be a random matrix whose elements are i.i.d. complex Gaussian
variables with zero-mean and unit-variance. Then, we have

(Y|X = X̃)
d∼ Qnr ,T

(
X̃†X̃+σ2

r IT

)1/2
, (96)

where A d∼ B denotes A has the same distribution as B. There-
fore, we have

(YY†|X = X̃)
d∼ Qnr ,T

(
X̃†X̃+σ2

r IT

)
Q†

nr ,T . (97)

From Lemma 5, we know that the optimal input can be
written as X = ΛΘΛΘΛΘ where ΛΛΛ ∈ Cnt×T is a diagonal random
matrix and ΘΘΘ ∈ CT×T is an i.d. unitary matrix. Hence, by taking
X̃ = Λ̃ΛΛΘ̃ΘΘ, we can rewrite (97) as follows

(YY†|X = X̃)

d∼ Qnr ,T

(
Θ̃ΘΘ†Λ̃ΛΛ†Λ̃ΛΛΘ̃ΘΘ+σ2

r IT

)
Q†

nr ,T (98)

d∼ Qnr ,TΘ̃ΘΘ†
(

diag
(
‖X̃1‖2, . . . ,‖X̃nt‖2,0, . . . ,0

)
+σ2

r IT

)
Θ̃ΘΘQ†

nr ,T (99)

d∼ Qa

(
Λ̃ΛΛ2

x +σ2
r Int

)
Q†

a +σ2
r QbQ†

b, (100)

where Λ̃ΛΛx
Δ
= diag(‖X̃1‖,‖X̃2‖, . . . ,‖X̃nt‖). In the above, (100)

comes from the fact that the i.i.d. Gaussian random matrix
Qnr ,T is i.d. with [Qa|Qb] = Qnr ,T , where Qa ∈ Cnr×nt contains
the first nt columns of Qnr ,T and Qb ∈ Cnr×(T−nt ) contains
the remaining (T − nt) columns of Qnr ,T . To simplify the
notation, let

B =Qa

(
Λ̃ΛΛ2

x +σ2
r Int

)
Q†

a +σ2
r QbQ†

b, (101)

A =Qa

(
Λ̃ΛΛ2

x +σ2
r Int

)
Q†

a, (102)

and we have

E

[
logdetYY†

]

= EXE

[
logdetYY†|X = X̃

]
(103)

= EXE

[
log

nr

∏
i=1

λi(B)

]
(104)

≤ EX

nr

∑
i=1

EQa,Qb

[
log

(
λi(A)+σ2

r

∥∥∥QbQ†
b

∥∥∥
2

)]
, (105)

where (105) follows from Corollary 1. Then, by using Jensen’s
inequality on Qb, and the definition of A in (102), we get the
following for the right-hand-side of (105),

EX

nr

∑
i=1

EQa,Qb

[
log

(
λi(A)+σ2

r

∥∥∥QbQ†
b

∥∥∥
2

)]

≤ EX

nr

∑
i=1

EQa

[
log

(
λi

(
Qa

(
ΛΛΛ2

x+σ2
r Int

)
Q†

a

)
+σ2

r k1

)]
(106)

= EXEQa

[
logdet

(
Qa

(
ΛΛΛ2

x+σ2
r Int

)
Q†

a+σ2
r k1Inr

)]
(107)

= EQaEX

[
logdet

(
Qa

(
ΛΛΛ2

x+σ2
r Int

)
Q†

a+σ2
r k1Inr

)]
(108)

≤ EQa

[
logdet

(
Qa

(
EX

[
ΛΛΛ2

x

]
+σ2

r Int

)
Q†

a+σ2
r k1Inr

)]
, (109)

where ΛΛΛx = diag(‖X1‖,‖X2‖, . . . ,‖Xnt‖), and k1 =

E[‖QbQ†
b‖2] in (106) is a finite constant independent of

P, the exchange of expectation over X and Qa in (108) follows
from the fact that X and Qa are independent, and (109) comes
from applying Jensen’s inequality on X.

Note that the right-hand-side of (109) is a concave function
of EX[ΛΛΛ2

x ] and, since the distribution of Qa is invariant to
the permutation of its rows, it can be shown that the RHS of
(109) is also a symmetric function with respect to the diagonal
entries of EX[ΛΛΛ2

x ], where a symmetric function is defined as a
function that is invariant to permutations of its input variables.
These properties imply, from [26], that (109) is a Schur-concave
function with respect to the diagonal entries of EX[ΛΛΛ2

x ]. Recall
the definition of Schur-concave functions as follows.
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Definition 1: A function f : Rn → R is said to be a Schur-
concave function if, for any x and y such that x ≺ y (i.e., x is
majorized by y) [26], we have f (x)≥ f (y).

Note that det(·) is matrix nondecreasing on the set of posi-
tive semi-definite matrices [27, Section 3.6.1] (i.e., det(Ma) ≥
det(Mb), for all Ma, Mb, and Ma − Mb that are positive
semi-definite). This implies that, under the power constraint
tr(EX[ΛΛΛ2

x ]) ≤ PT , the RHS of (109) can be upper-bounded
by taking EX[ΛΛΛ2

x ] that satisfies tr(EX[ΛΛΛ2
x ]) = PT . Moreover,

since the diagonal entries of (PT/nt)Int form a vector that is
majorized by all vectors summing up to PT , it follows by the
property of Schur-concave functions that the RHS of (109) can
be further upper bounded by choosing EX[ΛΛΛ2

x ] = (PT/nt)Int ,
Hence, we have

E

[
logdetYY†

]

≤ EQa

[
logdet

(
Qa

(
PT
nt

Int +σ2
r Int

)
Q†

a+σ2
r k1Inr

)]
(110)

= EQa

[
logdet

((
PT
nt

+σ2
r

)
QaQ†

a+σ2
r k1Inr

)]
(111)

= EQa

[
logdet

((
PT
nt

+σ2
r

)
Inr+σ2

r k1

(
QaQ†

a

)−1
)]

+k2

(112)

≤ EQa

[
logdet

((
PT
nt

+σ2
r

)
Inr +σ2

r k1

×
∥∥∥∥(

QaQ†
a

)−1
∥∥∥∥

2
Inr

)]
+ k2 (113)

≤ logdet

((
PT
nt

+σ2
r

)
Inr +σ2

r k3Inr

)
+ k2 (114)

= nr log

(
PT
nt

+σ2
r (k3 +1)

)
+ k2, (115)

where k2 =E[logdetQaQ†
a] and k3 =E[k1‖(QaQ†

a)
−1‖2]. In the

above, (113) follows from Corollary 1 since σ2
r k1(QaQ†

a)
−1

is
Hermitian and positive semi-definite, and (114) follows from
Jensen’s inequality. Note that both k2 and k3 are finite constants
that are independent of P. From (115), it follows that

max
pX∈S∗PX

E

[
logdetYY†

]
≤ nr logP+o(logP), (116)

which concludes the proof of Lemma 8.
Note that, in [22] where the conventional MIMO channel was

examined, it was sufficient to consider only the case where nt =
nr since, in the absence of eavesdroppers, increasing the number
of transmit antennas does not improve the capacity in the high
SNR regime. In this case, one can more easily rewrite (109) as

EQa

[
logdet

((
EX

[
ΛΛΛ2

x

]
+σ2

r Int

)
+σ2

r k1

(
Q†

aQa

)−1
)]

+ EQa

[
logdetQ†

aQa

]
+ log

(
σ2

r k1
)nr−nt

,

due to the invertibility of Q†
aQa. The remaining derivations are

similar to that below (112). In wiretap channels, the problem

does not reduce to the case where nt = nr and, thus, a new
upper-bounding technique was needed to cope with the singu-
larity of Q†

aQa when nt > nr.

APPENDIX E
PROOF OF LEMMA 9

By (108) in Appendix D and by further replacing the deter-
minant by the product of eigenvalues, we have

E

[
logdetYY†

]

≤ EQaEX

[
logdet

(
Qa

(
ΛΛΛ2

x +σ2
r Int

)
Q†

a +σ2
r k1Inr

)]
(117)

= EQa

nr

∑
i=1

EX

[
logλi

(
Qa

(
ΛΛΛ2

x +σ2
r Int

)
Q†

a

)
+σ2

r k1

]
. (118)

Let Dx
Δ
= ΛΛΛ2

x + σ2
r Int . Note that Dx is a real diagonal matrix.

From Lemma 18, we know that

λi

(
QaDxQ†

a

)
= λi

(
D1/2

x Q†
aQaD1/2

x

)
, (119)

for all i ∈ {1, . . . ,nr}. Let Qnt ,nt = [QT
a |QT

c ]
T , where Qc ∈

C(nt−nr)×nt such that Qnt ,nt is a matrix with entries that are i.i.d.
Gaussian with zero-mean and unit-variance. Then, we have

D1/2
x Q†

nt ,nt
Qnt ,nt D

1/2
x = D1/2

x Q†
aQaD1/2

x +D1/2
x Q†

cQcD1/2
x .

(120)
By the above, we can further upper bound (118) as

E

[
logdetYY†

]

≤ EQa

nr

∑
i=1

EX

[
log

(
λi

(
D1/2

x Q†
aQaD1/2

x

)
+σ2

r k1

)]
(121)

≤ EQnt ,nt

nr

∑
i=1

EX

[
log

(
λi

(
D1/2

x Q†
nt ,nt

Qnt ,nt D
1/2
x

)

+σ2
r k1

)]
, (122)

≤ EQnt ,nt

nt

∑
i=1

EX

[
log

(
λi

(
D1/2

x Q†
nt ,nt

Qnt ,nt D
1/2
x

)

+1+σ2
r k1

)]
, (123)

where (122) comes from (120) and Lemma 17 since
D1/2

x Q†
cQcD1/2

x is Hermitian and positive semi-definite, and
(123) follows by summing over the additional terms nt + 1
to nr with a 1 added inside each logarithm to ensure that

log(λi(D
1/2
x Q†

nt ,nt
Qnt ,nt D

1/2
x )+ 1+σ2

r k1) > 0, for all i ∈ {nt −
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nr + 1, . . . ,nt}, since k1σ2
r > 0 and each eigenvalue is non-

negative. Moreover, by rewriting (123), we have

E

[
logdetYY†

]

≤ EQnt ,nt

nt

∑
i=1

EX

[
log

(
λi

(
DxQ†

nt ,nt
Qnt ,nt

)
+1+σ2

r k1

)]
(124)

= EQnt ,nt
EX

[
logdet

(
DxQ†

nt ,nt
Qnt ,nt +

(
1+σ2

r k1
)

Int

)]
(125)

= EQnt ,nt
EX

[
logdet

(
Dx +

(
1+σ2

r k1
)

· (Q†
nt ,nt

Qnt ,nt )
−1

)]
+ k4 (126)

≤ EX

[
logdet

(
Dx +

(
1+σ2

r k1
)

·EQnt ,nt

[∥∥∥∥(
Q†

nt ,nt
Qnt ,nt

)−1
∥∥∥∥

2

]
Int

)]
+k4

(127)

≤ EX

[
logdet

(
ΛΛΛ2

x + k5Int

)]
+ k4 (128)

=
nt

∑
i=1

E

[
log

(
‖Xi‖2 + k5

)]
+ k4, (129)

where k4 = E[logdetQ†
nt ,nt

Qnt ,nt ] and k5 = σ2
r + (1 +

σ2
r k1)E[‖(Q†

nt ,nt
Qnt ,nt )

−1‖
2
], and the derivation of (127) from

(126) follows similarly to that of (105) from (104). Finally, from
the upper bound of E[logdetYY†] in (129), we have

E

[
logdetYY†

]
−

nt

∑
i=1

E
[
log

(
‖Xi‖2 +σ2

r

)]

≤
nt

∑
i=1

E
[
log

(
‖Xi‖2+k5

)]
+k4−

nt

∑
i=1

E
[
log

(
‖Xi‖2+σ2

r

)]
(130)

=
nt

∑
i=1

E

[
log

(
‖Xi‖2 + k5

‖Xi‖2 +σ2
r

)]
+ k4 (131)

≤
nt

∑
i=1

E

[(
k5 −σ2

r

‖Xi‖2 +σ2
r

)]
+ k4 (132)

≤ nt

(
k5 −σ2

r

σ2
r

)
+ k4, (133)

where (132) comes from k5 > σ2
r by definition and log(1 +

x) < x when x ≥ 0. Since k4 in (126) and k5 in (128) are
finite constants independent of P, this completes the proof of
Lemma 9.

Note here that, similar to Lemma 8, one cannot directly apply
the results in [22] to prove Lemma 9. This is because the results
in [22] rely on the invertibility of Q†

aQa, as mentioned below
(116). However, this property may not hold here and, thus,

new techniques were needed to upper bound E[logdetYY†] as
presented above.

APPENDIX F
PROOF OF LEMMA 10

Let Ynt , Hnt , and Nr,nt be matrices formed by taking nt rows
arbitrarily from Y, H, and Nr, respectively, and let Ynr−nt ,
Hnr−nt , and Nr,nr−nt be the remaining (nr − nt) rows of Y, H,
and Nr, respectively. Thus, we have

Ynt = Hnt X+Nr,nt , (134)

Ynr−nt = Hnr−nt X+Nr,nr−nt . (135)

First, note that, if nt < nr, we can represent the channel
matrix Hnr−nt in terms of linear combinations of row vectors
of Hnt . Thus, we have

Ynr−nt =C(H)Ynt +Nr,nr−nt −C(H)Nr,nt , (136)

where C(H) is the linear combination matrix such that
C(H)Hnt = Hnr−nt . From (136), the following Markov relation
holds

X → (Ynt ,C(H),Nr,nr−nt −C(H)Nr,nt )

→(Ynt ,Ynr−nt )→ Y. (137)

Hence, from the data processing inequality, we have

I(X;Y)− I(X;Ynt )

≤ I(X;Ynt ,C(H),Nr,nr−nt −C(H)Nr,nt )−I(X;Ynt ) (138)

= I (X;C(H),Nr,nr−nt −C(H)Nr,nt |Ynt ) (139)

= h(C(H),Nr,nr−nt −C(H)Nr,nt |Ynt )

−h(C(H),Nr,nr−nt −C(H)Nr,nt |Ynt ,X) . (140)

The first term in (140) can be upper bounded by

h(C(H),Nr,nr−nt −C(H)Nr,nt |Ynt )

≤ h(C(H),Nr,nr−nt −C(H)Nr,nt ) = o(logP), (141)

and the second term in (140) is lower bounded by

h(C(H),Nr,nr−nt −C(H)Nr,nt |Ynt ,X)

≥ h(C(H),Nr,nr−nt −C(H)Nr,nt |Ynt ,X,Hnt ) (142)

= h(C(H),Nr,nr−nt −C(H)Nr,nt |Hnt ,X,Nr,nt ) (143)

= h(C(H),Nr,nr−nt −C(H)Nr,nt |Hnt ,Nr,nt ) (144)

= h(C(H)|Hnt ,Nr,nt )

+h(Nr,nr−nt −C(H)Nr,nt |Hnt ,Nr,nt ,C(H)) (145)

= h(C(H)|Hnt ,Nr,nt )+h(Nr,nr−nt ) = o(logP). (146)
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The result in (56) of Lemma 10 then follows from (140), (141),
and (146).
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