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Trading Rate for Balanced Queue Lengths for
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Abstract—We consider a communication channel with two
transmitters and one receiver, with an underlying rate region
which is approximated as a general pentagon. Different from
the Gaussian multiple access channel (MAC) capacity region, the
sum-rate on the dominant face of this pentagon is not a constant.
We allocate rates from this rate region to users according to
their current queue lengths in order to minimize the average
delay in the system. We formulate the problem as a Markov
decision problem (MDP), and derive the structural properties of
the corresponding discounted-cost MDP. We show that the delay-
optimal policy has a switch curve structure. For the discounted-
cost problem, we prove that the switch curve has a limit along
one of the dimensions. The delay-optimal policy divides the entire
queue state space into two via a switch curve. If the queue state
is on one side of the switch curve, the system operates at one of
the corner points of the rate pentagon which favors maximum
sum-rate. When the queue state switches to the other side of
the switch curve, the system operates at the other corner point
of the rate pentagon which favors balancing the queue lengths.
As a result, the system does not always operate at the sum-
rate maximizing rate pair, but trades rate for balanced queue
lengths for the goal of minimizing the overall delay. The existence
of a limit in the switch curve along one of dimensions implies
that, once the queue state is beyond the limit, the system always
operates at one of the corner points, implying that the queues
can be operated partially distributedly.

Index Terms—Delay minimization, rate-delay trade-off, queue-
length based rate allocation, multiple access channel, Markov
decision processes.

I. INTRODUCTION

TRADITIONAL information theory ignores the burstiness
of arrivals and the associated issue of delay by assuming

that all of the bits have already arrived and are available at the
transmitter before the transmission starts. This is necessary to
invoke asymptotics (e.g., large block sizes), which is needed
to prove reliability of communication. Network and queueing
theory, on the other hand, give sophisticated analysis for delay
and related issues, but, assume simplified models for the
underlying communication rates, which serve as the server
rates of the queues. Network theory typically assumes slotted
or time-divided communications in order to minimize the
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interactions between the queues, as the analysis of interacting
queues is known to be notoriously difficult. Many authors have
pointed to the need to bring information and network theory
together to jointly address the goals of reliability, high rates
and low delay, e.g., [2]. The goal of this paper is to use a
general pentagon shaped underlying rate region (hence, non-
time-divided transmissions) and determine the optimal rate
allocation policy from this available rate region, as a function
of the current queue sizes of the users, to minimize the delay.

Reference [3] considers a symmetric Gaussian multiple
access channel (MAC), whose capacity region for two-users
is a symmetric pentagon. Reference [3] proves that in order
to minimize the packet delay, the system should operate at an
extreme point of the MAC capacity region, i.e., at one of the
two corner points of the symmetric pentagon. In particular,
[3] determines explicitly the corner point the system should
operate at as a function of the queue sizes, by proving that the
larger rate should be given to the user with the larger queue
size, hence the name of the proposed policy: longer-queue-
higher-rate (LQHR). References [4], [5] extend [3] to fading
multiple access channels and prove the delay optimality of the
longest-queue-highest-possible-rate (LQHPR) policy in a sym-
metric scenario. Reference [6] generalizes [3] to a potentially
asymmetric setting, and proves that the system should again
operate at one of the two corner points of the capacity region,
which in this case is a potentially asymmetric pentagon. This
proves that the delay-optimal policy has a switch structure, i.e.,
that the queue state space should be divided into two, and in
each region, the system should operate at one of the two corner
points. However, unlike the symmetric case in [3], the explicit
form of the switch curve is unknown. Reference [7] develops
a policy named “modified LQHR” which works at a corner
point of the pentagon when the queue lengths are different, and
switches to the mid-point of the dominant face of the pentagon
when the queue lengths become equal. The “modified LQHR”
algorithm is shown to minimize the average bit delay in a
symmetric system. The third chapter of [8] extends “modified
LQHR” to a symmetric M -user scenario. In [9], we consider
a discrete-time symmetric Gaussian MAC, and prove that the
queue length balancing policy, which minimizes the queue
length difference while working on the dominant face of the
capacity region in each slot, minimizes the average bit delay
in the system.

From the literature above, we observe that the explicit so-
lution of the queue-length based delay-minimization problem
is known only for the symmetric Gaussian MAC, where the
underlying rate region is a symmetric pentagon. Even for
the asymmetric pentagon, the delay-minimizing policy is not
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known. The reason for this is that delay-minimization requires
maximizing the throughput at the current time as well as
maximizing the throughput in the future. These are often
conflicting objectives. The first objective requires maximizing
the sum-rate while the second objective requires balancing
the queue lengths. Unbalanced queue lengths increases the
likelihood of one of the queues becoming empty, which results
in inefficiency of transmission, as it decreases the future
achievable sum-rates. Thanks to the special properties of the
capacity region of the symmetric Gaussian MAC, these two
objectives can be achieved simultaneously.
However, having a symmetric pentagon as a capacity region

is a peculiarity of the symmetric Gaussian MAC. The capacity
region of a general (non-Gaussian) MAC is not a pentagon, it
is a union of pentagons [10]. Likewise, the capacity regions of
the fading Gaussian MAC [11], the Gaussian MAC with multi-
ple antennas [12], or the Gaussian MAC with user cooperation
[13], [14] are not pentagons. In this paper, we will consider a
two-user communication channel with a general pentagon rate
region. Different from the Gaussian MAC capacity region, the
pentagon we assume does not have a 45◦ dominant face. The
motivation to study such a rate region is two-fold: First, it is
the simplest extension of the rate regions studied so far, that
changes a characteristic of the rate region in a fundamental
way. This characteristic is that the two corner points on the
dominant face do not have equal sum-rates. Therefore, in
this example rate region, we are able to observe the tension
between throughput optimality, i.e., the desire to work at
the point that yields the largest sum-rate, and balancing the
queue lengths, i.e., the desire to favor the longer queue over
the shorter one, more explicitly. Secondly, this asymmetric
pentagon with a non-45◦ dominant face can be seen as a
crude approximation of a general rate region, as shown in
Fig. 1. That is, we can imagine this asymmetric pentagon
to be the largest such shape fitting in a general rate region,
which may belong to a MAC with fading, multiple antennas,
or cooperation.
Our goal in this paper is to assign rate pairs to users from

the underlying rate region based on their current queue lengths
in order to minimize the average delay in the system. We
formulate the problem as a Markov decision problem (MDP)
and prove that the delay-optimal policy should operate at one
of the two corner points of the rate region. Through value
iteration, we prove that a switch curve structure exists in the
queue state space. Next, we prove that for the discounted-cost
MDP, the switch curve has a limit on one of the queue lengths,
i.e., when one of the queue lengths exceeds a threshold, the
transmitters always operate at the corner point which has the
larger sum-rate (see Fig. 5). That is, the delay-optimal policy
favors throughput-optimality (i.e., larger sum-rate) unless the
first queue gets close to empty, in which case, the policy favors
balancing queue lengths. Our result has two practical impli-
cations: First, it gives a partial analytical characterization for
the delay-optimal switch curve. Secondly, it implies that we
can operate the queues partially distributedly, in that, if the
current queue length of the first user is larger than the limit,
then this user does not need to know the current queue length
of the other user in order to decide about the rate point at
which it should operate on the rate region.

2

R1

(a2, b2)

(a1, b1)

1

R2

Fig. 1. The asymmetric pentagon rate region with non-45◦ dominant face.
Corner point 2 has larger sum-rate, i.e., a2 + b2 > a1 + b1.

Finally, we note that, according to the optimal policy, al-
ways operating at the maximum sum-rate point is not optimal.
With the goal of maximizing the current sum-rate as well as
the sum-rate in the future, depending on the current queue
lengths, the optimal policy may switch from the maximum
sum-rate point to the rate point that favors balancing the queue
lengths. This action minimizes the probability that the queues
becomes empty in the future, hence maximizes the overall
transmission rates, and consequently, minimizes the overall
delay. Therefore, we observe that, the optimal rate allocation
policy trades some of the instantaneously achievable sum-
rate in favor of balancing the queue lengths, with the goal
of minimizing the overall delay.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a communication system with two transmitters,
and one receiver, as in Fig. 2. The underlying rate region is a
general pentagon as shown in Fig. 1. We denote the two corner
points of the rate region as points 1 and 2, with rate pairs
(a1, b1) and (a2, b2), respectively. Without loss of generality,
we assume that a2+b2 > a1+b1, i.e., that point 2 has a larger
sum-rate. We denote the difference between the two sum-rates
by δ = a2 + b2 − (a1 + b1).
In the medium access control layer, we assume that the

packets arrive at the source nodes according to independent
Poisson processes with parameters λ1 and λ2, see Fig. 2.
We also assume that the packet lengths are independent and
identically distributed exponential random variables with unit
mean. Therefore, for a given transmission rate r, the transmis-
sion time for a packet is an exponential random variable with
parameter r. There is a buffer with infinite capacity at each
transmitter, storing the packets until they are transmitted. Let
q1(t), q2(t) denote the number of packets in the two buffers
at time t. The transmitters determine their transmission rates,
which are the components of the rate vector r, where r is
in the rate region, based on the current queue length vector
q(t) = (q1(t), q2(t)). Therefore, on the medium access control
layer, the queue lengths evolve according to a continuous-time
Markov chain, whose transition rates are determined by the
arrival and transmission rates.
According to Little’s law [15], minimizing the average delay

in the system is equivalent to minimizing the average number
of packets in the system. Assuming that the system starts from
state q(0), the delay minimization problem is to obtain an
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Fig. 2. The system model.

optimal policy, to minimize the long-term average cost:

lim sup
t→∞

1
t
E

[∫ t

0

q(s)T eds|q(0)
]

(1)

where e is the vector of all ones.
Sampling the system at certain epoches, we can convert the

original continuous-time problem into a discrete-time problem
[16]. Intuitively, we intend to sample the system at any epoch
when an arrival or departure occurs. However, because the
transition rates are different at different operating points,
the sampling frequency may be different for different states.
In order to sample the system at a uniform frequency, we
adopt the normalization method in [17]. Since a2 + b2 is
the maximum sum of transmission rates, the maximum total
transition rate of the system is λ1 + λ2 + a2 + b2, which we
define as γ. Let us denote the transmission rates of the users
as r1 and r2. If r1 + r2 < a2 + b2, we assume that there
is a third transmitter transmitting a dummy packet with rate
a2 + b2 − (r1 + r2). Then, we sample at the epoches when
either a packet arrives, or a packet (dummy or real) departs.
Therefore, the sampling frequency for all of the states will be
the same, and the corresponding discrete-time Markov chain
will precisely represent the original system.
After sampling and discretizing the continuous-time system,

our goal will be to choose r at every transition epoch to
minimize the average delay. Let us denote the indices of the
transition epoches as n, n = 1, 2, . . .. Given the initial queue
lengths q0, the delay minimization problem is to determine
the optimal policy that minimizes:

lim sup
N→∞

1
N

E

[
N−1∑
n=0

q[n]Te|q[0] = q0

]
(2)

Let us define Ai and Di to be an arrival or (potential)
departure at the ith queue, i = 1, 2. For example, A1q =
(q1 + 1, q2), D1q = ((q1 − 1)+, q2). We first define the
corresponding discounted-cost problem with a discount factor
β, and obtain the dynamic programming formulation:

V β
N (q) =qTe + βγ−1

[
λ1V

β
N−1(A1q) + λ2V

β
N−1(A2q)

+ min
r∈C

{
r1V

β
N−1(D1q) + r2V

β
N−1(D2q)

+ (a2 + b2 − r1 − r2)V
β

N−1(q)
}]

(3)

where V β
N (q) is the total discounted cost for the last N stages,

V β
0 (q) = 0, and C is the rate region from which rates r1 and

r2 are chosen. As N → +∞, V β
N (q) → V β(q), which is the

unique solution of the optimality equation over finite horizon:

V β(q) =qT e + βγ−1

[
λ1V

β(A1q) + λ2V
β(A2q)

+ min
r∈C

{
r1V

β(D1q) + r2V
β(D2q)

+ (a2 + b2 − r1 − r2)V β(q)
}]

(4)

This is a two-dimensional MDP, which is difficult to solve in
general. We first determine some structural properties of the
optimal policy.

Lemma 1 V β(q) is monotonically increasing in qi, i = 1, 2.

Proof: We prove this lemma using induction. First, since
V β

0 (q) = 0, V β
N (q) increases monotonically in q1 and q2

for N = 0. Then, we assume that this lemma holds for
V β

N (q), N > 0, and prove it for N + 1. Since

V β
N+1(q) =qTe + βγ−1

[
λ1V

β
N (A1q) + λ2V

β
N (A2q)

+ min
r∈C

{
r1V

β
N (D1q) + r2V

β
N (D2q)

+ (a2 + b2 − r1 − r2)V
β
N (q)

}]
(5)

Using the assumption that V β
N (q) is monotonically increasing

in q1 and q2 and the fact that qTe is also monotonically
increasing in q1 and q2, in order to prove the monotonicity
of V β

N+1(q) in q1 and q2, we only need to show that

min
r∈C

{
r1V

β
N (D1q) + r2V

β
N (D2q) + (a2+b2−r1−r2)V

β
N (q)

}
(6)

is monotonically increasing in q1 and q2. We compare the
values of this expression at two states A1q and q as follows

min
r∈C

{
r1V

β
N (D1A1q) + r2V

β
N (D2A1q)

+ (a2 + b2 − r1 − r2)V
β
N (A1q)

}
(7)

= r∗1V β
N (D1A1q) + r∗2V β

N (D2A1q)

+ (a2 + b2 − r∗1 − r∗2)V β
N (A1q) (8)

≥ r∗1V β
N (D1q) + r∗2V β

N (D2q)

+ (a2 + b2 − r∗1 − r∗2)V β
N (q) (9)

≥ min
r∈C

{
r1V

β
N (D1q) + r2V

β
N (D2q)

+ (a2 + b2 − r1 − r2)V
β
N (q)

}
(10)

where (r∗1 , r∗2) minimizes the value of (6) at state A1q. Here
the first inequality follows from the assumption that V β

N (q)
is monotonically increasing in q1 and q2, and the second
inequality follows from the fact that (r∗1 , r∗2) may not be the
minimizer of the function in (10).
Comparing (7) and (10), we conclude that the function in

(6) is monotonically increasing in q1 and q2 for N . Then,
since this is true for any N , by taking the limit V β(q) =
limN→∞ V β

N (q) is monotonically increasing in q1 and q2. �
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Lemma 2 The optimal operating point must lie on the bound-
ary of the rate region. In addition, it must be one of the two
corner points.

Proof: The first half of Lemma 2 can be proved using
Lemma 1. If the optimal operating point (r1, r2) is not on
the boundary but is in the interior of the rate region, then,
we can always find another operating point (r′1, r

′
2) on the

boundary, where r′1 = αr1, r′2 = αr2, and α > 1. Then,

r′1V
β
N−1(D1q) + r′2V

β
N−1(D2q)

+ (a2 + b2 − r′1 − r′2)V
β
N−1(q)

= (a2 + b2)V
β
N−1(q) + αr1

(
V β

N−1(D1q) − V β
N−1(q)

)
+ αr2

(
V β

N−1(D2q) − V β
N−1(q)

)
(11)

≤ (a2 + b2)V
β
N−1(q) + r1

(
V β

N−1(D1q) − V β
N−1(q)

)
+ r2

(
V β

N−1(D2q) − V β
N−1(q)

)
(12)

= r1V
β
N−1(D1q) + r2V

β
N−1(D2q)

+ (a2 + b2 − r1 − r2)V
β
N−1(q) (13)

where the inequality follows from Lemma 1, and the fact that
α > 1. This contradicts with the optimality of (r1, r2). Thus,
the optimal operating point must lie on the boundary of the
rate region. Therefore, we only need to focus on the dominant
face of the capacity region. Any point (r1, r2) on the dominant
face can be expressed as a linear combination of the two corner
points. Thus, we have

min
r∈C

{
r1V

β
N−1(D1q) + r2V

β
N−1(D2q)

+ (a2 + b2 − r1 − r2)V
β
N−1(q)

}
= min

ρ∈(0,1)

{
ρ
(
a1V

β
N−1(D1q) + b1V

β
N−1(D2q) + δV β

N−1(q)
)

+ (1 − ρ)
(
a2V

β
N−1(D1q) + b2V

β
N−1(D2q)

) }
(14)

= a2V
β
N−1(D1q) + b2V

β
N−1(D2q) + min

{
0, δV β

N−1(q)

+ (b1 − b2)V
β
N−1(D2q) + (a1 − a2)V

β
N−1(D1q)

}
(15)

where the last equality follows from the fact that the minimizer
for a linear function must be one of the end points. �
Let T be an operator defined on real-valued functions as:

Tf(q) =qT e + βγ−1

[
λ1f(A1q) + λ2f(A2q) (16)

+ a2V
β
N−1(D1q) + b2V

β
N−1(D2q) + min

{
0,

(a1 − a2)f(D1q) + (b1 − b2)f(D2q) + δf(q)
}]

Therefore, the dynamic programming optimality equation can
be written as

V β
N+1(q) = TV β

N (q) (17)

III. AN INDUCTIVE PROOF OF THE SWITCH STRUCTURE

In this section, we prove that the delay-optimal policy has
a switch structure. In order to prove that, we first define a

set of functions with properties which are sufficient to have a
switch structure. We show that these properties are preserved
under the operator T . Since V β

0 = 0 is within this set, using
induction, we will show that V β will be within this set.
Let us define F to be the set of real-valued functions such

that:

1) f(q) is increasing in q1 and q2.
2) f(q+x)−f(q) is increasing in q1 and q2 for any fixed

x.
3) (a1−a2)f(D1q)+(b1−b2)f(D2q)+δf(q) is increasing
in q1.

4) (a1−a2)f(D1q)+(b1−b2)f(D2q)+δf(q) is decreas-
ing in q2.

Then, we have the following lemma.

Lemma 3 If f ∈ F , then Tf ∈ F .
The proof of Lemma 3, when δ = 0, can be found in

[18]. When δ �= 0, the proof is different, and is provided
in Appendix A.

Lemma 4 V β
n (q) ∈ F for all n.

This lemma can be verified as follows. Since V β
0 = 0, V β

0 is
in F . Using Lemma 3 recursively, we have V β

n (q) ∈ F for
n = 0, 1, 2, . . ..
We now define the switch function:

sn(q1) = min
{
q2 :(a1 − a2)V β

n (D1q) + (b1 − b2)V β
n (D2q)

+ δV β
n (q) ≤ 0

}
(18)

A generic switch function is shown in Fig. 3. As we state in
the following theorem, the optimal rate assignment problem
has a switch structure.

Theorem 1 The optimal policy for the discounted-cost MDP
has a switch structure, i.e., sn(q1) is increasing for every n.

This theorem can be proved using properties 3) and 4) of
V β

n (q). The switch curve partitions the queue state space into
two parts, each corresponding to one of the two operating
points (corner points of the pentagon). Following the argu-
ments in [18], [6], we can prove that the switch structure still
exists when β → 1, i.e., for the average cost problem.
While we have proved that the optimal policy has a switch

structure, i.e., that the queue state space is divided into two,
where in each region the optimal policy operates the system
at one of the two corner points, a closed form solution for
this switch curve is not known in general. The switch curve
is explicitly known only for one special case, which is the
symmetric Gaussian MAC case, where the rate region is a
symmetric pentagon with a 45◦ dominant face. In that case
the switch curve is a 45◦ straight line emanating from the
origin, i.e., sn(q1) = q1, as shown in Fig. 4. This implies that
the system operates at one of the corner points when q1 > q2,
and at the other corner point when q1 < q2. This results in the
LQHR policy in [3]. In the asymmetric Gaussian MAC case,
where the rate region is an asymmetric pentagon, but with still
a 45◦ dominant face, even though it is known that a switch
curve structure exists, the explicit form of the switch curve is
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q2

1

2

q1

sn(q1)

Fig. 3. The switch structure of the optimal policy.

not known [6]. In the next section, we will show that, in this
more general case where we have an asymmetric pentagon
rate region with a non-45◦ dominant face, even though we do
not have an explicit formula for the switch curve, we show
that we have a limit on the switch curve along one of the
dimensions.

IV. THE LIMIT ON THE SWITCH CURVE

Although we have shown that the delay optimal policy has
a switch structure, it is difficult to obtain the exact switch
curve analytically. In this section, we will show that the switch
curve is bounded in the q1-dimension. In other words, we
can find a threshold N , such that, for all q1 greater than this
threshold, the optimal operating point is the second corner
point of the pentagon. In order to prove this, we start from
an initial function f0, which is linear in q1 + q2. We will use
f0 to approximate V β over a large portion of the state space.
Specifically, this region includes states q with q1, q2 > N ,
where N is a large enough number. Let us define:

f0(q) =
1

1 − β
(q1 + q2) +

β

(1 − β)2
λ1 + λ2 − a2 − b2

λ1 + λ2 + a2 + b2

(19)

Clearly, f0 ∈ F . It is easy to verify that

Tf0(q) − f0(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 q1, q2 �= 0
β(a2+b2)
γ(1−β) q = 0

β(a1+δ)
γ(1−β) q1 = 0

βb2
γ(1−β) q2 = 0

(20)

that is, Tf0 and f0 differ only on the boundary, and for all
states away from the boundary, these two functions have the
same value. This is a key property that will be essential in this
section. Note that under the operator T , the difference caused
by the boundary only propagates into the interior region of
the state space by one layer in each iteration; rest of the states
are not affected by the operator.
Let us define:

|f |k = max{f(q) : q1, q2 ≥ 0, q1 + q2 ≤ k} (21)

which is the maximum value of the function f in the region
where the sum of the queue lengths is less than k. Similarly,
let us define

|f |∞ = sup{f(q) : q1, q2 ≥ 0} (22)

which is allowed to be infinity. Then, we have the following
property.

q2

q1

1

2

Fig. 4. The switch structure for a symmetric Gaussian MAC.

Lemma 5 For ∀f, g ∈ F , |Tf − Tg|k ≤ β|f − g|k+1.

Proof:

Tf(q) − Tg(q)

= βγ−1

[
λ1f(A1q)+λ2f(A2q)−λ1g(A1q)−λ2g(A2q)

+min
{
a1f(D1q)+b1f(D2q)+δf(q),a2f(D1q)+b2f(D2q)

}
−min

{
a1g(D1q)+b1g(D2q)+δg(q),a2g(D1q)+b2g(D2q)

}]

Since |min{a, b} − min{c, d}| ≤ max{|a − c|, |b − d|}, we
have

|Tf − Tg|k
≤ βγ−1

[
λ1|f − g|k+1 + λ2|f − g|k+1 (23)

+ max
{
a1|f − g|k−1 + b1|f − g|k−1 + δ|f − g|k,

a2|f − g|k−1 + b2|f − g|k−1

}]
≤ βγ−1(λ1 + λ2 + a2 + b2)|f − g|k+1 (24)

= β|f − g|k+1 (25)

completing the proof. �

Lemma 6 T nf0 converges to a function f as n → +∞, and
Tf = f .

Proof: Since f0 ∈ F , T nf0 ∈ F for any n > 0.

|T n+1f0 − T nf0|k ≤ β|T nf0 − T n−1f0|k+1 (26)

≤ βn|Tf0 − f0|k+n (27)

≤ βn+1(a2 + b2)
γ(1 − β)

(28)

where (28) follows from (20). We observe that (28) does not
depend on k, thus, |T n+1f0 − T nf0|∞ is uniformly bounded
by (28). Since β < 1, the right hand side of (28) forms a
Cauchy sequence, therefore, T nf0 converges to a function f
pointwise. In other words, for any ε, we can find an N1(ε)
such that when n ≥ N1(ε), we have |f − T n−1f0|∞ ≤ ε.
Thus, for such n, we have

|Tf − f |∞ ≤ |Tf − T nf0|∞ + |T nf0 − f |∞ (29)

≤ β|f − T n−1f0|∞ + |T nf0 − f |∞ (30)

≤ (β + 1)ε = ε′ (31)
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Therefore, for any ε′, we can find a n > N1( ε′
β+1 ), such that

|Tf − f |∞ ≤ ε′. In other words, Tf and f are arbitrarily
close. Thus, Tf = f . �

Lemma 7 Let V β
0 (q) = 0, then, V β

n (q) = T nV β
0 (q) con-

verges to V β(q), and f(q) = V β(q).

Proof: In order to prove that f(q) = V β(q) pointwise, we
start from the following:

|f − V β |k
≤ |f − T nf0|k + |T nf0 − V β

n |k + |V β
n − V β |k (32)

≤ |f − T nf0|k+β|T n−1f0−V β
n−1|k+1+|V β

n − V β|k (33)

≤ |f − T nf0|k + |V β
n − V β|k + βn|f0 − V β

0 |k+n (34)

= |f − T nf0|k + |V β
n − V β|k

+ βn

(
n + k

1 − β
+

β

(1 − β)2
λ1 + λ2 − a2 − b2

λ1 + λ2 + a2 + b2

)
(35)

≤ ε1 + ε2 + ε3 (36)

where (33) follows from Lemma 5, (35) follows from the
definition of f0, and (36) follows from the fact that T nf0

converges to f0, V β
n converges to V β , and βnn → 0.

Therefore, when n is large enough, we have the difference
bounded by (36). We note that (36) does not depend on k,
thus f(q) = V β(q) for any point q. �
Lemma 5 means that starting from f0 and performing the

iterations, V β converges to the same function if we started
from V β

0 = 0. The convergence point is the unique solution
of the optimality equation (4). Next, we will prove that f(q)
gets arbitrarily close to f0(q) when q1, q2 → +∞.

Lemma 8 |f − T nf0|∞ ≤ βn+1(a2+b2)
γ(1−β)2 .

Proof:

|T n+pf0 − T nf0|k
≤ |T n+pf0 − T n+p−1f0|k + |T n+p−1f0 − T n+p−2f0|k

+ · · · + |T n+1f0 − T nf0|k (37)

≤ (
βn+p−1 + βn+p−2 + · · · + βn

) |Tf0 − f0|k+n+p (38)

≤ βn(1 − βp)
1 − β

β(a2 + b2)
γ(1 − β)

(39)

Note that (39) does not depend on k, therefore, |T n+pf0 −
T nf0|∞ is uniformly bounded, and we have

|f − T nf0|∞ = lim
p→∞ |T n+pf0 − T nf0|∞ (40)

=
βn+1(a2 + b2)

γ(1 − β)2
(41)

�

Theorem 2 f(q) gets arbitrarily close to f0(q) when
q1, q2 → +∞. Therefore, the switch curve has a limit on
q1.

Proof: For any fixed state q, we have

|f(q) − f0(q)|≤|f(q) − T nf0(q)| + |T nf0(q) − f0(q)|
(42)

N

N

q2

q1

(q1, q2)

Fig. 5. The switch curve of the discounted-cost MDP.

Based on Lemma 8, we can see that for ∀ε, there exists N(ε),
such that |f − T N(ε)f0|∞ ≤ ε. From the definition in (22),

|f(q) − T N(ε)f0(q)| ≤ |f − T N(ε)f0|∞ ≤ ε (43)

At the same time, from (20), we know that T N(ε)f0(q) only
differs from f0(q) over the states which are withinN(ε) layers
away from the boundary. Thus, for all q1 > N(ε), q2 > N(ε),

T N(ε)f0(q) − f0(q) = 0 (44)

Therefore, combining (42)-(44), for any q, q1 > N(ε), q2 >
N(ε), (42) is bounded by

|f(q) − f0(q)| ≤ |f − f0|∞ + 0 = ε (45)

i.e., −ε ≤ f(q) − f0(q) ≤ ε. Thus, in this region, as shown
in Fig. 5, we have

a1f(D1q) + b1f(D2q) + δf(q) − a2f(D1q) − b2f(D2q)
= (b1 − b2)f(D2q) + δf(q) − (a2 − a1)f(D1q) (46)

≥ (b1 − b2) (f0(D2q) − ε) + δ(f0(q) − ε)
− (a2 − a1) (f0(D1q) + ε) (47)

=
δ

1 − β
− 2(a2 − a1)ε (48)

where the inequality follows from (45) and (48) follows from
the definition of f0 in (19). Therefore, when

ε ≤ δ

2(a2 − a1)(1 − β)
(49)

(48) is always greater than zero, thus point 2 is always better
than point 1. From Lemma 8, let

ε =
βn+1(a2 + b2)

γ(1 − β)2
=

δ

2(a2 − a1)(1 − β)
(50)

from which, we have

N(ε) =
⌈
logβ

δγ(1 − β)
2(a2 + b2)(a2 − a1)

⌉
− 1 (51)

Since we have proved in the previous section that the optimal
policy must have a switch curve structure, for any q, such that
q1 ≥ N(ε), the optimal policy is always to operate the system
at point 2. Thus, the switch curve has a limit. �
The result implies that when both q1, q2 are large, the

objective of maximizing the sum-rate is more important than
balancing the queue lengths in order to minimize the average
delay. Thus, in this scenario, operating at point 2 is optimal.
When one queue (q1 in this paper) becomes close to empty,
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the objective of balancing the queue lengths becomes more
important, and the operating point must be switched from
point 2 to point 1.

V. NUMERICAL RESULTS

We consider a system where the arrival rates for the first
and second user are λ1 = 0.4 packets/unit time, λ2 = 0.3
packets/unit time, respectively. We assume that the packet
sizes are exponentially distributed i.i.d. random variables with
unit mean. We assume that the underlying rate region is a
general pentagon, where the normalized coordinates of the
first corner point is (0.3, 0.5), and the normalized coordinates
of the second corner point is (0.7, 0.3). We first obtain the
optimal policy with β = 1, which corresponds to the average
delay minimization policy. We observe that the optimal policy
has a switch structure. Then, we vary the value of β, and
obtain the optimal policy for the corresponding discounted-
cost problem. These curves are shown in Fig. 6. We observe
that for each curve, there is a limit on the dimension of q1,
and all of these curves are lower bounded by the curve with
β = 1. This can be explained in this way: as β increases,
the weight of future cost increases. Thus, balancing the queue
lengths becomes progressively more important, and for some
states, it overweighs maximizing the sum-rate at the current
stage. Therefore, in this case, the set of states which operate
at the first corner point enlarges.

VI. CONCLUSION

In this paper, we investigated the delay minimization prob-
lem in a two-user multiple access channel, where the un-
derlying rate region is approximated as a general pentagon.
We assumed that the corner points of this pentagon have
different sum-rates. We formulated the problem as an MDP,
and proved that the delay-optimal policy operates at one of the
two corner points, and has a switch structure. This implies
that for some states, the optimal policy requires trading a
portion of the sum-rate for balancing the queue lengths in
order to minimize the average delay. We also proved that for
the discounted-cost problem, the switch curve is bounded in
one of the dimensions. This implies that the queues can be
operated partially distributedly.

APPENDIX

A. Proof of Lemma 3

We prove the properties 1) through 4) of Tf by induction.
If f ∈ F , then obviously, qT e, f(A1q), f(A2q), f(D1q),
f(D2q) are in F . Then, it suffices to show that min{(b1 −
b2)f(D2q) + δf(q), (a2 − a1)f(D1q)} is also in F . In order
to simplify the notation, we define

g(q) = min{(b1 − b2)f(D2q) + δf(q), (a2 − a1)f(D1q)}
If (b1 − b2)f(D2q) + δf(q) < (a2 − a1)f(D1q), then, the
optimal operating point for state q is corner point 1; otherwise,
the optimal operating point is corner point 2. We will show
that g(q) also possesses the properties 1) through 4) of f(q).
1) g(q) is increasing in q1 and q2.: It is straight forward

to prove this property. Hence, we omit its proof.
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Fig. 6. The switch curves for the discounted-cost MDP.

2) g(q+x)− g(q) is increasing in q1 and q2 for any fixed
x.: For this property, we will prove that

g(A2
1q) − g(A1q) ≥ g(A1q) − g(q)

g(A2
2q) − g(A2q) ≥ g(A2q) − g(q)

g(A1A2q) − g(A2q) ≥ g(A1q) − g(q)

First, we evaluate function g at points q, A1q, A2
1q. If the

optimal operating point for state q, A1q, A2
1q is corner point

1, then, we have

g(q) = (b1 − b2)f(D2q) + δf(q)
g(A1q) = (b1 − b2)f(D2A1q) + δf(A1q)

g(A2
1q) = (b1 − b2)f(D2A

2
1q) + δf(A2

1q)

Comparing the difference of values between two adjacent
states, we have

g(A2
1q) − g(A1q) = (b1 − b2)

(
f(D2A

2
1q) − f(D2A1q)

)
+ δ

(
f(A2

1q) − f(A1q)
)

≥ (b1 − b2) (f(D2A1q) − f(D2q))
+ δ (f(A1q) − f(A1q))

= g(A1q) − g(q)

where the inequality follows from the assumption that f(q)
is in F . Similarly, if the optimal operating point for state q,
A1q, A2

1q is corner point 2, i.e.,

g(q) = (a2 − a1)f(D1q)
g(A1q) = (a2 − a1)f(D1A1q)
g(A2

1q) = (a2 − a1)f(D1A
2
1q)

we still have g(A2
1q) − g(A1q) ≥ g(A1q) − g(q).

If the optimal operating points for state q, A1q, A2
1q are

corner points 1, 2, 2, respectively, then, we have

g(q) = (b1 − b2)f(D2q) + δf(q)
g(A1q) = (a2 − a1)f(D1A1q)

g(A2
1q) = (a2 − a1)f(D1A

2
1q)
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(a) Pattern 1

1

(q1, q2)

q2

q1

1

2

(b) Pattern 2

Fig. 7. Two special policy patterns.

and,

g(A1q) − g(q)
= (a2 − a1)f(D1A1q) − (b1 − b2)f(D2q) − δf(q)
= (b1 − b2) (f(q) − f(D2q))
g(A2

1q) − g(A1q)
≥ (a2 − a1)f(A1q) − (b1 − b2)f(D2A1q) − δf(A1q)
= (b1 − b2) (f(A1q) − f(D2A1q))

Therefore, based on the second property of function f ,
g(A2

1q) − g(A1q) ≥ g(A1q) − g(q) still holds.
Similarly, if the optimal operating points for state q, A1q,

A2
1q are corner points 1, 1, 2, respectively, we can prove in

a similar way that property 2) still holds. The complete proof
of this lemma can be found in [19].
Based on the assumption that f ∈ F , if the optimal policy

for any state q is to operate at corner point 2, then, because
of the third property of f , all the states An

1q, n > 0 should
operate on point 2 also. In the analysis above, we discuss every
possible policy at states q, A1q, A2

1q. For all possible cases,
we have shown that g(A2

1q) − g(A1q) ≥ g(A1q) − g(q).
Following similar procedure, we can prove that g(A2

2q) −
g(A2q) ≥ g(A2q) − g(q), and g(A1A2q) − g(A2q) ≥
g(A1q)−g(q). In summary, we conclude that the property 2)
holds for g(q).
3) (a1−a2)g(D1q)+(b1−b2)g(D2q)+δg(q) is increasing

in q1.: We need to show that

(a1 − a2)g(A1A2q) + (b1 − b2)g(A2
1q) + δg(A2

1A2q)
≥ (a1 − a2)g(A2q) + (b1 − b2)g(A1q) + δg(A1A2q)

We evaluate function g at points A1A2q, A2
1q, A

2
1A2q, A2q,

A1q.
First, we note that if the optimal operating points for states

A1A2q, A2
1q, A2

1A2q are corner points 1, 2, 2, respectively,
as shown in Fig. 7(a),

g(A1A2q) = (b1 − b2)f(D2A1A2q) + δf(A1A2q)
g(A2

1q) = (a2 − a1)f(D1A
2
1q)

g(A2
1A2q) = (a2 − a1)f(D1A

2
1A2q)

we have

(a1 − a2)g(A1A2q) + (b1 − b2)g(A2
1q) + δg(A2

1A2q)
= (a1 − a2) ((b1 − b2)f(D2A1A2q) + δf(A1A2q))
+ (b1 − b2)(a2 − a1)f(D1A

2
1q) + δ(a2 − a1)f(D1A

2
1A2q)

= 0

1

(q1, q2)

q2

q1

1 1

2

2

(a)

2

(q1, q2)

q2

q1

1 1

2

1

(b)

Fig. 8. The optimal operating points at A2
1q, A1q, A2

1A2q, A1A2q, A2q.

This is an important policy pattern, and we will use it often
in the proof afterwards.
Another important policy patten is to operate at corner point

1, 2, 1, for state A1A2q, A2
1q, A

2
1A2q, respectively, as shown

in Fig. 7(b). In this scenario, we observe that

(a1 − a2)g(A1A2q) + (b1 − b2)g(A2
1q) + δg(A2

1A2q)
= (a1 − a2) ((b1 − b2)f(D2A1A2q) + δf(A1A2q))

+ (b1 − b2)(a2 − a1)f(D1A
2
1q)

+ δ
(
(b1 − b2)f(D2A

2
1A2q) + δf(A2

1A2q)
)

= δ
(
(a1 − a2)f(A1A2q) + (b1 − b2)f(A2

1q) + δf(A2
1A2q)

)
If the optimal operating points at A2

1q, A1q, A2
1A2q,

A1A2q, A2q are 2, 1, 2, 1, 1, respectively, as shown in
Fig. 8(a). Then, if we switch the operating point at state
A1A2q from corner point 1 to 2, the policy at point A2q,
A1q, and A1A2q becomes the policy pattern discussed above,
and we have

(a1 − a2)g(A2q) + (b1 − b2)g(A1q) + δg(A1A2q)
≤ (a1 − a2) ((b1 − b2)f(D2A2q) + δf(A2q))

+ (b1 − b2)(a2 − a1)f(D1A1q)
+ δ(a2 − a1)f(D1A1A2q)

= 0
= (a1 − a2)g(A1A2q) + (b1 − b2)g(A2

1q) + δg(A2
1A2q)

Similarly, if the optimal operating points at A2
1q, A1q,

A2
1A2q, A1A2q, A2q are 2, 2, 2, 1, 1, or 2, 2, 2, 2, 1, respec-

tively, we can show that property 3) still holds.
If the optimal operating points at A2

1q, A1q, A2
1A2q,

A1A2q, A2q are 2, 2, 1, 1, 1, as shown in Fig. 8(b), we have

(a1 − a2)g(A1A2q) + (b1 − b2)g(A2
1q) + δg(A2

1A2q)
= δ

(
(a1 − a2)f(A1A2q) + (b1 − b2)f(A2

1q) + δf(A2
1A2q)

)
≥ δ ((a1 − a2)f(A2q) + (b1 − b2)f(A1q) + δf(A1A2q))
= (a1 − a2)g(A2q) + (b1 − b2)g(A1q) + δg(A1A2q)

where the inequality follows from the property 3) of function
f , and the last inequality follows from the assumption that the
policy at state A2q, A1q, A1A2q falls into the second policy
pattern discussed above.
Similarly, if the optimal operating points at A2

1q, A1q,
A2

1A2q, A1A2q, A2q are 2, 1, 1, 1, 1, the property still holds.
In summary, for all possible cases, the function g preserves
the property 3) of function f .
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(q1, q2)

q2

q1

1

2

1 2

Fig. 9. The optimal operating points at A1q, A1A2q, A1A2
2q, A2q, A2

2q
are 2, 2, 2, 1, 1, respectively.

4) (a1−a2)g(D1q)+(b1−b2)g(D2q)+δg(q) is decreasing
in q2.: We will evaluate g at points A1q, A1A2q, A1A

2
2q,

A2q, A2
2q. If the optimal operating points are 2, 2, 2, 2, 2,

or 1, 1, 1, 1, 1, respectively, it is straightforward to show that
the property still holds. If the optimal operating points are
2, 2, 2, 1, 1, as shown in Fig. 9, we note that the policy at
these points is the first special policy patten discussed before,
and

(a1 − a2)g(A2q) + (b1 − b2)g(A1q) + δg(A1A2q)
= (a1 − a2)g(A2

2q) + (b1 − b2)g(A1A2q) + δg(A1A
2
2q)

= 0

Similarly, for cases where the optimal operating points are
2, 2, 1, 1, 1, or 2, 2, 2, 2, 1, or 2, 2, 1, 2, 1, or 2, 2, 1, 1, 1, the
property 4) still holds for g. In summary, for all possible cases,
we have proven that properties 1) through 4) hold for g, thus,
if f is in F , then Tf is in F .
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