
1320 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

Private Read Update Write (PRUW) in Federated
Submodel Learning (FSL): Communication

Efficient Schemes With and Without Sparsification
Sajani Vithana , Member, IEEE, and Sennur Ulukus , Fellow, IEEE

Abstract— We investigate the problem of private read-update-
write (PRUW) in relation to private federated submodel learning
(FSL), where a machine learning model is divided into multiple
submodels based on the different types of data used to train the
model. In PRUW, each user downloads the required submodel
without revealing its index in the reading phase, and uploads the
updates of the submodel without revealing the submodel index
or the values of the updates in the writing phase. In this work,
we first provide a basic communication efficient PRUW scheme,
and study further means of reducing the communication cost via
sparsification. Gradient sparsification is a widely used concept
in learning applications, where only a selected set of parameters
is downloaded and updated, which significantly reduces the
communication cost. In this paper, we study how the concept
of sparsification can be incorporated in private FSL with the
goal of reducing the communication cost, while guaranteeing
information-theoretic privacy of the updated submodel index as
well as the values of the updates. To this end, we introduce
two schemes: PRUW with top r sparsification and PRUW
with random sparsification. The former communicates only the
most significant parameters/updates among the servers and the
users, while the latter communicates a randomly selected set of
parameters/updates. The two proposed schemes introduce novel
techniques such as parameter/update (noisy) permutations to
handle the additional sources of information leakage in PRUW
caused by sparsification. Both schemes result in significantly
reduced communication costs compared to that of the basic
(non-sparse) PRUW scheme.

Index Terms— Private information retrieval (PIR), private
information upload, private information read update write
(PRUW), federated submodel learning (FSL).

I. INTRODUCTION

MANY engineering applications at present are driven by
various forms of learning techniques. These learning

models require a large amount of data and processing power
in order to provide accurate outcomes. The increasing data and

Manuscript received 9 September 2022; revised 18 April 2023;
accepted 19 June 2023. Date of publication 4 July 2023; date of current
version 22 January 2024. This work was supported by Army Research
Office (ARO) under Grant W911NF2010142. An earlier version of this
paper was presented in part at the 2022 IEEE International Conference on
Communications, in part at the 2022 IEEE Information Theory Workshop, and
in part at the 2022 Asilomar Conference on Signals, Systems, and Computers.
(Corresponding author: Sennur Ulukus.)

The authors are with the Department of Electrical and Computer Engi-
neering, University of Maryland, College Park, MD 20742 USA (e-mail:
spallego@umd.edu; ulukus@umd.edu).

Communicated by C. Tian, Associate Editor for Signal Processing and
Source Coding.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2023.3292187.

Digital Object Identifier 10.1109/TIT.2023.3292187

processing power requirements as well as the privacy concerns
of data providers hinder the usage of central serves that
perform both data collection/storage and processing in learning
applications. One of the main solutions to both processing
power limitations and privacy concerns is federated learning
(FL) [1], [2], [3], [4]. In FL, a central server stores the
learning model and shares it with different users containing
data that can be used to train the model. Consequently, the
users train the model using their own data and communicate
only the updates (gradients) with the central server, which then
aggregates these gradients and updates the existing learning
model. In this way, the processing power requirements are
decentralized and the users’ data privacy is partially preserved.
Privacy in basic FL is only partial, as it has been shown that
even the gradients shared by the users in FL leak information
about the users’ private data [5], [6], [7], [8], [9], [10], [11].
Different methods have been developed to minimize this infor-
mation leakage in FL such as classical cryptographic protocols
as in secure aggregation [12] and differential privacy [13] via
noise addition, data sampling and data shuffling, e.g., [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
and [26]. In this work, we address the privacy problem and
the communication cost problem in FL as described next.

The communication cost of FL is considerably high since
large machine learning models and the corresponding gradients
need to be communicated between the central server and the
users in multiple rounds. Furthermore, FL requires each user
to download and train the entire machine learning model
even in cases where the users engaged in the FL process
are as small as mobile phones that do not contain all types
of data required to train the entire model. As solutions to
these communication inefficiencies, several methods such as
gradient sparsification [27], [28], [29], [30], [31], [32], [33],
[34], gradient quantization [35], [36], [37], [38] and federated
submodel learning (FSL) [39], [40], [41], [42], [43], [44],
[45], [46], [47] have been introduced. In gradient sparsifica-
tion, the users only communicate a selected set of gradients
(most significant/randomly chosen) as opposed to sending all
gradient updates corresponding to all parameters in the model
to the central server. In gradient quantization, the values of
the gradients are quantized and represented with fewer bits.
In FSL, the machine learning model is divided into multiple
submodels based on the different types of data used to train
the entire model, and each user only downloads and updates
the submodel that can be updated by the user’s own local
data. This saves communication cost and makes the distributed
learning process more efficient.

0018-9448 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8408-5317
https://orcid.org/0000-0002-8219-8190

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1321

FSL comprises two main phases, namely, the reading phase
in which a user downloads the required submodel and the
writing phase in which the user uploads the update of the
relevant submodel. Although FSL is efficient in terms of
communication cost and processing power of local users,
it introduces an important issue with respect to user privacy.
The submodel that a given user updates may leak information
on the type of data the user has. Moreover, as in FL, the
values of the updates uploaded by a user may leak information
about the local data of the user. Consequently, in order to
guarantee the privacy of a user, two quantities need to be
kept private from the central model (databases that contain
all submodels), namely, 1) the index of the submodel updated
by each user, and 2) the value of the update. In general, the
problem of reading a required section of a given storage system
and writing back to the same section while guaranteeing the
privacy of the section read/written as well as the content
written is known as private read update write (PRUW). Private
FSL is a specific application of PRUW. The reading phase of
private FSL requires the user to hide the index of the submodel
it reads (downloads). From an information theoretic privacy
point of view, this is equivalent to the problem of private
information retrieval (PIR), see e.g., [48], [49], [50], [51], [52],
[53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63],
[64], [65], [66], [67], [68], [69], [70], [71], and [72]. The
writing phase requires the user to write (upload) the updates
back to the relevant submodel without revealing the submodel
index or the values of the updates.

Existing works on PRUW (and private FSL) [39], [40],
[41], [42], [43], [44], [45], [46], [47] provide schemes with
different notions of privacy. References [39] and [40] consider
locally differential privacy, in which a predetermined amount
of information of the user is leaked to the databases. Refer-
ence [26] presents a group-wise aggregation scheme (related
to the writing phase in FSL) based on local differential privacy.
The schemes in [41] and [42] consider information-theoretic
privacy of the submodel index and the values of the updates.
However, they are less efficient in terms of the communication
cost compared to the schemes presented in [43] and [44] (and
their recent variants in [45], [46], and [47]) for the same notion
of privacy.

Based on the existing works on PRUW that consider
information-theoretic privacy, the lowest known communi-
cation cost is achieved in a setting where the equal sized
submodels are stored in N non-colluding databases, that are
accessible by each individual user. In this setting, an asymp-
totic reading and writing cost (equal reading and writing costs)
of twice the size of the submodel can be achieved. The corre-
sponding achievable schemes are described in [43] and [44],1

which are based on cross subspace allignment (CSA) [73].
In this setting, it is assumed that each individual user updates
all parameters of the required submodel. However, the commu-
nication cost can be further reduced by only downloading and
updating a selected number of parameters within the submodel.

1A basic version of these schemes was first introduced in [42], which
we subsequently improved in [43]. The authors of [44] also improved the
basic scheme in [42] (also extended to drop-outs and coded storage). The
improvements of the basic scheme from [42] to [43] and from [42] to [44]
are independent.

This is in fact gradient sparsification in FSL. Sparsification in
FSL can be performed in two main ways, namely, top r and
random sparsification. In top r sparsification, only a given
fraction of the most significant parameters are downloaded
and updated in the reading and writing phases. In random
sparsification, a random set of parameters is read in the reading
phase, and the same/different random set of parameters is
updated in the writing phase. A given amount of distortion
is introduced in both sparsification methods, which in general
has little or no impact on the accuracy of the model. In fact,
sparsification is a widely used technique in most learning tasks
to reduce the communication cost, which even performs better
than the non-sparse models in certain cases [28], [34], [74].

In this work, we present two schemes that perform PRUW
with sparsification in relation to private FSL. Each of the
two schemes correspond to the two means of sparsification:
top r and random, respectively. In private FSL with top r
sparsification, each user only updates the most significant r
fraction of parameters in the writing phase, and downloads
only another fraction r′ of parameters in the reading phase.2

This ensures that the most significant gradient variations
in the training process are communicated while incurring
significantly reduced communication costs compared to non-
sparse training. With no constraints on the storage costs, the
asymptotic reading and writing costs with top r sparsification
can be as low as 2r times the size of a submodel, where r is
typically around 10−2 and 10−3. The main challenge in top r
sparsification in private FSL is satisfying the privacy constraint
on the values of updates. Note that the users are unable to
simply send the sparse updates by specifying their positions
directly, as it reveals the values of the updates (zero) of the
parameters whose positions are not specified, which violates
the privacy constraint on the values of updates in private FSL.
In other words, PRUW with top r sparsification requires three
components to be kept private: 1) updated submodel index,
2) values of sparse updates, 3) positions of sparse updates.
In this work, the privacy of the first two components is
ensured using similar techniques as in [43], [44], [45], [46],
and [47] and the third component is kept private using a (noisy)
parameter shuffling mechanism, which in turn requires extra
storage space in databases.

In this paper, we also propose a scheme for PRUW with
random sparsification, which focuses on finding the optimum
reading and writing subpacketizations, where only a single bit
is read and written per subpacket per database. In the reading
phase, the collection of these single bits from all databases
is used to decode the sparse parameters of each subpacket.
In the writing phase, the sparse updates of each subpacket
are combined into a single bit and sent to the databases.
Each database privately decomposes these single bits into their
respective updates and places them at the relevant positions
using some fixed queries. In this scheme, a randomly selected
set of parameters in each writing subpacket is always updated
and the same/different set of parameters of each reading
subpacket is always downloaded, which results in a given
amount of distortion. The distortion in the reading (writing)

2The r′ fraction of parameters can be the union of the sparse sets of
parameters updated by all users in the previous iteration, or they can be chosen
in a specific way as in [28].

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1322 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

phase is defined as the normalized total number of parameters
(updates) incorrectly downloaded (updated).3 Therefore, the
analysis of the costs in this scheme is formulated in terms of
a rate-distortion trade-off, where we use the proposed scheme
to achieve the minimum reading and writing costs for given
amounts of allowed distortions in the reading and writing
phases. This scheme achieves slightly lower reading and
writing costs compared to the top r sparsification scheme for
similar sparsification rates, while not requiring any additional
storage in databases. However, the sparsification is random
in this case, which does not promote the most significant
updates/parameters in the sparsification process. This may
have an adverse impact on the convergence time of the training
process and the accuracy of the model.

The main contributions of this work are as follows:
1) basic PRUW scheme with non-colluding databases that
is over-designed with the optimum number of random noise
terms in storage to minimize the communication cost; 2) intro-
duction of the concept and system models for sparsification
in PRUW; 3) scheme for PRUW with top r sparsification
that satisfies information-theoretic privacy of submodel index
and values of parameter updates (including the positions
of the sparse updates); 4) scheme for PRUW with random
sparsification; and 5) characterization of the rate-distortion
trade-off in PRUW.

II. BASIC PRUW
In this section, we formally describe the PRUW problem

setting and explain the PRUW scheme presented in [43]
and [44] in detail, for the special case of non-colluding
databases with uncoded data storage. This is the basic scheme
which the schemes proposed in Sections III and IV will be
built on.

A. PRUW Problem Setting
We consider N non-colluding databases storing M indepen-

dent submodels. Initially, each submodel consists of random
symbols picked from a finite field Fq , such that,

H(W [0]
k) = L, k ∈ {1, . . . ,M}, (1)

H(W [0]
1 , . . . ,W

[0]
M) =

M∑
k=1

H(W [0]
k) = LM, (2)

where W
[0]
k is the initial version of the kth submodel and L is

the length of a submodel. At any given time instance, a single
user reads, updates and writes a single submodel of interest,
while keeping the submodel index and the value of the update
private. The submodels are generated in such a way that any
given user is equally probable to update any given submodel at
a given time instance. The process of updating consists of two
phases, namely, the reading phase where the user downloads
the required submodel and the writing phase where the user
uploads the incremental update back to the databases.

In the reading phase, the user sends queries to the databases
to download the required submodel. These queries are deter-
ministic functions of the user-required submodel index and

3The parameters/updates not downloaded/uploaded account for the distor-
tion based on this definition.

random noise generated by the user, i.e.,

H(Q[t]
1 , . . . , Q

[t]
N |θ

[t], Z) = 0, (3)

where Q
[t]
n , n ∈ {1, . . . , N} are the queries sent by the user

to the databases at time t, θ[t] is the user-required submodel
index at time t, and Z represents the random noise used to
determine the queries.

The user (at time t) has no prior information on the
submodels contained in the databases. Therefore, the queries
sent by the user at time t to the databases in the reading phase
are independent of the existing submodels,

I(Q[t]
1 , . . . , Q

[t]
N ; W [t−1]

1 , . . . ,W
[t−1]
M) = 0, t ∈ Z+, (4)

where W
[t−1]
k , k ∈ {1, . . . ,M} are the existing versions of

the submodels (before updating) at time t. After receiving the
queries, each database generates an answer and sends it back
to the user. This answer is a function of its existing storage
and the query received,

H(A[t]
n |Q[t]

n , S[t−1]
n) = 0, n ∈ {1, . . . , N}, (5)

where A
[t]
n is the answer sent by database n at time t and

S
[t−1]
n is the existing storage (before updating) of database n

at time t.
In the writing phase, the user sends information on the

updates of the submodel to each database. Any PRUW scheme
contains a specific mechanism that privately places these
updates at correct positions in each database, since the sub-
model index and the value of the update are kept private
from the databases. The information sent by the user to the
databases in the writing phase at time t is a function of
the generated updates, updating submodel index, and random
noise generated by the user at time t, i.e.,

H(U [t]
1 , . . . , U

[t]
N |∆

[t]
θ , θ[t], Z̄) = 0, (6)

where U
[t]
n is the information on the updates sent by the user

to database n at time t, ∆[t]
θ is the update generated by the

user for submodel θ[t] and Z̄ is random noise generated by the
user. Each database calculates an incremental update based on
all information received by the user at time t, and adds it to
the existing storage to obtain the updated storage.

Any information that is communicated in both phases takes
place only between a single user and the system of databases.
Users that update the model at different time instances do
not communicate with each other. The problem is designed to
study the PRUW procedure involving a single user at a given
time instance. The same process is independently carried out
at each time instance with different users. The system model
is illustrated in Figure 1.

Next, we formally define the privacy, security and correct-
ness conditions under which a PRUW setting operates.

1) Privacy of the Submodel Index: No information on the
indices of the submodels updated by any given user up to time
t is allowed to leak to any of the databases with the availability
of all storages, queries and updates up to time t. That is, for
each database n, n ∈ {1, . . . , N},

I(θ[1:t]; Q[1:t]
n , U [1;t]

n , S[0:t]
n) = 0, t ∈ N, (7)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1323

where θ[1:t] = (θ[1], . . . , θ[t]) are the indices of the submodels
updated by the user at time instances 1 to t. Similarly, Q

[1:t]
n ,

S
[0:t]
n and U

[1:t]
n represent the queries, storages and information

on updates communicated between the user and database n at
corresponding time instances indicated in square brackets.4,5

2) Privacy of the Values of Updates: No information on the
values of the updates up to time t, i.e., ∆[1:t]

θ is allowed to
leak to any of the databases with all data up to time t. That
is, for each database n, n ∈ {1, . . . , N},

I(∆[1:t]
θ ; Q[1:t]

n , U [1:t]
n , S[0:t]

n) = 0, t ∈ N. (8)

3) Security of the Stored Data: No information on the
parameters of submodels up to time t is allowed to leak to
any of the databases with all data up to time t. That is, for
each database n, n ∈ {1, . . . , N},

I(W [0:t]
1:M ; S[0:t]

n , Q[1:t]
n , U [1:t]

n) = 0, t ∈ Z+
0 . (9)

4) Correctness in the Reading Phase: In the reading phase,
the user must be able to correctly decode the required sub-
model using the queries sent and the answers received from
all databases. That is,

H(W [t−1]
θ |Q[t]

1:N , A
[t]
1:N , θ[t]) = 0, t ∈ N, (10)

where W
[t−1]
θ is the submodel (before updating) required by

the user at time t.
5) Correctness in the Writing Phase: At time t, all sub-

models stored in each database must be correctly updated as,

W [t]
m =

{
W

[t−1]
m + ∆[t]

m , if m = θ[t],
W

[t−1]
m , if m ̸= θ[t].

(11)

A PRUW scheme for FSL is a scheme that satisfies the
above privacy, security and correctness requirements. The
reading and writing costs are defined as CR = D

L and
CW = U

L , respectively, where D is the total number of bits
downloaded from all databases when retrieving the required
submodel, U is the total number of bits sent to all databases
in the writing phase and L is the size of each submodel. The
total cost is defined as CT = CR + CW .

B. Main Result
Theorem 1: Following reading and writing costs are achiev-

able in a PRUW system in FSL with N ≥ 4 non-colluding
databases containing M submodels.

CR =


2

1− 2
N

, if N is even

2
1− 3

N

, if N is odd
(12)

CW =


2

1− 2
N

, if N is even

2− 2
N

1− 3
N

, if N is odd.
(13)

Remark 1: The reading and writing costs decrease with
increasing number of databases. When N is large, PRUW in
FSL can be carried out by downloading/uploading approxi-
mately twice as many bits as the size of a submodel.

4The notation [1 : t] represents all integers from 1 to t.
5Note that users start downloading/uploading information starting from time

t = 1, while the storage is defined starting from time t = 0, from which the
user downloads at time t = 1.

Remark 2: The reading and writing costs are independent
of the number of submodels M . However, the cost of upload-
ing the queries in the reading phase to download the required
submodel is M

(
⌊N

2 ⌋ − 1
)
N , which depends on the number

of submodels. This is ignored in this work as it is negligible
compared to the reading and writing costs when normalized
by the size of a submodel since N, M << L in general.

Remark 3: The proposed scheme that achieves the reading
and writing costs in (12)-(13) is based on allocating ⌊N

2 ⌋ −
1 dimensions of the N dimensional space for data and the rest
for noise, to guarantee privacy in a communication efficient
manner. Therefore, when N is odd, one dimension is wasted,
resulting in slightly increased reading and writing costs.

Remark 4: When N is odd, reading and writing costs of
CR = 2− 2

N

1− 3
N

and CW = 2
1− 3

N

(i.e., (12) and (13) switched)
can also be achieved by considering less number of noise terms
in storage and downloading from only N − 1 databases in the
reading phase.

C. Basic PRUW Scheme

This scheme can be applied to any PRUW system
with N ≥ 4 non-colluding databases. In this scheme, the
privacy-security requirement is satisfied by adding random
noise terms within the field Fq to the queries, updates and
storage. This is because the noise added queries, updates
and storage are uniformly distributed and independent of
their original versions. This is known as Shannon’s one-time-
pad and also as crypto lemma [75], [76], [77]. Furthermore,
if k ∈ Fq is a constant and Z ∈ Fq is random noise, kZ is
also random noise (uniformly distributed in Fq) if k and q are
coprime.

Based on the crypto lemma, any given random variable
A that takes values in Fq with an arbitrary distribution is
independent of the uniformly distributed random variable
A + Z1, where Z1 is random noise. Applying the crypto
lemma again on A + Z1 with another random noise symbol
Z2 results in (A + Z1) + Z2 being uniformly distributed.
Moreover, since (A + Z1) + Z2 = A + (Z1 + Z2) and
Z1 + Z2 is uniformly distributed (again from crypto lemma),
A + Z1 + Z2 is independent of A. Therefore, by induction,
for any r ∈ N, A +

∑r
i=1 Zi is uniformly distributed and

independent of A, where Zis are random noise symbols.
With the above argument, the privacy and security require-

ments are satisfied by adding T1 ≥ 1, T2 ≥ 1 and
T3 ≥ 1 random noise terms to the submodel parameters
in storage, queries and updates, respectively. The scheme
provides the optimum values of T1, T2 and T3 that minimize
the total cost. In other words, this scheme is over-designed
with extra noise terms to make the PRUW process more cost
efficient.

We now present the basic scheme with arbitrary values of
T1, T2, T3 satisfying all Ti ≥ 1. The optimum values of
T1, T2, T3 that minimize the total cost, i.e., T ∗1 , T ∗2 , T ∗3 , are
derived later in this section. Let ℓ be the subpacketization of
the scheme, i.e., the scheme is defined on a set of ℓ bits of
each submodel, which is called a subpacket, and is applied
repeatedly in the same way on all subpackets in the model.
We choose ℓ = N − T1 − T2. An additional constraint given

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1324 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

by N+T3−1
2 ≤ T1 ≤ N − T2 − 1 must be satisfied by T1, T2,

T3 for a given N .6

1) General Scheme: In this section, we present the scheme
for the user at time t to privately read from, and write back to
the required submodel. For simplicity of notation, we ignore
the superscript t in all submodel parameters, user-required
submodel index, and updates.

a) Storage and initialization: The storage of a single
subpacket of all submodels in database n is given by,

Sn =




W1,1 + (f1 − αn)

∑T1−1
i=0 αi

nZ
[1]
1,i

W2,1 + (f1 − αn)
∑T1−1

i=0 αi
nZ

[1]
2,i

...
WM,1 + (f1 − αn)

∑T1−1
i=0 αi

nZ
[1]
M,i


...

W1,ℓ + (fℓ − αn)
∑T1−1

i=0 αi
nZ

[ℓ]
1,i

W2,ℓ + (fℓ − αn)
∑T1−1

i=0 αi
nZ

[ℓ]
2,i

...
WM,ℓ + (fℓ − αn)

∑T1−1
i=0 αi

nZ
[ℓ]
M,i





, (14)

for each n ∈ {1, . . . , N}, where Wi,j is the jth bit of
submodel i, Z

[k]
i,j is the (j + 1)st noise term for the kth bit

of Wi, and {fi}ℓ
i=1, {αn}N

n=1 are globally known distinct
constants chosen from Fq , such that each αn and fi − αn

for all i ∈ {1, . . . , ℓ} and n ∈ {1, . . . , N} are coprime with
q. Reading and writing to ℓ bits of the required submodel is
explained in the rest of this section. The same procedure is
followed L

ℓ times for the entire PRUW process, where L is
the total length of each submodel.

b) Reading phase: Assume that the user requires to
update Wθ. Then, the user sends the following query to
database n, n ∈ {1, . . . , N} in order to read the existing
version of Wθ,

Qn =


1

f1−αn
eM (θ) +

∑T2−1
i=0 αi

nZ̃1,i

...
1

fℓ−αn
eM (θ) +

∑T2−1
i=0 αi

nZ̃ℓ,i

 , (15)

where eM (θ) is the all zeros vector of size M × 1 with a
1 at the θth position and Z̃i,js are random noise vectors of
size M × 1. Database n, n ∈ {1, . . . , N} then generates the
answer given by,

An =ST
n Qn (16)

=
1

f1 − αn
Wθ,1 +

1
f2 − αn

Wθ,2 + . . . +
1

fℓ − αn
Wθ,ℓ

+ ϕ0 + αnϕ1 + . . . + αT1+T2−1
n ϕT1+T2−1 (17)

where ϕis are combinations of noise terms that do not depend
on n. The answers received from the N databases in matrix

6These conditions will be clarified later in this section.

Fig. 1. A user reads a submodel, updates it, and writes it back to the
databases.

form is as follows.


A1

A2

...
AN

=


1
f1−α1

. . . 1
fℓ−α1

1 α1 . . . αη
1

1
f1−α2

. . . 1
fℓ−α2

1 α2 . . . αη
2

...
...

...
...

...
...

...
1

f1−αN
. . . 1

fℓ−αN
1 αN . . . αη

N





Wθ,1

...
Wθ,ℓ

ϕ0

ϕ1

...
ϕη


(18)

where η = T1 + T2 − 1. Since the matrix is invertible, the ℓ
bits of Wθ can be retrieved using (18). The reading cost is
given by,

CR =
N

ℓ
=

N

N − T1 − T2
. (19)

c) Writing phase: In the writing phase, the user sends
a single bit to each database (per subpacket), which is a
combination of the updates of the ℓ bits of Wθ and T3 random
noise bits. The combined update bit is a polynomial of αn,
which allows the databases to privately decompose it into the
ℓ individual update bits, with the help of the queries received
in the reading phase. Finally, these incremental updates are
added to the existing storage to obtain the updated storage.
As explained later in this section, the above stated decomposi-
tion performed at the databases introduces a few extra terms,

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1325

which are added to the T1 random noise terms in storage.
From the crypto lemma, the updated T1 noise terms are also
independent and uniformly distributed (i.e., random noise).
The reason behind over-designing the system to have extra
noise terms in storage is to have a number of noise terms
that matches the number of extra terms introduced by the
decomposition performed at the databases in the writing phase.
The combined single update bit that the user sends to database
n is given by,

Un =
ℓ∑

i=1

∆̃θ,i

ℓ∏
j=1,j ̸=i

(fj − αn) +
ℓ∏

j=1

(fj − αn)
T3−1∑
m=0

αm
n Zm,

(20)

for each n ∈ {1, . . . , N}, where Zms are random noise bits,
∆̃θ,i = ∆θ,i∏ℓ

j=1,j ̸=i(fj−fi)
with ∆θ,i being the update for the

ith bit of Wθ. Once database n receives Un, it calculates
the incremental update that needs to be added to the existing
storage in order to obtain the new and updated storage. This
calculation requires the following two definitions and two
lemmas.

Definition 1: [Scaling Matrix]

Dn =


(f1 − αn)IM 0 . . . 0

0 (f2 − αn)IM . . . 0
...

...
...

...
0 0 . . . (fℓ − αn)IM

 ,

(21)

for each n ∈ {1, . . . , N}, where IM is the identity matrix of
size M ×M .

Definition 2: [Null Shaper]

Ωn =


(∏

r∈F (αr−αn)∏
r∈F (αr−f1)

)
IM

. . . (∏
r∈F (αr−αn)∏
r∈F (αr−fℓ)

)
IM

 ,

(22)

for each n ∈ {1, . . . , N}, where F is any subset of databases
satisfying |F| = 2T1 −N − T3 + 1.

Lemma 1: The combined update Un in (20) can be decom-
posed to distinguish the kth update from the rest, for each
k ∈ {1, . . . , ℓ} as follows,

Un

fk − αn
=

1
fk − αn

∆θ,k + Pαn(ℓ + T3 − 2), (23)

where Pαn
(ℓ+T3−2) is a plynomial in αn of degree ℓ+T3−2.

The coefficients of αi
ns in Pαn

(ℓ+T3−2) are fixed for all n.
Lemma 2: The term 1

fk−αn
for k ∈ {1, . . . , ℓ} remains

distinguishable after multiplying by the corresponding term
in the null shaper, i.e.,(∏

r∈F (αr − αn)∏
r∈F (αr − fk)

)
1

fk − αn
=

1
fk − αn

+ Pαn
(|F| − 1),

(24)

where Pαn
(|F|− 1) is a polynomial in αn of degree |F|− 1.

The proofs of Lemma 1 and Lemma 2 are given in the
appendix.7 With these definitions and lemmas, the incremental
update is calculated by,8

Ūn = Dn × Ωn × Un ×Qn (25)

= Dn × Ωn ×


Un

f1−αn
eM (θ) + Un

∑T2−1
i=0 αi

nZ̃1,i

Un

f2−αn
eM (θ) + Un

∑T2−1
i=0 αi

nZ̃2,i

...
Un

fℓ−αn
eM (θ) + Un

∑T2−1
i=0 αi

nZ̃ℓ,i

 .

(26)

Using Lemma 1,

Ūn =Dn × Ωn

×


1

f1−αn
∆θ,1eM (θ) + eM (θ)

∑ℓ+T3−2
i=0 αi

nξ
[1]
i

...
1

fℓ−αn
∆θ,ℓeM (θ) + eM (θ)

∑ℓ+T3−2
i=0 αi

nξ
[ℓ]
i



+ Dn × Ωn ×




∑ℓ+T2+T3−2

i=0 αi
nξ̃

[1]
1,i

...∑ℓ+T2+T3−2
i=0 αi

nξ̃
[1]
M,i


...

∑ℓ+T2+T3−2
i=0 αi

nξ̃
[ℓ]
1,i

...∑ℓ+T2+T3−2
i=0 αi

nξ̃
[ℓ]
M,i




(27)

=Dn ×



(∏
r∈F (αr−αn)∏
r∈F (αr−f1)

)
1

f1−αn
∆θ,1eM (θ)(∏

r∈F (αr−αn)∏
r∈F (αr−f2)

)
1

f2−αn
∆θ,2eM (θ)

...(∏
r∈F (αr−αn)∏
r∈F (αr−fℓ)

)
1

fℓ−αn
∆θ,ℓeM (θ)



+ Dn ×




∑ℓ+T2+T3−2+|F|

i=0 αi
nη̃

[1]
1,i

...∑ℓ+T2+T3−2+|F|
i=0 αi

nη̃
[1]
M,i


...

∑ℓ+T2+T3−2+|F|
i=0 αi

nη̃
[ℓ]
1,i

...∑ℓ+T2+T3−2+|F|
i=0 αi

nη̃
[ℓ]
M,i




. (28)

7The intuition behind Lemmas 1 and 2 is as follows: In Lemma 1, the term
Un is a single bit that contains information about ℓ parameter updates. At the
databases, this combined single bit update must be decomposed into the ℓ
separate updates, and placed at relevant positions. To achieve this without
leaking any information to the databases, the updates are combined in a
specific way, i.e., the first part of Un is a Lagrange polynomial. Lemma 1
presents a result on Lagrange polynomial division, which shows how each
update can be separated from the rest by dividing the combined update by
a specific factor. Lemma 2 is useful in placing the zeros of the incremental
update polynomial at certain αn’s (αns such that n ∈ F) so that the writing
cost can be saved by not writing to the databases that correspond to those
αn’s.

8The set F must satisfy |F| ≥ 0, and in cases where |F| = 0, (25) is
modified as Ūn = Dn × Un ×Qn.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1326 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

From Lemma 2,

Ūn =


∆θ,1eM (θ)
∆θ,2eM (θ)

...
∆θ,ℓeM (θ)

+




(f1 − αn)

∑T1−1
i=0 αi

nη̂
[1]
1,i

...
(f1 − αn)

∑T1−1
i=0 αi

nη̂
[1]
M,i


...

(fℓ − αn)
∑T1−1

i=0 αi
nη̂

[ℓ]
1,i

...
(fℓ − αn)

∑T1−1
i=0 αi

nη̂
[ℓ]
M,i




,

(29)

where (27) and (28) are due to the fact that Un and the diagonal
elements of Ωn are polynomials in αn of degrees ℓ + T3 −
1 and |F|, respectively. The polynomial coefficients ξ

[j]
i , ξ̃

[j]
i ,

η̃
[j]
i and η̂

[j]
i are combined noise terms that do not depend

on n. (29) is immediate from |F| = 2T1 − N − T3 + 1 and
ℓ = N − T1 − T2. Note that for databases n ∈ F , Ωn = 0,
which makes the incremental update of those databases equal
to zero. This means that the user could save the writing cost
by not sending the update bit Un in the writing phase to those
databases in F . For each database n ∈ {1, . . . , N}\F , the
incremental update in (29) is in the same format as the storage
in (14). Therefore, the updated storage is given by,

S[t]
n = S[t−1]

n + Ūn, n ∈ {1, . . . , N}\F , (30)

while S
[t]
n = S

[t−1]
n for n ∈ F , where S

[t−1]
n and S

[t]
n

are the storages of database n before and after the update,
respectively.9 The writing cost of this scheme is given by,

CW =
N − |F|

ℓ
=

2N − 2T1 + T3 − 1
N − T1 − T2

. (31)

2) Total Communication Cost and Optimal Values of T1, T2,
T3: From (19) and (31), the total communication cost is,

CT = CR + CW =
3N − 2T1 + T3 − 1

N − T1 − T2
. (32)

The general scheme described in Section II-C.1 and the total
cost in (32) are presented for arbitrary T1, T2, T3 satisfying
Ti ≥ 1 for i = 1, 2, 3, and N+T3−1

2 ≤ T1 ≤ N−T2−1, where
the last condition is derived from |F| ≥ 0 and ℓ ≥ 1. In this
subsection, we present the optimum values of T1, T2, T3 that
minimize the total cost for a given number of databases N .
It is clear that the total cost in (32) increases with T2 and
T3. Therefore, the optimum values of T2 and T3 such that the
privacy constraints are satisfied are T ∗2 = T ∗3 = 1. Then, the
resulting total cost is,

CT =
3N − 2T1

N − T1 − 1
, (33)

which is increasing in T1, since dCT

dT1
= N+2

(N−T1−1)2 > 0.
Thus, the optimum value of T1 satisfying the constraint of
N+T3−1

2 ≤ T1 ≤ N − T2 − 1 with T ∗2 = T ∗3 = 1 is
T ∗1 =

⌈
N
2

⌉
. The corresponding optimum subpacketization is

9Note that Wθ is still updated in databases n ∈ F even though the noise
added storage has not changed. This is because the zeros of the incremental
update polynomials occur at those αns that correspond to n ∈ F .

ℓ∗ = ⌊N
2 ⌋ − 1 and the optimum reading and writing costs are

given in (12) and (13), respectively.10

3) Example: Consider an example setting where N =
6 non-colluding databases store M = 3 submodels, and a
user who wants to download and update submodel 2 at time
t, i.e., θ[t] = 2. The subpacketization (number of parameters
considered in a single subpacket) for this example is ℓ =
⌊N

2 ⌋ − 1 = 2, and the numbers of noise terms added to the
storage, queries and updates are given by T1 = ⌈N

2 ⌉ = 3,
T2 = 1 and T3 = 1. The storage of a single subpacket of
all submodels in database n, n ∈ {1, . . . , N} is given by
(see (14)),

Sn =



W1,1 + (f1 − αn)(Z [1]
1,0 + αnZ

[1]
1,1 + α2

nZ
[1]
1,2)

W2,1 + (f1 − αn)(Z [1]
2,0 + αnZ

[1]
2,1 + α2

nZ
[1]
2,2)

W3,1 + (f1 − αn)(Z [1]
3,0 + αnZ

[1]
3,1 + α2

nZ
[1]
3,2)


W1,2 + (f2 − αn)(Z [2]

1,0 + αnZ
[2]
1,1 + α2

nZ
[2]
1,2)

W2,2 + (f2 − αn)(Z [2]
2,0 + αnZ

[2]
2,1 + α2

nZ
[2]
2,2)

W3,2 + (f2 − αn)(Z [2]
3,0 + αnZ

[2]
3,1 + α2

nZ
[2]
3,2)




(34)

a) Reading phase: The user sends the following query
to database n, n ∈ {1, . . . , N}, to download submodel 2
(see (15))

Qn =


1

f1−αn

0
1
0

+

Z̃1,1

Z̃1,2

Z̃1,3


1

f2−αn

0
1
0

+

Z̃2,1

Z̃2,2

Z̃2,3



 , (35)

Database n, n ∈ {1, . . . , N} sends the answer corresponding
to the received query as,

An =ST
n Qn =

W2,1

f1−αn
+

W2,2

f2−αn
+ϕ0+αnϕ1+α2

nϕ2+α3
nϕ3,

(36)

where ϕi are the terms that result from combining all coef-
ficients of αi

n in the dot product. Note that ϕi are the same
across all answers from all databases. The user obtains the
required two bits W2,1 and W2,2, using the answers from the
N databases as,

A1

...
A6

 =


1

f1−α1

1
f2−α1

1 α1 α2
1 α3

1

...
...

...
...

...
...

1
f1−α6

1
f2−α6

1 α6 α2
6 α3

6




W2,1

W2,2

ϕ0

ϕ1

ϕ2

ϕ3

 , (37)

since the matrix is invertible. The resulting reading cost is
CR = 6

2 = 3.
b) Writing phase: In the writing phase, the user com-

bines the two updates of the two parameters in the subpacket

10In this work, we consider the minimization of the total cost
(reading+writing cost). The region of achievable reading and writing costs,
i.e., the trade-off between reading and writing costs can also be studied by
assigning different subpacketizations to the reading and writing phases. It can
be shown that the total cost is minimized when the reading and writing
subpacketizations are the same, which is the case presented in this work.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1327

into a single symbol (see (20)) as follows and sends is to
database n, n ∈ {1, . . . , N},

Un = ∆2,1
f2 − αn

f2 − f1
+ ∆2,2

f1 − αn

f1 − f2
+ (f1 − αn)(f2 − αn)Z,

(38)

where Z is a random noise symbol. Database n, n ∈
{1, . . . , N} then calculates the incremental update as
(see (25)),11

Ūn = Dn × Un ×Qn (39)

= Dn ×


Un

f1−αn

0
1
0

+ Un

Z̃1,1

Z̃1,2

Z̃1,3


Un

f2−αn

0
1
0

+ Un

Z̃2,1

Z̃2,2

Z̃2,3



 (40)

= Dn ×



 0
∆2,1

f1−αn

0

+


∑2

i=0 αi
nη

[1]
1,i∑2

i=0 αi
nη

[1]
2,i∑2

i=0 αi
nη

[1]
3,i


 0

∆2,2
f2−αn

0

+


∑2

i=0 αi
nη

[2]
1,i∑2

i=0 αi
nη

[2]
2,i∑2

i=0 αi
nη

[2]
3,i




(41)

=



 0
∆2,1

0

+ (f1 − αn)


∑2

i=0 αi
nη

[1]
1,i∑2

i=0 αi
nη

[1]
2,i∑2

i=0 αi
nη

[1]
3,i


 0

∆2,2

0

+ (f2 − αn)


∑2

i=0 αi
nη

[2]
1,i∑2

i=0 αi
nη

[2]
2,i∑2

i=0 αi
nη

[2]
3,i




(42)

where (41) is obtained by applying Lemma 1. Since the
incremental update in (42) is in the same form as the storage
in (34), the storage is updated as S

[t]
n = S

[t−1]
n + Ūn, and the

resulting writing cost is CW = 6
2 = 3.

4) Proof of Privacy and Security: The following facts are
required for the proofs of privacy and security. In the proposed
scheme, the submodel index θ is indicated by eM (θ). However,
the queries sent to each of the databases are independent
from eM (θ) due to the random noise terms added to it, from
Shannon’s one-time-pad theorem. Similarly, the submodel
values Wi,j are independent from the storage Sn of each
database and the values of updates ∆i,j are independent from
the uploads in the writing phase Un, due to the random noise
terms added.

a) Privacy of the submodel index: For any m̄ ∈
{1, . . . ,M}t, ūn ∈ Ft

q , r̄n ∈ FMℓt
q and s̄n ∈ FMℓ(t+1)

q ,

P (θ[1:t] = m̄|Q[1:t]
n = r̄n, U [1:t]

n = ūn, S[0:t]
n = s̄n)

=
P (Q[1:t]

n = r̄n,U
[1:t]
n = ūn,S

[0:t]
n = s̄n|θ[1:t] =m̄)P (θ[1:t] =m̄)

P (Q[1:t]
n = r̄n,U

[1:t]
n = ūn, S

[0:t]
n = s̄n)

.

(43)

Based on the proposed scheme, note that each S
[t′]
n , t′ ∈

{1, . . . , t} term is given by S
[t′]
n = S

[t′−1]
n +Ū

[t′]
n , which makes

11Note that the null shaper Ωn is not used in this example as |F| =
2T1 −N − T3 + 1 = 0.

the two sets S
[0:t]
n and {S[0]

n , Ū
[1:t]
n } statistically equivalent.

Moreover, since each Ū
[t′]
n , t′ ∈ {1, . . . , t} is a deterministic

function of U
[t′]
n and Q

[t′]
n , the two sets {S[0:t]

n , Q
[1:t]
n , U

[1:t]
n }

and {S[0]
n , Q

[1:t]
n , U

[1:t]
n } are statistically equivalent as well.

Since all realizations of the terms in the set {S[0]
n , Q

[1:t]
n , U

[1:t]
n }

are random noise terms based on the construction of the pro-
posed scheme, they are independent of the updating submodel
indices θ[1:t]. Therefore,

P (θ[1:t] = m̄|Q[1:t]
n = r̄n, U [1:t]

n = ūn, S[0:t]
n = s̄n)

=
P (Q[1:t]

n = r̄n, U
[1:t]
n = ūn, S

[0:t]
n = s̄n)P (θ[1:t] = m̄)

P (Q[1:t]
n = r̄n, U

[1:t]
n = ūn, S

[0:t]
n = s̄n)

(44)

= P (θ[1:t] = m̄), (45)

which results in the privacy condition in (7).
b) Privacy of the values of updates: For any q̃ ∈ Fℓt

q ,
ūn ∈ Ft

q , r̄n ∈ FMℓt
q and s̄n ∈ FMℓ(t+1)

q ,

P (∆[1:t]
θ = q̃|Q[1:t]

n = r̄n, S[0:t]
n = s̄n, U [1:t]

n = ūn)

=
P (Q[1:t]

n = r̄n,S
[0:t]
n = s̄n,U

[1:t]
n = ūn|∆[1:t]

θ = q̃)P (∆[1:t]
θ = q̃)

P (Q[1:t]
n = r̄n,S

[0:t]
n = s̄n, U

[1:t]
n = ūn)

.

(46)

As before, all Un, Qn and Sn values are random noise terms
and are independent of ∆[1:t]

θ from Shannon’s one-time-pad
theorem. Therefore,

P (∆[1:t]
θ = q̃|Q[1:t]

n = r̄n, S[0:t]
n = s̄n, U [1:t]

n = ūn)

=
P (Q[1:t]

n = r̄n, S
[0:t]
n = s̄n, U

[1:t]
n = ūn)P (∆[1:t]

θ = q̃)

P (Q[1:t]
n = r̄n, S

[0:t]
n = s̄n, U

[1:t]
n = ūn)

(47)

= P (∆[1:t]
θ = q̃), (48)

which proves the condition in (8).
c) Security of the stored submodels: For any w̄, s̄n ∈

FMℓ(t+1)
q , ūn ∈ Ft

q and r̄n ∈ FMℓt
q (49), shown at the bottom

of the next page.
Based on the same reasoning as before, and since the

databases are non-colluding, all Un, Qn and Sn values are
independent of W

[0:t]
1:M from Shannon’s one-time-pad theorem.

Therefore,

P (W [0:t]
1:M = w̄|Q[1:t]

n = r̄n, S[0:t]
n = s̄n, U [1:t]

n = ūn)

=
P (Q[1:t]

n = r̄n, S
[0:t]
n = s̄n, U

[1:t]
n = ūn)P (W [0:t]

1:M = w̄)

P (Q[1:t]
n = r̄n, S

[0:t]
n = s̄n, U

[1:t]
n = ūn)

(50)

= P (W [0:t]
1:M = w̄), (51)

which proves the condition in (9).

III. PRUW WITH TOP r SPARSIFICATION

In this section, we formally describe the problem of PRUW
with top r sparsification in FSL, and present a scheme that
performs it along with an example.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1328 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

A. Problem Formulation

We consider N non-colluding databases storing M indepen-
dent submodels, each having P subpackets. At a given time
instance t, a given user reads, updates and writes one of the
M submodels, while not revealing any information about the
updated submodel index or the values of updates to any of
the databases. The submodels, queries and updates consist of
symbols from a large enough finite field Fq .

In the PRUW process in FSL, users keep reading from and
writing to required submodels in an iterative manner. With top
r sparsification, each user only writes to a selected r fraction
of subpackets of the updating submodel, that contains the most
significant r fraction of updates.12,13 This significantly reduces
the writing cost. Therefore, a given user who reads the same
submodel at time t + 1 only has to download the union of
each r fraction of subpackets updated by all users at time t.
Let the cardinality of this union be Pr′, where 0 ≤ r′ ≤
1. This reflects sparsification in the downlink with a rate of
r′. For cases where Pr′ is significantly large, i.e., with large
number of users with non-overlapping sparse updates at time
t, there are downlink sparsification protocols such as [28] that
limit the value of Pr′ in order to reduce the communication
cost. Precisely, in this work, we assume that each user only
updates Pr subpackets that correspond to the most significant
r fraction of updates in the writing phase, and only downloads
Pr′ subpackets sent by the databases in the reading phase,
of the required submodel. The values of r and r′ are fixed
and determined before the FSL process starts.

The reduction in the communication cost of the PRUW
process with sparsification results from communicating only
a selected set of updates (parameters) and their positions to
the databases (users) in the writing (reading) phase. However,
this leaks information about the most and least significant
updates of the user. Therefore, to perform top r sparsification
in private FSL to reduce the communication cost, the basic
PRUW scheme needs to be modified in order to satisfy
information-theoretic privacy of the updating submodel index
and the values/positions of the sparse updates. Similar to the
problem setting of basic PRUW in Section II-A, the user
sends queries to databases to download the required submodel
in the reading phase, which are deterministic functions of
the required submodel index and random noise generated.
In this case the user will only download a selected set of
Pr′ subpackets, determined by the downlink sparsification
protocol at the databases. In the writing phase, the user sends

12In the update stage (model training) users typically work in continuous
fields (real numbers) and make the least significant 1 − r of the updates
equal to zero (i.e., not update) based on the concept of top r sparsification in
learning. All updates are converted to symbols in Fq and sent to the databases.
We assume that the zeros in the continuous field are converted to zeros in the
finite field.

13We assume that all parameters in the most significant r fraction of
subpackets have non-zero updates.

Fig. 2. PRUW with top r sparsification: system model.

information on the values and positions of the Pr sparse
updates, which are deterministic functions of the generated
updates and random noise.

The system model is shown in Fig. 2, which is the same
as the model of basic PRUW, with the explicit indication of a
coordinator. The coordinator exists in the basic PRUW also,
where it is used to initialize the storage with identical random
noise terms in all databases in the basic PRUW. In PRUW with
sparsification, it is also utilized in guaranteeing the privacy of
the indices of sparse updates.

The three components in PRUW with sparsification that
need to be kept private are: 1) index of the submodel updated
by each user, 2) values of the sparse updates, and 3) indices
(positions) of the sparse updates. The formal descriptions of
the privacy and security constraints are given below. The
constraints are presented from the perspective of a single user
at time t, even though multiple independent users update the
model simultaneously.

1) Privacy of the Submodel Index: At any given time t,
no information on the index of the submodel being updated,
θ[t], is allowed to leak to any of the databases with all the
information received by the user, i.e., for each database n,
n ∈ {1, . . . , N},

I(θ[t]; Q[t]
n , Y [t]

n , S[t]
n) = 0, t ∈ N, (52)

where Q
[t]
n and Y

[t]
n are the queries and all the uploads

(information on the sparse updates and their positions) sent
by the user to database n in the reading and writing phases,
and S

[t]
n is the content of database n, at time t.14

14A detailed explanation on the privacy/security constraints and how they
compare with the constraints of basic PRUW is provided in Remark 7.

P (W [0:t]
[1:M] = w̄|Q[1:t]

n = r̄n, S[0:t]
n = s̄n, U [1:t]

n = ūn) =
P (Q[1:t]

n = r̄n, S
[0:t]
n = s̄n, U

[1:t]
n = ūn|W [0:t]

[1:M]= w̄)P (W [0:t]
[1:M]= w̄)

P (Q[1:t]
n = r̄n, S

[0:t]
n = s̄n, U

[1:t]
n = ūn)

(49)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1329

2) Privacy of the Values of Updates: At any given time t,
no information on the values of updates is allowed to leak to
any of the databases with all the information received by the
user, i.e., for each database n, n ∈ {1, . . . , N},

I(∆[t]
θ ; Q[t]

n , Y [t]
n , S[t]

n) = 0, t ∈ N, (53)

where ∆[t]
θ is the update (with (P − Pr)ℓ zero and Prℓ non-

zero updates, where ℓ is the subpacketization) of submodel
θ[t] generated by the user at time t.15

3) Security of Submodels: No information on the parame-
ters of submodels at time t is allowed to leak to any of the
databases, i.e., for each database n, n ∈ {1, . . . , N},

I(W [t]
1:M ; S[t]

n , Q[t]
n , Y [t]

n) = 0, t ∈ Z+
0 , (54)

where W
[t]
1:M represents the parameters of submodels 1 to M

at time t.
4) Correctness in the Reading Phase: The user should be

able to correctly decode the sparse set of Pr′ subpackets
(denoted by J) of the required submodel, determined by the
downlink sparsification protocol, from the answers received in
the reading phase, i.e.,

H(W [t−1]
θ,J |Q[t]

1:N , A
[t]
1:N , θ[t]) = 0, t ∈ N, (55)

where W
[t−1]
θ,J is the set of subpackets in set J of submodel

Wθ at time t − 1 and A
[t]
n is the answer from database n at

time t.
5) Correctness in the Writing Phase: Let θ[t] be the updat-

ing submodel index and J ′ be the set of most significant Pr
subpackets of Wθ[t] updated by a given user at time t. Then,
the subpacket s of submodel m at time t given by W

[t]
m (s) is

correctly updated as,

W [t]
m (s) =

{
W

[t−1]
m (s) + ∆[t]

m(s), if m = θ[t] and s ∈ J ′

W
[t−1]
m (s), if m ̸= θ[t] or s /∈ J ′,

(56)

where ∆[t]
m(s) is the corresponding update of W

[t−1]
m (s).

The reading and writing costs are defined the same as in
Section II-A.

B. Main Result

In this section, we provide the achievable reading and
writing costs of the scheme proposed to perform top r
sparsification in FSL, while guaranteeing information-theoretic
privacy of the updating submodel index and the values of the
updates (which includes the indices of sparse updates). The
key component of the proposed scheme is a novel permutation
technique, which requires the databases to store certain noise-
added permutation reversing matrices. We propose two cases
of the scheme based on the structure and the size of the noise-
added permutation reversing matrices. Theorem 2 summarizes
the results of the two cases.

15Note that the privacy of both values and positions of the sparse updates
is considered in the constraint in (53) as ∆

[t]
θ contains both zero and non-zero

updates of which the values are not revealed.

Theorem 2: In a private FSL setting with N databases, M
submodels (each of size L), P subpackets in each submodel,
and r and r′ sparsification rates in the uplink and down-
link, respectively, the following reading and writing costs are
achievable with the corresponding sizes of the noise-added
permutation reversing matrices. The reading and writing costs
are,

CR =
4r′ + 4

N (1 + r′) logq P

1− 2
N

(57)

CW =
4r(1 + logq P)

1− 2
N

, (58)

with noise-added permutation reversing matrices of size
O
(

L2

N2

)
and,

CR =
2r′ + 2

N (1 + r′) logq P

1− 4
N

(59)

CW =
2r(1 + logq P)

1− 4
N

, (60)

with noise-added permutation reversing matrices of size
O(L2).

Remark 5: If sparsification is not considered in the PRUW
process, the lowest achievable reading and writing costs are
given by CR = CW = 2

1− 2
N

; see Theorem 1. Therefore, spar-
sification with smaller values of r and r′ results in significantly
reduced communication costs as shown in Theorem 2.

Remark 6: The reading and writing costs double (approxi-
mately) as the size of the noise-added permutation reversing
matrices reduces from O(L2) to O

(
L2

N2

)
.

Remark 7: PRUW in FSL with top r sparsification require
additional information from the user, compared to basic
PRUW described in Section II, to privately indicate the
selected positions of the sparse updates. The privacy and secu-
rity constraints defined for PRUW with top r sparsification in
Section III-A are not as strong as the corresponding constraints
in basic PRUW due to the extra information required by the
users, that results in significantly reduced communication costs
via sparsification. As defined in [44], a database (in a non-
colluding setting) that has access to all past storages, queries
and information on updates/positions is called an internal
adversary, and a database that only has access to the current
storage, queries and information on updates/positions is called
an external adversary. The basic PRUW scheme presented in
Section II is protected from internal adversaries, while the top
r sparsification scheme is only safe from external adversaries.
The comparison of the privacy and security constraints in the
two schemes is as follows.

The privacy constraint on the submodel index guaran-
teed in basic PRUW, i.e., (7) can be equivalently stated as
I(θ[1:t]; Q[1:t]

n , U
[1;t]
n , S

[0]
n) = 0 as each S

[t′]
n , t′ ∈ {1, . . . , t}

term can be written as S
[t′]
n = S

[t′−1]
n + Ū

[t′]
n ,16 which makes

the two sets {S[0:t]
n } and {S[0]

n , Ū
[1:t]
n } statistically equivalent.

Moreover, the incremental update Ū
[t′]
n is a deterministic

function of all the information received by the user, i.e., Q
[t′]
n

16Ū
[t]
n is the incremental update at time t. This is explained in Section II-C.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1330 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

and U
[t′]
n , which makes the two sets {Q[1:t]

n , U
[1:t]
n , S

[0:t]
n } and

{Q[1:t]
n , U

[1:t]
n , S

[0]
n } statistically equivalent as well. This results

in the equivalent form of (7) above. It can be shown that the
scheme proposed in Section III-C for top r sparsification satis-
fies the privacy constraint I(θ[1:t]; Q[1:t]

n , Û
[1;t]
n , k

[t]
n , S

[0]
n) = 0,

where Û
[1:t]
n and k

[t]
n are the quantities uploaded to convey

information on the values and positions of the sparse updates,
respectively, at corresponding time instances. Note that this
constraint is the same as the equivalent form of (7), i.e.,
I(θ[1:t]; Q[1:t]

n , U
[1;t]
n , S

[0]
n) = 0, with the additional piece of

information collected by the user on the positions of the
sparse updates at time t, denoted by k

[t]
n . Therefore, the top

r sparsification scheme presented in Section III-C, which is
based on the basic PRUW scheme in Section II-C is able
to satisfy the stronger privacy constraint of basic PRUW
even with the additional information on the positions of
sparse updates at time t. However, the top r sparsification
scheme cannot guarantee the stronger privacy constraint if
the information on the positions of sparse updates at all
time instances {0, 1, . . . , t} is available to the databases.
Due to the mismatch between the roles of each database as
an internal adversary on queries/values of updates and an
external adversary on the positions of sparse updates, we have
defined the privacy/security constraints of Section III-A (top r
sparsification) such that the submodel index, values/positions
of sparse updates and submodel values are protected against
an external adversary, to make the definitions uniform.17

The top r sparsification scheme is unable to guar-
antee the stronger privacy constraint I(θ[1:t]; Q[1:t]

n , Û
[1;t]
n ,

k
[1:t]
n , S

[1:t]
n) = 0 (with information on sparse positions at

all time instances) because the scheme uses a permutation
technique that uses the same permutation at all time instances,
which leaks information about the indices of the sparse
updates, when the databases have the permuted information
at multiple time instances. This is based on the fact that the
most significant Pr subpacket indices that the user chooses
in the writing phase at different time instances are corre-
lated. In cases where it is reasonable to assume that the Pr
subpackets chosen by a given user at time t is independent
of the same quantity at time t′ for all t ̸= t′, the top r
sparsification scheme can also achieve the stronger privacy
constraint I(θ[1:t]; Q[1:t]

n , Û
[1;t]
n , k

[1:t]
n , S

[1:t]
n) = 0.18

C. Proposed Scheme

The scheme is similar to what is presented in Section II-C
with the additional component of sparse uploads and down-
loads. In the writing (reading) phase of the scheme in
Section II-C, the updates (values) of all parameters in a
given subpacket are combined into a single bit. Thus, a user
sends (receives) P bits per database, where P is the number
of subpackets in a submodel. In this section, using similar
concepts as in Section II-C, the user only downloads and
uploads Pr′ ≪ P and Pr ≪ P bits corresponding to the

17The analysis presented for θ[1:t] above is applicable for ∆
[1:t]
θ as well.

18Even if the same permutation is used in this case, the independence of
the sparse indices at distinct time instances ensures the independence of k

[t]
n

and k
[t′]
n for all n and all t ̸= t′.

respective sparse subpackets in the reading and writing phases,
respectively, which significantly reduces the communication
cost. However, revealing the indices of the subpackets with
no update (all zeros) in the writing phase leaks privacy,
as the values of those updates (zero) are directly known by
the databases.19 Therefore, to send the indices of the sparse
updates privately to the databases in the process of top r
sparsification, we use a permutation technique, which is the
key component of the proposed scheme. The basic idea of
this technique is to add noise to the sparse subpacket indices,
to hide the real indices from the databases. Note that basic
PRUW adds noise to storage, queries and updates, while
PRUW with sparsification adds noise to the sparse subpacket
indices, in addition to the storage, queries and updates. This is
analogous to the case with normal and timing channels, where
the normal channels add noise to the values while the timing
channels add noise to the timings. Basic PRUW is analogous to
a normal channel while PRUW with sparsification is analogous
to a channel that combines characteristics of both normal and
timing channels.

The process of adding noise to the sparse subpacket indices
is as follows. In the writing phase, each user sends a random
set of indices corresponding to the Pr sparse subpackets (with
non-zero updates) instead of sending the real indices. This
random set of indices is generated by the users based on a
specific random permutation of all subpacket indices, which is
not known by the databases. However, in order to guarantee the
correctness of the writing process, the permutation needs to be
reversed, and the databases should be able to place the received
updates at the correct positions. This is accomplished by the
use of noise-added permutation reversing matrices, stored at
the databases. These permutation reversing matrices rearrange
the permuted indices of the sparse subpackets received by the
users in the correct order in such a way that the databases
do not learn the underlying permutation or the real indices
of the sparse updates. The noise-added permutation reversing
matrices convert the noise in the sparse subpacket indices
(timing channel) into added noise in the incremental update
calculation (normal channel). These extra noise terms in the
incremental update calculation require extra noise terms to
be added to storage, for the correctness of the writing phase,
which adversely affects the efficiency of the process. However,
the fact that the process is carried out only on r fraction of
the original number of subpackets makes the overall process
significantly efficient in communication cost.

The random selection and assignment of the permutation
(to users) and the noise-added permutation reversing matrices
(to databases) are performed by the same coordinator that
assigns similar noise terms to all databases at the initialization
stage of basic PRUW. Based on the structure and the size
of the noise-added permutation reversing matrices stored at
each database, we have two cases for the scheme, which
result in two different total communication costs. Cases 1 and
2 correspond to noise-added permutation reversing matrices
of sizes O

(
L2

N2

)
and O(L2), respectively. The general scheme

19The sparse set of subpackets in the downlink is determined by the
databases with no additional information from the users. Therefore, privacy
leakage from the sparse subpacket indices only occurs in the writing phase.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1331

for case 1 is described in detail next, along with the respective
modifications for case 2.20

1) General Scheme:
a) Storage and initialization: The storage of a single

subpacket in database n is,

Sn =




W1,1 + (f1 − αn)

∑x
i=0 αi

nZ
[1]
1,i

...
WM,1 + (f1 − αn)

∑x
i=0 αi

nZ
[1]
M,i


...

W1,ℓ + (fℓ − αn)
∑x

i=0 αi
nZ

[ℓ]
1,i

...
WM,ℓ + (fℓ − αn)

∑x
i=0 αi

nZ
[ℓ]
M,i




, (61)

for each n ∈ {1, . . . , N}, where ℓ is the subpacketization,
Wi,j is the jth bit of the given subpacket of the ith submodel
Wi, Z

[k]
i,j is the (j + 1)st noise term for the kth bit of Wi,

and {fi}ℓ
i=1, {αn}N

n=1 are globally known distinct constants
chosen from Fq , such that each αn and fi − αn for all i ∈
{1, . . . , ℓ} and n ∈ {1, . . . , N} are coprime with q. The degree
of the noise polynomial in storage (value of x) for cases 1 and
2 are x = 2ℓ and x = ℓ + 1, respectively.

In PRUW, at time t = 0, it should be ensured that all noise
terms in storage are the same in all databases. This is handled
by the coordinator in Figure 2. We make use of this coordinator
again in PRUW with top r sparsification as follows. In the
reading and writing phases, the user only reads and writes
parameters/updates corresponding to a subset of subpackets
(≪ P) without revealing their true indices. The coordinator is
used to privately shuffle the true non-zero subpacket indices
as explained next.

At the beginning of the FSL system design, t = 0, the
coordinator picks a random permutation of indices {1, . . . , P}
out of all P ! options, denoted by P̃ , where P is the num-
ber of subpackets. The coordinator sends P̃ to all users
involved in the PRUW process. Then, the coordinator sends
the corresponding noise-added permutation reversing matrix
to database n, n ∈ {1, . . . , N}, given by Rn, whose explicit
forms are given below for the two cases. Each user sends
the sparse updates to databases in the form (update, position),
based on the order specified by P̃ , and the databases can
reverse the permutations using Rn, without knowing the
permutation explicitly.

Case 1: The noise-added permutation reversing matrix is
given by,

Rn = R +
ℓ∏

i=1

(fi − αn)Z̄, (62)

where R is the permutation reversing matrix and Z̄ is a random
noise matrix, both of size P × P .21 For example, for a case
where P = 3, the matrix R for a random permutation given

20An example setting for PRUW with top r sparsification is provided in
Section III-C.2 for both cases 1 and 2. The reader can skip to Section III-C.2
to get an overview of the proposed scheme.

21Since P = L
ℓ

and ℓ = O(N), Rn is of O(P 2) which is O
(

L2

N2

)
.

by P̃ = {2, 3, 1} is given by,

R =

0 0 1
1 0 0
0 1 0

 (63)

For each database, Rn is a random noise matrix from Shan-
non’s one-time-pad theorem, from which nothing can be
learned about the random permutation P̃ . The matrix Rn is
fixed at database n at all time instances.

Case 2: The noise-added permutation reversing matrix is
given by,

Rn = R̃n + Z̃, (64)

where R̃n is the permutation reversing matrix as in case 1
(i.e., R) with all its entries multiplied (element-wise) by the
diagonal matrix,

Γn =


1

f1−αn
0 . . . 0

0 1
f2−αn

. . . 0
...

...
...

...
0 0 . . . 1

fℓ−αn

 . (65)

Therefore, Rn is of size Pℓ × Pℓ = L × L. Z̃ is a random
noise matrix of the same size. For the same example with
P = 3 and P̃ = {2, 3, 1}, the matrix R̃n is given by,

R̃n =

0ℓ×ℓ 0ℓ×ℓ Γn

Γn 0ℓ×ℓ 0ℓ×ℓ

0ℓ×ℓ Γn 0ℓ×ℓ

 . (66)

b) Reading phase: The process of reading (downlink) a
subset of parameters of a given submodel without revealing the
submodel index or the parameter indices within the submodel
to databases is explained in this section.22 In the proposed
scheme, all communications between the users and databases
take place only in terms of the permuted subpacket indices.
The users at time t−1 send the permuted indices of the sparse
subpackets to databases in the writing phase, and the databases
work only with these permuted indices of all users to identify
the sparse set of subpackets for the next downlink, and send the
permuted indices of the selected set of Pr′ sparse subpackets
to all users at time t. Precisely, let Ṽ be the set of permuted
indices of the Pr′ subpackets chosen by the databases (e.g.,
union of permuted indices received by all users at time t− 1)
at time t, to be sent to the users in the reading phase. One
designated database sends Ṽ to each user at time t, from
which the users find the real indices of the subpackets in Ṽ ,
using the known permutation P̃ , received by the coordinator
at the initialization stage, i.e., the real indices V corresponding
to the permuted set Ṽ is given by V (i) = P̃ (Ṽ (i)), i ∈
{1, . . . , P r′}. The next steps of the reading phase at time t are
as follows. Note that the following steps are identical in both
cases. However, the equations given next correspond to case 1,
followed by the respective calculations of case 2, separately
after the calculations of case 1.

1) The user sends a query to each database n,
n ∈ {1, . . . , N} to privately specify the required

22The privacy constraints of the problem only imply the privacy of the
submodel index in the reading phase. However, the privacy constraints
applicable to the writing phase in the previous iteration imply the privacy
of the sparse subpacket indices of the current reading phase.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1332 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

submodel Wθ given by,

Qn =


1

f1−αn
eM (θ) + Z̃1

1
f2−αn

eM (θ) + Z̃2

...
1

fℓ−αn
eM (θ) + Z̃ℓ

 , (67)

where eM (θ) is the all zeros vector of size M × 1 with
a 1 at the θth position and Z̃i are random noise vectors
of the same size.

2) In order to send the non-permuted version of the ith, i ∈
{1, . . . , |Ṽ |}, sparse subpacket (i.e., V (i) = P̃ (Ṽ (i)))
from the set Ṽ , database n picks the column Ṽ (i) of the
permutation reversing matrix Rn given in (62) indicated
by Rn(:, Ṽ (i)) and calculates the corresponding query
given by,

Q[V (i)]
n

=

Rn(1, Ṽ (i))Qn

...
Rn(P, Ṽ (i))Qn

 (68)

=

 (R(1, Ṽ (i))+
∏ℓ

i=1(fi−αn)Z̄(1, Ṽ (i)))Qn

...
(R(P, Ṽ (i))+

∏ℓ
i=1(fi−αn)Z̄(P, Ṽ (i)))Qn


(69)

=



1{V (i)=1}


1

f1−αn
eM (θ)
...

1
fℓ−αn

eM (θ)

+ Pαn(ℓ)

...

1{V (i)=P}


1

f1−αn
eM (θ)
...

1
fℓ−αn

eM (θ)

+ Pαn
(ℓ)


, (70)

where Pαn
(ℓ) are noise vectors consisting of polynomi-

als in αn of degree ℓ.
3) Then, the user downloads (non-permuted) subpacket

V (i) = P̃ (Ṽ (i)), i ∈ {1, . . . , |Ṽ |} of the required
submodel using the answers received by the N databases
given by,

A[V (i)]
n = ST

n Q[V (i)]
n (71)

=
1

f1 − αn
W

[V (i)]
θ,1 + . . . +

1
fℓ − αn

W
[V (i)]
θ,ℓ

+ Pαn
(ℓ + x + 1), (72)

from which the ℓ bits of subpacket V (i), i ∈
{1, . . . , |Ṽ |} can be obtained from the N answers, given
that N = ℓ + ℓ + x + 2 = 4ℓ + 2 is satisfied. Thus, the
subpacketization is ℓ = N−2

4 , and the reading cost is,

CR =
P logq P + |Ṽ |(N + logq P)

L
(73)

=
P logq P +Pr′(N+logq P)

P × N−2
4

=
4r′+ 4

N (1+r′) logq P

1− 2
N

, (74)

where r′, 0 ≤ r′ ≤ 1 is the sparsification rate in the
downlink given by |Ṽ | = Pr′.

Calculations of case 2: The steps described above for
case 1 are the same for case 2 as well, with the following
modifications in the equations. The query sent by the user to
database n, n ∈ {1, . . . , N} in step 1 is given by,

Qn =


Q̂1 = eM (θ) + (f1 − αn)Z̃1

Q̂2 = eM (θ) + (f2 − αn)Z̃2

...
Q̂ℓ = eM (θ) + (fℓ − αn)Z̃ℓ

 , (75)

with the same notation. Then, in step 2, to download the (non-
permuted) subpacket V (i) = P̃ (Ṽ (i)) each database n uses
the following procedure. Denote the Pℓ × ℓ sized submatrix
of Rn (in (64)) that includes the first ℓ columns of Rn by
R

[1]
n , and the submatrix that includes the second ℓ columns of

Rn by R
[2]
n , and so on, i.e., R

[s]
n = Rn(:, (s − 1)ℓ + 1 : sℓ).

Now, to download subpacket V (i), database n picks R
[Ṽ (i)]
n ,

computes the sum of the columns in R
[Ṽ (i)]
n as,

R̂[Ṽ (i)]
n =

ℓ∑
j=1

R[Ṽ (i)]
n (:, j) =

ℓ∑
j=1

Rn(:, (Ṽ (i)− 1)ℓ + j),

(76)

and calculates the corresponding query as,

Q[V (i)]
n =




R̂

[Ṽ (i)]
n (1)Q̂1

R̂
[Ṽ (i)]
n (2)Q̂2

...

R̂
[Ṽ (i)]
n (ℓ)Q̂ℓ




R̂
[Ṽ (i)]
n (ℓ + 1)Q̂1

R̂
[Ṽ (i)]
n (ℓ + 2)Q̂2

...

R̂
[Ṽ (i)]
n (2ℓ)Q̂ℓ


...

R̂
[Ṽ (i)]
n ((P − 1)ℓ + 1)Q̂1

R̂
[Ṽ (i)]
n ((P − 1)ℓ + 2)Q̂2

...

R̂
[Ṽ (i)]
n (Pℓ)Q̂ℓ





(77)

=



1{V (i)=1}


1

f1−αn
eM (θ)
...

1
fℓ−αn

eM (θ)

+ Pαn
(1)

1{V (i)=2}


1

f1−αn
eM (θ)
...

1
fℓ−αn

eM (θ)

+ Pαn
(1)

...

1{V (i)=P}


1

f1−αn
eM (θ)
...

1
fℓ−αn

eM (θ)

+ Pαn
(1)



, (78)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1333

where Pαn
(1) is vector polynomial in αn of degree 1 of size

Mℓ× 1. Then, in step 3, database n sends the answers to the
queries in the same way as,

A[V (i)]
n = ST

n Q[V (i)]
n (79)

=
1

f1 − αn
W

[V (i)]
θ,1 + . . . +

1
fℓ − αn

W
[V (i)]
θ,ℓ

+ Pαn(x + 2), (80)

where W
[k]
i,j is the jth bit of submodel i in subpacket k. The

ℓ bits of Wθ in subpacket V (i) are obtained when N = ℓ +
x + 3 = 2ℓ + 4 is satisfied, which gives the subpacketization
of case 2 as ℓ = N−4

2 , that results in the reading cost given
by,

CR =
P logq P + |Ṽ |(N + logq P)

L
(81)

=
P logq P + Pr′(N + logq P)

P × N−4
2

(82)

=
2r′ + 2

N (1 + r′) logq P

1− 4
N

, (83)

with the same notation used for case 1.
c) Writing phase: Similar to the presentation of the

reading phase, we describe the general scheme that is valid
for both cases, along with the equations relevant to case 1,
and provide the explicit equations corresponding to case 2 at
the end. The writing phase of the PRUW scheme with top r
sparsification consists of the following steps.

1) The user generates combined updates (one bit per sub-
packet) of the non-zero subpackets and has zero as the
combined update of the rest of the P (1−r) subpackets.
The update of subpacket s for database n is given by,23

Un(s) =


0, s ∈ Bc,∑ℓ

i=1 ∆̃[s]
θ,i

∏ℓ
j=1,j ̸=i(fj − αn)

+
∏ℓ

j=1(fj − αn)Zs, s ∈ B,

(84)

where B is the set of subpacket indices with non-
zero updates, Zs is a random noise bit and ∆̃[s]

θ,i =
∆

[s]
θ,i∏ℓ

j=1,j ̸=i(fj−fi)
with ∆[s]

θ,i being the update for the ith
bit of subpacket s of Wθ.

2) The user permutes the updates of subpackets using P̃ .
The permuted combined updates are given by,

Ûn(i) = Un(P̃ (i)), i = 1, . . . , P. (85)

3) Then, the user sends the following (update, position)
pairs to each database n,

Y [j]
n = (Û [j]

n , k[j]), j = 1, . . . , P r, (86)

where Û
[j]
n is the jth non-zero entry in the vector Ûn

in (85), and k[j] is its index, i.e., the position of Û
[j]
n in

the vector Ûn.
4) Based on the received (update, position) pairs, each

database constructs an update vector V̂n of size

23A permuted version of these updates is sent to the databases.

P × 1 with Û
[j]
n placed as the k[j]th entry,

V̂n =
Pr∑
j=1

Û [j]
n eP (k[j]) = Ûn. (87)

5) V̂n in (87) contains the combined updates of the
form (84) arranged in a random permutation given
by P̃ . The databases are unable to determine the true
indices of the subpackets since P̃ is not known by the
databases. However, for correctness in the writing phase,
the updates in V̂n must be rearranged in the correct order.
This is done with the noise-added permutation reversing
matrix given in (62) as,

Tn = RnV̂n = RV̂n +
ℓ∏

i=1

(fi − αn)Pαn
(ℓ), (88)

where Pαn
(ℓ) is a P×1 vector containing noise polyno-

mials in αn of degree ℓ, RV̂n contains all updates of all
subpackets (including zeros) in the correct order, while∏ℓ

i=1(fi−αn)Pαn(ℓ) contains random noise, that hides
the indices of the zero update subpackets.

6) The incremental update is calculated in the same way
as described in Section II-C in each subpacket as,

Ūn(s)
= Dn × Tn(s)×Qn (89)
= Dn × Un(s)×Qn + Dn × Pαn

(2ℓ) (90)

=




∆[s]

θ,1eM (θ)
...

∆[s]
θ,ℓeM (θ)

+

(f1− αn)Pαn

(2ℓ)
...

(fℓ− αn)Pαn(2ℓ)

 , s ∈ B,


(f1 − αn)Pαn(2ℓ)

...
(fℓ − αn)Pαn

(2ℓ)

 , s ∈ Bc,

(91)

where Pαn
(2ℓ) here are noise vectors of size Mℓ ×

1 in (90) and M × 1 in (91) with polynomials in αn

of degree 2ℓ and Dn is the scaling matrix given by,

Dn =

(f1 − αn)IM . . . 0
...

...
...

0 . . . (fℓ − αn)IM

 , (92)

for all n. Ūn(s) is in the same format as the storage
in (61) with x = 2ℓ (case 1) and hence can be added to
the existing storage to obtain the updated storage, i.e.,

S[t]
n (s) = S[t−1]

n (s) + Ūn(s), s = 1, . . . , P. (93)

Note that the degree ℓ noise polynomials in αn (noise
matrix) in the noise-added permutation reversing matrix
in (62) introduces ℓ extra noise terms in the incremental
update calculation, compared to the basic PRUW scheme
in which the incremental update has a noise polynomial
in αn of degree ℓ. In other words, the permutation
technique requires ℓ dimensions from the N dimensional
space which reduces the number of dimensions left for
data downloads and uploads to guarantee the privacy of

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1334 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

the sparsification process. The writing cost of the scheme
is given by,24

CW =
PrN(1 + logq P)

L
(94)

=
PrN(1 + logq P)

P × N−2
4

(95)

=
4r(1 + logq P)

1− 2
N

. (96)

Calculations of case 2: Steps 1-4 in the general scheme are
valid for case 2 with the same equations. In step 5, the updates
of permuted subpackets V̂n are privately arranged in the correct
order as follows. Using the noise added permutation reversing
matrix Rn in (64), database n, n ∈ {1, . . . , N} calculates,

Tn = Rn × [V̂n(1)1ℓ, V̂n(2)1ℓ, . . . V̂n(P)1ℓ]T (97)

= (R̃n + Z̃)[V̂n(1)1ℓ, V̂n(2)1ℓ, . . . V̂n(P)1ℓ]T (98)

=



Un(1)


1

f1−αn

...
1

fℓ−αn


Un(2)


1

f1−αn

...
1

fℓ−αn


...

Un(P)


1

f1−αn

...
1

fℓ−αn





+Pαn(ℓ) =




∆

[1]
θ,1

f1−αn

...
∆

[1]
θ,ℓ

fℓ−αn




∆
[2]
θ,1

f1−αn

...
∆

[2]
θ,ℓ

fℓ−αn


...

∆
[P]
θ,1

f1−αn

...
∆

[P]
θ,ℓ

fℓ−αn





+Pαn(ℓ),

(99)

where 1ℓ is an all ones vector of size ℓ× 1 and Pαn(ℓ) here
is a vector polynomial in αn of degree ℓ of size Pℓ× 1. Note
that many Un(i)s in the above calculation are zero due to
sparsification. The last equality is derived from the application
of Lemma 1 on expressions of the form Un(i)

fj−αn
. Recall that

∆[i]
θ,j = 0, j ∈ {1, . . . , ℓ} for all subpackets i, that are not

within the Pr selected subpackets with non-zero updates.
Now that the updates are privately arranged in the correct

order, it remains only to place the updates at the intended
submodel in the storage. Note that the updates of the first
subpacket are in the first ℓ rows of Tn, the updates of the
second subpacket are in the next ℓ rows of Tn, and so on.
Therefore, we divide Tn, based on its correspondence to
subpackets as,

T [s]
n = Tn((s− 1)ℓ + 1 : sℓ), (100)

for s ∈ {1, . . . , P}. With this initialization, for step 6, each
database calculates the incremental update of subpacket s,
s ∈ {1, . . . , P} using the query in the reading phase (75) as,

24Note that the upload cost of the query vector from the reading phase,
which is of size Mℓ× 1 and is not considered in the writing cost calculation
since Mℓ

L
is negligible.

Ūn(s) = Dn ×

T
[s]
n (1)Q̂1

...
T

[s]
n (ℓ)Q̂ℓ

 (101)

= Dn ×



(
∆

[s]
θ,1

f1−αn
+Pαn

(ℓ)
)

(eM (θ)+(f1 − αn)Z̃1)

...(
∆

[s]
θ,ℓ

fℓ−αn
+Pαn

(ℓ)
)

(eM (θ)+(fℓ − αn)Z̃1)


(102)

=


∆[s]

θ,1eM (θ) + (f1 − αn)Pαn
(ℓ + 1)

...
∆[s]

θ,ℓeM (θ) + (fℓ − αn)Pαn
(ℓ + 1)

 , (103)

with the same notation used in case 1. Since the incremental
update is in the same form as the storage in (61) with x = ℓ+1,
Ūn(s) for s ∈ {1, . . . , P} is added to the existing storage to
obtain the updated version similar to case 1. The resulting
writing cost is given by,

CW =
PrN(1 + logq P)

L
(104)

=
PrN(1 + logq P)

P × N−4
2

(105)

=
2r(1 + logq P)

1− 4
N

. (106)

Remark 8: This problem can also be solved by considering
a classical FSL setting without sparsification with P submod-
els, i.e., M = P , and by using the private FSL scheme in
Section II-C to update the sparse Pr submodels. However,
in this case the normalized cost of sending the queries Qn

given by NMℓ
L = NPℓ

L = N is large, and cannot be neglected.
2) Example: Assume that there are N = 10 databases

containing M submodels, each with P = 5 subpackets. The
coordinator first picks a random permutation of {1, . . . , 5}
out of the 5! options available. Let the realization of the
permutation be P̃ = {2, 5, 1, 3, 4}.

Case 1: The subpacketization is ℓ = N−2
4 = 2 and the

storage of database n consists of the model given by,25

Sn =




W1,1 + (f1 − αn)

∑4
i=0 αi

nZ
[1]
1,i

...
WM,1 + (f1 − αn)

∑4
i=0 αi

nZ
[1]
M,i




W1,2 + (f2 − αn)
∑4

i=0 αi
nZ

[2]
1,i

...
WM,2 + (f2 − αn)

∑4
i=0 αi

nZ
[2]
M,i




, (107)

since the degree of the noise polynomial is 2ℓ = 4. The
permutation reversing matrix is given by,

Rn =


0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

+
2∏

i=1

(fi − αn)Z̄, (108)

25Here we have only presented the storage of a single subpacket.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1335

where Z̄ is a random noise matrix of size 5×5. The coordinator
places matrix Rn at database n at the beginning of the process
and sends P̃ to each user. Assume that a given user wants to
update submodel θ at time t. In the reading phase, the user
only downloads the sparse set of subpackets indicated by the
permuted set of indices Ṽ = {2, 3}, which is determined by
the databases. One designated database sends these permuted
indices to each of the users at time t. Then, the user obtains the
real indices of the subpackets in Ṽ , using V (i) = P̃ (Ṽ (i)) for
i = 1, 2, i.e., V = {5, 1}. The user sends the query specifying
the requirement of submodel θ given by,

Qn =

[
1

f1−αn
eM (θ) + Z̃1

1
f2−αn

eM (θ) + Z̃2

]
(109)

to database n. Then, each database privately calculates the
non-permuted query vector for each subpacket V (i) using
the noise added permutation reversing matrix and the query
received. The query for subpacket V (1) = 5 is,

Q[5]
n =

Rn(1, Ṽ (1))Qn

...
Rn(P, Ṽ (1))Qn

 =


02M

02M

02M

02M

Qn

+ Pαn
(2) (110)

where Pαn(2) is a vector of size 10M × 1 consisting of
polynomials in αn of degree 2 and 02M is the all zeros
vector of size 2M × 1. Then, the answer from database n
corresponding to subpacket V (1) = 5 is given by,

A[5]
n = ST

n Q[5]
n (111)

=
1

f1 − αn
W

[5]
θ,1 +

1
f2 − αn

W
[5]
θ,2 + Pαn(3× 2 + 1),

(112)

from which the 2 bits of subpacket 5 of submodel θ can be
correctly obtained by using the N = 10 answers from the ten
databases. Similarly, the user can obtain subpacket 1 of Wθ

by picking column Ṽ (2) = 3 of Rn in (108) in the calculation
of (110) and following the same process.

Once the user downloads and trains Wθ, the user generates
the r fraction of subpackets with non-zero updates. Let the
subpacket indices with non-zero updates be 1 and 4. The
noisy updates generated by the user to be sent to database n
according to (84) is given by Un = [Un(1), 0, 0, Un(4), 0]T

in the correct order. The user then permutes Un based on
the given permutation P̃ , i.e., Ûn(i) = Un(P̃ (i)) for i =
{1, . . . , 5},

Ûn = [0, 0, Un(1), 0, Un(4)]T . (113)

The user sends the values and the positions of the non-zero
updates as (Un(1), 3) and (Un(4), 5) based on the per-
muted order. Each database receives these pairs and recon-
structs (113),

V̂n = Un(1)e5(3) + Un(4)e5(5) = Ûn. (114)

To rearrange the updates back in the correct order privately,
database n multiplies V̂n by the permutation reversing matrix,

Tn = Rn × V̂n (115)

=


0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

 V̂n +
2∏

i=1

(fi − αn)Z̄ × V̂n (116)

= [Un(1), 0, 0, Un(4), 0]T +
2∏

i=1

(fi − αn)Pαn
(2), (117)

since Un(1) and Un(4) are of the form∑2
i=1 ∆̃θ,i

∏2
j=1,j ̸=i(fj −αn) +

∏2
j=1(fj −αn)Z = Pαn

(2).
The incremental update of subpacket s, is calculated by,

Ūn(s) = Dn × Tn(s)×Qn (118)

=



[
∆[s]

1,1eM (θ)
∆[s]

1,2eM (θ)

]
+

[
(f1 − αn)Pαn

(4)
(f2 − αn)Pαn

(4)

]
, s = 1, 4

[
(f1 − αn)Pαn

(4)
(f2 − αn)Pαn

(4)

]
, s = 2, 3, 5

(119)

using Lemma 1, where Pαn
(4) are vectors of size M ×

1 consisting of noise polynomials in αn of degree 4. Since
the incremental update is in the same format as the storage
in (107), the existing storage can be updated as S

[t]
n (s) =

S
[t−1]
n (s)+Ūn(s) for s = 1, . . . , 5, where S

[t]
n (s) is the storage

of subpacket s in (107) at time t.
Case 2: For this case, the subpacketization is ℓ = N−4

2 =
3 and the storage of the model is given by,

Sn =




W1,1 + (f1 − αn)

∑4
i=0 αi

nZ
[1]
1,i

...
WM,1 + (f1 − αn)

∑4
i=0 αi

nZ
[1]
M,i




W1,2 + (f2 − αn)
∑4

i=0 αi
nZ

[2]
1,i

...
WM,2 + (f2 − αn)

∑4
i=0 αi

nZ
[2]
M,i




W1,3 + (f3 − αn)
∑4

i=0 αi
nZ

[3]
1,i

...
WM,3 + (f3 − αn)

∑4
i=0 αi

nZ
[3]
M,i





, (120)

since the degree of the noise polynomial x = ℓ + 1 = 4.
The permutation reversing matrix stored in database n, n ∈
{1, . . . , N} is given by,

Rn =


03×3 03×3 Γn 03×3 03×3

Γn 03×3 03×3 03×3 03×3

03×3 03×3 03×3 Γn 03×3

03×3 03×3 03×3 03×3 Γn

03×3 Γn 03×3 03×3 03×3

+ Z̃, (121)

where Γn =

 1
f1−αn

0 0
0 1

f2−αn
0

0 0 1
f3−αn

, and 03×3 is the all

zeros matrix of size 3× 3. For the same example where users
need to read the permuted subpackets Ṽ = {2, 3}, a designated
database sends Ṽ to each user, from which the user obtains the
non-permuted subpacket indices V = {5, 1} using P̃ . The user

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1336 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

sends the following query to specify the required submodel
index θ,

Qn =

Q̂1 = eM (θ) + (f1 − αn)Z̃1

Q̂2 = eM (θ) + (f2 − αn)Z̃2

Q̂3 = eM (θ) + (f3 − αn)Z̃3

 . (122)

To read subpacket V (1) = 5, database n first computes the
sum of the ℓ = 3 columns of the Ṽ (1) = 2nd submatrix of
Rn given by,

R̂[Ṽ (1)]
n = R̂[2]

n =
3∑

j=1

Rn(:, 3 + i) =



03

03

03

03
1

f1−αn
1

f2−αn
1

f3−αn


+ Ẑ, (123)

where 03 is the all zeros vector of size 3× 1, Ẑ is a random
vector of size 15×1. Then, each database computes the specific
query for V (1) = 5 given by,

Q[5]
n =



R̂
[2]
n (1)Q̂1

R̂
[2]
n (2)Q̂2

R̂
[2]
n (3)Q̂3


...R̂

[2]
n (13)Q̂1

R̂
[2]
n (14)Q̂2

R̂
[2]
n (15)Q̂3




=



0× Q̂1

0× Q̂1

0× Q̂3

...
0× Q̂1

0× Q̂1

0× Q̂3
1

f1−αn
Q̂1

1
f2−αn

Q̂2

1
f3−αn

Q̂3



+ Pαn
(1) (124)

=



03M

03M

03M

03M
1

f1−αn
eM (θ)

1
f2−αn

eM (θ)
1

f3−αn
eM (θ)


+ Pαn

(1), (125)

where the polynomial vectors Pαn
(1) are resulted by the

multiplications of the form ẐiQ̂j and by the residual terms
of the calculations of the form 1

fi−αn
Q̂j . Note that the two

Pαn(1) vectors in (124) are not the same, and they are both
some random vector polynomials in αn of degree 1 of size
15M × 1. Each database n, n ∈ {1, . . . , N} then sends the
answers to this query given by,

A[5]
n = ST

n Q[5]
n (126)

=
1

f1−αn
W

[5]
θ,1+

1
f2−αn

W
[5]
θ,2+

1
f3−αn

W
[5]
θ,3 + Pαn

(6),

(127)

from which the three bits of subpacket 5 can be obtained since
N = 3 + 6 + 1 = 10.

For the same example considered in case 1, the user
sends the two updates corresponding to subpackets 1 and 4,
along with the permuted positions, from which the databases

compute V̂n = [0, 0, Un(1), 0, Un(4)]T given in (114), where
Un(1) and Un(4) are of the form

∑3
i=1 ∆̃θ,i

∏3
j=1,j ̸=i(fj −

αn) +
∏3

j=1(fj − αn)Z = Pαn
(3). Then, database n,

n ∈ {1, . . . , N} rearranges the updates in the correct order
as,

Tn = Rn ×

V̂n(1)13

...
V̂n(5)13

 (128)

=




03×3 03×3 Γ 03×3 03×3

Γ 03×3 03×3 03×3 03×3

03×3 03×3 03×3 Γ 03×3

03×3 03×3 03×3 03×3 Γ
03×3 Γ 03×3 03×3 03×3

+ Z̄


× [03×1, 03×1, Un(1)13, 03×1, Un(4)13]T (129)

=



Un(1)

 1
f1−αn

1
f2−αn

1
f3−αn


03×1

03×1

Un(4)

 1
f1−αn

1
f2−αn

1
f3−αn


03×1


+Pαn(3) =




∆

[1]
θ,1

f1−αn

∆
[1]
θ,2

f2−αn

∆
[1]
θ,3

f3−αn


03×1

03×1
∆

[4]
θ,1

f1−αn

∆
[4]
θ,2

f2−αn

∆
[4]
θ,3

f3−αn


03×1



+Pαn(3),

(130)

where the last equality is obtained by using Lemma 1. Since
the subpacketization is ℓ = 3, we divide Tn into blocks
of 3 elements each (subpackets) as shown in (100). For

example, T
[1]
n =

[
∆

[1]
θ,1

f1−αn
,

∆
[1]
θ,2

f2−αn
,

∆
[1]
θ,3

f3−αn

]T

+ Pαn
(3) and

T
[2]
n = Pαn

(3), where Pαn
(3) is a vector polynomial of size

3×1. Then, as an example, the incremental update of the first
subpacket is calculated as,

Ūn(1) = Dn ×

T
[1]
n (1)Q̂1

T
[1]
n (2)Q̂2

T
[1]
n (3)Q̂3

 (131)

= Dn×



(
∆

[1]
θ,1

f1−αn
+Pαn(3)

)
(eM (θ)+(f1−αn)Z̃1)(

∆
[1]
θ,2

f2−αn
+Pαn(3)

)
(eM (θ)+(f2−αn)Z̃2)(

∆
[1]
θ,3

f3−αn
+Pαn(3)

)
(eM (θ)+(f3−αn)Z̃3)


(132)

=

∆[1]
θ,1eM (θ) + (f1 − αn)Pα(4)

∆[1]
θ,2eM (θ) + (f2 − αn)Pα(4)

∆[1]
θ,3eM (θ) + (f3 − αn)Pα(4)

 , (133)

where Pαn(4) is a vector polynomial in αn of degree 4, of size
M × 1. The above incremental update is directly added to the
first subpacket of the existing storage in (120) since both are
of the same format.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1337

3) Proof of Privacy:
a) Privacy of the submodel index: The uploads of the

user in the writing phase of the proposed scheme is given by
Yn = (Ûn, k), (see (86)) where Ûn are the values of sparse
updates and k are the corresponding permuted positions. For
any m ∈ {1, . . . ,M} and arbitrary realizations of storage,
queries, updates and permuted positions (s̄n, r̄n, ūn, k̄), con-
sider the following aposteriori probability from the perspective
of an individual database,

P (θ[t] = m|S[t]
n = s̄n, Q[t]

n = r̄n, Û [t]
n = ūn, k[t] = k̄)

=
P (θ[t] = m, S

[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn, k[t] = k̄)

P (S[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn, k[t] = k̄)

(134)

=
P (θ[t] = m, k[t] = k̄)P (S[t]

n = s̄n, Q
[t]
n = r̄n, Û

[t]
n = ūn)

P (S[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn)P (k[t] = k̄)

(135)

=
P (k[t] = k̄|θ[t] = m)P (θ[t] = m)

P (k[t] = k̄)
, (136)

where (135) is due to the fact that S
[t]
n , Q

[t]
n and Û

[t]
n are

random noise terms that are independent of θ[t] and k[t].26

For all realizations of updates at time t, i.e., ∆[t]
θ , denoted by

δ and permutations P̃ , denoted by p̃,

P (k[t] = k̄|θ[t] = m)

=
∑

δ

∑
p̃

P (k[t] = k̄, P̃ = p̃, ∆[t]
θ = δ|θ[t] = m) (137)

=
∑

δ

∑
p̃

P (k[t] = k̄|P̃ = p̃, ∆[t]
θ = δ, θ[t] = m)

× P (P̃ = p̃, ∆[t]
θ = δ|θ[t] = m) (138)

=
∑

δ

P (∆[t]
θ =δ|θ[t] =m)

∑
p̃

1{P̃=p̃,∆
[t]
θ =δ,k[t]=k̄}P (P̃ = p̃)

(139)

=
(Pr)!(P − Pr)!

P !
(140)

=
1(
P
Pr

) , (141)

where (139) is from the fact that the randomly selected
permutation P̃ is independent of the updating submodel index
and the values of updates. Moreover,

P (k[t] = k̄) =
M∑

m=1

P (k[t] = k̄|θ[t] = m)P (θ[t] = m) (142)

=
1(
P
Pr

) M∑
m=1

P (θ[t] = m) =
1(
P
Pr

) . (143)

Therefore, from (136),

P (θ[t] = m|S[t]
n = s̄n, Q[t]

n = r̄n, Û [t]
n = ūn, k[t] = k̄)

=
P (k[t] = k̄|θ[t] = m)P (θ[t] = m)

P (k[t] = k̄)
(144)

26Note that S
[t]
n = S

[0]
n +

∑t
t′=1 Ū

[t′]
n is random noise, based on the

random noise component in S
[0]
n (added to submodels at time t = 0), from

Shannon’s one-time-pad theorem.

=

1

(P
P r)

P (θ[t] = m)

1

(P
P r)

(145)

= P (θ[t] = m), (146)

which proves (52).
b) Privacy of the values of updates: For any set of

updates of submodel θ[t] given by, q̃ ∈ FL
q and arbi-

trary realizations of storage, queries, updates and positions
(s̄n, r̄n, ūn, k̄), consider the following aposteriori probability
from the perspective of an individual database,

P (∆[t]
θ = q̃|S[t]

n = s̄n, Q[t]
n = r̄n, Û [t]

n = ūn, k[t] = k̄)

=
P (∆[t]

θ = q̃, S
[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn, k[t] = k̄)

P (S[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn, k[t] = k̄)

(147)

=
P (∆[t]

θ = q̃, k[t] = k̄)P (S[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn)

P (S[t]
n = s̄n, Q

[t]
n = r̄n, Û

[t]
n = ūn)P (k[t] = k̄)

,

(148)

as S
[t]
n , Q

[t]
n and Û

[t]
n are random noise terms that are inde-

pendent of the values/positions of sparse updates and the
submodel index. Therefore,

P (∆[t]
θ = q̃|S[t]

n = s̄n, Q[t]
n = r̄n, Û [t]

n = ūn, k[t] = k̄)

=
P (k[t] = k̄|∆[t]

θ = q̃)P (∆[t]
θ = q̃)

P (k[t] = k̄)
, (149)

Note that for all possible realizations of permutations p̃,

P (k[t] = k̄|∆[t]
θ = q̃)

=
∑

p̃

P (k[t] = k̄, P̃ = p̃|∆[t]
θ = q̃)

(150)

=
∑

p̃

P (k[t] = k̄|P̃ = p̃, ∆[t]
θ = q̃)P (P̃ = p̃|∆[t]

θ = q̃)

(151)

=
∑

p̃

1{k[t]=k̄,∆
[t]
θ =q̃,P̃=p̃}P (P̃ = p̃) (152)

=
(Pr)!(P − Pr)!

P !
(153)

=
1(
P
Pr

) , (154)

where (152) is due to the fact that the permutation is inde-
pendently and randomly selected, irrespective of the values of
updates. Therefore, from (149),

P (∆[t]
θ = q̃|S[t]

n = s̄n, Q[t]
n = r̄n, Û [t]

n = ūn, k[t] = k̄)

=

1

(P
P r)

P (∆[t]
θ = q̃)

1

(P
P r)

= P (∆[t]
θ = q̃), (155)

which proves (53).

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1338 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

c) Security of the stored submodels: For any w̄ ∈ FMℓ
q

and arbitrary realizations of storage, queries, updates and
positions (s̄n, r̄n, ūn, k̄),

P (W [t]
[1:M] = w̄|Q[t]

n = r̄n, S[t]
n = s̄n, Û [t]

n = ūn, k[t] = k̄)

=
P (Q[t]

n = r̄n, S
[t]
n = s̄n, Û

[t]
n = ūn, k[t] = k̄,W

[t]
[1:M] = w̄)

P (Q[t]
n = r̄n, S

[t]
n = s̄n, Û

[t]
n = ūn, k[t] = k̄)

(156)

=
P (Q[t]

n = r̄n, S
[t]
n = s̄n, Û

[t]
n = ūn)P (W [t]

1:M = w̄, k[t] = k̄)

P (Q[t]
n = r̄n, S

[t]
n = s̄n, Û

[t]
n = ūn)P (k[t] = k̄)

(157)

as Û
[t]
n , Q

[t]
n and S

[t]
n values are random noise terms that do

not depend on the submodel values or sparse update positions.
Therefore,

P (W [t]
1:M = w̄|Q[t]

n = r̄n, S[t]
n = s̄n, Û [t]

n = ūn, k[t] = k̄)

=
P (k[t] = k̄|W [t]

1:M = w̄)P (W [t]
1:M = w̄)

P (k[t] = k̄)
.

(158)

For all realizations of updates δ and permutations p̃,

P (k[t] = k̄|W [t]
1:M = w̄)

=
∑

δ

∑
p̃

P (k[t] = k̄, P̃ = p̃, ∆[t]
θ = δ|W [t]

1:M = w̄) (159)

=
∑

δ

∑
p̃

P (k[t] = k̄|P̃ = p̃, ∆[t]
θ = δ, W

[t]
1:M = w̄)

× P (P̃ = p̃, ∆[t]
θ = δ|W [t]

1:M = w̄) (160)

=
∑

δ

P (∆[t]
θ = δ|W [t]

1:M = w̄)

×
∑

p̃

1{P̃=p̃,∆
[t]
θ =δ,k[t]=k̄}P (P̃ = p̃) (161)

=
(Pr)!(P − Pr)!

P !
(162)

=
1(
P
Pr

) . (163)

Therefore, from (158) and (143),

P (W [t]
1:M = w̄|S[t]

n = s̄n, Q[t]
n = r̄n, Û [t]

n = ūn, k[t] = k̄)

=

1

(P
P r)

P (W [t]
1:M = w̄)

1

(P
P r)

= P (W [t]
1:M = w̄) (164)

which proves the condition in (54).

IV. PRUW WITH RANDOM SPARSIFICATION

In this section, we investigate how the communication
cost of a PRUW process can be reduced by performing
random sparsification, where pre-determined amounts of ran-
domly chosen parameters and updates are not downloaded and
uploaded in the reading and writing phases, respectively. This
process introduces some amount of distortion in the two phases
since a pre-determined amount of downloads and uploads are

made zero (not communicated) irrespective of their real values.
We study the behavior of the communication cost with the
level of distortion (random sparsification rate) allowed. Our
results characterize the rate-distortion trade-off in PRUW.

A. Problem Formulation
We consider the basic PRUW setting described in

Section II-A with N non-colluding databases storing M inde-
pendent submodels {W1, . . . ,WM} of size L, each containing
random symbols from Fq . At each time instance t, a user
updates an arbitrary submodel without revealing its index or
the values of updates. Pre-determined amounts of distortion
(random sparsification rates in the uplink and downlink) are
allowed in the reading and writing phases (D̃r and D̃w,
respectively), in order to reduce the communication cost.

1) Distortion in the Reading Phase: A distortion of no more
than D̃r is allowed in the reading phase, i.e., Dr ≤ D̃r, with

Dr =
1
L

L∑
i=1

1Wθ,i ̸=Ŵθ,i
(165)

where Wθ,i, Ŵθ,i are the actual and downloaded versions of
the ith bit of the required submodel Wθ.

2) Distortion in the Writing Phase: A distortion of no more
than D̃w is allowed in the writing phase, i.e., Dw ≤ D̃w, with

Dw =
1
L

L∑
i=1

1∆θ,i ̸=∆̂θ,i
(166)

where ∆θ,i and ∆̂θ,i are the actual and uploaded versions of
the ith bit of the update to the required submodel.

The goal of this work is to find schemes that result in the
lowest total communication cost under given distortion budgets
in the reading and writing phases in the PRUW setting, i.e.,
a rate-distortion trade-off in PRUW. The privacy constraints
on the updating submodel index and the values of updates as
well as the security constraint on the submodels are the same
as (7), (8) and (9), respectively. The correctness conditions are
defined as follows.

3) Correctness in the Reading Phase: The user should be
able to correctly decode the sparse set of parameters (denoted
by G) of the required submodel Wθ from the answers received
in the reading phase, i.e.,

H(W [t−1]
θ,G |Q[t]

1:N , A
[t]
1:N , θ[t]) = 0, t ∈ N, (167)

where W
[t−1]
θ,G is the set of parameters in set G of submodel

Wθ before updating, Q
[t]
n is the query sent to database n at

time t, A
[t]
n is the corresponding answer and θ[t] is the updating

submodel index at time t.27

4) Correctness in the Writing Phase: Let G′ be the sparse
set of parameters with non-zero updates of Wθ in the writing

27The correctness condition in (167) states that the set of random parameters
that the user decides to download from the required submodel in the reading
phase, denoted by G, must be correctly downloaded without any uncertainty.
The entropy of the entire submodel W

[t−1]
θ , given all queries and answers

is not zero, as the user only downloads parts of it, and the rest account
for distortion. However, the parameters that the user randomly chooses to
download must be downloaded with zero ambiguity.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1339

Fig. 3. An example setting for case 1.

phase. Then, the ith parameter of submodel m at time t, t ∈ N
given by W

[t]
m,i is correctly updated as,

W
[t]
m,i =

{
W

[t−1]
m,i + ∆[t]

m,i, if m = θ[t] and i ∈ G′

W
[t−1]
m,i , if m ̸= θ[t] or i /∈ G′,

(168)

where ∆[t]
m,i is the corresponding update of W

[t−1]
m,i .

In the reading phase, users privately send queries to down-
load a randomly selected set of parameters of the required
submodel, and in the writing phase, users privately send
updates to be added to a randomly selected set of parameters of
the existing submodels while ensuring the distortions resulted
by sparse downloads and uploads in the two phases are within
the allowed budgets (D̃r, D̃w). The reading, writing and total
costs are defined the same as in Section II-A. 28

B. Main Result
Theorem 3: For a PRUW setting with N non-colluding

databases containing M independent submodels, where D̃r

and D̃w amounts of distortion are allowed in the reading and
writing phases, respectively, the following reading and writing
costs are achievable,

CR =


2

1− 2
N

(1− D̃r), even N

2− 2
N

1− 3
N

(1− D̃r), odd N , D̃r < D̃w

2
1− 3

N

(1− D̃r), odd N , D̃r ≥ D̃w,

(169)

CW =


2

1− 2
N

(1− D̃w), even N

2
1− 3

N

(1− D̃w), odd N , D̃r < D̃w

2− 2
N

1− 3
N

(1− D̃w), odd N , D̃r ≥ D̃w.

(170)

28Note that PRUW with top r sparsification considered in Section III also
results in incomplete downloads/uploads, as only a selected set of subpackets
are downloaded/updated. However, these parameters and updates are carefully
chosen based on their significance to improve the accuracy. It has been shown
in certain cases that top r sparsification outperforms non-sparse distributed
learning [28], [34], [74]. Therefore, we do not consider the ignored subpackets
in the reading and writing phases in top r sparsification as distortion.
However, in random sparsification, since the selected parameters/updates
are chosen randomly, we treat the ignored parameters/updates as distortion,
to characterize the rate-distortion trade-off in PRUW.

Remark 9: The total communication cost decreases linearly
with the increasing amounts of distortion allowed in the read-
ing and writing phases, i.e., the rate-distortion characterization
is linear.

Remark 10: From the perspective of random sparsification,
1− D̃r and 1− D̃w are the sparsification rates in the reading
and writing phases, respectively, as D̃r and D̃w fractions of
parameters and updates that are not downloaded and updated.
The reading and writing costs in Theorem 3 are essentially
the reading and writing costs of basic PRUW, scaled by the
sparsification rate.

C. Proposed Scheme

The proposed scheme is an extension of the scheme pre-
sented in Section II-C. The scheme in Section II-C considers
⌊N

2 ⌋ − 1 bits of the required submodel at a time (called
subpacketization) and reads from and writes to ⌊N

2 ⌋ − 1 bits
using a single bit in each of the reading and writing phases
with no error. In this section, we consider larger subpackets
with more bits, i.e., ℓ ≥ ⌊N

2 ⌋−1, and correctly read from/write
to only ⌊N

2 ⌋ − 1 selected bits in each subpacket using single
bits in the two phases. The rest of the ℓ − ⌊N

2 ⌋ + 1 bits
in each subpacket account for the distortion in each phase,
which is maintained under the allowed distortion budgets. The
privacy of the updating submodel index as well as the values
of updates is preserved in this scheme, while also not revealing
the indices of the distorted uploads/downloads.

The proposed scheme consists of the following three tasks:
1) calculating the optimum reading and writing subpacketiza-
tions ℓ∗r and ℓ∗w based on the given distortion budgets D̃r and
D̃w, 2) specifying the scheme, i.e., storage, reading/writing
queries and single bit updates, for given values of ℓ∗r and ℓ∗w,
and 3) in cases where the subpacketizations calculated in task
1 are non-integers, the model is divided into two sections and
two different integer-valued subpacketizations are assigned to
the two sections in such a way that the resulting distortion is
within the given budgets. Then, task 2 is performed in each
of the two sections.

For task 2, note that the scheme in Section II-C allocates
distinct constants fi, i ∈ {1, . . . , ℓ} to the ith bit of each
subpacket in all submodels (see (14)) in the storage, which

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1340 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

makes it possible to combine all parameters/updates in a given
subpacket to a single bit in a way that the parameters/updates
can be correctly and privately decomposed. However, in this
scheme, since there may be two subpacketizations in the
two phases (reading and writing), we need to ensure that
each subpacket in both phases consists of bits with distinct
associated fis. In order to do this, we associate distinct fis
with each consecutive max{ℓ∗r , ℓ∗w} bits in a cyclic manner
so that each subpacket in both phases have distinct fis. The
proposed scheme is explained in detail next, along with an
example.

The scheme is defined on a single subpacket in each of the
two phases, and is applied repeatedly on all subpackets. Since
the number of bits correctly downloaded/updated remains
constant at ⌊N

2 ⌋−1 for a given N , the distortion in a subpacket
of size ℓ is ℓ−⌊N

2 ⌋+1

ℓ . Note that this agrees with the definitions
in (165) and (166) since the same distortion is resulted by
all subpackets.29 Therefore, the optimum subpacketizations in
the two phases, ℓ∗r and ℓ∗w, are functions of D̃r, D̃w and N ,
and will be calculated in Section IV-C.3. First, we describe
the general scheme for any given ℓ∗r and ℓ∗w. The scheme is
studied under two cases, 1) y = ℓ∗w > ℓ∗r , and 2) y = ℓ∗r ≥ ℓ∗w.

1) Case 1: y = ℓ∗w > ℓ∗r:
a) Storage and initialization: The storage of y =

max{ℓ∗r , ℓ∗w} = ℓ∗w bits of all submodels in database n,
n ∈ {1, . . . , N} is given by,

Sn =




1

f1−αn
W1,1 +

∑⌊N
2 ⌋−1

j=0 αj
nZ

[1]
1,j

...
1

f1−αn
WM,1 +

∑⌊N
2 ⌋−1

j=0 αj
nZ

[1]
M,j


...

1
fy−αn

W1,y +
∑⌊N

2 ⌋−1
j=0 αj

nZ
[y]
1,j

...
1

fy−αn
WM,y +

∑⌊N
2 ⌋−1

j=0 αj
nZ

[y]
M,j




, (171)

where Wi,j is the jth bit of submodel i, Z
[k]
i,j s are random

noise terms and {fi}y
i=1, {αn}N

n=1 are globally known distinct
constants from Fq , such that each αn and fi − αn for all
i ∈ {1, . . . , ℓ} and n ∈ {1, . . . , N} are coprime with q.

b) Reading phase: In this case, the user considers sub-
packets of size ℓ∗r and only downloads ⌊N

2 ⌋ − 1 bits of each
subpacket. Note that each consecutive y = ℓ∗w bits in storage
are associated with distinct fis, which makes each consecutive
set of ℓ∗r (reading subpacket size) fis distinct as well (since
ℓ∗r ≤ ℓ∗w). However, not all reading subpackets have the
same fi allocated to their ith bit due to the definition of the
storage structure (cyclic allocation of ℓ∗w distinct values of fi).
Therefore, we cannot define the reading query on a single
subpacket and use it repeatedly, since the reading queries
depend on fis. Thus, we define γr = lcm{ℓ∗r ,ℓ∗w}

ℓ∗r
queries to read

any γr consecutive subpackets. Note that the super subpacket
which consists of any γr consecutive reading subpackets have
the same set of fis that occur in a cyclic manner in the storage.

29Here, we assume that the integer-valued subpacketization ℓ is uniform
throughout the storage, i.e., task 3 is not applicable. The extension to
non-uniform subpacketizations (two different subpacketizations as in task 3)
is derived from the same concept and is described in detail in Section IV-C.3.

Therefore, the γr queries can be defined once on a super
subpacket, and can be used repeatedly throughout the process.
An example setting is given in Figure 3, where the reading and
writing subpacketizations are given by ℓ∗r = 6, ℓ∗w = 8 and the
storage structure repeats at every y = 8 bits. Each square in
Figure 3 corresponds to a single bit of all submodels associated
with the corresponding value of fi. It shows three consecutive
storage/writing subpackets on the top row. The same set of
bits are viewed as γr = lcm{6,8}

6 = 4 reading subpackets, each
of size ℓ∗r = 6 in the bottom row. Note that each reading
subpacket contains distinct fis, which are not the same across
the four subpackets. However, it is clear that the structure of
the super subpacket which contains the four regular subpackets
keeps repeating with the same set of fis in order. The reading
phase has the following steps.

The user sends the following queries to database n to obtain
each of the arbitrary sets of ⌊N

2 ⌋ − 1 bits of each subpacket
in each set of γr = lcm{ℓ∗r ,ℓ∗w}

ℓ∗r
consecutive, non-overlapping

subpackets. Let J
[s]
r be the set of ⌊N

2 ⌋ − 1 randomly chosen
parameter indices that are read correctly from subpacket s for
s ∈ {1, . . . , γr}. The query to download subpacket s is,

Qn(s) =


eM (θ)1{1∈J

[s]
r } + (fg((s−1)ℓ∗r+1) − αn)Z̃s,1

...
eM (θ)1{ℓ∗r∈J

[s]
r } + (fg(sℓ∗r) − αn)Z̃s,ℓ∗r

 ,

(172)

and the corresponding subpacket s is,

Sn(s)=




1

fg((s−1)ℓ∗r+1)−αn
W

[s]
1,1 +

∑⌊N
2 ⌋−1

j=0 αj
nZ

[1]
1,j(s)

...
1

fg((s−1)ℓ∗r+1)−αn
W

[s]
M,1 +

∑⌊N
2 ⌋−1

j=0 αj
nZ

[1]
M,j(s)


...

1
fg(sℓ∗r)−αn

W
[s]
1,ℓ∗r

+
∑⌊N

2 ⌋−1
j=0 αj

nZ
[y]
1,j(s)

...
1

fg(sℓ∗r)−αn
W

[s]
M,ℓ∗r

+
∑⌊N

2 ⌋−1
j=0 αj

nZ
[y]
M,j(s)




,

(173)

where eM (θ) is the all zeros vector of size M × 1 with a
1 at the θth position, Z̃i,js are random noise vectors of size
M × 1 and the function g(·) is defined as,

g(x) =

{
x mod y, if x mod y ̸= 0
y, if x mod y = 0

(174)

Note that the super subpacket Sn = [S[1]
n , . . . , S

[γr]
n]T is the

concatenation of lcm{ℓ∗r ,ℓ∗w}
y blocks of the form (171). The γr

answers received by database n, n ∈ {1, . . . , N}, are given
by,

An(s)=Sn(s)T Qn(s) (175)

=
ℓ∗r∑

i=1

(
1

fg((s−1)ℓ∗r+i) − αn
W

[s]
θ,i

)
1{i∈J

[s]
r }+Pαn

(⌊N
2
⌋)

(176)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1341

Fig. 4. An example setting for case 2.

for each s ∈ {1, . . . , γr}, where Pαn
(⌊N

2 ⌋) is a polynomial
in αn of degree ⌊N

2 ⌋. Since |J [s]
r | = ⌊N

2 ⌋ − 1 for each
s ∈ {1, . . . , γr}, the required ⌊N

2 ⌋ − 1 bits of each of the
γr subpackets can be correctly retrieved from 2⌊N

2 ⌋ answers
of the form (176) (corresponding to 2⌊N

2 ⌋ databases). Note
that when N is odd, the user has to download answers from
only N−1 databases, since N−1 equations of the form (176)
with distinct αns suffice to solve for the ⌊N

2 ⌋−1 parameters of
the required submodel when N is odd. The resulting reading
cost of the first case is given by,

C
[1]
R =

{
γr×N
γr×ℓ∗r

= N
ℓ∗r

, even N,
γr×(N−1)

γr×ℓ∗r
= N−1

ℓ∗r
, odd N.

(177)

For a better understanding of the reading phase, we present
the queries and answers corresponding to the example in
Figure 3 next. Assume that N = 6 for this example and the
set of ⌊N

2 ⌋ − 1 = 2 parameter indices that are read correctly
from the second subpacket (out of γr = 4 subpackets) is given
by J

[2]
r = {2, 5}. Then, the query corresponding to the second

subpacket is given by,

Qn(2) =



(f7 − αn)Z̃2,1

eM (θ)+ (f8 − αn)Z̃2,2

(f1 − αn)Z̃2,3

(f2 − αn)Z̃2,4

eM (θ)+ (f3 − αn)Z̃2,5

(f4 − αn)Z̃2,6

 , (178)

which is used to obtain the 2nd and 5th elements of the second
reading subpacket given by,

Sn(2) =



1
f7−αn

W
[2]
·,1 +

∑2
j=0 αj

nZ
[1]
·,j (2)

1
f8−αn

W
[2]
·,2 +

∑2
j=0 αj

nZ
[2]
·,j (2)

1
f1−αn

W
[2]
·,3 +

∑2
j=0 αj

nZ
[3]
·,j (2)

1
f2−αn

W
[2]
·,4 +

∑2
j=0 αj

nZ
[4]
·,j (2)

1
f3−αn

W
[2]
·,5 +

∑2
j=0 αj

nZ
[5]
·,j (2)

1
f4−αn

W
[2]
·,6 +

∑2
j=0 αj

nZ
[6]
·,j (2)


, (179)

where W
[2]
·,i = [W [2]

1,i , . . . ,W
[2]
M,i]

T and Z
[i]
·,j(2) =

[Z [i]
1,j(2), . . . , Z [i]

M,j(2)]T . Then, the answer from database n,

n ∈ {1, . . . , 6} for this specific subpacket (s = 2) is given by,

An(2) =Sn(2)T Qn(2) (180)

=
1

f8 − αn
W

[2]
θ,2 +

1
f3 − αn

W
[2]
θ,5 + Pαn(3), (181)

where Pαn
(3) is a polynomial in αn of degree 3. The user

can then find W
[2]
θ,2 and W

[2]
θ,5 by solving,

A1(2)
...

A6(2)

 =


1

f8−α1

1
f3−α1

1 α1 α2
1 α3

1

...
...

...
...

...
...

1
f8−α6

1
f3−α6

1 α6 α2
6 α3

6




W
[2]
θ,2

W
[2]
θ,5

R0

R1

R2

R3

 .

(182)

c) Writing phase: Since the subpacketization in the
writing phase is y, which is the same as the period of the
cyclic structure of the storage in (171), a single writing query,
specifying the submodel index and the correctly updated bit
indices, defined on a single subpacket suffices to repeatedly
update all subpackets, as the fis in all subpackets are identical.
The writing query sent to database n, n ∈ {1, . . . , N}, is,

Q̃n =


1

f1−αn
eM (θ)1{1∈Jw} + Ẑ1

...
1

fy−αn
eM (θ)1{y∈Jw} + Ẑy

 , (183)

where Jw is the set of indices of the ⌊N
2 ⌋ − 1 parameters of

each subpacket that are updated correctly and Ẑs are random
noise vectors of size M × 1. Since Q̃n is sent only once,
the same set of Jw indices will be correctly updated in all
subpackets. The user then sends a single bit combined update
for each subpacket of the form (171) given by,

Un =
∑
i∈Jw

∆̃θ,i

∏
j∈Jw,j ̸=i

(fj − αn) +
∏

j∈Jw

(fj − αn)Z,

(184)

for each n ∈ {1, . . . , N} where ∆̃θ,i = ∆θ,i∏
j∈Jw,j ̸=i(fj−fi)

with
∆θ,i being the update of the ith parameter of submodel θ (of

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1342 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

the subpacket considered) and Z is a random noise bit. Each
database then calculates the incremental update as,

Ũn = Un × Q̃n (185)

=


∆θ,1

f1−αn
eM (θ)1{1∈Jw} + Pαn

(⌊N
2 ⌋ − 1)

...
∆θ,y

fy−αn
eM (θ)1{y∈Jw} + Pαn

(⌊N
2 ⌋ − 1)

 , (186)

where Pαn
(·) is a polynomial in αn of degree in parenthesis,30

and (186) is obtained from (185) by applying Lemma 1. Since
the incremental update in (186) is in the same form as the
storage in (171), (186) is directly added to the existing storage
to obtain the updated submodel as,

S[t]
n = S[t−1]

n + Ū [t]
n , (187)

for each n ∈ {1, . . . , N} for both even and odd N . The writing
cost of case 1 is given by,

C
[1]
W =

N

ℓ∗w
. (188)

2) Case 2: y = ℓ∗r ≥ ℓ∗w:
a) Storage and initialization: The storage of y =

max{ℓ∗r , ℓ∗w} = ℓ∗r bits of all submodels in database n,
n ∈ {1, . . . , N} is given by,

Sn =




1

f1−αn
W1,1 +

∑⌈N
2 ⌉−1

j=0 αj
nZ

[1]
1,j

...
1

f1−αn
WM,1 +

∑⌈N
2 ⌉−1

j=0 αj
nZ

[1]
M,j


...

1
fy−αn

W1,y +
∑⌈N

2 ⌉−1
j=0 αj

nZ
[y]
1,j

...
1

fy−αn
WM,y +

∑⌈N
2 ⌉−1

j=0 αj
nZ

[y]
M,j




, (189)

where Wi,j is the jth bit of submodel i and the Zs are random
noise terms.

b) Reading phase: In the reading phase, each user cor-
rectly downloads ⌊N

2 ⌋ − 1 bits from each subpacket while
not downloading the rest of the ℓ∗r − ⌊N

2 ⌋ + 1 bits. The user
randomly picks the ⌊N

2 ⌋ − 1 bits within the subpacket that
are downloaded correctly and prepares the query to be sent
to database n as follows. Let Jr be the set of indices of the
⌊N

2 ⌋ − 1 bits that need to be downloaded correctly. Then,

Qn =

eM (θ)1{1∈Jr} + (f1 − αn)Z̃1

...
eM (θ)1{y∈Jr} + (fy − αn)Z̃y

 , (190)

where Z̃ are random noise vectors of size M ×1. The answer
of database n is,

An = ST
n Qn =

y∑
i=1

(
1

fi − αn
Wθ,i

)
1{i∈Jr} + Pαn

(⌈N
2
⌉).

(191)

30Note that all Pαn (·) are not the same and each polynomial is resulted
by the combination of all unwanted terms (noise subspace) resulting from the
decomposition of combined updates.

Since |Jr| = ⌊N
2 ⌋ − 1, the user required ⌊N

2 ⌋ − 1 bits of
Wθ can be correctly downloaded using the answers received
by the N databases. The resulting reading cost of case 2 is
given by,

C
[2]
R =

N

ℓ∗r
. (192)

c) Writing phase: In the writing phase, the user considers
subpackets of size ℓ∗w and only updates ⌊N

2 ⌋ − 1 out of the
ℓ∗w bits correctly, while making the updates of the rest of the
ℓ∗w − ⌊N

2 ⌋ + 1 bits zero. The ⌊N
2 ⌋ − 1 bits that are correctly

updated are chosen randomly. The following steps describe
the writing process when ℓ∗w ≤ ℓ∗r = y.

1) A general writing query that specifies the submodel
to which the update should be added, along with the
positions of the ⌊N

2 ⌋ − 1 non-zero updates in each
subpacket is sent first. The same query from the reading
phase (190) can be used if the subpacketization and the
indices of the correct ⌊N

2 ⌋−1 bits within the subpacket
are the same in both phases. However, for the strict case
ℓ∗r > ℓ∗w, we need a new general query Q̃n for the writ-
ing phase. Q̃n consists of γw = lcm{ℓ∗r ,ℓ∗w}

ℓ∗w
sub-queries,

where each sub-query corresponds to a single subpacket
of size ℓ∗w. These sub-queries are required since the
storage structure of these γw subpackets is not identical,
which calls for γw different queries, customized for each
subpacket. An example setting for case 2 is given in
Figure 4, where y = ℓ∗r = 6 in the storage given in (189),
and ℓ∗w = 4, which results in distinct sets of associated
fis in every γw = lcm{ℓ∗r ,ℓ∗w}

ℓ∗w
= 3 consecutive writing

subpackets of size ℓ∗w. However, the super subpacket
containing these γw = lcm{ℓ∗r ,ℓ∗w}

ℓ∗w
= 3 regular subpackets

keep repeating with the same set of associated fis.
Therefore, we only send the γw = lcm{ℓ∗r ,ℓ∗w}

ℓ∗w
= 3 sub-

queries of Q̃n once to each database, which will be
repeatedly used throughout the writing process. The
general writing scheme that writes to each of the γw

consecutive subpackets is described in the next steps.
2) Let J

[s]
w be the set of indices of the correctly updated

⌊N
2 ⌋−1 parameters in subpacket s for s ∈ {1, . . . , γw}.

Then, the sub-query s, s ∈ {1, . . . , γw} of the writing
query for database n is given by,

Q̃n(s) =


1

fg((s−1)ℓ∗w+1)−αn
eM (θ)1{1∈J

[s]
w } + Ẑs,1

...
1

fg(sℓ∗w)−αn
eM (θ)1{ℓ∗w∈J

[s]
w } + Ẑs,ℓ∗w

 ,

(193)

where Ẑ are random noise vectors of size M × 1 and
the function g(·) is defined as (174). For the example
considered in Figure 4, the sub-query corresponding to
subpacket 2 if J

[2]
w = {1, 3} is given by,

Q̃n(2) =


1

f5−αn
eM (θ)+ Ẑ2,1

Ẑ2,2
1

f1−αn
eM (θ)+ Ẑ2,3

Ẑ2,4

 . (194)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1343

Note that the values of fi in each individual section
of Q̃n are distinct due to ℓ∗w ≤ y (in the example,
the first section has fi = {1, 2, 3, 4} and the second
has fi = {5, 6, 1, 2} and so on). This makes it pos-
sible for the user to send a single combined update
bit (combining the updates of the ⌊N

2 ⌋ − 1 non-zero
updates in each subpacket) to each individual subpacket
as described in Section II-C. The query Q̃n (consisting
of γw sub-queries) will only be sent once to each
database. Therefore, the indices of the non-zero updates
J

[s]
w , s ∈ {1, . . . , γw} will be fixed at each consecutive

non-overlapping group of γw subpackets.
3) Next, the user sends a single combined update bit corre-

sponding to each subpacket. The γw combined updates
sent to database n, n ∈ {1, . . . , N} corresponding to a
given set of γw consecutive subpackets is given by,

Un(s) =
∑

i∈J
[s]
w

∆̃[s]
θ,i

∏
j∈J

[s]
w ,j ̸=i

(fg((s−1)ℓ∗w+j) − αn)

+
∏

j∈J
[s]
w

(fg((s−1)ℓ∗w+j) − αn)Zs, (195)

for each subpacket s ∈ {1, . . . , γw}, where ∆̃[s]
θ,i =

∆
[s]
θ,i∏

j∈J
[s]
w ,j ̸=i

(fg((s−1)ℓ∗w+j)−fg((s−1)ℓ∗w+i))
with ∆[s]

θ,i being

the update of the ith parameter of subpacket s of
submodel θ and Zs are random noise bits. Note that each
Un(s) is a polynomial in αn of degree ⌊N

2 ⌋−1. For the
example in Figure 4, the combined update corresponding
to subpacket 2 with J

[2]
w = {1, 3} is given by,

Un(2) = ∆̃[2]
θ,1(f1 − αn) + ∆̃[2]

θ,3(f5 − αn)

+ (f1 − αn)(f5 − αn)Z2, (196)

where ∆̃[2]
θ,1 =

∆
[2]
θ,1

f1−f5
and ∆̃[2]

θ,3 =
∆

[2]
θ,3

f5−f1
.

4) Each database then calculates the incremental update of
each subpacket as follows. The incremental update of
subpacket s, s ∈ {1, . . . , γw} is given by,

Ũn(s) =

{
Un(s)× Q̃n(s), even N

Ω̃n × Un(s)× Q̃n(s), odd N
(197)

where,

Ω̃n

=


αr−αn

αr−fg((s−1)ℓ∗w+1)
IM 0 . . . 0

0 αr−αn

αr−fg((s−1)ℓ∗w+2)
IM. . . 0

...
...

...
...

0 0 . . . αr−αn

αr−fg(sℓ∗w)
IM

.
(198)

Then, from (197),

Ũn(s)=





∆
[s]
θ,1

fg((s−1)ℓ∗w+1)−αn
eM (θ)1{1∈J

[s]
w }

+Pαn
(⌊N

2 ⌋ − 1)
...

∆
[s]
θ,ℓ∗w

fg(sℓ∗w)−αn
eM (θ)1{ℓ∗w∈J

[s]
w }

+Pαn
(⌊N

2 ⌋ − 1)


, even N



∆
[s]
θ,1

fg((s−1)ℓ∗w+1)−αn
eM (θ)1{1∈J

[s]
w }

+Pαn
(⌊N

2 ⌋)
...

∆
[s]
θ,ℓ∗w

fg(sℓ∗w)−αn
eM (θ)1{ℓ∗w∈J

[s]
w }

+Pαn(⌊N
2 ⌋)


, odd N

(199)

where r is a randomly chosen database out of the N
databases for odd N . Note that when N is odd, the
user can reduce the writing cost by not sending the
combined updates to database r, since Ũr(s) = 0 for
all s. The convention for the updates of each i /∈ J

[s]
w

is ∆[s]
θ,i = 0. Lemmas 1 and 2 are used to obtain (199)

from (197). Note that the concatenation of all γw incre-
mental updates of the form (199) is in the same format as
the concatenation of η = lcm{ℓ∗r ,ℓ∗w}

y reading subpackets
(storage in (189)) since g(γwℓ∗w) = g(lcm{ℓ∗r , ℓ∗w}) =
y, and therefore, can be added to the corresponding
subpackets to obtain their updated versions, i.e.,

[S[t]
n (1), . . . , S[t]

n (η)]T = [S[t−1]
n (1), . . . , S[t−1]

n (η)]T

+ [Ũn(1), . . . , Ũn(γw)]T ,

(200)

where [S[t]
n (1), . . . , S[t]

n (η)]T contains η consecutive Sns
of the form given in (189).

The writing cost of case 2 is given by,

C
[2]
W =

{
γw×N
γw×ℓ∗w

= N
ℓ∗w

, even N,
γw×(N−1)

γw×ℓ∗w
= N−1

ℓ∗w
, odd N.

(201)

Remark 11: For even N , both cases achieve reading and
writing costs given by N

ℓ∗r
and N

ℓ∗w
, respectively. However, when

N is odd, it is possible to achieve either a lower reading cost
(N−1

ℓ∗r
) with fewer noise terms in storage (⌊N

2 ⌋−1), or a lower
writing cost (N−1

ℓ∗w
) with an extra noise term in storage (⌈N

2 ⌉−
1), with case 1 and case 2, respectively. In particular, when
N is odd, the total costs for the two options are given by
N−1

ℓ∗r
+ N

ℓ∗w
= N(ℓ∗r+ℓ∗w)

ℓ∗rℓ∗w
− 1

ℓ∗r
and N

ℓ∗r
+ N−1

ℓ∗w
= N(ℓ∗r+ℓ∗w)

ℓ∗rℓ∗w
− 1

ℓ∗w
,

respectively. This justifies the extra noise term in storage for
case 2 when N is odd.

Remark 12: Note that the cost of sending Qn and Q̃n is not
considered in the above writing cost since they are sent only
once to each database in the entire PRUW process (not per
subpacket) and the maximum combined cost of Qn and Q̃n

given by M
L (lcm{ℓ∗r , ℓ∗w} + max{ℓ∗r , ℓ∗w}) is negligible since

L is very large.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1344 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

3) Calculation of Optimum ℓ∗r and ℓ∗w for Given (D̃r, D̃w):
In order to minimize the total communication cost, the user
correctly reads from and writes to only ⌊N

2 ⌋ − 1 out of
each of the ℓ∗r and ℓ∗w bits in reading and writing phases,
respectively. This results in an error that needs to be kept
within the given distortion budgets of D̃r and D̃w. Note that
min CR + minCW ≤ min CR + CW . In this section, we find
the subpacketizations in the reading and writing phases (ℓ∗r ,
ℓ∗w) that achieve min CR + minCW while being compatible
with the proposed scheme. Note that each reading/writing
cost in both cases is of the form N

ℓ or N−1
ℓ , where ℓ is

the respective subpacketization. Since only ⌊N
2 ⌋ − 1 bits in

a subpacket are read/written correctly, the subpacketization in
general can be written as,

ℓ = ⌊N
2
⌋ − 1 + i (202)

for some i ∈ Z+
0 . Therefore, the reading/writing costs of both

cases are of the form N
⌊N

2 ⌋−1+i
or N−1

⌊N
2 ⌋−1+i

for some i ∈ Z+
0 ,

both decreasing in i. For a subpacketization of the form ℓ =
⌊N

2 ⌋ − 1 + i (irrespective of reading or writing), the resulting
distortion is given by,

D =
i

⌊N
2 ⌋ − 1 + i

, (203)

if the same subpacketization is considered throughout the
storage. Since the resulting distortion must satisfy D ≤ D̃,31

an upper bound on i is derived as,

i ≤ D̃

1− D̃

(
⌊N

2
⌋ − 1

)
. (204)

Therefore, for given distortion budgets in the reading and
writing phases (D̃r,D̃w), the optimum values of i are given
by,

i∗r =
D̃r

1− D̃r

(
⌊N

2
⌋ − 1

)
(205)

i∗w =
D̃w

1− D̃w

(
⌊N

2
⌋ − 1

)
, (206)

which determine the optimum subpacketizations from (202).
For cases where i∗r /∈ Z+

0 or i∗w /∈ Z+
0 , we divide

all submodels into two sections, assign two separate
integer-subpacketizations that guarantee the distortion budget,
and apply the scheme on the two sections independently,
which achieves the minimum costs in (169), after using an
optimum ratio for the subsection lengths. To find the optimum
ratio, we solve the following optimization problem. Let λi

be the fraction of each submodel with subpacketization ℓi =
⌊N

2 ⌋ − 1 + i for some i = η1, η2 ∈ Z+
0 . In this calculation,

we drop the r and w subscripts which indicate the phase
(reading/writing), since the calculation is the same for both
phases.32 The given D̃r and D̃w must be substituted for D̃
in the following calculation to obtain the specific results for

31Here, D̃ refers to D̃r or D̃w , based on the phase the subpacketization is
defined for.

32Note that we focus on minimizing each individual cost (reading/writing
cost) at a time since min CR + min CW ≤ min CR + CW .

the reading and writing phases, respectively. The optimum
subpacketizations are obtained by solving,33

min
∑

i=η1,η2

λi
N

⌊N
2 ⌋ − 1 + i

s.t.
∑

i=η1,η2

λi
i

⌊N
2 ⌋ − 1 + i

≤ D̃

λη1 + λη2 = 1
λη1 , λη2 ≥ 0. (207)

This problem has multiple solutions that give the same
minimum total communication costs. As one of the solutions,
consider η1 = 0 and η2 = η, where η = ⌈ D̃

1−D̃
(⌊N

2 ⌋ − 1)⌉,

λ0 = 1− D̃

η

(
⌊N

2
⌋ − 1 + η

)
, (208)

λη =
D̃

η

(
⌊N

2
⌋ − 1 + η

)
. (209)

This gives a minimum cost of Cmin = N
⌊N

2 ⌋−1
(1 − D̃) (or

Cmin = N−1
⌊N

2 ⌋−1
(1−D̃)) which match the terms in (169)-(170),

with D̃ = D̃r and D̃ = D̃w. The optimality of the solution
to the optimization problem is obvious since the resulting
total cost is the same as what is achieved by the optimum
subpacketizations characterized by (205) and (206), with no
segmentation of submodels.

Next, we present the explicit expressions of optimum sub-
packetizations, with the optimum values of i obtained above.
For a setting with given N , D̃r and D̃w, the reading and
writing costs given in (169) are achievable with corresponding
subpacketizations given by,

ℓ∗r =

⌊
N
2 ⌋ − 1, for λ

[r]
0 of submodel,

⌊N
2 ⌋ − 1 + ⌈ D̃r(⌊N

2 ⌋−1)
1−D̃r

⌉, for 1− λ
[r]
0 of submodel,

(210)

and

ℓ∗w =

⌊
N
2 ⌋ − 1, for λ

[w]
0 of submodel,

⌊N
2 ⌋ − 1 + ⌈ D̃w(⌊N

2 ⌋−1)
1−D̃w

⌉, for 1− λ
[w]
0 of submodel,

(211)

where λ
[r]
0 and λ

[w]
0 are λ0 in (208) with D̃ replaced by

D̃r and D̃w, respectively. Once the subpacketizations of both
reading and writing phases are determined based on the
given distortion budgets, each section of all submodels is
assigned a case, based on the corresponding values of ℓ∗r
and ℓ∗w, which determines the specific form of storage from
either (171) or (189). An example setting is shown in Figure 5.
Assume that the subpacketizations satisfy ℓ1 < ℓ2 < ℓ3,
and therefore, for example the middle section which has a
reading subpacketization of ℓ2 and a writing subpacketization
of ℓ1 satisfying ℓ1 < ℓ2, belongs to case 2 by definition.

33Even though there are two types of reading and writing costs (N

⌊N
2 ⌋−1+i

and N−1

⌊N
2 ⌋−1+i

), the optimization problem remains the same since the two

costs are scaled versions of one another.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1345

Fig. 5. Storage of submodels.

4) Proof of Privacy: The structures and sizes of the queries,
updates and storage are determined at the initialization stage
(when the subpacketizations are calculated and the storage
is initialized), based on the given distortion budgets in the
proposed scheme, and do not depend on each user’s updating
submodel index or the values of sparse updates. Moreover,
the queries Qn, updates Un and storage Sn in this scheme
are random noise terms that are independent of the values and
positions of the sparse updates as well as the updating sub-
model index. Therefore, the proofs presented in Section II-C.4
for the privacy of submodel index, privacy of values of updates
and security of submodels are valid in this section as well.

V. DISCUSSION AND CONCLUSION

In this paper, we first provided a basic PRUW scheme that
results in the lowest known communication cost for PRUW
and extended it to two cases, where two forms of sparsification
are considered, in relation to private FSL, which is an appli-
cation of PRUW. The first form is top r sparsification, where
only a selected number of parameters and updates are read and
written in the reading and writing phases, respectively. These
parameters/updates are chosen based on their significance.
In order to satisfy the privacy constraint on the values of
updates, we used a parameter/update permutation technique,
which ensures the privacy of the indices of the sparse updating
parameters, which in turn satisfies the privacy of the values of
updates of all parameters. This permutation technique however
requires additional noise-added permutation reversing matri-
ces to be stored in databases. Based on the structure and size
of these matrices, the scheme is able to achieve asymptotic
(large N) normalized reading and writing costs of 2r or 4r,
where r is the sparsification rate, which is typically around
10−2 to 10−3.

The second scheme considers random sparsification in pri-
vate FSL, and randomly chooses a pre-determined set of
parameters (updates) in each reading (writing) subpacket to
download (update). The problem setting is formulated in terms
of a rate-distortion characterization, and the optimum reading
and writing subpacketizations are calculated for given amounts
of distortion allowed in the reading and writing phases,
respectively. The resulting asymptotic normalized reading and

writing costs are both equal to 2r, where r = 1−D̃, where D̃
is the distortion allowed. Since a fraction of D̃ parameters of
the entire submodel are not read/updated, the sparsification rate
for this case is r = 1−D̃. It is clear that random sparsification
outperforms (or performs equally) top r sparsification in terms
of the communication cost when similar sparsification rates
are considered. However, random sparsification may not be as
effective as top r sparsification since it does not capture the
most significant variations of the gradients in the SGD process,
in relation to the underlying learning task. This may have an
adverse effect on the model convergence time as well as on
the accuracy of the trained model.

One of the main future directions of PRUW in relation
to FSL is to obtain the fundamental limits on the perfor-
mance metrics. Since the reading phase of private FSL with
non-colluding databases is identical to the problem of X-
secure T -private information retrieval with X = T = 1, there
exists a fundamental lower bound on the download cost [73].
However, in this work, we show that the total communication
cost (reading+writing) can be reduced by incurring a higher
reading cost to allow for lower writing costs. Within the scope
of cross subspace alignment, we showed that the minimum
total communication cost is achieved when the reading and
writing costs are symmetric, and when the data and noise sub-
spaces within the N dimensional space occupy approximately
N
2 dimensions each. Therefore, combining the properties of the

reading and writing phases is the main challenge in deriving
the converse results. Apart from the converse results, multi-
user PRUW, weakly private read-update-write and the presence
of adversaries and eavesdroppers in PRUW are among the
other immediate future directions.

APPENDIX

Proof of Lemma 1: Note (212) and (213), shown at the
bottom of the next page. Now consider,∏ℓ

j=1,j ̸=k(fj − αn)
fk − αn

=
(f1 − fk + fk − αn)

fk − αn

ℓ∏
j=2,j ̸=k

(fj − αn) (214)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1346 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)

∏ℓ
j=2,j ̸=k(fj − αn)

fk − αn
(215)

=
ℓ∏

j=2,j ̸=k

(fj−αn)+(f1−fk)
(f2−fk+fk−αn)

fk − αn

ℓ∏
j=3,j ̸=k

(fj−αn)

(216)

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)
ℓ∏

j=3,j ̸=k

(fj − αn)

+ (f1 − fk)(f2 − fk)

∏ℓ
j=3,j ̸=k(fj − αn)

fk − αn
(217)

...

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)
ℓ∏

j=3,j ̸=k

(fj − αn) + . . .

+
k−2∏
i=1

(fi − fk)
ℓ∏

j=k,j ̸=k

(fj − αn)

+
k−1∏
i=1

(fi − fk)

∏ℓ
j=k,j ̸=k(fj − αn)

fk − αn
(218)

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)
ℓ∏

j=3,j ̸=k

(fj − αn) + . . .

+
k−2∏
i=1

(fi − fk)
ℓ∏

j=k+1

(fj − αn)

+
k−1∏
i=1

(fi − fk)
ℓ∏

j=k+2

(fj − αn)

+
k+1∏

i=1,i̸=k

(fi − fk)

∏ℓ
j=k+2(fj − αn)

fk − αn
(219)

...

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)
ℓ∏

j=3,j ̸=k

(fj − αn) + . . .

+
k−1∏
i=1

(fi − fk)
ℓ∏

j=k+2

(fj − αn)

+
k+1∏

i=1,i̸=k

(fi − fk)
ℓ∏

j=k+3

(fj − αn) + . . .

+
ℓ−2∏

i=1,i̸=k

(fi − fk)
(fℓ−1 − fk + fk − αn)(fℓ − αn)

fk − αn

(220)

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)
ℓ∏

j=3,j ̸=k

(fj − αn) + . . .

+
k−1∏
i=1

(fi − fk)
ℓ∏

j=k+2

(fj − αn)

+
k+1∏

i=1,i̸=k

(fi − fk)
ℓ∏

j=k+3

(fj − αn) + . . .

+ (fℓ − αn)
ℓ−2∏

i=1,i̸=k

(fi − fk)

+
ℓ−1∏

i=1,i̸=k

(fi − fk)
(fℓ − fk + fk − αn)

fk − αn
(221)

=
ℓ∏

j=2,j ̸=k

(fj − αn) + (f1 − fk)
ℓ∏

j=3,j ̸=k

(fj − αn) + . . .

+
k−1∏
i=1

(fi − fk)
ℓ∏

j=k+2

(fj − αn)

+
k+1∏

i=1,i̸=k

(fi − fk)
ℓ∏

j=k+3

(fj − αn) + . . .

+ (fℓ − αn)
ℓ−2∏

i=1,i̸=k

(fi − fk) +
ℓ−1∏

i=1,i̸=k

(fi − fk)

+

∏ℓ
i=1,i̸=k(fi − fk)

fk − αn
(222)

= Pαn
(ℓ− 2) +

∏ℓ
i=1,i̸=k(fi − fk)

fk − αn
, (223)

where Pαn
(ℓ − 2) is a polynomial in αn of degree ℓ − 2.

Therefore, from (213),

Un

fk − αn
= ∆̃θ,k

(
Pαn

(ℓ− 2) +

∏ℓ
i=1,i̸=k(fi − fk)

fk − αn

)
+ Pαn(ℓ + T3 − 2), (224)

Un

fk − αn
=

∑ℓ
i=1 ∆̃θ,i

∏ℓ
j=1,j ̸=i(fj−αn)+

∏ℓ
j=1(fj−αn)

∑T3−1
i=0 αi

nZi

fk − αn
(212)

=
∆̃θ,k

∏ℓ
j=1,j ̸=k(fj−αn)
fk − αn

+

∑ℓ
i=1,i̸=k ∆̃θ,i

∏ℓ
j=1,j ̸=i(fj−αn)

fk − αn

+

∏ℓ
j=1(fj − αn)(Z0 + αnZ1 + . . . + αT3−1

n ZT3−1)
fk − αn

(213)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

VITHANA AND ULUKUS: PRUW IN FSL: COMMUNICATION EFFICIENT SCHEMES WITH AND WITHOUT SPARSIFICATION 1347

since the second and third terms of (213) result in a polynomial
in αn of degree ℓ + T3 − 2. Therefore,

Un

fk − αn
=

1
fk − αn

∆θ,k + Pαn
(ℓ + T3 − 2). (225)

■
Proof of Lemma 2:(∏

r∈F (αr − αn)∏
r∈F (αr − fk)

)
1

fk − αn

=
1

fk − αn

(∏
r∈F (αr − fk + fk − αn)∏

r∈F (αr − fk)

)
(226)

=
1

fk − αn

∏
r∈F

(
1 +

fk − αn

αr − fk

)
(227)

=
1

fk − αn
+ Pαn(|F| − 1). (228)

■

REFERENCES

[1] H. B. McMahan et al., “Communication efficient learning of deep
networks from decentralized data,” in Proc. AISTATS, Apr. 2017,
pp. 1273–1282.

[2] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, pp. 1–19, 2019.

[3] P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends Mach. Learn., vol. 14, nos. 1–2, pp. 1–210, Jun. 2021.

[4] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[5] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks
against centralized and federated learning,” in Proc. IEEE Symp. Secur.
Privacy (SP), May 2019, pp. 739–753.

[6] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proc. IEEE Symp.
Secur. Privacy (SP), May 2017, pp. 3–18.

[7] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting
unintended feature leakage in collaborative learning,” in Proc. IEEE
Symp. Secur. Privacy (SP), May 2019, pp. 691–706.

[8] N. Carlini, C. Liu, U. Erlingsson, J. Kos, and D. Song, “The secret
sharer: Evaluating and testing unintended memorization in neural net-
works,” in Proc. USENIX, Apr. 2019, pp. 267–284.

[9] J. Geiping, H. Bauermeister, H. Droge, and M. Moeller, “Inverting
gradients—How easy is it to break privacy in federated learning?” in
Proc. NeurIPS, Dec. 2020.

[10] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Proc.
NeurIPS, Dec. 2019.

[11] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi, “Beyond
inferring class representatives: User-level privacy leakage from feder-
ated learning,” in Proc. IEEE Conf. Comput. Commun., Apr. 2019,
pp. 2512–2520.

[12] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2017.

[13] C. Dwork and A. Roth, “The algorithmic foundations of differential pri-
vacy,” Found. Trends Theor. Comput. Sci., vol. 9, nos. 3–4, pp. 211–407,
2013.

[14] H. Ono and T. Takahashi, “Locally private distributed reinforcement
learning,” 2020, arXiv:2001.11718.

[15] Y. Li, T. Chang, and C. Chi, “Secure federated averaging algorithm with
differential privacy,” in Proc. IEEE 30th Int. Workshop Mach. Learn.
Signal Process. (MLSP), Sep. 2020, pp. 1–6.

[16] N. Agarwal, A. Suresh, F. Yu, S. Kumar, and H. B. McMahan, “cpSGD:
Communication-efficient and differentially-private distributed SGD,” in
Proc. NeurIPS, Dec. 2018.

[17] B. Balle, G. Barthe, and M. Gaboardi, “Privacy amplification by subsam-
pling: Tight analyses via couplings and divergences,” in Proc. NeurIPS,
Dec. 2018.

[18] M. A. Heikkilä, A. Koskela, K. Shimizu, S. Kaski, and A. Honkela,
“Differentially private cross-silo federated learning,” 2020,
arXiv:2007.05553.

[19] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning differ-
entially private recurrent language models,” in Proc. ICLR, May 2018.

[20] S. Asoodeh, W. Chen, F. P. Calmon, and A. Özgür, “Differentially private
federated learning: An information-theoretic perspective,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jul. 2021, pp. 344–349.

[21] U. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar,
and A. Thakurta, “Amplification by shuffling: From local to central
differential privacy via anonymity,” in Proc. ACM-SIAM Symp. Discrete
Algorithms, Jan. 2019.

[22] B. Balle, J. Bell, A. Gascon, and K. Nissim, “The privacy blanket of
the shuffle model,” in Proc. CRYPTO, Aug. 2019.

[23] A. Girgis et al., “Shuffled model of differential privacy in federated
learning,” in Proc. AISTAT, Apr. 2021.

[24] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” in Proc. NeurIPS, Dec. 2017.

[25] S. Ulukus, S. Avestimehr, M. Gastpar, S. A. Jafar, R. Tandon, and
C. Tian, “Private retrieval, computing, and learning: Recent progress
and future challenges,” IEEE J. Sel. Areas Commun., vol. 40, no. 3,
pp. 729–748, Mar. 2022.

[26] C. Naim, R. G. L. D’Oliveira, and S. E. Rouayheb, “Private multi-group
aggregation,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021,
pp. 1391–1396.

[27] J. Wangni et al., “Gradient sparsification for communication-efficient
distributed optimization,” in Proc. NeurIPS, Dec. 2018.

[28] S. Li, Q. Qi, J. Wang, H. Sun, Y. Li, and F. R. Yu, “GGS: General
gradient sparsification for federated learning in edge computing,” in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2020, pp. 1–4.

[29] P. Han, S. Wang, and K. K. Leung, “Adaptive gradient sparsification for
efficient federated learning: An online learning approach,” in Proc. IEEE
40th Int. Conf. Distrib. Comput. Syst. (ICDCS), Nov. 2020, pp. 300–310.

[30] S. Shi, K. Zhao, Q. Wang, Z. Tang, and X. Chu, “A convergence analysis
of distributed SGD with communication-efficient gradient sparsifica-
tion,” in Proc. 28th Int. Joint Conf. Artif. Intell., Aug. 2019, pp. 1–16.

[31] D. Alistarh, T. Hoefler, M. Johansson, S. Khirirat, N. Konstantinov, and
C. Renggli, “The convergence of sparsified gradient methods,” in Proc.
NeurIPS, Dec. 2018.

[32] Y. Sun, S. Zhou, Z. Niu, and D. Gündüz, “Time-correlated sparsification
for efficient over-the-air model aggregation in wireless federated learn-
ing,” in Proc. IEEE Int. Conf. Commun., May 2022, pp. 3388–3393.

[33] L. P. Barnes, H. A. Inan, B. Isik, and A. Özgür, “rTop-k: A statistical
estimation approach to distributed SGD,” IEEE J. Sel. Areas Inf. Theory,
vol. 1, no. 3, pp. 897–907, Nov. 2020.

[34] E. Ozfatura, K. Ozfatura, and D. Gündüz, “Time-correlated sparsification
for communication-efficient federated learning,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2021, pp. 461–466.

[35] D. Basu, D. Data, C. Karakus, and S. N. Diggavi, “Qsparse-local-SGD:
Distributed SGD with quantization, sparsification, and local compu-
tations,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 1, pp. 217–226,
May 2020.

[36] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“FedPAQ: A communication-efficient federated learning method with
periodic averaging and quantization,” in Proc. AISTATS, Aug. 2020.

[37] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. NeurIPS, Dec. 2017.

[38] N. Shlezinger, M. Chen, Y. Eldar, H. Poor, and S. Cui, “Federated learn-
ing with quantization constraints,” in Proc. IEEE ICASSP, May 2020,
pp. 8851–8855.

[39] C. Niu et al., “Billion-scale federated learning on mobile clients:
A submodel design with tunable privacy,” in Proc. 26th Annu. Int. Conf.
Mobile Comput. Netw., Sep. 2020, pp. 1–12.

[40] C. Niu et al., “Secure federated submodel learning,” 2019,
arXiv:1911.02254.

[41] M. Kim and J. Lee, “Information-theoretic privacy in federated submodel
learning,” ICT Exp., vol. 9, no. 3, pp. 415–419, Jun. 2023.

[42] Z. Jia and S. A. Jafar, “X-secure T -private federated submodel learn-
ing,” in Proc. IEEE Int. Conf. Commun., Jun. 2021, pp. 1–6.

[43] S. Vithana and S. Ulukus, “Efficient private federated submodel learn-
ing,” in Proc. IEEE Int. Conf. Commun., May 2022, pp. 3394–3399.

[44] Z. Jia and S. A. Jafar, “X-secure T -private federated submodel learning
with elastic dropout resilience,” IEEE Trans. Inf. Theory, vol. 68, no. 8,
pp. 5418–5439, Aug. 2022.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

1348 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

[45] S. Vithana and S. Ulukus, “Private read update write (PRUW) with
storage constrained databases,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jun. 2022, pp. 2391–2396.

[46] S. Vithana and S. Ulukus, “Private federated submodel learning with
sparsification,” in Proc. IEEE Inf. Theory Workshop (ITW), Nov. 2022,
pp. 410–415.

[47] S. Vithana and S. Ulukus, “Rate distortion tradeoff in private read update
write in federated submodel learning,” in Proc. 56th Asilomar Conf.
Signals, Syst., Comput., Oct. 2022, pp. 210–214.

[48] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965–981, Nov. 1998.

[49] H. Sun and S. A. Jafar, “The capacity of private information retrieval,”
IEEE Trans. Inf. Theory, vol. 63, no. 7, pp. 4075–4088, Jul. 2017.

[50] I. Samy, M. Attia, R. Tandon, and L. Lazos, “Asymmetric leaky
private information retrieval,” IEEE Trans. Inf. Theory, vol. 67, no. 8,
pp. 5352–5369, Aug. 2021.

[51] C. Tian, H. Sun, and J. Chen, “Capacity-achieving private information
retrieval codes with optimal message size and upload cost,” IEEE Trans.
Inf. Theory, vol. 65, no. 11, pp. 7613–7627, Nov. 2019.

[52] S. Vithana, K. Banawan, and S. Ulukus, “Semantic private information
retrieval,” IEEE Trans. Inf. Theory, vol. 68, no. 4, pp. 2635–2652,
Apr. 2022.

[53] H. Sun and S. A. Jafar, “The capacity of robust private information
retrieval with colluding databases,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 2361–2370, Apr. 2018.

[54] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from coded databases,” IEEE Trans. Inf. Theory, vol. 64, no. 3,
pp. 1945–1956, Mar. 2018.

[55] H. Sun and S. A. Jafar, “Private information retrieval from MDS coded
data with colluding servers: Settling a conjecture by Freij–Hollanti et
al.,” IEEE Trans. Inf. Theory, vol. 64, no. 2, pp. 1000–1022, Feb. 2018.

[56] L. Holzbaur, R. Freij-Hollanti, J. Li, and C. Hollanti, “Towards the
capacity of private information retrieval from coded and colluding
servers,” IEEE Trans. Inf. Theory, vol. 68, no. 1, pp. 517–537, Jan. 2022.

[57] S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and A. Sprintson,
“Private information retrieval with side information,” IEEE Trans. Inf.
Theory, vol. 66, no. 4, pp. 2032–2043, Apr. 2020.

[58] S. Li and M. Gastpar, “Single-server multi-message private information
retrieval with side information: The general cases,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jun. 2020, pp. 1083–1088.

[59] K. Banawan and S. Ulukus, “The capacity of private information
retrieval from Byzantine and colluding databases,” IEEE Trans. Inf.
Theory, vol. 65, no. 2, pp. 1206–1219, Feb. 2019.

[60] H. Yang, W. Shin, and J. Lee, “Private information retrieval for secure
distributed storage systems,” IEEE Trans. Inf. Forensics Security, vol. 13,
no. 12, pp. 2953–2964, Dec. 2018.

[61] Z. Jia and S. A. Jafar, “X-secure T -private information retrieval from
MDS coded storage with Byzantine and unresponsive servers,” IEEE
Trans. Inf. Theory, vol. 66, no. 12, pp. 7427–7438, Dec. 2020.

[62] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and
C. Hollanti, “Private information retrieval from coded storage systems
with colluding, Byzantine, and unresponsive servers,” IEEE Trans. Inf.
Theory, vol. 65, no. 6, pp. 3898–3906, Jun. 2019.

[63] J. Xu and Z. Zhang, “Building capacity-achieving PIR schemes with
optimal sub-packetization over small fields,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 1749–1753.

[64] S. Kumar, H. Lin, E. Rosnes, and A. G. I. Amat, “Achieving max-
imum distance separable private information retrieval capacity with
linear codes,” IEEE Trans. Inf. Theory, vol. 65, no. 7, pp. 4243–4273,
Jul. 2019.

[65] T. H. Chan, S. Ho, and H. Yamamoto, “Private information retrieval for
coded storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2015,
pp. 2842–2846.

[66] A. Fazeli, A. Vardy, and E. Yaakobi, “Codes for distributed PIR with
low storage overhead,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2015, pp. 2852–2856.

[67] H. Sun and S. A. Jafar, “Multiround private information retrieval:
Capacity and storage overhead,” IEEE Trans. Inf. Theory, vol. 64, no. 8,
pp. 5743–5754, Aug. 2018.

[68] H. Sun and S. A. Jafar, “The capacity of symmetric private informa-
tion retrieval,” IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 322–329,
Jan. 2019.

[69] K. Banawan and S. Ulukus, “Multi-message private information
retrieval: Capacity results and near-optimal schemes,” IEEE Trans. Inf.
Theory, vol. 64, no. 10, pp. 6842–6862, Oct. 2018.

[70] Q. Wang, H. Sun, and M. Skoglund, “The capacity of private information
retrieval with eavesdroppers,” IEEE Trans. Inf. Theory, vol. 65, no. 5,
pp. 3198–3214, May 2019.

[71] Q. Wang, H. Sun, and M. Skoglund, “Cache-aided private information
retrieval,” IEEE Trans. Inf. Theory, vol. 65, no. 5, pp. 3198–3214,
May 2019.

[72] Z. Wang, K. Banawan, and S. Ulukus, “Private set intersection: A multi-
message symmetric private information retrieval perspective,” IEEE
Trans. Inf. Theory, vol. 68, no. 3, pp. 2001–2019, Mar. 2022.

[73] Z. Jia, H. Sun, and S. A. Jafar, “Cross subspace alignment and the
asymptotic capacity of X-secure T -private information retrieval,” IEEE
Trans. Inf. Theory, vol. 65, no. 9, pp. 5783–5798, Sep. 2019.

[74] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–3413,
Sep. 2019.

[75] C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst.
Tech. J., vol. 28, no. 4, pp. 656–715, Oct. 1949.

[76] A. Yener and S. Ulukus, “Wireless physical-layer security: Lessons
learned from information theory,” Proc. IEEE, vol. 103, no. 10,
pp. 1814–1825, Oct. 2015.

[77] J. Xie and S. Ulukus, “Secure degrees of freedom of multiuser networks:
One-time-pads in the air via alignment,” Proc. IEEE, vol. 103, no. 10,
pp. 1857–1873, Oct. 2015.

Sajani Vithana (Member, IEEE) received the B.Sc. degree in electrical and
electronic engineering from the University of Peradeniya, Sri Lanka, in 2017.
She is currently pursuing the Ph.D. degree with the Department of Electrical
and Computer Engineering, University of Maryland, College Park, MD, USA.
Her research interests include information theory, private information retrieval,
distributed coded computing, and federated learning.

Sennur Ulukus (Fellow, IEEE) received the B.S. and M.S. degrees in electri-
cal and electronics engineering from Bilkent University and the Ph.D. degree
in electrical and computer engineering from WINLAB, Rutgers University.

She is currently the Anthony Ephremides Professor of information sciences
and systems with the Department of Electrical and Computer Engineering,
University of Maryland (UMD), College Park, MD, USA, where she also
holds a joint appointment with the Institute for Systems Research (ISR).
Prior to joining UMD, she was a Senior Technical Staff Member at AT&T
Labs-Research. She is a Distinguished Scholar-Teacher with the University
of Maryland. Her research interests include information theory, wireless
communications, machine learning, signal processing and networks; with
recent focus on private information retrieval, age of information, group testing,
distributed coded computing, machine learning for wireless, energy harvesting
communications, physical layer security, and wireless energy and information
transfer.

Dr. Ulukus received the 2003 IEEE Marconi Prize Paper Award in Wireless
Communications, the 2019 IEEE Communications Society Best Tutorial Paper
Award, the 2020 IEEE Communications Society Women in Communica-
tions Engineering (WICE) Outstanding Achievement Award, the 2020 IEEE
Communications Society Technical Committee on Green Communications
and Computing (TCGCC) Distinguished Technical Achievement Recognition
Award, the 2005 NSF CAREER Award, the 2011 ISR Outstanding Systems
Engineering Faculty Award, and the 2012 ECE George Corcoran Outstanding
Teaching Award. She has been an Area Editor of the IEEE TRANSACTIONS
ON WIRELESS COMMUNICATIONS since 2019 and a Senior Editor of the
IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING
since 2020. She was an Area Editor of the IEEE TRANSACTIONS ON GREEN
COMMUNICATIONS AND NETWORKING from 2016 to 2020, an Editor of
the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS Series
on Green Communications and Networking from 2015 to 2016 and the
IEEE TRANSACTIONS ON COMMUNICATIONS from 2003 to 2007, and an
Associate Editor of the IEEE TRANSACTIONS ON INFORMATION THEORY
from 2007 to 2010. She was a Guest Editor of the IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS in 2008, 2015, and 2021, Journal
of Communications and Networks in 2012, and the IEEE TRANSACTIONS
ON INFORMATION THEORY in 2011. She is the TPC Chair of the 2021 IEEE
Globecom, and was a TPC Co-Chair of the 2019 IEEE ITW, 2017 IEEE
ISIT, 2016 IEEE Globecom, 2014 IEEE PIMRC, and 2011 IEEE CTW.
She was a Distinguished Lecturer of the IEEE Information Theory Society
from 2018 to 2019.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on March 24,2024 at 21:07:55 UTC from IEEE Xplore. Restrictions apply.

