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Yi-Peng Wei , Student Member, IEEE, Karim Banawan , Member, IEEE, and Sennur Ulukus , Fellow, IEEE

Abstract— We consider the problem of private information
retrieval (PIR) of a single message out of K messages from N
replicated and non-colluding databases where a cache-enabled
user (retriever) of cache-size M possesses side information in
the form of full messages that are partially known to the
databases. In this model, the user and the databases engage in
a two-phase scheme, namely, the prefetching phase where the
user acquires side information and the retrieval phase where the
user downloads desired information. In the prefetching phase,
the user receives mn full messages from the nth database, under
the cache memory size constraint

∑N
n=1 mn ≤ M. In the retrieval

phase, the user wishes to retrieve a message (which is not
present in its memory) such that no individual database learns
anything about the identity of the desired message. In addition,
the identities of the side information messages that the user
did not prefetch from a database must remain private against
that database. Since the side information provided by each
database in the prefetching phase is known by the providing
database and the side information must be kept private against
the remaining databases, we coin this model as partially known
private side information. We characterize the capacity of the
PIR with partially known private side information to be C =(

1 + 1
N + · · · + 1

N K−M−1

)−1 = 1− 1
N

1−( 1
N )K−M . Interestingly, this

result is the same if none of the databases knows any of the
prefetched side information, i.e., when the side information is
obtained externally, a problem posed by Kadhe et al. and settled
by Chen-Wang-Jafar recently. Thus, our result implies that there
is no loss in using the same databases for both prefetching and
retrieval phases.

Index Terms— Private information retrieval, PIR capacity, side
information, caching.

I. INTRODUCTION

THE private information retrieval (PIR) problem is a
canonical problem to study privacy issues that arise when

information is downloaded (retrieved) from public databases.
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Since its first formulation by Chor et al. in [1], the PIR
problem has become a central research topic in the computer
science literature, see e.g., [2]–[5]. In the classical setting of
PIR in [1], a user wishes to retrieve a single message (or a file)
out of K messages replicated across N non-communicating
databases without leaking any information about the identity
of the retrieved message. To that end, the user submits a query
to each database. Each database responds truthfully with an
answer string. The user reconstructs the desired message from
the collected answer strings. Trivially, the user can download
the entire database and incur a linear (in number of messages)
download cost, but this retrieval strategy is highly inefficient.
The efficiency of a PIR scheme is measured by the normalized
download cost, which is the cost of privately downloading one
bit of the desired message.1 The goal of the PIR problem is
to devise the most efficient retrieval strategy under the privacy
and decodability constraints.

The PIR problem has received attention in recent years
in the information and coding theory literatures, see
e.g., [6]–[11]. In the leading work of Sun-Jafar [12], the clas-
sical PIR problem is re-formulated to conform with the
conventional information-theoretic arguments, and the notion
of PIR capacity is introduced, which is defined as the supre-
mum of retrieval rates over all achievable retrieval schemes.
Reference [12] characterizes the capacity of the classical PIR

model to be C =
(

1 + 1
N + · · · + 1

N K−1

)−1
using a greedy

achievable scheme that is closely related to blind interference
alignment [13] and an induction-based converse argument.
Following the work of Sun-Jafar [12], the capacity of many
interesting variants of the classical PIR model have been
investigated, such as, PIR from colluding databases, robust
PIR, symmetric PIR, PIR from MDS-coded databases, PIR
for arbitrary message lengths, multi-round PIR, multi-message
PIR, PIR from Byzantine databases, secure symmetric PIR
with adversaries, and their several combinations [14]–[28].

In this paper, we consider the problem of PIR with partially
known private side information. Our work is most closely
related to [29]–[32].2 These works investigate the PIR prob-
lem when the user (retriever) possesses some form of side
information about the contents of the databases. However,
the models of [29]–[32] differ in three important aspects,
namely, 1) the structure of the side information, 2) the presence

1Since the upload cost does not scale with the message size, we do not
consider the upload cost here.

2A parallel line of work that studies privacy issues of requests and
side information in index coding based broadcast systems can be found
in [33], [34].
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or absence of privacy constraints on the side information,
and 3) the databases’ awareness of the side information at
its initial acquisition. Here, structure of the side information
refers to whether the side information is in the form of
full messages or parts of messages or whether messages
are mixed through functions (coded/uncoded); privacy of the
side information refers to whether the user further aims to
keep the side information private from the databases; and
databases’ awareness of the side information refers to whether
the databases knew the initially prefetched side information.

Specifically, reference [29] studies the capacity of the
cache-aided PIR where the user caches r L K bits in the form of
any arbitrary function of the K messages, where L is the mes-
sage size, and 0 ≤ r ≤ 1 is the caching ratio. Reference [29]
assumes that the cache content is perfectly known by all the
databases, and hence there is no need to protect the privacy
of the cached content. Reference [29] determines the optimal
download cost for this model to be D∗(r) = 1

C(r) = (1 − r)(
1 + 1

N + · · · + 1
N K−1

)
using a memory-sharing achievable

scheme and a converse that utilizes Han’s inequality. This
conclusion is somewhat pessimistic in that the user cannot
exploit the cached content as useful side information during
PIR to reduce the download cost, since the databases are
fully aware of it; the optimum D∗(r) formula indicates that
the user should download the uncached part of the content,
i.e., (1−r) fraction, via the optimum PIR scheme in [12]. This
result motivates [30], [31] to study the other extreme when the
databases are completely unaware of the side information at
its initial acquisition. References [30] and [31] differ in terms
of the structure of the cached content: [30] considers the case
where r K full messages are cached, and [31] considers the
case where a random r fraction of the symbols of each of
K messages is cached. In this case, [31] shows a significant
reduction in the download cost over [29], as the user can
now leverage the cached bits as side information, since they
are unknown to the databases. In [31], there is no privacy
constraint on the cached content.

Reference [30] further introduces another model where the
cached content (in the form of full messages) which is
unknown to the databases at the time of initial prefetching,
must remain unknown throughout the PIR, i.e., the queries
of the user should not leak any information about the cached
content to the databases. The exact capacity for this problem

is settled in [32] to be C =
(

1 + 1
N + · · · + 1

N K−M−1

)−1
.

The optimal achievable scheme in this case starts from the
traditional achievable scheme without side information in [12]
and reduces the download cost by utilizing the reconstruction
property of MDS codes.

In this paper, we take a deeper look at the issue of
awareness or otherwise unawareness of the databases about
the cached content at its initial acquisition. We first note
that it is practically challenging to make the side information
completely unknown to the databases at its initial acquisition
as assumed in [30]–[32]. One way to do this could be to
employ one of the databases for prefetching the side infor-
mation and exclude it from the retrieval process. Therefore,
for the remaining N − 1 databases, the side information is

completely unknown. This solution is strictly sub-optimal as
the capacity expression in [32] (shown as C in the previous
paragraph) is monotonically decreasing in N . An alternative
solution could be to devise a refreshing mechanism that
ensures that the cached content is essentially random from the
perspective of each database [29], which may be challenging
to implement. We also note that the other extreme of the
problem, where the databases are fully aware of the cached
content [29], is discouraging as the user cannot benefit from
the cached side information. Therefore, a natural model is to
use the databases for both prefetching and retrieval phases,
such that the databases gain partial knowledge about the side
information available to the user, which makes it possible
for the user to exploit the remaining side information that is
unknown to each individual database to reduce the download
cost during the retrieval process. This poses the following
questions: Can we propose efficient joint prefetching-retrieval
strategies that exploit the limited knowledge of each database
to drive down the download cost? How much is the loss from
the full unawareness case in [30], [32]?

In this paper, we investigate the PIR problem when the
user and the databases engage in a two-phase scheme, namely,
prefetching phase and retrieval phase. In the prefetching phase,
the user caches mn full messages out of the K messages from
the nth database under a total cache memory size constraint∑N

n=1 mn ≤ M . Hence, each database has a partial knowledge
about the side information possessed by the user, namely,
the part of the side information that this database has provided
during the prefetching phase. In the retrieval phase, the user
wants to retrieve a message (which is not present in its
memory) without leaking any information to any individual
database about the desired message or the remaining side
information messages that are unknown to each database. The
goal of this work is to design a joint prefetching-retrieval
scheme that minimizes the download cost in the retrieval
phase.

To that end, we first derive a general lower bound for
the normalized download cost that is independent of the
prefetching strategy.3 Then, we prove that this bound is
attainable using two achievable schemes. The first achievable
scheme, which is proposed in [32] for completely unknown
side information, is a valid achievable scheme for our problem
with partially known side information for any prefetching
strategy.4 We provide a second achievable scheme for the case
of uniform prefetching, i.e., mn = M

N ∈ N, which requires
smaller sub-packetization and smaller field size for realizing
MDS codes. While the first achievable scheme [32] requires
a message size of L = N K , the second achievable scheme
proposed here requires a message size of L = N K− M

N , which
scales down the message size by an exponential factor N

M
N .

This, in turn, simplifies the achievable scheme and minimizes
the total number of downloaded bits without sacrificing from

3The lower bound in [32] cannot be directly applied to this work. Here, each
database knows the messages that are prefetched from themselves. Therefore,
the user cannot further utilize these prefetched side information messages.
However, at the same time, the user does not need to keep the prefetched
messages private, since each database already knows them.

4We thank Dr. Hua Sun for pointing this out.
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the capacity. We prove that the exact capacity of this problem

is C =
(

1 + 1
N + · · · + 1

N K−M−1

)−1
. Surprisingly, this is

the same capacity expression for the PIR problem when the
databases are completely unaware of the side information
possessed by the user as found in [32] recently. Therefore,
our result implies that there is no loss in the capacity if the
same databases are employed in both prefetching and retrieval
phases.

II. SYSTEM MODEL

We consider a classic PIR problem with K independent
messages W1, . . . , WK , where each message consists of L
symbols with each symbol over field Fq ,5

H (W1) = · · · = H (WK ) = L, (1)

H (W1, . . . , WK ) = H (W1) + · · · + H (WK ). (2)

There are N non-communicating databases, and each database
stores all the K messages. The user (retriever) has a local
cache memory which can store up to M messages.

There are two phases: a prefetching phase and a retrieval
phase. In the prefetching phase, ∀n ∈ [N], where [N] =
{1, 2, . . . , N}, the user caches mn out of total K messages
from the nth database. We denote the indices of the cached
messages from the nth database as Hn . Therefore, |Hn| = mn .
We denote the indices of all cached messages as H,

H =
N⋃

n=1

Hn, (3)

where Hn1 ∩ Hn2 = ∅, if n1 �= n2. Due to the cache memory
size constraint, we require

|H| =
N∑

n=1

mn ≤ M. (4)

Since the user caches mn messages from the nth database,
Hn is known to the nth database. Since the databases do
not communicate with each other, Hn is unknown to the
other databases. We use m = (m1, . . . , mN ) to represent the
prefetching phase. After the prefetching phase, the user learns
|H| messages, denoted as WH = {Wi1 , . . . , Wi|H| }. We refer to
WH as partially known private side information.

In the retrieval phase, the user privately generates a desired
message index θ ∈ [K ]\H, and wishes to retrieve message Wθ

such that no database knows which message is retrieved. Since
the desired message index θ and cached message indices H

are independent of the message contents, for random variables
θ , H, and W1, . . . , WK , we have

H (θ, H, W1, . . . , WK )

= H (θ, H) + H (W1) + · · · + H (WK ). (5)

In order to retrieve Wθ , the user sends N queries
Q[θ,H]

1 , . . . , Q[θ,H]
N to the N databases, where Q[θ,H]

n is the
query sent to the nth database for message Wθ given the user
has partially known private side information WH. The queries

5Here, we use logarithm with respect to base q in the entropy functions.

are generated according to H, which is independent of the
realizations of the K messages. Therefore, we have

I (W1, . . . , WK ; Q[θ,H]
1 , . . . , Q[θ,H]

N ) = 0. (6)

To ensure that individual databases do not know which
message is retrieved and also do not know the cached mes-
sages from other databases, i.e., to guarantee the privacy of
(θ, H\Hn), we need to satisfy the following privacy constraint,
∀n ∈ [N], ∀H, H

	 such that |H| = |H	| ≤ M , Hn ⊂ H,
Hn ⊂ H

	, and ∀θ ∈ [K ] \ H, ∀θ 	 ∈ [K ] \ H
	,

(Q[θ,H]
n , A[θ,H]

n , W1, . . . , WK , Hn)

∼ (Q[θ 	,H	]
n , A[θ 	,H	]

n , W1, . . . , WK , Hn), (7)

where A ∼ B means that A and B are identically distributed.
Upon receiving the query Q[θ,H]

n , the nth database replies
with an answering string A[θ,H]

n , which is a function of Q[θ,H]
n

and all the K messages. Therefore, ∀θ ∈ [K ] \ H,∀n ∈ [N],
H (A[θ,H]

n |Q[θ,H]
n , W1, . . . , WK ) = 0. (8)

After receiving the answering strings A[θ,H]
1 , . . . , A[θ,H]

N
from all the N databases, the user needs to decode the desired
message Wθ reliably. By using Fano’s inequality, we have the
following reliability constraint

H
(
Wθ |WH,H, Q[θ,H]

1 , . . . , Q[θ,H]
N , A[θ,H]

1 , . . . , A[θ,H]
N

)
=o(L),

(9)

where o(L) denotes a function such that o(L)
L → 0 as L → ∞.

For fixed N , K , and pretching scheme m = (m1, . . . , mN ),
a pair (D(m), L(m)) is achievable if there exists a PIR scheme
for messages of size L(m) symbols long with partially known
private side information satisfying the privacy constraint (7)
and the reliability constraint (9), where D(m) represents the
expected number of downloaded symbols (over all the queries)
from the N databases via the answering strings A[θ,H]

1:N , where
A[θ,H]

1:N = (A[θ,H]
1 , . . . , A[θ,H]

N ), i.e.,

D(m) =
N∑

n=1

H
(

A[θ,H]
n

)
. (10)

In this work, for fixed N , K , and M , we aim to characterize
the optimal normalized download cost D∗, where

D∗ = inf
m:(4)

{
D(m)

L(m)
: (D(m), L(m)) is achievable

}
. (11)

III. MAIN RESULTS

We characterize the exact normalized download cost for the
PIR problem with partially known private side information as
shown in the following theorem.

Theorem 1 In the PIR problem with partially known private
side information under the cache memory size constraint |H| ≤
M, the optimal normalized download cost is

D∗ = 1 + 1

N
+ · · · + 1

N K−M−1 (12)

= 1 − ( 1
N )K−M

1 − 1
N

. (13)
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The converse proof for Theorem 1 is given in Section IV,
and the achievability proof for Theorem 1 is given in
Section V. Theorem 1 does not assume any particular property
for the prefetching strategy, i.e., m is arbitrary except for
satisfying the memory size constraint. We have a few remarks.

Remark 1 Theorem 1 implies that C = 1
D∗ = 1− 1

N

1−( 1
N )K−M .

Surprisingly, this capacity expression is exactly the same as
the capacity for the PIR problem with completely unknown
private side information in [32]. This implies that there is no
loss in capacity due to employing the same databases for
both prefetching and retrieval phases. The reason for this
phenomenon is that although each database has a partial
knowledge about some of the cached messages at the user,
the privacy constraint on this known side information is
relaxed.

Remark 2 Although Theorem 1 shows no loss in capacity
compared to the setting in [32], the privacy constraints for
these two settings are slightly different. Here, since each
database knows the mn messages that were prefetched from
it during the prefetching phase, the privacy constraint for the
desired message is over the remaining K−mn messages during
the retrieval phase. However, in [32], since the databases are
unaware of the prefetched messages, the privacy constraint
for the desired message is over all K messages during the
retrieval phase.

Remark 3 The normalized download cost in Theorem 1 is
the same as the normalized download cost for the classical
PIR problem [12] if the number of messages is K − M. That
is, a cache of size M messages effectively reduces the total
number of messages by M. Noting that the download cost
in [12] monotonically increases in the number of messages,
the effective reduction in the number of messages by the cache
size results in a significant reduction in the download cost due
to the presence of side information at the user even though it
is partially known by the databases and it needs to be kept
private against other databases.

Remark 4 The optimal prefetching strategy exploits the entire
cache memory of the user as the capacity expression is
monotonically increasing in M.

Remark 5 In Section V, we present the capacity achieving
schemes for the partially known private side information.
We note that, in general the PIR scheme in [32] is a valid
achievable scheme for our problem as well. Nevertheless,
in the special case of uniform prefetching, i.e., mn = M

N =
m ∈ N, we provide a different achievable scheme that exploits
the prefetching uniformity to work with message size L =
N K−m = N K− M

N in contrast to L = N K needed for the
scheme in [32], i.e., the message size is decreased by an
exponential factor N

M
N . Furthermore, we note that although

both schemes need an MDS code to reduce the number of
downloaded equations, the field size needed to realize this
MDS code is significantly smaller with our scheme (if M

N ∈ N)

compared with the field size needed in the scheme in [32]. This
implies that although uniform prefetching does not affect the
PIR capacity, it significantly simplifies the achievable scheme.

IV. CONVERSE PROOF

In this section, we derive a general lower bound for the
normalized download cost D∗ given in (11). We extend the
techniques presented in [12], [32] to the PIR problem with
partially known private side information.

For the prefetching vector m = (m1, . . . , mN ) satisfy-
ing (4), we note that satisfying the memory size constraint with
equality leads to a valid lower bound on (11). Consequently,
we first consider the case

∑N
n=1 mn = M̃ ≤ M , i.e., we study

the case when the user learns M̃ messages after the prefetching
phase. Since we do not specify the prefetching strategy m in
advance, the following lower bound is valid for all m such that∑N

n=1 mn = M̃ . Without loss of generality, we relabel the M̃
cached messages as W1, W2, . . . , WM̃ , i.e., H = {1, 2, . . . , M̃}
and WH = W1:M̃ . We first need the following lemma, which
characterizes a lower bound on the length of the undesired
portion of the answering strings as a consequence of the
privacy constraint on the retrieved message.

Lemma 1 (Interference lower bound) For the PIR with
partially known private side information, the interference from
undesired messages within the answering strings, D − L,
is lower bounded by,

D − L + o(L)

≥ I
(

WM̃+2:K ; H, Q[M̃+1,H]
1:N , A[M̃+1,H]

1:N |WH, WM̃+1

)
.

(14)

If the privacy constraint is absent, the user downloads only
L symbols for the desired message, however, when the privacy
constraint is present, it should download D symbols. The
difference between D and L, i.e., D − L, corresponds to the
undesired portion of the answering strings. Note that Lemma 1
is an extension of [12, Lemma 5] if M̃ = 0, i.e., the user
has no partially known private side information. Lemma 1
differs from its counterpart in [31, Lemma 1] in two aspects,
namely, the left hand side is D(r) − L(1 − r) in [31] as
the user requests to download the uncached bits only, and
the bound in [31, Lemma 1] constructs K − 1 distinct lower
bounds by changing k in contrast to one bound here as it
always starts from WM̃+2. Finally, we note that a similar
argument to Lemma 1 can be implied from [32].

Proof: We start with the right hand side of (14),

I
(

WM̃+2:K ; H, Q[M̃+1,H]
1:N , A[M̃+1,H]

1:N |WH, WM̃+1

)
= I

(
WM̃+2:K ; H, Q[M̃+1,H]

1:N , A[M̃+1,H]
1:N , WM̃+1|WH

)
− I

(
WM̃+2:K ; WM̃+1|WH

)
. (15)
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For the first term on the right hand side of (15), we have

I
(

WM̃+2:K ; H, Q[M̃+1,H]
1:N , A[M̃+1,H]

1:N , WM̃+1|WH

)
= I

(
WM̃+2:K ; H, Q[M̃+1,H]

1:N , A[M̃+1,H]
1:N |WH

)
+ I

(
WM̃+2:K ; WM̃+1|H, Q[M̃+1,H]

1:N , A[M̃+1,H]
1:N ,WH

)
(16)

(9)= I
(

WM̃+2:K ; H, Q[M̃+1,H]
1:N , A[M̃+1,H]

1:N |WH

)
+ o(L) (17)

(5),(6)= I
(

WM̃+2:K ; A[M̃+1,H]
1:N |WH, H, Q[M̃+1,H]

1:N
)

+ o(L)

(18)

= H
(

A[M̃+1,H]
1:N |WH, H, Q[M̃+1,H]

1:N
)

− H
(

A[M̃+1,H]
1:N |WH, H, Q[M̃+1,H]

1:N , WM̃+2:K
)

+ o(L)

(19)

(9)= H
(

A[M̃+1,H]
1:N |WH, H, Q[M̃+1,H]

1:N
)

− H
(

A[M̃+1,H]
1:N , WM̃+1|WH, H, Q[M̃+1,H]

1:N , WM̃+2:K
)

+ o(L) (20)

≤ H
(

A[M̃+1,H]
1:N |WH, H, Q[M̃+1,H]

1:N
)

− H
(

WM̃+1|WH, H, Q[M̃+1,H]
1:N , WM̃+2:K

)
+ o(L) (21)

(5),(6)= H
(

A[M̃+1,H]
1:N |WH, H, Q[M̃+1,H]

1:N
)

− H
(
WM̃+1|WH, WM̃+2:K

) + o(L) (22)

= H
(

A[M̃+1,H]
1:N |WH, H, Q[M̃+1,H]

1:N
)

− L + o(L) (23)

≤ H
(

A[M̃+1,H]
1:N

)
− L + o(L) (24)

≤ D − L + o(L), (25)

where (17), (20) follow from the decodability of WM̃+1

given
(
H, Q[M̃+1,H]

1:N , A[M̃+1,H]
1:N ,WH

)
, (18) follows from the

independence of WM̃+2:K and
(
H, Q[M̃+1,H]

1:N
)

, (22) follows

from the independence of WM̃+1 and
(
H, Q[M̃+1,H]

1:N
)

, and (25)
follows from the independence bound.

For the second term on the right hand side of (15), we have

I
(
WM̃+2:K ; WM̃+1|WH

)
= H

(
WM̃+1|WH

) − H
(
WM̃+1|WH, WM̃+2:K

)
(26)

= L − L = 0. (27)

Combining (15), (25), and (27) yields (14). �
In the following lemma, we prove an inductive relation for

the mutual information term on the right hand side of (14).

Lemma 2 (Induction lemma) For all k ∈ {M̃ + 2, . . . , K },
the mutual information term in Lemma 1 can be inductively

lower bounded as,

I
(

Wk:K ; H, Q[k−1,H]
1:N , A[k−1,H]

1:N |WH, WM̃+1:k−1

)
≥ 1

N
I
(

Wk+1:K ; H, Q[k,H]
1:N , A[k,H]

1:N |WH, WM̃+1:k
)

+ L − o(L)

N
. (28)

Lemma 2 is a generalization of [12, Lemma 6] to our
setting. The main difference between Lemma 2 and [32] is
that in order to apply the partial privacy constraint, the ran-
dom variable H should be used in its local form Hn as it
corresponds to the partial knowledge of the nth database.

Proof: We start with the left hand side of (28),

I
(

Wk:K ; H, Q[k−1,H]
1:N , A[k−1,H]

1:N |WH, WM̃+1:k−1

)

= 1

N
× N

× I
(

Wk:K ; H, Q[k−1,H]
1:N , A[k−1,H]

1:N |WH, WM̃+1:k−1

)
(29)

≥ 1

N

N∑
n=1

I
(

Wk:K ; Hn, Q[k−1,H]
n , A[k−1,H]

n

|WH, WM̃+1:k−1

)
(30)

≥ 1

N

N∑
n=1

I
(

Wk:K ; Q[k−1,H]
n , A[k−1,H]

n

|WH, WM̃+1:k−1, Hn

)
(31)

(7)= 1

N

N∑
n=1

I
(

Wk:K ; Q[k,H]
n , A[k,H]

n

|WH, WM̃+1:k−1, Hn

)
(32)

(5),(6)= 1

N

N∑
n=1

I
(

Wk:K ; A[k,H]
n |WH, WM̃+1:k−1, Hn, Q[k,H]

n

)
(33)

(8)= 1

N

N∑
n=1

H
(

A[k,H]
n |WH, WM̃+1:k−1, Hn, Q[k,H]

n

)
(34)

≥ 1

N

N∑
n=1

H
(

A[k,H]
n |WH, WM̃+1:k−1, H, Q[k,H]

1:N , A[k,H]
1:n−1

)
(35)

(8)= 1

N

N∑
n=1

I
(

Wk:K ; A[k,H]
n

|WH, WM̃+1:k−1, H, Q[k,H]
1:N , A[k,H]

1:n−1

)
(36)

= 1

N
I
(

Wk:K ; A[k,H]
1:N |WH, WM̃+1:k−1, H, Q[k,H]

1:N
)

(37)

(5),(6)= 1

N
I
(

Wk:K ; H, Q[k,H]
1:N , A[k,H]

1:N |WH, WM̃+1:k−1

)
(38)
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(9)= 1

N
I
(

Wk:K ; Wk, H, Q[k,H]
1:N , A[k,H]

1:N |WH, WM̃+1:k−1

)
− o(L)

N
(39)

= 1

N
I
(
Wk:K ; Wk|WH, WM̃+1:k−1

)
+ 1

N
I
(

Wk:K ; H, Q[k,H]
1:N , A[k,H]

1:N |WH, WM̃+1:k
)

− o(L)

N
(40)

= 1

N
I
(

Wk+1:K ; H, Q[k,H]
1:N , A[k,H]

1:N |WH, WM̃+1:k
)

+ L − o(L)

N
, (41)

where (30) follows from the non-negativity of mutual infor-
mation, (32) follows from the privacy constraint, (33) follows
from the independence of the messages and the queries, (34),
(36) follow from the fact that answer strings are deterministic
functions of the messages and the queries, (35) follows from
the fact that conditioning reduces entropy, (38) follows from
the independence of Wk:K and

(
H, Q[k,H]

1:N
)

, (39) follows from
the reliability constraint on Wk , and (41) follows from the
independence of Wk and (WH, WM̃+1:k−1). �

Now, we are ready to derive the lower bound for arbitrary
K , N , and M̃ . This can be obtained by applying Lemma 1
and Lemma 2 successively.

Lemma 3 For fixed N, K , and M̃ ≤ M, we have

D ≥ L

(
1 + 1

N
+ · · · + 1

N K−M̃−1

)
− o(L). (42)

Proof: We have

D
(14)≥ L + I

(
WM̃+2:K ; H, Q[M̃+1,H]

1:N , A[M̃+1,H]
1:N

|WH, WM̃+1

)
− o(L) (43)

(28)≥ L + L

N
+ 1

N
I
(

WM̃+3:K ; H, Q[M̃+2,H]
1:N , A[M̃+2,H]

1:N

|WH, WM̃+1:M̃+2

)
− o(L) (44)

(28)≥ L + L

N
+ L

N2

+ 1

N
I
(

WM̃+4:K ; H, Q[M̃+3,H]
1:N , A[M̃+3,H]

1:N

|WH, WM̃+1:M̃+3

)
− o(L) (45)

(28)≥ . . . (46)
(28)≥ L

(
1 + 1

N
+ · · · + 1

N K−M̃−1

)
− o(L), (47)

where (43) follows from Lemma 1, (44)-(47) follow from
applying Lemma 2 starting from k = M̃ + 2 to k = K ,
which differs from [12] in terms of the starting point of the
induction. �

We conclude the converse proof by dividing by L and taking
L → ∞ in (42), to have

D∗ ≥ 1 + 1

N
+ · · · + 1

N K−M̃−1
. (48)

Finally, we note that the right hand side of (48) is monotoni-
cally decreasing in M̃ . Since M̃ ≤ M , the lowest lower bound
is obtained by taking M̃ = M , which yields the final converse
bound,

D∗ ≥ 1 + 1

N
+ · · · + 1

N K−M−1 . (49)

Remark 6 We note that if (49) is tight, any prefetching strat-
egy m such that

∑N
n=1 mn < M is strictly suboptimal. Further-

more, the lower bound in (49) is the same for all prefetching
strategies m satisfying

∑N
n=1 mn = M. In Section V, we show

that this lower bound is tight.

V. ACHIEVABILITY PROOF

We first note that the achievability scheme proposed in [32]
for the PIR problem with completely unknown private side
information also works for the PIR problem with partially
known private side information here. The PIR scheme in [32]
is based on MDS codes and consists of two stages. The
first stage determines the systematic part of the MDS code
according to the queries generated in [12], which protects
the privacy of the desired message, i.e., in the first stage,
the user designs the queries such that no information is leaked
about which message out of the K messages is the desired
one. In the second stage, the user reduces the number of
the downloaded equations by downloading the parity part
of the MDS code only. For the case of partially known
private side information here, two privacy constraints should
be satisfied: the desired message privacy constraint and the
side information privacy constraint. For the desired message,
we note that the user should guarantee that the queries
designed to retrieve any of the K − mn messages should be
indistinguishable at the nth database (i.e., with the exception
of the mn messages that the nth database has provided). Due
to the first stage, the privacy of the desired message holds
as it was designed to protect the privacy of all K messages,
which is more restricted. Furthermore, the PIR scheme in [32]
also protects the privacy of the side information. The scheme
in [32] ensures that the queries do not reveal the identity
of the M messages that are possessed by the user as side
information. In our model, we note that we need to protect
the privacy of M −mn messages from the nth database, as the
remaining mn messages are known to the nth database. Since
the privacy constraint imposed on the side information in our
model is less restricted than [32], using the scheme in [32]
satisfies the privacy constraint of the side information in our
case as well. That is, the nth database cannot infer which other
M − mn messages the user holds. The PIR scheme in [32]
achieves the normalized download cost in Theorem 1. The PIR
scheme in [32] requires a message size of N K symbols. In the
following, we propose another achievability scheme which
requires a message size of N K− M

N , if mn = M
N ∈ N. Thus, this

scheme requires smaller sub-packetization and smaller field
size for the MDS code.

Our PIR scheme for partially known private side informa-
tion is based on the PIR schemes in [12], [32]. To protect
the privacy of the partially known private side information
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and the privacy of the desired message, similar to [12],
we apply the following three principles recursively: 1) data-
base symmetry, 2) message symmetry within each database,
and 3) exploiting undesired messages as side information.
We reduce the download cost by utilizing the reconstruction
property of MDS codes by exploiting partially known private
side information as in [32]. The side information enables the
user to request reduced number of equations as a consequence
of the user’s knowledge of M messages from the prefetch-
ing phase. Nevertheless, to protect the privacy of the side
information, the user actually queries MDS coded symbols
which is mixture of K − mn messages. The main difference
between our achievability scheme and that in [12], [32] is that
since the nth database knows that the user has prefetched mn

messages, the user does not need to protect the privacy for
these mn messages from the nth database. This effectively
reduces the number of messages that the scheme in [32] needs
to operate on to K − mn messages in contrast to K in [32].
When M

N ∈ N, we show that if the user caches the same
number of messages from each database, i.e., mn = M

N , for
all n, then the lower bound in (12) is achievable by this
scheme. This scheme reduces the message size requirement
from L = N K in [32] to L = N K− M

N here, simplifying the
achievable scheme.

A. Motivating Examples

1) N = 2 Databases, K = 4 Messages, and M = 2 Cached
Messages: Assume that each message is of size 8 symbols.
We use ai , bi , ci and di , for i = 1, . . . , 8, to denote the
symbols of messages W1, W2, W3 and W4, respectively.
In this example, in the prefetching phase, the user caches
message W3 from database 1, and message W4 from database
2; and in the retrieval phase, the user wishes to retrieve
message W1 privately. The user first generates the query table
in Table I. In Table I, the user queries 7 symbols. Since the
user knows d1 from the cached message W4, in order to use the
partially known private side information, the user can in fact
reduce the number of queries to 6 equations per database by
ignoring d1. However, if the user simply does not download d1,
it compromises the privacy of W4 at database 1. Alternatively,
the user queries the MDS coded version of the 7 symbols.
By using these 7 symbols as the systematic part, we can use
a (13, 7) MDS code. By downloading the 6 parity symbols,
the user can reconstruct the whole 7 symbols utilizing the
knowledge of d1. Therefore, the normalized download cost
for our achievability scheme is 6+6

8 = 3
2 , which matches the

lower bound in (12) for this case.
For database 1, the query table in Table I induces the

same distribution on the messages W1, W2 and W4. There-
fore, we guarantee the privacy of the desired message. The
reliability constraint can also be verified. Note that b2 is
downloaded from database 2, and d2 is downloaded in the
prefetching phase. Therefore, a3 and a4 are decodable. By get-
ting b4 + c3 from database 2, the user can get b4 due to
the private side information W3. Therefore, the user can
decode a7 from a7 + b4 + d4. Similar arguments follow for
database 2.

TABLE I

QUERY TABLE FOR K = 4, N = 2, M = 2

2) N = 2 Databases, K = 5 Messages, and M = 2 Cached
Messages: Assume that each message is of size 16 symbols.
We use ai , bi , ci , di and ei , for i = 1, . . . , 16, to denote the
symbols of messages W1, W2, W3, W4, and W5, respectively.
In this example, in the prefetching phase, the user caches
message W4 from database 1, and message W5 from database
2; and in the retrieval phase, the user wishes to retrieve
message W1 privately. The user first generates the query table
in Table II. In Table II, the user queries 15 symbols. Since
the user knows e1 from the cached message W5, in order
to use the partially known private side information, the user
in fact queries the MDS coded version of the 15 symbols.
By using these 15 symbols as the systematic part, we can use
a (29, 15) MDS code. By downloading the 14 parity symbols,
the user can reconstruct the whole 15 symbols. Therefore,
the normalized download cost for our achievability scheme
is 14+14

16 = 7
4 , which matches the lower bound in (12) for this

case.
For database 1, the query table in Table II induces the

same distribution on the messages W1, W2, W3 and W5.
Therefore, we guarantee the privacy of the desired message.
The reliability constraint can also be verified. Note that b2, c2
are downloaded from database 2, and e2 is downloaded in the
prefetching phase. Therefore, a3, a4 and a5 are decodable.
By getting b6 + d3 from database 2, the user can get b6
due to the private side information W4. Similarly, c6 is also
decodable. Therefore, the user can decode a10 from a10 +
b6 + e5 and a11 from a11 + c6 + e6. By getting b8 + c8 + d7
from database 2, the user can get b8 + c8 due to the private
side information W4. Therefore, the user can decode a15 from
a15 + b8 + c8 + e8. Similar arguments follow for database 2.

B. General Achievable Scheme for M
N ∈ N

Let M
N = m. In the prefetching phase, the user caches m

messages from each database. To achieve the lower bound
shown in (12), in the retrieval phase, we choose the message
size as L = N K−m symbols. The details of the achievable
scheme are as follows:

1) Initialization: The user permutes each message ran-
domly and independently. After the random permutation,
we use Ui ( j) to denote the j th symbol of the permuted
message Wi . Suppose the user wishes to retrieve Wθ



WEI et al.: CAPACITY OF PRIVATE INFORMATION RETRIEVAL WITH PARTIALLY KNOWN PRIVATE SIDE INFORMATION 8229

TABLE II

QUERY TABLE FOR K = 5, N = 2, M = 2

privately. We then prepare the query table by first
querying Uθ (1) from database 1. Set the round index
to r = 1.

2) Symmetry across databases: The user queries the same
number of equations with the same structure as data-
base 1 from the remaining databases.

3) Message symmetry: For each database, to satisfy the
privacy constraint, the user should query equal amount
of symbols from all other K − m messages. Since the
user has cached m messages from each database in
the prefetching phase, the user does not need to protect
the privacy for these m messages. For the r th round, the
user queries sums of every r combinations of the K −m
messages.

4) Exploiting side information: For database 1, the user
exploits the side information equations obtained from
the other (N − 1) databases to query sum of r + 1
combinations of the K − m messages, where sum of
r combinations is the side information. If the r com-
binations contain the cached message from database 1,
we replace the overlapping symbols through the symbols
cached from other databases.

5) Repeat steps 2, 3, 4 after setting r = r + 1 until
r = K − m + 1.

6) Shuffling the order of queries: By shuffling the order
of queries uniformly, all possible queries can be made
equally likely regardless of the message index. This
guarantees the privacy of the desired message.

7) Downloading MDS parity parts: Now, the query table
is finished. For each database, let p be the number of
queried symbols in the query table, and let q be the
number of queried symbols which are determined by
the side information the user cached in the prefetching
phase. Apply a (2 p − q, p) MDS code to the queried
symbols by letting the p symbols to be the systematic
part. Finally, the user downloads the parity parts of the

MDS-coded answering strings which are p − q symbols
for each database.

C. Normalized Download Cost

We now calculate the total number of downloaded symbols.
We first calculate p, which is the number of queried symbols
in the query table for each database,

p =
(

K − m

1

)
+

(
K − m

2

)
(N − 1) + . . .

+
(

K − m

K − m

)
(N − 1)K−m−1 (50)

= 1

N − 1

[(
K − m

1

)
(N − 1) +

(
K − m

2

)
(N − 1)2 + . . .

+
(

K − m

K − m

)
(N − 1)K−m

]
(51)

= 1

N − 1

(
N K−m − 1

)
, (52)

where
(K−m

r

)
in (50) corresponds to the queries of sums of

every r combinations of the K −m messages, and (N − 1)r−1

corresponds to the number of sets of the available side
information from other (N − 1) databases.

We then calculate q , which is the number of queried
symbols which are determined by the side information the
user cached in the prefetching phase,

q =
(

(N − 1)m

1

)
+

(
(N − 1)m

2

)
(N − 1) + . . .

+
(

(N − 1)m

(N − 1)m

)
(N − 1)(N−1)m−1 (53)

= 1

N − 1

[(
(N − 1)m

1

)
(N − 1) + . . .

+
(

(N − 1)m

(N − 1)m

)
(N − 1)(N−1)m

]
(54)

= 1

N − 1

(
N (N−1)m − 1

)
, (55)

where
((N−1)m

r

)
in (53) corresponds to the queries which can

be determined by the partially known private side information,
and (N − 1)r−1 corresponds to the number of sets of queries
consisting of r combinations.

Next, we calculate the number of symbols for the desired
message,

L = N

[(
K − m − 1

0

)
+

(
K − m − 1

1

)
(N − 1) + . . .

+
(

K − m − 1

K − m − 1

)
(N − 1)K−m−1

]
(56)

= N × N K−m−1 = N K−m , (57)

where
(K−m−1

r−1

)
in (56) corresponds to the queries containing

the desired message and (N−1)r−1 corresponds to the number
of sets of queries consisting of r combinations.

Therefore, the normalized download cost becomes,

D

L
= N(p − q)

L
(58)
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=
N

N−1

(
N K−m − 1

) − N
N−1

(
N (N−1)m − 1

)
N K−m

(59)

= N

N − 1
× N K−m − N (N−1)m

N K−m
(60)

= 1

1 − 1
N

×
[

1 −
(

1

N

)K−M
]

, (61)

which matches the lower bound in (12).

Remark 7 Note that although our achievable scheme and
the scheme in [32] are both using MDS coding to exploit
the available side information, the field size requirements for
realizing the MDS codes are different. For the scheme of [32],
a (2 p̃ − q̃, p̃) MDS code is used, where p̃ = 1

N−1 (N K − 1)

and q̃ = 1
N−1 (N M − 1). This requires larger field size than

the (2 p − q, p) MDS code used in our scheme (if M
N ∈ N),

since 2 p̃ − q̃ > (2 p − q).

VI. CONCLUSION

In this paper, we have introduced a new PIR model, namely,
PIR with partially known private side information as a natural
model for studying practical PIR problems with cached side
information. In this model, the user and the databases engage
in a caching/PIR scenario which consists of two phases,
namely, prefetching phase and retrieval phase. The nth data-
base provides the user with mn side information messages
in the prefetching phase such that

∑N
n=1 mn ≤ M , hence,

each database has partial knowledge about the side informa-
tion in contrast to full knowledge in [29] and no knowledge
in [30]–[32]. Based on this side information, the user designs a
retrieval scheme that does not reveal the identity of the desired
message or the identities of the remaining M − mn messages
to the nth database. For this model, we determined the exact

capacity to be C = 1− 1
N

1−( 1
N )K−M . The capacity is attained for

any prefetching strategy that satisfies the cache memory size
constraint with equality. The achievable scheme in [32] can
also be used for this model. We further proposed another PIR
scheme which requires smaller sub-packetization and field size
for the case of uniform prefetching. Interestingly, the capacity
expression we derive for this problem is exactly the same as
the capacity expression for the PIR problem with completely
unknown side information [32]. Therefore, our result implies
that there is no loss in employing the same databases for
prefetching and retrieval purposes.
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