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Abstract— We consider the problem of multi-message private
information retrieval (MPIR) from N non-communicating repli-
cated databases. In MPIR, the user is interested in retrieving P
messages out of M stored messages without leaking the identity of
the retrieved messages. The information-theoretic sum capacity
of MPIR C P

s is the maximum number of desired message
symbols that can be retrieved privately per downloaded symbol,
where the symbols are defined over the same field. For the case
P ≥ M/2, we determine the exact sum capacity of MPIR as
C P

s = 1/(1+(M − P)/(P N)). The achievable scheme in this case
is based on downloading MDS-coded mixtures of all messages.
For P ≤ M/2, we develop lower and upper bounds for all
M, P, N. These bounds match if the total number of messages M
is an integer multiple of the number of desired messages P , i.e.,
M/P ∈ N. In this case, C P

s = (1+1/N+· · ·+1/N M/P−1)−1, i.e.,
C P

s = (1 − 1/N)/(1 − 1/N M/P ) for N > 1, and C P
s = P/M for

N = 1. The achievable scheme in this case generalizes the single-
message capacity achieving scheme to have unbalanced number
of stages per round of download. For all the remaining cases, the
difference between the lower and upper bound is at most 0.0082,
which occurs for M = 5, P = 2, N = 2. Our results indicate that
joint retrieval of desired messages is more efficient than successive
use of single-message retrieval schemes even after considering the
free savings that result from downloading undesired symbols in
each single-message retrieval round.

Index Terms— Private information retrieval, multi-message,
MDS code, capacity, alignment, IIR filters.

I. INTRODUCTION

THE privacy of the contents of the downloaded
information from curious public databases has

attracted considerable research within the computer science
community [1]–[4]. The problem is motivated by practical
examples such as: ensuring privacy of investors as they
download records in a stock market, since revealing the
interest in a certain record may influence its value; ensuring
the privacy of an inventor as they look up existing patents
in a database, since revealing what they are looking at
leaks some information about the current invention they are
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working on; and protecting activists in oppressive regimes
as they browse restricted content on the internet [2]. In the
classical private information retrieval (PIR) problem, a user
wishes to download a certain message (or file) from N non-
communicating databases without leaking any information
about the identity of the downloaded message. The contents of
the databases are identical. The user performs this operation
by preparing and submitting queries to all databases. The
databases respond truthfully with answer strings which are
functions of the queries and the messages. The user needs to
reconstruct the desired message from these answer strings.
A trivial solution for this seemingly difficult problem is for
the user to download the contents of any individual database.
This solution however is extremely inefficient. The efficiency
is measured by the retrieval rate which is the ratio of the
number of retrieved desired message symbols to the number
of total downloaded symbols, where the symbols are defined
over the same field. The capacity of PIR is the maximum
retrieval rate over all possible PIR schemes.

The computer science formulation of this problem assumes
that the messages are of length one bit. The metrics in this case
are the download cost, i.e., the sum of lengths of the answer
strings, and the upload cost, i.e., the size of the queries. Most
of this work is computational PIR as it ensures only that a
server cannot get any information about user intent unless it
solves a certain computationally hard problem [2], [5]. The
information-theoretic re-formulation of the problem consid-
ers arbitrarily large message sizes, and ignores the upload
cost. This formulation provides an absolute, i.e., information-
theoretic, guarantee that no server participating in the protocol
gets any information about the user intent. Towards that end,
recently, [6] has drawn a connection between the PIR problem
and the blind interference alignment scheme proposed in [7].
Then, [8] has determined the exact capacity of the classical
PIR problem. The retrieval scheme in [8] is based on three
principles: message symmetry, symmetry across databases,
and exploiting side information from the undesired messages
through alignment.

The basic PIR setting has been extended in several inter-
esting directions. The first extension is the coded PIR (CPIR)
problem [9]–[11]. The contents of the databases in this prob-
lem are coded by an (N, K ) storage code instead of being
replicated. This is a natural extension since most storage
systems nowadays are in fact coded to achieve reliability
against node failures and erasures with manageable storage
cost. In [12], the exact capacity of the MDS-coded PIR is
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determined. Another interesting extension is PIR with col-
luding databases (TPIR). In this setting, T databases can
communicate and exchange the queries to identify the desired
message. The exact capacity of colluded PIR is determined
in [13]. The case of coded PIR with colluding databases
is investigated in [14]. The robust PIR problem (RPIR)
extension considers the case when some databases are not
responsive [13]. Lastly, in the symmetric PIR problem (SPIR)
the privacy of the remaining records should be maintained
against the user in addition to the usual privacy constraint on
the databases, i.e., the user should not learn any other messages
other than the one it wished to retrieve. The exact capacity of
symmetric PIR is determined in [15]; and the exact capacity
of symmetric PIR from coded databases is determined in [16].

In some applications, the user may be interested in retriev-
ing multiple messages from the databases without revealing
the identities of these messages. Returning to the examples
presented earlier: the investor may be interested in compar-
ing the values of multiple records at the same time, and
the inventor may be looking up several patents that are
closely related to their work. One possible solution to this
problem is to use single-message retrieval scheme in [8]
successively. We show in this work that multiple messages can
be retrieved more efficiently than retrieving them one-by-one
in a sequence. This resembles superiority of joint decoding in
multiple access channels over multiple simultaneous single-
user transmissions [17]. To motivate the multi-message private
information retrieval problem (MPIR), consider the example
in [8, Sec. 4.3] where the number of messages is M = 3,
number of databases is N = 2, and the user is interested
in retrieving only P = 1 message. Here the optimal scheme
retrieves 8 desired bits in 14 downloads, hence with a rate 4/7.
When the user wishes to retrieve P = 2 messages, if we
use the scheme in [8] twice in a row, we retrieve 16 bits
in 28 downloads, hence again a sum rate of 4/7. Even
considering the fact that the scheme in [8] retrieves 2 bits of
the second message for free in downloading the first message,
i.e., it actually retrieves 10 bits in 14 downloads, hence a
sum rate of 5/7, we show in this paper that a better sum rate
of 4/5 can be achieved by joint retrieval of the messages.

Although there is a vast literature on classical PIR
in the computer science literature, only a few works
exist in MPIR: Reference [18] proposes a multi-block
(multi-message) scheme and observes that if the user requests
multiple blocks (messages), it is possible to reuse ran-
domly mixed data blocks (answer strings) across multiple
requests (queries). Reference [19] develops a multi-block
scheme which further reduces the communication overhead.
An achievable scheme for the multi-block PIR by designing
k-safe binary matrices that uses XOR operations is developed
in [20]. Reference [20] extends the scheme in [1] to multiple
blocks. Reference [21] designs an efficient non-trivial multi-
query computational PIR protocol and gives a lower bound
on the communication of any multi-query information retrieval
protocol. Reference [22] suggests using batch codes to allow a
single client to retrieve multiple records simultaneously while
allowing the server computation to scale sublinearly with the
number of records fetched. This idea is extended further in [23]

to design a PIR server algorithm that achieves sublinear scaling
in the number of records fetched, even when they are requested
by distinct, non-collaborating clients. These works do not
consider determining the information-theoretic capacity.

In this paper, we formulate the MPIR problem with non-
colluding repeated databases from an information-theoretic
perspective. Our goal is to characterize the sum capacity of
the MPIR problem C P

s , which is defined as the maximum
ratio of the number of retrieved symbols from the P desired
messages to the number of total downloaded symbols. When
the number of desired messages P is at least half of the
total number of messages M , i.e., P ≥ M

2 , we determine
the exact sum capacity of MPIR as C P

s = 1
1+ M−P

P N
. We use

a novel achievable scheme which downloads MDS-coded
mixtures of all messages. We show that joint retrieving of
the desired messages strictly outperforms successive use of
single-message retrieval for P times. Additionally, we present
an achievable rate region to characterize the trade-off between
the retrieval rates of the desired P messages.

For the case of P ≤ M
2 , we derive lower and upper bounds

that match if the total number of messages M is an integer
multiple of the number of desired messages P , i.e., M

P ∈ N.

In this case, the sum capacity is C P
s = 1− 1

N

1−( 1
N )M/P . The result

resembles the single-message capacity with the number of
messages equal to M

P . In other cases, although the exact
capacity is still an open problem, we show numerically that
the gap between the lower and upper bounds is monotoni-
cally decreasing in N and is upper bounded by 0.0082. The
achievable scheme when P ≤ M

2 is inspired by the greedy
algorithm in [8], which retrieves all possible combinations of
messages. The main difference of our scheme from the scheme
in [8] is the number of stages required in each download
round. For example, round M − P + 1 to round M − 1, which
correspond to retrieving the sum of M− P +1 to sum of M−1
messages, respectively, are suppressed in our scheme. This is
because, they do not generate any useful side information for
our purposes here, in contrast to [8]. Interestingly, the number
of stages for each round is related to the output of a P-order
IIR filter [24]. This intriguing connection to IIR filtering is
a result of constructing the greedy achievable scheme in [8]
backwards and observing the required side information needed
in previous rounds. Our converse proof generalizes the proof
in [8] for P ≥ 1. The essence of the proof is captured in
two lemmas: the first lemma lower bounds the uncertainty of
the interference for the case P ≥ M

2 , and the second lemma
upper bounds the remaining uncertainty after conditioning on
P interfering messages.

II. PROBLEM FORMULATION

Consider a classical PIR setting storing M messages
(or files). Each message is a vector Wi ∈ F

L
q , i ∈ {1, · · · , M},

whose elements are picked uniformly and independently
from sufficiently large field1

Fq . Denote the contents of

1We note that using q = min {pm ≥ M : p is a prime, m ∈ N} is sufficient
to ensure the existence of the P × M MDS generator matrix in Section 4.
Furthermore, binary field suffices for the achievable scheme in Section 5.
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message Wm by the vector [wm(1),wm(2), · · · , wm(L)]T . The
messages are independent and identically distributed, and thus,

H (Wi) = L, i ∈ {1, · · · , M} (1)

H (W1:M ) = M L (2)

where L is measured in q-ary bits, W1:M = (W1, W2, · · · ,
WM ). The messages are stored in N non-colluding (non-
communicating) databases. Each database stores an identical
copy of all M messages, i.e., the databases encode the mes-
sages via (N, 1) repetition storage code [12].

In the MPIR problem, the user aims to retrieve a subset
of messages indexed by the index set P = {i1, · · · , i P} ⊆
{1, · · · , M} out of the available messages, where |P | = P ,
without leaking the identity of the subset P . We assume that
the cardinality of the potential message set, P , is known to
all databases. To retrieve WP = (Wi1 , Wi2 , · · · , WiP ), the user
generates a query Q[P]

n and sends it to the nth database. The
user does not have any knowledge about the messages in
advance, hence the messages and the queries are statistically
independent,

I
(

W1,· · · ,WM ; Q[P]
1 ,· · · ,Q[P]

N

)
= I

(
W1:M ; Q[P]

1:N
)
=0

(3)

The privacy is satisfied by ensuring statistical independence
between the queries and the message index set P =
{i1, · · · , i P}, i.e., the privacy constraint is given by,

I
(

Q[i1,··· ,iP ]
n ; i1, · · · , i P

)
= I

(
Q[P]

n ;P
)

= 0 (4)

for all n ∈ {1, · · · , N}.
The nth database responds with an answer string A[P]

n ,
which is a deterministic function of the queries and the
messages, hence

H (A[P]
n |Q[P]

n , W1:M ) = 0 (5)

We further note that by the data processing inequality and (4),

I
(

A[P]
n ;P

)
= 0, n ∈ {1, · · · , N} (6)

In addition, the user should be able to reconstruct the messages
WP reliably from the collected answers from all databases
given the knowledge of the queries. Thus, we write the
reliability constraint as,

H (Wi1, · · · , WiP |A[P]
1 , · · · , A[P]

N , Q[P]
1 , · · · , Q[P]

N )

= H
(

WP |A[P]
1:N , Q[P]

1:N
)

= 0 (7)

We denote the retrieval rate of the i th message by Ri , where
i ∈ P . The retrieval rate of the i th message is the ratio between
the length of message i and the total download cost of the
message set P that includes Wi . Hence,

Ri = H (Wi)∑N
n=1 H

(
A[P]

n

) (8)

The sum retrieval rate of WP is given by,

P∑
i=1

Ri = H (WP)
∑N

n=1 H
(

A[P]
n

) = P L
∑N

n=1 H
(

A[P]
n

) (9)

The sum capacity of the MPIR problem is given by

C P
s = sup

P∑
i=1

Ri (10)

where the sup is over all private retrieval schemes.
In this paper, we follow the information-theoretic assump-

tions of large enough message size, large enough field size,
and ignore the upload cost as in [8] and [11]–[13]. A formal
treatment of the capacity under message and field size con-
straints for P = 1 can be found in [25]. We note that the
MPIR problem described here reduces to the classical PIR
problem when P = 1, whose capacity is characterized in [8].

III. MAIN RESULTS AND DISCUSSIONS

Our first result is the exact characterization of the sum
capacity for the case P ≥ M

2 , i.e., when the user wishes to
privately retrieve at least half of the messages stored in the
databases.

Theorem 1: For the MPIR problem with non-colluding and
replicated databases, if the number of desired messages P is
at least half of the number of overall stored messages M, i.e.,
if P ≥ M

2 , then the sum capacity is given by,

C P
s = 1

1 + M−P
P N

(11)

The achievability proof for Theorem 1 is given in
Section IV, and the converse proof is given in Section VI-A.
We note that when P = 1, the constraint of Theorem 1 is
equivalent to M = 2, and the result in (11) reduces to the
known result of [8] for P = 1, M = 2, which is 1

1+ 1
N

.

We observe that the sum capacity in (11) is a strictly increasing
function of N , and C P

s → 1 as N → ∞. We also observe
that the sum capacity in this regime is a strictly increasing
function of P , and approaches 1 as2 P → M .

The following corollary compares our result and the rate
corresponding to the repeated use of single-message retrieval
scheme [8].

Corollary 1: For the MPIR problem with P ≥ M
2 , the rep-

etition of the single-message retrieval scheme of [8] P times
in a row, which achieves a sum rate of,

Rrep
s = (N − 1)(N M−1 + P − 1)

N M − 1
(12)

is strictly sub-optimal with respect to the exact capacity
in (11).

Corollary 1 implies that applying Sun-Jafar scheme [8]
P times is suboptimal, even if the user uses the undesired
symbols, which are downloaded as a byproduct of Sun-Jafar
scheme, as a head start in downloading the remaining mes-
sages because in this case the user would achieve Rrep

s < C P
s .

Proof: In order to use the single-message capacity achiev-
ing PIR scheme as an MPIR scheme, the user repeats the

2Note that in the degenerate case, when P = M, the privacy constraint
is trivially satisfied as H (P) = H (P|Q[P]

n ) = 0 as there is no uncertainty
about the identity of the desired messages if P = M either with or without
the knowledge of the queries. Thus, the optimal sum retrieval rate is 1 which
is achieved by downloading all the messages.
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single-message achievable scheme for each individual message
that belongs to P . We note that at each repetition, the scheme
downloads extra decodable symbols from other messages.
By this argument, the following rate Rrep

s is achievable using
a repetition of the single-message scheme,

Rrep
s = C + �(M, P, N) (13)

where C is the single-message capacity which is given by C =
1− 1

N

1−( 1
N )M [8], and �(M, P, N) is the rate of the extra decodable

symbols that belong to P . To calculate �(M, P, N), we note
that the total download cost D is given by D = L

C by
definition. Since L = N M in the single-message scheme,

D = N M (1−( 1
N )M )

1− 1
N

= N M+1−N
N−1 . The single-message scheme

downloads one symbol from every message from every data-
base, i.e., the scheme downloads extra (P −1)N symbols from
the remaining desired messages that belong to P , thus,

�(M, P, N) = (P − 1)N(N − 1)

N M+1 − N
= (P − 1)(N − 1)

N M − 1
(14)

Using this in (13) gives the Rrep
s expression in (12).

Now, the difference between the capacity in (11) and
achievable rate in (12) is,

C P
s − Rrep

s = P N

P(N − 1) + M
− (N − 1)(N M−1 + P − 1)

N M − 1
(15)

= η(P, M, N)

(N M − 1)(P(N − 1) + M)
(16)

It suffices to prove that η(P, M, N) ≥ 0 for all P , M , N when
P ≥ M

2 and N ≥ 2. Note,

η(P, M, N)

= (2P − M)N M + (M − P)N M−1 − P(P − 1)N2

+((P − 1)(2P − M) − P)N +(M − P)(P − 1) (17)

In the regime P ≥ M
2 , coefficients of N M , N M−1, N0 are non-

negative. Denote the negative terms in η(·) by ν(P, N) which
is ν(P, N) = P(P − 1)N2 + P N . We note ν(P, N) < P2 N2

when N > 1, which is the case here. Thus,

η(P, M, N)

≥ (2P −M)N M +(M− P)N M−1 +(P−1)(2P−M)N

+(M − P)(P − 1) − P2 N2 (18)

> (2P − M)N M + (M − P)N M−1 − P2 N2 (19)

= N2
(
(2P − M)N M−2 + (M − P)N M−3 − P2

)
(20)

≥ N2
(
(2P − M)2M−2 + (M − P)2M−3 − P2

)
(21)

= N2
(

2M−3(3P − M) − P2
)

(22)

≥ N2
(

2M−3 · M

2
− M2

)
(23)

= M N2
(

2M−4 − M
)

(24)

where (21) follows from the fact that (2P − M)N M−2 + (M −
P)N M−3 − P2 is monotone increasing in N ≥ 2 for M ≥ 3,
and (23) follows from M

2 ≤ P ≤ M . From (24), we conclude

that η(M, P, N) > 0 for all M ≥ 7, P ≥ M
2 and N ≥ 2.

Examining the expression in (17) for the remaining cases
manually, i.e., when M ≤ 6, we note that η(M, P, N) > 0
in these cases as well. Therefore, η(M, P, N) > 0 for all
possible cases, and the MPIR capacity is strictly larger than
the rate achieved by repeating the optimum single-message
PIR scheme. �

For the example in the introduction, where M = 3, P = 2,
N = 2, our MPIR scheme achieves a sum capacity of 4

5
in (11), which is strictly larger than the repeating-based
achievable sum rate of 5

7 in (12).
The following corollary gives an achievable rate region for

the MPIR problem.
Corollary 2: For the MPIR problem, for the case P ≥ M

2 ,
the following rate region is achievable,

C = conv {(C, δ, · · · , δ), (δ, C, · · · , δ), · · · , (δ, · · · , δ, C),

(C, 0, 0,· · · ,0),(0, C, 0, · · · ,0),· · · ,(0, 0, · · · ,C),

(0, 0, · · · , 0), (C P , C P , · · · , C P )} (25)

where

C = 1 − 1
N

1 − ( 1
N )M

,

C P = C P
s

P
= N

P N + (M − P)
,

δ = �(M, P, N)

P − 1
= N − 1

N M − 1
(26)

and where conv denotes the convex hull, and all corner points
lie in the P-dimensional space.

Proof: This is a direct consequence of Theorem 1

and Corollary 1. The corner point

(
C, �(M,P,N)

P−1 ,

�(M,P,N)
P−1 , · · · , �(M,P,N)

P−1

)
=
(

1− 1
N

1−( 1
N )M , N−1

N M −1
, N−1

N M −1
, · · · ,

N−1
N M −1

)
is achievable from the single-message achievable

scheme. Due to the symmetry of the problem any other
permutation for the coordinates of this corner point is also
achievable by changing the roles of the desired messages.
Theorem 1 gives the symmetric sum capacity corner point

for the case of P ≥ M
2 , namely

(
C P

s
P ,

C P
s

P , · · · ,
C P

s
P

)
=(

N
P N+(M−P) ,

N
P N+(M−P) , · · · , N

P N+(M−P)

)
. By time sharing

of these corner points along with the origin, the region
in (25) is achievable. �

As an example for this achievable region, consider again
the example in the introduction, where M = 3, P = 2,
N = 2. In this case, we have a two-dimensional rate region
with three corner points: ( 4

7 , 1
7 ), which corresponds to the

single-message capacity achieving point that aims at retrieving
W1; ( 1

7 , 4
7 ), which corresponds to single-message capacity

achieving point that aims at retrieving W2; and ( 2
5 , 2

5 ), which
corresponds to the symmetric sum capacity point. The convex
hull of these corner points together with the points on the axes
gives the achievable region in Fig. 1. We note that in general,
the rate region in Corollary 2 is merely an achievable region.
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Fig. 1. The achievable rate region of M = 3, P = 2, N = 2.

The capacity region that characterizes the exact tradeoff
between the retrieval rates for the P messages remains an open
problem despite the optimality of the corner points. A converse
argument is needed to show the optimality of time-sharing
(if the rate region is indeed the capacity region).

For the case P ≤ M
2 , we have the following result, where

the lower and upper bound match if M
P ∈ N.

Theorem 2: For the MPIR problem with non-colluding and
replicated databases, when P ≤ M

2 , the sum capacity is lower
and upper bounded as,

Rs ≤ C P
s ≤ R̄s (27)

where the upper bound R̄s is given by,

R̄s = 1

1 + 1
N + · · · + 1

N� M
P 	−1

+ (M
P − � M

P 	) 1

N� M
P 	

(28)

= 1

1−( 1
N )

� M
P 	

1− 1
N

+ (M
P − ⌊M

P

⌋) 1

N

⌊
M
P

⌋

(29)

For the lower bound, define ri as,

ri = e j2π(i−1)/P

N1/P − e j2π(i−1)/P
, i = 1, · · · , P (30)

where j = √−1, and denote γi , i = 1, · · · , P, to be the
solutions of the linear equations

∑P
i=1 γir

−P
i = (N − 1)M−P,

and
∑P

i=1 γir
−k
i = 0, k = 1, · · · , P − 1, then Rs is given by,

Rs =
∑P

i=1 γir
M−P
i

[(
1 + 1

ri

)M −
(

1 + 1
ri

)M−P
]

∑P
i=1 γir

M−P
i

[(
1 + 1

ri

)M − 1

] (31)

The achievability lower bound in Theorem 2 is shown in
Section V and the upper bound is derived in Section VI-B.
The following corollary states that the bounds in Theorem 2

Fig. 2. Summary of the state of the results.

match if the total number of messages is an integer multiple
of the number of desired messages.

Corollary 3: For the MPIR problem with non-colluding and
replicated databases, if M

P is an integer, then the bounds
in (27) match, and hence, for3 N > 1

C P
s = 1 − 1

N

1 − ( 1
N )

M
P

,
M

P
∈ N, (32)

Proof: For the upper bound, observe that if M
P ∈ N, then

M
P = ⌊M

P

⌋
. Hence, (28) becomes

R̄s = 1 − 1
N

1 − ( 1
N )

M
P

(33)

For the lower bound, consider the case M
P ∈ N. From (30),

(
1 + 1

ri

)M

=
(

N1/P

e j2π(i−1)/P

)M

= N
M
P (34)

since e j2π(i−1)M/P = 1 for M
P ∈ N. Similarly,(

1 + 1
ri

)M−P = N
M
P −1. Hence, if M

P ∈ N,

Rs =
∑P

i=1 γir
M−P
i

[
N

M
P − N

M
P −1

]

∑P
i=1 γir

M−P
i

[
N

M
P − 1

] (35)

= N
M
P − N

M
P −1

N
M
P − 1

(36)

= 1 − 1
N

1 − ( 1
N )

M
P

(37)

Thus, Rs = C P
s = R̄s if M

P ∈ N, and we have an exact
capacity result in this case. �

3If N = 1, the optimal retrieval scheme is to download the contents of the
database, hence C P

s = P
M .
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Fig. 3. Deviation of the achievable sum rate from the upper bound. (a) N = 2. (b) N = 5. (c) N = 10. (d) N = 20.

Examining the result, we observe that when the total number
of messages is an integer multiple of the number of desired
messages, the sum capacity of the MPIR is the same as
the capacity of the single-message PIR with the number of
messages equal to M

P . Note that, although at first the result
may seem as if every P messages can be lumped together as
a single message, and the achievable scheme in [8] can be
used, this is not the case. The reason for this is that, we need
to ensure the privacy constraint for every subset of messages
of size4 P . That is why, in this paper, we develop a new
achievable scheme.

The state of the results is summarized in Fig. 2: Consider the
(M, P) plane, where naturally M ≥ P . The valid part of the

4We note that this is similar to the TPIR problem when N
T ∈ N, in which

case one cannot simply lump every T databases together and apply the
capacity-achieving scheme of PIR with non-colluding databases for the new
system that consists of N

T databases. In both problems, the use of MDS codes
is important to induce symmetry across the group of messages/databases.

plane is divided into two regions. The first region is confined
between the lines P = M

2 and P = M; the sum capacity in
this region is exactly characterized (Theorem 1). The second
region is confined between the lines P = 1 and P = M

2 ; the
sum capacity in this region is characterized only for the cases
when M

P ∈ N (Corollary 3). The line P = 1 corresponds to the
previously known result for the single-message PIR [8]. The
exact capacity for the rest of the cases is still an open problem;
however, the achievable scheme in Theorem 2 yields near-
optimal sum rates for all the remaining cases with the largest
difference of 0.0082 from the upper bound, as discussed next.

Fig. 3 shows the difference of the achievable rate Rs and the
upper bound R̄s in Theorem 2, i.e., R̄s − Rs . The figure shows
that the difference decreases as N increases. This difference
in all cases is small and is upper bounded by 0.0082, which
occurs when M = 5, P = 2, N = 2. In addition, the difference
is zero for the cases P ≥ M

2 (Theorem 1) or M
P ∈ N

(Corollary 3).
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Fig. 4. Effect of changing M for fixed P = 5, 6, 10 and fixed N = 2.

Fig. 5. Effect of changing N for fixed (M, P) = (5, 2), (10, 5), (20, 3).

Fig. 4 shows the effect of changing M for fixed (P, N).
We observe that as M increases, the sum rate monotonically
decreases and has a limit of5 1 − 1

N . In addition, Fig. 5 shows
the effect of changing N for fixed (P, M). We observe that
as N increases, the sum rate increases and approaches 1,
as expected.

IV. ACHIEVABILITY PROOF FOR THE CASE P ≥ M
2

In this section, we present the general achievable scheme
that attains the upper bound for the case P ≥ M

2 . The scheme
applies the concepts of message symmetry, database symmetry,
and exploiting side information as in [8]. However, our scheme
requires the extra ingredient of MDS coding of the desired

5Although it seems at first that C P
s → 1− 1

N if M → ∞, we emphasize that
this is true if only P = o(M), i.e., P does not scale with M. If P = γ M,
then as M → ∞, we have C P

s = 1
1+ 1−γ

γ N

> 1 − 1
N , when γ > 1

2 , and

C P
s = 1− 1

N
1−( 1

N )1/γ
> 1 − 1

N , when 1
γ ≥ 2 ∈ N.

symbols and the side information in its second stage. We note
also that, here, by message symmetry, we mean symmetry
across group of messages of size P , which is realized by
MDS coding.

A. Motivating Example: M = 3, P = 2 Messages,
N = 2 Databases

We start with a simple motivating example in this sub-
section. The scheme operates over message size N2 = 4.
For sake of clarity, we assume that the three messages after
interleaving their indices are W1 = (a1, · · · , a4)

T , W2 =
(b1, · · · , b4)

T , and W3 = (c1, · · · , c4)
T . We use G2×3 Reed-

Solomon generator matrix over F3 as

G2×3 =
[

1 1 1
1 2 0

]
(38)

The user picks a random permutation for the columns of
G2×3 from the 6 possible permutations, e.g., in this example
we use the permutation 2, 1, 3. In the first round, the user
starts by downloading one symbol from each database and
each message, i.e., the user downloads (a1, b1, c1) from the
first database, and (a2, b2, c2) from the second database.
In the second round, the user encodes the side information
from database 2 which is c2 with two new symbols from
W1, W2 which are (a3, b3) using the permuted generator
matrix, i.e., the user downloads two equations from database 1
in the second round,

GS1

⎡
⎣

a3
b3
c2

⎤
⎦ =

[
1 1 1
1 2 0

]⎡
⎣

0 1 0
1 0 0
0 0 1

⎤
⎦
⎡
⎣

a3
b3
c2

⎤
⎦ =

[
a3 + b3 + c2

2a3 + b3

]

(39)

The user repeats this operation for the second database with
(a4, b4) as desired symbols and c1 as the side information
from the first database.

For the decodability: The user subtracts out c2 from round
two in the first database, then the user can decode (a3, b3)
from a3 + b3 and 2a3 + b3. Similarly, by subtracting out c1
from round two in the second database, the user can decode
(a4, b4) from a4 + b4 and 2a4 + b4.

For the privacy: Single bit retrievals of (a1, b1, c1) and
(a2, b2, c2) from the two databases in the first round satisfy
message symmetry and database symmetry, and do not leak
any information. In addition, due to the private shuffling of
bit indices, the different coefficients of 1, 2 and 0 in front of
the bits in the MDS-coded summations in the second round
do not leak any information either; see a formal proof in
Section IV-C. To see the privacy constraint intuitively from
another angle, we note that the user can alter the queries for
the second database when the queries for the first database
are fixed, when the user wishes to retrieve another set of two
messages. For instance, if the user wishes to retrieve (W1, W3)
instead of (W1, W2), it can alter the queries for the second
database by changing every c2 in the queries of the second
database with c3, c1 with c4, b2 with b3, and b4 with b1.

The query table for this case is shown in Table I. The
scheme retrieves a1, · · · , a4 and b1, · · · , b4, i.e., 8 bits
in 10 downloads (5 from each database). Thus, the achievable
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TABLE I

THE QUERY TABLE FOR THE CASE M = 3, P = 2, N = 2

sum rate for this scheme is 8
10 = 4

5 = 1
1+ M−P

P N
. If we use

the single-message optimal scheme in [8], which is given
in [8, Example 4.3] for this specific case, twice in a row to
retrieve two messages, we achieve a sum rate of 20

28 = 5
7 < 4

5
as discussed in the introduction.

B. General Achievable Scheme

The scheme requires L = N2, and is completed in two
rounds. The main ingredient of the scheme is the MDS coding
of the desired symbols and side information in the second
round. The details of the scheme are as follows.

1) Index preparation: The user interleaves the contents of
each message randomly and independently from the
remaining messages using a random interleaver πm(.)
which is known privately to the user only, i.e.,

xm(i) = wm(πm(i)), i ∈ {1, · · · , L} (40)

where Xm = [xm(1), · · · , xm(L)]T is the interleaved
message. Thus, the downloaded symbol xm(i) at any
database appears to be chosen at random and indepen-
dent from the desired message subset P .

2) Round one: As in [8], the user downloads one sym-
bol from every message from every database, i.e., the
user downloads (x1(n), x2(n), · · · , xM (n)) from the nth
database. This implements message symmetry, symmetry
across databases, and satisfies the privacy constraint.

3) Round two: The user downloads a coded mixture of
new symbols from the desired messages and the unde-
sired symbols downloaded from the other databases.
Specifically,

a) The user picks an MDS generator matrix G ∈
F

P×M
q , which has the property that every P × P

submatrix is full-rank. This implies that if the user
can cancel out any M − P symbols from the
mixture, the remaining symbols can be decoded.
One explicit MDS generator matrix is the Reed-
Solomon generator matrix over Fq , where q > M ,
[26], [27]. The matrix is constructed by choosing
M distinct elements of Fq . Let us denote these
elements by {θ1, θ2, · · · , θM }. Then,

G =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
θ1 θ2 θ3 · · · θM

θ2
1 θ2

2 θ2
3 · · · θ2

M
...

...
...

...
...

θ P−1
1 θ P−1

2 θ P−1
3 · · · θ P−1

M

⎤
⎥⎥⎥⎥⎥⎦

P×M
(41)

b) The user picks uniformly and independently at ran-
dom the permutation matrices S1, S2, · · · , SN−1 of
size M × M . These matrices shuffle the order of
the columns of G to be independent of P .

c) At the first database, the user downloads an
MDS-coded version of P new symbols from the
desired set P and M − P undesired symbols that
are already decoded from the second database in
the first round, i.e., the user downloads P equations
of the form

GS1[xi1(N + 1) xi2(N + 1) · · · xiP (N + 1)

x j1(2) x j2(2) · · · x jM−P (2)]T (42)

where P = {i1, i2, · · · , i P} are the indices of the
desired messages and P̄ = { j1, j2, · · · , jM−P} are
the indices of the undesired messages. In this case,
the user can cancel out the undesired messages and
be left with a P × P invertible system of equations
that it can solve to get [xi1(N + 1), xi2(N +
1), · · · , xiP (N + 1)]. This implements exploiting
side information as in [8].

d) The user repeats the last step for each set of side
information from database 3 to database N , each
with different permutation matrix.

e) By database symmetry, the user repeats all steps
of round two at all other databases.

C. Decodability, Privacy, and Calculation of
the Achievable Rate

Now, we verify that this achievable scheme satisfies the
reliability and privacy constraints.

For the reliability: The user gets individual symbols from all
databases in the first round, and hence they are all decodable
by definition. In the second round, the user can subtract out all
the undesired message symbols using the undesired symbols
downloaded from all other databases during the first round.
Consequently, the user is left with a P×P system of equations
which is guaranteed to be invertible by the MDS property,
hence all symbols that belong to WP are decodable.

For the privacy: At each database, for every message subset
P of size P , the achievable scheme retrieves randomly inter-
leaved symbols which are encoded by the following matrix:

HP =

⎡
⎢⎢⎢⎢⎢⎣

IP 0P 0P · · · 0P

0P G1
P 0P · · · 0P

0P 0P G2
P · · · 0P

...
...

...
...

...

0P 0P 0P · · · GN−1
P

⎤
⎥⎥⎥⎥⎥⎦

(43)

where Gn
P = GSn(:,P) are the columns of the encoding

matrix that correspond to the message subset P after applying
the random permutation Sn . Since the permutation matrices
are chosen uniformly and independently from each other,
the probability distribution of HP is uniform irrespective to P
(the probability of realizing such a matrix is

(
(M−P)!

M !
)N−1

).
Furthermore, the symbols are chosen randomly and uniformly
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by applying the random interleaver. Hence, the retrieval
scheme is private.

To calculate the achievable rate: We note that at each
database, the user downloads M individual symbols in the
first round that includes P desired symbols. The user exploits
the side information from the remaining (N − 1) databases to
generate P equations for each side information set. Each set
of P equations in turn generates P desired symbols. Hence,
the achievable rate is calculated as,

P∑
i=1

Ri = total number of desired symbols

total downloaded equations
(44)

= N(P + P(N − 1))

N(M + P(N − 1))
(45)

= P N

(M − P) + P N
(46)

= 1

1 + M−P
P N

(47)

D. Further Examples for the Case P ≥ M
2

In this section, we illustrate our achievable scheme with
two more basic examples. In Section IV-A, we considered the
case M = 3, P = 2, N = 2. In the next two sub-sections,
we will consider examples with larger M , P (Section IV-D.1),
and larger N (Section IV-D.2).

1) M = 5 Messages, P = 3 Messages, N = 2
Databases: Let P = {1, 2, 3}, and a to e denote the contents
of W1 to W5, respectively. The achievable scheme is similar
to the example in Section IV-A. The main difference is that in
this case, we use 5 × 5 permutation matrix for S1 and G3×5
Reed-Solomon generator matrix over F5 as:

G3×5 =
⎡
⎣

1 1 1 1 1
1 2 3 4 0
1 4 4 1 0

⎤
⎦ (48)

The query table is shown in Table II with the following
random permutation for the columns: 2, 5, 1, 3, 4. The reli-
ability and privacy constraints are satisfied due to the MDS
property that implies that any subset of 3 messages cor-
responds to a 3 × 3 invertible submatrix if the remaining
symbols are decodable from the other database. This scheme
retrieves a1, · · · , a4, b1, · · · , b4 and c1, · · · , c4, hence 12 bits
in 16 downloads (8 from each database). Thus, the achiev-
able sum rate is 12

16 = 3
4 which equals the sum capacity

1
1+ M−P

P N
in (11). This strictly outperforms the repetition-based

achievable sum rate 18
31 in (12).

2) M = 4 Messages, P = 2 Messages, N = 3 Databases:
Next, we give an example with a larger N . Here, the message
size is N2 = 9. With a generator matrix G2×4 = G3×5
([1 : 2], [1 : 4]) to be the upper left submatrix of the previous
example and two set of random permutations (corresponding
to S1, S2) as 1, 3, 2, 4, and 4, 1, 3, 2. The query table is shown
in Table III. This scheme retrieves a1, · · · , a9 and b1, · · · , b9,
hence 18 bits in 24 downloads (8 from each database). Thus,
the achievable rate is 18

24 = 3
4 = 1

1+ M−P
P N

. This strictly

TABLE II

THE QUERY TABLE FOR M = 5, P = 3, N = 2

outperforms the repetition-based achievable scheme sum
rate 7

10 in (12).

V. ACHIEVABILITY PROOF FOR THE CASE P ≤ M
2

In this section, we describe an achievable scheme for the
case P ≤ M

2 . We show that this scheme is optimal when
the total number of messages M is an integer multiple of
the number of desired messages P . The scheme incurs a
small loss from the upper bound for all other cases. The
scheme generalizes the ideas in [8]. Different than [8], our
scheme uses unequal number of stages for each round of
download. Interestingly, the number of stages at each round
can be thought of as the output of an all-poles IIR filter. Our
scheme reduces to [8] if we let P = 1. In the sequel, we define
the i th round as the download queries that retrieve sum of i
different symbols. We define the stage as a block of queries
that exhausts all

(M
i

)
combinations of the sum of i symbols

in the i th round.

A. Motivating Example: M = 5, P = 2 Messages,
N = 2 Databases

To motivate our achievable scheme, consider the case of
retrieving two messages denoted by letters (a, b) from five
stored messages denoted by letters (a, b, c, d, e). Instead
of designing the queries beginning from the top as usual,
i.e., beginning by downloading individual symbols, we design
the scheme backwards starting from the last round that cor-
responds to downloading sums of all five messages and trace
back to identify the side information needed at each round
from the other database. Our steps described below can be
followed through in the query table in Table IV.

Now, let us fix the number of stages in the 5th round
to be 1 as in [8] since N = 2. Round 5 corresponds to
downloading the sum of all five messages and contains one
combination of symbols a + b + c + d + e; please see the last
line in Table IV. Since we wish to retrieve (a, b), we need one
side information equation in the form of c+d +e from earlier
rounds. The combination c+d +e can be created directly from
round 3 without using round 4. Hence, we suppress round 4,
as it does not create any useful side information in our case,
and download one stage from round 3 to generate one side
information equation c + d + e.

In round 3, we download sums of 3 messages. Each stage
of round 3 consists of

(5
3

) = 10 equations. One of those
10 equations is in the desired c+d+e form, and the remaining
9 of them have either a or b or both a, b in them. In tabulating
all these 9 combinations, we recognize two categories of side
information equations needed from earlier rounds. The first
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TABLE III

THE QUERY TABLE FOR THE CASE M = 4, P = 2, N = 3

category corresponds to equations of the form a+b+(c, d, e),
where (c, d, e) means possible choices for the rest of the
equation, i.e., these equations have both a and b in them
and plus one more symbol in the form of c or d or e. This
category requires downloading one stage of individual symbols
(i.e., an individual c or d or e), that is, one stage of round 1.
We note also that one of the symbols (a, b) should be known
as a side information from the second database in order to
solve for the remaining new symbol. The second category
corresponds to equations of the form a + (c + d, c + e, d + e)
and b + (c + d, c + e, d + e), i.e., these equations have only
one of a or b but not both. This category requires two stages
of round 2, as we need different side information equations
that contain sum of twos, e.g., c + d , c + e, d + e.

In round 2, we download sums of 2 messages. Each stage of
the second round contains

(5
2

) = 10 equations. In each stage,
we need one category of side information equations, which is
a + (c, d, e) and b + (c, d, e). This necessitates two different
stages of individual symbols, i.e., two stages of round 1 for
each stage of round 2.

Denoting αi to be the number of stages needed for the
i th round, we sum all the required stages for round 1 to be
α1 = 2 · 2 + 1 = 5 stages. Hence, the user identifies the
number stages as α1 = 5, α2 = 2, α3 = 1, α4 = 0, α5 = 1.
These can be observed in the query table in Table IV. Note
that, we have α1 = 5 stages in round 1 where we download
individual bits; then we have α2 = 2 stages in round 2 where
we download sums of two symbols; then we have α3 = 1
stage in round 3 where we download sums of three symbols;
we skip round 4 as α4 = 0; and we have α5 = 1 stage of
round 5 where we download sum of all five symbols.

Now, after designing the structure of the queries and the
number of stages needed for each round, we apply the rest
of the scheme described in [8]. The user randomly inter-
leaves the messages as usual. In the first round, the user
downloads one symbol from each message at each database.
This is repeated α1 = 5 times for each database. Hence,
the user downloads a1:10, b1:10, c1:10, d1:10, e1:10 from the two
databases. In the second round, the user downloads sums of
two messages. Each stage contains

(5
2

) = 10 equations. This
is repeated α2 = 2 times. For example, in database 1, user
exploits c6, d6, e6 to get a12, a13, a14 and c7, d7, e7 to obtain
b11, b12, b13. These are from round 1. Round 2 generates
c11 + d11, c12 + e11, d12 + e12 from stage 1, and c13 + d13,
c14+e13, d14+e14 from stage 2 as side information for round 3.
In round 3, the user downloads sum of three symbols. There
are
(5

3

) = 10 of them. Symbols c10, d10, e10 downloaded from

round 1 in database 2 are used to be summed with mixtures
of a+b. The two sets of side information generated in the sec-
ond round are exploited in the equations that have one a or b.
Note that for each such equation, one of a or b is new and
the other one is decoded from database 2. Round 3 generates
one side information as c19 +d19 +e19 that is used in round 5.
This last round includes the sum of all five messages.

Therefore, as seen in Table IV, we have retrieved
a1, · · · , a34 and b1 · · · , b34, i.e., 68 bits in a total of 112 down-
loads (56 from each database). Thus, the achievable sum rate
is 68

112 = 17
28 . This is Rs in Theorem 2, whereas the upper

bound R̄s in Theorem 2 is 1
1+ 1

N + 1
2N2

= 8
13 . The gap between

Rs and R̄s is equal to 3
364 � 0.0082, which also is the largest

possible gap between Rs and R̄s over all possible values of M ,
P and N .

B. Calculation of the Number of Stages

The main new ingredient of our scheme in comparison to
the scheme in [8] is the unequal number of stages in each
round. In [8], the scheme is completed in M rounds, and each
round contains only 1 stage only when N = 2. To generalize
the ideas in Section V-A and calculate the number of stages
needed per round, we use Vandermonde’s identity

(
M

i

)
=

P∑
k=0

(
P

k

)(
M − P

i − k

)
(49)

The relation in (49) states that any combination of i objects
from a group of M objects must have k objects from a group
of size P and i −k objects from a group of size M − P . In our
context, the first group is the subset of the desired messages
and the second group is the subset of the undesired messages.
Then, the relation can be interpreted in our setting as follows:
In the i th round, the

(M
i

)
combinations of all possible sums of

i terms can be sorted into P + 1 categories: The first category
(i.e., k = 0), contains no terms from the desired messages,
the second category contains 1 term from the desired messages
and i −1 terms from the undesired messages, etc. The relation
gives also the number of query subgroups of each category

(P
k

)
and the number of queries in each subgroup

(M−P
i−k

)
.

Let us consider the following concrete example for
clarification: Consider that we have 6 messages denoted by
(a, b, c, d, e, f ), and the desired group to be retrieved is (a, b).
Consider round 4 that consists of all combinations of sums
of 4 symbols. From Vandermonde’s identity, we know that(6

4

) = (2
0

)(4
4

) + (21
)(4

3

) + (22
)(4

2

)
. Which means that there are
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TABLE IV

THE QUERY TABLE FOR THE CASE M = 5, P = 2, N = 2

three categories of sums: First category is with only undesired
messages; we have

(2
0

) = 1 query subgroup of the form
c + d + e + f . The second category is to have 1 term
from the desired group and the remaining are undesired; we
have

(2
1

) = 2 query subgroups, one corresponds to a with
combinations of 3 terms from c, d, e, f , and the other to b with
combinations of 3 terms from c, d, e, f . Each query subgroup
contains

(4
3

)
queries, i.e., the first query subgroup is of the

form a + (c + d + e, c + d + f, c + e + f, d + e + f ) and
the second query subgroup is of the form b + (c + d + e, c +
d + f, c + e + f, d + e + f ). Third category is to have 2 terms
from the desired group and 2 terms from the undesired group;
we have

(2
2

) = 1 query subgroup of this category that takes the
form a +b + (c +d, c + e, · · · ). The number of queries of this

group is
(4

2

)
corresponding to all combinations of 2 undesired

symbols.
Back to the calculation of the number of stages: To be

able to cancel the undesired symbols from an i -term sum,
the user needs to download these undesired symbols as side
information in the previous rounds. Hence, round i requires
downloading

(P
1

)
stages in round (i − 1),

(P
2

)
stages in round

(i −2), etc. Note that these stages need to be downloaded from
the remaining (N − 1) databases. Then, each database needs
to download 1

N−1

(P
1

)
stages in round (i − 1), 1

N−1

(P
2

)
stages

in round (i − 2), etc.
From this observation, we can trace back the number of

stages needed at each round. Denote αi to be the number
of stages in round i . Fix the number of stages in the last
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round (round M) to be αM = (N −1)M−P stages. This choice
ensures that the number of stages in any round is an integer.
Note that in round M , the user downloads a sum of all M
messages, this requires side information in the form of the
sum of the undesired M − P messages. Hence, we suppress
the rounds M−P +1 through M−1 since they do not generate
any useful side information. Note that the side information
equations in round M at each database are collected from the
remaining (N − 1) databases. Then, the number of stages in
round (M − P) should be (N −1)M−P−1. Therefore, we write

αM = (N − 1)M−P (50)

αM−1 = · · · = αM−P+1 = 0 (51)

αM−P = 1

N − 1
αM = 1

N − 1

P∑
i=1

(
P

i

)
αM−P+i (52)

Now, in round (M− P), each stage requires
(P

1

)
stages from

round (M − P − 1),
(P

2

)
stages from round (M − P − 2), and

so on so forth, and these stages are divided across (N − 1)
databases. Continuing with the same argument, for each round,
we write

αM−P−1 = 1

N −1

(
P

1

)
αM−P = 1

N −1

P∑
i=1

(
P

i

)
αM−P−1+i

(53)

αM−P−2 = 1

N − 1

(
P

1

)
αM−P−1 + 1

N − 1

(
P

2

)
αM−P

= 1

N − 1

P∑
i=1

(
P

i

)
αM−P−2+i (54)

...

αk = 1

N − 1

P∑
i=1

(
P

i

)
αk+i (55)

Interestingly, this pattern closely resembles the output of an
IIR filter y[n] [24], with the difference equation,

y[n] = 1

N − 1

P∑
i=1

(
P

i

)
y[n − i ] (56)

and with the initial conditions y[−P] = (N −1)M−P , y[−P+
1] = · · · = y[−1] = 0. Note that the only difference between
the two seemingly different settings is the orientation of the
time axis. The calculation of the number of stages is obtained
backwards in contrast to the output of this IIR filter. Hence,
we can systematically obtain the number of stages at each
round by observing the output of the IIR filter character-
ized by (56), and mapping it to the number of stages via
αk = y[(M − P) − k].

We note that for the special case P = 1, the number
of stages can be obtained from the first order filter y[n] =

1
N−1 y[n−1]. The output of this filter is y[n] = (N −1)M−2−n .
Then, the number of stages in round k is αk = y[M −1−k] =
(N −1)k−1, which is exactly the number of stages used in [8];
in particular if N = 2, then αk = 1 for all k.

C. General Achievable Scheme

1) Index preparation: The user interleaves the contents of
each message randomly and independently from the
remaining messages using a random interleaver πm(.)
which is known privately to the user only, i.e.,

xm(i) = wm(πm(i)), i ∈ {1, · · · , L} (57)

2) Number of stages: We calculate the number of stages
needed in each round. This can be done systematically
by finding the output of the IIR filter characterized by,

y[n] = 1

N − 1

P∑
i=1

(
P

i

)
y[n − i ] (58)

with the initial conditions y[−P] = (N −
1)M−P , y[−P + 1] = · · · = y[−1] = 0. The
number of stages in round i is αi = y[(M − P) − i ] as
discussed in Section V-B.

3) Initialization: From the first database, the user down-
loads one symbol from each message that belongs to
the desired message set P . The user sets the round index
to i = 1.

4) Message symmetry: In round i , the user downloads sums
of i terms from different symbols from the first database.
To satisfy the privacy constraint, the user should down-
load an equal amount of symbols from all messages.
Therefore, the user downloads the remaining

(M−P
i

)
combinations in round i from the undesired symbol
set P̄ . For example: In round 1, the user downloads one
symbol from every undesired message with a total of(M−P

1

) = M − P such symbols.
5) Repetition of stages: In the first database, the user

repeats the operation in round i according to the
number of calculated stages αi . This in total results
in downloading αi

(M−P
i

)
undesired equations, and

αi

((M
i

)− (M−P
i

))
desired equations.

6) Symmetry across databases: The user implements
symmetry across databases by downloading αi

(M−P
i

)

new undesired equations, and αi

((M
i

)− (M−P
i

))
new

desired equations from each database. These undesired
equations will be used as side information in subsequent
rounds. For example: In round 1, each database gen-
erates α1(M − P) undesired equations in the form of
individual symbols. Hence, each database can exploit up
to α1(N − 1)(M − P) side information equations from
other (N − 1) databases.

7) Exploiting side information: Until now, we did not
specify how the desired equations are constructed. Since
each stage in round i can be categorized using Vander-
monde’s identity as in the previous section, we form the
desired equations as a sum of the desired symbols and
the undesired symbols that can be decoded from other
databases in the former (i − 1) rounds. If the user sums
two or more symbols from P , the user downloads one
new symbol from one message only and the remaining
symbols from P should be derived from other databases.
Thus, in round (i + 1), the user mixes one symbol of



6854 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 10, OCTOBER 2018

P with the sum of i undesired symbols from round i .
This should be repeated for all

(P
1

)
desired symbols.

Then, the user mixes each sum of 2 desired symbols
with the sum of (i − 1) undesired symbols generated in
the (i − 1)th round. This should be repeated for all the(P

2

)
combinations of the desired symbols, and so on.

8) Repeating steps: Repeat steps 4, 5, 6, 7 by setting
i = i + 1 until i = M − P − 1.

9) Last round: We note that rounds M − P +1 to M −1 do
not generate useful side information. Hence, αM−P+1 =
· · · = αM−1 = 0. In round M , which corresponds to
summing all M messages, the user mixes P symbols
from P (only one of them is new and the remaining are
previously decoded from the other (N − 1) databases)
and M−P undesired symbol mixture that was generated
in round (M − P).

10) Shuffling the order of queries: After preparing the query
table, the order of the queries are shuffled uniformly,
so that all possible orders of queries are equally likely
regardless of P .

D. Decodability, Privacy, and Calculation
of the Achievable Rate

Now, we verify that the proposed scheme satisfies the
reliability and privacy constraints.

For the reliability: The scheme is designed to download
the exact number of undesired equations that will be used
as side information equation at subsequent rounds in other
databases.6 Hence, each desired symbol at any round is mixed
with a known mixture of symbols that can be decoded from
other databases. Note that if the scheme encounters the case
of having a mixture of desired symbols, one of them only is
chosen to be new and the remaining symbols are downloaded
previously from other databases. Thus, the reliability constraint
is satisfied by canceling out the side information.

For the privacy: The randomized mapping of message bits
and the randomization of the order of queries guarantees
privacy as in [8]. It can be checked that when we fix the queries
for one database, we can adjust the queries for the remaining
databases such that the user can decode any P subset of
messages. This is true since all combinations of messages are
generated by our scheme.

To calculate the achievable rate: From Vandermonde’s iden-
tity

(M
i

) = ∑P
p=0

(P
p

)(M−P
i−p

)
, round i requires downloading(P

p

)
stages in round (i−p). These stages should be downloaded

from the remaining (N − 1) databases. Hence, as shown in
the previous section, the number of stages at each round is
calculated as the output of an IIR filter whose input-output
relation is given in (56) with the initial conditions y[−P] =
(N − 1)M−P , y[−P + 1] = · · · = y[−1] = 0, with the
conversion of time index of the filter to the round index of the
schemes as αi = y[(M−P)−i ]. These initial conditions imply

6Check for instance in Table IV that all of the downloads (equations)
involving undesired symbols from database 2 are used in database 1: singles
c6, d6, e6, c7, d7, e7, c8, d8, e8, c9, d9, e9, c10, d10, e10; sums of twos c15 +
d15, c16 + e15, d16 + e16, c17 + d17, c18 + e17, d18 + e18; sum of threes
c20+d20+e20, all downloaded from database 2 are all used as side information
in database 1.

that the user downloads (N − 1)M−P stages in the last round
that corresponds to downloading the sum of all messages. The
(P − 1) rounds before the last round are suppressed because
we only need to form sums of (M − P) messages to be used
in the last round.

Now, to calculate the number of stages for round i , we first
solve for the roots of the characteristic equation of (56) [24],

r P − 1

N − 1

P∑
i=1

(
P

i

)
r P−i = 0 (59)

which is equivalent to

r P − r P

N − 1

P∑
i=1

(
P

i

)
r−i = 0 (60)

which further reduces to

r P − r P

N − 1

[(
1 + 1

r

)P

− 1

]
= 0 (61)

using the binomial theorem. Simplifying (61), we have

Nr P − (r + 1)P = 0 (62)

By applying the bijective mapping t = N1/P · r
r+1 , (62) is

equivalent to t P = 1. The roots for this equation are the normal
roots of unity, i.e., tk = e j2π(k−1)/P, k = 1, · · · , P , where
j = √−1. Hence, the roots of the characteristic equation are
given by,

rk = tk
N1/P − tk

= e j2π(k−1)/P

N1/P − e j2π(k−1)/P
, k = 1, · · · , P(63)

Thus, the complete response of the IIR filter is given by y[n] =∑P
i=1 γir n

i , where γi are constants that result from solving the
initial conditions, i.e., γ = (γ1, · · · , γP )T is the solution of
the system of equations,
⎡
⎢⎢⎢⎣

r−P
1 r−P

2 · · · r−P
P

r−P+1
1 r−P+1

2 · · · r−P+1
P

...
... · · · ...

r−1
1 r−1

2 · · · r−1
P

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

γ1
γ2
...

γP

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

(N − 1)M−P

0
...
0

⎤
⎥⎥⎥⎦

(64)

Now, we are ready to calculate the number of stages αk in
round k. Since αk = y[(M − P) − k] by construction, then

αk =
P∑

i=1

γir
M−P−k
i (65)

In round k, the user downloads sums of k symbols. The user
repeats this round for αk stages. Each stage contains all the
combinations of any k symbols which there are

(M
k

)
of them.

Hence, the total download cost D is,

D =
M∑

k=1

(
M

k

)
αk (66)

=
M∑

k=1

P∑
i=1

(
M

k

)
γir

M−P−k
i (67)
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=
P∑

i=1

γir
M−P
i

M∑
k=1

(
M

k

)
r−k

i (68)

=
P∑

i=1

γir
M−P
i

[(
1 + 1

ri

)M

− 1

]
(69)

Considering the undesired equations: in round k, the user
downloads all combinations of the (M − P) undesired mes-
sages which there are

(M−P
k

)
of them. Therefore, similar to the

above calculation, the total number of undesired equations U
is,

U =
P∑

i=1

γir
M−P
i

[(
1 + 1

ri

)M−P

− 1

]
(70)

Hence, the achievable rate Rs is

Rs = D − U

D
(71)

=
∑P

i=1 γir
M−P
i

[(
1 + 1

ri

)M −
(

1 + 1
ri

)M−P
]

∑P
i=1 γir

M−P
i

[(
1 + 1

ri

)M − 1

] (72)

which is (31) in Theorem 2.

E. Further Examples for the Case P ≤ M
2

In this section, we illustrate our proposed scheme with a
few additional basic examples. In Section V-A, we considered
the case M = 5, P = 2, N = 2. In the next three sub-
sections, we consider three more examples. In the example in
Section V-E.1, the ratio M

P is exactly equal to 2, thus,
both the achievable scheme here and the achievable scheme
in Section IV can be used; we comment about the differ-
ences and advantages of both schemes. In the example in
Section V-E.2, we present the case of a larger N for the
example in Section V-A. In the example in Section V-E.3,
we present a case with larger M , P and N .

1) M = 4 Messages, P = 2 Messages, N = 2 Databases:
The first step of the achievable scheme is to identify the
number of stages needed for each round of download. The
IIR filter in (56) that determines the number of stages reduces
in this case to

y[n] = 2y[n − 1] + y[n − 2] (73)

with the initial conditions y[−2] = 1, y[−1] = 0. The number
of stages in round k is αk = y[2−k]. Since M is small, we can
calculate the output iteratively without using the canonical
filter output as,

α4 = y[−2] = 1 (74)

α3 = y[−1] = 0 (75)

α2 = y[0] = 2y[−1] + y[−2] = 1 (76)

α1 = y[1] = 2y[0] + y[−1] = 2 (77)

Hence, we should download 2 stages of individual symbols
(round 1), and 1 stage of sums of two symbols (round 2).
We should suppress the round that retrieves sums of three

TABLE V

THE QUERY TABLE FOR THE CASE M = 4, P = 2, N = 2

symbols (round 3), and have 1 stage of sums of all four
symbols (round 4).

The user initializes the scheme by randomly and indepen-
dently interleaving the symbols of each message. The query
table for this example is shown in Table V. In round 1, the user
downloads individual symbols from all messages at each
database. The user downloads a1, b1, c1, d1 and a2, b2, c2, d2
from database 1, as α1 = 2. This is repeated for database 2.
In round 2, the user downloads sums of two symbols. There
are

(4
2

) = 6 such equations. At database 1, the undesired
symbols from database 2 in the first round are exploited in
some of these sums. These equations are either in the form
a + (c, d) or in the form b + (c, d). This necessitates two
sets of different individual symbols to be downloaded from
database 2 in the first round, or otherwise the symbols are
repeated and privacy is compromised. Moreover, we note that
the user downloads a5 + b3 which uses b3 as side information
even though W2 is desired; this is reversed in database 2 to
download a1 + b7 with a1 as a side information to have
a symmetric scheme. Round 2 concludes with downloading
c5 + d5 and c6 + d6 at the two databases, which will be
used as side information in the last round. Round 3 is
skipped and the user proceeds to round 4 (last round) directly.
In round 4, the user downloads sum of four symbols, and
uses the side information downloaded in round 2 and any
decoded symbols for the other desired message. For example,
in database 1, the user downloads a3 + b10 + c6 + d6, hence,
the side information c6 + d6 is exploited in this round as well
as a3. The user finishes the scheme by shuffling the order
of all queries randomly. The user retrieves a1, · · · , a10 and
b1, · · · , b10 privately in 30 downloads (15 from each database)
and achieves a sum rate of 20

30 = 2
3 = 1

1+ 1
N

, which matches

the upper bound in Theorem 2. This sum rate outperforms the
repetition-based achievable rate which is 3

5 in (12).
We note that this case can be solved using the achievable

scheme presented in Section IV as well since M
P = 2 in

this case. In fact, this is equivalent to the case considered
in Section IV-D.2, if the number of databases is reduced from
N = 3 to N = 2. Starting from Table III in Section IV-D.2
and removing the downloads from database 3, we obtain the
query table which uses MDS-coded queries shown in Table VI
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TABLE VI

ALTERNATIVE QUERY TABLE FOR THE CASE M = 4, P = 2, N = 2

below. Via the scheme in Table VI below, the user retrieves
a1, · · · , a4 and b1, · · · , b4 privately in 12 downloads (6 from
each database), therefore achieving the same optimal sum rate
of 8

12 = 2
3 = 1

1+ 1
N

.

We presented this case here even though it could be solved
using the scheme in Section IV, in order to give an example
where the second achievable scheme achieves the upper bound
in Theorem 2 and yields a capacity result since M

P is an integer.
Interestingly, we observe that for all cases where P = M

2 ,
the two achievable schemes are both optimal. The two schemes
present an interesting trade-off between the field size and the
upload cost: The first achievable scheme in Section IV requires
using an MDS code with field size q ≥ M but the number of
queries for each database is limited to M + P . On the other
hand, the second achievable scheme here in Section V does
not use any coding and can work with the storage field size,
however, the number of queries increase exponentially since
the number of stages for each round is related to an unstable
IIR filter.

2) M = 5 Messages, P = 2 Messages, N = 3 Databases:
In this example, we show an explicit query structure for
N > 2. In this case the corresponding difference equation
for the IIR filter is

y[n] = y[n − 1] + 1

2
y[n − 2] (78)

with the initial conditions y[−1]=0, y[−2]=(N−1)M−P =8.
Thus, the number of stages in each round are: α1 = 6,
α2 = 4, α3 = 4, α4 = 0, α5 = 8. The query table is
shown in Tables VII, VIII and IX. This scheme retrieves
a1, · · · , a126 and b1, · · · , b126 privately in 354 downloads
(177 from each database), therefore, achieving a sum rate of
252
354 = 42

59 < 1
1+ 1

N + 1
2N2

= 18
25 . The gap is 12

1475 � 0.0081.

3) M = 7 Messages, P = 3 Messages, N = 3 Databases:
Finally, in this section, we consider an example with N = 3
databases and larger M and P than in previous examples,
where we describe the structure and the calculation of the
number of queries without specifying the explicit query table
as it grows quite large. We first calculate the number of stages
at each round. The corresponding IIR filter is

y[n] = 1

2
(3y[n − 1] + 3y[n − 2] + y[n − 3]) (79)

with the initial conditions y[−3] = (N − 1)M−P = 16,
y[−2] = 0, y[−1] = 0. Hence, the number of stages for each
round αk = y[4 − k], k = 1, · · · , 7, are calculated iteratively
as α1 = 67, α2 = 30, α3 = 12, α4 = 8, α5 = 0, α6 = 0,
α7 = 16.

In round 1, the user downloads 67 individual symbols from
each message and from each database. Each database can use
the side information generated by the other two databases.
Hence, each database has 67 · 2 = 134 side information
equations in the form of single symbols from round 1 to
exploit. In round 2, the user downloads sums of two symbols.
Each stage in round 2 requires 3 stages from round 1, since the
user faces with a+(d, e, f, g), b+(d, e, f, g) or c+(d, e, f, g)
cases. Then, round 2 requires 30 · 3 = 90 stages from the
generated side information in round 1, and we are left with
134 − 90 = 44 more stages of round 1. Each database can
use the side information stages from the other two databases,
i.e., each can use up to 2 · 30 = 60 stages of side information
in the form of sums of two.

In round 3, the user downloads sums of three symbols,
which can be either of a +b + (d, e, f, g), a + c + (d, e, f, g),
b + c + (d, e, f, g), a + (d + e, d + f, · · · ), and similarly
for b, c. Therefore, each stage in round 3 requires 3 stages
from round 2, and 3 stages from round 1. This in total requires
12 · 3 = 36 stages from round 1 and 36 stages from round 2,
and we will be left with 8 stages from round 1 and 24 stages
from round 2. Round 3 generates 2 · 12 = 24 stages of
side information in the form of sums of threes. In round 4,
the user downloads sums of 4 symbols, which can be either
a + b + (d + e, d + f, · · · ), and similarly for b + c and
a + c, a + (d + e + f, d + e + g, · · · ) and similarly for b,
c, or a +b +c + (d, e, f, g). This means that for each stage of
round 3, the user needs 1 stage of round 1, 3 stages of round 2,
and 3 stages of round 3. This in total requires 8 ·3 = 24 stages
from round 2 and 3 and 8 · 1 stages from round 1 and hence,
we exhaust all the generated side information by round 4.
Round 4 generates 8 stages of side information in the form of
sums of fours. This will be used in the last round to get 8 · 2
new symbols from the desired messages.

The achievable sum rate in this case is 3933
5445 = 437

605 <
1

1+ 1
N + 1

3N2
= 27

37 . The gap is 166
22385 � 0.0074.

VI. CONVERSE PROOF

In this section, we derive an upper bound for the MPIR
problem.7 The derived upper bound is tight when P ≥ M

2
and when M

P ∈ N. We follow the notations and simplifications
in [8] and [12], and we define

Q �
{

Q[P]
n : P ⊆ {1,· · · ,M}, |P | = P, n ∈ {1,· · · ,N}

}

(80)

and

A[P]
n1:n2

�
{

A[P]
n1

, A[P]
n1+1, · · · , A[P]

n2

}
(81)

for n1 ≤ n2, n1, n2 ∈ {1, · · · , N}.
Without loss of generality, the following simplifications hold

for the MPIR problem:

1) We can assume that the MPIR scheme is symmetric.
Since for every asymmetric scheme, there exists an

7We note that the assumption that Wi ∈ F
L
q is indeed unnecessary in terms

of converse arguments. Consequently, our converse proof is valid for any
storage alphabet.
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TABLE VII

THE QUERY TABLE FOR THE CASE M = 5, P = 2, N = 3

equal rate symmetric scheme that can be constructed by
replicating all permutations of databases and messages.

2) To invoke the privacy constraint, we fix the response of
one database to be the same irrespective of the desired
set of messages P , i.e., A[Pi ]

n = An , where |Pi | = P
for every i ∈ {1, 2, · · · , β} for some n ∈ {1, · · · , N},
and β = (M

P

)
. No loss of generality is incurred due to

the fact that the queries and the answers are statistically
independent from P . In the sequel, we fix the answer
string of the first database, i.e.,

A[P]
1 = A1, ∀P (82)

The following lemma is a consequence of the symmetry
assumption; its proof can be found in [8].

Lemma 1 (Symmetry [8]): For any WS = {Wi : i ∈ S}
H (A[P]

n |WS ,Q) = H (A[P]
1 |WS ,Q), n ∈ {1,· · · ,N} (83)

H (A1|Q) = H (A[P]
n |Q), n ∈ {1,· · · ,N}, ∀P (84)

We construct the converse proof by induction over � M
P 	

in a similar way to [8] and [12]. The base induction step is
obtained for 1 ≤ M

P ≤ 2 (this is the case P ≥ M
2 as it was

referred to so far, where the user wants to retrieve at least
half of the messages). We obtain an inductive relation for the
case M

P > 2. The converse proof extends the proof in [8]
for P > 1.

A. Converse Proof for the Case 1 ≤ M
P ≤ 2

To prove the converse for the case 1 ≤ M
P ≤ 2, we need

the following lemma which gives a lower bound on the
interference within an answer string.
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TABLE VIII

THE QUERY TABLE FOR THE CASE M = 5, P = 2, N = 3 (CONT.)

Lemma 2 (Interference Lower Bound): For the MPIR
problem with P ≥ M

2 , the uncertainty of the interfering
messages WP+1:M within the answer string A[1:P]

1 is lower
bounded as,

H (A[1:P]
1 |W1:P ,Q) ≥ (M − P)L

N
(85)

Furthermore, (85) is true for any set of desired messages P
with |P | = P, i.e.,

H (A[P]
1 |WP ,Q) ≥ (M − P)L

N
(86)

Proof: For clarity of presentation, we assume that P =
{1, · · · , P} without loss of generality. Hence,

(M − P)L = H (WP+1:M) (87)
= H (WP+1:M |W1:P ,Q) (88)
= H (WP+1:M |W1:P ,Q)

−H (WP+1:M |A[M−P+1:M]
1:N , W1:P ,Q) (89)

= I (WP+1:M ; A[M−P+1:M]
1:N |W1:P ,Q) (90)

= H (A[M−P+1:M]
1:N |W1:P ,Q) (91)

≤
N∑

n=1

H (A[M−P+1:M]
n |W1:P ,Q) (92)

= N H (A1|W1:P ,Q) (93)
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TABLE IX

THE QUERY TABLE FOR THE CASE M = 5, P = 2, N = 3 (CONT.)

where (88) follows from the independence of the messages
WP+1:M from the messages W1:P and the queries as in (2)
and (3); (89) follows from the reliability constraint (7), since
messages WP+1:M can be decoded correctly from the answer
strings A[M−P+1:M]

1:N if P ≥ M
2 as {P+1, · · · , M} ⊆ {M−P+

1, · · · , M} in this regime; (91) follows from the fact that the
answer strings are deterministic functions of all messages and
queries (Q, W1:M ); and (93) follows from the independence
bound and Lemma 1.

Consequently, H (A1|W1:P ,Q) ≥ (M−P)L
N . The proof of the

general statement can be done replacing W1:P by WP , WP+1:M
by WP̄ which corresponds to the complement set of messages
of WP , and the answer strings A[M−P+1:M]

1:N by A[P∗]
1:N , where

P̄ ⊆ P∗, |P∗| = P . �
Now, we are ready to prove the converse of the case

P ≥ M
2 . We use a similar converse technique to the case

of M = 2, P = 1 in [8],

M L

= H (W1:M) (94)

= H (W1:M |Q) (95)

= H (W1:M |Q)−H (W1:M|A[P1]
1:N , A[P2]

1:N ,· · ·,A
[Pβ ]
1:N ,Q) (96)

= I (W1:M ; A[P1]
1:N , A[P2]

1:N , · · · , A
[Pβ ]
1:N |Q) (97)

= H (A[P1]
1:N , A[P2]

1:N , · · · , A
[Pβ ]
1:N |Q) (98)

= H (A1, A[P1]
2:N , A[P2]

2:N , · · · , A
[Pβ ]
2:N |Q) (99)

= H (A1,A[P1]
2:N |Q)+H (A[P2]

2:N ,· · ·,A
[Pβ ]
2:N |A1, A[P1]

2:N ,Q)

(100)

= H (A1, A[P1]
2:N |Q)

+H (A[P2]
2:N , · · · , A

[Pβ ]
2:N |A1, A[P1]

2:N , WP1 ,Q) (101)

≤
N∑

n=1

H (A[P1]
n |Q)+H (A[P2]

2:N ,· · ·,A
[Pβ ]
2:N |A1, WP1 ,Q)

(102)

=
N∑

n=1

H (A[P1]
n |Q) + H (A[P2]

1:N , · · · , A
[Pβ ]
1:N |WP1,Q)

−H (A1|WP1 ,Q) (103)

where β = (M
P

)
represents the total number of message subsets

of size P that can be constructed from M messages; (95)
follows from the independence between the messages and
the queries; (96) follows from the reliability constraint in (7)
with noting that A[P1]

1:N , A[P2]
1:N , · · · , A

[Pβ ]
1:N represent all answer

strings from all databases to every possible subset of messages
Pi ⊆ {1, · · · , M}, i = 1, 2, · · · , β, hence all messages can be
correctly decoded as all possible answer strings are known;
(98) follows from the fact that answer strings are deterministic
functions of the messages and the queries; (99) follows from
simplification (82) without loss of generality; (101) follows
from the fact that the messages WP = (Wi1 , Wi2 , · · · , WiP )

can be reconstructed from A[P]
1:N ; and (102) is a consequence

of the fact that conditioning does not increase entropy and
Lemma 1.

Now, every message appears in
(M−1

P−1

)
different mes-

sage subsets of size P , therefore the answer strings
(A[P2]

1:N , · · · , A
[Pβ ]
1:N ) are sufficient to construct all messages

W1:M irrespective of P1. Therefore,

H (A[P2]
1:N , · · · , A

[Pβ ]
1:N |WP1 ,Q) = (M − P)L (104)

Using this and Lemma 2 in (103) yields

M L ≤∑N
n=1 H (A[P1]

n |Q) + (M − P)L − (M−P)L
N (105)
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which can be written as,

P L + (M − P)L

N
≤∑N

n=1 H (A[P1]
n |Q) (106)

which further can be written as,
(

1 + M − P

P N

)
P L ≤∑N

n=1 H (A[P1]
n |Q) (107)

which leads to the desired converse result,

P∑
i=1

Ri = P L
∑N

n=1 H
(

A[P]
n

)

≤ P L
∑N

n=1 H
(

A[P]
n |Q

)

≤ 1

1 + M−P
P N

(108)

B. Converse Proof for the Case M
P > 2

In the sequel, we derive an inductive relation that can be
used in addition to the base induction step of 1 ≤ M

P ≤ 2
derived in the previous sub-section to obtain an upper bound
for the MPIR problem. The idea we pursue here is similar
in spirit to the one in [8], where the authors developed a
base converse step for M = 2 messages, and developed an
induction over the number of messages M for the case M > 2.
Here, we have developed a base converse step for 1 ≤ M

P ≤ 2,
and now develop an induction over

⌊M
P

⌋
for the case M

P > 2.
The following lemma upper bounds the remaining uncer-

tainty of the answer strings after knowing a subset of size P
of the interference messages.

Lemma 3 (Interference Conditioning Lemma): The remai-
ning uncertainty in the answer strings A[P2]

2:N after conditioning
on the messages indexed by P1, such that P1 ∩ P2 = φ,
|P1| = |P2| = P is upper bounded by,

H (A[P2]
2:N |WP1 ,Q) ≤ (N − 1)[N H (A1|Q) − P L] (109)

Proof: We begin with

H (A[P2]
2:N |WP1 ,Q)

≤
N∑

n=2

H (A[P2]
n |WP1 ,Q) (110)

≤
N∑

n=2

H (A[P1]
1:n−1, A[P2]

n , A[P1]
n+1:N |WP1 ,Q) (111)

=
N∑

n=2

H (A[P1]
1:n−1, A[P2]

n , A[P1]
n+1:N , WP1 |Q) − H (WP1|Q)

(112)

=
N∑

n=2

H (A[P1]
1:n−1, A[P2]

n , A[P1]
n+1:N |Q)

+H (WP1|A[P1]
1:n−1, A[P2]

n , A[P1]
n+1:N ) − H (WP1) (113)

≤
N∑

n=2

N H (A1|Q) − H (WP1) (114)

= (N − 1)[N H (A1|Q) − P L] (115)

where (110) follows from the independence bound; (111)
follows from the non-negativity of entropy; (113) follows
from the statistical independence between the messages
and the queries; and (114) follows from the decod-
ability of WP1 given the answer strings (A[P1]

1:n−1, A[P2]
n ,

A[P1]
n+1:N ), which is tantamount to the privacy constraint as in

the second simplification. �
Now, we derive the inductive relation for M

P > 2. Without
loss of generality, let P1 = {1, · · · , P} and P2 = {P +
1, · · · , 2P}. Then, starting from (99), we write

M L = H (A1, A[P1]
2:N , A[P2]

2:N , · · · , A
[Pβ ]
2:N |Q) (116)

= H (A1, A[P1]
2:N |Q) + H (A[P2]

2:N |A1, A[P1]
2:N ,Q)

+H (A[P3]
2:N , · · · , A

[Pβ ]
2:N |A1, A[P1]

2:N , A[P2]
2:N ,Q) (117)

≤ N H (A1|Q) + H (A[P2]
2:N |A1, A[P1]

2:N , W1:P ,Q)

+H (A[P3]
2:N ,· · ·,A

[Pβ ]
2:N |A1,A[P1]

2:N ,A[P2]
2:N ,W1:2P ,Q)

(118)
≤ N H (A1|Q) + H (A[P2]

2:N |W1:P ,Q)

+H (A[P3]
2:N ,· · ·, A

[Pβ ]
2:N |A1, W1:2P ,Q) (119)

= N H (A1|Q) + H (A[P2]
2:N |W1:P ,Q)−H (A1|W1:2P ,Q)

+H (A[P3]
1:N ,· · ·, A

[Pβ ]
1:N |W1:2P ,Q) (120)

= N H (A1|Q) + H (A[P2]
2:N |W1:P ,Q)−H (A1|W1:2P ,Q)

+(M − 2P)L (121)
≤ N H (A1|Q) + (N − 1)[N H (A1|Q) − P L]

−H (A1|W1:2P ,Q) + (M − 2P)L (122)

where (118) follows from the decodability of W1:2P given
(A1, A[P1]

2:N , A[P2]
2:N ), the symmetry lemma and the independence

bound; (119) follows from the fact that conditioning does not
increase entropy. In (121), we note that subsets (P3, · · · ,Pβ)
include all messages (W1, · · · , WM ) because every mes-
sage appears in

(M−1
P−1

)
subsets. Hence, H (A[P3]

1:N , · · · , A
[Pβ ]
1:N |

W1:2P ,Q) = (M − 2P)L since W2P+1:M is decodable from
(A[P3]

1:N , · · · , A
[Pβ ]
1:N ) after knowing W1:2P . Finally, (122) fol-

lows from the interference conditioning lemma.
Consequently, (122) can be written as

N2 H (A1|Q) ≥ (N + 1)P L + H (A1|W1:2P ,Q) (123)

which is equivalent to

N H (A1|Q) ≥
(

1 + 1

N

)
P L + 1

N
H (A1|W1:2P ,Q) (124)

Now, (124) constructs an inductive relation, since evaluating
N H (A1|W1:2P ,Q) is the same as N H (A1|Q) with (M −2P)
messages, i.e., the problem of MPIR with M messages for
fixed P is reduced to an MPIR problem with (M − 2P)
messages for the same fixed P . We note that (124) generalizes
the inductive relation in [8] for P = 1.

We can write the induction hypothesis for MPIR with
M messages as

N H (A1|Q) ≥ P L

⎡
⎢⎣

� M
P 	−1∑
i=0

1

Ni
+
(

M

P
−
⌊

M

P

⌋)
1

N

⌊
M
P

⌋

⎤
⎥⎦

(125)
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Next, we proceed with proving this relation for M + 1
messages. From the induction hypothesis, we have

N H (A1|W1:2P ,Q)

≥ P L

⎡
⎢⎣

� M−2P+1
P 	−1∑
i=0

1

Ni
+
(

M − 2P + 1

P

−
⌊

M − 2P + 1

P

⌋
⎞
⎟⎠ 1

N

⌊
M−2P+1

P

⌋

⎤
⎥⎦ (126)

= P L

⎡
⎢⎣

� M+1
P 	−3∑
i=0

1

Ni
+
(

M + 1

P
−
⌊

M + 1

P

⌋)
1

N

⌊
M+1

P

⌋
−2

⎤
⎥⎦

(127)

substituting this in (124),

N H (A1|Q)

≥
(

1 + 1

N

)
P L + P L

N2

⎡
⎢⎣

� M+1
P 	−3∑
i=0

1

Ni
+
(

M + 1

P

−
⌊

M + 1

P

⌋
⎞
⎟⎠ 1

N

⌊
M+1

P

⌋
−2

⎤
⎥⎦ (128)

= P L

⎡
⎢⎣

� M+1
P 	−1∑
i=0

1

Ni
+
(

M+1

P
−
⌊

M+1

P

⌋)
1

N

⌊
M+1

P

⌋

⎤
⎥⎦ (129)

which concludes the induction argument.
Consequently, the upper bound for the MPIR problem can

be obtained as,

P∑
i=1

Ri = P L
∑N

n=1 H
(

A[P]
n

) (130)

≤ P L

N H (A1|Q)
(131)

= 1
∑� M

P 	−1
i=0

1
Ni + (M

P − ⌊M
P

⌋) 1

N

⌊
M
P

⌋
(132)

=
(

1 − ( 1
N )� M

P 	

1 − 1
N

+
(

M

P
−
⌊

M

P

⌋)
1

N

⌊
M
P

⌋
)−1

(133)

where (132) follows from (129); and (133) follows from
evaluating the sum in (132).

VII. CONCLUSIONS

In this paper, we introduced the multi-message private
information retrieval (MPIR) problem from an information-
theoretic perspective. The problem generalizes the PIR
problem in [8] which retrieves a single message privately.
We determined the exact sum capacity for this problem when
the number of desired messages is at least half of the number
of total stored messages to be C P

s = 1
1+ M−P

P N
. We showed

that joint retrieval of the desired messages strictly outperforms
repeating the single-message capacity achieving scheme for
each message. Furthermore, we showed that if the total number
of messages is an integer multiple of the number of desired

messages, then the sum capacity is C P
s = 1− 1

N

1−( 1
N )M/P , which

resembles the single-message PIR capacity expression when
the number of messages is M

P . For the remaining cases,
we derived lower and upper bounds. We observed numerically
that the gap between the lower and upper bounds decreases
monotonically in N , and the worst case gap is 0.0082 which
occurs for the case N = 2 when M = 5, P = 2.

The MPIR problem can be extended in several interesting
directions. First, we recall from earlier remarks in the paper
that the sum capacity for M/P /∈ N is still an open problem,
in addition to characterizing the optimal capacity region.
Second, the MDS-coded MPIR as an extension of [12] is
an interesting open problem, as the contents of the databases
are themselves coded via an MDS code in [12]. This is a
challenging problem, in particular if P ≥ M

2 , because our
achievable scheme here uses a P × M MDS code; it would be
interesting to see how the storage MDS code and the retrieval
MDS code would interact. Similar difficulties would exist in
the MPIR problem with colluding databases (extending [13]),
robust MPIR problem (extending [13]), and MPIR prob-
lem with Byzantine databases (extending [28]), as all these
problems adopt some version of MDS coding for retrieval
purposes. Furthermore, one can examine whether multiround
MPIR enhances the MPIR retrieval rate or not (extending
the case of single-message retrieval in [29]), and study the
effects of limited message size on MPIR (extending [25]).
Our converse techniques may be generalized to be applicable
to these scenarios. Some progress in these MPIR problems has
been made recently in [30].
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