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Abstract— We consider the problem of private information
retrieval from N non-colluding and replicated databases, when
the user is equipped with a cache that holds an uncoded fraction
r of the symbols from each of the K stored messages in the
databases. This model operates in a two-phase scheme, namely,
the prefetching phase where the user acquires side information
and the retrieval phase where the user privately downloads the
desired message. In the prefetching phase, the user receives r/N
uncoded fraction of each message from the nth database. This
side information is known only to the nth database and unknown
to the remaining databases, i.e., the user possesses partially
known side information. We investigate the optimal normalized
download cost D∗(r) in the retrieval phase as a function of K ,
N , and r. We develop lower and upper bounds for the optimal
download cost. The bounds match in general for the cases of
very low caching ratio and very high caching ratio. We fully
characterize the optimal download cost caching ratio tradeoff
for K = 3. For general K , N , and r values, we show that the
largest additive gap between the achievability and the converse
bounds is 5/32.

Index Terms— Private information retrieval, caching, side
information, distributed databases, uncoded prefetching.

I. INTRODUCTION

IN TODAY’S communication networks, the end-users are
equipped with large memories, and the data transmitted

in the network has shifted from real-time generated data
like voice to pre-generated content like movies. These two
factors together have enabled caching techniques, which store
data in user cache a priori in order to reduce the peak-hour
network traffic load. In the meanwhile, privacy has become
an important consideration for users, who wish to download
data from publicly accessable databases as privately and as
efficiently as possible. This is studied under the subject of
private information retrieval (PIR). In this paper, we combine
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the caching and PIR approaches, and consider the problem of
PIR for a cache-enabled end-user.

The PIR problem considers the privacy of the requested
message by a user from distributed databases. In the classical
setting of PIR [1], there are N non-communicating databases,
each storing the same set of K messages. The user wishes
to download one of these K messages without letting the
databases know the identity of the desired message. A feasible
scheme is to download all the K messages from a database.
However, this results in excessive download cost since it
results in a download that is K times the size of the desired
message. The goal of the PIR problem is to construct an
efficient retrieval scheme such that no database knows which
message is retrieved. The PIR problem has originated in
computer science [1]–[5] and has drawn significant attention
in information theory [6]–[11] in recent years.

Recently, Sun and Jafar [12] have characterized the optimal
normalized download cost for the classical PIR problem to
be D

L =
�
1 + 1

N + · · · + 1
NK−1

�
, where L is the message

size and D is the total number of downloaded bits from the
N databases. Since the work of Sun and Jafar [12], many
interesting variants of the classical PIR problem have been
investigated, such as, PIR from colluding databases, robust
PIR, symmetric PIR, PIR from MDS-coded databases, PIR
for arbitrary message lengths, multi-round PIR, multi-message
PIR, PIR from Byzantine databases, secure symmetric PIR
with adversaries, cache-aided PIR, PIR with private side
information (PSI), PIR for functions, storage constrained PIR,
and their several combinations [13]–[35].

Also recently, Maddah-Ali and Niesen [36] have proposed
a theoretical framework to study the tradeoff between the
cache memory size of users and the network traffic load
for a two-phase scheme. In the prefetching phase, when the
network traffic is low, the server allocates data to the user’s
cache memory. In the retrieval phase, when the network
traffic is high, the server delivers the messages according
to the users’ requests. By jointly designing the prefetching
of the cache content during the low traffic period and the
delivery of the requested content during the high traffic period,
the coded-caching technique proposed in [36] achieves a
global caching gain significantly reducing the peak-time traffic
load. The concept of coded-caching has been applied to many
different scenarios, such as, decentralized networks, device
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to device networks, random demands, online settings, general
cache networks, security constraints, finite file size constraints,
broadcast channels and their several combinations [37]–[55].

The caching technique not only reduces the traffic load but
can also help the user to privately retrieve the desired file
more efficiently by providing additional side information. The
interplay between side information and the PIR problem has
been studied recently in [27] and [29]-[32]. We first recall that
the achievability scheme proposed in [12] is based on three
principles: database symmetry, message symmetry, and side
information utilization. The side information in [12] comes
from the undesired bits downloaded from the other (N − 1)
databases. Side information plays an important role in the
PIR problem; for instance, when N = 1 (single database),
i.e., when no side information is available, the normalized
download cost is K , which is the largest possible. Caching
can improve PIR download cost by providing useful side
information.

Reference [27] is the first to study the cache-aided PIR
problem. In [27], the user has a memory of size KLr bits
and can store an arbitrary function of the K messages, where
0 ≤ r ≤ 1 is the caching ratio. Reference [27] considers
the case when the cached content is fully known to all N
databases, and determines the optimal normalized download
cost to be (1−r) �

1 + 1
N + · · · + 1

NK−1

�
. Although the result

is pessimistic since it implies that the user cannot utilize
the cached content to further reduce the download cost, [27]
reveals two new dimensions for the cache-aided PIR prob-
lem. The first one is the databases’ awareness of the side
information at its initial acquisition. Different from [27]
and [29]–[31] study the case when the databases are unaware
of the cached side information, and [32] studies the case
when the databases are partially aware of the cached side
information. The second one is the structure of the side
information. Instead of storing an arbitrary function of the
K messages, [29], [31], and [32] consider caching M full
messages out of total K messages, and [30] considers storing
an r fraction of each message in uncoded form.

This paper is closely related to [30]. In [30], the databases
are assumed to be completely unaware of the side information.
However, this may be practically challenging to implement.
Here, we consider a more natural model which uses the same
set of databases for both prefetching and retrieval phases.
Therefore, different from [30], here each database gains partial
knowledge about the side information, that is the part it
provides during the prefetching phase. Our aim is to determine
if there is a rate loss due to this partial knowledge with respect
to the fully unknown case in [30], and characterize this rate
loss as a function of K , N and r.

In this work, we consider PIR with partially known uncoded
prefetching. We consider the PIR problem with a two-phase
scheme, namely, prefetching phase and retrieval phase. In the
prefetching phase, the user caches an uncoded r

N fraction of
each message from the nth database. The nth database is aware
of these KLr

N bit side information, while it has no knowledge
about the cached bits from the other (N−1) databases. We aim
at characterizing the optimal tradeoff between the normalized
download cost D(r)

L and the caching ratio r. For the outer

Fig. 1. System model.

bound, we explicitly determine the achievable download rates
for specific K+1 caching ratios. Download rates for any other
caching ratio can be achieved by memory-sharing between the
nearest explicit points. Hence, the outer bound is a piece-
wise linear curve which consists of K line segments. For
the inner bound, we extend the techniques of [12] and [30]
to obtain a piece-wise linear curve which also consists of
K line segments. We show that the inner and the outer
bounds match exactly at three line segments for any K .
Consequently, we characterize the optimal tradeoff for the very
low (r ≤ 1

NK−1 ) and the very high (r ≥ K−2
N2−3N+KN ) caching

ratios. As a direct corollary, we fully characterize the optimal
download cost caching ratio tradeoff for K = 3 messages. For
general K , N and r, we show that the worst-case additive gap
between the inner and the outer bounds is 5

32 .

II. SYSTEM MODEL

We consider a PIR problem with N non-communicating
databases; see Fig. 1. Each database stores an identical copy
of K statistically independent messages, W1, . . . ,WK . Each
message is L bits long,

H(W1) = · · · = H(WK) = L, (1)

H(W1, . . . ,WK) = H(W1) + · · · +H(WK). (2)

The user (retriever) has a local cache memory which can store
up to KLr bits, where 0 ≤ r ≤ 1, and r is called the caching
ratio. There are two phases in this system: the prefetching
phase and the retrieval phase.

In the prefetching phase, for each message Wk , the user
randomly and independently chooses Lr bits out of the L
bits to cache. The user caches the Lr bits of each message
by prefetching the same amount of bits from each data-
base, i.e., the user prefetches KLr

N bits from each database.
∀n ∈ [N ], where [N ] = {1, 2, . . . , N}, we denote the indices
of the cached bits from the nth database by Hn and the cached
bits from the nth database by the random variable Zn. There-
fore, the overall cached content Z is equal to (Z1, . . . , ZN ),
and H(Z) =

�N
n=1H(Zn) = KLr. We further denote
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the indices of the cached bits by H. Therefore, we have
H =

�N
n=1 Hn, where Hn1 ∩ Hn2 = ∅, if n1 �= n2. Since

the user caches a subset of the bits from each message, this is
called uncoded prefetching. Here, we consider the case where
database n knows Hn, but it does not know H \Hn. We refer
to Z as partially known prefetching.

In the retrieval phase, the user privately generates an index
θ ∈ [K], and wishes to retrieve message Wθ such that it is
impossible for any individual database to identify θ. Note that
during the prefetching phase, the desired message is unknown
a priori. Therefore, the cached bit indices H are independent of
the desired message index θ. Note further that the cached bit
indices H are independent of the message contents. Therefore,
for random variables θ, H, and W1, . . . ,WK , we have

H (θ,H,W1, . . . ,WK)
= H (θ) +H (H) +H(W1) + · · · +H(WK). (3)

The user sends N queries Q[θ]
1 , . . . , Q

[θ]
N to the N databases,

where Q
[θ]
n is the query sent to the nth database for mes-

sage Wθ . The queries are generated according to H, which are
independent of the realizations of the K messages. Therefore,

I(W1, . . . ,WK ;Q[θ]
1 , . . . , Q

[θ]
N ) = 0. (4)

To ensure that individual databases do not know which mes-
sage is retrieved, we need to satisfy the following privacy
constraint, ∀n ∈ [N ], ∀θ ∈ [K],

(Q[1]
n , A

[1]
n ,W1, . . . ,WK ,Hn)

∼ (Q[θ]
n , A

[θ]
n ,W1, . . . ,WK ,Hn), (5)

where A ∼ B means that A and B are identically distributed.
After receiving the query Q[θ]

n , the nth database replies with

an answering string A[θ]
n , which is a function of Q[θ]

n and all
the K messages. Therefore, ∀θ ∈ [K], ∀n ∈ [N ],

H(A[θ]
n |Q[θ]

n ,W1, . . . ,WK) = 0. (6)

After receiving the answering strings A[θ]
1 , . . . , A

[θ]
N from all

the N databases, the user needs to decode the desired message
Wθ reliably. By using Fano’s inequality, we have the following
reliability constraint

H
�
Wθ|Z,H, Q[θ]

1 , . . . , Q
[θ]
N , A

[θ]
1 , . . . , A

[θ]
N

�
= o(L), (7)

where o(L) denotes a function such that o(L)
L → 0 as L→ ∞.

For a fixed N , K , and caching ratio r, a pair (D(r), L) is
achievable if there exists a PIR scheme for message of size L
bits long with partially known uncoded prefetching satisfying
the privacy constraint (5) and the reliability constraint (7),
where D(r) represents the expected number of downloaded
bits (over all the queries) from the N databases via the
answering strings A[θ]

1:N , where A[θ]
1:N = (A[θ]

1 , . . . , A
[θ]
N ), i.e.,

D(r) =
N�

n=1

H
�
A[θ]
n

�
. (8)

In this work, we aim at characterizing the optimal normalized
download cost D∗(r) corresponding to every caching ratio

0 ≤ r ≤ 1, where

D∗(r) = inf
	
D(r)
L

: (D(r), L) is achievable



, (9)

which is a function of the caching ratio r.

III. MAIN RESULTS

We provide a PIR scheme for general K , N and r, which
achieves the following normalized download cost, D̄(r).

Theorem 1 (Outer Bound): In the cache-aided PIR with
partially known uncoded prefetching, for the caching ratio

rs =

�
K−2
s−1

�

�
K−2
s−1

�
+

�K−1−s
i=0

�
K−1
s+i

�
(N − 1)i+1

, (10)

and length of the message

L(s) = N

�
K − 2
s− 1

�
+
K−1−s�

i=0

�
K − 1
s+ i

�
(N − 1)i+1N, (11)

where s ∈ {1, 2, · · · ,K − 1}, the optimal normalized
download cost D∗(rs) is upper bounded by,

D∗(rs) ≤ D̄(rs) =

�K−1−s
i=0

�
K

s+1+i

�
(N − 1)i+1

�
K−2
s−1

�
+

�K−1−s
i=0

�
K−1
s+i

�
(N − 1)i+1

.

(12)

Moreover, if rs < r < rs+1, and α ∈ (0, 1) such that
r = αrs + (1 − α)rs+1, then

D∗(r) ≤ D̄(r) = αD̄(rs) + (1 − α)D̄(rs+1). (13)
The proof of Theorem 1 is provided in Section IV. The

outer bound in Theorem 1 is a piece-wise linear curve, which
consists of K line segments. These K line segments intersect
at the points rs.

We characterize an inner bound (converse bound), which is
denoted by D̃(r), for the optimal normalized download cost
D∗(r) for general K , N , r.

Theorem 2 (Inner Bound): In the cache-aided PIR with
partially known uncoded prefetching, the normalized down-
load cost is lower bounded as,

D∗(r) ≥ D̃(r)

= max
i∈{2,··· ,K+1}

(1 − r)
K+1−i�

j=0

1
N j

− r

�
1 − 1

N

�K−i�

j=0

K + 1 − i− j

N j
(14)

= max
i∈{2,··· ,K+1}

K+1−i�

j=0

1
N j

− (K + 2 − i)r. (15)

The proof of Theorem 2 is provided in Section V. The
inner bound in Theorem 2 is also a piece-wise linear curve,
which consists of K line segments. Interestingly, these K line
segments intersect at the points as follows,

r̃i =
1

NK−i , i = 1, · · · ,K − 1. (16)
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The outer bounds provided in Theorem 1 and the inner
bounds provided in Theorem 2 match for some caching ratios r
as summarized in the following corollary.

Corollary 1 (Optimal Tradeoff for Very Low and Very High
Caching Ratios): In the cache-aided PIR with partially known
uncoded prefetching, for very low caching ratios, i.e., for r ≤

1
NK−1 , the optimal normalized download cost is given by,

D∗(r) =
�

1 +
1
N

+ · · · + 1
NK−1

�
−Kr. (17)

On the other hand, for very high caching ratios, i.e., for
r ≥ K−2

N2−3N+KN , the optimal normalized download cost is
given by,

D∗(r) =

⎧
⎪⎨

⎪⎩

1 +
1
N

− 2r,
K − 2

N2 − 3N +KN
≤ r ≤ 1

N

1 − r,
1
N

≤ r ≤ 1.
(18)

Proof: From (10) and (16), we have

r1 = r̃1 =
1

NK−1
, (19)

rK−2 =
K − 2

N2 − 3N +KN
, (20)

rK−1 = r̃K−1 =
1
N
. (21)

For the outer bound of the case of very low caching ratios,
from (12), we have

D̄(r1) =

�K−2
i=0

�
K

2+i

�
(N − 1)i+1

�
K−2

0

�
+

�K−2
i=0

�
K−1
1+i

�
(N − 1)i+1

(22)

=
1

(N−1)

�K−2
i=0

�
K

2+i

�
(N − 1)i+2

NK−1
(23)

=
1

(N−1)

�
NK − 1 −K(N − 1)

�

NK−1
(24)

=
NK −KN +K − 1

NK −NK−1
. (25)

For the inner bound of the case of very low caching ratios,
from (14), by choosing i = 2 and using r = r1, we have

D̃(r1) ≥ (1 − r1)
K−1�

j=0

1
N j

− r1

�
1 − 1

N

�K−2�

j=0

K − 1 − j

N j

(26)

=
�

1 − 1
NK−1

�
1 − 1

NK

1 − 1
N

− 1
NK−1

�
1 − 1

N

�
K − K

N − 1 + 1
NK

�
1 − 1

N

�2 (27)

=
1

�
1 − 1

N

�

� �
1 − 1

NK−1

� �
1 − 1

NK

�

− 1
NK−1

�
K − K

N
− 1 +

1
NK

� �

(28)

=
NK −KN +K − 1

NK −NK−1
= D̄(r1). (29)

Thus, since D̃(r1) ≤ D̄(r1) by definition, (29) implies
D̃(r1) = D̄(r1).

For the outer bound of the case of very high caching ratios,
from (12), we have

D̄(rK−2) =

�1
i=0

�
K

K−1+i

�
(N − 1)i+1N

N
�
K−2
K−3

�
+

�1
i=0

�
K−1
K−2+i

�
(N − 1)i+1N

(30)

=
N2 +KN − 2N −K + 1

N2 − 3N +KN
, (31)

and for the inner bound of the case of very high caching ratios,
from (14) by choosing i = K and using r = rK−2,

D̃(rK−2) ≥ (1 − rK−2)
1�

j=0

1
N j

− rK−2

�
1 − 1

N

� 0�

j=0

1 − j

N j
(32)

= 1 +
1
N

− 2rK−2 (33)

=
N2 +KN − 2N −K + 1

N2 − 3N +KN
= D̄(rK−2) (34)

implying D̃(rK−2) = D̄(rK−2).
Finally, from (12), D̄(rK−1) = N−1

N , and from (14) by
choosing i = K + 1 and using r = rK−1,

D̃(rK−1) ≥ N − 1
N

= D̄(rK−1) (35)

implying D̃(rK−1) = D̄(rK−1).
Therefore, D̃(r) = D̄(r) at r = r1, r = rK−2 and r =

rK−1. In addition to that D̃(0) = D̄(0) and D̃(1) = D̄(1).
Since both D̄(r) and D̃(r) are linear functions of r, and since
D̃(0) = D̄(0) and D̃(r1) = D̄(r1), we have D̃(r) = D̄(r) =
D∗(r) for 0 ≤ r ≤ r1. This is the very low caching ratio
region. In addition, since D̃(rK−2) = D̄(rK−2), D̃(rK−1) =
D̄(rK−1) and D̃(1) = D̄(1), we have D̃(r) = D̄(r) = D∗(r)
for rK−2 ≤ r ≤ 1. This is the very high caching ratio
region.

We use the example of K = 4, N = 2 to illustrate
Corollary 1 (see Fig. 2). In this case, r1 = r̃1 = 1

8 , rK−2 = 1
3 ,

and rK−1 = r̃K−1 = 1
2 . Therefore, we have exact results for

0 ≤ r ≤ 1
8 (very low caching ratios) and 1

3 ≤ r ≤ 1 (very high
caching ratios). We have a gap between the achievability and
the converse for medium caching ratios in 1

8 ≤ r ≤ 1
3 . More

specifically, line segments connecting (0, 15
8 ) and (1

8 ,
11
8 );

connecting (1
3 ,

5
6 ) and (1

2 ,
1
2 ); and connecting (1

2 ,
1
2 ) and (1, 0)

are tight.
For the case K = 3, we have exact tradeoff curve for any

N , r as shown in the following corollary.
Corollary 2 (Optimal Tradeoff for K = 3 ): In the cache-

aided PIR with partially known uncoded prefetching with
K = 3 messages, the optimal download cost caching ratio
tradeoff is given explicitly as,

D∗(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 +
1
N

+
1
N2

− 3r, 0 ≤ r ≤ 1
N2

1 +
1
N

− 2r,
1
N2

≤ r ≤ 1
N

1 − r,
1
N

≤ r ≤ 1.

(36)
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Fig. 2. Inner and outer bounds for K = 4, N = 2.

Proof: The proof follows from the proof of Corollary 1.
Note that in this case, from (19) and (20), r1 = rK−2 = 1

N2 ;
and from (21), r2 = rK−1 = 1

N . Thus, we have a tight result
for 0 ≤ r ≤ r1 = 1

N2 (very low caching ratios) and a tight
result for rK−2 = r1 = 1

N2 ≤ r ≤ 1, i.e., a tight result
for all 0 ≤ r ≤ 1. We have three segments in this case:
[0, r1], [r1, r2] and [r2, 1] with three different line expres-
sions for the exact result as given in (10)-(12) and written
explicitly in (36).

IV. ACHIEVABLE SCHEME

In this section, we present an achievable scheme for the
outer bounds provided in Theorem 1. Our achievable scheme
is based on [12], [27], and [30]. We first provide achievable
schemes for the caching ratios rs in (10) by applying the
principles in [12]: 1) database symmetry, 2) message symmetry
within each database, and 3) exploiting undesired messages
as side information. For an arbitrary caching ratio r �= rs,
we apply the memory-sharing scheme in [27]. Since the
cached content is partially known by the databases, the achiev-
able scheme is different from that in [30]. We first use the
case of K = 3, N = 2 to illustrate the main ideas of our
achievability scheme.

A. Motivating Example: K = 3 Messages
and N = 2 Databases

We permute the bits of messages W1,W2,W3 randomly
and independently, and use ai, bi, and ci to denote the bits
of each permuted message, respectively. We assume that the
user wants to retrieve message W1 privately without loss of
generality.

1) Caching Ratio r1 = 1
4 : We choose the message size

as 8 bits. In the prefetching phase, for caching ratio r1 = 1
4 ,

the user caches 2 bits from each message. Therefore, the user
caches 1 bit from each database for each message. Therefore,
Z1 = (a1, b1, c1) and Z2 = (a2, b2, c2).

In the retrieval phase, for s = 1, we first mix 1 bit of side
information with the desired bit. Therefore, the user queries
a3 + b2 and a4 + c2 from database 1. Note that database 1
knows that the user has prefetched Z1. Therefore, the user

TABLE I

QUERY TABLE FOR K = 3, N = 2, r1 = 1
4

TABLE II

QUERY TABLE FOR K = 3, N = 2, r2 = 1
2

does not use side information Z1 to retrieve information
from database 1. To keep message symmetry, the user further
queries b3 + c3 from database 1. Similarly, the user queries
a5 + b1, a6 + c1 and b4 + c4 from database 2. Then, the user
exploits the side information b4+c4 to query a7+b4+c4 from
database 1 and the side information b3+c3 to query a8+b3+c3
from database 2. After this step, no more side information
can be used and the message symmetry is attained for each
database. Therefore, the PIR scheme ends here. The decod-
ability of message W1 can be shown easily, since the desired
bits are either mixed with cached side information or the side
information obtained from the other database. Specifically, for
the downloaded bits from database 1, the user can decode
a3 and a4 from a3 + b2 and a4 + c2, since b2 and c2 are
in the cache. The user can decode a7 from a7 + b4 + c4,
since b4 +c4 is the side information obtained from database 2.
A similar decoding procedure applies to the downloaded bits
from database 2. Overall, the user downloads 8 bits. Therefore,
the normalized download cost is 1. We summarize the queries
in Table I.

2) Caching Ratio r2 = 1
2 : We choose the message size

as 4 bits. In the prefetching phase, for caching ratio r2 = 1
2 ,

the user caches 2 bits from each message. Therefore, the user
caches 1 bit from each database for each message. Therefore,
Z1 = (a1, b1, c1) and Z2 = (a2, b2, c2). In the retrieval
phase, for s = 2, we first mix 2 bits of side information
with the desired bit. Therefore, the user queries a3 + b2 + c2
from database 1. Similarly, the user queries a4 + b1 + c1
from database 2. After this, no more side information can be
used and the message symmetry is attained for each database.
Therefore, the PIR scheme ends here. The user can decode a3

and a4 from a3 + b2 + c2 and a4 + b1 + c1, since b1, b2, c1
and c2 are in the cache. Overall, the user downloads 2 bits.
Therefore, the normalized download cost is 1

2 . We summarize
the queries in Table II.

3) Caching Ratio r = 1
3 : We choose the message size as

12 bits. In the prefetching phase, for caching ratio r = 1
3 ,

the user caches 4 bits from each message. Therefore, the user
caches 2 bits from each database for each message. Therefore,
Z1 = (a1, a2, b1, b2, c1, c2) and Z2 = (a3, a4, b3, b4, c3, c4).
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TABLE III

QUERY TABLE FOR K = 3, N = 2, r = 1
3

In the retrieval phase, we combine the achievable schemes
in Section IV-A.1 and IV-A.2 as shown in Table III. The
normalized download cost is 5

6 . By applying [27, Lemma 1]
and taking α = 2

3 , we can show that D̄(1
3 ) = D̄(2

3 · 14 + 1
3 · 12 ) =

2
3D̄(1

4 ) + 1
3D̄(1

2 ) = 2
3 · 1 + 1

3 · 1
2 = 5

6 .

B. Achievable Scheme

We first present the achievable scheme for the caching ratios
rs given in (10). Then, we apply the memory-sharing scheme
provided in [27] for the intermediate caching ratios.

1) Achievable Scheme for the Caching Ratio rs: For fixed
K and N , there are K − 1 non-degenerate corner points
(in addition to degenerate caching ratios r = 0 and r = 1).
The caching ratios, rs, corresponding to these non-degenerate
corner points are indexed by s, which represents the number
of cached bits used in the side information mixture at the
first round of the querying. For each s ∈ {1, 2, . . . ,K − 1},
we choose the length of the message to be L(s) for the corner
point indexed by s, where

L(s) = N

�
K − 2
s− 1

�
+
K−1−s�

i=0

�
K − 1
s+ i

�
(N − 1)i+1N. (37)

In the prefetching phase, for each message the user ran-
domly and independently chooses N

�
K−2
s−1

�
bits to cache, and

caches
�
K−2
s−1

�
bits from each database for each message.

Therefore, the caching ratio rs is equal to

rs =
N

�
K−2
s−1

�

N
�
K−2
s−1

�
+

�K−1−s
i=0

�
K−1
s+i

�
(N − 1)i+1N

. (38)

In the retrieval phase, the user applies the PIR scheme in
Algorithm 1.

Since the desired bits are added to the side information
which is either obtained from the cached bits (if t = s + 1)
or from the remaining (N−1) databases in the (t−1)th round
when t > s + 1, the user can decode the uncached portion
of the desired message by canceling out the side information
bits. In addition, for each database, each message is queried
equally likely with the same set of equations, which guarantees
privacy as in [12]. Therefore, the privacy constraint in (5) and
the reliability constraint in (7) are satisfied.

We now calculate the total number of downloaded bits for
the caching ratio rs in (38). For the round t = s+1, we exploit
s cached bits to form the side information equation. Therefore,
each download is a sum of s + 1 bits. For each database,
we utilize the side information cached from other N − 1

Algorithm 1 PIR Scheme
1) Initialization: Set the round index to t = s + 1, where

the tth round involves downloading sums of every t
combinations of the K messages.

2) Exploiting side information:
if t = s+ 1, then for the first database, the user forms
queries by mixing s undesired bits cached from the
other N − 1 databases in the prefetching phase to form
one side information equation. Each side information
equation is added to one bit from the uncached portion
of the desired message. Therefore, for the first database,
the user downloads

�
K−1
s

�
(N−1) equations in the form

of a desired bit added to a mixture of s cached bits from
other messages.
else if t > s + 1, then for the first database, the user
exploits the

�
K−1
t−1

�
(N−1)t−s side information equations

generated from the remaining (N − 1) databases in the
(t− 1)th round.

3) Symmetry across databases: The user downloads the
same number of equations with the same structure as
in step 2 from every database. Consequently, the user
decodes

�
K−1
t−1

�
(N −1)t−s desired bits from every data-

base, which are done either using the cached bits as
side information if t = s + 1, or the side information
generated in the (t− 1)th round if t > s+ 1.

4) Message symmetry: To satisfy the privacy constraint,
the user should download the same amount of bits
from other messages. Therefore, the user downloads�
K−1
t

�
(N − 1)t−s undesired equations from each data-

base in the form of sum of t bits from the uncached
portion of the undesired messages.

5) Repeat steps 2, 3, 4 after setting t = t+ 1 until t = K .
6) Shuffling the order of queries: By shuffling the order

of queries uniformly, all possible queries can be made
equally likely regardless of the message index.

databases. In addition to the message symmetry step enforcing
symmetry across K messages, we download

�
K
s+1

�
(N − 1)

bits from a database. Due to the database symmetry step,
in total, we download

�
K
s+1

�
(N − 1)N bits. For the round

t = s + i > s + 1, we exploit s + i − 1 undesired
bits downloaded from the (t − 1)th round to form the side
information equation. Due to message symmetry and database
symmetry, we download

�
K

s+1+i

�
(N − 1)i+1N bits. Overall,

the total number of downloaded bits is,

D(rs) =
K−1−s�

i=0

�
K

s+ 1 + i

�
(N − 1)i+1N. (39)

By canceling out the undesired side information bits using the
cached bits for the round t = s+1, we obtain

�
K−1
s

�
(N−1)N

desired bits. For the round t = s + i > s + 1, we decode�
K−1
s+i

�
(N−1)i+1N desired bits by using the side information

obtained in (t − 1)th round. Overall, we obtain L(s) −
N

�
K−2
s−1

�
desired bits. Therefore, the normalized download
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cost is,

D̄(rs) =
D(rs)
L(s)

=

�K−1−s
i=0

�
K

s+1+i

�
(N − 1)i+1N

N
�
K−2
s−1

�
+

�K−1−s
i=0

�
K−1
s+i

�
(N − 1)i+1N

. (40)

2) Achievable Scheme for the Caching Ratios Not Equal to
rs: For caching ratios r which are not exactly equal to (38) for
some s, we first find an s such that rs < r < rs+1. We choose
0 < α < 1 such that r = αrs + (1 − α)rs+1. By using the
memory-sharing scheme in [27, Lemma 1], we achieve the
following normalized download cost,

D̄(r) = αD̄(rs) + (1 − α)D̄(rs+1). (41)

V. CONVERSE PROOF

In this section, we derive an inner bound for the cache-aided
PIR with partially known uncoded prefetching. We extend
the techniques in [12] and [30] to our problem. The main
difference between this proof and that in [30] is the usage of
privacy constraint given in (5).

Lemma 1 (Interference Lower Bound [30, Lemma 1]): For
the cache-aided PIR with partially known uncoded prefetching,
the interference from undesired messages within the answering
strings D(r) − L(1 − r) is lower bounded by,

D(r) − L(1 − r) + o(L)
≥ I

�
Wk:K ;Q[k−1]

1:N , A
[k−1]
1:N |W1:k−1, Z,H

�
(42)

for all k ∈ {2, . . . ,K}.
The proof of Lemma 1 is similar to [30, Lemma 1]. In the

following lemma, we prove an inductive relation for the mutual
information term on the right hand side of (42).

Lemma 2 (Induction Lemma): For all k ∈ {2, . . . ,K},
the mutual information term in Lemma 1 can be inductively
lower bounded as,

I
�
Wk:K ;Q[k−1]

1:N , A
[k−1]
1:N |W1:k−1, Z,H

�

≥ 1
N
I

�
Wk+1:K ;Q[k]

1:N , A
[k]
1:N |W1:k, Z,H

�

+
L(1 − r)

N
+

1 −N

N
(K − k + 1)Lr − o(L). (43)

Lemma 2 is a generalization of [12, Lemma 6] and
[30, Lemma 2], and it reduces to [12, Lemma 6] when r = 0.
Compared to [30, Lemma 2], the lower bound in (43) is
increased by (K−k+1)Lr

N , since the cached content is partially
known by the databases.

Proof: We start with the left hand side of (43),

I
�
Wk:K ;Q[k−1]

1:N , A
[k−1]
1:N |W1:k−1, Z,H

�

= I
�
Wk:K ;Q[k−1]

1:N , A
[k−1]
1:N , Z,H|W1:k−1

�

− I(Wk:K ;Z,H|W1:k−1). (44)

For the first term on the right hand side of (44), we have

I
�
Wk:K ;Q[k−1]

1:N , A
[k−1]
1:N , Z,H|W1:k−1

�

=
1
N
NI

�
Wk:K ;Q[k−1]

1:N , A
[k−1]
1:N , Z,H|W1:k−1

�
(45)

≥ 1
N

N�

n=1

I
�
Wk:K ;Q[k−1]

n , A[k−1]
n , Zn,Hn|W1:k−1

�

(46)

=
1
N

�
N�

n=1

I
�
Wk:K ;Q[k−1]

n , A[k−1]
n |W1:k−1, Zn,Hn

�

+
N�

n=1

I (Wk:K ;Zn,Hn|W1:k−1)

�

(47)

=
1
N

�
N�

n=1

I
�
Wk:K ;Q[k−1]

n , A[k−1]
n |W1:k−1, Zn,Hn

�

+N × (K − k + 1)Lr
N

�

(48)

(5)=
1
N

N�

n=1

I
�
Wk:K ;Q[k]

n , A
[k]
n |W1:k−1, Zn,Hn

�

+
(K − k + 1)Lr

N
(49)

(3),(4)
=

1
N

N�

n=1

I
�
Wk:K ;A[k]

n |W1:k−1, Zn,Hn, Q
[k]
n

�

+
(K − k + 1)Lr

N
(50)

(6)=
1
N

N�

n=1

H
�
A[k]
n |W1:k−1, Zn,Hn, Q

[k]
n

�

+
(K − k + 1)Lr

N
(51)

≥ 1
N

N�

n=1

H
�
A[k]
n |W1:k−1, Z,H, Q

[k]
1:N , A

[k]
1:n−1

�

+
(K − k + 1)Lr

N
(52)

(6)=
1
N

N�

n=1

I
�
Wk:K ;A[k]

n |W1:k−1, Z,H, Q
[k]
1:N , A

[k]
1:n−1

�

+
(K − k + 1)Lr

N
(53)

=
1
N
I

�
Wk:K ;A[k]

1:N |W1:k−1, Z,H, Q
[k]
1:N

�

+
(K − k + 1)Lr

N
(54)

(3),(4)
=

1
N
I

�
Wk:K ;Q[k]

1:N , A
[k]
1:N |W1:k−1, Z,H

�

+
(K − k + 1)Lr

N
(55)

(7)=
1
N
I

�
Wk:K ;Wk, Q

[k]
1:N , A

[k]
1:N |W1:k−1, Z,H

�

+
(K − k + 1)Lr

N
− o(L) (56)

=
(K − k + 1)Lr

N
+

1
N

�

I (Wk:K ;Wk|W1:k−1, Z,H)

+ I
�
Wk:K ;Q[k]

1:N , A
[k]
1:N |W1:k, Z,H

�
�

− o(L) (57)

=
(K − k + 1)Lr

N
+
L(1 − r)

N

+
1
N
I

�
Wk+1:K ;Q[k]

1:N , A
[k]
1:N |W1:k, Z,H

�
− o(L),

(58)
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where (46) follows from the non-negativity of mutual informa-
tion, (48) is due to the fact that from the nth database, the user
prefetches KLr

N bits, (49) follows from the privacy constraint,

(50) and (55) follow from the independence of Wk:K and Q[k]
n ,

(51) and (53) follow from the fact that the answering string
A

[k]
n is a deterministic function of (W1:K , Q

[k]
n ), (52) follows

from conditioning reduces entropy, and (56) follows from the
reliability constraint.

For the second term on the right hand side of (44), we have

I(Wk:K ;Z,H|W1:k−1)
= H (Wk:K |W1:k−1) −H(Wk:K |W1:k−1, Z,H) (59)

= (K − k + 1)Lr (60)

where (60) follows from the uncoded nature of the cached bits.
Combining (44), (58) and (60) yields (43).
Now, we are ready to derive the general inner bound for

arbitrary K , N , r. To obtain this bound, we use Lemma 1 to
find K lower bounds by varying the index k in the lemma from
k = 2 to k = K , and by using the non-negativity of mutual
information for the Kth bound. Next, we inductively lower
bound each term of Lemma 1 by using Lemma 2 (K−k+1)
times to get K explicit lower bounds.

Lemma 3: For fixed N , K and r, we have

D(r) ≥ L(1 − r)
K+1−k�

j=0

1
N j

−Lr

�
1 − 1

N

�K−k�

j=0

K + 1 − k − j

N j
+ o(L), (61)

where k = 2, . . . ,K + 1.
Proof: We have

D(r)
(42)≥ I

�
Wk:K ;Q[k−1]

1:N , A
[k−1]
1:N |W1:k−1, Z,H

�

+L(1 − r) − o(L) (62)
(43)≥ 1

N
I

�
Wk+1:K ;Q[k]

1:N , A
[k]
1:N |W1:k, Z,H

�

+L(1 − r)
�

1 +
1
N

�

−Lr

�
1 − 1

N

�
(K − k + 1) − o(L) (63)

(43)≥ 1
N2

I
�
Wk+2:K ;Q[k+1]

1:N , A
[k+1]
1:N |W1:k+1, Z,H

�

+L(1 − r)
�
1 +

1
N

+
1
N2

�
− Lr

�
1 − 1

N

�

×
�
(K − k + 1) +

(K − k)
N

�
− o(L) (64)

(43)
≥ . . . (65)

(43)
≥ L(1 − r)

K+1−k�

j=0

1
N j

− Lr

�
1 − 1

N

�

×
K−k�

j=0

K + 1 − k − j

N j
+ o(L), (66)

where (62) follows from Lemma 1, and the remaining steps
follow from the successive application of Lemma 2.

TABLE IV

QUERY TABLE FOR K = 4, N = 2 AND r1 = 1
8

TABLE V

QUERY TABLE FOR K = 4, N = 2, r2 = 1
3

We conclude the converse proof by dividing by L and taking
the limit as L→ ∞. Then, for k = 2, · · · ,K + 1, we have

D∗(r) ≥ (1 − r)
K+1−k�

j=0

1
N j

−r
�

1 − 1
N

�K−k�

j=0

K + 1 − k − j

N j
. (67)

Since (67) gives K intersecting line segments, the normalized
download cost is lower bounded by their maximum value as
follows

D∗(r) ≥ max
i∈{2,··· ,K+1}

(1 − r)
K+1−i�

j=0

1
N j

−r
�

1 − 1
N

�K−i�

j=0

K + 1 − i− j

N j
. (68)

VI. FURTHER EXAMPLES

A. K = 4 Messages, N = 2 Databases

For K = 4 and N = 2, we present achievable PIR
schemes for caching ratios r1 = 1

8 in Table IV, r2 = 1
3

in Table V, and r3 = 1
2 in Table VI. The PIR schemes aim

to retrieve message W1, where we use ai to denote its bits.
The achievable normalized download costs for these caching
ratios are 11

8 , 5
6 and 1

2 , respectively. The plot of the inner and
outer bounds can be found in Fig. 2.



1134 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 36, NO. 6, JUNE 2018

TABLE VI

QUERY TABLE FOR K = 4, N = 2, r3 = 1
2

Fig. 3. Inner and outer bounds for K = 5, N = 2.

Fig. 4. Inner and outer bounds for K = 10, N = 2.

B. K = 5 , K = 10 and K = 100 Messages,
N = 2 Databases

For N = 2, we show the numerical results for the inner
and outer bounds for K = 5, K = 10 and K = 100
in Figs. 3, 4 and 5. For fixed N as K grows, the gap
between the achievable bound and converse bound increases.
This observation will be made specific in Section VII.

VII. GAP ANALYSIS

In this section, we analyze the gap between the achievable
bounds given in (12) and the converse bounds given in (14).
We first observe that for fixed number of databases N , as the
number of messages K increases, the achievable normalized
download cost increases, and for large enough caching ratios
r ≥ 1

N , the PIR schemes for different number of messages
share the same normalized download cost 1−r. In addition to
the monotonicity, the achievable normalized download cost for

Fig. 5. Inner and outer bounds for K = 100, N = 2.

Fig. 6. Outer bounds for N = 2, K = 3, K = 4 and K = 5.

K+1 messages has a special relationship with the achievable
normalized download cost for K messages. We first use an
example to illustrate this property. For N = 2, K = 3, K = 4,
and K = 5, the achievable bounds are shown in Fig. 6.
The achievable bound for K = 5 is above the achievable
bound for K = 4, and the achievable bound for K = 4 is
above the achievable bound for K = 3. By denoting r

(K)
s

as the caching ratio with total K messages and parameter s
(see (10)), we observe that (r(5)1 , D̄(r(5)1 )) falls on the line con-

necting (r(4)0 , D̄(r(4)0 )) and (r(4)1 , D̄(r(4)1 )). This observation

is general, (r(K+1)
s , D̄(r(K+1)

s )) falls on the line connecting

(r(K)
s−1, D̄(r(K)

s−1)) and (r(K)
s , D̄(r(K)

s )). We summarize this
result in the following lemma.

Lemma 4 (Monotonicity of the Achievable Bounds):
In cache-aided PIR with partially known uncoded prefetching,
for fixed number of databases N , if the number of messages
K increases, then the achievable normalized download cost
increases. Furthermore, we have

r(K+1)
s = αr

(K)
s−1 + (1 − α)r(K)

s , (69)

D̄(r(K+1)
s ) = αD̄(r(K)

s−1) + (1 − α)D̄(r(K)
s ), (70)

where 0 ≤ α ≤ 1.
The proof of Lemma 4 is similar to [30, Lemma 4].
After showing the monotonicity of the achievable bounds,

we show that as K → ∞, the asymptotic upper bound for the
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Fig. 7. Outer bounds for N = 2, K = 12 for different cache-aided PIR
models.

achievable bounds is given as in the following lemma. With
this asymptotic upper bound, we conclude that the worst-case
additive gap is 5

32 .
Lemma 5 (Asymptotics and the Worst-Case Additive Gap):

In cache-aided PIR with partially known uncoded prefetching,
as K → ∞, the outer bound is upper bounded by,

D̄(r) ≤ N

N − 1
(1 − r)2 (71)

Hence, the worst-case additive gap is 5
32 .

The detailed proof of Lemma 5 is provided in Section IX.
We note that the outer bound is monotonically increasing
in K . Therefore, we first derive an asymptotic upper bound
as K → ∞ for the outer bound as in (71). Then, we show
that most of the K inner bounds concentrate around r = 0.
Therefore, we only need to consider a small number of the
inner bounds for the worst-case gap analysis.

VIII. COMPARISONS WITH OTHER

CACHE-AIDED PIR MODELS

In this section, we compare the normalized download costs
between different cache-aided PIR models subjected to same
memory size constraint. We first use an example of N = 2 and
K = 12 (see Fig. 7) to show the relative normalized download
costs for different models. In [29], [31], and [32], the user
caches M full messages out of total K messages. In order to
compare with other cache-aided PIR schemes, we use M

K as
the caching ratio. Since the PIR schemes are only reported for
the corner points in [29], [31], and [32], we use dotted lines to
connect the corner points. For [30], [27], and this work, since
we can apply memory-sharing to achieve the download costs
between the corner points, we use solid lines to connect the
corner points.

We first compare [29], [31], and [32], in which the user
caches M full messages out of K messages and the databases
are (partially) unaware. In [31] and [32], the user not only
wishes to protect the privacy of the desired messages but
also wishes to protect the privacy of the cached messages.
Note that the other works ([27], [29], [30], and this work)
only consider to protect the privacy of the desired messages.

Fig. 8. Comparison between this work and [30] for N = 3 and K = 6.

Since the message privacy constraint is less restricted, [29]
achieves lower normalized download cost than [31] and [32].
The main difference between [31] and [32] is that the data-
bases are totally unaware of the cached M messages as
in [31] or the nth database is aware of some of M messages
cached from the nth database as in [32]. Interestingly, these
two models result in the same normalized download costs.
Although the nth database’s awareness of some cached mes-
sages might increase the download cost, at the same time the
user does not need to protect the privacy of these known
messages from the nth database, which might reduce the
download cost.

We then compare [27], [30], and this work. The main
difference between these three works is the different level
of awareness of the side information the user cached.
Reference [27] considers that all the databases are aware of the
side information the user cached. In contrast, [30] considers
that all the databases are unaware of the side information.
This work considers that the nth database is aware of the
side information cached from the nth database. Reference
[30, Corollary 1] shows the unawareness gain. Therefore, [30]
achieves lower normalized download cost than [27]. The same
proof technique in [30, Corollary 1] can also show the partially
unawareness gain. Therefore, this work also achieves lower
normalized download cost than [27]. Since these three works
consider only the privacy of the desired message, different
from [31] and [32], [30] achieves lower normalized download
cost than this work. For high caching ratios 1

N ≤ r ≤ 1,
the proposed scheme in this work and that in [30] share the
same normalized download cost 1 − r.

We further compare [30] and this work in the following sce-
nario. To apply the scheme in [30], for N databases, we choose
one database for prefeching and use the remaining N − 1
databases for retrieval. Therefore, the cached side information
is completely unknown to the N −1 databases. We also apply
the scheme in this work for comparison. For a fixed caching
ratio, we compare the normalized download costs. For caching
ratios 1

N ≤ r ≤ 1, the normalized download cost is 1 − r for
both schemes. For caching ratios K−2

N2+KN−4N+1 < r < 1
N ,

we can show analytically that the normalized download
cost in this work is lower than that in [30]. For caching
ratios 0 < r < 1

N , from numerical results, we observe
that the scheme in this paper achieves lower normalized
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download cost. For N = 3 and K = 6, numerical results
are shown in Fig. 8.

IX. CONCLUSION

In this paper, we studied the cache-aided PIR problem
from N non-communicating and replicated databases, when
the cache stores uncoded bits that are partially known to
the databases. We determined inner and outer bounds for the
optimal normalized download cost D∗(r) as a function of the
total number of messages K , the number of databases N , and
the caching ratio r. Both inner and outer bounds are piece-
wise linear functions in r (for fixed N , K) that consist of
K line segments. The bounds match in two specific regimes:
the very low caching ratio regime, i.e., r ≤ 1

NK−1 , and the
very high caching ratio regime, where r ≥ K−2

N2−3N+KN .
As a direct corollary for this result, we characterized the
exact tradeoff between the download cost and the caching
ratio for K = 3. For general K , N , and r, we showed
that the largest additive gap between the achievability and
the converse bounds is 5

32 . The achievable scheme extends
the greedy scheme in [12] so that it starts with exploiting
the cache bits as side information. For fixed K , N , there are
K − 1 non-degenerate corner points. These points differ in
the number of cached bits that contribute in generating one
side information equation. The achievability for the remaining
caching ratios is done by memory-sharing between the two
adjacent corner points that enclose that caching ratio r. For
the converse, we extend the induction-based techniques in [12]
and [30] to account for the availability of uncoded and partially
prefetched side information at the retriever. The converse proof
hinges on developing K lower bounds on the length of the
undesired portion of the answer string. By applying induction
on each bound separately, we obtain the piece-wise linear inner
bound.

APPENDIX

Proof: From (12), we rewrite D̄(rs) as

D̄(rs) =

�K−1−s
i=0

�
K

s+1+i

�
(N − 1)i+1

�
K−2
s−1

�
+

�K−1−s
i=0

�
K−1
s+i

�
(N − 1)i+1

(72)

=

�K−1−s
i=0 ( K

s+1+i)(N−1)i+1

�K−1−s
i=0 (K−1

s+i )(N−1)i+1

(K−2
s−1 )

�K−1−s
i=0 (K−1

s+i )(N−1)i+1 + 1
=

ψ1(N,K, s)
ψ2(N,K, s) + 1

.

(73)

Let λ = s
K . We first upper bound ψ1(N,K, s),

ψ1(N,K, s) =

�K−1−s
i=0

�
K

s+1+i

�
(N − 1)i+1

�K−1−s
i=0

�
K−1
s+i

�
(N − 1)i+1

(74)

=

�K−1−s
i=0

K
s+1+i

�
K−1
s+i

�
(N − 1)i+1

�K−1−s
i=0

�
K−1
s+i

�
(N − 1)i+1

(75)

≤
�K−1−s

i=0
K
s

�
K−1
s+i

�
(N − 1)i+1

�K−1−s
i=0

�
K−1
s+i

�
(N − 1)i+1

=
1
λ
. (76)

We then upper bound the reciprocal of ψ2(N,K, s) as,

1
ψ2(N,K, s)

=
K−1−s�

i=0

�
K−1
s+i

�
(N − 1)i+1

�
K−2
s−1

� (77)

=
K−1−s�

i=0

(K − 1)(K − 1 − s) · · · (K − i− s)
s(s+ 1) · · · (s+ i)

(N − 1)i+1

(78)

≤ (N − 1)
K−1−s�

i=0

K(K − s)i

si+1
(N − 1)i (79)

=
(N − 1)

λ

(1−ι)K−1�

i=0

�
(1 − λ)(N − 1)

λ

�i
. (80)

When λ > 1 − 1
N , (1−ι)(N−1)

ι < 1. As K → ∞, 1
ψ2(N,K,s)

is upper bounded by

lim
K→∞

1
ψ2(N,K, s)

≤ N − 1
λ

∞�

i=0

�
(1 − λ)(N − 1)

λ

�i
(81)

=
N − 1

Nλ− (N − 1)
. (82)

Now, we lower bound (78) by keeping the first �K terms
in the sum for any � such that 0 < � < 1 − λ,

1
ψ2(N,K, s)

≥
�K�

i=0

(K − 1)(K − 1 − s) · · · (K − i− s)
s(s+ 1) · · · (s+ i)

(N − 1)i+1

(83)

≥ (N − 1)
�K�

i=0

(K − 1)(K − �K − s)i

(s+ �K)i+1
(N − 1)i (84)

= (N − 1)
�K�

i=0

(1 − 1
K )((1 − (λ+ �))i

(λ + �)i+1
(N − 1)i. (85)

As K → ∞, for any 0 < � < 1 − λ, we have

lim
K→∞

1
ψ2(N,K, s)

≥ N − 1
λ+ �

∞�

i=0

�
(1 − (λ + �))(N − 1)

λ+ �

�i

(86)

=
N − 1

N(λ+ �) − (N − 1)
. (87)

From (87) and (82), as K → ∞, by picking � → 0,
we have

ψ2(N,K, s) → N

N − 1
λ− 1. (88)

Furthermore, as K → ∞, rs converges to

rs → r = lim
K→∞

�
K−2
s−1

�

�
K−2
s−1

�
+

�K−1−s
i=0

�
K−1
s+i

�
(N − 1)i+1

(89)

= lim
K→∞

ψ2(N,K, s)
ψ2(N,K, s) + 1

(90)

=
Nλ− (N − 1)

Nλ
= 1 −

�
1 − 1

N

�
1
λ
. (91)
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Note that if λ = 1 − 1
N , then r = 0, while if λ = 1, then

r = 1
N . Since we now consider the gap in the region of 0 ≤

r ≤ 1
N , without loss of generality, we consider λ > 1 − 1

N .
We express λ as

λ =
1 − 1

N

1 − r
. (92)

Continuing (73), by using (76), (88) and (92), we have the
following upper bound on D̄(r)

D̄(r) ≤
1
ι
N
N−1λ

=
1
λ2

�
1 − 1

N

�
=

N

N − 1
(1 − r)2. (93)

Now, we compare the inner bound in (14) with the outer
bound derived in (93). Note that the inner bound in (14)
consists of K line segments, and these K line segments
intersect at the following K − 1 points given by,

r̃i =
1
N i

, i = 1, · · · ,K − 1. (94)

As i increases, r̃i concentrates to r = 0. Therefore, for these
K line segments, we only need to consider small number of
them for the worst-gap analysis. Denote the gap between the
inner and the outer bounds by Δ(N,K, r). We note that the
gap Δ(N,∞, r) is a piece-wise convex function for 0 ≤ r ≤ 1
since it is the difference between a convex function D̄(r) and
a piece-wise linear function. Hence, the maximizing caching
ratio for the gap exists exactly at the corner points r̃i and it
suffices to examine the gap at these corner points.

For the outer bound, by plugging (94) into (93), we have

D̄(r̃i) ≤ N

N − 1

�
1 − 1

N i

�2

=
1 − ( 1

N )i

1 − 1
N

�
1 − 1

N i

�
. (95)

Furthermore, for the inner bound, we have

D̃(r̃i) = (1 − ri)
�

1 +
1
N

+ · · · + 1
N i

�

− ri

�
1 − 1

N

� �
i+

(i− 1)
N

+ · · · + 1
N i−1

�
(96)

= −ri
��

1 +
1
N

+ · · · + 1
N i

�

+
�

1 − 1
N

� �
i+

(i− 1)
N

+ · · · + 1
N i−1

� �

+
�

1 +
1
N

+ · · · + 1
N i

�
(97)

= −ri(i+ 1) +
�

1 +
1
N

+ · · · + 1
N i

�
(98)

=
1 − ( 1

N )i+1

1 − 1
N

− ri(i+ 1) =
1 − ( 1

N )i+1

1 − 1
N

− i+ 1
N i

(99)

Consequently, we can upper bound the asymptotic gap at
the corner point r̃i as

Δ(N,∞, r̃i) = D̄(r̃i) − D̃(r̃i) ≤ 1
N i

�
i− 1 − ( 1

N )i

1 − 1
N

�

(100)

Hence, Δ(N,∞, r̃i) is monotonically decreasing in N .
Therefore,

Δ(N,K, r) ≤ Δ(2,∞, r) ≤ max
i

1
2i

�
i− 1 − (1

2 )i

1 − 1
2

�

(101)

For the case N = 2, we note that all the inner bounds after the
7th corner point are concentrated around r = 0 since r̃i ≤ 1

128
for i ≥ 7. Therefore, it suffices to characterize the gap only
for the first 7 corner points. Considering the 7th corner point
which corresponds to r̃6 = 1

128 , and D̄(r) ≤ 2 trivially for
all r, and D̃( 1

128 ) = 1.9297. Hence, Δ(2,∞, r) ≤ 0.07,
for r ≤ 1

127 . Now, we focus on calculating the gap at r̃i,
i = 1, · · · , 7. Examining all the corner points, we see that
r = 1

8 is the maximizing caching ratio for the gap (correspond-
ing to i = 3), and Δ(2,∞, 1

8 ) ≤ 5
32 , which is the worst-case

additive gap.
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