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Abstract— We consider the problem of private information
retrieval (PIR) from N non-colluding and replicated databases
when the user is equipped with a cache that holds an uncoded
fraction r from each of the K stored messages in the databases.
We assume that the databases are unaware of the cache content.
We investigate D∗(r) the optimal download cost normalized with
the message size as a function of K , N, and r . For a fixed K
and N, we develop an inner bound (converse bound) for the
D∗(r) curve. The inner bound is a piece-wise linear function in r
that consists of K line segments. For the achievability, we develop
explicit schemes that exploit the cached bits as side information to
achieve K −1 non-degenerate corner points. These corner points
differ in the number of cached bits that are used to generate
the one-side information equation. We obtain an outer bound
(achievability) for any caching ratio by memory sharing between
these corner points. Thus, the outer bound is also a piece-wise
linear function in r that consists of K line segments. The inner
and the outer bounds match in general for the cases of very
low-caching ratio and very high-caching ratio. As a corollary,
we fully characterize the optimal download cost caching ratio
tradeoff for K = 3. For general K , N, and r , we show that the
largest gap between the achievability and the converse bounds
is 1/6. Our results show that the download cost can be reduced
beyond memory sharing if the databases are unaware of the
cached content.

Index Terms— Private information retrieval, caching, uncoded
prefetching, PIR capacity, side information.

I. INTRODUCTION

THE problem of private information retrieval (PIR) was
introduced by Chor et al. [1] as a canonical problem to

investigate the privacy of the contents downloaded from public
databases. The PIR problem has become a major research
area within the computer science literature subsequently, see
e.g., [2]–[5]. In the classical form of the problem [1], a user
requests to download a message (or a file) from K messages
from N non-communicating databases such that no database
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can distinguish individually which message has been retrieved.
The user performs this task by preparing N queries, one
for each database, such that the queries do not reveal the
user’s interest in the desired message. Each database responds
truthfully to the received query by an answer string. The
user reconstructs the desired message from the collected
answer strings. A naive PIR scheme is to download all of the
K messages from a database. However, this trivial PIR scheme
is quite inefficient from the retrieval rate perspective, which is
defined as the number of desired bits per bit of downloaded
data. Consequently, the aim of the PIR problem is to retrieve
the desired message correctly by downloading as few bits as
possible from the N databases under the privacy constraint.

Recently, the PIR problem is revisited by information
theorists [6]–[9]. In the information-theoretic re-formulation
of the problem, the length of the message L is assumed to
be arbitrarily large to conform with the traditional Shannon-
theoretic arguments, and the upload cost is neglected as it
does not scale with the message length. This formulation
provides an absolute privacy guarantee by ensuring statistical
independence between the queries and the identity of the
desired message. In the influential paper by Sun and Jafar [9],
the notion of PIR capacity is introduced, which is the supre-
mum of PIR rates over all achievable retrieval schemes. In [9],
the authors characterize the capacity of classical PIR. In [9],
a greedy iterative algorithm is proposed for the achievabil-
ity scheme and an induction based converse is provided to
obtain an exact result. The achievable scheme is based on an
interesting correspondence between PIR and blind interference
alignment [10] as observed earlier in [11]. Sun and Jafar
show that in order to privately retrieve a message, the optimal
total downloaded bits normalized with the message size is
D
L = 1 + 1

N + · · · + 1
N K−1 . Consequently, the PIR capacity

is the reciprocal of this optimal normalized download cost,
i.e., C = (1 + 1

N + · · · + 1
N K−1 )

−1.
Following the work of [9], the fundamental limits of many

interesting variants of the classical PIR problem have been
considered, such as: PIR with T colluding databases (TPIR)
[12], [13], where any T of N databases might collude; robust
PIR (RPIR) [12], [14]–[17], where some databases may fail
to respond; symmetric PIR (SPIR) [18], which adds the
constraint that the user should only learn the desired message;
MDS-coded PIR (CPIR) [19], where the contents of the
databases are not replicated, but coded via an MDS code;
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multi-message PIR (MPIR) [20], where the user wishes to
jointly retrieve P messages; PIR from Byzantine databases
(BPIR), where B databases are outdated or worse adversar-
ial [21]; PIR under message size constraint L (LPIR) [22];
multi-round PIR, where the queries are permitted to be a func-
tion of the answer strings collected in previous rounds [23];
MDS-coded symmetric PIR [24]; MDS-coded PIR with col-
luding databases [25]–[27], and its multi-message [17], and
symmetric [28] versions.

Recently, [29] has considered cache-aided PIR, where the
user has local cache memory of size r K L bits and it can store
any function of the K messages subject to this memory size
constraint.1,2 With the assumption that the cache content is
known by all the N databases, [29] characterizes the optimal
download cost. The achievability scheme is based on memory-
sharing3 and the converse bound is obtained with the aid of
Han’s inequality. To privately retrieve a message, the optimal
total downloaded bits normalized with the message size is
D(r)

L = (1 − r)(1 + 1
N + · · · + 1

N K−1 ). The result is quite
pessimistic as it implies that the cached bits cannot be used
as side information within the retrieval scheme and the user
must download the uncached portion of the file (the remaining
L(1−r) bits) using the original PIR scheme in [9]. The reason
behind this result is that the databases are fully knowledgeable
about the cached bits and can infer which message is desired
if the user exploits these cached bits as side information in
any form.

The above discussion motivates us to investigate the other
extreme where the databases are fully unaware of the cache
content, i.e., when the prefetched bits are unknown to all of the
N databases (in contrast to having the cache content as public
knowledge at all the N databases as in [29]). In this case, the
user can leverage the cached bits as side information without
sacrificing the privacy constraint as the databases are unaware
of the cached bits. This poses an interesting question: What is
the optimal way to exploit the cached bits as side information
in order to minimize the normalized download cost, and what
is the corresponding gain beyond memory-sharing if any? The
assumption of unknown prefetching can be interpreted in prac-
tice as either the prefetching phase is performed via an external

1Caching is an important technique to reduce the peak-time traf-
fic in networks by pre-storing (prefetching) content to end-user’s local
memory [30], [31], and has been an active recent research field on its own
right.

2In another related line of work, [32] investigates the privacy risks when
the clients of an index coding based broadcast system possess a subset of the
messages as side information and use them to retrieve the desired message
privately against an external eavesdropper.

3Memory-sharing, introduced in [29], is an achievability concept similar to
the classical achievability concept of time-sharing. Reference [29, Lemma 1]
first shows that the download cost D(S) is a convex function of the cache
memory size S. That is, for two different cache sizes S1 and S2, we have
D(αS1 + (1 − α)S2) ≤ αD(S1)+ (1 − α)D(S2). Reference [29, Lemma 1]
shows this by dividing the messages into two independent parts of sizes
αL and (1 − α)L and correspondingly scaling the cache memory sizes
with α and (1 − α), and applying two different PIR schemes to the two
independent parts of the message. This implies that memory-sharing between
zero caching (and requiring the download cost in [9]) and caching all the
messages (and requiring zero download cost), a normalized download cost of
(1− r)

(
1 + 1

N + · · · , 1
N K−1

)
is achievable with a caching ratio of r , which

is linear in r .

database which does not participate in the retrieval (delivery)
phase, or in the context of dynamic cache-aided PIR, in which
once the unknown cache is used, the user updates/refreshes
its cached contents by some trusted mechanism which keeps
the cached content essentially random from the perspective of
each database as pointed out by [29]. In this paper, we further
assume that the cache content is uncoded. This is a common
assumption in the caching literature; see [30], [31], [33].

In this work, we consider PIR with unknown and uncoded
prefetching, i.e., we assume that the cache content is unknown
to all databases, and the cache supports only direct (uncoded)
portions of all messages (smaller subfiles). We aim to charac-
terize the optimal tradeoff between the normalized download
cost D(r)

L and the caching ratio r . For the outer bound,
we explicitly determine the achievable download rates for
specific K + 1 caching ratios. Download rates for any other
caching ratio can be achieved by proper memory-sharing
between the nearest two explicit points. This implies that the
outer bound is a piece-wise linear curve which consists of K
line segments. For the inner bound, we extend the techniques
of [9], [29] to obtain a piece-wise linear curve which also
consists of K line segments. We show that the inner and the
outer bounds match exactly at three of the K line segments for
any number of messages K . This means that we characterize
the optimal tradeoff for the very low (r ≤ 1

1+N+N2+···+N K−1 )

and the very high (r ≥ K−2
(N+1)K+N2−2N−2

) caching ratios. As a
direct corollary, we fully characterize the optimal download
cost caching ratio tradeoff for K = 3 messages. For general K ,
N and r , we show that for fixed N , the outer bound monoton-
ically increases as K increases. To characterize the worst-case
gap between the inner and the outer bounds, we determine
the asymptotic achievability bound as K → ∞ for fixed N , r .
We then show that the asymptotic gap monotonically decreases
in N . Therefore, the worst-case gap happens at N = 2 and
K → ∞. By maximizing this over r , we show that the largest
gap between the achievability and the converse bounds is 1

6 .
Our results show the benefits of the cached content when the
databases are unaware of it over the scenario in [29] where
the databases are fully aware of the cached content.

II. SYSTEM MODEL

We consider a classic PIR problem with K independent
messages W1, . . . ,WK . Each message is of size L bits,

H (W1) = · · · = H (WK ) = L, (1)

H (W1, . . . ,WK ) = H (W1)+ · · · + H (WK ). (2)

There are N non-communicating databases, and each database
stores all the K messages, i.e., the messages are coded
via (N, 1) repetition code [19]. The user (retriever) has a
local cache memory whose content is denoted by a random
variable Z . For each message Wk of size L bits, the user
randomly and independently caches Lr bits out of the L bits
to Z , where 0 ≤ r ≤ 1, and r is called the caching ratio.
Therefore,

H (Z) = K Lr. (3)
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The caching ratio r is known to the databases. Since the user
caches a subset of the bits from each message, this is called
uncoded prefetching. We denote the indices of the cached bits
by random variable H. For each message Wk , we have

H (Wk|Z ,H) = L(1 − r). (4)

Here, different from [29], we consider the case where none of
the databases knows the prefetched cache content.

After the uncoded prefetching phase, the user privately
generates an index θ ∈ [K ], where [K ] = {1, . . . , K }, and
wishes to retrieve message Wθ such that no database knows
which message is retrieved. Note that during the prefetching
phase, the desired message is unknown a priori. Note further
that the cached bit indices H are independent of the message
contents and the desired message index θ . Therefore, for
random variables θ , H, and W1, . . . ,WK , we have

H (θ,H,W1, . . . ,WK )

= H (θ)+ H (H)+ H (W1)+ · · · + H (WK ). (5)

Suppose θ = k. The user sends N queries Q[k]
1 , . . . , Q[k]

N to the
N databases, where Q[k]

n is the query sent to the nth database
for message Wk . The queries are generated according to H

and Z , but are independent of the realizations of the uncached
messages. Therefore,

I (W1, . . . ,WK ; Q[k]
1 , . . . , Q[k]

N |Z ,H) = 0. (6)

To ensure that individual databases do not know which mes-
sage is retrieved, we need to satisfy the following privacy
constraint, ∀n ∈ [N], ∀k ∈ [K ],
(Q[1]

n , A[1]
n ,W1, . . . ,WK ) ∼ (Q[k]

n , A[k]
n ,W1, . . . ,WK ). (7)

Upon receiving the query Q[k]
n , the nth database replies with

an answering string A[k]
n , which is a function of Q[k]

n and all
the K messages. Therefore, ∀k ∈ [K ],∀n ∈ [N],

H (A[k]
n |Q[k]

n ,W1, . . . ,WK ) = 0. (8)

After receiving the answering strings A[k]
1 , . . . , A[k]

N from all
the N databases, the user needs to decode the desired message
Wk reliably. By using Fano’s inequality, we have the following
reliability constraint

H
(

Wk |Z ,H, Q[k]
1 , . . . , Q[k]

N , A[k]
1 , . . . , A[k]

N

)
= o(L), (9)

where o(L) denotes a function such that o(L)
L → 0 as L → ∞.

For a fixed N , K , and caching ratio r , a pair (D(r), L) is
achievable if there exists a PIR scheme for message of size
L bits with unknown and uncoded prefetching satisfying the
privacy constraint (7) and the reliability constraint (9), where
D(r) represents the expected number of downloaded bits
(over all the queries) from the N databases via the answering
strings A[k]

1:N , i.e.,

D(r) =
N∑

n=1

H
(

A[k]
n

)
. (10)

In this work, we aim to characterize the optimal normalized
download cost D∗(r) corresponding to every caching ratio
0 ≤ r ≤ 1, where

D∗(r) = inf

{
D(r)

L
: (D(r), L) is achievable

}
, (11)

which is a function of the caching ratio r .

III. MAIN RESULTS AND DISCUSSIONS

Our first result characterizes an outer bound (achievable
rate) for the normalized download cost D∗(r) for general K ,
N and r .

Theorem 1 (Outer Bound): In the cache-aided PIR with
uncoded and unknown prefetching, for the caching ratios

rs =
(K−2

s−1

)
(K−2

s−1

) + ∑K−1−s
i=0

(K−1
s+i

)
(N − 1)i N

, (12)

where s ∈ {1, 2, · · · , K −1}, the optimal normalized download
cost D∗(rs) is upper bounded by,

D∗(rs)≤ D̄(rs)=
∑K−1−s

i=0

( K
s+1+i

)
(N − 1)i N

(K−2
s−1

) + ∑K−1−s
i=0

(K−1
s+i

)
(N − 1)i N

. (13)

Moreover, if rs < r < rs+1, and α ∈ (0, 1) such that
r = αrs + (1 − α)rs+1, then

D∗(r) ≤ D̄(r) = αD̄(rs)+ (1 − α)D̄(rs+1). (14)

The proof of Theorem 1 can be found in Section IV.
Theorem 1 implies that there exist K + 1 interesting caching
ratios denoted by rs , where s ∈ {1, 2, · · · , K − 1} in addition
to r = 0 point (no caching) and r = 1 point (everything
cached). The index s, which characterizes rs for these points,
represents the number of cached bits that can be used within
one bit of the download (if this downloaded bit uses cached
bits as side information). For example, if s = 2, this means that
the user should use two of the cached bits as side information
in the form of mixture of two bits if the caching ratio is r2.
The achievability scheme for any other caching ratio r can
be obtained by memory-sharing between the most adjacent
interesting caching ratios that include r . Consequently, the
outer bound is a piece-wise linear convex curve that connects
the K +1 interesting caching ratio points including the (0, 1

C )
point, where C is the PIR capacity without caching found
in [9], and (1, 0) where everything is cached; here, in (x, y),
x denotes the caching ratio and y denotes the normalized
download cost.

As a direct corollary for Theorem 1, we note that since the
databases do not know the cached bits, the download cost is
strictly smaller than the case when the databases have the full
knowledge about the cached bits in [29]. We state and prove
this in the following corollary. As a concrete example, Fig. 1
shows the gain that can be achieved due to the unawareness
of the databases about the cached bits.

Corollary 1 (Unawareness Gain): The achievable normal-
ized download cost D̂(r) in the cache-aided PIR with known
prefetching [29]

D̂(r) = (1 − r)

(
1 + 1

N
+ · · · + 1

N K−1

)
(15)
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Fig. 1. Comparison between the optimal download cost for known prefetch-
ing (15) in [29] and the achievable download cost for unknown prefetching
in (13) for K = 5 and N = 2.

is strictly larger than the achievable normalized download
cost D̄(r) in (13) for 0 < r < 1, i.e., the databases’ unaware-
ness contributes to reducing the download cost beyond the
memory-sharing scheme in [29].

Proof: For r = 0, the achievable download cost D̄(r)
in (13) is

(
1 + 1

N + · · · + 1
N K−1

)
, which is the same as (15).

For r = 1, the achievable download cost D̄(r) in (13) is 0,
which is the same as (15). To show that D̂(r) in (15) is
larger than D̄(r) in (13) for 0 < r < 1, it suffices to show
that there exists a caching ratio r such that D̄(r) < D̂(r),
since the other caching ratios can be achieved by the memory-
sharing scheme. Taking s = K − 1 in (12), we have rK−1 =

1
1+N . For r = 1

1+N , we have D̄(r) = N
1+N , and D̂(r) =

N
1+N

(
1 + 1

N + · · · + 1
N K−1

)
. Therefore, for rK−1, we have

D̄(r) < D̂(r), which shows the sub-optimality of D̂(r) in (15)
for the case of known prefetching.

Our second result characterizes an inner bound (con-
verse bound) for the normalized download cost D∗(r) for
general K , N , r .

Theorem 2 (Inner Bound): In the cache-aided PIR with
uncoded and unknown prefetching, the normalized download
cost is lower bounded as,

D∗(r) ≥ D̃(r)

= max
i∈{2,··· ,K+1} (1 − r)

K+1−i∑
j=0

1

N j

− r
K−i∑
j=0

K + 1 − i − j

N j
, (16)

The proof of Theorem 2 can be found in Section V.
Theorem 2 implies that the inner bound is also a piece-
wise linear curve, which consists of K line segments with
decreasing slope as r increases. The points at which the curve
changes its slope are given by,

r̃i = 1

1 + N + N2 + · · · + N K−i
, i = 1, · · · , K − 1. (17)

We note that ri in (12) and r̃i in (17) are the same for i = 1
and i = K − 1.

As a consequence of Theorem 1 and Theorem 2, we
characterize the optimal download cost caching ratio tradeoff
for very low and very high caching ratios in the following
corollary. Here, by very low caching ratios we mean 0 ≤ r ≤
r1 = r̃1 = 1

1+N+N2+···+N K−1 , and by very high caching ratios

we mean rK−2 = K−2
(N+1)K+N2−2N−2

≤ r ≤ 1. Note that,
in the very high caching ratios, we have two segments, one in
rK−2 ≤ r ≤ rK−1 and the other in rK−1 ≤ r ≤ 1. Therefore,
in the inner and outer bounds, each composed of K line
segments, the first (very low r ) and the last two (very high r )
segments match giving exact result. This is stated and proved
in the next corollary.

Corollary 2 (Optimal Tradeoff for Very Low and Very High
Caching Ratios): In the cache-aided PIR with uncoded and
unknown prefetching, for very low caching ratios, i.e., for
r ≤ 1

1+N+N2+···+N K−1 , the optimal normalized download cost
is given by,

D∗(r) = (1 − r)

(
1 + 1

N
+ · · · + 1

N K−1

)

−r

(
K − 1 + K − 2

N
+ · · · + 1

N K−2

)
(18)

On the other hand, for very high caching ratios, i.e., for r ≥
K−2

(N+1)K+N2−2N−2
, the optimal normalized download cost is

given by,

D∗(r)=

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 − r)

(
1 + 1

N

)
− r,

K − 2

(N + 1)K + N2 − 2N − 2
≤r ≤ 1

1 + N

1 − r,
1

1 + N
≤ r ≤ 1.

(19)

Proof: First, from (12) and (17), let us note that

r1 = r̃1 = 1

1 + N + N2 + · · · + N K−1 , (20)

rK−2 = K − 2

(N + 1)K + N2 − 2N − 2
, (21)

rK−1 = r̃K−1 = 1

1 + N
. (22)

Then, we note from (13) that

D̄(r1) =
∑K−2

i=0

( K
2+i

)
(N − 1)i N(K−2

0

) + ∑K−2
i=0

(K−1
1+i

)
(N − 1)i N

(23)

=
N

(N−1)2

[
N K − ∑1

i=0

(K
i

)
(N − 1)i

]

(K−2
0

) + N
(N−1)1

[
N K−1 − ∑0

i=0

(K−1
i

)
(N − 1)i

]

(24)

= N
[
N K − 1 − K (N − 1)

]

(N − 1)2 + N(N − 1)
[
N K−1 − 1

] (25)

= N K+1 − K N2 + (K − 1)N

N K+1 − N K − N + 1
(26)
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Further, we note from (16), by choosing i = 2 and using
r = r1, that

D̃(r1) ≥ (1 − r1)

K+1−2∑
j=0

1

N j
− r1

K−2∑
j=0

K − 1 − j

N j
(27)

=
(

1 − N − 1

N K − 1

)
N K − 1

N K − N K−1

− N − 1

N K − 1

N

1 − N

(
−K + N K − 1

N K − N K−1

)
(28)

= N K − N

N K − 1

N K − 1

N K − N K−1

+ N

N K − 1

(
−K + N K − 1

N K − N K−1

)
(29)

= N K − N

N K − N K−1 + N

( −K

N K − 1
+ 1

N K − N K−1

)

(30)

= N K+1 − K N2 + (K − 1)N

N K+1 − N K − N + 1
(31)

= D̄(r1) (32)

Thus, since D̃(r1) ≤ D̄(r1) by definition, (32) implies
D̃(r1) = D̄(r1).

Similarly, from (13),

D̄(rK−2) =
∑1

i=0

( K
K−1+i

)
(N − 1)i N

(K−2
K−3

) + ∑1
i=0

( K−1
K−2+i

)
(N − 1)i N

(33)

= N2 + (K − 1)N

N2 + (K − 2)N + (K − 2)
, (34)

and from (16) by choosing i = K and using r = rK−2,

D̃(rK−2) ≥ (1 − rK−2)

1∑
j=0

1

N j
− rK−2

0∑
j=0

1 − j

N j
(35)

=
(

N2 + (K − 2)N

N2 + (K − 2)N + (K − 2)

)(
1 + 1

N

)

− K − 2

N2 + (K − 2)N + (K − 2)
(36)

= N2 + (K − 1)N

N2 + (K − 2)N + (K − 2)
(37)

= D̄(rK−2) (38)

implying D̃(rK−2) = D̄(rK−2).
Finally, from (13),

D̄(rK−1) = N

1 + N
, (39)

and from (16) by choosing i = K + 1 and using r = rK−1,

D̃(rK−1) ≥ N

1 + N
= D̄(rK−1) (40)

implying D̃(rK−1) = D̄(rK−1).
Therefore, D̃(r) = D̄(r) at r = r1, r = rK−2 and r = rK−1.

We also note that D̃(0) = D̄(0) and D̃(1) = D̄(1). Since both
D̄(r) and D̃(r) are linear functions of r , and since D̃(0) =
D̄(0) and D̃(r1) = D̄(r1), we have D̃(r) = D̄(r) = D∗(r)
for 0 ≤ r ≤ r1. This is the very low caching ratio region.
In addition, since D̃(rK−2) = D̄(rK−2), D̃(rK−1) = D̄(rK−1)
and D̃(1) = D̄(1), we have D̃(r) = D̄(r) = D∗(r) for rK−2 ≤
r ≤ 1. This is the very high caching ratio region.

Fig. 2. Inner and outer bounds for K = 4 and N = 2. For the (x, y) points
in this figure, x denotes the caching ratio r and y denotes the normalized
download cost D

L .

Fig. 3. Optimal download cost caching ratio tradeoff for the case of K = 3
messages.

As an example, the case of K = 4 and N = 2 is shown
in Fig. 2. In this case, r1 = r̃1 = 1

15 , rK−2 = 1
5 , and

rK−1 = r̃K−1 = 1
3 . Therefore, we have exact results for

0 ≤ r ≤ 1
15 (very low caching ratios) and 1

5 ≤ r ≤ 1 (very high
caching ratios). We have a gap between the achievability and
the converse for medium caching ratios in 1

15 ≤ r ≤ 1
5 . More

specifically, line segments connecting (0, 15
8 ) and ( 1

15 ,
22
15 );

connecting ( 1
5 , 1) and ( 1

3 ,
2
3 ); and connecting ( 1

3 ,
2
3 ) and (1, 0)

are tight.
Finally, we characterize the exact tradeoff curve for any N ,

r for the special case of K = 3 in the following corollary.
Corollary 3 (Optimal Tradeoff for K = 3): In the cache-

aided PIR with uncoded and unknown prefetching with K = 3
messages, the optimal download cost caching ratio tradeoff is
given explicitly as (see Fig. 3),

D∗(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − r)

(
1 + 1

N
+ 1

N2

)
− r

(
2 + 1

N

)
,

0 ≤ r ≤ 1

1 + N + N2

(1 − r)

(
1 + 1

N

)
− r,

1

1 + N + N2 ≤ r ≤ 1

1 + N

1 − r,
1

1 + N
≤ r ≤ 1

(41)
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Proof: The proof follows from the proof of Corollary 2.
Note that in this case, from (20) and (21), r1 = rK−2 =

1
1+N+N2 ; and from (22), r2 = rK−1 = 1

1+N . Thus, we have

a tight result for 0 ≤ r ≤ r1 = 1
1+N+N2 (very low caching

ratios) and a tight result for rK−2 = r1 = 1
1+N+N2 ≤ r ≤ 1,

i.e., a tight result for all 0 ≤ r ≤ 1. We have three segments
in this case: [0, r1], [r1, r2] and [r2, 1] with three different
line expressions for the exact result as given in (12)-(13) and
written explicitly in (41).

IV. ACHIEVABILITY PROOF

Our achievability scheme is based on the PIR schemes in [9]
and [29]. Similar to [9], we apply the following three princi-
ples recursively: 1) database symmetry, 2) message symmetry
within each database, and 3) exploiting undesired messages as
side information. Different from [9], we start the PIR scheme
from the third principle due to the availability of pre-existing
side information as a result of uncoded prefetching. These
cached bits can be exploited right away as side information
without compromising the privacy constraint as the databases
do not know them. We begin the discussion by presenting the
case of K = 3 and N = 2 as a motivating example to illustrate
the main ideas of our achievability scheme.

A. Motivating Example: The Optimal Tradeoff Curve for
K = 3 Messages and N = 2 Databases

In this example, we show the achievability for K = 3 and
N = 2. We know from Corollary 3 that the inner and the
outer bounds match for this case. The optimal download cost
caching ratio tradeoff is shown in Fig. 3. We note that there are
4 corner points. Two of them are degenerate, corresponding
to r = 0, r = 1 caching ratios. For r = 0, the user has
no cached bits and is forced to apply the achievable scheme
in [9] that achieves D̄(0) = 7

4 = 1
C . For r = 1, the user has

already cached the entire desired file and does not download
any extra bits from the databases, i.e., D̄(1) = 0. We have
two other corner points, corresponding to r1 = 1

1+N+N2 =
K−2

(N+1)K+N2−2N−2
= 1

7 , and r2 = 1
1+N = 1

3 . In the sequel,
we show the achievability of these two corner points.

1) Caching Ratio r1 = 1
7 : Let s be the number of cached

bits that are mixed together to form side information equation.
The first corner point corresponds to s = 1. This means that
the user exploits every bit in the cache individually as a side
information. Using the notation in [20], we can say that the
user starts downloading from round 2 that sums bits from every
two messages together. We next show how s = 1 suffices
to achieve r1 = 1

7 , D̄( 1
7 ) = 8

7 for K = 3 and N = 2;
see Fig. 3.

We use ai , bi , and ci to denote the bits of messages W1, W2
and W3, respectively. We assume that the user wants to retrieve
message W1 privately without loss of generality. We initialize
the process by permuting the indices of messages W1,W2,W3
randomly and independently. The steps of the retrieval can
be followed in Table I. The user has already cached one bit
from each message, i.e., a1, b1, c1 as denoted by Z in Table I.
We start from the third principle by exploiting each bit in the
cache as an individual side information. The user downloads

TABLE I

QUERY TABLE FOR K = 3, N = 2 AND r1 = 1
7

a2 + b1 and a3 + c1 from the first database (DB1). Then,
we apply the first principle, and the user downloads a4 + b1
and a5 + c1 from the second database (DB2) to satisfy the
database symmetry. Next, we apply the second principle to
ensure the message symmetry within the queries. The user
downloads b2 + c2 from DB1, and b3 + c3 from DB2. At this
point, all side information corresponding to the cached bits
have been exploited. Next, we apply the third principle, since
undesired message mixes are available in the form of b2 + c2
and b3 + c3. The user downloads a6 + b3 + c3 from DB1.
Finally, we apply the first principle of database symmetry, and
the user downloads a7 +b2 +c2 from DB2. Now, the iterations
stop, since all the undesired side information is used and the
symmetry across databases and symmetry within the queries
is attained. We summarize the process in the query table
in Table I.

Since the databases do not know the local cache memory Z ,
and for each database, the user’s queries are symmetric across
messages, the privacy constraint (7) is satisfied. The decod-
ability can be easily checked as the user can cancel out b1, c1
which it has previously cached, and also cancel b2 + c2 and
b3+c3 which are previously downloaded, to obtain a2, · · · , a7.
Since a1 is already cached, the user has a1, · · · , a7. Here,
L = 7 and the user has cached 1 bit from each message.
There are total of 8 downloads. Hence r = 1

7 , and D̄( 1
7 ) = 8

7 .

2) Caching Ratio r2 = 1
3 : For the second non-degenerate

corner point, we have s = 2. This means that each 2 bits
from the cache are mixed together to form a side information
equation. We next show how s = 2 suffices to achieve r2 = 1

3 ,
D̄( 1

3 ) = 2
3 for K = 3 and N = 2; see Fig. 3.

Let [a1, a2, a3], [b1, b2, b3], and [c1, c2, c3] denote a ran-
dom permutation of the 3 bits of messages W1, W2 and W3,
respectively. Suppose the user caches a1, b1, c1 in advance
and wants to retrieve message W1 privately. We start from
the third principle. The user downloads a2 + b1 + c1 from the
first database (DB1). Then, we apply the first principle, and
the user downloads a3 + b1 + c1 from the second database
(DB2). Now, the iterations stop, since all the undesired side
information is used and the symmetry across databases and
messages is attained. We summarize the process in the query
table in Table II. In this case L = 3, hence r = 1

3 , and the
normalized download cost is D̄( 1

3 ) = 2
3 .

3) Caching Ratio r = 1
5 : So far, we have characterized

all the corner points by varying s = 1, 2 and achieved
the points corresponding to caching ratios rs in addition
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TABLE II

QUERY TABLE FOR K = 3, N = 2 AND r2 = 1
3

TABLE III

QUERY TABLE FOR K = 3, N = 2 AND r = 1
5

to the degenerate caching ratios r = 0 and r = 1; see
Fig. 3. An achievable scheme for any other caching ratio
can be obtained by memory-sharing between the two nearest
corner points. As an example, we next consider the caching
ratio r = 1

5 .
The achievability scheme for this case is a combination

of the achievability schemes in Sections IV-A1 and IV-A2.
Observe that by choosing L = 10, the achievable schemes
in Sections IV-A1 and IV-A2 can be concatenated to achieve
the caching ratio r = 1

5 . In this case, the user caches
a1, a2, b1, b2, c1, c2 and wants to retrieve message W1 pri-
vately. For cached bits a1, b1, c1, we apply the same process
as in Section IV-A1, i.e., we use s = 1 and use every cached
bit as individual side information equation. For cached bits
a2, b2, c2, we apply the same process as in Section IV-A2,
and choose s = 2, which implies that we use the mixture of
two cached bits as a side information equation. We summarize
the process in the query table in Table III.

Here, we have L = 10, therefore r = 1
5 , and D̄( 1

5 ) =
10
10 = 1. In fact, by applying [29, Lemma 1] and taking
α = 7

10 , we can show that the normalized download cost of this
example can be obtained from the download costs obtained in
Sections IV-A1 and IV-A2, as D̄( 1

5 ) = D̄( 1
7 · 7

10 + 1
3 · 3

10 ) =
7

10 D̄( 1
7 )+ 3

10 D̄( 1
3 ) = 7

10 · 8
7 + 3

10 · 2
3 = 1.

B. Achievable Scheme for the Corner Points for
Arbitrary K , N

For fixed N and K , there are K − 1 non-degenerate corner
points (in addition to degenerate caching ratios r = 0, r = 1).
The caching ratios corresponding to these non-degenerate
corner points are indexed by s, which enumerate the number of
cached bits that are involved in the side information mixture.
Hence, rs is given by

rs =
(K−2

s−1

)
(K−2

s−1

) + ∑K−1−s
i=0

(K−1
s+i

)
(N − 1)i N

, (42)

where s ∈ {1, 2, . . . , K − 1}. We choose the length of the
message to be L(s) for the corner point indexed by s, where

L(s) =
(

K − 2

s − 1

)
+

K−1−s∑
i=0

(
K − 1

s + i

)
(N − 1)i N (43)

bits per message. The details of the achievable scheme are as
follows:

1) Initialization: The user permutes each message ran-
domly and independently. The user caches randomly
and privately

(K−2
s−1

)
bits from each message. Set the

round index to i = s + 1, where the i th round involves
downloading sums of every i combinations of the
K messages.

2) Exploiting side information: If i = s + 1, the user
mixes s bits from the cache bits to form one side
information equation. Each side information equation
is added to one bit from the uncached portion of the
desired message. Therefore, the user downloads

(K−1
s

)
equations in the form of a desired bit added to a mixture
of s cached bits from other messages. On the other hand,
if i > s + 1, the user exploits the

(K−1
i−1

)
(N − 1)i−s−1

side information equations generated from the remaining
(N − 1) databases in the (i − 1)th round.

3) Symmetry across databases: The user downloads the
same number of equations with the same structure as
in step 2 from every database. Consequently, the user
downloads

(K−1
i−1

)
(N −1)i−s−1 bits from every database,

which are done either using the cached bits as side
information if i = s + 1, or the side information
generated in the (i − 1)th round if i > s + 1.

4) Message symmetry: To satisfy the privacy constraint,
the user should download equal amount of bits from
all other messages. Therefore, the user downloads(K−1

i

)
(N −1)i−s−1 undesired equations from each data-

base in the form of sum of i bits from the uncached
portion of the undesired messages.

5) Repeat steps 2, 3, 4 after setting i = i + 1 until i = K .
6) Shuffling the order of queries: By shuffling the order

of queries uniformly, all possible queries can be made
equally likely regardless of the message index. This
guarantees the privacy.

1) Decodability, Privacy, and the Achievable Normalized
Download Cost:

a) Decodability: It is clear that the side information
in each round is either constructed from the cached bits
(if i = s+1) or obtained from the remaining (N −1) databases
in the (i − 1)th round. Consequently, the user can cancel out
these side information bits in order to decode the uncached
portion of the desired message (the remaining L(1 − r) bits).

b) Privacy: The randomized mapping of the cached and
the uncached portions of the messages and the randomization
of the order of queries guarantees privacy as in [9].

c) Normalized Download Cost: We now calculate the
total number of downloaded bits for the caching ratio r in (42).
First, we exploit s bits of side information. Therefore, each
download is a sum of s + 1 bits. Since the second principle
enforces symmetry across K messages, we download

( K
s+1

)
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bits from a database. Due to the first principle enforcing
symmetry across databases, in total, we download

( K
s+1

)
N

bits. Since we utilize s bits of side information of undesired
messages for each download, for each undesired message we

use (K−1
s )s

K−1 = (K−2
s−1

)
bits, which is the amount of bits we

cached in advance for each message. Next, each download
is a sum of s + 2 bits since the available side information
is in the form of sums of s + 1 bits. Due to message
symmetry and (N − 1) available side information from other
(N − 1) databases, we download

( K
s+2

)
(N − 1) bits from each

database. Due to the first principle enforcing symmetry across
databases, in total, we download

( K
s+2

)
(N − 1)N bits. Next,

each download is the sum of s +3 bits since the available side
information is in the form of sums of s+2 bits. Note that in the
previous iteration, each database provides (N −1) sets of side
information, and each database exploits the side information
from the other (N − 1) databases. Therefore, we download( K

s+3

)
(N−1)2 bits from each database. Due to the first principle

enforcing symmetry across databases, in total, we download( K
s+3

)
(N − 1)2 N bits. By continuing in this manner, the total

number of downloaded bits is,

D(rs) =
K−1−s∑

i=0

(
K

s + 1 + i

)
(N − 1)i N. (44)

Now, we calculate the number of desired bits we have
downloaded in this process. At the beginning of the iteration,
each download is a sum of s + 1 bits. If the download
includes a desired bit, the other s bits are from the local
cache memory. Therefore, we download

(K−1
s

)
desired bits

from each database, and thus we download a total of
(K−1

s

)
N

desired bits. Next, each download is a sum of s + 2 bits.
If the download includes a desired bit, the other s + 1 bits are
from the side information of undesired bits. For each database,
there are (N − 1) sets of side information obtained from the
previous iteration with one set from each database. Therefore,
we download

(K−1
s+1

)
(N − 1) bits from each database, and thus

we download a total of
(K−1

s+1

)
(N−1)N desired bits. Next, each

download is a sum of s + 3 bits. If the download includes a
desired bit, the other s + 2 bits are from the side information
of undesired bits. For each database, there are (N − 1)2 sets
of side information obtained from the previous iteration with
(N − 1) sets from one database. Therefore, we download(K−1

s+2

)
(N − 1)2 N desired bits from this iteration. In the end,

the number of desired bits we downloaded is L(s) − (K−2
s−1

)
,

where L(s) is given in (43). Finally, the normalized download
cost is,

D̄(rs)= D(rs)

L(s)
=

∑K−1−s
i=0

( K
s+1+i

)
(N − 1)i N

(K−2
s−1

) + ∑K−1−s
i=0

(K−1
s+i

)
(N − 1)i N

. (45)

C. Achievable Scheme for Non-Corner Points
for Arbitrary K , N

For caching ratios r which are not exactly equal to (42) for
some s, we first find an s such that rs < r < rs+1, and combine
the achievability schemes of rs and rs+1. Then, we can
write the achievable normalized download cost as a convex

combination of D̄(rs) and D̄(rs+1) using [29, Lemma 1] as
follows,

D̄(r) = αD̄(rs)+ (1 − α)D̄(rs+1), (46)

where r = αrs + (1 − α)rs+1 and rs is defined in (42), and
D̄(r) is given in (45).

V. CONVERSE PROOF

In this section, we derive an inner bound for the cache-
aided PIR with uncoded and unknown prefetching. The inner
bound is tight in general for very high and very low caching
ratios, and in particular, the inner bound is tight everywhere for
K = 3. We extend the techniques presented in [9] and [29]
to our problem. We first need the following lemma, which
characterizes a lower bound on the length of the undesired
portion of the answer strings as a consequence of the privacy
constraint.

Lemma 1 (Interference Lower Bound): For the cache-
aided PIR with unknown and uncoded prefetching, the
interference from undesired messages within the answer
strings D(r)− L(1 − r) is lower bounded by,

D(r)− L(1 − r)+ o(L)

≥ I
(

Wk:K ; Q[k−1]
1:N , A[k−1]

1:N |W1:k−1, Z ,H
)

(47)

for all k ∈ {2, . . . , K }.
If the privacy constraint is absent, the user downloads

only L(1 − r) bits in order to decode the desired message,
however, when the privacy constraint is present, it should
download D(r). The difference D(r)− L(1 − r) corresponds
to the undesired portion of the answer strings. Lemma 1
shows that this portion is lower bounded by the mutual
information between the answer strings and the messages
Wk:K after knowing the first W1:k−1 messages and the cached
bits. Lemma 1 provides K −1 lower bounds on D(r)−L(1−r)
by changing the index k from 2 to K . Each of these K − 1
bounds contributes a different line segment for the final inner
bound. Note that Lemma 1 is an extension to [9, Lemma 5]
if k = 2, r = 0.

Proof: We start with the right hand side of (47),

I
(

Wk:K ; Q[k−1]
1:N , A[k−1]

1:N |W1:k−1, Z ,H
)

= I
(

Wk:K ; Q[k−1]
1:N , A[k−1]

1:N ,Wk−1|W1:k−2, Z ,H
)

− I (Wk:K ; Wk−1|W1:k−2, Z ,H) (48)

For the first term on the right hand side of (48), we have

I
(

Wk:K ; Q[k−1]
1:N , A[k−1]

1:N ,Wk−1|W1:k−2, Z ,H
)

= I
(

Wk:K ; Q[k−1]
1:N , A[k−1]

1:N |W1:k−2, Z ,H
)

+ I
(

Wk:K ; Wk−1|Q[k−1]
1:N , A[k−1]

1:N ,W1:k−2, Z ,H
)

(49)
(9)= I

(
Wk:K ; Q[k−1]

1:N , A[k−1]
1:N |W1:k−2, Z ,H

)
+ o(L) (50)

(5),(6)= I
(

Wk:K ; A[k−1]
1:N |W1:k−2, Z ,H, Q[k−1]

1:N
)

+ o(L) (51)

= H
(

A[k−1]
1:N |W1:k−2, Z ,H, Q[k−1]

1:N
)

− H
(

A[k−1]
1:N |W1:k−2, Z ,H, Q[k−1]

1:N ,Wk:K
)

+ o(L) (52)



WEI et al.: FUNDAMENTAL LIMITS OF CACHE-AIDED PIR WITH UNKNOWN AND UNCODED PREFETCHING 3223

(9)= H
(

A[k−1]
1:N |W1:k−2, Z ,H, Q[k−1]

1:N
)

− H
(
Wk−1, A[k−1]

1:N |W1:k−2, Z ,H, Q[k−1]
1:N ,Wk:K

)
+o(L)

(53)

≤ H
(

A[k−1]
1:N |W1:k−2, Z ,H, Q[k−1]

1:N
)

− H
(

Wk−1|W1:k−2, Z ,H, Q[k−1]
1:N ,Wk:K

)
+ o(L) (54)

(5),(6)= H
(

A[k−1]
1:N |W1:k−2, Z ,H, Q[k−1]

1:N
)

− H (Wk−1|Z ,H)+ o(L) (55)

= H
(

A[k−1]
1:N |W1:k−2, Z ,H, Q[k−1]

1:N
)

− L(1 − r)+ o(L)

(56)

≤ D(r)− L(1 − r)+ o(L) (57)

where (50), (53) follow from the reliability constraint of
Wk−1, (51) follows from the independence of the queries
Q[k−1]

1:N and the messages Wk:K given Z and H, (54) follows
from the chain rule and the non-negativity of the entropy
function, (55) is due to the fact that given Z and H,
Wk−1 is statistically independent of (W1:k−2,Wk:K , Q[k−1]

1:N ),
(56) follows from the uncoded nature of the cache, and (57)
follows from conditioning reduces entropy.

For the second term on the right hand side of (48), we have

I (Wk:K ; Wk−1|W1:k−2, Z ,H) = H (Wk−1|W1:k−2, Z ,H)

− H (Wk−1|W1:k−2,Wk:K , Z ,H) (58)

= (L − Lr)− (L − Lr) (59)

= 0 (60)

Combining (48), (57), and (60) yields (47).
In the following lemma, we prove an inductive relation for

the mutual information term on the right hand side of (47).
Lemma 2 (Induction Lemma): For all k ∈ {2, . . . , K },

the mutual information term in Lemma 1 can be inductively
lower bounded as,

I
(

Wk:K ; Q[k−1]
1:N , A[k−1]

1:N |W1:k−1, Z ,H
)

≥ 1

N
I
(

Wk+1:K ; Q[k]
1:N , A[k]

1:N |W1:k, Z ,H
)

+ L(1 − r)− o(L)

N
− (K − k + 1)Lr. (61)

Lemma 2 relates the mutual information between Wk:K
and the answer strings to the same mutual information term
with Wk+1:K , i.e., it shifts the term by one message. Since
the two terms have the same structure, Lemma 2 constructs
an inductive relation. We obtain an explicit lower bound
for I

(
Wk:K ; Q[k−1]

1:N , A[k−1]
1:N |W1:k−1, Z ,H

)
by applying this

lemma K − k + 1 times, and therefore characterize an explicit
lower bound on D(r) − L(1 − r). We do this in Lemma 3
by combining Lemma 1 and Lemma 2. Lemma 2 reduces to
[9, Lemma 6] if r = 0.

Proof: We start with the left hand side of (61),

I
(

Wk:K ; Q[k−1]
1:N , A[k−1]

1:N |W1:k−1, Z ,H
)

= I
(

Wk:K ; Q[k−1]
1:N , A[k−1]

1:N , Z ,H|W1:k−1

)

− I (Wk:K ; Z ,H|W1:k−1) (62)

= I
(

Wk:K ; Q[k−1]
1:N , A[k−1]

1:N |W1:k−1

)

+ I
(

Wk:K ; Z ,H|W1:k−1, Q[k−1]
1:N , A[k−1]

1:N
)

− I (Wk:K ; Z ,H|W1:k−1) (63)

≥ I
(

Wk:K ; Q[k−1]
1:N , A[k−1]

1:N |W1:k−1

)

− I (Wk:K ; Z ,H|W1:k−1) (64)

where (64) follows from the non-negativity of mutual infor-
mation.

For the first term in (64), we have

N I
(

Wk:K ; Q[k−1]
1:N , A[k−1]

1:N |W1:k−1

)

≥
N∑

n=1

I
(

Wk:K ; Q[k−1]
n , A[k−1]

n |W1:k−1

)
(65)

(7)=
N∑

n=1

I
(

Wk:K ; Q[k]
n , A[k]

n |W1:k−1

)
(66)

≥
N∑

n=1

I
(

Wk:K ; A[k]
n |W1:k−1, Q[k]

n

)
(67)

(8)=
N∑

n=1

H
(

A[k]
n |W1:k−1, Q[k]

n

)
(68)

≥
N∑

n=1

H
(

A[k]
n |W1:k−1,H, Q[k]

1:N , A[k]
1:n−1, Z

)
(69)

(8)=
N∑

n=1

I
(

Wk:K ; A[k]
n |W1:k−1,H, Q[k]

1:N , A[k]
1:n−1, Z

)
(70)

= I
(

Wk:K ; A[k]
1:N |W1:k−1,H, Q[k]

1:N , Z
)

(71)

(5),(6)= I
(

Wk:K ; Q[k]
1:N , A[k]

1:N |W1:k−1, Z ,H
)

(72)

(9)= I
(

Wk:K ; Wk, Q[k]
1:N , A[k]

1:N |W1:k−1, Z ,H
)

− o(L)

(73)

= I
(

Wk:K ; Q[k]
1:N , A[k]

1:N |W1:k, Z ,H
)

+ I (Wk:K ; Wk |W1:k−1, Z ,H)− o(L) (74)

= I
(

Wk:K ; Q[k]
1:N , A[k]

1:N |W1:k, Z ,H
)

+ L(1 − r)− o(L) (75)

= I
(

Wk+1:K ; Q[k]
1:N , A[k]

1:N |W1:k, Z ,H
)

+ L(1 − r)− o(L) (76)

where (65), (69) follow from the non-negativity of mutual
information, (66) follows from the privacy constraint, (67)
follows from the chain rule and the non-negativity of the
mutual information, (68), (70) follow from the fact that the
answer string A[k]

n is a deterministic function of (Q[k]
n ,W1:K ),

(71) follows from the chain rule, (72) follows from the
statistical independence of (Q[k]

1:N ,Wk:K ) given (Z ,H), (73)
is consequence of the decodability of Wk from (Q[k]

1:N , A[k]
1:N ),

and (75) is due to the uncoded assumption of the cached
bits.
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For the second term in (64), we have

I (Wk:K ; Z ,H|W1:k−1)

= H (Wk:K |W1:k−1)− H (Wk:K |W1:k−1, Z ,H) (77)

= (K − k + 1) L − (K − k + 1) L(1 − r) (78)

= (K − k + 1) Lr (79)

where (79) follows from the uncoded nature of the cached
bits.

Combining (64), (76), and (79) yields (61).
Now we are ready to derive the general inner bound for

arbitrary K , N , r . To obtain this bound, we use Lemma 1 to
find K lower bounds on the length of the undesired portion
of the answer strings D(r) − L(1 − r). Each lower bound is
obtained by varying the index k in the lemma from k = 2
to k = K . Next, we inductively lower bound each result of
Lemma 1 by using Lemma 2, precisely (K − k + 1) times,
to get K explicit lower bounds. This is stated in the following
lemma.

Lemma 3: For N and K , we have

D(r) ≥ L(1 − r)
K+1−k∑

j=0

1

N j

− Lr
K−k∑
j=0

K + 1 − k − j

N j
− o(L), (80)

where k = 2, . . . , K + 1.
Proof: We have

D(r)+ o(L)
(47)≥ L(1 − r)+ I

(
Wk:K ; , Q[k−1]

1:N , A[k−1]
1:N |W1:k−1, Z ,H

)

(81)
(61)≥ L(1 − r)+ L(1 − r)− o(L)

N
− (K − k + 1)Lr

+ 1

N
I
(

Wk+1:K ; Q[k]
1:N , A[k]

1:N |W1:k, Z ,H
)

(82)

(61)≥ L(1 − r)

[
1 + 1

N
+ 1

N2 + o(L)

]

− Lr

[
(K − k + 1)+ (K − k)

N

]

+ 1

N2 I
(

Wk+2:K ; Q[k+1]
1:N , A[k+1]

1:N |W1:k+1, Z ,H
)

(83)

(61)≥ . . .

(61)≥ L(1 − r)
K+1−k∑

j=0

1

N j
− Lr

K−k∑
j=0

K + 1 − k − j

N j
+ o(L),

(84)

where (81) follows from Lemma 1 starting from general
index k, and the remaining bounding steps correspond to
successive application of Lemma 2.

We conclude the converse proof by dividing by L and taking
the limit as L → ∞, then for k = 2, · · · , K + 1, we have

D∗(r) ≥ (1 − r)
K+1−k∑

j=0

1

N j
− r

K−k∑
j=0

K + 1 − k − j

N j
(85)

TABLE IV

QUERY TABLE FOR K = 4, N = 2 AND r1 = 1
15

TABLE V

QUERY TABLE FOR K = 4, N = 2 AND r2 = 1
5

TABLE VI

QUERY TABLE FOR K = 4, N = 2 AND r3 = 1
3

Finally, (85) gives K intersecting line segments, therefore,
the normalized download cost is lower bounded by their
maximum value

D∗(r)≥ max
i∈{2,··· ,K+1}(1−r)

K+1−i∑
j=0

1

N j
−r

K−i∑
j=0

K + 1 − i − j

N j
.

(86)

VI. FURTHER EXAMPLES

A. K = 4 Messages, N = 2 Databases

For K = 4 and N = 2, we show the achievable PIR schemes
for caching ratios r1 = 1

15 in Table IV, r2 = 1
5 in Table V, and

r3 = 1
3 in Table VI. The achievable normalized download costs

for these caching ratios are 22
15 , 1 and 2

3 , respectively. We show
the normalized download cost and caching ratio trade off curve
in Fig. 2.

B. K = 4 Messages, N = 3 Databases

For K = 4 and N = 3, we show the achievable PIR schemes
for caching ratios r1 = 1

40 in Table VII, r2 = 2
17 in Table VIII,

and r3 = 1
4 in Table IX. We show the normalized download

cost and caching ratio trade off in Fig. 4. The achievable
normalized download costs for these caching ratios are 27

20 ,
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TABLE VII

QUERY TABLE FOR K = 4, N = 3 AND r1 = 1
40

TABLE VIII

QUERY TABLE FOR K = 4, N = 3 AND r2 = 2
17

TABLE IX

QUERY TABLE FOR K = 4, N = 3 AND r3 = 1
4

18
17 and 3

4 , respectively. By comparing Fig. 4 with Fig. 2,
we observe that, for fixed K , as N grows, the gap between
the achievable bound and the converse bound shrinks. This
observation will be specified in Section VII.

C. K = 5, K = 10 and K = 100 Messages, N = 2
Databases

For N = 2, we show the numerical results for the inner
and outer bounds for K = 5, K = 10 and K = 100 in
Figs. 5, 6 and 7. For fixed N as K grows, the gap between

the achievable bound and converse bound increases. This
observation will be elaborated in Section VII.

D. K = 5, K = 10 and K = 100 Messages, N = 3
Databases

For N = 3, we show the numerical results for the inner
and outer bounds for K = 5, K = 10 and K = 100
in Figs. 8, 9 and 10. For fixed N as K grows, the gap
between the achievable bound and converse bound increases.
This observation will be further clarified in Section VII.
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Fig. 4. Inner and outer bounds for K = 4 and N = 3.

Fig. 5. Inner and outer bounds for K = 5 and N = 2.

Fig. 6. Inner and outer bounds for K = 10 and N = 2.

VII. GAP ANALYSIS

In this section, we analyze the gap between the achievability
and converse bounds for general N , K , and r , and show
that the worst-case gap, which happens when N = 2 and
K → ∞, is at most 1

6 . We start this section with an
interesting property for the monotonicity of the achievable
bounds. We first see an example. For N = 2, K = 4, K = 5
and K = 6, the achievable bounds are shown in Fig. 11.

Fig. 7. Inner and outer bounds for K = 100 and N = 2.

Fig. 8. Inner and outer bounds for K = 5 and N = 3.

Fig. 9. Inner and outer bounds for K = 10 and N = 3.

The achievable bound for K = 6 is above the achievable
bound for K = 5, and the achievable bound for K = 5 is
above the achievable bound for K = 4. By denoting r (K )s
as the caching ratio with total K messages and parameter s
(see (12)), we observe that (r (5)1 , D̄(r (5)1 )) falls on the line
connecting (r (4)0 , D̄(r (4)0 )) and (r (4)1 , D̄(r (4)1 )). This observation
is general, (r (K+1)

s , D̄(r (K+1)
s )) falls on the line connecting

(r (K )s−1, D̄(r (K )s−1)) and (r (K )s , D̄(r (K )s )). We state and prove this
observation in the following lemma.
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Fig. 10. Inner and outer bounds for K = 100 and N = 3.

Fig. 11. Outer bounds for N = 2, K = 4, K = 5 and K = 6.

Lemma 4 (Monotonicity of the Achievable Bounds): In
cache-aided PIR with uncoded and unknown prefetching, for
fixed number of databases N, if the number of messages
K increases, then the achievable normalized download cost
increases. Furthermore, we have

r (K+1)
s = αr (K )s−1 + (1 − α)r (K )s , (87)

D̄(r (K+1)
s ) = αD̄(r (K )s−1)+ (1 − α)D̄(r (K )s ), (88)

where 0 ≤ α ≤ 1.
Proof: To show (88) is equivalent to show

D̄(r (K+1)
s )− D̄(r (K )s ) = α

(
D̄(r (K )s−1)− D̄(r (K )s )

)
, (89)

where D̄
(

r (K )s−1

)
> D̄

(
r (K )s

)
. From (87), we have

α = r (K )s − r (K+1)
s

r (K )s − r (K )s−1

. (90)

Therefore, to show (89) is equivalent to show
(

r (K )s − r (K )s−1

) (
D̄(r (K+1)

s )− D̄(r (K )s )
)

=
(

r (K )s − r (K+1)
s

) (
D̄(r (K )s−1)− D̄(r (K )s )

)
. (91)

Let D̄(r (K )s ) = D(K )
s

L(K )s
, where

L(K )s =
(

K − 2

s − 1

)
+

K−1−s∑
i=0

(
K − 1

s + i

)
(N − 1)i N, (92)

D(K )
s =

K−1−s∑
i=0

(
K

s + 1 + i

)
(N − 1)i N. (93)

To show (91) is equivalent to show
[(K−2

s−1

)

L(K )s

−
(K−2

s−2

)

L(K )s−1

] [
D(K+1)

s

L(K+1)
s

− D(K )
s

L(K )s

]

=
[(K−2

s−1

)

L(K )s

−
(K−1

s−1

)

L(K+1)
s

] [
D(K )

s−1

L(K )s−1

− D(K )
s

L(K )s

]
, (94)

which is obtained by using (12), (13), (92) and (93). Expand-
ing (94), we have
(K−2

s−1

)

L(K )s

D(K+1)
s

L(K+1)
s

−
(K−2

s−2

)

L(K )s−1

D(K+1)
s

L(K+1)
s

+
(K−2

s−2

)

L(K )s−1

D(K )
s

L(K )s

=
(K−2

s−1

)

L(K )s

D(K )
s−1

L(K )s−1

−
(K−1

s−1

)

L(K+1)
s

D(K )
s−1

L(K )s−1

+
(K−1

s−1

)

L(K+1)
s

D(K )
s

L(K )s

. (95)

Multiplying L(K )s L(K )s−1L(K+1)
s to both side of (95), we have

(
K − 2

s − 1

)
D(K+1)

s L(K )s−1 +
(

K − 1

s − 1

)
D(K )

s−1L(K )s

+
(

K − 2

s − 2

)
D(K )

s L(K+1)
s

=
(

K − 2

s − 1

)
D(K )

s−1 L(K+1)
s +

(
K − 2

s − 2

)
D(K+1)

s L(K )s

+
(

K − 1

s − 1

)
D(K )

s L(K )s−1. (96)

By using (92) and (93), we further have

(
K − 2

s − 1

) [
K−s∑
i=0

(
K + 1

s + 1 + i

)
(N − 1)i N

]

×
[(

K − 2

s − 2

)
+

K−s∑
i=0

(
K − 1

s − 1 + i

)
(N − 1)i N

]

+
(

K − 1

s − 1

) [
K−s∑
i=0

(
K

s + i

)
(N − 1)i N

]

×
[(

K − 2

s − 1

)
+

K−1−s∑
i=0

(
K − 1

s + i

)
(N − 1)i N

]

+
(

K − 2

s − 2

) [
K−1−s∑

i=0

(
K

s + 1 + i

)
(N − 1)i N

]

×
[(

K − 1

s − 1

)
+

K−s∑
i=0

(
K

s + i

)
(N − 1)i N

]

=
(

K − 2

s − 1

) [
K−s∑
i=0

(
K

s + i

)
(N − 1)i N

]
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×
[(

K − 1

s − 1

)
+

K−s∑
i=0

(
K

s + i

)
(N − 1)i N

]

+
(

K − 2

s − 2

) [
K−s∑
i=0

(
K + 1

s + 1 + i

)
(N − 1)i N

]

×
[(

K − 2

s − 1

)
+

K−1−s∑
i=0

(
K − 1

s + i

)
(N − 1)i N

]

+
(

K − 1

s − 1

) [
K−1−s∑

i=0

(
K

s + 1 + i

)
(N − 1)i N

]

×
[(

K − 2

s − 2

)
+

K−s∑
i=0

(
K − 1

s − 1 + i

)
(N − 1)i N

]
. (97)

By canceling same terms on both sides, we have

(
K − 2

s − 1

) [
K−s∑
i=0

(
K + 1

s + 1 + i

)
(N − 1)i

]

×
[

K−s∑
i=0

(
K − 1

s − 1 + i

)
(N − 1)i

]

+
(

K − 1

s − 1

) [
K−s∑
i=0

(
K

s + i

)
(N − 1)i

]

×
[

K−1−s∑
i=0

(
K − 1

s + i

)
(N − 1)i

]

+
(

K − 2

s − 2

) [
K−1−s∑

i=0

(
K

s + 1 + i

)
(N − 1)i

]

×
[

K−s∑
i=0

(
K

s + i

)
(N − 1)i

]

=
(

K − 2

s − 1

)[
K−s∑
i=0

(
K

s + i

)
(N − 1)i

]

×
[

K−s∑
i=0

(
K

s + i

)
(N − 1)i

]

+
(

K − 2

s − 2

) [
K−s∑
i=0

(
K + 1

s + 1 + i

)
(N − 1)i

]

×
[

K−1−s∑
i=0

(
K − 1

s + i

)
(N − 1)i

]

+
(

K − 1

s − 1

) [
K−1−s∑

i=0

(
K

s + 1 + i

)
(N − 1)i

]

×
[

K−s∑
i=0

(
K − 1

s − 1 + i

)
(N − 1)i

]
. (98)

By using the fact that
(K

s

) = (K−1
s

) + (K−1
s−1

)
, we have

(
K − 2

s − 1

) [
K−s∑
i=0

((
K

s + 1 + i

)
+

(
K

s + i

))
(N − 1)i

]

×
[

K−s∑
i=0

(
K − 1

s − 1 + i

)
(N − 1)i

]

+
((

K − 2

s − 1

)
+

(
K − 2

s − 2

)) [
K−s∑
i=0

(
K

s + i

)
(N − 1)i

]

×
[

K−1−s∑
i=0

(
K − 1

s + i

)
(N − 1)i

]

+
(

K − 2

s − 2

) [
K−1−s∑

i=0

(
K

s + 1 + i

)
(N − 1)i

]

×
[

K−s∑
i=0

((
K − 1

s + i

)
+

(
K − 1

s + i − 1

))
(N − 1)i

]

=
(

K − 2

s − 1

) [
K−s∑
i=0

(
K

s + i

)
(N − 1)i

]

×
[

K−s∑
i=0

((
K − 1

s + i

)
+

(
K − 1

s + i − 1

))
(N − 1)i

]

+
(

K − 2

s − 2

) [
K−s∑
i=0

((
K

s + 1 + i

)
+

(
K

s + i

))
(N − 1)i

]

×
[

K−1−s∑
i=0

(
K − 1

s + i

)
(N − 1)i

]

+
((

K − 2

s − 1

)
+

(
K − 2

s − 2

))

×
[

K−1−s∑
i=0

(
K

s + 1 + i

)
(N − 1)i

]

×
[

K−s∑
i=0

(
K − 1

s − 1 + i

)
(N − 1)i

]
. (99)

Since the left hand side of (99) is equal to the right hand side
of (99), (88) holds.

To show α ≥ 0, since r (K )s > r (K )s−1 in (90), it suffices to

show that r (K )s ≥ r (K+1)
s . From (12), it is equivalent to show

that

(K−2
s−1

)
(K−2

s−1

) + ∑K−1−s
i=0

(K−1
s+i

)
(N − 1)i N

≥
(K−1

s−1

)
(K−1

s−1

) + ∑K−s
i=0

( K
s+i

)
(N − 1)i N

. (100)

By using the fact that
(K

s

) = (K−1
s

) + (K−1
s−1

)
, we have

(K−2
s−1

)
(K−2

s−1

) + ∑K−1−s
i=0

(K−1
s+i

)
(N − 1)i N

≥
(K−2

s−1

) + (K−2
s−2

)
(K−2

s−1

) + (K−2
s−2

) + ∑K−s
i=0

[(K−1
s+i

) + ( K−1
s+i−1

)]
(N − 1)i N

(101)
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which is equivalent to

(K−2
s−1

)
(K−2

s−1

) + ∑K−1−s
i=0

(K−1
s+i

)
(N − 1)i N

≥
(K−2

s−2

)
(K−2

s−2

) + ∑K−s
i=0

( K−1
s+i−1

)
(N − 1)i N

. (102)

By using (12), (102) is equivalent to

r (K )s ≥ r (K )s−1. (103)

Since (103) holds, we have α ≥ 0. Furthermore, α ≤ 1
can be proved similarly. For fixed N , since D̄(r (K+1)

0 ) >

D̄(r (K )0 ), the achievable normalized download cost monotoni-
cally increases.

The following lemma provides an asymptotic upper bound
for the achievable normalized download cost as a smooth
function in (r, N). From this expression, we characterize the
worst-case gap between the outer and the inner bounds to
be 1

6 .
Lemma 5 (Asymptotics and the Worst-Case Gap): In cache-

aided PIR with uncoded and unknown prefetching, as
K → ∞, the outer bound is tightly upper bounded by,

D̄(r) ≤ N(1 − r)2

(N − 1)+ r
(104)

Hence, the worst-case gap is 1
6 . The asymptotic unaware-

ness multiplicative gain over memory-sharing in [29] is
1−r

1+ r
N−1

≤ 1.

Proof: We write the outer bound D̄(rs) as

D̄(rs) =
∑K−1−s

i=0

( K
s+1+i

)
(N − 1)i N

(K−2
s−1

) + ∑K−1−s
i=0

(K−1
s+i

)
(N − 1)i N

(105)

=

∑K−1−s
i=0 ( K

s+1+i)(N−1)i∑K−1−s
i=0 (K−1

s+i )(N−1)i

(K−2
s−1 )∑K−1−s

i=0 (K−1
s+i )(N−1)i N

+ 1
(106)

= ψ1(N, K , s)

ψ2(N, K , s) + 1
. (107)

Denote λ = s
K . To upper bound ψ1(N, K , s),

ψ1(N, K , s) =
∑K−1−s

i=0

( K
s+1+i

)
(N − 1)i

∑K−1−s
i=0

(K−1
s+i

)
(N − 1)i

(108)

=
∑K−1−s

i=0
K

s+1+i

(K−1
s+i

)
(N − 1)i

∑K−1−s
i=0

(K−1
s+i

)
(N − 1)i

(109)

≤
∑K−1−s

i=0
K
s

(K−1
s+i

)
(N − 1)i

∑K−1−s
i=0

(K−1
s+i

)
(N − 1)i

= 1

λ
. (110)

We upper bound the reciprocal of ψ2(N, K , s) as,

1

ψ2(N, K , s)

=
K−1−s∑

i=0

(K−1
s+i

)
(N − 1)i

(K−2
s−1

) N (111)

=
K−1−s∑

i=0

(K − 1)(K − 1 − s)(K − 2 − s) · · · (K − i − s)

s(s + 1)(s + 2) · · · (s + i)

× N(N − 1)i (112)

≤
K−1−s∑

i=0

K (K − s)i

si+1 N(N − 1)i (113)

=
(1−λ)K−1∑

i=0

(1 − λ)i

λi+1 N(N − 1)i (114)

= N

λ

(1−λ)K−1∑
i=0

(
(1 − λ)(N − 1)

λ

)i

. (115)

Now, if λ > 1 − 1
N , then (1−λ)(N−1)

λ < 1. Hence, as K → ∞,
1

ψ2(N,K ,s)
converges to

lim
K→∞

1

ψ2(N, K , s)
≤ N

λ

∞∑
i=0

(
(1 − λ)(N − 1)

λ

)i

(116)

= N

λ
· 1

1 − (1−λ)(N−1)
λ

(117)

= N

Nλ − (N − 1)
. (118)

Moreover, (112) can be lower bounded by keeping the first
�K terms in the sum for any � such that 0 < � < 1 − λ,

1

ψ2(N, K , s)

≥
�K∑
i=0

(K − 1)(K − 1 − s)(K − 2 − s) · · · (K − i − s)

s(s + 1)(s + 2) · · · (s + i)

× N(N − 1)i (119)

≥
�K∑
i=0

(K − 1)(K − �K − s)i

(s + �K )i+1 N(N − 1)i (120)

=
�K∑
i=0

(1 − 1
K )((1 − (λ+ �))i

(λ+ �)i+1 N(N − 1)i . (121)

Similarly, by taking K → ∞, for any 0 < � < 1−λ, we have

lim
K→∞

1

ψ2(N, K , s)
≥ N

λ+ �

∞∑
i=0

(
(1 − (λ+ �))(N − 1)

λ+ �

)i

(122)

= N

N(λ + �)− (N − 1)
. (123)

Since � is arbitrarily chosen, then as K → ∞, � → 0, we have
ψ2(N, K , s) → Nλ−(N−1)

N .
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Consequently, as K → ∞, rs converges to

rs → r = lim
K→∞

(K−2
s−1

)
(K−2

s−1

) + ∑K−1−s
i=0

(K−1
s+i

)
(N − 1)i N

(124)

= lim
K→∞

ψ2(N, K , s)

ψ2(N, K , s) + 1
(125)

= Nλ − (N − 1)

Nλ + 1
. (126)

Note that if λ = 1 − 1
N , then r = 0, while if λ = 1, then r =

1
1+N . This means that the restriction in the limit to have λ >
1 − 1

N is without loss of generality as λ > 1 − 1
N corresponds

to the entire range of r other than the 1 − r matching bound.
We can write λ as

λ = r + (N − 1)

N(1 − r)
. (127)

Substituting in (107), we have the following upper bound
on D̄(r)

D̄(r) ≤
1
λ

Nλ−(N−1)
N + 1

(128)

= N

λ(Nλ + 1)
(129)

= N
r+(N−1)
N(1−r)

(
r+(N−1)
(1−r) + 1

) (130)

= N2(1 − r)2

(r + (N − 1))2 + (1 − r)(r + (N − 1))
(131)

= N2(1 − r)2

Nr + N(N − 1)
(132)

= N(1 − r)2

(N − 1)+ r
. (133)

The memory-sharing scheme in [29] achieves N
N−1 (1 − r)

if K → ∞, hence the asymptotic unawareness gain is given
by the multiplicative factor 1−r

1+ r
N−1

≤ 1.
For the inner bound, we note that the i th corner point is

given by,

r̃i = 1

1 + N + · · · + Ni
, i = 1, · · · , K − 1. (134)

Therefore, although there exist K linear bounds, it suffices
to consider only a small number of them, as the remaining
bounds are concentrated around r = 0. Denote the gap
between the inner and the outer bounds by �(N, K , r).
We note that the gap �(N,∞, r) is a piece-wise convex
function for 0 ≤ r ≤ 1 since it is the difference between a
convex function D̄(r) and a piece-wise linear function. Hence,
the maximizing caching ratio for the gap exists exactly at the
corner points r̃i and it suffices to examine the gap at these
corner points.

For the outer bound, we have

D̄(r̃i )

≤
N

(
1 − 1

1+N+···+Ni

)2

(N − 1)+ 1
1+N+···+Ni

(135)

= N(1 + N + N2 + · · · + Ni − 1)2

(N − 1)(1 + N + · · · + Ni )2 + (1 + N + · · · + Ni )
(136)

= N2(1 + N + · · · + Ni−1)2

Ni (1 + N + · · · + Ni )
. (137)

Furthermore, for the inner bound, we have

D̃(r̃i )

=
(

1 + 1

N
+ · · · + 1

Ni

)

− 1

1 + N + · · · + Ni

(
i + 1 + i

N
+ · · · + 1

Ni

)
(138)

= 1 + N + · · · + Ni

Ni

− (i + 1)Ni + i Ni−1 + · · · + 1

Ni (1 + N + · · · + Ni )
(139)

= (1 + N + · · · + Ni )2

Ni (1 + N + · · · + Ni )

− (1 + 2N + 3N2 + · · · + (i + 1)Ni )

Ni (1 + N + · · · + Ni )
(140)

Consequently, we can upper bound the asymptotic gap at
the corner point r̃i as

�(N,∞, r̃i )

= D̄(r̃i )− D̃(r̃i ) (141)

≤ N2(1 + N + · · · + Ni−1)2 − (1 + N + · · · + Ni )2

Ni (1 + N + · · · + Ni )

+ (1 + 2N + 3N2 + · · · + (i + 1)Ni )

Ni (1 + N + · · · + Ni )
(142)

= −1 − 2N(1 + N + · · · + Ni−1))

Ni (1 + N + · · · + Ni )
(143)

+ (1 + 2N + 3N2 + · · · + (i + 1)Ni )

Ni (1 + N + · · · + Ni )
(144)

= N2 + 2N3 + · · · + (i − 1)Ni

Ni (1 + N + · · · + Ni )
(145)

=
1

Ni−2 + 2
Ni−3 + · · · + (i − 1)

1 + N + · · · + Ni
(146)

Hence, �(N,∞, r̃i ) is monotonically decreasing in N . There-
fore,

�(N, K , r) ≤ �(2,∞, r)

≤ max
i

(2)2 + 2(2)3 + · · · + (i − 1)(2)i

2i (1 + 2 + · · · + 2i )
(147)

For the case N = 2, we note that all the inner bounds after the
6th corner point are concentrated around r = 0 since r̃i ≤ 1

127
for i ≥ 6. Therefore, it suffices to characterize the gap only
for the first 6 corner points. Considering the 6th corner point
which corresponds to r̃6 = 1

127 = 0.0078, and D̄(r) ≤ 2
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trivially for all r , and D̃( 1
127 ) = 1.8898. Hence, �(2,∞, r) ≤

0.11, for r ≤ 1
127 . Now, we focus on calculating the gap at r̃i ,

i = 1, · · · , 6. Examining all the corner points, we see that
r = 1

15 is the maximizing caching ratio for the gap (cor-
responding to i = 3), and �(2,∞, 1

15 ) ≤ 1
6 , which is the

worst-case gap.

VIII. CONCLUSION

In this paper, we studied the cache-aided PIR problem from
N non-communicating and replicated databases, when the
cache stores uncoded bits that are unknown to the databases.
We determined inner and outer bounds for the optimal
normalized download cost D∗(r) as a function of the total
number of messages K , the number of databases N , and the
caching ratio r . Both inner and outer bounds are piece-wise
linear functions in r (for fixed N , K ) that consist of K line
segments. The bounds match in two specific regimes: the very
low caching ratio regime, i.e., r ≤ 1

1+N+N2+···+N K−1 ,

where D∗(r) = (1 − r)
(

1 + 1
N + · · · + 1

N K−1

)
−

r
(
(K − 1)+ K−2

N + · · · + 1
N K−2

)
; and the very high

caching ratio regime, where D∗(r) = (1 − r)(1 + 1
N ) − r ,

for K−2
(N+1)K+N2−2N−2

≤ r ≤ 1
1+N and D∗(r) = 1 − r , for

r ≥ 1
1+N . As a direct corollary for this result, we characterized

the exact tradeoff between the download cost and the caching
ratio for K = 3. For general K , N , and r , we showed that
the largest gap between the achievability and the converse
bounds is 1

6 . The outer bound shows significant reduction in
the download cost with respect to the case when the cache
content is fully known at all databases [29], which achieves
D∗(r) = (1 − r)(1 + 1

N + · · · + 1
N K−1 ) by memory-sharing.

The achievable scheme extends the greedy scheme in [9] so
that it starts with exploiting the cache bits as side information.
For fixed K , N , there are K −1 non-degenerate corner points.
These points differ in the number of cached bits that contribute
in generating one side information equation. The achievability
for the remaining caching ratios is done by memory-sharing
between the two adjacent corner points that enclose that
caching ratio r . For the converse, we extend the induction-
based techniques in [9] and [29] to account for the availability
of uncoded and unknown prefetching. The converse proof
hinges on developing K −1 lower bounds on the length of the
undesired portion of the answer string. By applying induction
on each bound separately, we obtain the piece-wise linear inner
bound.
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