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Abstract— We consider the problem of single-round private
information retrieval (PIR) from N replicated databases. We con-
sider the case when B databases are outdated (unsynchro-
nized), or even worse, adversarial (Byzantine), and therefore, can
return incorrect answers. In the PIR problem with Byzantine
databases (BPIR), a user wishes to retrieve a specific message
from a set of M messages with zero-error, irrespective of the
actions performed by the Byzantine databases. We consider
the T -privacy constraint in this paper, where any T databases
can collude, and exchange the queries submitted by the user.
We derive the information-theoretic capacity of this problem,
which is the maximum number of correct symbols that can be
retrieved privately (under the T -privacy constraint) for every
symbol of the downloaded data. We determine the exact BPIR
capacity to be C = (N −2B)/N · (1− T/(N −2B))/(1− (T/(N −
2B))M ), if 2B + T < N. This capacity expression shows that the
effect of Byzantine databases on the retrieval rate is equivalent
to removing 2B databases from the system, with a penalty factor
of (N − 2B)/N, which signifies that even though the number of
databases needed for PIR is effectively N − 2B, the user still
needs to access the entire N databases. The result shows that
for the unsynchronized PIR problem, if the user does not have
any knowledge about the fraction of the messages that are mis-
synchronized, the single-round capacity is the same as the BPIR
capacity. Our achievable scheme extends the optimal achievable
scheme for the robust PIR (RPIR) problem to correct the errors
introduced by the Byzantine databases as opposed to erasures in
the RPIR problem. Our converse proof uses the idea of the cut-set
bound in the network coding problem against adversarial nodes.

Index Terms— Private information retrieval, Byzantine data-
bases, unsynchronized databases, error correction, capacity,
cut-set bound.

I. INTRODUCTION

THE problem of preserving the privacy of the contents
downloaded from open-access databases has been a major

area of research within the computer science community
[1]–[5]. Many practical applications are related to the private
retrieval problem, such as: protecting the identity of stock
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market records reviewed by an investor, as showing interest
in a specific record may undesirably affect its value; and
protecting the nature of restricted content browsed by activists
on the internet in oppressive regimes. In the seminal paper [1],
Chor et. al. introduced the problem of private information
retrieval (PIR). In the classical PIR setting, a user wishes to
retrieve a certain message (or file) out of M distinct messages
from N non-colluding and replicated databases without leak-
ing any information about the identity of the desired message.
To that end, the user prepares N queries, one for each database,
in a single round, such that the queries do not reveal the
user’s interest in the desired message. Each database responds
truthfully with an answering string. The user needs to be
able to reconstruct the entire message by decoding the answer
strings from all databases. A straightforward solution for the
PIR problem is for the user to download the entire database.
This solution, however, is highly inefficient. The efficiency of
PIR systems is assessed by the PIR rate, which is the ratio
between the desired message size and the total downloaded
symbols.

The computer science formulation of the PIR problem
assumes that the message is of length 1. The formula-
tion considers optimizing two performance metrics, namely,
the download cost, which is the sum of the lengths of the
answer strings, and the upload cost, which is the sum of
the lengths of the queries. Most of this work adopts com-
putational guarantees as a privacy constraint, in which the
databases cannot infer any information about the identity of
the desired message unless they solve certain computationally
hard problems [5], [3]. Recently, the PIR problem is revisited
by information theorists [6]–[9]. The problem is re-formulated
such that: the size of the message can be arbitrarily large,
the upload cost is ignored, and privacy is guaranteed in the
information-theoretic sense. This formulation gives rise to the
PIR capacity notion, which is the supremum of PIR rates over
all achievable retrieval schemes. In the pioneering paper [9],
Sun and Jafar determine the capacity of the classical PIR
model, and propose a greedy algorithm which is based on
three principles: message symmetry, database symmetry, and
exploitation of side information through interference alignment
as observed earlier in [10].

Several interesting extensions for the classical PIR prob-
lem are investigated following the information-theoretic refor-
mulation in [9], such as: PIR with T colluding databases
(TPIR) [11], where the privacy constraint should be maintained
against any T databases; robust PIR (RPIR) [11], where
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some databases fail to respond to the user; symmetric PIR
(SPIR) [12], where the privacy of the remaining messages
should be maintained against the user in addition to the
usual user’s privacy; MDS-coded PIR (CPIR) [8], [13], where
the contents of the databases are not replicated, but coded
via an (N, K ) MDS code; multi-message PIR (MPIR) [14],
where the user wishes to jointly retrieve P messages; PIR
under message size constraint L (LPIR) [15]; multi-round
PIR, where the queries are permitted to be a function of
the answer strings collected in previous rounds [16]; MDS-
coded symmetric PIR [17]; MDS-coded PIR with colluding
databases [18]–[20], and its multi-message version [21].

A common assumption in these works is that the databases
respond truthfully with the correct answer strings. Since the
answers are correct, the user can use the undesired symbols
downloaded from one database as side information at other
databases. Furthermore, this enables the user to distribute the
requests for the desired symbols among the N databases.
This poses an interesting question, how can we manage to
reconstruct the desired message with no errors even if B
databases respond with incorrect answer strings? This question
has practical implications. Returning to the examples presented
earlier: The databases storing the stock market records may
not be updated simultaneously, therefore some of the databases
may store outdated versions of the messages and can introduce
errors to the answering strings, which in turn leads to failure
to reconstruct the desired message. This scenario is referred
to in the literature as the unsynchronized PIR problem [22].
For the oppressive regime example, some databases can be
controlled by the regime, and these databases may return
incorrect answer strings on purpose to confuse the user.
This scenario is referred to in the literature as the PIR with
adversarial databases problem [23], [24]. This motivates our
interest in characterizing the exact capacity of the PIR problem
with Byzantine databases (BPIR). In BPIR, there exist B
databases, which are called Byzantine databases, that respond
with erroneous answer strings. The errors introduced by the
Byzantine databases can be unintentional (as in the case of
databases storing a different copy of the message set), or even
worse, can be intentional (as in the case of maliciously
controlled databases). In both cases, the user needs to be able
to reconstruct the desired message with no error, irrespective
of the actions performed by the Byzantine databases.

The BPIR problem was introduced in [23]. They propose
a generic transformation from schemes of RPIR to robust
protocols that tolerate Byzantine servers, and give an explicit
Byzantine robust scheme when B ≤ T ≤ N

3 . [25] presents a
fault-tolerant PIR scheme that can cope with malicious failures
for B ≤ T ≤ N

2 . Reference [24] observes that allowing
for list decoding instead of unique decoding enlarges the
feasible set up to B < N − T − 1. Their achievable scheme
allows for a small failure probability. The scheme depends on
Shamir’s secret sharing algorithm [26] and Guruswami-Sudan
decoding algorithm [27]. The unsynchronized PIR problem
is investigated in [22], where they propose a two-round
retrieval scheme. The scheme returns the desired record by
first identifying which records are mis-synchronized, and then

by constructing a PIR scheme that avoids these problematic
records.

In this paper, we consider the single-round BPIR problem
from N replicated databases in the presence of B Byzantine
databases that can introduce errors to the returned answer
strings. Other than the Byzantine databases, the remaining
storage nodes store the exact copy of the message set which
contains M different messages, and respond truthfully with the
correct answer strings. We consider the T -privacy constraint,
which permits colluding between any T databases to exchange
the queries submitted by the user. Our goal is to characterize
the single-round capacity of the BPIR problem under the zero-
error reliability constraint and the T -privacy constraint. To that
end, we propose an achievable scheme that is resilient to the
worst-case errors that result from the Byzantine databases.
Our achievable scheme extends the optimal scheme for the
RPIR problem to correct the errors resulted from the Byzan-
tine databases, in contrast to the erasures introduced by the
unresponsive databases in RPIR. The new ingredients to the
achievable scheme are: encoding the undesired symbols via
a punctured MDS code, successive interference cancellation
of the side information, and encoding the desired symbols by
an outer-layer MDS code. For the converse, we extend the
converse arguments developed for the network coding problem
in [28] and distributed storage systems in [29] to the PIR
problem. This cut-set upper bound can be thought of as a
network version of the Singleton bound [30]. The upper bound
intuitively implies that a redundancy of 2B nodes is needed
in order to mitigate the errors introduced by the B Byzantine
databases.

We determine the exact capacity of the BPIR problem to be

C = N−2B
N · 1− T

N−2B

1−
(

T
N−2B

)M , if 2B +T < N . The capacity expres-

sion shows the severe degradation of the retrieval rate due to
the presence of Byzantine databases. The capacity expression
is equivalent the TPIR capacity with N − 2B databases with
a multiplicative factor of N−2B

N , which signifies the ignorance
of the user as to which N − 2B databases are honest. Note
that our Byzantine formulation includes the special case of
the single-round unsynchronized PIR problem, if the user has
no knowledge about the number of mis-synchronized mes-
sages, and only knows that the entirety of some B databases
may be unsynchronized. This formulation differs from the
unsynchronized PIR setting in [22], where a small number
of records S � M are mis-synchronized, and they allow for
multi-round schemes. Under the assumptions of small number
of mis-synchronized records and utilizing multiple rounds of
querying (assuming no further mis-synchronization between
the rounds) higher PIR rates may be achieved [22]. However,
under our assumptions of up to the entire database being mis-
synchronized and allowing only a single-round of querying,
the single-round capacity of the unsynchronized PIR problem
and the BPIR problem are the same.

II. PROBLEM FORMULATION

Consider a single-round PIR setting with N replicated
databases storing M messages (or files). The messages
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W = {W1, · · · , WM } are independent and uniformly dis-
tributed over a large enough finite field Fq . Each message
Wi ∈ F

L
q is a vector of length L (q-ary symbols),

H (Wi) = L, i = 1, · · · , M (1)

H (W) = H (W1, · · · , WM ) = M L (2)

Each database stores a copy from the complete set of messages
W , i.e., this distributed storage system applies an (N, 1)
repetition code [13]. Denote the contents of the nth database
by �n . Ideally, �n = W for all n ∈ {1, · · · , N}.

In the PIR problem, a user wishes to retrieve a message
Wi ∈ W without revealing any information about the message
index i . The user submits a single-round query Q[i]

n to the
nth database. The user does not know the stored messages
in advance, therefore, the message set W and the queries are
statistically independent,

I
(
W; Q[i]

1:N
)

= I
(

W1, · · · , WM ; Q[i]
1:N
)

= 0 (3)

where Q[i]
1:N = {Q[i]

1 , Q[i]
2 , · · · , Q[i]

N } is the set of all queries
to the N databases for message i .

Ideally, the classical PIR formulation assumes that all
databases store the correct database contents (i.e., up-to-date
contents), and respond truthfully with the correct answering
strings A[i]

1:N = {A[i]
1 , · · · , A[i]

N }. In the BPIR setting, on the
other hand, there exists a set B of databases, that is unknown
to the user, such that |B| = B , which are called Byzantine
databases. These databases can respond arbitrarily to the user
by introducing errors to the answer strings A[i]

B = {A[i]
j :

j ∈ B}, i.e.,

H
(

A[i]
n |Q[i]

n ,W
)

> 0, n ∈ B, |B| = B (4)

We assume that these Byzantine databases can coordinate upon
submitting the answers. In this paper, we do not assume a
specific pattern to the errors. The remaining set of databases
B̄ = {1, · · · , N} \ B respond truthfully to the user, i.e., the
answer strings of B̄ are a deterministic function of the queries
and the correct contents of the databases W ,

H
(

A[i]
n |Q[i]

n ,W
)

= 0, n ∈ B̄, |B̄| = N − B (5)

We consider a T -privacy constraint as in the TPIR problem
in [11], where any T databases can communicate and exchange
the queries submitted by the user. To ensure the T -privacy
constraint, the queries to any set T ⊂ {1, · · · , N} of databases,
such that |T | = T , need to be statistically independent of the
desired message index i , i.e.,

I
(

i ; Q[i]
T

)
= 0, for all T ⊂ {1, · · · , N}, |T | = T (6)

where Q[i]
T are the queries submitted to the set T of databases.

We remark here to differentiate the actions of colluding
between the databases which is done to figure out the desired
message, and coordination between the Byzantine databases
which is done to introduce errors in the answer strings. In addi-
tion to the difference in their purposes, these two actions differ
in the manner they are performed: colluding between any T
databases occurs upon receiving the queries from the user,
while coordination between the B Byzantine databases occurs

upon submitting the answers to the user. We do not assume
any specific relation between the T colluding databases and
the B Byzantine databases. This is a more general formulation
of the problem; the user in this case has the knowledge that
there are B Byzantine databases and T colluding databases,
but does not know anything further. In general, these two sets
may be identical, one may be a subset of the other, they may
be disjoint, or they may have a non-trivial intersection.1

The user should be able to reconstruct the desired mes-
sage Wi , no matter what the Byzantine databases do, i.e., if
there exists a set of databases B̄, that is unknown to the user,
such that (5) holds, then the reliability constraint is given by,

H (Wi |A[i]
1:N , Q[i]

1:N ) = 0 (7)

We define the resilient PIR rate R for the BPIR problem as
the ratio between the message size L and the total download
cost under the reliability constraint in (7) for any possible
action of the Byzantine databases, and the T -privacy constraint
in (6), i.e.,

R = L∑N
n=1 H (A[i]

n )
(8)

The capacity of BPIR is C = sup R over all possible
single-round retrieval schemes.

In this paper, we follow the information-theoretic assump-
tions of large enough message size, large enough field size,
and ignore the upload cost as in [7], [11], and [13]. A formal
treatment of the capacity under message size constraints can
be found in [15]. The BPIR with colluding databases reduces
to the TPIR problem in [11] if B = 0.

Some scenarios that fit our formulation include:
• Unsynchronized setting [22]: In this case, there exists a

set B of databases, such that |B| = B , in which they store
different versions of the database contents, i.e.,

�n �= W, n ∈ B, |B| = B (9)

Note that unlike [22], we assume that the user has no
knowledge about the fraction of the messages that are
mis-synchronized. Hence, our achievable schemes must
be resilient against the worst-case that the entirety of the
database is mis-synchronized. Furthermore, the scheme
in [22] is a two-round scheme, hence we cannot com-
pare our rates with the rates in [22]; we consider only
single-round schemes here.

• Adversarial attacks [23]–[25]: In this case, the databases
in B intend to preclude the retrieval process at the user by
introducing a carefully-designed error sequence. This can

1For instance, they may be disjoint if the intentions of these databases
are different, e.g., if the T colluding databases are only curious to learn the
interests of the user without disrupting the retrieval process, while the B
Byzantine databases do not care about the identity of the desired message but
just want to block the retrieval process itself. An example where Byzantine
behavior may not require collusion, or even communication, is when B
databases become outdated (unsynchronized) with the same outdated content.
This happens without a communication between the databases, but results
in errors at the user’s side as if these B databases are coordinating, as they
have the same wrong content. This discussion clarifies that collusion (which
requires communication between databases) and Byzantine behavior (which
may or may not require communication or coordination between databases)
can be completely different.
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be done by altering the contents of the databases to an
erroneous version as in the unsynchronized setting; or by
altering the answering strings themselves, i.e., the nth
database returns the answer string Ã[i]

n such that,

Ã[i]
n �= A[i]

n , n ∈ B, |B| = B (10)

or by doing both.

III. MAIN RESULT AND DISCUSSIONS

The main result of this paper is to characterize the capacity
of the BPIR problem under T -privacy constraint, where B
databases are adversarial (Byzantine) and can return malicious
answers, and at the same time the privacy should be kept
against any T colluding databases.

Theorem 1: For the single-round BPIR problem with B
Byzantine databases, and T colluding databases, such that
2B + T < N, the capacity is given by,

C = N − 2B

N
· 1− T

N−2B

1 −
(

T
N−2B

)M
(11)

= N − 2B

N
·
(

1 + T

N − 2B
+ T 2

(N − 2B)2 + · · ·

+ T M−1

(N − 2B)M−1

)−1

(12)

On the other hand, if 2B + 1 ≤ N ≤ 2B + T , then the user
is forced to download the entire database from at least from
(2B + 1) different databases, hence C = 1

(2B+1)M , which is
the trivial rate in the BPIR problem. Otherwise, the problem
is infeasible and C = 0.

The achievability proof for Theorem 1 is given in
Section IV, and the converse proof is given in Section V.
We have a few remarks.

Remark 1: The BPIR capacity in (11) is the same as the
capacity of PIR with T colluding databases if the number
of databases is N − 2B with a penalty factor of N−2B

N . This
means that the harm introduced by the B Byzantine databases
is equivalent to removing a part from the storage system of size
2B, but the user still needs to download from all N databases,
as it does not know which N − 2B databases are honest. This
results in the penalty term N−2B

N . If B = 0, the expression
in (11) reduces to

Ccolluded = 1 − T
N

1 − ( T
N

)M
(13)

which is the capacity expression in [11] as expected. Fig. 1
shows the severe effect of the Byzantine databases on the
retrieval rate for fixed T = 2 and M = 3 as a function of N.

Remark 2: Comparing the BPIR capacity in Theorem 1
with the robust capacity Crobust in [11], where U databases
are merely unresponsive,

Crobust = 1 − T
N−U

1 −
(

T
N−U

)M
(14)

we note that the number of redundant databases, which are
needed to correct the errors introduced by the Byzantine

Fig. 1. The effect of Byzantine databases on the BPIR capacity as a function
of N for fixed T = 2, M = 3.

databases, is twice the number of redundant databases needed
to correct the erasures introduced in the case of unresponsive
databases. We also note that the penalty factor is missing
in the RPIR problem, since in the RPIR problem, the user
does not get the chance to download from the unresponsive
databases, in contrast to the BPIR problem, in which the user
downloads answer strings from all databases. This is due to
the fact that the user cannot identify the Byzantine databases
before decoding the entire answer strings in the BPIR setting,
while in the RPIR setting, the user identifies the unresponsive
databases as they simply do not return answer strings.

Remark 3: The trivial rate for the BPIR problem is
1

(2B+1)M , which is much less than the trivial rate without the

Byzantine databases, 1
M . The reason for this is that the user

cannot download the entire database only once in BPIR, but
it must download (2B + 1) different copies of the database in
order to decode the desired message via majority decoding.
If N < 2B + 1, the capacity is C = 0, as the Byzantine
databases can always confuse the user to decode the desired
message incorrectly.

Remark 4: When the number of messages is large, i.e., as
M → ∞, the BPIR capacity C → ( N−2B

N )(1 − T
N−2B ) = 1 −

2B+T
N , i.e., for large enough number of messages, the capacity

expression acts as if there are no Byzantine databases and
2B + T databases are colluding.

Remark 5: If T and B are fixed and do not scale with N,
i.e., T = B = o(N), then the capacity is a strictly increasing
function in N and C → 1 as N → ∞. If the number of
the Byzantine databases scales with N, i.e., B = γ N, where
γ ∈ [0, 1

2 (1 − T
N )
)
, then C → 1 − 2γ as N → ∞. If 2γ +

1
N ≤ 1 ≤ 2γ + T

N , then the only possible rate is the trivial
rate 1

(2B+1)M . As N → ∞, then γ → 1
2 , and C → 0. This

entails that the asymptotic behaviour of the BPIR capacity is
a linear function with a slope of −2 as in Fig. 2, i.e., the
asymptotic rate as N → ∞ is decreased by twice the ratio of
the Byzantine databases. A similar behaviour is observed for
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Fig. 2. The asymptotic BPIR capacity C as N → ∞ as a function of γ = B
N .

secure distributed storage systems against Byzantine attacks
in [29]. The problem is infeasible if γ > 1

2 , i.e., C = 0. This
feasibility result conforms with the best result of a uniquely
decodable BPIR scheme in [25] which needs B < N

2 .
Remark 6: Surprisingly, our retrieval scheme in Section IV

is a linear scheme in contrast to the network coding prob-
lem in [28] that states that linear coding schemes are not
sufficient. We note that although the retrieval process is itself
linear, the decoding process employs a successive interference
cancellation decoder, which is non-linear.

Remark 7: The capacity expression in Theorem 1 is also
the capacity result for the unsychronized PIR problem [22].
This occurs under the restriction to single-round schemes and
the assumption that the user only knows that there exist B
databases that are unsynchronized, but does not know the
fraction of messages that are mis-synchronized. The achiev-
ability scheme in Section IV is a valid achievable scheme
for the unsynchronized PIR problem, since the adversary in
the Byzantine setting is stronger. For the converse proof,
we restricted the actions of the adversarial databases to
changing the contents of the stored messages, i.e., altering �n

from W to W̃, which is the same setting as the unsynchronized
PIR with no restriction on the fraction of messages that can
be mis-synchronized.

IV. ACHIEVABILITY PROOF

In this section, we present an achievable scheme that is
resilient to the errors introduced by the Byzantine databases.
The achievable scheme does not assume any specific error
pattern. Hence, our achievable scheme enables correct decod-
ing of any desired message if any B databases become
outdated, or even worse, intentionally commit an adversarial
attack to confuse the user. The achievable scheme generalizes
the RPIR scheme presented in [11]. Our scheme has two
new ingredients, namely, correcting errors in the side infor-
mation using punctured MDS codes, and correcting errors
in the desired message by an outer layer of MDS code.

Error correction in both cases is performed via a nearest-
codeword decoder.

A. Preliminaries

We start by presenting some preliminary results that will
be needed. The following lemma states that if an MDS code
is punctured by a puncture pattern whose length is smaller
than the minimum distance of the original MDS code, then it
remains an MDS code [31].

Lemma 1 (MDS code puncturing [31]): If C is an (n, k)
MDS code, then by puncturing the code by a sequence of
length z, i.e., deleting a sequence of size z from output
codewords of C, such that z < n − k, the resulting punctured
code Cz is an (n − z, k) MDS code.

The second lemma is regarding the statistical effect of
operating on a random matrix by a deterministic full-rank
matrix. The proof of this lemma can be found in [11].

Lemma 2 (Statistical effect of full-rank matrices [11]):
Let S1, S2, · · · , SM ∈ F

α×α
q be M random matrices, drawn

independently and uniformly from all α ×α full-rank matrices
over Fq . Let G1, G2, · · · , GM ∈ F

β×β
q be M invertible square

matrices of dimension β × β over Fq . Let I1, · · · ,IM ∈ N
β

be M index vectors, each containing β distinct indices from
{1, · · · , α}, then

{G1S1(I1, :), · · · , GM SM (IM , :)}
∼ {(S1([1 : β], :), · · · , SM ([1 : β], :)} (15)

where ∼ denotes statistical equivalence, Si (Ii , :), Si ([1 :
β], :) denote β × α matrices with rows indexed by Ii and
{1, 2, · · · , β}, respectively.

The next lemma summarizes the code capabilities of han-
dling errors and erasures for linear block codes [32, Th. 1.7].

Lemma 3 (Code capabilities [32]): Let C be an [n, k, d]
linear block code over Fq . Let ρ be the number of erasures
introduced by the channel. Let τ ∈ N, such that 2τ+ρ ≤ d−1,
then there exists a nearest-codeword decoder that recovers
all errors and erasures if the number or errors (excluding
erasures) is τ or less.

Lemma 3 implies that in the case of no erasures, the max-
imum number of errors τ ≤ ⌊ d−1

2

⌋
.

B. Motivating Example: M = 2 Messages, N = 5, T = 2,
B = 1 Databases

Assume without loss of generality that W1 is the desired
message. Let ai and bi be the i th symbol mixture of messages
W1 and W2, respectively. The specific construction of these
mixtures will be presented shortly. We begin the retrieval
process by downloading T M−1 = 2 symbols from W1, which
are a1, a2 as in [11]. By message symmetry, we download 2
symbols from W2, which are b1, b2. By database symmetry,
we download 2 symbols from W1 and 2 symbols from W2
from all other databases.

Now, we want to generate the maximum number of side
information equations in order to maximize the retrieval rate.
From Lemma 3, we see that the number of errors that can be
corrected increases with d . We know that MDS codes meet
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TABLE I

THE QUERY TABLE FOR THE CASE M = 2, N = 5, T = 2, B = 1

the Singleton bound [30] with equality, hence encoding both
desired and undesired messages by MDS codes is desirable.
In addition, Lemma 3 implies a doubling effect, which suggests
that in order to correct the errors introduced by the Byzan-
tine database, we should effectively consider N − 2B = 3
honest databases. Consequently, considering any 3 databases,
the number of undesired symbols is 6. We note that any T = 2
of them can collude, therefore, we are left with 2 undesired
symbols that can be used to generate side information among
the 2 colluding databases. Hence, each database should get
1 side information equation b[11:15]. These side-information
symbols can be added to new desired symbols a[11:15]. The
complete query structure is shown in Table I.

Now, we specialize the query structure in Table I, and
identify the specific construction of the mixtures a[1:15]
and b[1:15]. For the desired message W1, considering any
N − 2B = 3 honest databases, we see 9 distinct symbols.
Therefore, the length of W1 is L = 9, and we use S1, which is
a 9×9 random mixing matrix picked uniformly from the full-
rank matrices over F

9×9
q . These 9 mixed symbols are further

mapped to a[1:15] by a (15, 9) MDS code generator matrix
MDS15×9, therefore,

a[1:15] = MDS15×9S1W1 (16)

For the undesired message W2, considering again any
N − 2B = 3 honest databases, we have 6 individual symbols
from W2 in round 1. We should be able to reconstruct the side
information equations b[11:15] in round 2 from any 6 individual
symbols, hence we get 6 random symbols from W2. This can
be done by considering the first 6 rows of the random mixing
matrix S2 ∈ F

9×9
q . These randomly mixed symbols are further

mapped to b[1:15] via and MDS code with generator matrix
MDS15×6, i.e.,

b[1:15] = MDS15×6S2([1 : 6], :)W2 (17)

To see the decodability: the worst-case scenario is that the
Byzantine database commits errors in all the symbols returned
to the user. This means that the database commits 2 errors in
the individual symbols from W1, 2 errors in the individual
symbols from W2, and 1 extra error in the sum of a + b.

Consider the codeword b[1:10]: this codeword belongs to
(15, 6) MDS code with a sequence of length z = 5 removed.
Hence, this codeword belongs to (10, 6) punctured MDS code.
Since z = 5 < 15 − 6 = 9, the (10, 6) punctured MDS
code is still an MDS code. Denote the minimum distance of
the (10, 6) punctured MDS code that results in b[1:10] by db

p.

Then, db
p = 10 − 6 + 1 = 5. Consequently, from Lemma 3,

the (10, 6) punctured MDS code can tolerate errors up to τb,
such that

τb ≤
⌊

db
p − 1

2

⌋
= 2 (18)

Therefore, this code can correct all errors that can be intro-
duced to the individual undesired symbols b[1:10]. Let b∗[1:10]
be the correct codeword of b[1:10]. Choose any 6 symbols from
b∗[1:10]. Now, since MDS15×6 matrix has the property that any
6 × 6 matrix is an invertible matrix, then from any 6 symbols
from b∗[1:10], the correct side information equations b∗[11:15] are
determined and canceled from the sums of a and b in round 2.

For the desired message W1: after removing the interference
from W2, we are left with ã[1:15]. Note that this is not exactly
a[1:15], because we canceled the correct side information and
not b[1:15]. However, the total errors in ã[1:15] still is upper
bounded by 3, since ã[1:15] can differ from a[1:15] only in
the positions that correspond to Byzantine databases. The
desired message W1 is coded via (15, 9) MDS code. Then,
the minimum distance for this code is da = 15 − 9 + 1 = 7.
Consequently, this code can tolerate errors up to τa , such that

τa ≤
⌊

da − 1

2

⌋
= 3 (19)

Hence, all the errors in ã[1:15] can be corrected, and we can
obtain true a∗[1:15]. Consider the first 9 symbols from a∗[1:15],
without loss of generality, then

W1 = (MDS15×9([1 : 9], :)S1)
−1a∗[1:9] (20)

since MDS15×9([1 : 9], :)S1 is a 9 × 9 invertible matrix.
Therefore, despite Byzantine behaviour of B = 1 database,

we decode the desired message correctly. In addition, our
achievable scheme can identify the Byzantine database as does
the scheme in [22] by comparing a∗[1:10] with a[1:10], and b∗[1:10]
with b[1:10] and see which database has introduced errors.

To see the privacy: we note that from any T = 2 databases,
our achievable scheme collects 6 symbols from a[1:15] and
6 symbols from b[1:15] indexed by I such that |I| = 6. For
the undesired message, we collect bI ,

bI = MDS15×6(I, :)S2([1 : 6], :)W2 (21)

∼ S2([1 : 6], :)W2 (22)

where (22) follows from Lemma 2 as any 6 × 6 matrix in
MDS15×6 matrix is full-rank. Therefore, the symbols bI are
independent and uniformly distributed. For aI , we have

aI = MDS15×9(I, :)S1W1 (23)

= �6×9W1 (24)

where � = MDS15×9(I, :)S1 is a full row-rank matrix as any
6 rows in MDS15×9 are linearly independent. Consequently,
the symbols aI are also independent and uniformly distributed,
and aI ∼ bI for every 2 databases, where ∼ means that
the involved random vectors are statistically identical. Thus,
the proposed scheme is 2-private; that is, despite colluding
behaviour of T = 2 databases, we have privacy.
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Finally, the achievable resilient retrieval rate is R = 9
25 =

N−2B
N · 1− T

N−2B

1−
(

T
N−2B

)M = C . In comparison, the trivial rate for this

system is 1
(2B+1)M = 1

6 , as the user must download the entire
database from 3 different databases for correct decoding.

C. General Achievable Scheme

The general achievable scheme is performed in M rounds.
The i th round includes all the

(M
i

)
combinations of the sums of

any i messages. In our construction,2 we use L = (N −2B)M .
The construction resembles the optimal scheme for RPIR
in [11]. The new key ingredient in our achievable scheme is the
decoding procedure, which includes correcting the undesired
symbols by punctured MDS codes, successive interference
cancellation to cancel the interfering messages, and correcting
the errors in the desired message by an outer layer MDS code.

1) General Description for the Scheme:
1) Initialization: The scheme starts with downloading

T M−1 mixed symbols from the desired message from
the first database. The specific construction of the mix-
ture will be specified shortly. The scheme sets the round
index i = 1.

2) Message symmetry: To satisfy the privacy constraint,
the user downloads the same number of mixed sym-
bols from the undesired messages with all the possible
combinations, i.e., in the i th round, the user downloads(M−1

i

)
(N − 2B − T )i−1T M−i mixed symbols from the

remaining M −1 messages. The specific construction of
the undesired mixture will be specified shortly.

3) Database symmetry: The user repeats the same steps
at all the databases. Specifically, the user downloads(M−1

i−1

)
(N − 2B − T )i−1T M−i equations in the form

of a desired message mixture symbol and i − 1
mixed symbols from the undesired messages, and

(M−1
i

)
(N − 2B − T )i−1T M−i mixed symbols from the unde-
sired messages only, from each database.

4) Exploiting side information: The specific construction
of the undesired mixtures should be done such that in
the (i + 1)th round, the user should be able to generate
N−2B−T

T side information equations for each undesired
symbol in the i th round. This fraction is a consequence
of considering Ñ = N − 2B honest databases only, and
dividing the undesired symbols from the Ñ−T databases
among the T colluding databases. The side information
generated is added to a new mixed symbol from the
desired message.

5) Repeat steps 2, 3, 4 after setting i = i+1 until i = M−1.
2) Specific Construction of the Symbol Mixtures: Let Wm ∈

F
(N−2B)M

q , m ∈ {1, · · · , M} be the message vectors, and
Sm , m ∈ {1, · · · , M} be random mixing matrices picked
independently and uniformly from the full-rank matrices

in F
(N−2B)M ×(N−2B)M

q . From the general description of the

2We note that we do not claim that L = (N − 2B)M is the minimum
message length needed to achieve the capacity. The reason we choose this
specific L is that it enables us to realize our achievable scheme for general
N , B , T , M. The problem of obtaining the minimum capacity-achieving L
is an interesting open problem.

scheme, we note that at the i th round, the user downloads all
possible combinations of the sums of any i messages. In the
following specific construction, we enumerate all the sets that
contain a symbol from the desired message and assign them
labels L1, · · · ,Lδ . For each undesired message, we further
enumerate also all the sets that contain symbols from this
undesired message and do not include any desired symbols
and assign them labels K1, · · · ,K
. These sets construct
the undesired symbol mixtures and the corresponding side
information.

For the desired message: Assume that the desired message is
W�. Let δ be the number of the distinct subsets of {1, · · · , M}
that contain �, then δ = 2M−1. Let Li , i ∈ {1, · · · , δ}
be the i th subset that contains �. Assume without loss of
generality, that these sets are arranged in ascending order in
the sizes of the sets |Li |. According to this order, we note
that L1 = {�} and belongs to round 1. Round 2 contains sets

L2, · · · ,L(M−1
1 )+1, and so on. Let X [�] ∈ F

N(N−2B)M

q be the
vector of mixtures that should be obtained from the desired
message W�. Divide X [�] into δ partitions denoted by x [�]

Li
,

each corresponds to a distinct set Li . Now, encode the desired
message by a

(
N(N − 2B)M−1, (N − 2B)M

)
MDS code as,

X [�] =

⎡
⎢⎢⎢⎢⎢⎢⎣

x [�]
L1

x [�]
L2

...

x [�]
Lδ

⎤
⎥⎥⎥⎥⎥⎥⎦

= MDSN(N−2B)M−1×(N−2B)M S�Wl (25)

where x [�]
Li

is a vector of length N(N −2B − T )|Li |−1T M−|Li |
in Fq .

For any other undesired message: Consider the undesired
message Wk , k ∈ {1, · · · , M} \ {�}. Let 
 = 2M−2 be the
number of distinct subsets that contain k and do not contain �.
Let Ki , i ∈ {1, · · · ,
} be the i th subset that contains k and
does not contain � with indices in ascending order in the size
of set |Ki |. Define u[k]

Ki
to be the undesired symbol mixtures in

the |Ki |th round corresponding to message k among the Ki set.
Define σ [k]

Ki
to be the side information symbols from message

k among the Ki subset of undesired messages. These side
information equations are added to a desired message symbol
in the (|Ki | + 1)th round. For each subset Ki , the undesired
symbols and side information symbols are related via,
[

u[k]
Ki

σ [k]
Ki

]
= MDS N

T αi×αi
Sk

⎛
⎝
⎡
⎣

i−1∑
j=1

α j + 1 :
i∑

j=1

α j

⎤
⎦ , :

⎞
⎠Wk

(26)

where αi = (N − 2B)(N − 2B − T )|Ki |−1T M−|Ki |, u[k]
Ki

is

a vector of length N
N−2B αi , and σ [k]

Ki
is a vector of length

N−2B−T
T · N

N−2B αi . This implies that the side information

σ [k]
Ki

in the (|Ki | + 1)th round is completely determined

by u[k]
Ki

in the |Ki |th round. We note that these choices of
the dimensions ensure that the same number of desired and
undesired symbols exist in the |Ki |th round, and they are both
equal to N(N−2B−T )|Ki |−1T M−|Ki |. We further note that the
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X [k] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u[k]
K1

σ
[k]
K1

u[k]
K2

σ [k]
K2

...

u[k]
K


σ
[k]
K


⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

MDS N
T α1×α1

0 · · · 0

0 MDS N
T α2×α2

· · · 0
...

...
...

...
0 0 0 MDS N

T α
×α


⎤
⎥⎥⎥⎥⎦

Sk([1 : T (N − 2B)M−1], :)Wk (27)

N−2B−T
T factor in the length of σ [k]

Ki
, implies that we generate

N−2B−T
T side information symbols for each undesired symbol.

We note that the same MDS matrix is used for all messages
k �= � that belong to the same subset Ki . This is critical to
enable interference alignment, and joint error correction. Let
X [k] ∈ F

N(N−2B)M−1

q be the vector of mixtures corresponding
to message k �= �. Then, X [k] can be written in an explicit
form as in (27), as shown at the top of this page.

Now, we are ready to specify the queries. For every non-
empty set M ⊆ {1, · · · , M}, define Q[�]

M to be all queries
related to set M,

Q[�]
M =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x [�]
L1

, M = L1 = {�}
x [�]
L j

+
∑
k∈Ki

σ [k]
Ki

∃i, j : M = Ki ∪ {�} = L j

∑
k∈Ki

u[k]
Ki

∃i : M = Ki

(28)

We distribute the queries randomly and evenly among the
N databases for each subset M, and the construction is now
complete.

D. Decodability, Privacy, and the Achievable Rate

First, we show how the decoding is performed. The first
step is to correct the errors in the undesired symbols in the
Ki set in the |Ki |th round, so that we can generate the correct
side information in the (|Ki |+ 1)th round. Consider again the
encoding,

[
u[k]
Ki

σ
[k]
Ki

]
= MDS N

T αi×αi
Sk (Ji , :) Wk (29)

where Ji =
[∑i−1

j=1 α j + 1 :∑i
j=1 α j

]
. Since the sum of

linear codes is also a linear code, for the every set Ki ,
i ∈ {1, · · · ,
}, we have

⎡
⎢⎢⎣

∑
k∈Ki

u[k]
Ki

∑
k∈Ki

σ
[k]
Ki

⎤
⎥⎥⎦ = MDS N

T αi×αi

∑
k∈Ki

Sk (Ji , :) Wk (30)

This enables joint error correction on the aligned sum. The
minimum distance of this MDS code is dKi = N

T αi −αi +1 =
N−T

T αi + 1.

Now, in the |Ki |th round, the user downloads
∑

k∈Ki
u[k]
Ki

which is a vector of length N
N−2B αi from all databases. The

vector
∑

k∈Ki
u[k]
Ki

belongs to
(

N
N−2B αi , αi

)
punctured MDS

code with a puncturing sequence corresponding to the side
information symbols, i.e., with a puncturing sequence of length
z = |σ [k]

Ki
| = N−2B−T

T · N
N−2B αi . Therefore,

dKi − z − 1 = N − T

T
αi − N − 2B − T

T
· N

N − 2B
αi (31)

= 2B

N − 2B
αi (32)

= 2B(N − 2B − T )|Ki |−1T M−|Ki | > 0 (33)

Thus, the
(

N
N−2B αi , αi

)
punctured MDS code remains an

MDS code with a minimum distance dui , such that

dui = N

N − 2B
αi − αi + 1 (34)

= 2B

N − 2B
αi + 1 (35)

Hence, the punctured code can correct upto τui errors, such
that

τui ≤
⌊

dui − 1

2

⌋
= B

N − 2B
αi (36)

Each database contributes 1
N−2B αi symbols from

∑
k∈Ki

u[k]
Ki

,

hence the Byzantine databases can introduce at most B
N−2B αi

errors. Consequently, the punctured MDS code can correct
all errors in

∑
k∈Ki

u[k]
Ki

. This results in a corrected undesired

message vector
(∑

k∈Ki
u[k]
Ki

)∗
. Choose any αi symbols from(∑

k∈Ki
u[k]
Ki

)∗
. By the MDS property of the ( N

T αi , αi ) MDS
code, any αi × αi submatrix is invertible, hence a correct
version of the side information vector, which is used in the
(|Ki | + 1)th round, can be generated. Denote this correct

version by
(∑

k∈Ki
σ [k]
Ki

)∗
.

Now, we cancel the correct side information successively
from each set Ki . Note that the successive correction of side
information gives rise to non-linearity in the decoding. After
interference cancellation, we are left with X̃ [�], which is not
exactly X [�], as we cancelled the correct side information
from the sum and not the side information provided by the
Byzantine databases. This is not a problem, because X̃ [�]
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and X [�] differ in codeword positions if and only if these
positions belong to the Byzantine databases, hence the worst-
case number of errors in X̃ [�] cannot increase. The desired
message is encoded by (N(N − 2B)M−1, (N − 2B)M) MDS
code with minimum distance dx , such that

dx = N(N − 2B)M−1 − (N − 2B)M + 1 (37)

= 2B(N − 2B)M−1 + 1 (38)

Each database returns (N −2B)M−1 symbols from the desired
message. The B Byzantine databases can at most introduce
B(N − 2B)M−1 errors. The outer MDS code can correct up
to τx errors, such that

τx ≤
⌊

dx − 1

2

⌋
= B(N − 2B)M−1 (39)

Thus, the user can correct all the errors introduced by
the Byzantine databases to get a correct vector

(
X [�])∗ ∈

F
N(N−2B)M−1

q . Consider any (N−2B)M symbols from
(
X [�])∗.

Denote these symbols by x∗
� , and index them by Ix . Then,

the user can decode W� with zero error via

W� = (MDSN(N−2B)M−1×(N−2B)M (Ix , :)S1)
−1x∗

� (40)

This is true as matrix MDSN(N−2B)M−1×(N−2B)M (Ix , :)S1 is
invertible by the MDS property.

In addition, the user can identify the Byzantine databases
by comparing the correct versions of the undesired symbols at
each cancellation step (

∑
k∈Ki

u[k]
Ki

)∗, and the desired symbols(
X [�])∗ by their counterparts from the retrieval process. Any

change between the correct vector and the retrieved vector
implies that this database is a Byzantine database (or unsyn-
chronized). The user can expurgate the malicious nodes in this
case as in [22], [28], and [29].

Next, we show how the privacy is achieved. The queries for
any T colluding databases are comprised of T (N − 2B)M−1

mixed symbols from each message Wi , i ∈ {1, · · · , M}. Let
these symbols be indexed by I. Denote the kth message
symbols by x [k]

I . For the desired symbols, we have

x [�]
I = MDSN(N−2B)M−1×(N−2B)M (I, :)S�Wl (41)

Since |I| = T (N − 2B)M−1 < (N − 2B)M as 2B + T < N
by construction, and due to the MDS property, the symbols
x [�]
I have full-rank. Hence, they are independent and uniformly

distributed. Furthermore, for any undesired message Wk ,
k �= �, we have,

x [k]
I = 
Sk([1 : T (N −2B)M−1], :)Wk (42)

where I = ⋃

j=1 I j , and |I j | = α j , and 
 =

diag
(

MDS N
T α1×α1

(I1, :), · · · , MDS N
T α
×α


(I
, :)
)

. There-
fore, each submatrix in 
 is an αi ×αi invertible matrix by the
MDS property. Hence, 
 is also an invertible matrix because
it is a block-diagonal matrix. By Lemma 2, we have

x [k]
I ∼ Sk([1 : T (N −2B)M−1], :)Wk (43)

Thus, symbols x [k]
I are independent and uniformly distributed,

and the privacy is guaranteed.

We next calculate the achievable resilient rate. We note that
the scheme operates in M rounds. At the i th round, the scheme
downloads

(M−1
i−1

)
(N − 2B − T )i−1T M−i equations in the

form of one desired symbol added to i − 1 symbols from
the undesired messages, and

(M−1
i

)
(N − 2B − T )i−1T M−i

undesired symbols only. Then, the total download in the i th
round is

(M
i

)
(N−2B−T )i−1T M−i from each database, i.e., the

total download of the scheme, D, is D = N
∑M

i=1

(M
i

)
(N −

2B − T )i−1T M−i . The scheme decodes correctly the desired
message, which has length L = (N−2B)M . Thus, the resilient
retrieval rate is,

R = L

D
(44)

= (N − 2B)M

N
∑M

i=1

(M
i

)
(N − 2B − T )i−1T M−i

(45)

= N − 2B

N
· (N − 2B)M−1

∑M
i=1

(M
i

)
(N − 2B − T )i−1T M−i

(46)

= N − 2B

N
· (N − 2B)M−1

1
N−2B−T

∑M
i=1

(M
i

)
(N − 2B − T )i T M−i

(47)

= N − 2B

N
· (N − 2B)M−1

1
N−2B−T

(
(N − 2B)M − T M

) (48)

= N − 2B

N
· (N − 2B)M − T (N − 2B)M−1

(N − 2B)M − T M
(49)

= N − 2B

N
· 1 − T

N−2B

1 −
(

T
N−2B

)M
(50)

which is the expression in Theorem 1. We have some addi-
tional remarks about the achievable scheme.

Remark 8: We note that our achievable scheme is capable
of identifying the Byzantine databases by observing discrepan-
cies between the corrected codewords of desired and undesired
messages and their counterparts from the retrieval process.
Therefore, if multiple-rounds are allowed in the achievable
scheme, we can remove the databases that introduce errors
at each retrieval round, and achieve larger retrieval rates in
future rounds. For instance, assume that B̃ ≤ B databases
commit errors and are identified to be Byzantine in the kth
retrieval round, then removing these databases from the system
and downloading only from the remaining (N − B̃) databases,
we can achieve the following retrieval rate in the (k + 1)th
round

R(k+1) = N − B̃ − 2(B − B̃)

N − B̃
·

1 − T
N−B̃−2(B−B̃)

1 − ( T
N−B̃−2(B−B̃)

)M
(51)

= N + B̃ − 2B

N − B̃
·

1 − T
N+B̃−2B

1 − ( T
N+B̃−2B

)M
(52)

In particular, if all B Byzantine databases act maliciously in
the kth retrieval round and get identified, i.e., B̃ = B, then we
can achieve the following retrieval rate in the (k + 1)th round

R(k+1) = 1 − T
N−B

1 − ( T
N−B )M

(53)

which is the retrieval rate if B databases are just unresponsive.
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TABLE II

THE QUERY TABLE FOR THE CASE M = 3, N = 6, T = 1, B = 2

Remark 9: Our achievable scheme can be seamlessly
extended to the case of BPIR with U unresponsive databases
(as in the case of RPIR [11]) – also known in the literature
as T -private B-Byzantine (N − U)-out-of-N PIR as in [24].
The construction of the achievable scheme can be done by
replacing every N − 2B with N − 2B − U in the general
achievable scheme. Using Lemma 3, that states that correct
decoding is possible if 2τ + ρ ≤ d − 1, and considering the
effect of the unresponsive databases as erasures, i.e., via ρ,
the decodability holds for the BPIR problem with unresponsive
databases. The retrieval rate in this case is,

R = N − 2B − U

N − U
· 1 − T

N−2B−U

1 − ( T
N−2B−U )M

(54)

The retrieval expression is the same as the BPIR capacity in
(11) if the number of databases is N −U. This in turn implies
that the expression in (54) is the capacity of the BPIR problem
with unresponsive databases. The details of the construction
and the analysis are omitted to avoid repetition.

E. Further Examples

In this section, we present some further simple examples
with tractable parameters of M , N , T , B for better understand-
ing of the achievable scheme. Here, we use increased number
of messages (M = 3) and databases (N = 6) compared to
the selections M = 2, N = 5 in the motivating example in
Section IV-B. In the following two subsections, we choose
T = 1, B = 2 and T = 2, B = 1, respectively, to show
the different effects of colluding and Byzantine behavior.
We assume without loss of generality that the desired message
is W1.

1) M = 3 Messages, N = 6, T = 1, B = 2 Databases:
We denote the mixed symbols of messages W1, W2, W3 by
a, b, c, respectively. In this example L = (N − 2B)M = 8,
hence we use 8 × 8 random mixing matrices denoted by
S1, S2, S3. We have L1 = {1},L2 = {1, 2},L3 = {1, 3},L4 =
{1, 2, 3}. Also, for the undesired message W2, we have K1 =
{2},K2 = {2, 3}, and similarly for W3. The scheme starts
with downloading T M−1 = 1 symbol from each message from
each database. Therefore, in round 1, the scheme downloads
x [1]
L1

= a[1:6], u[2]
K1

= b[1:6], and u[3]
K1

= c[1:6]; see Table II. For

every undesired symbol in round 1, we generate N−2B−T
T = 1

side information symbols to be used in round 2. The scheme

constructs the side information symbols σ
[2]
K1

= b[7:12] based on

the downloaded symbols b[1:6], and similarly for σ [3]
K1

= c[7:12].
Round 2 contains all combinations of the sums of 2 messages.
Round 2 adds one new symbol from the desired message with
one symbol of the generated side information from b, c. This
results in the sums x [1]

L2
+ σ [2]

K1
= a[7:12] + b[7:12], and the

sums x [1]
L3

+ σ
[3]
K1

= a[13:18] + c[7:12]. By message symmetry,

we must include the undesired symbol sum
∑

k∈K2
u[k]
K2

=
b[13:18] + c[13:18]; see Table II. We note that these undesired
information equation is in the form of aligned sums. The
undesired symbols in round 2 generate the side information
equations

∑
k∈K2

σ
[k]
K2

= b[19:24] + c[19:24]. These side infor-
mation equations are added to new symbols from the desired
message to have x [1]

L4
+∑k∈K2

σ [k]
K2

= a[19:24]+b[19:24]+c[19:24].
The query table is shown in Table II.

The specific construction of the symbol mixtures are,

a[1:24] = MDS24×8S1 W1 (55)

b[1:24] =

⎡
⎢⎢⎢⎢⎢⎣

u[2]
K1

σ
[2]
K1

u[2]
K2

σ [2]
K2

⎤
⎥⎥⎥⎥⎥⎦

=
[

MDS12×2 0
0 MDS12×2

]
S2([1 : 4], :)W2

(56)

c[1:24] =

⎡
⎢⎢⎢⎢⎢⎣

u[3]
K1

σ
[3]
K1

u[3]
K2

σ [3]
K2

⎤
⎥⎥⎥⎥⎥⎦

=
[

MDS12×2 0
0 MDS12×2

]
S3([1 : 4], :)W3

(57)

For the decodability, we note that B = 2 Byzantine
databases can introduce at most 2 errors in b[1:6], 2 errors
in c[1:6], 2 errors in b[13:18] + c[13:18], and 8 errors in a[1:24].
We note that b[1:6] is encoded via (6, 2) punctured MDS code,
which still is an MDS code because z = 6 < 12−2 = 10. The
(6, 2) punctured MDS code can correct errors up to � 6−2

2 � = 2
errors. Then, the 2 errors in b[1:6] can be corrected. The same
argument holds for c[1:6]. For b[13:18]+c[13:18], since the same
generator matrix is used for b[13:18], c[13:18], and because of
the linearity of the code, the aligned sum is a codeword from
(6, 2) punctured MDS code as well. Thus, we can correct
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TABLE III

THE QUERY TABLE FOR THE CASE M = 3, N = 6, T = 2, B = 1

all the errors in the aligned sum b[13:18] + c[13:18]. Knowing
the correct undesired symbols results in decoding the correct
side information symbols b[7:12], c[7:12] and b[19:24] + c[19:24],
respectively, by the MDS property. Cancelling these side
information from the answer strings, we are left with ã[1:24],
which are coded with an outer (24, 8) MDS code, which is
capable of correcting � 24−8

2 � = 8 errors. Hence, the user can
correct all the errors introduced by the Byzantine databases
and W1 is decodable.

For the privacy, from any individual database, the user asks
for 4 mixed symbols from each message. Because of the MDS
property, the symbols from all messages are full-rank, and
hence they are independent and uniformly distributed. Thus,
the scheme is private.

The resilient achievable rate is R = 8
42 = 4

21 = 1
3 · 4

7 =
N−2B

N · 1− T
N−2B

1−
(

T
N−2B

)M = C .

2) M = 3 Messages, N = 6, T = 2, B = 1 Databases:
In this case L = (N − 2B)M = 64, and we use random
mixing matrices S1, S2, S3 of size 64 × 64. The scheme starts
by downloading T M−1 = 4 symbols from each message from
each database, namely, a[1:24], b[1:24], c[1:24]; see Table III. The
undesired symbols from b[1:24] and c[1:24] create N−2B−T

T = 1
side information symbol for each undesired symbol in a single
database. Therefore, the scheme generates the side informa-
tion b[25:48], c[25:48]. In round 2, these side information are
added to a[25:48], a[49:72], respectively. Round 2 concludes by
applying message symmetry, and downloads b[49:72] + c[49:72].
These undesired symbols produce b[73:96] + c[73:96] as side
information symbols for round 3. The query table is shown
in Table III.

The specific construction of the symbol mixtures are,

a[1:96] = MDS96×64S1 W1 (58)

b[1:96] =
[

MDS48×16 0
0 MDS48×16

]
S2([1 : 32], :)W2 (59)

c[1:96] =
[

MDS48×16 0
0 MDS48×16

]
S3([1 : 32], :)W3 (60)

For the decodability, the Byzantine database can commit 4
errors in b[1:24], 4 errors in c[1:24], 4 errors in b[49:72]+c[49:72],
and 16 errors in a[1:96]. All layers of the undesired symbols are
encoded via (24, 16) punctured MDS code, which is still MDS
code, and can correct up to � 24−16

2 � = 4 errors. Therefore, all
the undesired symbols can be corrected, which in turn generate
the correct side information in all layers. By canceling the
side information, we are left with ã[1:96], which is encoded
by (96, 64) outer MDS code. This code can correct up to
� 96−64

2 � = 16 errors. Hence, the user can decode W1 reliably.
For the privacy, from any 2 databases, the user asks for

16 symbols from each message. By the MDS property and
Lemma 2, all these symbols are full-rank, and hence they are
independent and uniformly distributed. Therefore, the scheme
is 2-private.

The resilient achievable rate is R = 64
168 = 8

21 = 4
6 · 4

7 =
N−2B

N · 1− T
N−2B

1−
(

T
N−2B

)M = C .

Note that, for the same M , N , the achievable rate with
T = 1, B = 2 in the previous subsection, 4

21 , is smaller
than the achievable rate with T = 2, B = 1 in this
subsection, 8

21 , which signifies that Byzantine behavior is a
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more severe adversarial behavior to cope with compared to
colluding behavior.

V. CONVERSE PROOF

In this section, we develop an upper bound for the
BPIR problem. We adapt the cut-set upper bound proof
in [28] and [29] to the PIR setting. The upper bound can be
thought of as a network version of the Singleton bound [30].
The upper bound intuitively asserts that the effect of the
Byzantine databases on the retrieval rate is harmful as if
2B databases are removed from the retrieval process, but
the user still needs to access them. The settings of PIR and
network coding problem in [28] share that they are both planar
networks, and they both lack backward edges, as we consider
here a single-round retrieval, and hence the answer strings
from the honest databases are not affected by the answers of
the Byzantine databases. However, some technical differences
arise in the PIR setting:

1) Unlike the adversarial nodes in [28] and [29], the Byzan-
tine databases in PIR are not fully omniscient, since they
do not know which message the user wishes to retrieve
(by definition of PIR). Consequently, we assume in the
following that the Byzantine databases alter the contents
of the entire database.

2) In the PIR setting, the user does not know the entire
codebook in advance, in contrast to the network coding
problem in [28].

For sake of deriving an upper bound, we make the following
simplifications:

1) We assume that the actions of the Byzantine databases
are restricted to altering the contents of the entire
database, i.e., the nth Byzantine database changes its
contents �n from W to W̃, where W̃ �= W . This
restriction is valid from the converse point of view, since
it potentially results in a weaker adversary, which in
turn results in a higher rate. Note that, in this sense
the Byzantine databases are reduced to being unsyn-
chronized databases (with unknown number of mis-
synchronized messages).

2) We further restrict the answering string from the nth
database to be a deterministic function fn(·), i.e., A[i]

n =
fn(�n, Q[i]

n ), of the altered database �n . This restriction
also limits the capabilities of the Byzantine databases.
This results in a further upper bound on rate. Since we
restrict the actions of the Byzantine databases to altering
�n only, we signify this dependence on �n by writing
the answering string A[i]

n as A[i]
n (�n).

3) We can assume that the retrieval scheme is sym-
metric. This is without loss of generality, since any
asymmetric PIR scheme can be made symmetric by
proper time sharing without changing the retrieval rate
[9], [13], [14], i.e.,

H (A[i]
1 |Q) = H (A[i]

2 |Q) = · · · = H (A[i]
N |Q) (61)

This assumption remains true in the BPIR problem,
because if the nth Byzantine database returned an
answering string which has H (A[i]

n |Q) �= H (A[i]
j |Q) for

some honest database j , i.e., the answering string has a
different length as a response to a symmetric retrieval
scheme, this database will be identified as a Byzantine
database. Hence, the errors introduced by the Byzantine
databases can be mitigated and these databases will
be removed from the system afterwards. In addition,
the restrictions in assumptions 1 and 2 above imply that
the Byzantine databases answer truthfully to the queries
based on their own (altered) �n . Therefore, the lengths
of the answer strings will be symmetric in response to
a symmetric scheme.

The main argument of the converse proof is summarized in
the following lemma.

Lemma 4: Fix a set of honest databases U ⊂ {1, · · · , N}
such that |U | = N − 2B, and �n = W , for every n ∈ U .
Then, for correct decoding of Wi , the answer strings A[i]

U (W)
is unique for every realization of W , i.e., there cannot exist
two realizations of the message set W, W̃ , such that W �= W̃ ,
and A[i]

U (W) = A[i]
U (W̃).

We have this following remark about Lemma 4 first, before
we give its proof next.

Remark 10: Lemma 4 implies that the answer strings from
any N − 2B honest databases are enough to reconstruct
the desired message, since every realization of the message
set produces different answering strings from any N − 2B
databases. This argument was previously used by [28, Th. 1]
and [29, Th. 6], as they show that the capacity of the
adversarial network coding problem and the adversarial dis-
tributed storage problem, respectively, is upper bounded by
the capacity of the edges of any cut in the network after
removing 2B edges from this cut. These edges correspond to
the set U in our problem. The proof in [28] and [29] relies
on the fact that in the presence of an adversary controlling B
nodes, and for any distinct messages w1 �= w2, a necessary
condition for the receiver to not make a decoding error is to
have XU (w1) �= XU (w2).

Proof: Divide the set Ū = {1, · · · , N}\U into two sets B1,
B2 such that |B1| = |B2| = B . In the BPIR problem, we must
guarantee correct decoding if the Byzantine databases are any
subset B ⊂ {1, · · · , N}, such that |B| = B , in particular, if the
Byzantine databases are either B1 or B2.

Now, assume for sake of contradiction, that there exists a
valid retrieval scheme that achieves correct decoding of Wi ,
and there exist two realizations of the message set W, W̃ such
that W �= W̃, and

A[i]
U (W) = A[i]

U (W̃) (62)

Two scenarios can arise:
1) The true realization of the database contents is W .

In this case, if the adversarial nodes are the data-
bases indexed by B2, and they flip their contents
�B2 into W̃ , the user collects the answer strings(

A[i]
B1

(W), A[i]
B2

(W̃), A[i]
U (W)

)
.

2) The true realization of the database contents is W̃ .
In this case, if the adversarial nodes are the data-
bases indexed by B1, and they flip their contents
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�B1 into W , the user collects the answer strings(
A[i]
B1

(W), A[i]
B2

(W̃), A[i]
U (W̃)

)
.

Since A[i]
U (W) = A[i]

U (W̃), there is no way for the user
to differentiate between the two scenarios. Hence, the user
commits an error either directly (if W and W̃ differ in
Wi ) or indirectly (if W and W̃ differ in any message other
than Wi , as the user fails in canceling the interference from
the answer strings). This is a contradiction to the reliability
constraint H (Wi |A[i]

1:N , Q[i]
1:N ) = 0.

Now, we continue with the main body of the converse proof.
From Lemma 4, the answers A[i]

U (W) are unique for every
W , hence restricting the decoding function to these answers
uniquely determine Wi , i.e., there exists no further confusion
about the correct database contents W , and the answering
strings are designed to retrieve Wi from this W . Consequently,
if the true realization of the database is W , we can write

R = L∑N
n=1 H (A[i]

n )
(63)

≤ L∑N
n=1 H (A[i]

n |Q)
(64)

= N − 2B

N
· L

(N − 2B)H (A[i]
1 |Q)

(65)

= N − 2B

N
· L∑

n∈U H (A[i]
n (W)|Q)

(66)

≤ N − 2B

N
· CT (|U |) (67)

= N − 2B

N
· CT (N − 2B) (68)

= N − 2B

N
· 1 − T

N−2B

1 −
(

T
N−2B

)M
(69)

where CT (·) is the capacity of the PIR problem with T collud-
ing databases as a function of the number of databases. Here,
(65) follows from the symmetry assumption, (66) follows
from the fact that A[i]

U (W) can decode Wi correctly and then
L∑

n∈U H(A[i]
n (W)|Q)

is a valid upper bound on the retrieval rate

under the T -privacy constraint if the accessed databases are
restricted to U , which is further upper bounded by the TPIR
capacity CT (|U |) in (67) as CT (|U |) is the supremum of all
rates that can be achieved using the set of databases U under
the T -privacy constraint, and (69) follows from the capacity
expression in [11].

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we investigated the PIR problem from N
replicated databases in the presence of B Byzantine databases,
and T -colluding databases from an information-theoretic per-
spective. We determined the exact capacity of the BPIR

problem to be C = N−2B
N · 1− T

N−2B

1−( T
N−2B )M . The capacity expression

shows the severe degradation in the retrieval rate in the
presence of Byzantine databases. The expression shows that in
order to correct the errors introduced by the adversarial data-
bases, the system needs to have 2B redundant storage nodes.
The retrieval rate is further penalized by the factor N−2B

N ,

which reflects the ignorance of the user which N − 2B data-
bases are honest. The BPIR capacity converges to C → 1−2γ
as B, N → ∞, B = γ N , where γ is the fraction of Byzantine
databases. For large enough number of messages, the BPIR
capacity approaches C → 1− 2B+T

N . We extended the optimal
scheme for the RPIR problem to permit error correction of
any error pattern introduced by the Byzantine databases. The
new key ingredients in the achievable scheme are: encoding
the undesired messages via a punctured MDS code, successive
interference cancellation to remove the interfering messages,
and encoding the desired message by an outer-layer MDS
code. For the converse, we adapted the cut-set bound, which
was originally derived for the network coding problem against
adversarial nodes, for the PIR setting.

The BPIR problem can be extended in several interesting
directions. According to our formulation here, the capaci-
ties of unsynchronized and Byzantine PIR problems are the
same. However, in the unsynchronized PIR problem, if the
user knows in advance that at most S messages are mis-
synchronized, and if S is small with respect to M , the user
can potentially achieve higher rates than our formulation here,
in particular, if it uses a multi-round scheme as in [22]. In addi-
tion, in modeling the mis-synchronization, if we consider some
specific attack/error patterns (e.g., during mis-synchronization
the stored data goes through a noisy channel with a known
model), then the user can tailor an error mitigation procedure
that fits these attack/error models explicitly, in contrast to our
formulation here, where we assumed that the user is prepared
for the worst-case errors of any structure. Finally, while we
assumed that the B Byzantine databases can be any one of
the
(N

B

)
possible subsets, the problem can be extended to the

case where only a certain subset of all possible
(N

B

)
Byzantine

configurations is possible as in [33] which considered a limited
collusion model.
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