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Abstract—Among the ambitious challenges to be met by the
third-generation systems is to provide high-capacity flexible
services. Code-division multiple access (CDMA) emerges as a
promising candidate to meet these challenges. It is well known
that CDMA systems are interference-limited, and interference
management is needed to maximally utilize the potential gains
of this access scheme. Several methods of controlling and/or
suppressing the interference through power control, multiuser
detection (temporal filtering), and receiver beamforming (spatial
filtering) have been proposed to increase the capacity of CDMA
systems up to date. We investigate the capacity increase that is
possible by combining power control with intelligent temporal and
spatial receiver filter design. The signal-to-interference ratio max-
imizing joint temporal-spatial receiver filters in unconstrained
and constrained filter spaces are derived. Two-step iterative power
control algorithms that converge to the optimum powers and the
joint temporal and spatial receiver filters in the corresponding
filter domains are given. A power control algorithm with a less
complex filter update procedure is also given. We observe that
significant savings in total transmit power are possible if filtering
in both domains is utilized compared with conventional power
control and joint optimal power control and filtering in only one
domain.

Index Terms—Code-division multiple access (CDMA), interfer-
ence suppression, MMSE receivers, multiuser detection, power
control, receiver beamforming.

I. INTRODUCTION

FUTURE wireless systems are expected to provide high-ca-
pacity flexible services. Wide-band code-division multiple

access (W-CDMA) [1], [2] has emerged as a promising can-
didate to meet these challenges. It is well known that CDMA
systems are interference-limited and suffer from a phenomenon
known as thenear–far effectwhere strong users degrade the per-
formance of the weak users significantly. Techniques that con-
trol and/or suppress interference help increase the capacity of
a CDMA system. Three interference management methods are
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power control, multiuser detection, and receiver beamforming.
In very general terms, power control balances received powers
of all users so that no user creates excessive interference to
other users in the system; multiuser detection and antenna beam-
forming exploit the temporal and spatial structure of the interfer-
ence, respectively, to cancel or suppress it. Current second-gen-
eration CDMA standard, IS-95, uses only one of these tech-
niques, power control, whereas the third-generation CDMA pro-
posal, W-CDMA, intends to include all three interference man-
agement techniques. In this work, we investigate the capacity
gain that these techniques can provide when combined together
optimally, and the algorithms that can realize this gain.

The aim of power control is to assign users with transmitter
power levels so as to minimize the interference users create to
each other while having a certain quality of service which is de-
fined in terms of the signal-to-interference ratio (SIR) [3]. Ear-
lier work identified the power control problem as an eigenvalue
problem for nonnegative matrices and the solution is found by
a matrix inversion, i.e., in a centralized and noniterative fashion
[4], [5]. This is followed by the development of iterative and
distributed algorithms that require only local measurements [3],
[6], [7]. Traditional iterative power control approaches assume
that only one antenna and matched filter receivers are being used
at the base stations and each user employs an SIR-based power
update where the user’s power is multiplied by the ratio of its
target SIR to its current SIR, i.e., for user, the update is

(1)

where and are the power and SIR of userat iter-
ation , and is the SIRtargetof user . The simple intuition
behind this iteration is that if the current SIR of user is
less than the target SIR , then the power of that user is in-
creased; otherwise, it is decreased.

Multiuser detection [8] performs temporal filtering of
the received signal to better decode users by exploiting the
structure in the multiple-access interference. The optimum
multiuser detector is shown to be exponentially complex in the
number of users [9]. A number of low-complexity suboptimum
receivers have been proposed following this development,
e.g., [10]–[12]. Among these low-complexity receivers, the
minimum mean-square-error (MMSE) detector [11] minimizes
the expected squared error between the transmitted signal and
the output of the receiver filter. It is also the linear filter which
maximizes the output SIR [13].
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Exploiting spatial diversity through the use of array com-
bining to increase the system capacity is a familiar notion in
wireless systems [14]. For narrow-band systems, it was shown
that multiple antennas can be used to null out interferers and
achieve diversity gain [15]. Increasing the capacity of CDMA
systems by employing antenna arrays at the base station has
been proposed in [16]. The idea is to combine the outputs of
multiple antenna array elements to make bit decisions for the
user. Reference [16] assumes matched filter receivers in the time
domain for each user as well as combining the array observa-
tions via a filter that is matched to the array response of the user,
i.e., single-user processing is employed in both domains.

Space–time processing for CDMA traditionally refers to re-
ceiverbeamforming(spaceprocessing)andmultipathcombining
(time processing) [17]. The received signals from different paths
andantennasarecombinedtodecodethedesireduser’sbits.How-
ever, the inherent structure of the multiple interferers is not ex-
ploited, i.e., a matched filter to the spreading waveform of the de-
sireduserisemployed,e.g.,[18]–[20].Suboptimummultiuserde-
tectors for multipath fading channels are studied in [21] and [22].
Arecentpaper[23]addressesthederivationofthesufficientstatis-
tics and the optimum and some suboptimum multiuser detectors
when a receiver antenna array is present and the users’ transmis-
sions pass through a multipath channel.

Most of the receiver processing literature concentrated on de-
veloping signal processing algorithms without considering the
issue of optimum transmit power control, assuming the need for
power control can be alleviated by intelligent receiver design.
More recently, combining power control and multiuser detec-
tion for CDMA has been studied in [13] and [24]. In [13], the
problem of finding the jointly optimum powers and linear re-
ceiver filters was studied. It was shown that a distributed and
iterative power control algorithm where each user optimizes its
linear receiver filter before each power control update converged
to the point where all users expend minimum transmit power
and use the corresponding MMSE linear filters. This work as-
sumed a single antenna at each base station. A similar develop-
ment arose in joint power control and beamforming for wireless
networks in [25], where it was shown that a capacity increase is
possible with power control if array observations are combined
in the MMSE sense. For its applications to CDMA, this work
assumed matched filters, i.e., no multiuser detection.

In this work, we combine the three basic interference man-
agement approaches, transmit power control, multiuser detec-
tion, and beamforming to further increase the uplink capacity
of a CDMA system. Linear processing is assumed in both the
temporal and the spatial domains. The aim is to assign each
user with just enough transmit power and find the best tem-
poral-spatial filter to process the received signal such that each
user achieves its target SIR. The reader should note that our
approach exploits the spatial diversity (through beamforming)
and the inherent temporal structure of the multiple user CDMA
system (through multiuser detection) in asingle pathchannel.
Hence the name temporal-spatial filtering, not to be confused
with what is generally referred to asspace–timeprocessing.

For each user, we first find the jointly optimal temporal and
spatial filter that minimizes the mean squared error between the
information bit and the decision statistic to be used to decode

the user’s bit assuming no constraints on the filter space. Mo-
tivated by the potential high complexity of this unconstrained
optimum filter, we also investigate temporal and spatial filters
that are less complex to implement. We constrain the filter space
such that the corresponding optimal temporal-spatial filters in
this constrained space are separable filters. We then find the it-
erative power control algorithms that update the filters and the
powers of all users that converge to the joint optimal powers and
temporal-spatial filters in the associated unconstrained or con-
strained filter spaces. It is observed that combining the three ap-
proaches, i.e., power control and intelligent combining in both
spatial and temporal domains, leads to significant savings in
total transmit power and can increase capacity by supporting
all users in some highly loaded systems that would otherwise
be infeasible.

II. SYSTEM MODEL

We consider an -user, multicell direct-sequence CDMA
system where each user is assigned a unique signature se-
quence. For clarity of exposition, we assume a synchronous
system with processing gain. Initially, we will assume that
base station assignment has been done for all users. The base
station selection will be incorporated into our interference
management algorithms in Section IV-B. At each base station,
an antenna array of elements is employed. Following
references [16], [25], and [26], over one bit period, the received
signal at the output of the antenna array at the assigned base
station of user is

(2)

where and are the transmit power, bit, and the sig-
nature of user , respectively. The uplink gain of userto the
assigned base station ofis , and is the array response
vector of user (spatial signature) at the base station of user
. The term represents the white Gaussian noise vector.

Chip matched filtering the received signal and sampling at the
chip rate, we have observations at the output of each of the

antenna elements (see Fig. 1). The observations that will be
used to decode the bit of usercan be arranged in a ma-
trix as

(3)

where th column of represents the chip sampled outputs
at the output of the th antenna array element. is the
chip-sampled version of , is the matrix that represents
the spatially and temporally white noise with variance, i.e.,

, where for
, and denotes the conjugate of a complex number.

Note that one can obtain a different set of sufficient statis-
tics from (2) by using space–time matched filters and derive bit
detectors for all users in a centralized fashion [23], [27]. We
observe that adopting the model above yields solutions more
amenable to decentralized implementation (see Sections III-A
and III-B).
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Fig. 1. Received signal model at the base station of useri; R [m; k] denotes
the(m;k)th element of the received signal matrixR given in (3).

III. T EMPORAL-SPATIAL FILTERING

A. Optimum Temporal-Spatial Filtering (OTSF)

The detection of the information bit of the desired user is
done by taking the sign of the decision statistic which is to be
found using the observation matrix . Observations over the
spatial and temporal domains are to be combined intelligently
in making the bit decisions of the desired user. Our aim is to find
a two dimensional linear filter that yields decision statistic

. In particular, we aim for a filter
that yields the MMSE between and . That is, we want to
find a matrix filter such that

(4)

where and are the trace and the hermitian transpose
operations on a matrix, respectively. The reader should note
that an equivalent MMSE problem can be formulated using the
space–time matched filter outputs and the resulting centralized
solution is given in [23].

The optimization problem (4) can be converted to an opti-
mization problem with vector variables for easier manipulation
[26]. Let be the long vector obtained by stacking the columns
of the received signal matrix . The MMSE problem then can
be reformulated as follows:

(5)

Let us define as the combined temporal-spatial signature of
user at the base station of user. It is constructed by stacking
columns of as a long vector of size . Then, the solution
to the optimization problem (5) is given as [8], [11], [28]

(6)

(7)

where (7) follows from (6) using the matrix inversion lemma,
which states for an invertible matrix and vectors and

(8)

The constants and in (6) and (7) are given as

(9)

Note that the matrix is necessarily positive
definite (and thus has an inverse) for all . then can
be constructed by taking every element of and putting as
a column to . Note also that it is possible to use adaptive or
blind adaptive approaches to find [11], [26], [29].

B. Constrained Temporal-Spatial Filtering (CTSF)

OTSF requires a possibly large matrix to be
inverted. As this procedure may be computationally costly, or
the corresponding adaptive implementation may be slow, one
might want to consider less complex filtering procedures that
nevertheless present capacity improvements for the system.

To this end, we consider a constrained class of rankmatrix
filters, i.e., where is the space of rank 1 matrices in

. Note that all can be expressed as .
We call theseseparabletemporal-spatial filters. Physically, the
scheme is to combine the chip matched filter outputs using a
linear filter at the output of each antenna (or equivalently lin-
early combining all of the antenna array observations for each
chip) followed by a linear combination of the resulting statistics.
The decision statistic to decode the bit for userthen becomes

(10)

It is possible to choose and in many different ways. For
example, we may choose to employ matched filters in both spa-
tial or temporal domains, i.e., and [16], or
matched filter in one domain and an MMSE filter in the other
domain. Here, we consider the joint optimal filter pair in the
MMSE sense. In this case, the optimization problem (4) be-
comes

(11)

Note that the resulting pair yields a matrix filter
that is suboptimal for the optimization problem (4), since

it is found in a constrained space.
The MSE function in (11) can be expressed as

(12)
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where denotes the real part of a complex number. It can be
shown that although (12) is convex infor fixed and convex
in for fixed , it is not jointly convex in both vector vari-
ables, and the minimizer of MSE does not have a closed form
expression. In this case, it is first necessary to ensure that the
function indeed has a minimum. Fortunately, Weierstrass’ the-
orem [30] ensures that there exists a minimum if the function is
continuous and coercive, i.e., when ,
as is the case for the MSE function given by (12). Unfortu-
nately, this minimum is not attained by a unique pair due to
nonconvexity. To see this, simply observe that any two pairs

and will produce the same MSE if
and , where is any nonzero scalar. Since this
argument is true for all MSE values including the MMSE, we
are guaranteed to have multiple minima.

Due to the possible multimodality of the MSE function,
standard iterative optimization algorithms cannot guarantee
convergence to the global minimum. We devise here an itera-
tive algorithm based on block coordinate descent or nonlinear
Gauss–Seidel method [30], also known as alternating mini-
mization [31], [32], and investigate its convergence properties.

Consider fixing the value of one of the filters, say. It is
then possible to find the filter that maximally decreases the
MSE function in (12). The solution is analogous to the MMSE
detector described in [11] where user’s received amplitude is
modified such that it is . With some abuse of
notation, we will call this filter

(13)

The same argument can be made for the case whereis fixed to
and the spatial filter is found to maximally decrease the MSE,

(14)

Now, consider the following algorithm. Starting with the filter
pair and keeping fixed, one can find

. Then keeping fixed, one can find
that further decreases the MSE in (12). Iteration

of this two-step iterative algorithm for useris given below

(15)

(16)

Note that the order in which and are updated could be
reversed. That is, we could devise a similar algorithm where
is updated before . The resulting MSE sequence given by the
algorithm (15) and (16) is decreasing since

(17)

and is bounded from below by the MMSE value. Thus, the al-
gorithm is convergent. However, since the function is possibly

multimodal, care must be taken to avoid undesirable stopping
points. In particular, one can observe that is an
undesirable fixed point of the algorithm. A moment’s thought
reveals, however, that this point is reachable only from a point
where the filter in either temporal or spatial domains is orthog-
onal to the desired user’s signature in that domain, and this sit-
uation can be avoided by judicious choice of starting points.

To see this, we observe that the linear transformation (13) pro-
duces iff . Similarly, the linear transformation
(14) produces iff . Thus, is
reachable only from one of the following set of points:
with or with .

Now, recall the linear transformations in (13) and (14).
They are projections onto the corresponding—temporal or
spatial—signature spaces. Thus, if we start the algorithm at
a point that lies in the linear vector space spanned by
the spatial signatures, we can never arrive at a point outside
the corresponding space foror . Thus, we can avoid the
undesirable fixed point . Matched filter to the
desired user’s spatial signature, or any linear combination of
the spatial signatures of all users are safe starting points.

Other than the obvious undesirable fixed point
, we have not encountered any other points where the

algorithm would get stuck. Experimentally, we have always
observed that the MMSE (global minimum value) is achieved
starting from random points and the resulting vectors
are scalar multiples of each other in the form of and

, where is a nonzero scalar.

C. Performance of the Temporal-Spatial MMSE Filters

In this section, we will compare the performances of OTSF
and CTSF in terms of their asymptotic efficiencies and near–far
resistances. Without loss of generality, we will consider a single
cell system, and denote the spatial signatures with only one
index: the spatial signature of userwill be denoted by ; as
usual will denote the temporal signature of the same user. We
have seen in the previous sections that for fixed received powers,
the OTSF is superior to the CTSF in terms of the achievable
MSE and SIR. This was a mere consequence of the fact that the
CTSF was constrained to be in the rank 1 matrix space, while
the OTSF could take any value in the dimensional ma-
trix space. We will see in this section that we can arrive at sim-
ilar conclusions in terms of their asymptotic efficiencies and
near–far resistances. Asymptotic efficiency of user, with en-
ergy , and bit-error rate of the user in the multiuser environ-
ment, as a function of the background noise power ,
is defined as [8]

(18)

where . Then the near–far
resistance is defined as [8]

(19)

It is well known that the asymptotic efficiency of an MMSE
receiver is equal to the asymptotic efficiency of a decorrelating
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(zero-forcing) receiver [8]. Therefore, in order to study the
asymptotic efficiencies of the unconstrained and constrained
MMSE receivers (OTSF and CTSF, respectively), we will
study the asymptotic efficiencies of the unconstrained and
constrained (to rank 1 matrix space) decorrelating receivers.
The unconstrained temporal-spatial decorrelating receiver,
for the th user, is defined to be the solution of the following
optimization problem [10]:

s.t. for all

(20)

Using the long vector notation, the unconstrained decorrelating
receiver can be expressed as

(21)

where is a matrix whose columns are , i.e.,
, and are obtained by stacking the columns

of into a dimensional vector, and is the th di-
mensional unit vector, i.e., all entries of are zero except the
th entry which is equal to 1. From the construction of thema-

trix, we have , where
and , and denotes the Hadamard (elementwise)
product of matrices. The asymptotic efficiency of theth user is
given as [8], [10], [23], [27]

(22)

The constrained temporal-spatial decorrelating filter is given in
a similar way, except the addition of into the con-
straint set of (20). Denoting the constrained decorrelating filter
as , we can write (20) as

s.t. for all

(23)

Note that in order to satisfy the first constraint in (23) we may
decorrelate theth user from an interferingth user either in time
(by choosing ) or in space (by choosing ).
Decorrelating theth user from an interferingth user both in
time and space results in more enhanced background noise, and
equivalently reduced asymptotic efficiency. Therefore, we have
to partition all interfering users (to user) into two subsets: those
that will be decorrelated temporally and those that will be decor-
related spatially. Let us consider an arbitrary partition of inter-
fering users into two sets. Let and denote the indices of
the users that will be decorrelated from in space and time, re-
spectively. Let be a matrix whose first column is the spatial
signature of theth user, and the rest of its columns are the spa-
tial signatures of the users in the set; be a matrix whose
first column is the temporal signature of theth user and the rest
of its columns are the temporal signatures of the users in the set

. Then it can be shown that the asymptotic efficiency of theth

user with the constrained temporal-spatial decorrelating filter is
given as

(24)

where the maximization is defined over all possible partitions
of the interfering users into two sets. Note that for both the un-
constrained and the constrained filters, near–far resistances are
equal to the corresponding asymptotic efficiencies, i.e.,

and , for all , since the asymptotic efficiencies
do not depend on the energies of the users. At first sight, it may
seem difficult to compare the quantities in (22) and (24). In order
to do this comparison, we will use a slightly different definition
of the asymptotic efficiency. For a normalized decorrelating de-
tector , i.e., the solutions of (20) and (23), the asymptotic
efficiency is given as [8], [10], [33]

(25)

Note that this is the square of the cost function of the maximiza-
tion problems in (20) and (23). Since the feasible set of (23) is
contained in the feasible set of (20), we can conclude that the
cost function at the solution of (20) is larger than or equal to the
cost function at the solution of (23). Thus

(26)

and the unconstrained temporal-spatial MMSE filter has
greater near–far resistance than the constrained temporal-spa-
tial MMSE filter.

A related interesting issue is how many interfering users
a given user can cope with, in the sense of having a nonzero
asymptotic efficiency, using the constrained and the uncon-
strained decorrelating receivers. As long as a user has a nonzero
asymptotic efficiency, that user can achieve its quality-of-ser-
vice requirement by increasing its transmit power. With the
constrained decorrelating receiver, a user can suppress up
to users in time, and up to users in space, as
long as the temporal signature sequences of the users to be
suppressed in time and the spatial signature sequences of
the users to be suppressed in space are linearly independent.
Therefore, a user can suppress at most interferers
by using a constrained temporal-spatial decorrelating receiver.
Clearly, the number of interferers a user can suppress by using
an unconstrained temporal-spatial decorrelating receiver is
higher, since the constrained decorrelating receiver is a special
case of an unconstrained decorrelating receiver. Using the
long vector formulation in (21), one would conclude that a
desired user can suppress up to interfering users
since the dimensionality of the temporal-spatial signatures is

. However, these “long” temporal-spatial signatures have
a repetitive structure. In other words, the temporal-spatial
signature of a given user is composed of the temporal signature
of the same user concatenatedtimes after being multiplied
by the antenna gains. This repetitive structure may result
in loss of dimensionality. However, in recent work [34], for a
large system where and but and

are fixed and finite, the dimensionality of the system with
unconstrained MMSE receivers has been shown to beas
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long as the temporal signatures are random, and antenna gains
are uncorrelated.

IV. JOINT POWER CONTROL AND TEMPORAL-SPATIAL

FILTERING

In Sections III-A and III-B, we derived the joint MMSE fil-
ters for a CDMA system that employs spatial (through beam-
forming) and temporal processing (through multiuser detection)
at the receiver, using unconstrained and con-
strained , respectively. Our aim, in this section, is
to find optimal powers and matrix filters for both con-
strained and unconstrained cases, for , such that
the total transmitter power is minimized while each usersat-
isfies its quality-of-service requirement, , where ,
called thetarget SIR, is the minimum acceptable level of SIR
for user . The SIR of user at the output of the joint spatial and
temporal filter can be expressed as

(27)

We can then state the optimization problem as

s.t.

(28)

where for unconstrained temporal-spatial filtering
and for constrained temporal-spatial filtering. Note that
as stated above, (28) does not address the constraints on the
power level a user can transmit. In practice, each transmitter
clearly has a range over which it can transmit, i.e., it has max-
imum power constraints. We will address the existence of these
constraints in Section IV-B.

As in the case for the joint power control and temporal fil-
tering [13], we can write (28) as (29), shown at the bottom
of the page. The minimization over , on the right-hand side
of each of the power constraints above, is equivalent to max-
imizing given by (27) for a fixed power in the cor-
responding filter spaces. As stated in the following proposi-
tion, temporal-spatial filters that minimize the MSE in the cor-
responding filter spaces also maximize the SIR.

Proposition 1: The filters that solve (4) and (11) achieve the
maximum SIR over all filters in and , respectively.

The proof of this proposition is given in Appendix A and is a
simple extension of the solution to [8, Problem 6.5] (as given in
[35]) to include complex numbers and constrained optimization.

A. Iterative Power Control Algorithms

Let us devise an iterative algorithm that converges to the op-
timum of (28). Iterative power control algorithms of the form

(30)

are analyzed forstandard interference functions in [3].
The definition of a standard interference function and the corre-
sponding convergence result will be used throughout this paper
and are restated here for convenience.

Definition 1: is a standard interference function if for
all the following properties are satisfied.

• Positivity: .
• Monotonicity: If , then .
• Scalability: For all .

Theorem 1: If there exists , then for any initial
power vector , the sequence converges
to a unique fixed point such that for any .

The condition that there exists is simply a require-
ment that a feasible power vector exists. The fixed pointis a
minimum power solution in that for any feasible power
vector .

We define the th element of the interference function ,
, which is valid for both unconstrained and constrained

cases by a proper selection ofas

(31)

Note that the interference function for the unconstrained
temporal-spatial filtering, , can be obtained from (31) by
choosing as

(32)

where the long vector notation as introduced in (3.1) is used;
and the interference function for the constrained temporal-spa-

s.t.

(29)
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tial filtering case, , can be obtained from (31), by choosing
as

(33)

We make the following observation.
Proposition 2: in (31) is a standard interference func-

tion.
The proof of this proposition is given in Appendix A. Propo-

sition 2 implies that the power control iteration of the form of
(30) converges to the optimum power vector.

The resulting power control algorithm for both unconstrained
and constrained temporal-spatial filtering cases are two-step it-
erative algorithms. In both cases, in the first step, the filter is
found by solving the minimization problem in (31), and in the
second step, the power of the user is updated using (30). Below,
we will state the resulting power control algorithms for uncon-
strained and constrained cases separately.

The implementation of the two-step iterative power control
algorithm in the case of unconstrained temporal-spatial filtering
for user at iteration is given by the following Algorithm.

Algorithm A1:

(34)

(35)

where is the scaling factor. Notice that any positive scalar
multiple of yields the same power update in (35), so calcula-
tion of is actually not needed.

The implementation of the two-step iterative power control
algorithm in the case of constrained temporal-spatial filtering
for user at iteration is given by the following algorithm.

Algorithm A2:

(36)

(37)

If the SIR targets are feasible, then starting from any initial
power vector and filter coefficients, the algorithms in (34)–(35)
and (36)–(37) converge to the minimum power fixed point with

best possible temporal-spatial filters in the corresponding filter
space.

Note that to implement (36), we need to use the iterative algo-
rithm given by (15) and (16). The filters need to converge to the
exact optimum pair for fixed powers before each power
update for the power control algorithm to be standard. So, the-
oretically, many filter updates in the form of (15) and (16) have
to be done before the power of the user is updated. In practice,
a finite number of iterations are performed which is in a way
an approximation for the standard power control algorithm. Our
observation is that a small number of iterations is sufficient. In
all experiments, we used iterations. Curiously, we have
also observed the convergence of the following algorithm with

of each filter update per power iteration, and that the con-
vergence point of the following algorithm and Algorithm A2 are
the same (see Section V).

Algorithm A3:

(38)

(39)

(40)

The intuition behind this algorithm is simple. Before each power
control update, each user chooses abetter, not necessarily the
best, filter pair. This is a mere consequence of the fact that in
update (38), the SIR of useris maximized by replacing the tem-
poral filter with , for the given power vector and
and in update (40) the SIR is further increased by the maxi-
mization when the power vector and are fixed. Thus,

are abetterfilter pair than
for the power vector . The simulation results about the per-
formance and convergence of this algorithm are given in Sec-
tion V.

B. Simple Extensions

It was shown in [3] that standard power iterations in the pres-
ence of maximum power constraints are standard and thus con-
vergent. So, it is possible to modify A1 and A2 to incorporate the
maximum power constraints. In particular, the transmit power
update steps (35) and (37) can be modified, respectively, as fol-
lows:

(41)

(42)

where and are defined in (32) and (33), respectively.
Another possible extension for the power control algorithms

we proposed is to incorporate base station selection into the al-
gorithms. Base station selection as a means of further interfer-
ence suppression compared to fixed assignment combined with
transmit power control has been addressed in [36] and [37].
These works assumed a single antenna at each base station and
conventional processing in time and found the best base station
assignment that minimized the total power of all users. Similar
to that case, by finding the optimum assignment of users to base
stations, we can further decrease the total transmit power in the
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systems where temporal and spatial processing are used. Con-
sider base stations to which all users will be assigned.is
the -dimensional vector that denotes the assigned base station
indices. In particular, means that user is assigned to
base . In this case, the optimization problem is

(43)

where, the optimization is over , and, again,
for unconstrained temporal-spatial filtering and

for constrained temporal-spatial filtering. We can once
again move filter and base station optimization to the constraint
set and define (44), shown at the bottom of the page. Simply by
extending the proof we had for Proposition 2, we arrive at the
following proposition.

Proposition 3: is a standard interference function.
Thus, we can devise the algorithm where each user evaluates

its SIR at each base station with the best corresponding temporal
and spatial filters and then chooses the best base station. The
transmit power of the user is then adjusted. This algorithm will
converge to the best temporal and spatial filters in the intended
filter space with the best base station assignment and transmit
power for each user.

V. SIMULATION RESULTS

We consider a nine-cell CDMA system on a 33 grid. We
consider fixed base station assignment for simplicity. We as-
sume a linear array of omni directional antennas equispaced at
half a wavelength [23]. The positions of the users and their tem-
poral signatures are generated at random, but then kept fixed for
the particular experiment. The SIR target value is the same for
all users and is set to (7 dB). Results are generated to
compare the following algorithms.

1) Conventional power control (C-PC): Each base station
has a single antenna and matched filter receivers are em-
ployed in the temporal domain [3], [6].

2) Power control and multiuser detection (MMSE-PC): Each
base station has a single antenna and MMSE receivers are
employed in the temporal domain [13].

3) Power control and beamforming (BF-PC): An antenna
array of elements is employed at each base station.
Array outputs are combined in the MMSE sense. Matched
filter receivers are employed in the temporal domain [25].

4) Power control with CTSF (CTSF-PC, ): Con-
strained temporal-spatial filtering is employed. We per-

Fig. 2. Total transmit power of all users in the system versus power control
iteration index,N = 12; K = 2; G = 10.

formed iterations of the algorithm given by (15)
and (16) before each power update and observed that the
resulting filters converged to the global minimizer of
the MSE function given by (12) in each case (Algorithm
A2).

5) Power control with single step CTSF (CTSF-PC, ):
Constrained temporal-spatial filtering is employed, but
only iteration of the algorithm given by (15) and
(16) is employed before each power update (Algorithm
A3).

6) OTSF (OTSF-PC): Joint unconstrained filtering in tem-
poral and spatial domains is employed as given in (6) (Al-
gorithm A1 ).

Fig. 2 shows the comparison of total transmit power usage
when there are users in the system. An antenna array
of elements is used, and the processing gain is .
For this small system, all power control algorithms are fea-
sible, i.e., all users can achieve. In fact, results of the al-
gorithms are identical for the case when no maximum power
constraints are imposed, and the case where each user is as-
sumed to have a maximum power constraint of 1 W. This is
a direct result of the fact that no user has to transmit at max-
imum power at the convergence point for all of the six algo-
rithms considered. We observe that the power control algorithms
with temporal-spatial processing (items 4, 5, and 6 above) offer
savings in total transmit power over the C-PC (item 1 above)
and the combined power control and MMSE filtering in one do-
main (items 2 and 3 above). Compared to C-PC, the savings
are as high as 7.2 dB. Fig. 3 shows the average SIR achieved
over all users versus the power control iteration index. Since
all power control algorithms are feasible, they all reach the SIR

(44)
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Fig. 3. Average SIR of all users versus power control iteration index,N = 12;
K = 2; G = 10.

Fig. 4. Total transmit power of all users in the system versus power control
iteration index,N = 60; K = 2; G = 10. No power constraints.

target of 5 (7 dB). We also observe from Figs. 2 and 3 that the
convergence speed of the proposed algorithms are faster than
C-PC. For this experiment, C-PC converged in about 20 itera-
tions while the proposed methods converged in three iterations.
This observation is consistent throughout our experiments, i.e.,
we have observed that the joint power control, multiuser detec-
tion, and beamforming algorithms converge faster than that of
C-PC, BF-PC, and MMSE-PC.

Next, we consider a highly loaded system with users.
The number of antenna array elements is and processing
gain is . In Fig. 4, we see that only power control algo-
rithms with joint processing in both domains are feasible (items
4, 5, and 6 above). The infeasible algorithms (items 1, 2, and 3
above) result in total transmit power values that increase without
bound since users have no maximum power constraints and
keep increasing their powers at each iteration to increase their
SIRs, but never can achieve the target SIR value. The system
can support this many users at the SIR target level of 5 only
by utilizing the structure in both temporal and spatial domains

Fig. 5. Total transmit power of all users in the system versus power control
iteration index,N = 60; K = 2; G = 10 (Fig. 4 magnified).

Fig. 6. Average SIR of all users versus power control iteration index,N = 60;

K = 2; G = 10. No power constraints.

to suppress the interference in conjunction with power control.
Fig. 5 is a magnified version of Fig. 4, which emphasizes the
fact that the OTSF with power control offers more savings in
total transmit power as compared to CTSF with power control
(see Section III-B). This figure also emphasizes our observation
about the convergence of the algorithm implemented as
in (38)–(40) to the optimal power vector with optimal CTSFs.
Fig. 6 shows the average SIRS after each iteration. The proposed
algorithms (items 4, 5, and 6 above) achieve the SIR target of 5
(7 dB) while the C-PC, BF-PC, and MMSE-PC result in lower
average SIRs. Figs. 7 and 8 show the performance of the same
system when a maximum power constraint of 1 W is imposed
on each user. Although the total transmit powers of the infea-
sible algorithms converge to finite levels due to the presence of
the maximum power constraints (Fig. 7), the average SIR levels
achieved are below the target SIR value for C-PC, BF-PC, and
MMSE-PC (Fig. 8). The target SIR level is achieved by each
user only when temporal and spatial filtering and power control
algorithms are employed.
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Fig. 7. Total transmit power of all users in the system versus power control
iteration index, with maximum power constraint of 1 W,N = 60; K = 2;
G = 10.

Fig. 8. Average SIR of all users versus power control iteration index, with
maximum power constraint of 1 W,N = 60; K = 2; G = 10.

Similar observations are obtained for a larger system with
processing gain and antennas. Fig. 9 shows the
distribution of the users in nine cells for this exper-
iment.In this p The corresponding total transmit power curves
are plotted in Fig. 10. Once again, intelligent signal combining
methods in both temporal and spatial domains used with optimal
power control are superior to that of single domain combining
with power control. C-PC and BF-PC are simply infeasible for
this example. Fig. 11 shows an even more crowded system with
the same parameters and users. For this example, only
the temporal and spatial filtering with power control methods
(items 4, 5, and 6) are feasible, i.e., the system can support this
many users only if all three interference management methods
are combined as proposed in this paper.

VI. CONCLUSION

aper, we have shown that when antenna arrays are employed
at each base station, the system performance can be improved

Fig. 9. Distribution ofN = 300 users on a nine-cell grid. x and o denote users
and bases, respectively.

Fig. 10. Total transmit power of all users in the system versus power control
iteration index,N = 300; K = 4; G = 64. No power constraints.

by jointly combining the array observations and the temporal
observations and employing power control. The total transmit
power expended by all users is less as compared to algorithms
that do not utilize both temporal and spatial domains. In cases
where other algorithms result in an infeasible system, power
control with multiuser detection and beamforming can convert
the system into a feasible one. Thus, it increases the system
capacity by allowing the SIR targets of the users to be higher,
or by increasing the number of users supportable at a fixed SIR
target level.

One should note that the results we have presented assume
knowledge of all users’ parameters in the system, e.g., spreading
codes, timing information, spatial signatures, and link gains. In
practice, especially for out of cell interferers, all parameters may
not be available to the system. In such cases, adaptive [11] or
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Fig. 11. Total transmit power of all users in the system versus power control
iteration index,N = 500; K = 4; G = 64. No power constraints.

blind adaptive [26], [29] methods should be used to find the fil-
ters in power control iterations (34), (36), (38), and (39). The
speed of convergence of these adaptive algorithms brings a nat-
ural constraint on the time frame in which the power updates
in (35), (37), and (40) can be done. Moreover, updates (35),
(37), and (40) require the SIR, or equivalently the interference
function, measured at the output of the user’supdatedreceiver
filter to calculate the next transmit power value. We have as-
sumed perfect measurements of interference functions for the
power control algorithms proposed here and proved determin-
istic convergence. When perfect measurements of these quanti-
ties are replaced by their noisy estimates, the algorithms we pro-
posed here become stochastic algorithms. Stochastic power con-
trol algorithms were studied only for conventional power con-
trol (with matched filter receivers at the base station) in [38].
Stochastic convergence results need to be studied for the al-
gorithms proposed here as well as the ones in [13] and [25].
Lastly, the SIR (or the interference) is a real number and requires
many bits to be transmitted to the mobile user with enough pre-
cision. In this work, as in most of the previous power control
studies [3], [6], [7], [13], [25], [36]–[38], we assumed that this
feedback channel has infinite precision. In contrast with this
methodology, the second- and third-generation CDMA systems
employ the so-calledup-downpower control algorithms which
have fixed power steps and require considerably less feedback
from the base station to the mobile. The implementation of such
limited feedback corresponds to quantization of the SIR value
to be fed back to the mobile. The effects of this quantization on
the convergence of the power control algorithms and also the
system performance need to be investigated.

APPENDIX

PROOFS

Proof: Proposition 1: Let us assume a general matrix re-
ceiver filter . Let us represent the desired signal part of the
received signal, i.e., the signal of user, with , and the mul-

tiaccess interference and additive white Gaussian noise part of
the received signal with , i.e.,

(45)

The MSE and SIR with filter are given by

(46)

and

(47)

Now let us consider the MSE with a scaled version of the filter

(48)

Setting the derivative of with respect to the real and
the imaginary parts of equal to zero, the complex scalarthat
minimizes can be found as

(49)

Thus

(50)

Using (50) and (47) we can write

(51)

Equation (51) is true for any complex filter . In the uncon-
strained temporal-spatial filtering case,can take any value in

, and the constrained case it is constrained to be in the
rank 1 matrix space denoted by. In order to represent the con-
strained and unconstrained cases in a unified fashion, we will
restrict to be with for the unconstrained
and in the constrained case. Maximizing both sides of
(51) with respect to , i.e.,

(52)

is equivalent to

(53)

Combining continuous variables and into one variable and
noting that, for both unconstrained and constrained cases, if

, then yields

(54)

where we also used the fact that is insensitive to the
scaling of its argument.
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Therefore, (54) verifies that the filter that minimizes
the MSE is the one that maximizes the SIR. As shown above,
this result is valid for both and . We con-
clude that the MMSE filters in both the unconstrained and the
constrained spatial-temporal filter spaces maximize the SIR.

Proof: Proposition 2: We first define

(55)

Therefore

(56)

To show that is standard, we need to check that the three
conditions in Definition 1 are satisfied for (31). Similar to [13]:

• Positivity: For any fixed , we have .
Therefore, this is true for the minimizer filter also, i.e.,

.
• Monotonicity: For any fixed implies

. If the minimum of in
is achieved at , then

(57)

(58)

(59)

(60)

• Scalability: For any fixed and , we have
. Again, let be the mini-

mizer of in . Then

(61)

(62)

(63)

(64)
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