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Optimal Packet Scheduling in an
Energy Harvesting Communication System

Jing Yang, Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—We consider the optimal packet scheduling problem
in a single-user energy harvesting wireless communication sys-
tem. In this system, both the data packets and the harvested
energy are modeled to arrive at the source node randomly. Our
goal is to adaptively change the transmission rate according to the
traffic load and available energy, such that the time by which all
packets are delivered is minimized. Under a deterministic system
setting, we assume that the energy harvesting times and harvested
energy amounts are known before the transmission starts. For
the data traffic arrivals, we consider two different scenarios.
In the first scenario, we assume that all bits have arrived and
are ready at the transmitter before the transmission starts. In
the second scenario, we consider the case where packets arrive
during the transmissions, with known arrival times and sizes.
We develop optimal off-line scheduling policies which minimize
the time by which all packets are delivered to the destination,
under causality constraints on both data and energy arrivals.

Index Terms—Energy harvesting, rechargeable wireless net-
works, transmission completion time minimization.

I. INTRODUCTION

WE consider wireless communication networks where
nodes are able to harvest energy from nature. The

nodes may harvest energy through solar cells, vibration ab-
sorption devices, water mills, thermoelectric generators, mi-
crobial fuel cells, etc. In this work, we do not focus on
how energy is harvested, instead, we focus on developing
transmission methods that take into account the arrivals of
the data packets as well as the arrivals of the harvested
energy during the course of transmission. As shown in Fig. 1,
the transmitter node has two queues. The data queue stores
the data arrivals, while the energy queue stores the energy
harvested from the environment. In general, the data arrivals
and the harvested energy can be represented as two indepen-
dent random processes. Then, the optimal scheduling policy
becomes that of adaptively changing the transmission rate and
power according to the instantaneous data and energy queue
lengths.
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Fig. 1. An energy harvesting communication system model.

In this work, we consider the off-line problem where we
assume the availability of the off-line knowledge of energy
and data arrivals at the transmitter. Our goal is to determine
the structural properties of an optimal off-line schedular.
In this paper, we determine the properties of the optimal
off-line solution, and develop an optimal off-line algorithm.
We incorporate channel fading and random energy arrivals
into our formulation, and develop the corresponding dynamic
programming based and simpler heuristic on-line algorithms
in [2]–[4].

In this paper, we consider a single node shown in Fig. 2.
We assume that packets arrive at times marked with × and
energy arrives (is harvested) at points in time marked with ∘.
In Fig. 2, 𝐵𝑖 denotes the number of bits in the 𝑖th arriving
data packet, and 𝐸𝑖 denotes the amount of energy in the 𝑖th
energy arrival (energy harvesting). Our goal then is to develop
methods of transmission to minimize the time, 𝑇 , by which all
of the data packets are delivered to the destination. The most
challenging aspect of our optimization problem is the causality
constraints introduced by the packet and energy arrival times,
i.e., a packet may not be delivered before it has arrived and
energy may not be used before it is harvested.

The trade-off relationship between delay and energy has
been well investigated in traditional battery powered (un-
rechargeable) systems. References [5]–[10] investigate energy
minimization problems with various deadline constraints. Ref-
erence [5] considers the problem of minimizing the energy
in delivering all packets to the destination by a deadline. It
develops a lazy scheduling algorithm, where the transmission
times of all packets are equalized as much as possible, subject
to the deadline and causality constraints, i.e., all packets must
be delivered by the deadline and no packet may be transmit-
ted before it has arrived. This algorithm also elongates the
transmission time of each packet as much as possible, hence
the name, lazy scheduling. Under a similar system setting,
[6] proposes an interesting novel calculus approach to solve
the energy minimization problem with individual deadlines
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Fig. 2. System model with random packet and energy arrivals. Data packets
arrive at points denoted by × and energies arrive (are harvested) at points
denoted by ∘.

for each packet. Reference [7] develops dynamic program-
ming formulations and determines optimality conditions for a
situation where channel gain varies stochastically over time.
Reference [8] considers energy-efficient packet transmission
with individual packet delay constraints over a fading channel,
and develops a recursive algorithm to find an optimal off-
line schedule. This optimal off-line scheduler equalizes the
energy-rate derivative function as much as possible subject
to the deadline and causality constraints. References [9] and
[10] extend the single-user problem to multi-user scenarios.
Under a setting similar to [5], we investigate the average
delay minimization problem with a given amount of energy,
and develop iterative algorithms and analytical solutions under
various data arrival assumptions in [11]. References [12]–
[18] investigate delay optimal resource allocation problems
under various different settings. References [12]–[14] consider
average power constrained delay minimization problem for
a single-user system, while [15]–[18] minimize the average
delay through rate allocation in a multiple access channel.

In this paper, we consider a single-user communication
channel with an energy harvesting transmitter. We assume that
an initial amount of energy is available at 𝑡 = 0. As time
progresses, certain amounts of energies will be harvested. In
this paper, we assume that the energy harvesting procedure can
be precisely predicted, i.e., that, at the beginning, we know
exactly when and how much energy will be harvested. For
the data arrivals, we consider two different scenarios. In the
first scenario, we assume that packets have already arrived
and are ready to be transmitted at the transmitter before the
transmission starts. In the second scenario, we assume that
packets arrive during the transmissions. As in the case of
energy arrivals, we assume that we know exactly when and in
what amounts data will arrive. Subject to the energy and data
arrival constraints, our goal is to minimize the time by which
all packets are delivered to the destination through controlling
the transmission rate and power.

This is similar to the energy minimization problem in [5],
where the objective is to minimize the energy consumption
with a given deadline constraint. In this paper, minimizing
the transmission completion time is akin to minimizing the
deadline in [5]. However, the problems are different, because,
we do not know the exact amount of energy to be used
in the transmissions, even though we know the times and
amounts of harvested energy. This is because, intuitively,
using more energy reduces the transmission time, however,
using more energy entails waiting for energy arrivals, which
increases the total transmission time. Therefore, minimizing
the transmission completion time in the system requires a
sophisticated utilization of the harvested energy. To that end,
we develop an algorithm, which first obtains a good lower
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Fig. 3. System model with all bits available at the beginning. Energies arrive
at points denoted by ∘.

bound for the final total transmission duration at the beginning,
and performs rate and power allocation based on this lower
bound. The procedure works progressively until all of the
transmission rates and powers are determined. We prove that
the transmission policy obtained through this algorithm is
globally optimum.

II. SCENARIO I: PACKETS READY BEFORE TRANSMISSION

STARTS

We assume that there are a total of 𝐵0 bits available at the
transmitter at time 𝑡 = 0. We also assume that there is 𝐸0

amount of energy available at time 𝑡 = 0, and at times 𝑠1, 𝑠2,
. . ., 𝑠𝐾 , we have energies harvested with amounts 𝐸1, 𝐸2, . . . ,
𝐸𝐾 , respectively. This system model is shown in Fig. 3. Our
objective is to minimize the transmission completion time, 𝑇 .

We assume that the transmitter can adaptively change its
transmission power and rate according to the available en-
ergy and the remaining number of bits. We assume that the
transmission rate and transmit power are related through a
continuous function, 𝑔(𝑝), i.e., 𝑟 = 𝑔(𝑝). We assume that 𝑔(𝑝)
satisfies the following properties: i) 𝑔(0) = 0 and 𝑔(𝑝) → ∞
as 𝑝 → ∞, ii) 𝑔(𝑝) increases monotonically in 𝑝, iii) 𝑔(𝑝) is
strictly concave in 𝑝, iv) 𝑔(𝑝) is continuously differentiable,
and v) 𝑔(𝑝)/𝑝 decreases monotonically in 𝑝. Properties i)-iii)
guarantee that 𝑔−1(𝑟) exists and is strictly convex. Property
v) can be derived from properties ii) and iii). It implies that
for a fixed amount of energy, the number of bits that can be
transmitted increases as the transmission duration increases.
It can be verified that these properties are satisfied in many
systems with realistic encoding/decoding schemes, such as
optimal random coding in single-user additive white Gaussian
noise channel, where 𝑔(𝑝) = 1

2 log(1 + 𝑝).
Assuming the transmitter changes its transmission power

𝑁 times before it finishes the transmission, let us denote the
sequence of transmission powers as 𝑝1, 𝑝2, . . ., 𝑝𝑁 , and the
corresponding transmission durations of each rate as 𝑙1, 𝑙2,
. . ., 𝑙𝑁 , respectively; see Fig. 4. Then, the energy consumed
up to time 𝑡, denoted as 𝐸(𝑡), and the total number of bits
departed up to time 𝑡, denoted as 𝐵(𝑡), can be related through
the function 𝑔 as follows:

𝐸(𝑡) =

𝑖̄∑
𝑖=1

𝑝𝑖𝑙𝑖 + 𝑝𝑖̄+1

(
𝑡−

𝑖̄∑
𝑖=1

𝑙𝑖

)
(1)

𝐵(𝑡) =

𝑖̄∑
𝑖=1

𝑔(𝑝𝑖)𝑙𝑖 + 𝑔(𝑝𝑖̄+1)

(
𝑡−

𝑖̄∑
𝑖=1

𝑙𝑖

)
(2)

where 𝑖̄ = max{𝑖 :∑𝑖
𝑗=1 𝑙𝑗 ≤ 𝑡}.

Then, the transmission completion time minimization prob-
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Fig. 4. The sequence of transmission powers and durations.

lem can be formulated as:

min
p,l

𝑇

s.t. 𝐸(𝑡) ≤
∑
𝑖:𝑠𝑖<𝑡

𝐸𝑖, 0 ≤ 𝑡 ≤ 𝑇

𝐵(𝑇 ) = 𝐵0 (3)

Throughout the paper, we assume that a finite solution to
this optimization problem exists, i.e., that the given harvested
energy sequence is sufficient to deliver the given number of
bits within a finite time. First, we determine the properties
of the optimum solution in the following three lemmas. The
proofs of these lemmas are given in Appendices A, B and C.

Lemma 1 Under the optimal policy, the transmit powers
increase monotonically, i.e., 𝑝1 ≤ 𝑝2 ≤ ⋅ ⋅ ⋅ ≤ 𝑝𝑁 .

Lemma 2 Under the optimal policy, the transmission
power/rate remains constant between energy harvests, i.e., the
power/rate only potentially changes when new energy arrives.

Lemma 3 Under the optimal policy, whenever the transmis-
sion rate changes, the energy consumed up to that instant
equals the energy harvested up to that instant.

Based on Lemmas 1, 2 and 3, we can characterize the
optimal policy in the following way. For given energy arrivals,
we plot the total amount of harvested energy as a function of 𝑡,
which is a staircase curve as shown in Fig. 5. The total energy
consumed up to time 𝑡 can also be represented as a continuous
curve, as shown in Fig. 5. In order to satisfy the feasibility
constraints on the energy, energy consumption curve must
lie below the energy harvesting curve at all times. Based on
Lemma 2, we know that the optimal energy consumption curve
must be linear between any two consecutive energy harvesting
instants, and the slope of the segment corresponds to the
transmit power level during that segment. Lemma 3 implies
that whenever the slope changes, the energy consumption
curve must touch the energy harvesting curve at that energy
harvesting instant. Therefore, the first linear segment of the
energy consumption curve must be one of the lines connecting
the origin and any corner point on the energy harvesting curve
before 𝑡 = 𝑇 (including the point at 𝑡 = 𝑇 ). Because of
the monotonicity property of the power given in Lemma 1,
among those lines, we should always pick the one with the
minimal slope, as shown in Fig. 5. Otherwise, either the
feasibility constraints on the energy will not be satisfied, or
the monotonicity property given in Lemma 1 will be violated.
For example, if we choose the line ending at the corner
point at 𝑠3, this will violate the feasibility constraint, as
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Fig. 5. An interpretation of transmission policies satisfying Lemmas 1, 2
and 3.

the energy consumption curve will surpass the energy arrival
curve. On the other hand, if we choose the line ending at
the corner point at 𝑠1, then the monotonicity property in
Lemma 1 will be violated, because in that case, the slope
of the following segment would be smaller. These properties
must hold similarly for 𝑝2, 𝑝3, . . ., 𝑝𝑁 . We also observe that,
for given 𝑇 , the optimal transmission policy is the tightest
string below the energy harvesting curve connecting the origin
and the total harvested energy by time 𝑇 . This is similar to
the structure in [6].

We state the structure of the optimal policy formally in the
following theorem. In order to simplify the expressions, we
let 𝑖0 = 0, and let 𝑠𝑚+1 = 𝑇 if the transmission completion
time 𝑇 lies between 𝑠𝑚 and 𝑠𝑚+1.

Theorem 1 For a given 𝐵0, consider a transmission policy
with power vector p = [𝑝1, 𝑝2, . . . , 𝑝𝑁 ] and corresponding
duration vector l = [𝑙1, 𝑙2, . . . , 𝑙𝑁 ]. This policy is optimal if
and only if it has the following structure:

𝑁∑
𝑛=1

𝑔(𝑝𝑛)𝑙𝑛 = 𝐵0 (4)

and for 𝑛 = 1, 2, . . . , 𝑁 ,

𝑖𝑛 = arg min
𝑖:𝑠𝑖≤𝑇

𝑠𝑖>𝑠𝑖𝑛−1

{∑𝑖−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖 − 𝑠𝑖𝑛−1

}
(5)

𝑝𝑛 =

∑𝑖𝑛−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖𝑛 − 𝑠𝑖𝑛−1

(6)

𝑙𝑛 = 𝑠𝑖𝑛 − 𝑠𝑖𝑛−1 (7)

where 𝑇 =
∑𝑁

𝑛=1 𝑙𝑛, and 𝑖𝑛 is the index of the energy arrival
epoch when the power 𝑝𝑛 switches to 𝑝𝑛+1, i.e., at 𝑡 = 𝑠𝑖𝑛 ,
𝑝𝑛 switches to 𝑝𝑛+1.

The proof of this theorem is given in Appendix D.
Therefore, we conclude that if the overall transmission

duration 𝑇 is known, then the optimal transmission policy
is known via Theorem 1. In particular, optimal transmission
policy is the one that yields the tightest piecewise linear energy
consumption curve that lies under the energy harvesting curve
at all times and touches the energy harvesting curve at 𝑡 = 𝑇 .
On the other hand, the overall transmission time 𝑇 is what we
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Fig. 6. An illustration of the algorithm.

want to minimize, and we do not know its optimal value up
front. Consequently, we do not know up front which energy
harvests will be utilized. For example, if the number of bits
is small, and 𝐸0 is large, then, we can empty the data queue
before the arrival of 𝐸1, thus, the rest of the energy arrivals
are not necessary. Therefore, as a first step, we first obtain a
good lower bound on the optimal transmission duration.

We first illustrate our algorithm through an example in
Fig. 6. We first compute the minimal energy required to finish
the transmission before 𝑠1. We denote it as 𝐴1, and it equals

𝐴1 = 𝑔−1

(
𝐵0

𝑠1

)
𝑠1 (8)

Then, we compare it with 𝐸0. If 𝐴1 < 𝐸0, it implies
that we can complete the transmission before the arrival of
the first energy harvest, thus 𝐸1 is not necessary for the
transmission. We allocate 𝐸0 evenly to 𝐵0 bits, and the
duration 𝐴1 is the minimum transmission duration. On the
other hand, if 𝐴1 > 𝐸0, which is the case in the example,
the final transmission completion time should be longer than
𝑠1. Thus, we move on and compute 𝐴2, 𝐴3, 𝐴4, and find
that 𝐴2 >

∑1
𝑖=0 𝐸𝑖, 𝐴3 >

∑2
𝑖=0 𝐸𝑖 and 𝐴4 <

∑3
𝑖=0 𝐸𝑖.

This means that the total transmission completion time will be
larger than 𝑠3 and energies 𝐸0, . . ., 𝐸3 will surely be utilized.
Then, we allocate

∑3
𝑖=0 𝐸𝑖 evenly to 𝐵0 bits and obtain a

constant transmission power 𝑝1, which is the dotted line in the
figure. The corresponding transmission duration is 𝑇1. Based
on our allocation, we know that the final optimal transmission
duration 𝑇 must be greater than 𝑇1. This is because, this
allocation assumes that all 𝐸0, . . ., 𝐸3 are available at the
beginning, i.e., at time 𝑡 = 0, which, in fact, are not. Therefore,
the actual transmission time will only be larger. Thus, 𝑇1 is a
lower bound for 𝑇 .

Next, we need to check the feasibility of 𝑝1. Observing the
figure, we find that 𝑝1 is not feasible since it is above the stair-
case energy harvesting curve for some duration. Therefore,
we connect all the corner points on the staircase curve before
𝑡 = 𝑇1 with the origin, and find the line with the minimum
slope among those lines. This corresponds to the red solid line
in the figure. Then, we update 𝑝1 with the slope 𝑝1, and the
duration for 𝑝1 is 𝑙1 = 𝑠𝑖1 . We repeat this procedure at 𝑡 = 𝑠𝑖1
and obtain 𝑝2, and continue the procedure until all of the bits
are finished.

We state our algorithm for the general scenario in Algo-

Algorithm 1 The algorithm to minimize the transmission
completion time

1: Initialization: 𝑖0 = 0, 𝐵 = 𝐵0, 𝑛 = 0
2: while 𝐵 > 0 do
3: 𝑛 = 𝑛+ 1;
4: for 𝑖 = 𝑖𝑛−1 + 1, 𝑖𝑛−1 + 2, . . . ,𝐾 do
5: 𝐴𝑖 = 𝑔−1

(
𝐵

𝑠𝑖−𝑠𝑖𝑛−1

)
(𝑠𝑖 − 𝑠𝑖𝑛−1);

6: if 𝐴𝑖 ≤
∑𝑖−1

𝑗=𝑖𝑛−1
𝐸𝑗 then

7: 𝑖̃𝑛 = 𝑖;
8: break;
9: else

10: 𝑖̃𝑛 = 𝑖+ 1;
11: end if
12: end for

13: Solve 𝑔

(∑𝑖̃𝑛−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑇𝑛−𝑠𝑖𝑛−1

)
(𝑇𝑛 − 𝑠𝑖𝑛−1) = 𝐵;

14: 𝑝𝑛 =

∑𝑖̃𝑛−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑇𝑛−𝑠𝑖𝑛−1
;

15: 𝑖𝑛 = argmin𝑖𝑛−1<𝑖<𝑖̃𝑛

{∑𝑖−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖−𝑠𝑖𝑛−1

}
;

16: 𝑝𝑛 =

∑𝑖𝑛−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖𝑛−𝑠𝑖𝑛−1
;

17: if 𝑝𝑛 ≤ 𝑝𝑛 then
18: 𝑝𝑛 = 𝑝𝑛, 𝑠𝑖𝑛 = 𝑇𝑛;
19: break;
20: else
21: 𝐵 = 𝐵 − 𝑔(𝑝𝑛)(𝑠𝑖𝑛 − 𝑠𝑖𝑛−1);
22: end if
23: end while

rithm 1. We search for the optimal 𝑝𝑛 in a sequential way.
Specifically, in round 𝑛, we first compute the amounts of
energy required to finish the transmission of 𝐵 bits before
𝑠𝑖𝑛−1+1, 𝑠𝑖𝑛−2+2, . . ., 𝑠𝐾 , respectively, at a constant rate. We
denote these as 𝐴𝑖. Then, we compare 𝐴𝑖 with

∑𝑖−1
𝑗=𝑖𝑛−1

𝐸𝑗 ,

and find the smallest 𝑖 such that 𝐴𝑖 ≤
∑𝑖−1

𝑗=𝑖𝑛−1
𝐸𝑗 . We denote

this 𝑖 as 𝑖̃𝑛. If no such 𝑖̃𝑛 exists, we let 𝑖̃𝑛 = 𝐾 + 1.
Now, we assume that we can use

∑𝑖̃1−1
𝑗=𝑖𝑛−1

𝐸𝑗 to transmit
all 𝐵 bits at a constant rate. We allocate the energy evenly to
these bits, and obtain the overall transmission time 𝑇 and the
corresponding constant transmit power 𝑝𝑛. Next, we compare

𝑝𝑛 with
∑𝑖−1

𝑗=𝑖𝑛−1
𝐸𝑗

𝑠𝑖−𝑠𝑖𝑛−1
for every 𝑖𝑛−1 < 𝑖 < 𝑖̃𝑛. If 𝑝𝑛 is smaller

than every term, then, maintaining 𝑝𝑛 is feasible, therefore, we
have 𝑝𝑛 = 𝑝𝑛, the transmission duration equals 𝑇𝑛, and the
iteration terminates. Otherwise, maintaining 𝑝𝑛 is infeasible
under the given energy arrival realization. Thus, we update
𝑖𝑛 and 𝑝𝑛 accordingly, i.e., over the duration [𝑠𝑖𝑛−1 , 𝑠𝑖𝑛), we
choose to transmit with power 𝑝𝑛 to make sure that the energy
consumption is feasible. Then, at time 𝑡 = 𝑠𝑖𝑛 , the total num-
ber of bits departed is 𝑔(𝑝𝑛)(𝑠𝑖𝑛 − 𝑠𝑖𝑛−1), and the remaining
number of bits is 𝐵− 𝑔(𝑝𝑛)(𝑠𝑖𝑛 − 𝑠𝑖𝑛−1). Subsequently, with
initial number of bits 𝐵 − 𝑔(𝑝𝑛)(𝑠𝑖𝑛 − 𝑠𝑖𝑛−1), we start from
𝑠𝑖𝑛 , and repeat the procedure above. Through this procedure,
we obtain 𝑝2, 𝑝3, . . . , 𝑝𝑁 , and the corresponding 𝑖2, 𝑖3, . . . , 𝑖𝑁 ,
until we finish transmitting all of the bits.

Based on our allocation algorithm, we know that 𝑝1 is
optimum up to time 𝑇1, since it corresponds to the minimal
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slope line passing through the origin and any corner point
before 𝑡 = 𝑇1. However, the algorithm also implies that the
final transmission duration 𝑇 will be larger than 𝑇1. The
question then is, whether 𝑝1 is still the minimum slope line
up to time 𝑇 . If we can prove that 𝑝1 is lower than the slopes
of the lines passing through the origin and any corner point
in [𝑇1, 𝑇 ], then, using Theorem 1, we will claim that 𝑝1 is the
optimal transmission policy, not only between [0, 𝑇1], but also
between [0, 𝑇 ].

The fact that this will be the case can be illustrated through
the example in Fig. 6. We note that, clearly, 𝑇1 is a lower
bound on the eventual 𝑇 . If we keep transmitting at power 𝑝1,
if no additional energy arrives, the energy harvested up until
𝑠𝑖̃1 , i.e.,

∑𝑖̃1−1
𝑖=0 𝐸𝑖, will be depleted by time 𝑇 ′

1. We will next
prove that 𝑇 ′

1 is an upper bound on 𝑇 . Because of property
v) of the function 𝑔(𝑝), we can prove that under this policy,
the number of bits departed up to time 𝑇 ′

1 is greater than 𝐵0.
Therefore, since potentially additional energy will arrive, 𝑇 ′

1

provides an upper bound. Thus, we know that the optimal 𝑇
lies between 𝑇1 and 𝑇 ′

1. We next note that if we connect the
origin with any corner point of the staircase curve between
𝑇1 and 𝑇 ′

1, the slope of the resulting line will be larger than
𝑝1, thus, 𝑝1 will be the smallest slope not only up to time
𝑇1, which is a lower bound, but also up to time 𝑇 ′

1, which is
an upper bound. This proves that while we do not know the
optimal 𝑇 , if we run the algorithm with respect to the lower
bound on 𝑇 , i.e., 𝑇1, it will still yield an optimal policy, in
that the resulting policy will satisfy Theorem 1.

We prove the optimality of the algorithm formally in the
following theorem.

Theorem 2 The allocation procedure in Algorithm 1 gives the
optimal transmission policy.

The proof of this theorem is given in Appendix E.

III. SCENARIO II: PACKETS ARRIVE DURING

TRANSMISSIONS

In this section, we consider the situation where packets
arrive during transmissions. We assume that there is an 𝐸0

amount of energy available at time 𝑡 = 0, and at times 𝑠1,
𝑠2, . . ., 𝑠𝐾 , energy is harvested in amounts 𝐸1, 𝐸2, . . . , 𝐸𝐾 ,
respectively, as in the previous section. We also assume that
at 𝑡 = 0, we have 𝐵0 bits available, and at times 𝑡1, 𝑡2, . . .,
𝑡𝑀 , bits arrive in amounts 𝐵1, 𝐵2, . . . , 𝐵𝑀 , respectively.
This system model is shown in Fig. 2. Our objective is again
to minimize the transmission completion time, 𝑇 , which again
is the time by which the last bit is delivered to the destination.

Let us denote the sequence of transmission powers by 𝑝1,
𝑝2, . . ., 𝑝𝑁 , and the corresponding transmission durations by
𝑙1, 𝑙2, . . ., 𝑙𝑁 . Then, the optimization problem becomes:

min
p,l

𝑇

s.t. 𝐸(𝑡) ≤
∑
𝑖:𝑠𝑖<𝑡

𝐸𝑖, 0 ≤ 𝑡 ≤ 𝑇

𝐵(𝑡) ≤
∑
𝑖:𝑡𝑖<𝑡

𝐵𝑖, 0 ≤ 𝑡 ≤ 𝑇

𝐵(𝑇 ) =

𝑀∑
𝑖=0

𝐵𝑖 (9)

where 𝐸(𝑡), 𝐵(𝑡) are defined in (1) and (2). We again
determine the properties of the optimal transmission policy
in the following three lemmas. The proofs of these lemmas
are given in Appendices F, G and H.

Lemma 4 Under the optimal policy, the transmission rates
increase in time, i.e., 𝑟1 ≤ 𝑟2 ≤ ⋅ ⋅ ⋅ ≤ 𝑟𝑁 .

Lemma 5 Under the optimal policy, the transmission
power/rate remains constant between two event epoches, i.e.,
the rate only potentially changes when new energy is harvested
or a new packet arrives.

Lemma 6 Under the optimal policy, if the transmission rate
changes at an energy harvesting epoch, then the energy
consumed up to that epoch equals the energy harvested up
to that epoch; if the transmission rate changes at a packet
arrival epoch, then, the number of packets departed up to
that epoch equals the number of packets arrived up to that
epoch; if the transmission rate changes at an event epoch that
has both energy and data arrivals at the same time, then, one
of the causality constraints must be met with equality.

Based on Lemmas 4, 5 and 6, we can identify the structure
of the unique optimal transmission policy as stated in the
following theorem. In order to simplify the notation, we define
𝑢𝑖 to be the time epoch when the 𝑖th arrival (energy or data)
happens, i.e.,

𝑢1 = min{𝑠1, 𝑡1}
𝑢𝑖 = min{𝑠𝑖, 𝑡𝑗 : 𝑠𝑖 > 𝑢𝑖−1, 𝑡𝑗 > 𝑢𝑖−1}, 𝑖 = 2, 3, . . .

We also let 𝑢𝑚+1 = 𝑇 if the transmission completion time 𝑇
lies between 𝑢𝑚 and 𝑢𝑚+1. In order to simplify the notation,
we define 𝐸𝑟(𝑡), 𝐵𝑟(𝑡) as the total received energy and traffic
up to time 𝑡−. Specifically, we have

𝐸𝑟(𝑢𝑖) =
∑

𝑗:𝑢0≤𝑠𝑗<𝑢𝑖−1

𝐸𝑗 (10)

𝐵𝑟(𝑢𝑖) =
∑

𝑗:𝑢0≤𝑡𝑗<𝑢𝑖−1

𝐵𝑗 , 𝑖 = 1, 2, 3, . . . (11)

Theorem 3 For a given energy harvesting and packet arrival
profile, the transmission policy with a transmission rate vector
r = [𝑟1, 𝑟2, . . . , 𝑟𝑁 ] and the corresponding duration vector
l = [𝑙1, 𝑙2, . . . , 𝑙𝑁 ] is optimal, if and only if it has the following
structure:

𝑁∑
𝑖=1

𝑟𝑖𝑙𝑖 =

𝑀∑
𝑖=0

𝐵𝑖 (12)

and for 𝑛 = 1, 2, . . . , 𝑁 ,

𝑖𝑛 = arg min
𝑖:𝑢𝑖𝑛−1

<𝑢𝑖≤𝑇

{
𝑔

(
𝐸𝑟(𝑢𝑖)− 𝐸(𝑢𝑖𝑛−1)

𝑢𝑖 − 𝑢𝑖𝑛−1

)
,

𝐵𝑟(𝑢𝑖)−𝐵(𝑢𝑖𝑛−1)

𝑢𝑖 − 𝑢𝑖𝑛−1

}
(13)



YANG and ULUKUS: OPTIMAL PACKET SCHEDULING IN AN ENERGY HARVESTING COMMUNICATION SYSTEM 225

𝑟𝑛 = min
𝑖:𝑢𝑖𝑛−1

<𝑢𝑖≤𝑇

{
𝑔

(
𝐸𝑟(𝑢𝑖)− 𝐸(𝑢𝑖𝑛−1)

𝑢𝑖 − 𝑢𝑖𝑛−1

)
,

𝐵𝑟(𝑢𝑖)−𝐵(𝑢𝑖𝑛−1)

𝑢𝑖 − 𝑢𝑖𝑛−1

}
(14)

𝑙𝑛 = 𝑢𝑖𝑛 − 𝑢𝑖𝑛−1 (15)

where 𝑖0 = 0, 𝑇 =
∑𝑁

𝑖=1 𝑙𝑖, 𝐸𝑟(𝑡) and 𝐵𝑟(𝑡) are defined in
(10), and 𝐸(𝑡), 𝐵(𝑡) are defined in (1),(2).

The proof of this theorem is given in Appendix I.
For a given optimal transmission duration, 𝑇 , the optimal

policy which has the structure in Theorem 3 is unique. How-
ever, since we do not know the exact transmission duration up
front, we obtain a lower bound on 𝑇 first, as in the previous
section. In this case also, we develop a similar procedure to
find the optimal transmission policy. The basic idea is to keep
the transmit power/rate as constant as possible throughout
the entire transmission duration. Because of the additional
causality constraints due to data arrivals, we need to consider
both the average data arrival rate as well as the average power
the system can support for feasibility.

If 𝑠𝐾 ≤ 𝑡𝑀 , i.e., bits have arrived after the last energy
harvest, then, all of the harvested energy will be used. The
procedure to obtain the optimal scheduling policy is stated
in Algorithm 2. First, we calculate the transmission duration
which will result if we can use these energies to maintain a
constant rate. This will be the solution of

𝑔

(∑𝐾
𝑗=0 𝐸𝑗

𝑇

)
𝑇 =

𝑀∑
𝑗=0

𝐵𝑗 (16)

Then, we check whether this constant power/rate is feasible.
We check the availability of the energy, as well as the available
number of bits. We compare 𝑔−1(𝑟1) with 𝑝1. If the former is
greater than the latter, then the constant transmit power 𝑝1 is
feasible. Thus, we achieve the minimum possible transmission
completion time 𝑇 . Otherwise, constant-power transmission is
not feasible. We choose the transmit power to be 𝑔−1(𝑟1), and
the duration to be the one associated with this transmit power.
We repeat this procedure until all of the bits are transmitted.

If 𝑠𝐾 > 𝑡𝑀 , then, as in the first scenario where packets
have arrived and are ready before the transmission starts, some
of the harvested energy may not be utilized to transmit the
bits. In this case also, we need to get a lower bound for the
final transmission completion time. The procedure is stated in
Algorithm 3. Let 𝑢𝑀̄ be the energy harvesting epoch right after
𝑡𝑀 . Then, starting from 𝑢𝑀̄ , we compute the energy required
to transmit

∑𝑀
𝑗=0 𝐵𝑗 bits at a constant rate by 𝑢𝑖, 𝑢𝑀̄ ≤ 𝑢𝑖 ≤

𝑢𝐾+𝑀 , and compare them with the total energy harvested up
to that epoch, i.e., 𝐸𝑟(𝑢𝑖). We identify the smallest 𝑖 such that
the required energy is smaller than the total harvested energy,
and denote it by 𝑖̃1. If no such 𝑖̃1 exists, we let 𝑖̃1 = 𝑀+𝐾+1.

Now, we assume that we can use 𝐸𝑟(𝑢𝑖̃1
) to transmit∑𝑀

𝑗=0 𝐵𝑗 bits at a constant rate. We allocate the energy evenly
to these bits, and the overall transmission time 𝑇1 is the
solution of

𝑔

(
𝐸𝑟(𝑢𝑖̃1

)

𝑇1

)
𝑇1 =

𝑀∑
𝑗=0

𝐵𝑗 (17)

Algorithm 2 The algorithm to minimize the transmission
completion time when 𝑠𝐾 ≤ 𝑡𝑀

1: Initialization: 𝑖0 = 0, 𝐵 =
∑𝑀

𝑗=0 𝐵𝑗 , 𝑛 = 0;
2: while 𝐵 > 0 do
3: 𝑛 = 𝑛+ 1;

4: Solve 𝑔

(∑𝐾
𝑗=0 𝐸𝑗−𝐸(𝑢𝑖𝑛−1

)

𝑇𝑛−𝑢𝑖𝑛−1

)
(𝑇𝑛 − 𝑢𝑖𝑛−1) = 𝐵;

5: 𝑝𝑛 =
∑𝐾

𝑗=0 𝐸𝑗−𝐸(𝑢𝑖𝑛−1
)

𝑇𝑛−𝑢𝑖𝑛−1
;

6: Update 𝑖𝑛 and 𝑟𝑛 according to (13) and (14), where 𝑇
is replaced by 𝑡𝑀 ;

7: if 𝑝𝑛 ≤ 𝑔−1(𝑟1) then
8: 𝑝𝑛 = 𝑝𝑛, 𝑡𝑛 = 𝑔(𝑝𝑛), 𝑢𝑖𝑛 = 𝑇𝑛;
9: else

10: 𝑝𝑛 = 𝑔−1(𝑟𝑛);
11: end if
12: 𝐵 = 𝐵 − 𝑔(𝑝𝑛)(𝑢𝑖𝑛 − 𝑢𝑖𝑛−1);
13: end while

Algorithm 3 The algorithm to minimize the transmission
completion time when 𝑠𝐾 > 𝑡𝑀

1: Initialization: 𝑖0 = 0, 𝐵 =
∑𝑀

𝑗=0 𝐵𝑗, 𝑛 = 0. Let 𝑢𝑀̄ be
the energy harvesting epoch right after 𝑡𝑀 .

2: while 𝐵 > 0 do
3: 𝑛 = 𝑛+ 1;
4: for 𝑖 = 𝑀̄, 𝑀̄ + 1, . . . ,𝐾 +𝑀 do
5: 𝐴𝑖 = 𝑔−1

(
𝐵

𝑢𝑖−𝑢𝑖𝑛−1

)
(𝑢𝑖 − 𝑢𝑖𝑛−1);

6: if 𝐴𝑖 ≤ 𝐸𝑟(𝑢𝑖)− 𝐸(𝑢𝑖𝑛−1) then
7: 𝑖̃𝑛 = 𝑖;
8: break;
9: else

10: 𝑖̃𝑛 = 𝑖+ 1;
11: end if
12: end for
13: Solve 𝑔

(
𝐸𝑟(𝑢𝑖̃𝑛

)−𝐸(𝑢𝑖𝑛−1
)

𝑇𝑛−𝑢𝑖𝑛−1

)
(𝑇𝑛 − 𝑢𝑖𝑛−1) = 𝐵;

14: 𝑝𝑛 =
𝐸𝑟(𝑢𝑖̃𝑛

)−𝐸(𝑢𝑖𝑛−1
)

𝑇𝑛−𝑢𝑖𝑛−1
;

15: Update 𝑖𝑛 and 𝑟𝑛 according to (13) and (14), where 𝑇
is replaced by 𝑢𝑖̃𝑛

;
16: if 𝑝𝑛 < 𝑔−1(𝑟𝑛) then
17: 𝑝𝑛 = 𝑝𝑛, 𝑟𝑛 = 𝑔(𝑝𝑛), 𝑢𝑖𝑛 = 𝑇𝑛;
18: else
19: 𝑝𝑛 = 𝑔−1(𝑟𝑛);
20: end if
21: 𝐵 = 𝐵 − 𝑔(𝑝𝑛)(𝑢𝑖𝑛 − 𝑢𝑖𝑛−1);
22: end while

and the corresponding constant transmit power is 𝑝1. Next, we
compare 𝑝1 with 𝐸𝑟(𝑢𝑖)

𝑢𝑖
and 𝑔−1

(
𝐵𝑟(𝑢𝑖)

𝑢𝑖

)
for every 𝑖 < 𝑖̃1.

If 𝑝1 is smaller than all of these terms, then, maintaining 𝑝1
is feasible from both energy and data arrival points of view.
The optimal policy is to keep a constant transmission rate at
𝑔(𝑝1) with duration 𝑇1, which yields the smallest possible
transmission completion time. Otherwise, maintaining 𝑝1 is
not feasible under the given energy and data arrival realiza-
tions. This infeasibility is due to the causality constraints on
either the energy or the data arrival, or both. Next, we identify
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the tightest constraint, and update the transmit power to be the
power associated with that constraint. We repeat this procedure
until all of the bits are delivered.

Theorem 4 The transmission policy obtained through Algo-
rithms 2 and 3 is optimal.

The proof of this theorem is given in Appendix J.

IV. SIMULATION RESULTS

We consider a band-limited additive white Gaussian noise
channel, with bandwidth 𝑊 = 1MHz and the noise power
spectral density 𝑁0 = 10−19W/Hz. We assume that the
distance between the transmitter and the receiver is 1km,
and the path loss ℎ is about 110dB. Then, we have 𝑔(𝑝) =

𝑊 log2

(
1 + 𝑝ℎ

𝑁0𝑊

)
= log2

(
1 + 𝑝

10−2

)
Mbps. It is easy to

verify that this function has the properties assumed at the
beginning of Section II. For the energy harvesting process, we
assume that at times t = [0, 2, 5, 6, 8, 9, 11]s, we have energy
harvested with amounts E = [10, 5, 10, 5, 10, 10, 10]mJ, as
shown in Fig. 7. We assume that at 𝑡 = 0, we have 5.44Mbits
to transmit. We choose the numbers in such a way that the
solution is expressable in simple numbers, and can be potted
conveniently. Then, using our algorithm, we obtain the optimal
transmission policy, which is shown in Fig. 7. We note that
the powers change only potentially at instances when energy
arrives (Lemma 2); when the power changes, energy consumed
up to that point equals energy harvested (Lemma 3); and power
sequence is monotonically increasing (Lemma 1). We also
note that, for this case, the active transmission is completed
by time 𝑇 = 9.5s, and the last energy harvest at time 𝑡 = 11s
is not used.

Next, we consider the scenario where data packets ar-
rive during the transmissions. We consider a smaller time
scale, where each unit consists of 10ms. We assume that
at times t = [0, 5, 6, 8, 9], energies arrive with amounts
E = [5, 5, 5, 5, 5] × 10−2mJ, while at times t = [0, 4, 10],
packets arrive with equal size 10kbits, as shown in Fig. 8. We
observe that the transmitter changes its transmission power
during the transmissions. The first change happens at 𝑡 = 5
when energy arrives, and the energy constraint at that instant
is satisfied with equality, while the second change happens at
𝑡 = 10 when new bits arrive, and the traffic constraint at that
time is satisfied with equality.

V. CONCLUSIONS

In this paper, we investigated the transmission completion
time minimization problem in an energy harvesting communi-
cation system. We considered two different scenarios, where in
the first scenario, we assume that packets have already arrived
and are ready to be transmitted at the transmitter before the
transmission starts, and in the second scenario, we assume that
packets may arrive during the transmissions. We first analyzed
the structural properties of the optimal transmission policy,
and then developed an algorithm to obtain a globally optimal
off-line scheduling policy, in each scenario.
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APPENDIX

A. Proof of Lemma 1

Assume that the powers do not increase monotonically, i.e.,
that we can find two powers such that 𝑝𝑖 > 𝑝𝑖+1. The total
energy consumed over this duration is 𝑝𝑖𝑙𝑖 + 𝑝𝑖+1𝑙𝑖+1. Let

𝑝′𝑖 = 𝑝′𝑖+1 =
𝑝𝑖𝑙𝑖 + 𝑝𝑖+1𝑙𝑖+1

𝑙𝑖 + 𝑙𝑖+1
(18)

𝑟′𝑖 = 𝑟′𝑖+1 = 𝑔

(
𝑝𝑖𝑙𝑖 + 𝑝𝑖+1𝑙𝑖+1

𝑙𝑖 + 𝑙𝑖+1

)
(19)

Then, we have 𝑝′𝑖 ≤ 𝑝𝑖, 𝑝′𝑖+1 ≥ 𝑝𝑖+1. Since 𝑝′𝑖𝑙𝑖 ≤ 𝑝𝑖𝑙𝑖, the
energy constraint is still satisfied, and thus, the new energy
allocation is feasible. We use 𝑟′𝑖, 𝑟

′
𝑖+1 to replace 𝑟𝑖, 𝑟𝑖+1 in the

transmission policy, and keep the rest of the rates the same.
Then, the total number of bits transmitted over the duration
𝑙𝑖 + 𝑙𝑖+1 becomes

𝑟′𝑖𝑙𝑖 + 𝑟′𝑖+1𝑙𝑖+1

= 𝑔

(
𝑝𝑖𝑙𝑖 + 𝑝𝑖+1𝑙𝑖+1

𝑙𝑖 + 𝑙𝑖+1

)
(𝑙𝑖 + 𝑙𝑖+1)

≥ 𝑔 (𝑝𝑖)
𝑙𝑖

𝑙𝑖 + 𝑙𝑖+1
(𝑙𝑖 + 𝑙𝑖+1) + 𝑔 (𝑝𝑖+1)

𝑙𝑖+1

𝑙𝑖 + 𝑙𝑖+1
(𝑙𝑖 + 𝑙𝑖+1)

= 𝑟𝑖𝑙𝑖 + 𝑟𝑖+1𝑙𝑖+1 (20)

where the inequality follows from the fact that 𝑔(𝑝) is concave
in 𝑝. Therefore, the new policy departs more bits by time∑𝑖+1

𝑗=1 𝑙𝑗 . Keeping the remaining transmission rates the same,
the new policy will finish the entire transmission over a shorter
duration. Thus, the original policy could not be optimal. There-
fore, the optimal policy must have monotonically increasing
powers (and rates).

B. Proof of Lemma 2

Assume that the transmitter changes its transmission rate
between two energy harvesting instances 𝑠𝑖, 𝑠𝑖+1. Denote the
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Fig. 9. The rate must remain constant between energy harvests.

rates as 𝑟𝑛, 𝑟𝑛+1, and the instant when the rate changes as 𝑠′𝑖,
as shown in Fig. 9. Now, consider the duration [𝑠𝑖, 𝑠𝑖+1). The
total energy consumed during the duration is 𝑝𝑛(𝑠

′
𝑖 − 𝑠𝑖) +

𝑝𝑛+1(𝑠𝑖+1 − 𝑠′𝑖). Let

𝑝′ =
𝑝𝑛(𝑠

′
𝑖 − 𝑠𝑖) + 𝑝𝑛+1(𝑠𝑖+1 − 𝑠′𝑖)

𝑠𝑖+1 − 𝑠𝑖
(21)

𝑟′ = 𝑔

(
𝑝𝑛(𝑠

′
𝑖 − 𝑠𝑖) + 𝑝𝑛+1(𝑠𝑖+1 − 𝑠′𝑖)

𝑠𝑖+1 − 𝑠𝑖

)
(22)

Now let us use 𝑟′ as the new transmission rate over [𝑠𝑖, 𝑠𝑖+1),
and keep the rest of the rates the same. It is easy to check that
the energy constraints are satisfied under this new policy, thus
this new policy is feasible. On the other hand, the total number
of bits departed over this duration under this new policy is

𝑟′(𝑠𝑖+1 − 𝑠𝑖)

= 𝑔

(
𝑝𝑛(𝑠

′
𝑖 − 𝑠𝑖) + 𝑝𝑛+1(𝑠𝑖+1 − 𝑠′𝑖)

𝑠𝑖+1 − 𝑠𝑖

)
(𝑠𝑖+1 − 𝑠𝑖)

≥
(
𝑔(𝑝𝑛)

𝑠′𝑖 − 𝑠𝑖
𝑠𝑖+1 − 𝑠𝑖

+ 𝑔(𝑝𝑛+1)
𝑠𝑖+1 − 𝑠′𝑖
𝑠𝑖+1 − 𝑠𝑖

)
(𝑠𝑖+1 − 𝑠𝑖)

= 𝑟𝑛(𝑠
′
𝑖 − 𝑠𝑖) + 𝑟𝑛+1(𝑠𝑖+1 − 𝑠′𝑖) (23)

where the inequality follows from the fact that 𝑔(𝑝) is concave
in 𝑝. Therefore, the total number of bits departed under the
new policy is larger than that under the original policy. If
we keep all of the remaining rates the same, the transmission
will be completed at an earlier time. This conflicts with the
optimality of the original policy.

C. Proof of Lemma 3

From Lemma 2, we know that the transmission rate can
change only at certain energy harvesting instances. Assume
that the transmission rate changes at 𝑠𝑖, however, the energy
consumed by 𝑠𝑖, which is denoted by 𝐸(𝑠𝑖), is less than∑𝑖−1

𝑗=0 𝐸𝑗 . We denote the energy gap as Δ ≜
∑𝑖−1

𝑗=0 𝐸𝑗 −
𝐸(𝑠𝑖). Let us denote the rates before and after 𝑠𝑖 by 𝑟𝑛, 𝑟𝑛+1.
Now, we can always have two small amounts of perturbations
𝛿𝑛, 𝛿𝑛+1 > 0 on the corresponding transmit powers, such that

𝑝′𝑛 = 𝑝𝑛 + 𝛿𝑛 (24)

𝑝′𝑛+1 = 𝑝𝑛+1 − 𝛿𝑛+1 (25)

𝛿𝑛𝑙𝑛 = 𝛿𝑛+1𝑙𝑛+1 (26)

We also make sure that 𝛿𝑛 and 𝛿𝑛+1 are small enough
such that 𝛿𝑛𝑙𝑛 < Δ, and 𝑝′𝑛 ≤ 𝑝′𝑛+1. If we keep the
transmission rates over the rest of the duration the same, under
the new transmission policy, the energy allocation will still be
feasible. The total number of bits departed over the duration

p′npn p′n+1 pn+1 p

r

Fig. 10. 𝑔(𝑝) is concave in 𝑝.

(
∑𝑛−1

𝑖=1 𝑙𝑖,
∑𝑛+1

𝑖=1 𝑙𝑖) is

𝑔(𝑝′𝑛)𝑙𝑛 + 𝑔(𝑝′𝑛+1)𝑙𝑛+1 ≥ 𝑔(𝑝𝑛)𝑙𝑛 + 𝑔(𝑝𝑛+1)𝑙𝑛+1 (27)

where the inequality follows from the concavity of 𝑔(𝑝) in
𝑝, and the fact that 𝑝𝑛𝑙𝑛 + 𝑝𝑛+1𝑙𝑛+1 = 𝑝′𝑛𝑙𝑛 + 𝑝′𝑛+1𝑙𝑛+1,
𝑝𝑛 ≤ 𝑝′𝑛 ≤ 𝑝′𝑛+1 ≤ 𝑝𝑛+1, as shown in Fig. 10. This conflicts
with the optimality of the original allocation.

D. Proof of Theorem 1

We will prove the necessariness and the sufficiency of the
stated structure separately. First, we prove that the optimal
policy must have the structure given above. We prove this
through contradiction. Assume that the optimal policy, which
satisfies Lemmas 1, 2 and 3, does not have the structure
given above. Specifically, assume that the optimal policy over
the duration [0, 𝑠𝑖𝑛−1) is the same as the policy described
in Theorem 1, however, the transmit power right after 𝑠𝑖𝑛−1 ,
which is 𝑝𝑛, is not the smallest average power possible starting
from 𝑠𝑖𝑛−1 , i.e., we can find another 𝑠𝑖′ ≤ 𝑠𝑖𝑁 , such that

𝑝𝑛 >

∑𝑖′−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖′ − 𝑠𝑖𝑛−1

≜ 𝑝′ (28)

Based on Lemma 3, the energy consumed up to 𝑠𝑖𝑛−1 is equal
to
∑𝑖𝑛−1−1

𝑗=0 𝐸𝑗 , i.e., there is no energy remaining at 𝑡 = 𝑠−𝑖𝑛−1
.

We consider two possible cases here. The first case is that
𝑠𝑖′ < 𝑠𝑖𝑛 , as shown in Fig. 11(a). Under the optimal policy,
the energy required to maintain a transmit power 𝑝𝑛 over the
duration [𝑠𝑖𝑛−1 , 𝑠𝑖′) is 𝑝𝑛(𝑠𝑖′ − 𝑠𝑖𝑛−1). Based on (28), this
is greater than the total amount of energy harvested during
[𝑠𝑖𝑛−1 , 𝑠𝑖′), which is

∑𝑖′−1
𝑗=𝑖𝑛−1

𝐸𝑗 . Therefore, this energy
allocation under this policy is infeasible.

On the other hand, if 𝑠𝑖′ > 𝑠𝑖𝑛 , as shown in Fig. 11(b),
then the total amount of energy harvested over [𝑠𝑖𝑛 , 𝑠𝑖′) is∑𝑖′−1

𝑗=𝑖𝑛
𝐸𝑗 . From (28), we know

𝑝𝑛 =

∑𝑖𝑛−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖𝑛 − 𝑠𝑖𝑛−1

>

∑𝑖′−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖′ − 𝑠𝑖𝑛−1

(29)

Since ∑𝑖′−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖′ − 𝑠𝑖𝑛−1

=

∑𝑖𝑛−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖𝑛 − 𝑠𝑖𝑛−1

𝑠𝑖𝑛 − 𝑠𝑖𝑛−1

𝑠𝑖′ − 𝑠𝑖𝑛−1
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Fig. 11. Two different cases in the proof of Theorem 1.

+

∑𝑖′−1
𝑗=𝑖𝑛

𝐸𝑗

𝑠𝑖′ − 𝑠𝑖𝑛

𝑠𝑖′ − 𝑠𝑖𝑛
𝑠𝑖𝑛 − 𝑠𝑖𝑛−1

(30)

Combining (29) and (30), we have

𝑝𝑛 >

∑𝑖′−1
𝑗=𝑖𝑛−1

𝐸𝑗

𝑠𝑖′ − 𝑠𝑖𝑛−1

>

∑𝑖′−1
𝑗=𝑖𝑛

𝐸𝑗

𝑠𝑖′ − 𝑠𝑖𝑛
(31)

Thus, under any feasible policy, there must exist a duration
𝑙 ⊆ [𝑠𝑖𝑛 , 𝑠𝑖′), such that the transmit power over this duration
is less than 𝑝𝑛. This contradicts with Lemma 1. Therefore,
this policy cannot be optimal.

Next, we prove that if a policy with power vector p and
duration vector l has the structure given above, then, it must be
optimal. We prove this through contradiction. We assume that
there exists another policy with power vector p′ and duration
vector l′, and the transmission completion time 𝑇 ′ under this
policy is smaller.

We assume both of the policies are the same over the dura-
tion [0, 𝑠𝑖𝑛−1), however, the transmit policies right after 𝑠𝑖𝑛−1 ,
which are 𝑝𝑛 and 𝑝′𝑛, with durations 𝑙𝑛 and 𝑙′𝑛, respectively,
are different. Based on the assumption, we must have 𝑝𝑛 < 𝑝′𝑛.

If 𝑙𝑛 < 𝑙′𝑛, from Lemma 3, we know that the total energy
available over [𝑠𝑖𝑛−1 , 𝑠𝑖𝑛) is equal to 𝑝𝑛𝑙𝑛. Since 𝑝𝑛 < 𝑝′𝑛,
𝑝′𝑛 is infeasible over [𝑠𝑖𝑛−1 , 𝑠𝑖𝑛). Thus, policy p′ cannot be
optimal. Then, we consider the case when 𝑙𝑛 > 𝑙′𝑛. Since
the power-rate function 𝑔 is concave, with the sum of energy
available over [𝑠𝑖𝑛−1 , 𝑠𝑖𝑛) fixed, the total number of bits
departed over [𝑠𝑖𝑛−1 , 𝑠𝑖𝑛) under p is greater than any other
policy. Therefore, 𝑇 ′ ≥ 𝑠𝑖𝑛 . Then, the total energy spent over
[𝑠𝑖𝑛−1 , 𝑠𝑖𝑛) under p′ is greater than 𝑝𝑛𝑙𝑛, since 𝑝′𝑛 > 𝑝𝑛, and
𝑝′𝑛+1 > 𝑝′𝑛 based on Lemma 1. Thus, policy p′ is infeasible
and cannot be optimal.

In summary, a policy is optimal if and only if it has the
structure given above, completing the proof.

E. Proof of Theorem 2

Let 𝑇 be the final transmission duration given by the
allocation procedure. Then, we have 𝐵(𝑇 ) = 𝐵0. In order to
prove that the allocation is optimal, we need to show that the
final transmission policy has the structure given in Theorem 1.
We first prove that 𝑝1 satisfies (6). Then, we can similarly
prove that 𝑝2, 𝑝3, . . . satisfy (6).

We know that if 𝑇 = 𝑇1, then it is the minimum possible
transmission completion time. We know that this transmit
policy will satisfy the structural properties in Theorem 1.
Otherwise, the final optimal transmission time 𝑇 is greater
than 𝑇1, and more harvested energy may need to be utilized
to transmit the remaining bits. From the allocation procedure,
we know that

𝑝1 ≤
∑𝑖−1

𝑗=0 𝐸𝑗

𝑠𝑖
, ∀𝑖 < 𝑖̃1 (32)

In order to prove that 𝑝1 satisfies (6), we need to show that

𝑝1 ≤
∑𝑖−1

𝑗=0 𝐸𝑗

𝑠𝑖
, ∀𝑖 : 𝑠𝑖̃1 ≤ 𝑠𝑖 ≤ 𝑇 (33)

If we keep transmitting with power 𝑝1, then at 𝑇 ′
1 =

∑𝑖̃1−1
𝑗=0 𝐸𝑗

𝑝1
, the total number of bits departed will be

𝑔(𝑝1)𝑇
′
1 ≥ 𝑔

⎛
⎝∑𝑖̃1−1

𝑗=0 𝐸𝑗

𝑇1

⎞
⎠𝑇1 = 𝐵0 (34)

where the inequality follows from the assumption that 𝑔(𝑝)/𝑝
decreases in 𝑝. Then, (32) guarantees that this is a feasible pol-
icy. Thus, under the optimal policy, the transmission duration
𝑇 will be upper bounded by 𝑇 ′

1, i.e.,

𝑇 ≤
∑𝑖̃1−1

𝑗=0 𝐸𝑗

𝑝1
(35)

which implies

𝑝1 ≤
∑𝑖̃1−1

𝑗=0 𝐸𝑗

𝑇
(36)

If 𝑇 ≤ 𝑠𝑖̃1 , as shown in Fig. 12(a), no future harvested energy
is utilized for the transmissions. Then, (36) guarantees that
(33) is satisfied.

If 𝑇 > 𝑠𝑖̃1 , as shown in Fig. 12(b), additional energy
harvested after 𝑠𝑖̃1 should be utilized to transmit the data. We
next prove that (33) still holds through contradiction. Assume
that there exists 𝑖′ with 𝑠𝑖̃1 ≤ 𝑠𝑖′ ≤ 𝑇 , such that (33) is not
satisfied, i.e.,

𝑝1 >

∑𝑖′−1
𝑗=0 𝐸𝑗

𝑠𝑖′
≜ 𝑝′ (37)

Then, ∑𝑖′−1
𝑗=0 𝐸𝑗

𝑝1
< 𝑠𝑖′ (38)

Combining this with (35), we have 𝑇 < 𝑠𝑖′ , which contradicts
with the assumption that 𝑠𝑖′ ≤ 𝑇 . Thus, (33) holds, 𝑝1 satisfies
the requirement of the optimal structure in (32).

We can then prove using similar arguments that 𝑝2, 𝑝3, . . .
also satisfy the properties of the optimal solution. Based on
Lemma 1, this procedure gives us the unique optimal policy.

F. Proof of Lemma 4

First, note that since the relationship between power and
rate, 𝑟 = 𝑔(𝑝), is monotone, stating that the rates increase
monotonically is equivalent to stating that the powers increase
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Fig. 12. Two different cases in the proof of Theorem 2.

monotonically. We follow steps similar to those in the proof
of Lemma 1 to prove this lemma. Assume that the rates do
not increase monotonically, i.e., that we can find two rates
such that 𝑟𝑖 > 𝑟𝑖+1, with duration 𝑙𝑖, 𝑙𝑖+1, respectively. If
𝑖+ 1 ∕= 𝑁 , then, let

𝑟′𝑖 = 𝑟′𝑖+1 =
𝑟𝑖𝑙𝑖 + 𝑟𝑖+1𝑙𝑖+1

𝑙𝑖 + 𝑙𝑖+1
(39)

𝑝′𝑖 = 𝑝′𝑖+1 = 𝑔−1

(
𝑟𝑖𝑙𝑖 + 𝑟𝑖+1𝑙𝑖+1

𝑙𝑖 + 𝑙𝑖+1

)
(40)

Since 𝑟𝑖 > 𝑟′𝑖 = 𝑟′𝑖+1 > 𝑟𝑖+1, 𝑝𝑖 > 𝑝′𝑖 = 𝑝′𝑖+1 > 𝑝𝑖+1, it is
easy to verify that the new policy is feasible up to the end
of 𝑙𝑖+1, from both the data and energy arrival points of view.
On the other hand, based on the convexity of 𝑔−1, the energy
spent over the duration 𝑙𝑖+𝑙𝑖+1 is smaller than 𝑝𝑖𝑙𝑖+𝑝𝑖+1𝑙𝑖+1.
If we allocate the saved energy over to the last transmission
duration, without conflicting any energy or data constraints,
the transmission will be completed in a shorter duration. If
𝑖+ 1 = 𝑁 , then, we let

𝑝′𝑖 = 𝑝′𝑖+1 =
𝑝𝑖𝑙𝑖 + 𝑝𝑖+1𝑙𝑖+1

𝑙𝑖 + 𝑙𝑖+1
(41)

𝑟′𝑖 = 𝑟′𝑖+1 = 𝑔

(
𝑝𝑖𝑙𝑖 + 𝑝𝑖+1𝑙𝑖+1

𝑙𝑖 + 𝑙𝑖+1

)
(42)

Then, from (20), under the new policy, the last bit will depart
before the end of 𝑙𝑖+1. The energy and data arrival constraints
are satisfied over the whole transmission duration. Conse-
quently, the original policy could not be optimal. Therefore,
the optimal policy must have monotonically increasing rates
(and powers).

G. Proof of Lemma 5

This lemma can be proved through a procedure similar to
that in Lemma 2. The properties i)-iii) of 𝑔(𝑝) implies that
𝑔−1(𝑟) exists, and it is convex in 𝑟. If power/rate is not
constant between two event epoches, then, by equalizing the
rate over the duration while keeping the total departures fixed,
the total amount of energy spent is reduced because of the
convexity of 𝑔−1(𝑟). Allocating the saved energy to the last
transmission duration, we can shorten the whole transmission
duration. Thus, if power/rate is not constant between two event
epoches, the policy cannot be optimal.

H. Proof of Lemma 6

This lemma can be proved through contradiction using tech-
niques similar to those used in the proof of Lemma 3. When
the transmission rate changes at a packet arrival epoch, if the
total number of departures is not equal to the total number
of bits arrive before that epoch, then, without conflicting the
data and energy causality constraints, we can always increase
the rate before that epoch a little and decrease the rate after
that epoch a little while keeping the total departures fixed.
This policy would save some energy which can be used to
shorten the transmission durations afterwards. Thus, the data
constraint at that epoch must be satisfied as an equality. The
remaining situations can be proved similarly.

I. Proof of Theorem 3

First, we prove that for the optimal transmission policy, 𝑟1
must satisfy (14). We prove this through contradiction. If 𝑟1
does not satisfy (14), then, we can always find another 𝑢𝑖′ ,
such that

𝑟1 > min

{
𝑔

(
𝐸𝑟(𝑢𝑖′ )

𝑢𝑖′

)
,
𝐵𝑟(𝑢𝑖′ )

𝑢𝑖′

}
(43)

First, we assume that 𝑔
(

𝐸𝑟(𝑢𝑖′ )
𝑢𝑖′

)
< 𝐵𝑟(𝑢𝑖′ )

𝑢𝑖′
. Then, if 𝑢𝑖′ <

𝑢𝑖1 , clearly 𝑟1 is not feasible over the duration [0, 𝑢𝑖′), because
of the energy constraint. If 𝑢𝑖′ > 𝑢𝑖1 , then, the transmitter
cannot maintain a transmission rate that is always greater than
𝑟1 over [𝑢𝑖, 𝑢𝑖′), from the energy point of view. This contra-

dicts with Lemma 4. Similarly, if 𝑔
(

𝐸𝑟(𝑢𝑖′ )
𝑢𝑖′

)
> 𝐵𝑟(𝑢𝑖′ )

𝑢𝑖′
, the

“bottleneck” is the data constraint. We can prove that 𝑟1 is not
feasible. Thus, 𝑟1 must be the smallest feasible rate starting
from 𝑡 = 0, as in (14). We can also prove that 𝑟2, 𝑟3, . . . must
have the same structure, in the same way. Next, we can prove
that any policy has the structure described above is optimal.
We can prove this through contradiction. Assume that there
exists another policy with a shorter transmission completion
time. Based on Lemmas 4 and 6, we can prove that this policy
could not be feasible.

J. Proof of Theorem 4

We focus on the scenario when 𝑠𝐾 ≥ 𝑡𝑀 . When 𝑠𝐾 < 𝑡𝑀 ,
the optimality of Algorithm 2 can be proved as a special case
of Algorithm 3 where 𝑖̃1 = 𝐾 +𝑀 + 1.

First we prove that 𝑟1 obtained through Algorithm 3 satisfies
(14). If 𝑇 = 𝑇1, i.e., the constant rate is achievable throughout
the transmission, then it is the shortest transmission duration
we can get, thus, it is optimal. If 𝑇 ∕= 𝑇1, from the procedure,
we have

𝑟1 ≤ min
1≤𝑖<𝑖̃1

{
𝑔

(
𝐸𝑟(𝑢𝑖)

𝑢𝑖

)
,
𝐵𝑟(𝑢𝑖)

𝑢𝑖

}
(44)

We need to prove that

𝑟1 ≤ min

{
𝑔

(
𝐸𝑟(𝑢𝑖)

𝑢𝑖

)
,
𝐵𝑟(𝑢𝑖)

𝑢𝑖

}
for 𝑢𝑖̃1

≤ 𝑢𝑖 ≤ 𝑇.

(45)

We note that 𝑢𝑖̃1
≥ 𝑢𝑀̄ > 𝑡𝑀 , thus, for 𝑢𝑖 ≥ 𝑢𝑖̃1

, we have
𝐵𝑟(𝑢𝑖) =

∑𝑀
𝑗=0 𝐵𝑗 .
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Considering the policy with a constant power 𝑝1 = 𝑔−1(𝑟1),

then, at 𝑇 ′
1 =

𝐸𝑟(𝑢𝑖̃1
)

𝑝1
, the total number of bits departed will

be

𝑔(𝑝1)𝑇
′
1 ≥ 𝑔

(
𝐸𝑟(𝑢𝑖̃1

)

𝑇1

)
𝑇1 =

𝑀∑
𝑗=0

𝐵𝑗 (46)

where the inequality follows from the assumption that 𝑔(𝑝)/𝑝
decreases in 𝑝.

On the other hand, since 𝑟1 ≤ 𝐵𝑟(𝑇𝑀 )
𝑇𝑀

, keeping rate 𝑟1

after 𝑇𝑀 until 𝑇 ′′
1 =

∑𝑀
𝑗=0 𝐵𝑗

𝑟1
is also feasible from data

arrival perspective. Therefore, maintaining a transmission rate
𝑟1 until the last bit departs the system is feasible from both the
energy and data arrival points of view. Thus, under the optimal
policy, the transmission duration 𝑇 will be upper bounded by
min{𝑇 ′

1, 𝑇
′′
1 } = 𝑇 ′′

1 .
Since

𝑟1 =

∑𝑀
𝑗=0 𝐵𝑗

𝑇 ′′
1

≤ 𝐵𝑟(𝑡)

𝑡
, for 𝑇𝑀 < 𝑡 ≤ 𝑇 ′′

1 (47)

𝑟1 is always optimal from data arrival’s perspective. To com-
plete the proof, we only need to check the optimality of 𝑟1
from energy point of view. The proof directly follows a similar
procedure in the proof of Theorem 2.

Thus, (45) holds, 𝑟1 satisfies the requirement of the optimal
structure in (14). We can then prove using a similar argument
that 𝑟2, 𝑟3, . . . also satisfy the structure of the optimal solution.
Based on Theorem 3, this procedure gives us the unique
optimal transmission policy.
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