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A New Data Processing Inequality and
Its Applications in Distributed Source

and Channel Coding
Wei Kang, Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—In the distributed coding of correlated sources, the
problem of characterizing the joint probability distribution of
a pair of random variables satisfying an �-letter Markov chain
arises. The exact solution of this problem is intractable. In this
paper, we seek a single-letter necessary condition for this �-letter
Markov chain. To this end, we propose a new data processing
inequality on a new measure of correlation through a spectral
method. Based on this new data processing inequality, we pro-
vide a single-letter necessary condition for the required joint
probability distribution. We apply our results to two specific
examples involving the distributed coding of correlated sources:
multiple-access channel with correlated sources and multiterminal
rate-distortion region, and propose new necessary conditions for
these two problems.

Index Terms—Correlated sources, data processing inequality,
multiterminal rate-distortion region, multiple-access channel.

I. PROBLEM FORMULATION

I N THIS paper, we consider a pair of correlated dis-
crete source sequences with length ,

, which are independent and identi-
cally distributed (i.i.d.) in time, i.e.,

(1)

and
(2)

where the joint distribution is defined on the alphabet
. Let be two random variables defined on the

alphabet such that satisfies

(3)
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or equivalently1

This Markov chain appears in some problems involving the
distributed coding of correlated sources. For example, in dis-
tributed rate-distortion problem [4]–[6], is used to
reconstruct, , an estimate of the sources ,
and in the problem of multiple-access channel with correlated
sources [7], [8], is sent though a multiple-access
channel in one channel use. In this paper, we study the prop-
erties of the above Markov chain, which will be applicable to
these specific problems.

The study of the converse proofs of (or the necessary con-
ditions for) the above specific problems raises the following
question. We know that the correlation between is
limited, if Markov chain is to
be satisfied. With the help of more letters of the sources, i.e.,

with larger than 1, the cor-
relation between may increase. The question here is
how correlated can be, when increases. More specif-
ically, can they be arbitrarily correlated? To answer this ques-
tion, we need to determine the set of all “valid” joint probability
distributions , if is to be
satisfied for some , i.e., for given source pair , we need
to determine the following set:2

(4)
with satisfying (1) and (2).

We note that it is practically impossible to exhaust the
elements in the set by searching over all conditional
distribution pairs for all possible pos-
itive integer . In other words, determining the set of all
possible probability distributions satisfying the

-letter Markov chain , i.e.,
the set , seems computationally intractable. To avoid
this problem, we seek a necessary condition for the -letter
Markov chain . The resulting set,
say , characterized by this computable constraints, will
contain the target set .

1� � � �� � and � � � �� � are degenerate cases.
2We are also interested in determining the set of all “valid” probability distri-

butions ��� � � � � � 	 �, if this Markov chain constraint is to be satisfied.
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The most intuitive necessary condition for a Markov chain is
the data processing inequality [9, p. 32], i.e., if

, then

(5)

Since increases linearly with , the constraint in (5)
will be loose when is sufficiently large. Although the data pro-
cessing inequality in its usual form does not prove useful in this
problem, we will still use the basic methodology of employing
a data processing inequality to find a necessary condition for the

-letter Markov chain under consideration. For this, we will in-
troduce a new measure of correlation, and develop a new data
processing inequality based on this new measure of correlation.

Spectral method has been instrumental in the study of some
properties of pairs of correlated random variables, especially,
those of i.i.d. sequences of pairs of correlated random variables,
e.g., common information in [10] and isomorphism in [11]. In
this paper, we use spectral method to introduce a new data pro-
cessing inequality, which provides a necessary condition for the
joint distributions satisfying the -letter Markov chain.

The rest of this paper is organized as follows. In Section II,
we introduce new measures of correlation and construct a new
data processing inequality on these measures. We then apply the
new data processing inequality to two specific examples of dis-
tributed coding of correlated sources: multiple-access channel
with correlated sources in Section III, and multiterminal rate-
distortion problem in Section IV. We end with conclusions.

II. MAIN RESULTS

A. Some Preliminaries

In this section, we provide some basic results which will be
used in our later development. The concepts used here are orig-
inally introduced by Witsenhausen in [10] in the context of op-
erator theory. Here, we focus on the finite alphabet case, and
derive our results in matrix form.

We first introduce our matrix notation for probability distri-
butions. For a pair of discrete random variables and , which
take values in and , respectively, the joint proba-
bility distribution matrix is defined as

(6)

where denotes the -th element of the matrix
. The marginal distribution matrix of a random variable ,

, is defined as a diagonal matrix with

(7)

and the vector-form marginal distribution, , is defined as3

(8)

or equivalently , where is the vector of all ones.
can also be defined as for some degenerate

random variable whose alphabet size is equal to one. For
convenience, we define

(9)

3In this paper, we only consider the case where � is a positive vector.

For conditional distributions, we define matrix as

(10)

The vector-form conditional distribution is defined as

(11)

or equivalently, for some degenerate random
variable whose alphabet size is equal to one.

We define a new matrix, , which will play an important
role in the rest of the paper, as

(12)

Since for some degenerate random variable
whose alphabet size is equal to one, we define

(13)

The counterparts for conditional distributions, and ,
can be defined similarly.

A valid joint distribution matrix, , is a matrix whose en-
tries are nonnegative and sum to 1. Due to this constraint, not
every matrix will qualify as a corresponding to a joint dis-
tribution matrix as defined in (12). A necessary and sufficient
condition for to correspond to a joint distribution matrix
is given in Theorem 1 below, which identifies the spectral prop-
erties of . Before stating the theorem, we provide a lemma
and a definition regarding stochastic matrices, which will be
used in the proof of the theorem.

Definition 1 [12, p. 48]: A square matrix of order is
called (row) stochastic if

(14)

(15)

Lemma 1 [12, p. 49]: The spectral radius, which is defined
as the maximum of the absolute values of the eigenvalues of a
matrix, of a stochastic matrix is 1. A nonnegative matrix is
stochastic if and only if is an eigenvector of corresponding
to the eigenvalue 1.

Theorem 1: Assume a pair of given marginal distributions
and . A nonnegative matrix is a joint distribution ma-

trix with marginal distributions and , i.e.,
and , if and only if the singular value

decomposition (SVD) of the nonnegative matrix , which is de-

fined as satisfies

(16)

where and are two matrices
such that and ,

and ; , , and
. That is, all of the singular values of are

between 0 and 1, the largest singular value of is 1, and the

corresponding left and right singular vectors are and .
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Proof: We begin with the “if” part. We want to show that
for any nonnegative matrix where the corresponding

satisfies (16), is a joint distribution matrix with
marginal distributions and . Let satisfy (16), then

(17)

Similarly, . Thus, the nonnegative matrix is a joint
distribution matrix with marginal distributions and .

Now we turn to the “only if” part. We want to show that for
any joint distribution matrix with marginal distributions
and , (16) should be satisfied. We consider a joint distribution

with marginal distributions and . We need to show
that the singular values of lie in , the largest singular

value is equal to 1, and and , respectively, are the left and
right singular vectors corresponding to the singular value 1. To
this end, we first construct a Markov chain
with (this construction comes from [10]).
Note that this also implies , , and

. The special structure of the constructed Markov
chain provides the following:

(18)

which implies that the matrix is similar to the matrix
[13, p. 44]. Therefore, all the eigenvalues of are the eigen-
values of as well, and if is a left eigenvector of cor-

responding to an eigenvalue , then is a left eigenvector of
corresponding to the same eigenvalue.

We note that is a stochastic matrix, therefore, from
Lemma 1, is a left eigenvector of corresponding the
eigenvalue 1, which is equal to the spectral radius of .

Since is similar to , we have that is a left eigen-
vector of with eigenvalue 1, and all the eigenvalues of

lie in . In addition, is a symmetric positive
semidefinite matrix, which implies that the eigenvalues of
are real and nonnegative. Since the eigenvalues of are non-
negative, and the largest eigenvalue is equal to 1, we conclude
that all of the eigenvalues of lie in the interval .

The singular values of are the square roots of the eigen-
values of , and the left singular vectors of are the eigen-
vectors of . Thus, the singular values of lie in , the

largest singular value is equal to 1, and is a left singular

vector corresponding to the singular value 1. The corresponding
right singular vector is

(19)

which concludes the proof.

This theorem implies that there is a one-to-one mapping be-
tween all joint distribution matrices and all nonnegative ma-
trices satisfying (16). It is easy to see from (12) that there
is a corresponding for every . Conversely, any given non-
negative matrix satisfying (16) gives a unique pair of mar-
ginal distributions , which is specified by the left and
right positive singular vectors corresponding to its largest sin-
gular value4. Then, from (12), using and given by
its singular vectors, we obtain a corresponding as

(20)

Because of this one-to-one relationship, exploring all possible
joint distribution matrices is equivalent to exploring all pos-
sible nonnegative matrices satisfying (16).

Here, can be viewed as a group of quantities,
which measures the correlation between random variables
and . We note that when , and are
fully correlated, and, when , and
are independent. In all the cases between these two extremes,

and are arbitrarily correlated. Moreover, Witsenhausen
showed that and have a common data if and only if
[10]. In the next section, we will propose a new data processing
inequality with respect to these new measures of correlation,

. By utilizing this new data processing inequality,
we will provide a necessary condition for the -letter Markov
chain .

B. A New Data Processing Inequality

In this section, first, we introduce a new data processing in-
equality in the following theorem. Here, we provide a lemma
that will be used in the proof of the theorem.

Lemma 2 [14, p. 178]: For matrices and

(21)

where denotes the largest singular value of a matrix.

Theorem 2: If , then

(22)

where .
Proof: From the structure of the Markov chain, and from

the definition of in (12), we have

(23)

4We observe that there may exist multiple singular values equal to 1, but ���
and ��� are the only positive singular vectors, because singular vectors are or-
thonormal.
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Using (16) for , we obtain

(24)

and applying (16) to and yields

(25)

where the two cross-terms vanish because plays the roles of

both and , and therefore, is orthogonal to
both and , for all . Using (23) and
equating (24) and (25), we obtain

(26)

The proof is completed by applying Lemma 2 to (26) and also
by noting that from Theorem 1.

Theorem 2 is a new data processing inequality in the sense
that the processing from to reduces the correlation measure

, i.e., the correlation between and , , is less than
or equal to the correlation measure between and , .
We note that this theorem is similar to the data processing in-
equality in [9, p. 32] except instead of mutual information, we
use as the correlation measure. In the sequel, we will
show that this new data processing inequality helps us develop a
necessary condition for the -letter Markov chain while the data
processing inequality in its usual form [9, p. 32] is not useful in
this context.

C. A Necessary Condition for the -Letter Markov Chain

Now, we switch our attention to i.i.d. sequences of correlated
sources. Let be a pair of i.i.d. (in time) sequences,
where each letter of these sequences satisfies a joint distribution

. Thus, the joint distribution of the sequences is
, where , , and denotes

the Kronecker product of matrices [13].

From (12), we know that

(27)

Then

(28)

We also have and . Thus

(29)

Now, applying SVD to , we have

(30)

From the uniqueness of the SVD, we know that ,
and . Then, the ordered singular values

of are

(31)

where the second through the st singular values are all
equal to .

From Theorem 2, we know that if
, then, for

(32)

As shown in (31), we have for .
Therefore, for , we have

(33)

From Theorem 1, we know that and
.

Based on the above discussion, we have the following the-
orem.

Theorem 3: If , then, we have

(34)

Theorem 3 provides a necessary condition for the -letter
Markov chain on the joint proba-
bility distribution . The set characterized by this con-
dition is defined as follows:

(35)
From Theorem 3, we have

(36)
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where is defined in (4).
Theorem 3 answers the question we posed in Section I. Our

question was whether can be arbitrarily correlated,
when we allow to take any value in . Theorem 3 shows
that cannot be arbitrarily correlated, as the correlation
measures between , , are upper bounded by,

, the second correlation measure of the sources ,
no matter what value takes.

As we mentioned in Section I, the data processing inequality
in its usual form [9, p. 32] is not helpful in this problem, while
our new data processing inequality, i.e., Theorem 2, provides a
necessary condition for this -letter Markov chain. The main
reason for this difference is that while the mutual information,

, the correlation measure in the original data pro-
cessing inequality, increases linearly with , , the
correlation measure in our new data processing inequality, is
bounded as increases, and therefore, makes the problem more
tractable.

Theorem 3 is valid for all discrete random variables. A
sharper result in a special binary case can be found in [15].

D. Conditional Probability

Theorem 3 in Section II-C provides a necessary condition
for joint probability distributions , which satisfy the
Markov chain . In certain spe-
cific problems, e.g., multiterminal rate-distortion problem and
multiple-access channel with correlated sources, in addition to

, we are also interested in the conditional distribution5

. In this section, we will develop a result similar
to that in Theorem 3 for conditional distributions.

We wish to determine the set of all possible conditional dis-
tributions satisfying

, i.e., the following set:

(37)
with satisfying (1) and (2). Due to the same reason
as in the case of , it is practically impossible to exhaust
all the elements in the set . Thus, we seek a set

, which contains as a subset and has a
simple description.

We note that , and are all
functions of for a given , i.e.,

(38)

(39)

(40)

5The reader may wish to consult Sections III and IV for further motivations
to consider conditional probability distributions ��� � � �� � � �.

Thus, , , , as well as
, where the conditional probability matrix is

defined in (10), are all functions of for a given
. We have the following theorem to characterize the

constraints on , , , and
.

Theorem 4: Let be a pair of i.i.d. sequences of
length , and let the random variables satisfy

. Assume is an arbitrary subset of
, i.e.,

(41)

and similarly

(42)

Then

(43)

The proof of this theorem can be found in Appendix I.
We define the set as follows:

(44)
By applying Theorem 4 on , ,

and , respectively, we obtain

(45)

III. EXAMPLE I: MULTIPLE-ACCESS CHANNEL

WITH CORRELATED SOURCES

The problem of determining the capacity region of the mul-
tiple-access channel with correlated sources can be formulated
as follows. Consider a pair of i.i.d. correlated sources
described by the joint probability distribution defined
on finite alphabet . Assume a discrete, memoryless, mul-
tiple-access channel characterized by the transition probability

defined on finite alphabet . A block
code is defined as

(46)

(47)

(48)

that is, the transmitter maps the source to channel input
, similarly, the transmitter maps the source to channel

input , and the receiver reconstruct from .
The probability of error is

(49)
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The problem of interest is to determine for every
and every sufficiently large , whether there exists an -length
block code such that .

A. Existing Results

The multiple-access channel with correlated sources was
studied by Cover, El Gamal, and Salehi in [7] (a simpler proof
was given in [8]), where an achievable region expressed by
single-letter entropies and mutual informations was given as
follows.

Theorem 5 [7]: A source with joint distribution
can be sent with arbitrarily small probability of error

over a multiple-access channel characterized by ,
if there exist probability mass functions , ,

, such that

(50)

(51)

(52)

(53)

where

(54)

and

(55)

is the common information in the sense of Gacs and Korner (see
[10]).

The above region can be simplified if there is no common
information between and as follows [7]:

(56)

(57)

(58)

where

(59)

This achievable region was shown to be suboptimal by Dueck
[16].

Cover, El Gamal, and Salehi [7] also provided a capacity re-
sult with both achievability and converse in the form of some
incomputable -letter mutual informations. Their result is re-
stated in the following theorem.

Theorem 6 [7]: The correlated sources can be com-
municated reliably over the discrete memoryless multiple-ac-
cess channel if and only if

(60)

where

(61)

for some

(62)

i.e., for some and that satisfy the Markov chain
.

Some recent results on the transmission of correlated sources
over multiple-access channels can be found in [17].

B. New Outer Bound

We propose a new outer bound for the multiple-access
channel with correlated sources as follows.

Theorem 7: If a pair of i.i.d. sources with joint
distribution can be transmitted reliably through a dis-
crete, memoryless, multiple-access channel characterized by

, then

(63)

(64)

(65)

where random variables , , and are such that

(66)
and for every given ,

(67)

with defined in (37) and defined in (44).
The size of the alphabet of satisfies .

The proof of this theorem can be found in Appendix II.

C. Numerical Example

In this section, we give some simple numerical examples to
show the improvement our proposed outer bound provides with
respect to the cut-set bound [9]. For simplicity, we only consider
the sum-rate here, i.e., comparing with certain mutual
information terms. Assume a multiple-access channel where the
alphabets of , and are all binary, and the channel tran-
sition probability matrix is given as

The following is the cut-set bound for the sum-rate, which we
provide as a benchmark

(68)



62 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 1, JANUARY 2011

where the maximization is over all binary bivariate distributions.
The maximum is achieved by

. We note that the cut-set bound does not
depend on the source distribution. We specify the single-letter
necessary condition we proposed in the above section and obtain
the following upper bound on the sum-rate

(69)

Note that we are using a weakened version of our outer bound
in Theorem 7. Theorem 7 restricts probability distribution

or equivalently , by imposing
constraints on , , , and

via the definition of set . Here we
impose constraint only on probability distribution ,
which yields a weaker necessary condition in this specific
correlated sources through MAC channels problem.

We also consider the achievable sum-rate proposed in [7]

(70)

We are considering a joint source-channel coding problem.
Thus, the bounds we discuss here only provide an answer to
the question whether reliable communication is possible or not,
by comparing the joint source entropy with the outer
bounds, which are the maximum of the mutual information term

subject to different constraints on the probability
distributions. This maximum mutual information is different
with different bounds, e.g., it is in the cut-set bound and

in our bound. If is larger than or ,
then we conclude that reliable communication is impossible;
while if is less than and , we cannot draw
any conclusions as to whether reliable communication is pos-
sible or not. On the other hand, the tightness of our upper bound
is measured by the gap between our upper bound and the
inner bound .

First, we consider a binary source with the following
joint distribution

In this case

(71)

Since , it is impossible to transmit this source
through the given channel reliably. We also note that, for this
case, our upper bound coincides with the single-letter achiev-
ability expression, which means that our upper bound on sum-
rate is tight. We shall emphasize that a tight upper bound in this
joint source-channel coding problem does not imply the possi-
bility of the reliable transmission.

Next, we consider a binary source with the following
joint distribution :

In this case

(72)

We note that, in this case, the value of falls between
and , which means that the cut-set bound in (68)

fails to test whether it is impossible to have reliable transmis-
sion, while our upper bound determines conclusively that reli-
able transmission is impossible.

Finally, we consider a binary source with the fol-
lowing joint distribution

In this case

(73)
Since is larger than and smaller than , we
cannot conclude whether it is possible (or not) to transmit these
sources through the channel reliably.

IV. EXAMPLE II: MULTITERMINAL RATE-DISTORTION REGION

Ever since the milestone paper of Wyner and Ziv [18] on the
rate-distortion function of a single source with side information
at the decoder, there has been a significant amount of efforts
directed towards solving a generalization of this problem, the
so called multiterminal rate-distortion problem. Among all the
attempts on this difficult problem, the notable works by Tung [4]
and Housewright [5] (see also [6]) provide the inner and outer
bounds for the rate-distortion region. A more recent progress
on this problem is by Wagner and Anantharam in [19], where a
tighter outer bound is given.

The multiterminal rate-distortion problem can be formu-
lated as follows. Consider a pair of discrete memoryless
sources , with joint distribution defined on
the finite alphabet . The reconstruction of the sources
is built on another finite alphabet . The distortion
measures are defined as and

. Assume that two distributed
encoders are functions and

and a joint decoder is the function
, where is

a positive integer. A pair of distortion levels is
said to be -attainable, for some rate pair , if for
all and , there exist, some positive integer and
a set of distributed encoders and joint decoder with
rates6 , such that
the distortion between the sources and the decoder
output satisfies

where
and . The problem here is to
determine, for a fixed , the set of all rate pairs , for
which is -attainable.

6By ����� � �����, we mean both � � � and � � �, and ����� �
����� is defined in a similar manner.



KANG AND ULUKUS: NEW DATA PROCESSING INEQUALITY AND ITS APPLICATIONS 63

A. Existing Results

We restate the inner bound provided in [4] and [5] in the fol-
lowing theorem.

Theorem 8 [4], [5]: , where is
the set of all such that there exists a pair of discrete random
variables , for which the following three conditions are
satisfied:

1) The joint distribution satisfies

(74)

2) The rate pair satisfies

(75)

(76)

(77)

3) There exists such that
.

An outer bound is also given in [4] and [5] as follows.

Theorem 9 [4], [5]: , where
is the set of all such that there exists a pair of discrete random
variables , for which the following three conditions are
satisfied:

1) The joint distribution satisfies

(78)

(79)

2) The rate pair satisfies

(80)

(81)

(82)

3) There exists such that
.

A tighter upper bound was recently proposed by Wagner and
Anantharam as follows.7

Theorem 10 [19]: , where is
the set of all such that there exists a pair of discrete random
variables , for which the following three conditions are
satisfied:

1) The joint distribution satisfies

random variable

(83)

This distribution may be represented by the following
Markov chain-like notation:

(84)

7This is a simplified version of the outer bound in [19] without introducing
an extra random variable � satisfying � �� ��� � � �� ���� �� �.

2) The rate pair satisfies

(85)

(86)

(87)

3) There exists such that
.

We note that the above three bounds agree on both the
second condition, i.e., the rate constraints in terms of some
mutual information expressions, and the third condition, i.e.,
the reconstruction functions. However, the first condition in
these three bounds constraining the underlying probability
distributions are different. It is easy to see
that the Markov chain condition in the inner bound, i.e.,

, implies the Markov chain con-
ditions in the outer bound in Theorem 10, i.e., (84), while
(84) implies the Markov chain condition in the outer bound in
Theorem 9, i.e., and .

B. New Outer Bound

We propose a new outer bound for the multiterminal rate-
distortion region as follows.

Theorem 11: , where is the
set of all such that there exist some positive integer , and
discrete random variables for which the following
three conditions are satisfied:

1) The joint distribution satisfies

(88)

where for given

(89)

with defined in (37).
2) The rate pair satisfies

(90)

(91)

(92)

3) There exists such that
.

The proof of the this theorem can be found in Appendix III.
Next, we state and prove that our outer bound given in The-

orem 11 is tighter than given in Theorem 10.

Theorem 12:

(93)

Proof: We have two proofs for this theorem. We will
provide the first proof here and leave the second proof to
Section IV-C. We prove this theorem by construction. For every

point in , there exist random variables ,
, satisfying (88), pair satisfying (90)–(92),

and a reconstruction pair
such that . According to [5],
let and . Then,
satisfies (84). Moreover

(94)
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and similarly

(95)

and finally

(96)

where 1 follows from the fact that is independent of .
is a function of , and, therefore, it is a func-

tion of .
Hence, for every rate pair , there exist

random variables , such that satisfies
(84), pair satisfies the mutual information constraints,
and the reconstruction satisfies the distortion constraints. In
other words, , proving the theorem.

From Section II-D, we know that

(97)

Then, we obtain another outer bound for the multiterminal rate-
distortion region as follows.

Theorem 13: , where is the
set of all such that there exist discrete random variable
independent of , and discrete random variables ,
for which the following three conditions are satisfied:

1) The joint distribution satisfies

(98)

where for given

(99)

with defined in (44).
2) The rate pair satisfies

(100)

(101)

(102)

3) There exists such that
.

C. Comparison of the Bounds

All of the inner and outer bounds we discussed above are in
general incomputable due to the lack of bounds on the sizes
of the alphabets of the involved auxiliary random variables.
Thus, we are not able to compare these bounds numerically.
In this section, we will establish some relationships between
these bounds by comparing the different feasible sets of the
probability distributions involved in these bounds.

We begin with the inner bound. Using the time-sharing argu-
ment, a convexification of the inner bound yields an-

other inner bound , which is larger than . We
define the set

(103)

Then, this new inner bound may be expressed as a function of
and as follows:

(104)

where is defined as

(105)

(106)

and

(107)

(108)

In [5], it was shown that is convex. Thus, the outer
bound can be represented in terms of function as
well, i.e.,

(109)

where

(110)

The result by Wagner and Anatharam [19] can also be ex-
pressed by using the function as

(111)

where

(112)
From the definition of the function , we can see that is
monotone with respect to the set argument when the distortion
argument is fixed, i.e.,

(113)

Therefore, since

(114)

we have

(115)
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Fig. 1. Different sets of probability distributions ��� � � ��� ��.

We conclude that the gap between the inner and the outer bounds
comes only from the difference between the feasible sets of the
probability distributions .

In Theorem 12, we have shown .
Here, we provide an alternative proof which comes from the
comparison of the feasible sets of probability distributions

. We note that
implies the Markov chain-like condition in (84) by taking

, and , which means that

(116)

and because of the monotonicity of in (113), we have

(117)
From Section II-D, we have that

(118)

and therefore

(119)
So far, we have not been able to determine whether

or , however, we know that there
exists some probability distribution , which
belongs to , but does not belong to . For example,
assume and some random variable indepen-
dent to . Let and .
We note that satisfies the Markov chain-like
condition in (84), i.e., . But,

contains common information , which means
that [10], and, therefore,

. Based on this observation, we note
that introducing helps us rule out some unachievable
probability distributions that may exist in . The relation
between different feasible sets of probability distributions

is illustrated in Fig. 1.

Finally, we note that we can obtain a tighter outer bound in
terms of the function by using a set argument which is
the intersection of and , i.e.,

(120)

It is straightforward to see that this outer bound is
in general tighter than the outer bound . However,
it is unknown whether our outer bound is tighter than another
improvement in [19], which exploits the conditional indepen-
dence in the source pair by introducing an extra random variable

satisfying .

V. CONCLUSION

In the distributed coding on correlated sources, the problem
of describing a joint distribution involving an -letter Markov
chain arises. By using a spectral method, we provided a new data
processing inequality based on new measures of correlation,
which gave us a single-letter necessary condition for the -letter
Markov chain. We applied our results to two specific examples
involving distributed coding of correlated sources: the multi-
terminal rate-distortion region and the multiple-access channel
with correlated sources, and proposed two new outer bounds for
these two problems.

APPENDIX I
PROOF OF THEOREM 4

We consider a special case of as follows. We define
and .

We also define the complements of and as:
and . If and take

other forms, we can transform them to the form we defined
above by permutations. We know that

(121)
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In other words, given and ,
form a Markov chain. Thus, from (23), we have

(122)

Furthermore

(123)

As aforementioned, a vector marginal distribution can be
viewed as a joint distribution matrix with a degenerate random
variable whose alphabet size is equal to 1. Since the rank
of a vector is 1, from Theorem 1, the sole singular value of

(and of ) is equal to 1. Then

(124)

Combining (22), (122), and (124), we obtain

(125)

which completes the proof.

APPENDIX II
PROOF OF THEOREM 7

Consider a given block code of length with encoders
and and decoder

. From Fano’s inequality [9, p. 39], we have

(126)

For a code, for which , as , we have .
Then,

(127)

where

1) from Fano’s inequality in (126);
2) from the fact that is a deterministic function of and

is a deterministic function of ;
3) from ;
4) from the chain rule and the memoryless nature of the

channel;
5) from the property that conditioning reduces entropy;
6) from .

Using a symmetrical argument, we obtain

(128)

Moreover,

(129)

We note that the following three expressions,
, , and ,

only depend on the marginal conditional distribution
with given and . We

also note that is a function of and is a function
of . Thus , and therefore

. Since ,
we also have .

We define a pair of random variables , which has the
same distribution as the i.i.d. sources, i.e., ,
for any . We introduce a time-sharing random
variable [9, p. 397] as follows. Let be uniformly distributed
on and be independent of , , i.e.,

(130)

Define random variables and to be such that

(131)

and for all
. Then

(132)

(133)

(134)
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Combining (132)–(134) with (127)–(129) completes the major
part of proof.

It can be shown that the outer bound in Theorem 7 is equiv-
alent to the following:

(135)

where

(136)

(137)

(138)

and represents the closure of the convex hull of the set
argument. Thus from an argument similar to [20, Corollary 2.4,
p. 278], we have .

APPENDIX III
PROOF OF THEOREM 11

We consider an arbitrary block code of two distributed en-
coders and one joint decoder with reconstructions

(139)
where and , such that

(140)

Here, we define and , where and are
alphabets of and , respectively.

We define the auxiliary random variables
and . Then, we have

(141)

where
1) follows from the fact that . We

observe that the equality holds when is independent of
;

2) follows from the fact that

(142)

3) follows from the memoryless property of the sources.
Using a symmetrical argument, we obtain

(143)

Moreover

(144)

We define the reconstruction function as follows:

(145)

where is defined in (139). Then, the expected distortion is

(146)

We note that the three mutual information expres-
sions, i.e., , , and

, and the two distortion expressions, i.e.,
and , only depend on the marginal

conditional distribution and function with
given . We also note that is a function of and

is a function of . Thus ,
and therefore .

We define a pair of random variables , which has the
same distribution as the i.i.d. sources, i.e., ,
for any . We introduce a time-sharing random
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variable , which is uniformly distributed on and
independent of and , i.e.,

(147)

Define random variables and on the alphabet
, where and

for , and

for
elsewhere

(148)

and therefore for all
. Then,

(149)

(150)

(151)

Define a reconstruction function to
be such that

(152)

Then

(153)

(154)

So far we have shown that

(155)

We know that . Because of the
monotonicity of the function , we have

(156)

Let and . Due to the continuity of the function
, which will be proven in Appendix IV, we have [4],

[18]

(157)

APPENDIX IV
SOME PROPERTIES OF FUNCTION

Function has two arguments, the probability set argu-
ment and the distortion argument. We recall the definition of
as follows:

(158)

(159)

(160)

(161)

From the definition, we note that for the probability set argu-
ment, if , then

(162)

and therefore

(163)
which means that function is monotone in the probability set
argument.

Similarly, if , then

(164)

and therefore

(165)
which means that function is monotone in the distortion
argument.

Consider two distortions and such that

(166)

where . Assume rate pairs and
. We note that there exists

and such that and .
We define a binary random variable with
and and we define and

, where

(167)
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It is easy to check that and
. Thus

(168)

i.e., is convex in the distortion argument.
By a similar argument, we can show that if and are

both in the set , then
, i.e., is a convex set.

Finally, we will show the continuity of . We assume
that includes the conditional probability corresponding to the
deterministic case where and . In this case,

is inner bounded by the Slepian-Wolf region. Due to the
the monotonicity of in , the boundary of
for any lies outside of the Slepian-Wolf region. We also note
that for any point on the boundary of , the distance be-
tween this point and the Slepian-Wolf region is upper bounded
by a finite number, say , where the distance here is the Eu-
clidean distance in two-dimansional space, and therefore, the
distance between this point and with

is also upper bounded by . Because of
the convexity of in , the distance between this point
and with is upper bounded by

, which proves the continuity of .
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