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Multi-Receiver Wiretap Channel With Public and
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Abstract—We study the multi-receiver wiretap channel
(MR-WC) with public and confidential messages. In this channel,
there is a transmitter that wishes to communicate with two le-
gitimate users in the presence of an external eavesdropper. The
transmitter sends a pair of public and confidential messages to
each legitimate user. While there are no secrecy constraints on the
public messages, confidential messages need to be transmitted in
perfect secrecy. We study the discrete memoryless MR-WC as well
as its Gaussian multi-input multi-output (MIMO) counterpart.
First, we propose an inner bound for the general, not necessarily
degraded, discrete memoryless MR-WC by using Marton’s inner
bound and rate splitting in conjunction with superposition coding
and binning. Second, we specialize this inner bound for the de-
graded discrete memoryless case. This specialized form of the
inner bound can be obtained by using superposition coding and
binning only. Next, we obtain an outer bound for the capacity
region of the degraded channel, which matches the inner bound
for some special cases. Third, we consider the degraded Gaussian
MIMO channel, and show that, to evaluate both the inner and
outer bounds, considering only jointly Gaussian auxiliary random
variables and channel input is sufficient. Similar to the discrete
memoryless case, for the Gaussian MIMO case as well, these
bounds match for some special cases.

Index Terms—Capacity region, Gaussian multi-input multi-
output (MIMO) channel, multi-receiver wiretap channel
(MR-WC), public and confidential messages.

I. INTRODUCTION

W E study the multi-receiver wiretap channel (MR-WC)
(see Fig. 1), which is a generalization of the wiretap

channel introduced by Wyner [1] to a broadcast setting. In
the MR-WC, different from the basic wiretap channel in [1]
and [2], there are multiple legitimate users who would like to
have secure communications with the transmitter in the pres-
ence of an external eavesdropper. Previously, [3]–[6] studied
the MR-WC for the scenario, where the transmitter sends a
confidential message to each legitimate user that needs to be
kept perfectly secret from the eavesdropper. For this scenario,
[3]–[5] obtained the capacity region of the degraded discrete
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Fig. 1. MR-WC.

memoryless MR-WC (see Fig. 2), and [6] obtained the capacity
region of the general, not necessarily degraded, Gaussian
multi-input multi-output (MIMO) MR-WC.
In this paper, we study the MR-WC for the scenario, where

the transmitter sends a pair of public and confidential messages
to each legitimate user. While there are no secrecy concerns on
the public messages, confidential messages need to be trans-
mitted in perfect secrecy. We call the channel model arising
from this scenario the MR-WC with public and confidential
messages. This scenario can be viewed as a generalization of
the works on theMR-WC in [3]–[6], where there were no public
messages.
First, we consider the general, not necessarily degraded, dis-

crete memoryless MR-WC, and propose an inner bound for its
capacity region. We obtain this inner bound by using Marton’s
inner bound [7] and rate splitting in conjunction with superpo-
sition coding and binning. This inner bound generalizes the pre-
vious inner bound for the MR-WC in [3]–[5] which do not con-
sider public messages. In particular, our inner bound general-
izes this previous inner bound by first incorporating public mes-
sages, and second using Marton’s inner bound and rate splitting
in addition to superposition coding and binning, the latter two
of which were sufficient to obtain the inner bound in [3]–[5].
Second, we consider the degraded discrete memoryless

MR-WC and obtain an inner bound for its capacity region by
specializing the inner bound we obtained for the general case.
This specialized form of the inner bound can be obtained by
an achievable scheme that combines superposition coding [8]
and binning. Next, we propose an outer bound for the capacity
region of the degraded discrete memoryless channel. Although
these inner and outer bounds do not match in general, there
are cases where they match and, hence, provide the capacity
region. In particular, when we specialize these inner and outer
bounds by setting either the public message rate of the second
legitimate user (weak user) or the confidential message rate
of the first legitimate user (strong user) to zero, they match
providing the exact capacity region for these two scenarios.
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Moreover, when we set the rates of both of the public messages
to zero, these inner and outer bounds match recovering the
secrecy capacity region of the degraded discrete memoryless
channel obtained in [3]–[5].
Third, we consider the degraded Gaussian MIMO instance

of this channel model. This generalizes our work in [6], where
we consider the general, not necessarily degraded, Gaussian
MIMO channel only with confidential messages. For the de-
graded Gaussian MIMO channel, we show that it is sufficient
to consider jointly Gaussian auxiliary random variables and
channel input for the evaluation of both the inner and outer
bounds we proposed for the degraded discrete memoryless
channel. We prove the sufficiency of Gaussian auxiliary
random variables and channel input by using the de Bruijn
identity [9], a differential relationship between the differential
entropy and the Fisher information matrix, in conjunction with
the properties of the Fisher information matrix. Similar to the
degraded discrete case, for the degraded Gaussian case as well,
although these inner and outer bounds do not match in general,
there are cases where they coincide and, hence, provide the
capacity region. In particular, the inner and outer bounds for the
degraded Gaussian MIMO channel completely match giving us
the exact capacity region, when either the public message rate
of the second legitimate user (weak user) or the confidential
message rate of the first legitimate user (strong user) is zero.
Moreover, these inner and outer bounds match for the secrecy
capacity region of the degraded Gaussian MIMO channel,
which we obtain by setting the rates of both public messages
to zero [6], [10].

II. DISCRETE MEMORYLESS MR-WCS

Discrete memoryless MR-WCs consist of a transmitter, two
legitimate users, and an eavesdropper. The channel is memory-
less with a transition probability , where
is the channel input, and , , denote
the channel outputs of the first legitimate user, the second le-
gitimate user, and the eavesdropper, respectively. We consider
the scenario in which, the transmitter sends a pair of public and
confidential messages to each legitimate user. While there are
no secrecy constraints on the public messages, the confiden-
tial messages need to be transmitted in perfect secrecy. We call
the channel model arising from this scenario the MR-WC with
public and confidential messages.
An code for this channel

consists of four message sets, ,
, ,

, one encoder at the transmitter
, and one decoder at each le-

gitimate user , for , 2. The
probability of error is defined as ,
where , for , 2,
and , , , are uniformly distributed random
variables in , , , , respectively. A rate tuple

is said to be achievable if there ex-
ists an code which satisfies

and

(1)

which implies

(2)

The capacity region of theMR-WCwith public and confiden-
tial messages, is defined as the convex closure of all achiev-
able rate tuples .

A. General Channels

We first consider the general, not necessarily degraded, dis-
crete memoryless MR-WC with public and confidential mes-
sages, and propose the following inner bound for its capacity
region.
Theorem 1: An achievable rate region for the discrete mem-

oryless MR-WC with public and confidential messages is given
by the union of rate tuples satisfying

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

for some , , , such that
.

The proof of Theorem 1 is given in Appendix A. We obtain
the achievable scheme in Theorem 1 by using Marton’s coding
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Fig. 2. Degraded MR-WC.

and rate splitting in conjunction with superposition coding and
binning. Here, we provide an outline of the achievable scheme
in Theorem 1 and defer the details to Appendix A. In this achiev-
able scheme, we first divide each public message into three
parts as , , , where the rates of the messages ,

, are given by , , , respectively, and
. Similarly, we divide each confidential mes-

sage into two parts as , , where the rates of the
messages , are given by , , respectively, and

. The first parts of the public messages, i.e.,
and , are sent through the sequences generated by .

The second parts of the public messages, i.e., and , and
the first parts of the confidential messages, i.e., and ,
are sent through the sequences generated by . Both legitimate
receivers decode these sequences, and hence, each legitimate
receiver decodes the parts of the other legitimate user’s public
and confidential messages. The last parts of each public message
and each confidential message, i.e., and , are encoded
by the sequences generated through . This encoding is per-
formed by using Marton’s coding [7]. Each legitimate receiver,
after decoding and , decodes the sequences .

B. Degraded Channels

We now consider the degraded MR-WC that satisfies the fol-
lowing Markov chain:

(17)

We first present an inner bound for the capacity region of the de-
graded discrete memoryless channel in the following theorem.
Theorem 2: An achievable rate region, denoted by ,

for the degraded discrete memoryless MR-WC with public
and confidential messages is given by the union of rate tuples

satisfying

(18)

(19)

(20)

(21)

(22)

where satisfy the following Markov chain:

(23)

The achievable rate region given by Theorem 2 can be ob-
tained from Theorem 1 by setting , ,
in Theorem 1. The achievable rate region in Theorem 2 can be
shown by using superposition coding and binning. Superposi-
tion coding enables us to transmit messages of each user at a
different layer, and binning enables us to ensure the protection
of the confidential messages from the eavesdropper.
Now, we introduce the following outer bound for the ca-

pacity region of the degraded discrete memoryless MR-WC
with public and confidential messages.
Theorem 3: The capacity region of the degraded discrete

memoryless MR-WC with public and confidential mes-
sages is contained in that is composed of rate tuples

satisfying

(24)

(25)

(26)

(27)

for some such that , exhibit the following Markov
chain:

(28)

The proof of Theorem 3 is given in Appendix C.
We note that the inner bound in Theorem 2 and the outer

bound in Theorem 3 do not match in general. In fact, in
Section III, we provide an example where the outer bound
strictly includes the inner bound, i.e., there are rate tuples that
are included in , but not in . However, there are cases
for which the exact capacity region can be obtained. First, we
note that the inner bound in Theorem 2 and the outer bound
in Theorem 3 match when the confidential message rate of the
first legitimate user is zero, i.e., .
Corollary 1: The capacity region of the degraded dis-

crete memoryless MR-WC without the first legitimate user’s
confidential message is given by the union of rate triples

satisfying

(29)

(30)

(31)
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where , exhibit the following Markov chain:

(32)

Corollary 1 can be proved by setting in both Theo-
rems 2 and 3 and eliminating the redundant bounds.
Next, we note that the inner bound in Theorem 2 and the outer

bound in Theorem 3 match when the public message rate of the
second legitimate user is zero, i.e., .
Corollary 2: The capacity region of the degraded dis-

crete memoryless MR-WC without the second legitimate
user’s public message is given by the union of rate triples

satisfying

(33)

(34)

(35)

where , exhibit the following Markov chain:

(36)

Corollary 2 can be proved by setting in both Theo-
rems 2 and 3 and eliminating the redundant bounds.
Corollary 2 also implies that the inner bound in Theorem 2

and the outer bound in Theorem 3 match on the secrecy capacity
region of the degraded MR-WC, i.e., when the rates of both
public messages , are set to zero:
Corollary 3 ([3]–[5]): The secrecy capacity region of the

degraded discrete memoryless MR-WC is given by the union
of rate pairs satisfying

(37)

(38)

where , exhibit the following Markov chain:

(39)

So far, we provided examples where the inner and outer
bounds match when one of the rates is zero. Next, we provide
an example where the inner and outer bounds match when none
of the rates is zero. To this end, we note that the inner and the
outer bounds can be expressed by using hyperplanes that are
tangent to them

(40)

(41)

Assume that the following condition holds:

(42)

(43)

Under these conditions, we have

(44)

(45)

(46)

(47)

where the set is given by the union of pairs
that satisfy the Markov chain in (28), and (47) follows
from the fact attains (47), and

is given by

(48)

(49)

Hence, this example shows that there are parts of the capacity
region where none of the rates is zero, and the inner and outer
bounds match.
Next, we provide an example where the inner bound is strictly

contained in the outer bound, i.e., there are rate tuples that are
inside the outer bound, but outside the inner bound. To provide
such an example, we again use the alternative descriptions of
the inner and outer bounds by means of tangent hyperplanes as
given by (40) and (41), respectively. We assume that the fol-
lowing condition holds:

(50)

Under this condition, we have

(51)

(52)

which can be shown by following the analysis in (44)–(47). The
set contains pairs that satisfy the Markov chain in
(28). Let us assume that is the maximizer for (52).
Hence, using (51) and (52), we have

(53)

where the right-hand side of (53) can be strictly positive for cer-
tain channel models. In particular, for the degraded Gaussian
model we consider in Section III, one can find such
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that the right-hand side of (53) is strictly positive. This obser-
vation implies that the outer bound strictly contains the inner
bound.

III. DEGRADED GAUSSIAN MIMO MR-WCS

Here, we consider the degraded Gaussian MIMO MR-WC
which is defined by

(54)

(55)

where the channel input is subject to a covariance constraint
where and , , are zero-mean

Gaussian random vectors with covariance matrices , , ,
respectively.
In the degraded Gaussian MIMO MR-WC, the noise covari-

ance matrices , , satisfy the following order:

(56)

In an MR-WC, since the capacity region depends only on the
conditional marginal distributions of the transmitter-receiver
links, but not on the entire joint distribution of the channel,
the correlations among , , do not affect the capacity
region. Thus, without changing the corresponding capacity
region, we can adjust the correlation structure among these
noise vectors to ensure that they satisfy the Markov chain

(57)

which is always possible because of our assumption about the
covariance matrices in (56).
We first provide an inner bound for the capacity region of

the degraded Gaussian MIMO MR-WC with public and confi-
dential messages by using Theorem 2 as stated in the following
theorem.
Theorem 4: An achievable rate region for the degraded

Gaussian MIMO MR-WC with public and confidential mes-
sages is given by the union of rate tuples
satisfying

(58)

(59)

(60)

(61)

(62)

where is a positive semidefinite matrix satisfying .

The achievable rate region given in Theorem 4 can be ob-
tained by evaluating the achievable rate region in Theorem 2 for
the degraded Gaussian MIMO MR-WC by using the following
selection for , : 1) is a zero-mean Gaussian random
vector with covariance matrix , 2) where

is a zero-mean Gaussian random vector with covariance
matrix , and is independent of . We note that besides this
jointly Gaussian selection, there might be other pos-
sible selections which may yield a larger region than
the one obtained by using jointly Gaussian . However,
we show that jointly Gaussian selection is sufficient
to evaluate the achievable rate region in Theorem 2 for the
degraded Gaussian MIMO MR-WC. This sufficiency result is
stated in the following theorem.
Theorem 5: For the degraded Gaussian MIMO MR-WC, the

achievable rate region in Theorem 2 is exhausted by jointly
Gaussian . In particular, for any non-Gaussian ,
there exists a Gaussian which yields a larger region
than the one obtained by using the non-Gaussian .
Next, we provide an outer bound for the capacity region of

the degraded Gaussian MIMO MR-WC. This outer bound can
be obtained by evaluating the outer bound given in Theorem 3
for the degraded Gaussian MIMO MR-WC. This evaluation is
tantamount to finding the optimal which exhausts the
outer bound in Theorem 3 for the degraded Gaussian MIMO
MR-WC. We show that jointly Gaussian is sufficient to
exhaust the outer bound in Theorem 3 for the degraded Gaussian
MIMO channel. The corresponding outer bound is stated in the
following theorem.
Theorem 6: The capacity region of the degraded Gaussian

MIMO MR-WC is contained in the union of rate tuples
satisfying

(63)

(64)

(65)

(66)

where is a positive semidefinite matrix satisfying .
The proofs of Theorems 5 and 6 are given in Appendix D.

We prove Theorems 5 and 6 by using the de Bruijn identity [9],
a differential relationship between differential entropy and the
Fisher information matrix, in conjunction with the properties of
the Fisher information matrix. In particular, to prove Theorem
5, we consider the region in Theorem 2, and show that for any
non-Gaussian , there exists a Gaussian which
yields a larger region than the one that is obtained by evaluating
the region in Theorem 2with the non-Gaussian .We note
that this proof of Theorem 5 implies the proof of Theorem 6. In
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particular, since the region in Theorem 2 includes all the con-
straints involved in the outer bound given in Theorem 3, the
proof of Theorem 5 reveals that for any non-Gaussian ,
there exists a Gaussian which yields a larger region
than the one that is obtained by evaluating the region in The-
orem 3 with the non-Gaussian .
The inner bound in Theorem 4 and the outer bound in The-

orem 6 do not match in general. However, similar to the discrete
memoryless case in Section II-B, here also we can specialize the
inner and outer bounds for the cases 1) , 2) ,
and 3) , where they match, yielding the capacity
region. These three cases correspond to the extension of Corol-
laries 1, 2, 3 to the degraded Gaussian MIMO model. Finally,
we note that the case gives us the secrecy ca-
pacity region of the degraded Gaussian MIMO model, and in
fact, the secrecy capacity region of the general, not necessarily
degraded, Gaussian MIMO model is known due to [6].

IV. CONCLUSION

We study theMR-WCwith public and confidential messages.
We first consider the general, not necessarily degraded, discrete
memoryless channel, and provide an inner bound for its capacity
region by using Marton’s coding and rate splitting in conjunc-
tion with superposition coding and binning. Second, we spe-
cialize this inner bound to the degraded case, where superposi-
tion coding and binning are sufficient to obtain this specialized
form of the inner bound. We also provide an outer bound for the
capacity region of the degraded case. We show that there are
cases where these bounds match providing the capacity region.
Third, we consider the degraded Gaussian MIMOMR-WC. We
show that, to evaluate the proposed inner and outer bounds for
the Gaussian MIMO case, it is sufficient to consider only jointly
Gaussian auxiliary random variables and channel input. Similar
to the discrete degraded case, for the degraded Gaussian MIMO
case also, these bounds match for certain cases.

APPENDIX A
PROOF OF THEOREM 1

We first consider a more general scenario than the scenario
introduced in Section II-A, where the transmitter sends a pair
of common public and confidential messages to the legitimate
users in addition to a pair of public and confidential messages
intended to each legitimate user. Thus, in this case, the trans-
mitter has themessage tuple ,
where the common public message and the common confi-
dential message are sent to both legitimate users, and a pair
of public and confidential messages are sent to the
th legitimate user, , 2.1 There is no secrecy concern on
the public messages while the confidential messages

need to be transmitted in perfect secrecy

(67)

1The inner bound in Theorem 1 can also be obtained by using rate splitting
for as mentioned in Section II-A. Here, we introduce a pair of
common messages , because the corresponding scenario results in
an achievable scheme that encompasses the one obtained by using rate splitting.

Next, we prove an achievable rate region for the more general
scenario we just introduced.
We fix the joint distribution

. Next, we divide the
common public message into two parts as

, where the rate of is , and the rate of

is . We use rate splitting for the common public message
because due to [2], we know that rate splitting might enhance
the achievable public and confidential message rate pairs even
for the single legitimate user case.

Codebook Generation:

1) Generate length- sequences through
, and index them as , where

.

2) For each sequence, generate
length- sequences through

, and index them as ,

where , ,
.

3) For each sequence, gen-
erate length- sequences
through , and index
them as , where

, ,
, .

Encoding: Assume is the
message to be transmitted. Randomly pick , , . Next,
we find an pair such that the corresponding sequence
tuple is jointly typical. Due to mutual covering
lemma [11], if , satisfy

(68)

with high probability, there will be at least one such , pair.
Decoding: The th legitimate user decodes

in two steps. In the first
step, it decodes by looking for the unique

pair such that is jointly typical. In the
second step, given that is decoded correctly in
the first step, the th legitimate user decodes
by looking for the unique tuple such that

is jointly typical. If the following conditions
are satisfied:

(69)

(70)

(71)

(72)

(73)

both legitimate users decode their messages with vanishingly
small probability of error.
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Equivocation Computation: We now show that the
proposed coding scheme satisfies the perfect secrecy require-
ment on the confidential messages given by (67). We start as
follows:

(74)

(75)

(76)

(77)

(78)

(79)

where (76) and (77) follow from the facts that the
messages , , , , , , , ,

are independent among themselves, uniformly dis-
tributed, and also are independent of , (78) stems from
the fact that given the codewords ,

and are
independent, and (79) comes from the fact that

(80)

where as . The bound in (80) can be shown by
following the analysis in [12]. Next, we consider the conditional
entropy term in (79). To this end, we introduce the following
lemma.

Lemma 1: We have

(81)

where as , if the following conditions are
satisfied:

(82)

(83)

(84)

The proof of Lemma 1 is given in Appendix B. This lemma
implies the following.

Corollary 4: We have

(85)

where as , if the following condition is satis-
fied:

(86)

Now, we set the rates , , , , , , , as
follows:

(87)

(88)

(89)

(90)

(91)

In view of Lemma 1 and Corollary 4, the selections of , ,
, , , , , in (87)–(91) imply that

(92)

using which and (87)–(89) in (79), we get

(93)

(94)
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which implies that the proposed coding scheme satisfies the per-
fect secrecy requirement on the confidential messages; com-
pleting the equivocation computation.
Hence, we show that rate tuples
satisfying

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)

are achievable. Next, one can obtain the achievable rate re-
gion in Theorem 1 by using Fourier–Motzkin elimination in
conjunction with the fact that since the common public and
confidential messages , are decoded by both users,
they can be converted into public and confidential messages

of the legitimate users.

APPENDIX B
PROOF OF LEMMA 1

Assume that, given
, the eavesdropper tries to decode , ,

, , , by looking for the unique such that
is jointly typical. There are four possible

error events.
1) is not jointly typical for the
transmitted .

2)
and the corresponding tuple

is jointly typical .
3)

and the corresponding tuple
is jointly typical .

4)
, and the corresponding tuple

is jointly typical .
Thus, the probability of decoding error at the eavesdropper is
given by

(104)

(105)

where we first use the union bound, and next the fact that
for some satisfying as ,

which follows from the properties of the jointly typical se-
quences [8]. Next, we consider as follows:

(106)

(107)

(108)

(109)

(110)

(111)

where denotes the all 1s vector of appropriate size, denotes
the typical set, is a constant that is a function of , and satisfies

as , (107) is due to the joint distribution of
, (108) is due to the properties of the typical

sequences [8], and (110) comes from the bounds on the size of
[8]. Equation (111) implies that as if

the following condition is satisfied:

(112)

Similarly, we can show that as if the
following condition is satisfied:

(113)

Next, we consider as follows:

(114)

(115)

(116)

(117)

(118)

(119)
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where (115) is due to the joint distribution of ,
(116) stems from the properties of the typical sequences [8], and
(118) comes from the bounds on the size of [8]. Equation
(119) implies that vanishes as if the following
condition is satisfied:

(120)
Thus, we show that if the rates
satisfy (112), (113), and (120), the eavesdropper can de-
code , , , , , by using its knowledge of

, i.e., vanishes as . In
view of this fact, using Fano’s lemma, we get

(121)
where as , completing the proof.

APPENDIX C
PROOF OF THEOREM 3

We define the following auxiliary random variables:

(122)

which satisfy the Markov chains
, since the channel is degraded and memoryless. For any

code achieving the rate tuple
, we have

(123)

(124)

where , as . Equation (123) is due to
Fano’s lemma, and (124) is due to the perfect secrecy require-
ment in (1). We note that (124) implies the following:

(125)

We introduce the following lemma which follows from
Csiszar–Korner sum identity [2, Lemma 7].

Lemma 2:

(126)
First, we obtain an outer bound for as follows:

(127)

(128)

(129)

where (127) comes from the converse proof for the secrecy ca-
pacity of wiretap channels in [2], and (128) and (129) come from
the following Markov chains:

(130)

(131)

respectively, which follow from the fact that the channel is de-
graded and memoryless.
Next, we obtain an outer bound for as follows:

(132)

(133)

(134)

(135)

(136)

where (132) comes from (125), (134) is due to (129), (135)
comes from Lemma 2, (136) is a consequence of the fact that
the channel is memoryless and degraded.
Next, we obtain an outer bound for as follows:

(137)

(138)

(139)

(140)

(141)

(142)

where (141) comes from the Markov chain in (131).
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Finally, we obtain an outer bound for the sum rate
. To this end, we consider the following:

(143)

(144)

(145)

(146)

(147)
using which and (141), we have

(148)

(149)

(150)

(151)

(152)

(153)

(154)

where (150) comes from Csiszar–Korner sum identity [2,
Lemma 7], (151) is due to the Markov chain in (131), and (153)
is a consequence of the Markov chain in (130). Equation (154)
implies

(155)

Using (129), (136), (142), and (155), Theorem 3 can be
concluded.

APPENDIX D
PROOFS OF THEOREMS 5 AND 6

A) Background: Here, we introduce some properties of the
Fisher information and the differential entropy.

Definition 1 ([6, Definition 3]): Let be an arbitrary
length- random vector pair with well-defined densities. The
conditional Fisher information matrix of given is

(156)

where the expectation is over the joint density , and
is the conditional score function given by

.
The following two lemmas, which were proved in [6], will be

used in the upcoming proof.
Lemma 3 ([6, Lemma 6]): Let , , , be random

vectors such that and are independent. More-
over, let , be Gaussian random vectors with covariance
matrices , such that . Then, we have

(157)

Lemma 4 ([6, Lemma 8]): Let and be positive
semidefinite matrices satisfying , and be a
matrix-valued function such that for .
Moreover, is assumed to be gradient of some scalar field.
Then, we have

(158)

The following generalization of the de Bruijn identity is due
to [9], where the unconditional form of this identity, i.e.,
, is proved. Its generalization to this conditional form for an
arbitrary is rather straightforward, and is given in Lemma 16
of [6].

Lemma 5 ([6, Lemma 16]): Let be an arbitrarily
correlated random vector pair with finite second-order mo-
ments, and also be independent of the random vector which
is zero-mean Gaussian with covariance matrix . Then,
we have

(159)

The following lemma is due to [13] and [14] which lower
bounds the differential entropy in terms of the Fisher informa-
tion matrix.
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Lemma 6 ([13], [14]): Let be an arbitrary random
vector, where the conditional Fisher information matrix of ,
conditioned on , exists. Then, we have

(160)

B) Proofs: First, we prove Theorem 5 by showing that for
any , there exists a Gaussian which provides
a larger region. Essentially, this proof will also yield a proof for
Theorem 6 because the outer bound in Theorem 3 is defined
by the same inequalities that define the inner bound given in
Theorem 2 except for the inequality in (21).

First Step: We consider the bound on given in (18) as
follows:

(161)

(162)

(163)

where (163) follows from the worst additive noise lemma [15,
Lemma II.2]. Next, we consider the remaining terms in (163) as
follows:

(164)

which follows from Lemma 5, and is a Gaussian random
vector with covariance matrix satisfying .
Using Lemma 3, we have

(165)

for any satisfying , which imply

(166)

Using these inequalities in (164) in conjunction with Lemma
4, we get

(167)

which can be expressed as

(168)

where is defined as

(169)

and is given by

(170)

Since is continuous in , due to the intermediate value the-
orem, there exists a such that , and

(171)

where . Since , satisfies

(172)

in view of (170). Moreover, we have

(173)

(174)

(175)

(176)

where (174) comes from the conditional Cramer–Rao inequality
[6, Lemma 13] and (175) is due to the fact that conditioning
reduces the MMSE matrix in a positive semidefinite ordering
sense. Thus, in view of (172) and (176), satisfies

(177)

Now, using (171) in (163), we get the following bound on :

(178)

which completes the first step of the proof.
Second Step: We consider the bound on given

in (19) as follows:

(179)

(180)

(181)

where (181) comes from the worst additive noise lemma [15,
Lemma II.2]. Next, we consider the remaining term in (181) as
follows:

(182)
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which follows from Lemma 5, and is a Gaussian random
vector with covariance matrix satisfying .
For any Gaussian random vector with , we have

(183)

(184)

where (183) is due to Lemma 3, and (184) comes from (177).
Equation (184) implies

(185)

Using (185) in (182) in conjunction with Lemma 4, we have

(186)

(187)

Using (187) in (181), we get

(188)

which completes the second step of the proof.
Third Step: We consider the bound on given in

(20) as follows:

(189)

(190)

where (190) comes from the maximum entropy theorem [8].
Next, we consider the remaining term in (190). Using (171), we
have

(191)

(192)

(193)

(194)

where (192) is due to Lemma 6, and (193) comes from (173)
and monotonicity of in positive semidefinite matrices. Using
(194) in (190), we get

(195)

which completes the third step of the proof.

Fourth Step: We consider the bound in (21) as follows:

(196)

(197)

(198)

(199)

(200)

(201)

(202)

(203)

where (198) comes from the maximum entropy theorem [8],
(199) comes from (194), (201) is due to (171), and (202) comes
from (187).

Fifth Step: We consider the bound in (22) as follows:

(204)

(205)

(206)

(207)

(208)

where (206) comes from the maximum entropy theorem [8], and
(207) comes from (187).
Hence, we have shown that for any feasible , there

exists a Gaussian which yields a larger rate region.
This completes the proof.
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