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Secrecy in MIMO Networks With
No Eavesdropper CSIT

Pritam Mukherjee, Member, IEEE, and Sennur Ulukus, Fellow, IEEE

Abstract— We consider two fundamental multi-user channel
models: the multiple-input multiple-output (MIMO) wiretap
channel with one helper (WTH) and the MIMO multiple access
wiretap (MAC-WT) channel. In each case, the eavesdropper has
K antennas while the remaining terminals have N antennas
each. We consider a fast fading channel where the channel state
information (CSI) of the legitimate receiver is available at the
transmitters but no CSI at the transmitters (CSIT) is available
for the eavesdropper’s channel. We determine the optimal sum
secure degrees of freedom (s.d.o.f.) for each channel model for
the regime K ≤ N, and show that in this regime, the MAC-WT
channel reduces to the WTH in the absence of eavesdropper
CSIT. For the regime N ≤ K ≤ 2N, we obtain the optimal
linear s.d.o.f., and show that the MAC-WT channel and the WTH
have the same optimal s.d.o.f. when restricted to linear encoding
strategies. In the absence of any such restrictions, we provide
an upper bound for the sum s.d.o.f. of the MAC-WT channel in
the regime N ≤ K ≤ 2N. Our results show that unlike in the
single-input single-output case, there is loss of s.d.o.f. for even
the WTH due to lack of eavesdropper CSIT when K ≥ N.

Index Terms— Wiretap channel, multiple access channel,
secure degrees of freedom, channel state information, interference
alignment.

I. INTRODUCTION

WE CONSIDER two multi-user models: the multiple-
input multiple-output (MIMO) wiretap channel with

one helper (WTH) where the transmitter, the helper and the
legitimate receiver have N antennas each, and the eavesdrop-
per has K antennas; see Fig. 1, and the MIMO multiple access
wiretap channel (MAC-WT), where both transmitters and the
legitimate receiver have N antennas each and the eavesdropper
has K antennas; see Fig. 2. In both cases, the channel is
fast fading and the channel gains vary in an independent and
identically distributed (i.i.d.) fashion across the links and time.
We consider the case when the eavesdropper’s channel state
information (CSI) is not available at the transmitters (no eaves-
dropper CSIT). Our goal in this paper is to investigate
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the optimal sum secure degrees of freedom (s.d.o.f.) of the
MIMO WTH and the MIMO MAC-WT channel as a function
of N and K .

To that end, we provide an achievable scheme based on
vector space alignment [1], that attains 1

2 (2N − K ) s.d.o.f. for
the WTH for all values of 0 ≤ K ≤ 2N . Note that when
K ≤ N , this value coincides with the optimal s.d.o.f. for the
WTH in the case where full eavesdropper CSIT is available.
Therefore, for the regime K ≤ N , there is no loss of s.d.o.f. for
the WTH due to the lack of eavesdropper CSIT. Further,
the proposed scheme which does not require eavesdropper
CSIT, is optimal. The achievable scheme for the WTH also
suffices as an achievable scheme for the MAC-WT channel,
since we can treat one of the transmitters as a helper and use
time-sharing among the two transmitters.

To prove the optimality of the proposed scheme for the
MAC-WT channel, we next provide a matching converse for
the regime K ≤ N . Besides using MIMO versions of the
secrecy penalty lemma and the role of a helper lemma [2],
the converse proof relies on exploiting channel symmetry
at the eavesdropper. Since the transmitters do not have the
eavesdropper’s CSIT, the output at the K antennas of the
eavesdropper are entropy symmetric [3], i.e., any two subsets
of the antenna outputs have the same differential entropy, if the
subsets are of equal size. Finally, we use a MIMO version
of the least alignment lemma [4], [5], which states that the
differential entropy at the output of the terminal which does
not provide CSIT is the greatest among terminals having equal
number of antennas. Intuitively, this holds since no signal
alignment is possible at the output of the terminal which does
not provide CSIT.

The converse in the regime K ≤ N shows that the
sum s.d.o.f. cannot exceed 1

2 (2N − K ) for the MAC-WT
channel. Note that a converse for the MAC-WT channel
is valid for the WTH as well. Further, together with the
achievable scheme, it shows that the optimal s.d.o.f. for
both the WTH and the MAC-WT channel in this regime
is 1

2 (2N − K ); therefore, as in the SISO case [6], [7],
which is a subset of this regime with N = K = 1,
the MAC-WT channel reduces to the WTH when the eaves-
dropper’s CSIT is not available. Recalling that with full
eavesdropper CSIT, the optimal sum s.d.o.f. of the MAC-WT
channel in this regime is min(N, 2

3 (2N − K )) [8], [9],
this also illustrates the loss of s.d.o.f. for the MAC-WT
channel due to the lack of eavesdropper’s CSIT.

Next, we consider the regime N ≤ K ≤ 2N . In this
regime, we provide an upper bound which shows that the
sum s.d.o.f. of the MAC-WT channel cannot be larger than
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min
(

N
2 , 2N(2N−K )

4N−K

)
. Noting that 2N(2N−K )

4N−K < (2N − K ),
we conclude that there will be loss of s.d.o.f. due to lack
of eavesdropper CSIT, even for the WTH, in the regime
4N
3 ≤ K ≤ 2N , where min

( N
2 , 2N − K

)
s.d.o.f. is achievable

with full eavesdropper CSIT [10], [11].
In order to further investigate the optimality of 1

2 (2N − K )
as the sum s.d.o.f. for the MAC-WT channel in the regime
N ≤ K ≤ 2N , we then restrict ourselves to linear encoding
strategies [12], [13], where the channel input of each antenna
in every time slot is restricted to be a linear combination of
some information symbols intended for the legitimate receiver
and some artificial noise symbols to provide secrecy at the
eavesdropper. We show that under this restriction to linear
encoding schemes, the linear sum s.d.o.f. can be no larger
than 1

2 (2N − K ). The key idea of the proof is that since no
alignment is possible at the eavesdropper, the artificial noise
symbols should asymptotically occupy the maximum number
of dimensions available at the eavesdropper; consequently,
the dimension of the linear signal space at the eavesdropper
should be K n + o(n) in n channel uses.

Related Work: The MAC-WT channel is introduced
in [14], [15], where the technique of cooperative jamming
is introduced to improve the rates achievable with Gaussian
signaling. Reference [16] provides outer bounds and identifies
cases where these outer bounds are within 0.5 bits per channel
use of the rates achievable by Gaussian signaling. While
the exact secrecy capacity remains unknown, the achievable
rates in [14]–[16] all yield zero s.d.o.f. Positive s.d.o.f. can
be obtained by either structured signaling [17] or non-
i.i.d. Gaussian signaling [18]. The exact optimal sum s.d.o.f. of
the wiretap channel with M helpers and the K -user MAC-WT
channel are established to be M

M+1 and K (K−1)
K (K−1)+1, respec-

tively in [2], when full eavesdropper’s CSIT is available.
References [6], [7], and [19] show that without eaves-
dropper’s CSIT, the optimal s.d.o.f. for the wiretap chan-
nel with M helpers is still M

M+1 , while the optimal sum
s.d.o.f. of the K -user MAC-WT channel decreases to K−1

K .
The MIMO WTH, with full eavesdropper CSIT is considered
in [10], [11], and [20], and the optimal s.d.o.f. is determined
for the case when the transmitter and the receiver each has
N antennas, the helper has K antennas and the eavesdropper
has M antennas. References [8], [9], and [21] determine the
optimal sum s.d.o.f. for the two user MIMO MAC-WT channel
when each transmitter and the receiver have N antennas while
the eavesdropper has K antennas, and full eavesdropper CSIT
is available.

A related line of research investigates the MIMO wiretap
channel, the MIMO MAC-WT, and the MIMO broadcast
channel with an arbitrarily varying eavesdropper [22]–[24],
when the eavesdropper CSIT is not available. The eaves-
dropper’s channel matrices are assumed to be arbitrary,
without any assumptions on its distribution, and security is
guaranteed for every realization of the eavesdropper’s channel.
This models an exceptionally strong eavesdropper, which may
control its own channel in an adversarial manner. When
K ≥ N , the eavesdropper’s channel realizations may be
exactly equal to the legitimate user’s channel realizations,

and therefore, the optimal sum s.d.o.f. is zero in this regime
for both the MAC-WT and the WTH. When K ≤ N , and
the channel matrices to the legitimate receiver are full rank,
the optimal sum s.d.o.f. is N − K for both the MAC-WT
and the WTH. The converse is essentially immediate since
the eavesdropper’s channel realization may be exactly equal to
the channel realization of the first K antennas of the legitimate
receiver, and therefore, only N − K s.d.o.f., corresponding to
the N − K remaining antennas at the legitimate receiver can
be achieved. On the other hand, in our model, the entries in
the eavesdropper’s channel matrices are drawn from a known
continuous distribution, though the realizations are not known
at the transmitters. Note that the achievable schemes proposed
in [22]–[24] for the worst case channel also work in our
case; however, they are not optimal. In fact, we show that,
in our case, strictly positive s.d.o.f. can be achieved even when
K ≥ N , using interference alignment techniques. Further,
the s.d.o.f. achieved in our case when K ≤ N is strictly
larger than the optimal s.d.o.f. of N − K for the case with
an arbitrarily varying eavesdropper. Since, our channel model
enlarges the achievable rate region by using a less pessimistic
probabilistic channel model, the converse proofs in [22]–[24]
do not hold in our case. Therefore, we provide novel converse
proofs which rely on the interplay between channel symmetry,
the secrecy penalty lemma, the role of a helper lemma, and
the least alignment lemma. We also provide a novel converse
proof for the case of linear encoding schemes.

II. SYSTEM MODEL

In this paper, we consider two fundamental channel models:
the MIMO WTH and the MIMO MAC-WT. In each case,
we assume that the channel gains are non-zero and are
drawn from a common continuous distribution with bounded
support in an i.i.d. fashion in each channel use. The common
continuous distribution is known at all the terminals in the
system. We assume no eavesdropper CSIT, that is, the channel
gains to the eavesdropper are not available at any transmitter.
In the following three subsections we describe each channel
model and provide the relevant definitions.

A. Wiretap Channel With a Helper

The MIMO WTH, see Fig. 1, is described by,

Y(t) = H1(t)X1(t) + H2(t)X2(t) + N1(t) (1)

Z(t) = G1(t)X1(t) + G2(t)X2(t) + N2(t), (2)

where X1(t) and X2(t) are N dimensional column vectors
denoting the input of the legitimate transmitter and the
helper, respectively, Y(t) is an N dimensional vector denot-
ing the legitimate receiver’s channel output, and Z(t) is a
K dimensional vector denoting the eavesdropper’s channel
output, at time t . In addition, N1(t) and N2(t) are N and K
dimensional white Gaussian noise vectors, respectively, with
N1 ∼ N (0, IN ) and N2 ∼ N (0, IK ), where IN denotes
the N × N identity matrix. Here, Hi (t) and Gi (t) are the
N × N and K × N channel matrices from transmitter i
to the legitimate receiver and the eavesdropper, respectively,
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Fig. 1. Wiretap channel with a helper (WTH).

at time t . The entries of Hi (t) and Gi (t) are drawn from
a fixed continuous distribution with bounded support in an
i.i.d. fashion at every time slot t . We assume that the channel
matrices at the legitimate receiver, Hi (t), are known with
full precision at all terminals (including the eavesdropper),
at time t . However, the channel matrices to the eavesdropper,
Gi (t) are known only at the eavesdropper and not known at
any transmitter. All channel inputs satisfy the average power
constraint E[‖Xi (t)‖2] ≤ P, i = 1, 2, where ‖X‖ denotes the
Euclidean (or spectral) norm of the vector (or matrix) X. Note
that since we are interested in the s.d.o.f. (rather than the rate),
assuming individual power budgets of P and αP , α > 0 will
not affect our results. This fact can be verified by noting that
neither the achievable scheme nor the converses are sensitive
to scaling of the power by a positive constant. Further,
if one imposes a total power budget P , the s.d.o.f. remains
unchanged as long as each transmitter is allocated a strictly
positive fraction of the total power budget P . Thus, there is
little loss of generality in the simplifying assumption of equal
individual power budgets, as we have done here.

The transmitter wishes to send a message W , uniformly
distributed in W , securely to the legitimate receiver in the
presence of the eavesdropper. The helper has no information
about the secret message W . A secure rate R, with R = log |W |

n
is achievable if there exists a sequence of codes which satisfy
the reliability constraints at the legitimate receiver, namely,
Pr[W �= Ŵ ] ≤ εn , for i = 1, 2, and the secrecy constraint,
namely,

1

n
I (W ; Zn) ≤ εn, (3)

where εn → 0 as n → ∞. An s.d.o.f. d is said to be achievable
if a rate R is achievable with

d = lim
P→∞

R
1
2 log P

. (4)

B. Multiple Access Wiretap Channel

The two-user MIMO MAC-WT, see Fig. 2, is as follows:

Y(t) = H1(t)X1(t) + H2(t)X2(t) + N1(t) (5)

Z(t) = G1(t)X1(t) + G2(t)X2(t) + N2(t), (6)

Fig. 2. Multiple access wiretap channel (MAC-WT).

where Xi (t) is an N dimensional column vector denoting the
i th user’s channel input, Y(t) is an N dimensional vector
denoting the legitimate receiver’s channel output, and Z(t) is
a K dimensional vector denoting the eavesdropper’s channel
output, at time t . In addition, N1(t) and N2(t) are N and K
dimensional white Gaussian noise vectors, respectively, with
N1 ∼ N (0, IN ) and N2 ∼ N (0, IK ), where IN denotes the
N × N identity matrix. Here, Hi (t) and Gi (t) are the N × N
and K×N channel matrices from transmitter i to the legitimate
receiver and the eavesdropper, respectively, at time t . The
entries of Hi (t) and Gi (t) are drawn from a fixed continuous
distribution with bounded support in an i.i.d. fashion at every
time slot t . We assume that the channel matrices to the
legitimate receiver, Hi (t), are known with full precision at
all terminals, at time t . However, the channel matrices to the
eavesdropper, Gi (t), are known only at the eavesdropper and
are not available at the transmitters. All channel inputs satisfy
the average power constraint E[‖Xi (t)‖2] ≤ P, i = 1, 2.

Transmitter i wishes to send a message Wi , uniformly
distributed in Wi , securely to the legitimate receiver in the
presence of the eavesdropper. A secure rate pair (R1, R2),
with Ri = log |Wi |

n is achievable if there exists a sequence of
codes which satisfy the reliability constraints at the legitimate
receiver, namely, Pr[Wi �= Ŵi ] ≤ εn , for i = 1, 2, and the
secrecy constraint, namely,

1

n
I (W1, W2; Zn) ≤ εn, (7)

where εn → 0 as n → ∞. An s.d.o.f. pair (d1, d2) is said to
be achievable if a rate pair (R1, R2) is achievable with

di = lim
P→∞

Ri
1
2 log P

. (8)

The sum s.d.o.f. ds is the largest achievable d1 + d2.

C. A Linear Secure Degrees of Freedom Perspective

In this paper, we also consider linear coding strategies as
defined in [12] and [25]. In such cases, the degrees of freedom
simply represents the dimension of the linear subspace of
transmitted signals. This is especially useful in the regime
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when the number of eavesdropper antennas K exceeds the
number of receiver antennas N , since the general upper bound
we propose for this regime is not matched by the achievable
scheme, as we will see in Section III. However, restricting
to linear encoding schemes allows us to use linear algebraic
techniques and prove a matching converse for the class of lin-
ear encoding schemes. Thus, the proposed achievable scheme,
which is linear, is optimal in the class of linear schemes. The
motivation for considering the class of linear schemes is two-
fold: First, to the best of our knowledge, all alignment based
schemes existing in the literature fall in the category of linear
encoding schemes, as we formalize later. Second, the class of
linear schemes are interesting from a practical point of view,
since it includes all linear precoding schemes employed in
wireless communication schemes.

When we focus on linear coding schemes, we consider a
communication scheme of blocklength n, where transmitter
i wishes to send mi (n) information symbols vi ∈ R

mi (n)

to the legitimate receiver reliably and securely. In case of
the WTH, m2(n) = 0. Each information symbol is a zero-
mean Gaussian random variable with variance αP , where α is
a constant chosen to ensure that the power constraints are
satisfied at each transmitter. In addition to the information
symbols, transmitter i can use ni (n) artificial noise symbols,
ui ∈ R

ni (n) each of which is a zero-mean Gaussian random
variable with variance αP . These artificial noise symbols need
not be decoded at the receiver; instead they drown out the
information symbols at the eavesdropper for security.

At each time t , the information symbols vi at transmitter i
are modulated by a precoding matrix Pi (t) ∈ R

N×mi (n),
while the artificial noise symbols ui are modulated using a
precoding matrix Qi (t) ∈ R

N×ni (n). Since the channel gains
Hi (t), i = 1, 2 are known at both transmitters at time t ,
the precoding matrices Pi (t) and Qi (t) can each depend
on {H1(k), H2(k), k = 1, . . . , t}. However, since the channel
gains Gi(t) are not available at any transmitter, Pi and Qi are
independent of {Gi (t), t = 1, . . . , n}.

At time t , transmitter i sends a linear combination of the
information and the artificial noise symbols:

Xi (t) = Pi (t)vi + Qi (t)ui . (9)

The channel outputs at time t are, therefore,

Y(t) = H1(t)P1(t)v1 + H2(t)P2(t)v2 + H1(t)Q1(t)u1

+ H2(t)Q2(t)u2 + N1(t) (10)

Z(t) = G1(t)P1(t)v1 + G2(t)P2(t)v2 + G1(t)Q1(t)u1

+ G2(t)Q2(t)u2 + N2(t). (11)

Note that for the WTH, m2(n) = 0, which transmitter 2
has no v2, and therefore, no P2(t). In other words, X2(t) =
Q2(t)u2. The channel outputs will be modified accordingly
in a similar fashion. Now letting P̄i = [Pi (1), . . . , Pi (n)]T ,
Q̄i = [Qi(1), . . . , Qi (n)], we can compactly write the channel
outputs as

Ȳ = H̄1P̄1v1 + H̄2P̄2v2 + H̄1Q̄1u1 + H̄2Q̄2u2 + N̄1 (12)

Z̄ = Ḡ1P̄1v1 + Ḡ2P̄2v2 + Ḡ1Q̄1u1 + Ḡ2Q̄2u2 + N̄2, (13)

where H̄i and Ḡi are the Nn×Nn and K n×Nn block diagonal
matrices

H̄i =

⎡
⎢⎢⎢⎣

Hi (1) 0 . . . 0
0 Hi (2) . . . 0
...

...
. . .

...
0 0 . . . Hi (n)

⎤
⎥⎥⎥⎦ ,

Ḡi =

⎡
⎢⎢⎢⎣

Gi (1) 0 . . . 0
0 Gi (2) . . . 0
...

...
. . .

...
0 0 . . . Gi (n)

⎤
⎥⎥⎥⎦ (14)

and N̄i = [Ni (1), . . . , Ni (n)]T for i = 1, 2.
At the legitimate receiver, the interference subspace is

IB = colspan([H̄1Q̄1, H̄2Q̄2]). (15)

Let I c
B denote the orthogonal subspace of IB . If we ignore

the additive Gaussian noise, i.e., in the high transmit power
regime, the decodability of v1 and v2 at the legitimate
receiver corresponds to the constraint that the projection
of the subspace colspan([H̄1P̄1, H̄2P̄2]) onto I c

B must have
dimension m1(n) + m2(n), i.e.,

dim
(

ProjIc
B

colspan
([H̄1P̄1, H̄2P̄2]

))

= dim
(
colspan

([P̄1]
)) + dim

(
colspan

([P̄2]
))

= m1(n) + m2(n). (16)

This can be rewritten as requiring that

rank
([H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

)

−rank
([H̄1Q̄1, H̄2Q̄2]

) = m1(n) + m2(n). (17)

On the other hand, at the eavesdropper, the security condi-
tion can be stated as

lim
n→∞

1

n
dim

(
ProjIc

E
colspan

([Ḡ1P̄1, Ḡ2P̄2]
)) = 0, a.s.,

(18)

where IE = colspan([Ḡ1Q̄1, Ḡ2Q̄2]).
The security requirement in (18) can be reformulated as

follows: Let L(n) be the number of leakage dimensions
defined as

L(n) = rank
([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)

− rank
([Ḡ1Q̄1, Ḡ2Q̄2]

)
. (19)

Then, we want

lim
n→∞

L(n)

n
= 0, a.s. (20)

In other words, we want the artificial noise symbols to
occupy the full received signal space at the eavesdropper
asymptotically.

The quantity L(n) may be thought of as the evaluation of
limP→∞ I (v1,v2;Z̄)

1
2 log P

for the input-output relation stated in (13).

To see this, we use [7, Lemma 1], which we state here for
completeness.

Lemma 1: Let A be an M × N dimensional matrix and let
X = (X1, . . . , X N )T be a jointly Gaussian random vector with
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zero-mean and variance PI. Also, let N = (N1, . . . , NM )T be
a jointly Gaussian random vector with zero-mean and variance
σ 2I, independent of X. If r = rank(A), then,

h(AX + N) = r

(
1

2
log P

)
+ o(log P). (21)

Using Lemma 1, we have

I (v1, v2; Z̄) = h(Z̄) − h(Z̄|v1, v2) (22)

= (
rank

([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]
)

− rank
([Ḡ1Q̄1, Ḡ2Q̄2]

) ) (
1

2
log P

)

+ o(log P) (23)

= L(n)

(
1

2
log P

)
+ o(log P), (24)

which implies

lim
P→∞

I (v1, v2; Z̄)
1
2 log P

= L(n). (25)

In a similar way, the decodability requirement in (17) can
be thought of as ensuring that limP→∞ I (v1,v2;Ȳ)

1
2 log P

= m1(n) +
m2(n), for the input output relation stated in (12).

For the WTH, a linear s.d.o.f. dlin with dlin = m1(n)/n is
said to be achievable if there exists a sequence of precoding
matrices P̄1, Q̄1, Q̄2 such that both the reliability constraints
in (16) and the security constraints in (18) are satisfied.

For the MAC-WT channel, a linear s.d.o.f. pair (dlin
1 , dlin

2 ),
with dlin

i = mi (n)/n is said to be achievable if there exists
a sequence of precoding matrices P̄i , Q̄i such that both the
reliability constraints in (16) and the security constraints in
(18) are satisfied. The linear sum s.d.o.f. dlin

s is the supremum
of dlin

1 + dlin
2 , such that the pair (dlin

1 , dlin
2 ) is achievable.

III. MAIN RESULTS

The main result of this paper is the determination of the
optimal linear sum s.d.o.f. for the MIMO WTH and the MIMO
MAC-WT channel. We have the following theorem.

Theorem 1: For both the N × N × N × K WTH and the
MAC-WT channel with no eavesdropper CSIT, the optimal
linear sum s.d.o.f. dlin

s is

dlin
s = max

(
1

2
(2N − K ), 0

)
, (26)

for almost all channel gains. Further, without any linearity
constraints, the optimal sum s.d.o.f. ds is

ds

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

= 1

2
(2N − K ), 0 ≤ K ≤ N

≤ min

(
N

2
,

2N(2N − K )

4N − K

)
, N ≤ K ≤ 2N

= 0, K ≥ 2N.

(27)

We also have the following corollary.
Corollary 1: For the N × N × N × K MAC-WT channel

with no eavesdropper CSIT, the linear s.d.o.f. region is given
by the set of all nonnegative pairs (dlin

1 , dlin
2 ) that satisfy,

dlin
1 + dlin

2 = 1

2
(2N − K ). (28)

Fig. 3. Sum s.d.o.f. with number of eavesdropper antennas.

Fig. 4. Converse for MAC-WT with no Eve CSIT.

The proof of the corollary follows from the observation that
every point in the given region can be achieved by time shar-
ing between the points

( 1
2 (2N − K ), 0

)
and

(
0, 1

2 (2N − K )
)
,

which can themselves be attained by treating the MAC-WT
channel as a WTH. Also, no point outside the region is
achievable since the sum s.d.o.f. is bounded by 1

2 (2N − K )
from Theorem 1.

Fig. 3 shows the optimal linear sum s.d.o.f. for the WTH
and the MAC-WT channel with and without eavesdropper
CSIT, while Fig. 4 shows the general (without any linearity
restrictions on the encoding schemes) upper bound on the sum
s.d.o.f. for the MAC-WT channel without eavesdropper CSIT.
Similar to the SISO case [7], as shown in Fig. 3, the MIMO
MAC-WT channel reduces to the WTH when the eavesdropper
CSIT is not available for the regime 0 ≤ K ≤ N , and at least
from a linear s.d.o.f. perspective in the regime N ≤ K ≤ 2N .
However, unlike in the SISO case [7], the linear s.d.o.f. for the
WTH decreases due to the lack of eavesdropper CSIT. Even
without any linearity constraints, the optimal s.d.o.f. for the
WTH does decrease due to lack of eavesdropper CSIT, as can
be seen from the general upper bound in Fig. 4, especially in
the regime 4N

3 ≤ K ≤ 2N . Further, unlike in the case with
eavesdropper CSIT, the upper bound of min(N, (2N − K )+),
obtained by enhancing the WTH or the MAC-WT to a MIMO
wiretap channel with 2N transmitter antennas, N receiver
antennas and K eavesdropper antennas, is strictly loose even
in the regime 2N ≥ K ≥ 3N

2 , as can be observed from Fig. 4.
We note that the same upper bound of min(N, (2N − K )+)
can also be obtained by a different genie-aided enhancement
where the helper’s channel input is provided to the legitimate
receiver and the eavesdropper is restricted to treat the helper’s
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signal as noise, following the lines of [26]. Fig. 3 and Fig. 4
also show the optimal sum s.d.o.f. for the WTH and the
MAC-WT with an arbitrarily varying eavesdropper. When
K ≥ N , the optimal sum s.d.o.f. is zero in this case since with
K = N , the channel matrices of eavesdropper channel may be
made exactly equal to the channel matrices of the legitimate
receiver’s channel. When K ≤ N and the legitimate receiver’s
channel matrices are full rank, the optimal sum s.d.o.f. is
N −K for both the MAC-WT and the WTH. Thus, we achieve
a strictly larger sum s.d.o.f. in our case where the entries of the
eavesdropper’s channel matrices are drawn from a continuous
distribution and security is guaranteed on average, and not for
every realization.

Finally, the assumption of equal number of antennas N at
all the legitimate terminals is for simplicity and convenience
rather than necessity. Both the achievability and the converse
proofs may be extended to the case of unequal number of
antennas by suitable modifications, following [11], which
considers the WTH with full eavesdropper CSIT and unequal
number of antennas at the terminals. The key contribution of
this paper is in the converse proofs with no eavesdropper CSIT
and using a simplified setup allows us to highlight the key
ideas and techniques more clearly.

IV. PROOF OF THEOREM 1

In this section, we prove Theorem 1 by providing an
achievable scheme and a converse. Since Theorem 1 implies
that the WTH and the MAC-WT channel have the same linear
sum s.d.o.f., we first note that it suffices to provide a linear
achievable scheme for the WTH, since the MAC-WT channel
can be treated as a WTH with time sharing between the users.
Also, since any rate achievable for the WTH is achievable for
the MAC-WT channel, a converse for the MAC-WT channel
suffices as a converse for the WTH as well. Thus, in the
following subsections, we provide an achievable scheme for
the WTH and a converse for the MAC-WT channel.

A. Achievable Scheme for the WTH

In this section, we provide an achievable scheme for the
WTH. In this scheme, the transmitter sends (2N − K ) infor-
mation symbols reliably and securely to the legitimate receiver
in two time slots, in order to achieve 1

2 (2N − K ) s.d.o.f.
At each time slot, transmitter 1 sends a linear combination
of (2N − K ) information symbols v1 and K artificial noise
symbols u1 as in (9). Transmitter 2 sends a linear combination
of its K artificial noise symbols u2. Since transmitter 2 does
not have any information symbols v2 for the WTH, there is no
P2 in that case. The channel outputs can be written compactly
as in (12)-(13) as:

Ȳ = H̄1P̄1v1 + H̄1Q̄1u1 + H̄2Q̄2u2 + N̄1 (29)

Z̄ = Ḡ1P̄1v1 + Ḡ1Q̄1u1 + Ḡ2Q̄2u2 + N̄2, (30)

where

H̄i =
[

Hi (1) 0
0 Hi (2)

]
, Ḡi =

[
Gi (1) 0

0 Gi (2)

]
. (31)

It remains to choose the precoding matrices P̄1, Q̄1 and Q̄2
appropriately. We make the following selection:

Q̄i = H̄−1
i Q̄, i = 1, 2 (32)

where Q̄ is a 2N × K matrix with rank K . Also choose P̄1
to be a 2N × (2N − K ) matrix with rank 2N − K , such that
the matrix [H̄1P̄1, Q̄] has rank 2N . Note that this condition
will be satisfied almost surely if the elements of P̄1 and Q̄ are
chosen from any continuous distribution in an i.i.d. fashion.
With this selection, the channel outputs are:

Ȳ = H̄1P̄1v1 + Q̄1(u1 + u2) + N̄1 (33)

Z̄ = Ḡ1P̄1v1 + Ḡ1H̄−1
1 Q̄u1 + Ḡ2H̄−1

2 Q̄u2 + N̄2. (34)

The decodability of v1 at the legitimate receiver in the high
transmit power regime follows immediately since the matrix
[H̄1P̄1, Q̄] has rank 2N by our choice of P̄1 and Q̄. On the
other hand, the number of leakage dimensions L is

L = rank[Ḡ1P̄1, Ḡ1H̄−1
1 Q̄, Ḡ2H̄−1

2 Q̄]
− rank[Ḡ1H̄−1

1 Q̄, Ḡ2H̄−1
2 Q̄] (35)

≤ 2K − 2K (36)

= 0, (37)

where we have used the fact that for any full-rank
Q̄ chosen independently of Ḡ1, Ḡ2, we have that rank
[Ḡ1H̄−1

1 Q̄, Ḡ2H̄−1
2 Q̄] = 2K for almost all channel realizations

of (Ḡ1, Ḡ2). This follows from the following lemma by noting
that each row and each column of Ḡi has at least one entry
drawn from a continuous distribution in an i.i.d. fashion and
the matrices H̄−1

i Q̄ for i = 1, 2 do not depend on the Ḡi s.
Lemma 2: Let P1 ∈ R

N×m1 and P2 ∈ R
N×m2 fixed

matrices with ranks p1 and p2, respectively. Let G1 and G2 be
K × N matrices whose each row and each column has at least
one entry that is drawn from some continuous distribution in
an i.i.d. fashion, and the remaining elements are arbitrary but
fixed. Then, almost surely,

rank[G1P1, G2P2] = min (p1 + p2, K ) . (38)
The proof of this lemma is relegated to Appendix A.

Therefore, the security requirement in (20) is satisfied as
well. This completes the achievable scheme. We remark here
that using Lemma 1, it can be easily shown that I (v1; Ȳ) =
(2N − K )

( 1
2 log P

) + o(log P) and I (v1; Z̄) ≤ o(log P).
An achievable rate for the wiretap channel over two channel
uses, Rvec is given by [27]

Rvec = I (v1; Ȳ) − I (v1; Z̄) (39)

≥ (2N − K )

(
1

2
log P

)
+ o(log P). (40)

Therefore, the effective achievable secure rate is

R ≥ (2N − K )

2

(
1

2
log P

)
+ o(log P). (41)

which yields an s.d.o.f. of 1
2 (2N − K ).
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B. Converse

In this section, we prove the converse for the MAC-WT
channel. To that end, we consider two regimes of K . When
0 ≤ K ≤ N , we prove the converse for general transmission
schemes without any restrictions of linearity. For the regime
N ≤ K ≤ 2N , we prove the converse under the assumption of
linear coding schemes only. We also provide a general upper
bound in this regime which does not match the achievablity;
nevertheless, it shows that there is loss in s.d.o.f. for the WTH
and the MAC-WT channel due to no eavesdropper CSIT.

1) 0 ≤ K ≤ N : Converse With No Restrictions: We wish
to show that:

d1 + d2 ≤ 1

2
(2N − K ). (42)

Let us first state three lemmas which are useful for the proof.
Lemma 3 (Channel symmetry [3, Lemma 3]): Let Z K =

{Z1, . . . , Z K } be entropy symmetric, i.e., for any subsets A
and B of {1, . . . , K }, with |A| = |B| ≤ K ,

h({Zi , i ∈ A}) = h({Zi , i ∈ B}). (43)

Then, for any M ≥ N, the following holds:

1

N
h(Z N ) ≥ 1

M
h(Z M ). (44)

Lemma 4 (Least alignment lemma [5, Lemma 3]): Consi-
der two receivers, each with L antennas. Suppose the channel
gains to receiver 2 are not available at the transmitters.
If Y and Z denote the channel outputs at receivers 1 and 2,
respectively, we have

h(Zn) ≥ h(Yn) + no(log P). (45)
Combining the two lemmas, we have the following lemma.
Lemma 5: For the N×N×N×K MIMO MAC-WT channel

with no eavesdropper CSIT, with K ≤ N

h(Zn) ≥ K

N
h(Yn) + no(log P). (46)

We relegate the proof of this lemma to Appendix B.
Let us now proceed with the converse proof. As in [2], [8],

[10], and [11], we define noisy versions of Xi as X̃i = Xi +Ñi

where Ñi ∼ N (0, ρ2
i IN ) with ρ2

i < min
(

1
‖Hi ‖2 , 1

‖Gi ‖2

)
. The

secrecy penalty lemma [2] can then be derived as

n(R1 + R2) ≤ I (W1, W2; Yn|Zn) + nε (47)

≤ h(Yn |Zn) + no(log P) (48)

= h(Yn, Zn) − h(Zn) + no(log P) (49)

≤ h(X̃n
1 , X̃n

2) − h(Zn) + no(log P) (50)

= h(X̃n
1) + h(X̃n

2) − h(Zn) + no(log P). (51)

The role of a helper lemma [2] also generalizes to the
MIMO case as

n R1 ≤ I (Xn
1; Yn) (52)

= h(Yn) − h(Hn
2Xn

2 + Nn
1) (53)

≤ h(Yn) − h(X̃n
2) + no(log P). (54)

By symmetry, we also have

n R2 ≤ h(Yn) − h(X̃n
1) + no(log P). (55)

Adding (51), (54) and (55), we have

2n(R1 + R2) ≤ 2h(Yn) − h(Zn) + no(log P) (56)

≤ 2h(Yn) − K

N
h(Yn) + no(log P) (57)

= 2N − K

N
h(Yn) + no(log P) (58)

≤ (2N − K )
(n

2
log P

)
+ no(log P), (59)

where (57) follows from Lemma 5 and we have used the fact
that h(Yn) ≤ N

2 log P + no(log P). Therefore, we have,

R1 + R2 ≤ 1

2
(2N − K )

(
1

2
log P

)
+ o(log P). (60)

Dividing by 1
2 log P and taking the limit P → ∞, we have

d1 + d2 ≤ 1

2
(2N − K ), (61)

which completes the proof of the converse for the regime
0 ≤ K ≤ N .

2) N ≤ K ≤ 2N : Converse With Linear Coding Strategies:
We begin with the following lemma.

Lemma 6: For the N × N × N × K MAC-WT channel, and
for any linear achievable scheme satisfying both the reliability
and security constraints, and also d1 + d2 > 0,

lim
n→∞

1

n
rank

([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]
)

= lim
n→∞

1

n
rank

([Ḡ1Q̄1, Ḡ2Q̄2]
) = K . (62)

We relegate the proof of this lemma to Appendix C.
To proceed with the upper bound, first note that since

strictly positive sum s.d.o.f. is achievable for the MAC-WT
channel using linear schemes, we can safely discard the case
d1 + d2 = 0 for the purpose of the converse. Therefore, from
Lemma 6, the rank of the vector space spanned by the output
at the eavesdropper is K n + o(n), i.e.,

lim
n→∞

1

n
rank

([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]
)

= lim
n→∞

1

n
rank

([Ḡ1Q̄1, Ḡ2Q̄2]
) = K . (63)

We have,

m1(n) + m2(n)

= rank
([H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

)

− rank
([H̄1Q̄1, H̄2Q̄2]

)
(64)

≤ rank
([H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

)

− rank
([H̄1Q̄1, H̄2Q̄2]

)

− rank
([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)

+ rank
([Ḡ1Q̄1, Ḡ2Q̄2]

) + o(n) (65)

≤ rank
([H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

)

−1

2
rank

([Ḡ1Q̄1, Ḡ2Q̄2]
)

− rank
([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)

+ rank
([Ḡ1Q̄1, Ḡ2Q̄2]

) + o(n) (66)

= rank
([H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

)
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+1

2
rank

([Ḡ1Q̄1, Ḡ2Q̄2]
)

− rank
([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

) + o(n) (67)

≤ rank
([H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

)

+1

2
rank

([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]
)

−rank
([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

) + o(n) (68)

≤ rank
([H̄1P̄1, H̄2P̄2, H̄1Q̄1, H̄2Q̄2]

) + o(n)

−1

2
rank

([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]
)

(69)

≤ Nn − 1

2
K n + o(n) (70)

= (2N − K )n

2
+ o(n), (71)

where (64) follows from the decodability constraint, (65)
follows from the secrecy constraint (20), and (66) follows from
the following:

2 × rank
([H̄1Q̄1, H̄2Q̄2]

)

≥ rank
([H̄1Q̄1]

) + rank
([H̄2Q̄2]

)
(72)

= rank
([Q̄1]

) + rank
([Q̄2]

)
(73)

= rank
([Ḡ1Q̄1]

) + rank
([Ḡ2Q̄2]

)
(74)

≥ rank
([Ḡ1Q̄1, Ḡ2Q̄2]

)
. (75)

The above equalities all hold almost surely since H̄i and Ḡi

are both full column rank almost surely. Finally, (70) follows
from Lemma 6.

Now dividing by n and taking limit n → ∞, we have

d1 + d2 ≤ 1

2
(2N − K ). (76)

3) N ≤ K ≤ 2N : Converse With No Restrictions: We have
the following lemma.

Lemma 7: For the N×N×N×K MIMO MAC-WT channel
with no eavesdropper CSIT, with K ≤ 2N

h(Zn) ≥ K

2N
h(Yn, Zn) + no(log P). (77)

The proof of this lemma is relegated to Appendix D.
Now we proceed as in the case of 0 ≤ K ≤ N with the

secrecy penalty lemma [2]:

n(R1 + R2) ≤ I (W1, W2; Yn|Zn) + nε (78)

≤ h(Yn |Zn) + no(log P) (79)

≤ h(Yn, Zn) − h(Zn) + no(log P) (80)

≤
(

1 − K

2N

)
h(Yn, Zn) + no(log P) (81)

≤
(

1 − K

2N

)
h(X̃n

1, X̃n
2) + no(log P) (82)

= 2N −K

2N

(
h(X̃n

1) + h(X̃n
2)

)
+ no(log P). (83)

The role of the helper lemma [2] yields, for i �= j :

n Ri ≤ h(Yn) − h(X̃n
j ) + no(log P). (84)

Eliminating h(X̃n
1) and h(X̃n

2) using (83) and (84),

n(R1 + R2) ≤ 2(2N − K )

4N − K
h(Yn) + no(log P) (85)

≤ 2N(2N − K )

4N − K

(n

2
log P

)
+ no(log P). (86)

Dividing by n and letting n → ∞, we have

R1 + R2 ≤ 2N(2N − K )

4N − K

(
1

2
log P

)
+ o(log P). (87)

Now dividing by 1
2 log P and letting P → ∞,

d1 + d2 ≤ 2N(2N − K )

4N − K
. (88)

Also, d1 + d2 ≤ N
2 , since N

2 is the optimal sum s.d.o.f. when
K = N , and the sum s.d.o.f. is non-increasing in K .

V. CONCLUSIONS

In this paper, we considered two fundamental multi-user
channel models: the MIMO WTH and the MIMO MAC-WT
channel. In each case, the eavesdropper has K antennas
while the remaining terminals have N antennas. We assumed
that the CSIT of the legitimate receiver is available but no
eavesdropper CSIT is available. We determined the optimal
sum s.d.o.f. for each channel model for the regime K ≤ N ,
and showed that in this regime, the MAC-WT channel reduces
to the WTH in the absence of eavesdropper CSIT. For the
regime N ≤ K ≤ 2N , we obtained the optimal linear s.d.o.f.,
and showed that the MAC-WT channel and the WTH have
the same optimal s.d.o.f. when restricted to linear encoding
strategies. In the absence of any such restrictions, we provided
an upper bound for the sum s.d.o.f. of the MAC-WT channel
in the regime N ≤ K ≤ 2N . Our results showed that unlike
in the SISO case, there is loss of s.d.o.f. for even the WTH
due to lack of eavesdropper CSIT, especially when K ≥ N .

APPENDIX A
PROOF OF LEMMA 2

First note when N ≤ K , Gi s have full column rank almost
surely. Therefore,

rank[Gi Pi ] = rank[Pi ] = pi , (89)

almost surely. On the other hand, when N ≥ K , we have

rank[Gi Pi ] ≥ rank[Gi P̂i ], (90)

where P̂i is a N × pi submatrix of Pi with full column rank.
Let p̄i = min(K , pi ). Now, the determinant of any p̄i × p̄i

submatrix of Gi P̂i is a multi-variate polynomial of the random
entries of Gi and is zero for only finitely many realizations.
Therefore, Gi P̂i has rank p̄i . Note that when N ≤ K , p̄i = pi

is satisfied trivially.
Therefore, there exists a set Ii ⊆ {1, . . . , mi } such that

|Ii | = p̄i and the collection of column vectors Ci ={
ci j , j ∈ Ii

}
are linearly independent, where ci j denotes the

j th column of Gi Pi . Clearly,

rank[G1P1, G2P2] ≥ rank[C1, C2]. (91)

The matrix [C1, C2] is a K × ( p̄1 + p̄2) matrix. Now,
if K ≤ p̄1+ p̄2, consider any K×K submatrix of [C1, C2]. The
determinant of this submatrix is a multi-variate polynomial
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function of the random entries of G1 and G2, and therefore,
the determinant can be zero for only finitely many realizations,
corresponding to the roots of the multi-variate polynomial
function. Note that this is true if each row and each column
of Ḡi has at least one random entry. Also, the polynomial
function is not identically zero. Therefore,

rank[C1, C2] = K . (92)

On the other hand, if K ≥ p̄1 + p̄2, we can consider a
( p̄1 + p̄2) × ( p̄1 + p̄2) submatrix of [C1, C2], and using a
similar argument, we can claim that

rank[C1, C2] = p̄1 + p̄2. (93)

Combining (91), (92) and (93), we have

rank[G1P1, G2P2]
≥ min ( p̄1 + p̄2, K ) (94)

= min (min(p1, K ) + min(p2, K ), K ) (95)

= min (min(p1 + p2, K + p1, K + p2, 2K ), K ) (96)

= min (p1 + p2, K ) . (97)

On the other hand,

rank[G1P1, G2P2]
≤ rank[G1P1] + rank[G2P2] (98)

≤ min(rank[G1], p1) + min(rank[G2], p2) (99)

= min(N, K , p1) + min(N, K , p2) (100)

= min(K , p1) + min(K , p2), (101)

where (99) follows since rank[AB] ≤ min(rank[A], rank[B]),
(100) follows since Gi is full rank almost surely, and (101)
follows since N ≥ pi . Finally, it trivially holds that K ≥
rank[G1P1, G2P2]. Therefore, we have,

rank[G1P1, G2P2] ≤ min(K , min(K , p1) + min(K , p2))

(102)

= min(K , p1 + p2). (103)

Combining (97) and (103) completes the proof of the lemma.

APPENDIX B
PROOF OF LEMMA 5

Note that K ≤ N . Consider N − K additional outputs Ẑ at
the eavesdropper as:

Ẑ(t) = Ĝ1(t)X1(t) + Ĝ2(t)X2(t) + N̂2(t), (104)

where each Ĝi is a (N − K ) × N matrix whose entries
are drawn in an i.i.d. fashion from the same continuous
distribution as the entries of Gi , and the entries of N̂2 are
i.i.d. zero-mean unit-variance Gaussian noise. Assume that
the Ĝi s are unavailable at the transmitters.. The enhanced
output Z̄(t) = (Z(t), Ẑ(t)) is clearly entropy symmetric. Using
Lemma 3, we have

h(Zn) ≥ K

N
h(Z̄n). (105)

Now, since the Gi s and Ĝi s are not available at the transmit-
ters, using Lemma 4, we have

h(Z̄n) ≥ h(Yn) + no(log P). (106)

Combining (105) and (106), we get the desired result that

h(Zn) ≥ K

N
h(Yn) + no(log P). (107)

APPENDIX C
PROOF OF LEMMA 6

Since d1+d2 > 0, without loss of generality, assume d1 > 0.
We wish to prove that

lim
n→∞

1

n
rank

([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]
)

= lim
n→∞

1

n
rank

([Ḡ1Q̄1, Ḡ2Q̄2]
) = K . (108)

For the sake of contradiction, suppose limn→∞ 1
n rank([Ḡ1Q̄1, Ḡ2Q̄2]

)
< K . We have

rank
([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]

)

≥ rank
([Ḡ1P̄1, Ḡ1Q̄1, Ḡ2Q̄2]

)
(109)

= rank
([Ḡ1[P̄1, Q̄1], Ḡ2Q̄2]

)
(110)

≥ min
(
rank

([P̄1, Q̄1]
) + rank

([Q̄2]
)
, K n

)
(111)

= min
(
rank

([P̄1]
) + rank

([Q̄1]
) + rank

([Q̄2]
)
, K n

)

(112)

= min
(
m1(n) + rank

([Ḡ1Q̄1]
) + rank

([Ḡ2Q̄2]
)
, K n

)

(113)

≥ min
(
m1(n) + rank

([Ḡ1Q̄1, Ḡ2Q̄2]
)
, K n

)
, (114)

where (111) follows from Lemma 2, (112) follows from the
decodability requirement, and (113) follows almost surely
since Ḡi is full column rank almost surely as long as K > N .
Therefore,

lim
n→∞

1

n
rank

([Ḡ1P̄1, Ḡ2P̄2, Ḡ1Q̄1, Ḡ2Q̄2]
)

≥ min

(
d1 + lim

n→∞
1

n
rank

([Ḡ1Q̄1, Ḡ2Q̄2]
)
, K

)
(115)

> lim
n→∞

1

n
rank

([Ḡ1Q̄1, Ḡ2Q̄2]
)
, (116)

which contradicts the security requirement in (20).

APPENDIX D
PROOF OF LEMMA 7

Consider 2N − K additional outputs Ẑ at the eavesdropper:

Ẑ(t) = Ĝ1(t)X1(t) + Ĝ2(t)X2(t) + N̂2(t), (117)

where each Ĝi is a (2N − K ) × N matrix whose entries
are drawn in an i.i.d. fashion from the same continuous
distribution as the entries of Gi , and the entries of N̂2 are i.i.d.
zero-mean unit-variance Gaussian noise. Assume that the Ĝi s
are not available at the transmitters either. Then, the enhanced
output Z̄(t) = (Z(t), Ẑ(t)) is clearly entropy symmetric.
Therefore, using Lemma 3, we have

h(Zn) ≥ K

2N
h(Z̄n). (118)
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Now, given Z̄n , we can decode both inputs Xn
1 and Xn

2 to
within noise variance, and therefore, also Yn and Zn . Thus,
we have

h(Z̄n) ≥ h(Yn, Zn) + no(log P). (119)

Combining (118) and (119), we get the desired result that

h(Zn) ≥ K

2N
h(Yn, Zn) + no(log P). (120)
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