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Abstract— We consider the multiple-input multiple-
output (MIMO) wiretap channel under a minimum receiver-side
power constraint in addition to the usual maximum transmitter-
side power constraint. This problem is motivated by energy
harvesting communications with wireless energy transfer, where
an added goal is to deliver a minimum amount of energy to a
receiver in addition to delivering secure data to another receiver.
In this paper, we characterize the exact secrecy capacity of the
MIMO wiretap channel under transmitter and receiver-side
power constraints. We first show that solving this problem
is equivalent to solving the secrecy capacity of the wiretap
channel under a double-sided correlation matrix constraint on
the channel input. We show the converse by extending the
channel enhancement technique to our case. We present two
achievable schemes that achieve the secrecy capacity: the first
achievable scheme uses a Gaussian codebook with a fixed
mean, and the second achievable scheme uses artificial noise
(or cooperative jamming) together with a Gaussian codebook.
The role of the mean or the artificial noise is to enable energy
transfer without sacrificing from the secure rate. This is the
first instance of a channel model where either the use of a
mean signal or the use of channel prefixing via artificial noise
is strictly necessary for the MIMO wiretap channel. We then
extend our work to consider a maximum receiver-side power
constraint instead of a minimum receiver-side power constraint.
This problem is motivated by cognitive radio applications,
where an added goal is to decrease the received signal energy
(interference temperature) at a receiver. We further extend our
results to: requiring receiver-side power constraints at both
receivers; considering secrecy constraints at both receivers
to study broadcast channels with confidential messages; and
removing the secrecy constraints to study the classical broadcast
channel.

Index Terms— MIMO wiretap channel, wireless power
transfer, cognitive radio, receiver-side power constraint, broad-
cast channel, confidential messages, channel enhancement.
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I. INTRODUCTION

MOST existing literature on Gaussian channels is based
on a transmitter-side average power constraint. This

constraint models the maximum allowable power at the
transmitter-side. Gastpar [1] was the first to consider a
receiver-side power constraint. In [1], he considered a
maximum receiver-side power constraint motivated by the
desire to limit the received interference in a cognitive radio
application. He observed that, while the solution does not
change with respect to a classical transmitter-side power
constraint for a single-input single-output (SISO) channel,
it changes significantly for a multiple-input multiple-
output (MIMO) channel. Subsequently, Varshney [2] consid-
ered a minimum receiver-side power constraint motivated by
the desire to transport both information and energy simulta-
neously over a wireless channel. This minimum receiver-side
power constraint signified the power (in addition to data) trans-
ferred to the receiver by the same physical signal. Varshney
as well observed that while the solution does not change with
respect to a classical transmitter-side power constrained SISO
channel, it changes significantly with respect to a classical
transmitter-side amplitude constrained SISO channel [3].

In this paper, we consider a multi-user and multi-objective
version of the problem considered by Gastpar and Varshney.
In particular, we consider a MIMO wiretap channel where
the transmitter wishes to have secure communication with a
legitimate receiver in the presence of an eavesdropper. In this
model, messages need to be sent at the highest reliable rate
to the legitimate receiver with perfect secrecy from the eaves-
dropper. We impose the usual transmitter-side power constraint
in addition to a receiver-side power constraint. Therefore,
our model generalizes the receiver-side power constraint of
Gastpar and Varshney from a single-user setting of two nodes
to a multi-user scenario of a wiretap channel with three nodes,
and also to a multi-objective setting where we have both
reliability and security constraints.

The wiretap channel was first considered by Wyner
in [4], where he determined the rate-equivocation region
of a degraded wiretap channel. This model was gener-
alized to arbitrary, not necessarily degraded, channels by
Csiszar and Korner in [5], where they determined the
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rate-equivocation region of the most general wiretap channel.
The SISO Gaussian wiretap channel, which is degraded, was
considered under a transmitter-side power constraint in [6],
which showed that Gaussian signalling is optimal. The MIMO
Gaussian wiretap channel was considered in [7]–[9], under
a transmitter-side power constraint. These references showed
that channel prefixing is not needed, even though the MIMO
wiretap channel is not degraded, and Gaussian signalling is
optimal. An interesting alternative proof is given in [10] based
on the channel enhancement technique developed in [11].
Reference [10] considers the MIMO wiretap channel under
a transmitter-side correlation matrix constraint which is more
general than a transmitter-side power constraint. The results
in [7]–[10] imply that artificial noise [12] or cooperative
jamming [13] is not needed for a MIMO wiretap channel under
a transmitter-side power constraint.1

In this paper, we first characterize the secrecy capacity of the
general MIMO wiretap channel under a minimum receiver-side
power constraint at the eavesdropper only. To this end, we first
show that, solving the secrecy capacity of the MIMO wiretap
channel under a transmitter-side maximum power constraint
and a receiver-side minimum power constraint is equivalent
to solving the secrecy capacity of a MIMO wiretap channel
under a double-sided correlation matrix constraint on the
channel input at the transmitter. This is a generalization of
the approach of [10] and [11], which shows that solving the
capacity under a transmitter-side maximum power constraint
is equivalent to solving the capacity under a transmitter-side
maximum correlation matrix constraint. We then generalize the
channel enhancement technique of [10] and [11] to the case of
double-sided correlation matrix constraint. This gives us the
converse.

We next show that the rates given in the converse can be
achieved by two different achievable schemes: a mean based
scheme where the transmitter uses a Gaussian codebook with
a fixed mean, and an artificial noise [12] (or cooperative
jamming [13]) based scheme, which uses Gaussian channel
prefixing with a Gaussian codebook. The role of the mean or
the artificial noise is to enable energy transfer without sacrific-
ing from the secure rate; this helps to achieve the receiver-side
power constraint by sending non-message carrying signals.
This is the first instance of a channel model where either
the use of a mean signal or the use of channel prefixing via
artificial noise is strictly necessary for the canonical MIMO
wiretap channel. Note that while [20, Sec. III] shows an
alternative way of achieving MIMO secrecy capacity using
artificial noise, this is valid in the case of a covariance
constraint, and the use of artificial noise in the MIMO wiretap
channel under a transmitter-side power constraint is strictly
sub-optimal. We note that, in a related work, [21] and [22] con-
sider simultaneous information and energy transfer in a MISO
wiretap channel, and focus on optimizing the performance of a
specific artificial noise based achievable scheme with no claim
of optimality. We also note a similar set-up in [23] and [24],

1Note, however, that they may be needed in SISO/MISO/MIMO wiretap
channels with imperfect channel state information (CSI) [14]–[18] or multi-
user versions of the wiretap channel (e.g., multiple access) even with perfect
CSI [13], [19].

Fig. 1. Gaussian MIMO wiretap channel with receiver-side power constraint.

where the authors consider the case of statistical channel state
information only at the transmitter and focus on optimizing
asymptotic transmit covariance matrix of Gaussian codebooks
without artificial noise for the case of a large number of
transmit antennas.

We then extend the developed methodology to find the
capacities of the following related channels. We first consider
the case that both receivers (both Bob and Eve) have minimum
receiver-side power constraints. This corresponds to the case
where wireless power should be delivered to both users in
the system, but secure communication is guaranteed only for
one of the receivers. We show that mean based or artificial
noise based transmission achieves the secrecy capacity of
this model. Next, we impose maximum power constraints as
opposed to minimum power constraints at the receivers. This
corresponds to a cognitive radio setting where we control
the received interference power at users. In this case, we
show that ordinary Gaussian signalling is sufficient, and there
is no need for mean or artificial noise signalling. Next, we
drop the secrecy constraint and consider the classical MIMO
broadcast channel (BC) with minimum receiver-side power
constraints. This models an unsecured communication scenario
where simultaneous power and information transfer is needed
for both users. We prove that dirty paper coding (DPC) used
in [11] is optimal to achieve the capacity. This result intuitively
verifies that, even though we need minimum received power
guarantees, neither mean or artificial noise transmission is
needed, because the freedom afforded by the design of the
covariance matrices of the DPC scheme suffices to achieve
all desired feasible receiver-side powers. Finally, we put back
the secrecy constraints for both users and consider the BC
with confidential messages BCCM [20]. We show that secure
DPC (S-DPC) is optimal for the BCCM as in [20] without the
need for mean or artificial noise signalling.

II. SYSTEM MODEL, PRELIMINARIES

AND THE MAIN RESULT

The MIMO wiretap channel with Nt antennas at the trans-
mitter, Nr antennas at the legitimate receiver and Ne antennas
at the eavesdropper is given by (see Fig. 1),

Yi = HXi + W1,i (1)

Zi = GXi + W2,i (2)
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where Xi ∈ R
Nt is the channel input, Yi ∈ R

Nr is the
legitimate receiver’s channel output, and Zi ∈ R

Ne is the
eavesdropper’s channel output at channel use i ; W1,i and
W2,i are independent Gaussian random vectors N (0, I). The
channel matrices of legitimate receiver H and the eavesdropper
G are real-valued matrices of dimensions Nr ×Nt and Ne ×Nt ,
respectively, and are fixed and known to all entities. The trans-
mitter encodes a message W picked from a discrete message
set W to a codeword Xn over n channel uses via a stochastic
encoder f : W → Xn . The channel input is constrained by
the usual maximum average power constraint [25], [26]:

1

n

n∑

i=1

tr(Xi XT
i ) ≤ P (3)

In this paper, we consider minimum and maximum power
constraints at the receivers. In the initial part of the paper,
we consider a minimum power constraint at the eavesdropper
only as:

1

n

n∑

i=1

tr(Zi ZT
i ) ≥ E (4)

As usual, see [25], [26], the actual power constraints
in (3) and (4) will be reflected in the single-letter
capacity expressions in the sequel as expectations, i.e.,
tr(E[XXT ]) ≤ P and tr(E[ZZT ]) ≥ E . In addition, for
all εn > 0, we have the following asymptotic reliability
and secrecy constraints on W based on n-length observa-
tions Yn, Zn at the receiver and the eavesdropper, respectively:

P[Ŵ �= W ] ≤ εn, lim
n→∞

1

n
I (W ; Zn) = 0 (5)

where εn → 0 as n → ∞, and Ŵ = φ(Yn) is the estimate
of the legitimate receiver of the transmitted message W based
on Yn by using a decoder φ(·).

In this case, we have an achievable rate Rs(E, P, H, G) =
limn→∞ 1

n log |W | if there exists a code, i.e., a codebook
and ( f, φ) pair such that constraints (3)-(5) are satisfied.
The secrecy capacity C(E, P, H, G) = sup R(E, P, H, G),
i.e., the supremum of all achievable rates. Although, we
will determine the secrecy capacity under the maximum
transmitter-side power constraint in (3) and the minimum
receiver-side power constraint in (4), we initially character-
ize C(S1, S2, H, G), the secrecy capacity, under a general
double-sided correlation matrix constraint:

S1 � Q � S2 (6)

where Q = E[XXT ] is the channel input correlation
matrix, and S1 � S2 are given and fixed positive semi-
definite (PSD) matrices, where � denotes the partial order-
ing of PSD matrices. We will show in a similar way
to [11, Sec. II.B] that the secrecy capacity with power con-
straints of (3)-(4) can be obtained from the secrecy capacity
with the more general double-sided correlation matrix con-
straint in (6) by maximizing this secrecy capacity over all
correlation matrices S1 � S2 that lie in the compact set SP E :

SP E = {S 	 0 : tr(S) ≤ P, tr(GSGT ) ≥ Ẽ} (7)

where Ẽ = E − Ne . We evaluate the secrecy capacity based
on Csiszar-Korner secrecy capacity expression [5]

Cs = max
V→X→Y,Z

I (V ; Y) − I (V ; Z) (8)

where V carries the message signal and X is the channel
input. The maximization is over all jointly distributed (V , X)
that satisfy the Markov chain V → X → Y, Z and the
constraints (3), (4). Note that although Csiszar-Korner expres-
sion is initially given for discrete alphabets, it can be directly
extended to alphabets other than discrete, by including the
appropriate cost function in the maximization problem; see
remarks in [5, Sec. VI]. This extension can be done via discrete
approximations in [27, Ch. 3] and [28, Ch. 7].

The main result of this paper is the exact characterization
of the secrecy capacity of the MIMO wiretap channel under
the maximum transmitter-side power constraint in (3) and the
minimum receiver-side power constraint in (4). This result is
stated in Theorem 1 below. We dedicate Section III for the
achievability proof and Section IV for the converse proof of
this theorem. In Section V, we extend this basic proof tech-
nique to the cases of: minimum receiver-side power constraints
at both receivers; maximum receiver-side power constraints;
no secrecy constraints (classical BC); and double-sided secrecy
constraints (BCCM).

Theorem 1: The secrecy capacity of a MIMO wiretap chan-
nel with a transmitter-side power constraint P and a receiver-
side power constraint E, C(E, P, H, G), is given as

C(E, P, H, G)

= max
Q	0

1

2
log |I + HQHT | − 1

2
log |I + GQGT |

s.t. tr(Q + µµT ) ≤ P
tr(G(Q + µµT )GT ) ≥ Ẽ (9)

where Ẽ = E − Ne. This secrecy capacity is achieved by
X ∼ N (µ, Q), i.e., with a mean but no channel prefixing.
Alternatively, the secrecy capacity, C(E, P, H, G), is also
given as

C(E, P, H, G) = max
Q1,Q2	0

1

2
log

|I + H(Q1 + Q2)HT |
|I + HQ2HT |

−1

2
log

|I + G(Q1 + Q2)GT |
|I + GQ2GT |

s.t. tr(Q1 + Q2) ≤ P
tr(G(Q1 + Q2)GT ) ≥ Ẽ (10)

where X = V + U, with jointly Gaussian V ∼ N (0, Q1) and
U ∼ N (0, Q2), and V, U are independent, i.e., with Gaussian
signalling with Gaussian channel prefixing.

III. ACHIEVABILITY SCHEMES

In this section, we provide two coding schemes that achieve
the secrecy capacity of the MIMO wiretap channel with trans-
mitter and receiver-side power constraints given in Theorem 1.

A. Gaussian Coding With Fixed Mean

The first achievable scheme is Gaussian coding with fixed
mean, i.e., X ∼ N (µ, Q1). In this case, the fixed mean does
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not play a role in evaluating the secrecy capacity except for
consuming part of the overall correlation matrix and only
provides the required power level at the receiver side. Then,
we choose V = X, i.e., no channel prefixing. Hence, we have

C(S1, S2, H, G)

≥ max
Q1	0,µ

I (X; Y) − I (X; Z)

= max
Q1	0,µ

1

2
log |I + HQ1HT | − 1

2
log |I + GQ1GT |

s.t. S1 � Q1 + µµT � S2 (11)

In the converse proof, in place of µµT , we have a general
positive semidefinite matrix Q2. In order to have a matching
feasible coding scheme, Q2 must be constrained to unit-rank
correlation matrices, as it corresponds to the mean of the
transmitted signal. Although, the solution of Q2 is generally
not unit-rank for arbitrary correlation matrices S1, S2, we show
in the following lemma that for the special case of a maximum
transmitter-side power constraint P and a minimum receiver-
side power constraint E , the solution is guaranteed to be of
unit-rank, and hence the mean based coding scheme is feasible.

Lemma 1: The coding scheme X ∼ N (V(Q∗
2), Q∗

1) is
achievable for the wiretap channel under the transmitter-side
power constraint P and the receiver-side power constraint E
given that the matrix GT G has a unique maximum eigenvalue.
The secrecy rate is characterized by the following optimization
problem:

max
Q1,Q2	0

1

2
log |I + HQ1HT | − 1

2
log |I + GQ1GT |

s.t. tr(Q1 + Q2) ≤ P
tr(G(Q1 + Q2)GT ) ≥ Ẽ (12)

where Q∗
1, Q∗

2 are the optimal correlation matrices for (12)
and V(Q∗

2) denotes the unique eigenvector of matrix Q∗
2 with

a non-zero eigenvalue.
Proof: We note that Q2 does not appear in the objective

function; it only appears in the constraint set. Therefore, its
only role is to enlarge the feasible set for Q1 subject to
some power constraint P̃ , where P̃ ≤ P . Thus, Q2 must be
chosen such that, when the first constraint of (12) is fixed, it
maximizes the feasible set for Q1 in the second constraint,
i.e., Q2 must be the solution of

max
Q2	0

tr(GQ2GT ) s.t. tr(Q2) = P̃ (13)

The eigenvector decomposition for Q2, which is symmetric, is

Q2 =
r∑

i=1

λi qi qT
i (14)

where r , λi , qi are the rank, the i th eigenvalue and the
corresponding orthonormal eigenvector of Q2, respectively.

Thus, we can write the constraint as tr(Q2) = ∑r
i=1 λi = P̃ .

Moreover, the objective function can be written as

tr(GQ2GT ) = tr

(
G

(
r∑

i=1

λi qi qT
i

)
GT

)
(15)

=
r∑

i=1

λi‖Gqi‖2 (16)

Hence, the optimization problem in (13) can be written as

max
λi ,qi

r∑

i=1

λi‖Gqi‖2 s.t.
r∑

i=1

λi = P̃ (17)

which is a linear program in λi . The optimum solution
is λm = P̃ , and λi = 0 for i �= m, where

m = arg max
i

‖Gqi‖2 (18)

Hence, the optimal solution for this problem is to beam-form
all the available power P̃ to the direction of the largest ‖Gqi‖2.
This solution is unique if GT G has a unique maximum eigen-
value. Otherwise a unit-rank solution for Q2 is not guaranteed.
In this case, Q2 = P̃qmqT

m , i.e., it is unit-rank with eigenvector

µ =
√

P̃qm , and the problem is feasible.
We remark that the same capacity expression in (12) can

be realized by letting X = V + U, where V ∼ N (0, Q1) is
the message-carrying signal and U ∼ N (0, Q2) is the energy-
carrying signal that is known causally at both Bob and Eve,
so that it can be cancelled prior to information decoding.
We note that, with this coding scheme any covariance
matrix Q2 can be realized, and therefore Lemma 1 is not
needed with this coding scheme, i.e., that the converse and
achievability match for all S1, S2. However, if Q2 is optimized
for this scheme as well for given P, E , then the optimum
Q2 is still unit-rank. If the problem is considered under
covariance constraints, as opposed to power constraints, unit-
rank requirement of the mean based scheme can be removed
by sending known Gaussian signals instead, at the cost of extra
overhead of identifying U causally at Bob and Eve.

B. Gaussian Coding With Gaussian Artificial Noise

The second achievable scheme is Gaussian coding with
Gaussian artificial noise. In this case, we choose X = V + U,
where V, U are independent and V ∼ N (0, Q1) and
U ∼ N (0, Q2). Here, V carries the message, X is the
channel input, and U is the artificial noise (or cooperative
jamming [13]) signal. In this case, we use channel prefixing,
hence V �= X. The extra randomness U is sent by the
transmitter to provide extra noise floor at both receivers, and
confuses the eavesdropper. The added significance of this
artificial noise in our problem is to provide a suitable level
of received power at the receiver, i.e., we utilize the artificial
noise as a source of power. In this case, the achievable secrecy
rate satisfies

C(S1, S2, H, G) ≥ max
Q1,Q2	0

I (V; Y) − I (V; Z)

= max
Q1,Q2	0

1

2
log

|I + H(Q1 + Q2)HT |
|I + HQ2HT |

− 1

2
log

|I + G(Q1 + Q2)GT |
|I + GQ2GT |

s.t. S1 � Q1 + Q2 � S2 (19)

IV. CONVERSE PROOF

In this section, we prove the reverse implication using the
channel enhancement technique [10], [11]. We will consider
the case of S2 	 S1 
 0 and the aligned MIMO setting which
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means that the channel matrices are square and invertible. The
general MIMO case follows directly from the limiting argu-
ments in [10], as the additional receiver-side power constraint
is irrelevant in the limit. The idea of this limiting argument
is to perform singular-value decomposition of the perturbed
channels H̄, Ḡ [10, eq. (37)]. Our result follows by taking the
limit of this perturbation to zero. The argument is introduced
in [10, Sec. II.B] and used for example in [20, Appendix B.2],
[29, Sec. VII]. Therefore, we focus on the aligned case here.
The aligned MIMO model is obtained by multiplying the
input-output relations (1)-(2) by the inverse of the channel
matrices:

Ỹ = X + H−1W1 = X + W̃1 (20)

Z̃ = X + G−1W2 = X + W̃2 (21)

where W̃1 and W̃2 are the equivalent zero-mean Gaussian
random vectors with covariance matrices N1 = H−1H−T and
N2 = G−1G−T , respectively.

A. Equivalence of a Double-Sided Correlation
Matrix Constraint

For the MIMO broadcast and wiretap channels under a
transmitter-side maximum power constraint, [10] and [11]
showed that it is sufficient to prove the converse under a
maximum correlation constraint on the channel input. We first
note here that in our case with maximum transmitter-side and
minimum receiver-side power constraints, a single correlation
constraint on the channel input, i.e., Q � S, is not sufficient.
Next, we show the equivalence of solving our problem with
a double-sided correlation matrix constraint on the channel
input, i.e., S1 � Q � S2. Then, our problem can be solved
in two stages: the inner problem finds the capacity under
fixed correlation matrices S1 and S2 constraints, and the outer
problem finds the optimal S1, S2 ∈ SP E in (7). Finally, we
modify the original channel enhancement technique [10], [11]
to prove the optimality of the achievable schemes presented
in the previous section.

We first note that solving the problem for Q � S, where
S ∈ SP E is insufficient. Consider solving the secrecy capacity
under maximum transmitter-side and minimum receiver-side
power constraints in two stages, first, solving the problem
under a fixed correlation matrix S, and then choosing the
optimal S ∈ SP E , i.e.,

max
S∈SP E

max
Q�S

Rs(Q, H, G) (22)

where Rs(Q, H, G) is the achievable secure rate upon using
correlation matrix Q. Since Q � S, we have GQGT �
GSGT and hence tr(GQGT ) ≤ tr(GSGT ). Then, although any
S ∈ SP E satisfies the minimum receiver-side power
constraint, i.e., tr(GSGT ) ≥ Ẽ , the input correlation
matrix Q is not guaranteed to satisfy tr(GQGT ) ≥ Ẽ .
Hence, the single correlation constraint is not sufficient for
solving problems involving minimum receiver-side power
constraints.

Lemma 2: Since SP E is a compact set of PSD matrices, and
C(S1, S2, H, G) is continuous with respect to S2, we have

C(E, P, H, G) = max
S1,S2∈SP E ,S1�S2

C(S1, S2, H, G) (23)

Proof: We follow and extend the proof technique
in [11, Lemma 1] to the case of double-sided covariance
matrices. We define the wiretap code C (n, S, R, ε) as a
codebook, where the codewords {Xn

i }2nR

i=1 are such that S =
1

2nR

∑2nR

i=1 Xn
i XnT

i , and accompanying encoding and decoding
functions ( f, φ), such that P(φ( f (W )) �= W ) ≤ ε. The
decoder φ can be taken as the maximum likelihood decoder.

To see

C(E, P, H, G) ≥ max
S1,S2∈SP E ,S1�S2

C(S1, S2, H, G) (24)

we note that for any S1 � Q � S2 where S1,
S2 ∈ SP E , we have Q ∈ SP E , i.e., every Q in the
feasible set of the optimization problem on the right hand
side belongs to the feasible set of the optimization problem
C(E, P, H, G). Hence, C(E, P, H, G) is at least as large as
maxS1,S2∈SP E ,S1�S2 C(S1, S2, H, G).

To see

C(E, P, H, G) ≤ max
S1,S2∈SP E ,S1�S2

C(S1, S2, H, G) (25)

we should prove that C(E, P, H, G) = C(S1, S2, H, G) for
some S1, S2 ∈ SP E [11]. If R = C(E, P, H, G) is achievable,
then there exists an infinite sequence of codes C (ni , S0i , R, εi ),
i = 1, . . . with rate R and decreasing probability of error
εi → 0 as i → ∞. Choose S1 � S0i , ∀i and S1 ∈ SP E . We
note that the choice of S1 is completely arbitrary, thus without
loss of generality, we can choose it to be the first element in
the sequence, i.e., S01 . As SP E is compact [30], [31], for any
infinite sequence of points in SP E , there must exist a sub-
sequence that converges to a point S0 ∈ SP E . Hence, for any
arbitrary δ > 0, we can find an increasing subsequence i(k)
such that S1 � S0i(k) � S0 + δI.

This implies that we can find a sequence of codes C (nk, S0+
δI, R, εk) with S0 ∈ SP E , S0 	 S1 achieving small prob-
ability of error. Therefore, for every δ > 0, we have R =
C(S1, S0 + δI, H, G). Since C(S1, S0 + δI, H, G) is continu-
ous, see Appendix, with respect to its second argument, we
have that every ε-ball around R contains C(S1, S0, H, G),
since for every ε > 0, there exists δ > 0 such that
C(S1, S0 + δI, H, G) − C(S1, S0, H, G) < ε as continuity
asserts. Therefore R is a limit point of C (S1, S0, H, G) and
hence C(E, P, H, G) = C(S1, S0, H, G). This limit point
belongs to SP E since it is closed.

B. Converse Proof for Gaussian Coding With Fixed Mean

First, we begin with writing the equivalent optimization
problem corresponding to the achievability scheme
in the aligned MIMO case with Gaussian coding
X ∼ N (V(Q∗

2), Q∗
1):

max
Q1,Q2	0

1

2
log

|Q1 + N1|
|N1| − 1

2
log

|Q1 + N2|
|N2|

s.t. Q1 + Q2 	 S1, Q1 + Q2 � S2 (26)
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The Lagrangian of this optimization problem can be
written as:

L = log
|Q1 + N2|

|N2| − log
|Q1 + N1|

|N1|
− tr(Q1M1) − tr(Q2M2) − tr((Q1 + Q2 − S1)M3)

+ tr((Q1 + Q2 − S2)M4) (27)

where M1 	 0, M2 	 0, M3 	 0 and M4 	 0 are the
Lagrange multipliers for each constraint. The corresponding
KKT complementary slackness conditions are:

Q∗
1M1 = 0, Q∗

2M2 = 0 (28)

(Q∗
1 + Q∗

2 − S1)M3 = 0 (29)

(S2 − Q∗
1 − Q∗

2)M4 = 0 (30)

and the KKT optimality conditions for Q∗
1 and Q∗

2 are:

(Q∗
1 + N2)

−1−(Q∗
1 + N1)

−1−M1 − M3 + M4 = 0 (31)

−M2 − M3 + M4 = 0 (32)

Now, using (31) and (32), we can construct an enhanced
channel that can serve as an upper bound for the original
legitimate receiver’s channel, while the eavesdropper’s channel
is degraded with respect to it. The covariance of the enhanced
channel is chosen as Ñ such that

(Q∗
1 + N2)

−1 + M2 = (Q∗
1 + N1)

−1 + M1 = (Q∗
1 + Ñ)−1

(33)

Using this definition of the enhanced channel, we explore
various characteristics of Ñ.

First, to prove the validity of the covariance matrix Ñ,
we note that

Ñ = [(Q∗
1 + N1)

−1 + M1]−1 − Q∗
1 (34)

= (I + N1M1)
−1(Q∗

1 + N1) − Q∗
1 (35)

= (I + N1M1)
−1[(Q∗

1 + N1) − (I + N1M1)Q∗
1] (36)

= (I + N1M1)
−1N1 (37)

= (N−1
1 + M1)

−1 	 0 (38)

and hence the covariance matrix of the constructed enhanced
channel is positive semi-definite, and therefore it is a feasible
covariance matrix.

Next, we want to show that the constructed channel is
enhanced with respect to N1, i.e., N1 	 Ñ. To show that we
note from (37) that Ñ = (N−1

1 + M1)
−1 and hence, N1 	 Ñ.

Similarly by considering (Q∗
1 +N2)

−1 +M2 = (Q∗
1 +Ñ)−1 we

note that N2 	 Ñ. Hence, we conclude that the enhanced chan-
nel has better channel conditions than the original legitimate
user’s channel, therefore, the constructed channel is an upper
bound for the legitimate receiver. Moreover, the eavesdropper’s
channel is degraded with respect to the constructed channel.
Consequently the secrecy capacity of the enhanced channel
is known. In other words, we have Ỹ = X + W̃ such that
W̃ ∼ N (0, Ñ) and X → Ỹ → Y and X → Ỹ → Z.

In order to have a meaningful upper bound, we need to
show that the rate is preserved between the original problem
and the constructed channel. To show that, we have

(Q∗
1 + Ñ)−1Ñ = (Q∗

1 + Ñ)−1(Ñ + Q∗
1 − Q∗

1) (39)

= I − (Q∗
1 + Ñ)−1Q∗

1 (40)

= I − [(Q∗
1 + N1)

−1 + M1]Q∗
1 (41)

= I − (Q∗
1 + N1)

−1Q∗
1 (42)

= (Q∗
1 + N1)

−1N1 (43)

where (41) follows from the definition of the enhanced channel
and (42) follows from the complementary slackness condi-
tion (28). Therefore, we have

|Ñ + Q∗
1|

|Ñ| = |N1 + Q∗
1|

|N1| (44)

To show a similar rate preservation argument for the
degraded channel N2, we will need the following lemma.

Lemma 3: The optimal covariance matrix for the achiev-
able scheme with Gaussian signaling with a fixed mean Q∗

1
satisfies (S2 − Q∗

1)M2 = 0.
Proof: We return to the KKT conditions. Considering

the correlation constraint, three cases can possibly occur. The
first case: the correlation constraint is satisfied with equality,
consequently S2 − Q∗

1 = Q∗
2. In this case, (S2 − Q∗

1)M2 =
Q∗

2M2 = 0 from (28). The second case: the correlation
constraint is strictly loose, i.e, Q1 + Q2 ≺ S2. In this case, we
can define a matrix � = S2 − Q∗

1 − Q∗
2 
 0, and therefore

� is a full-rank matrix. Thus, M4 = 0 and from (32), we have
M2 = −M3. The matrices M2, M3 are both positive semi-
definite matrices. Therefore, we must have M2 = M3 = 0.
Finally, the third case: the correlation constraint is partially
loose, that is, we have � = S2 − Q1 − Q2 	 0, hence � is
not a full-rank matrix. We define � = S2 − S1 
 0, i.e.,
S1 = S2 − �. In this case, we sum the KKT conditions (29)
and (30) to obtain the following implications:

(Q∗
1 + Q∗

2)(M3 − M4) − S1M3 + S2M4 = 0 (45)

(Q∗
1 + Q∗

2)(M3 − M4) − S2M3 + �M3 + S2M4 = 0 (46)

(S2 − Q∗
1 − Q∗

2)(M4 − M3) = −�M3 (47)

(S2 − Q∗
1 − Q∗

2)M2 = −�M3 (48)

(S2 − Q∗
1)M2 = −�M3 (49)

where (48) follows from (32), and (49) follows from (28).
Since (S2−Q∗

1)M2 	 0 and �M3 	 0, or at least (S2−Q∗
1)M2

and �M3 have the same number of non-negative eigenvalues
of M2 and M3, respectively [32], the only way to satisfy (49)
is to have all the eigenvalues of both matrices equal zero,
i.e., (S2 −Q∗

1)M2 = −�M3 = 0. Hence, we conclude that for
all three cases we have (S2 − Q∗

1)M2 = 0 and this completes
the proof of Lemma 3.

Hence, using Lemma 3, we write:

(Ñ + S2)(Q∗
1 + Ñ)−1

= (S2 − Q∗
1)(Q

∗
1 + Ñ)−1 + I (50)

= (S2 − Q∗
1)[(Q∗

1 + N2)
−1 + M2] + I (51)
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= (S2 − Q∗
1)(Q

∗
1 + N2)

−1 + I (52)

= [(N2 + S2) − (Q∗
1 + N2)](Q∗

1 + N2)
−1 + I (53)

= (N2 + S2)(Q∗
1 + N2)

−1 (54)

where (51) follows from the definition of the enhanced
channel (33), and (52) follows from Lemma 3. Hence,
we have:

|S2 + Ñ|
|S2 + N2| = |Q∗

1 + Ñ|
|Q∗

1 + N2|
(55)

We upper bound the secrecy capacity of the MIMO wiretap
channel with a receiver-side power constraint by the secrecy
capacity of the enhanced channel. Since S2 ∈ SP E , S2 sat-
isfies the receiver power constraint for the enhanced channel.
Hence, the receiver constraint is valid with the upper bounding
argument. The secrecy capacity of the enhanced channel C̃s

is given by

C̃s = 1

2
log

|S2 + Ñ|
|Ñ| − 1

2
log

|S2 + N2|
|N2| (56)

= 1

2
log

|S2 + Ñ|
|S2 + N2| · |N2|

|Ñ| (57)

= 1

2
log

|Q∗
1 + Ñ|

|Q∗
1 + N2| · |N2|

|Ñ| (58)

= 1

2
log

|Q∗
1 + Ñ|
|Ñ| − 1

2
log

|Q∗
1 + N2|
|N2| (59)

= 1

2
log

|Q∗
1 + N1|
|N1| − 1

2
log

|Q∗
1 + N2|
|N2| (60)

= C(S1, S2, H, G) (61)

where (58) follows from (55), and (60) follows from (44),
completing the converse proof for the case of Gaussian sig-
nalling with a fixed mean.

C. Converse Proof for Gaussian Coding
With Gaussian Artificial Noise

In this section, we follow a similar channel enhancement
technique as in Section IV-B. The optimization problem
corresponding to the Gaussian coding scheme with artificial
noise is:

max
Q1,Q2	0

1

2
log

|Q1 + Q2 + N1|
|Q2 + N1| − 1

2
log

|Q1 + Q2 + N2|
|Q2 + N2|

s.t. Q1 + Q2 	 S1, Q1 + Q2 � S2 (62)

The Lagrangian for this optimization problem is given by:

L = log
|Q1 + Q2 + N2|

|Q2 + N2| − log
|Q1 + Q2 + N1|

|Q2 + N1|
− tr(Q1M1) − tr(Q2M2) − tr((Q1 + Q2 − S1)M3)

+ tr((Q1 + Q2 − S2)M4) (63)

The complementary slackness conditions (28)-(30) are still the
same due to the same set of constraints for both problems (62)
and (26). The KKT optimality condition for Q∗

1 and Q∗
2 are:

(Q∗
1 + Q∗

2 + N2)
−1 − (Q∗

1 + Q∗
2 + N1)

−1

−M1 − M3 + M4 = 0 (64)

(Q∗
1+Q∗

2+N2)
−1−(Q∗

2+N2)
−1−(Q∗

1+Q∗
2+N1)

−1

+(Q∗
2+N1)

−1−M2−M3+M4 = 0 (65)

Using (64), we can write (65) as:

M1 − (Q∗
2 + N2)

−1 + (Q∗
2 + N1)

−1 − M2 = 0 (66)

In this case, we again construct an enhanced channel with
similar steps as in Section IV-B. The enhanced channel is
constructed as:

(Q∗
2 + N1)

−1 + M1 = (Q∗
2 + N2)

−1 + M2 = (Q∗
2 + Ñ)−1

(67)

which is the same as in the previous section. Therefore,
it follows that Ñ 	 0, Ñ � N1, Ñ � N2. Similarly, we can
prove that the rate is preserved for the eavesdropper (as in the
set of equations (39)-(44) with Q∗

2 instead of Q∗
1), i.e.,

|Ñ + Q∗
2|

|Ñ| = |N2 + Q∗
2|

|N2| (68)

To prove the rate preservation for the legitimate receiver,
we will need the following lemma.

Lemma 4: To achieve a positive secrecy rate using
Gaussian coding with artificial noise, S2 must be fully used,
i.e., S2 = Q∗

1+Q∗
2, and the optimal covariance matrix used for

the artificial noise component, Q∗
2, satisfies (S2 −Q∗

2)M1 = 0.
Proof: We start by proving the first part of the lemma

by contradiction. Assume that a positive secrecy rate can be
achieved using artificial noise, and S2 is partially used. Then,
we have two cases. The first case: � = S2 − Q∗

1 − Q∗
2 
 0.

Hence, � is a full-rank matrix, then M4 = 0. From (64), we
can write (Q∗

1 +Q∗
2 +N1)

−1 +M1 +M3 = (Q∗
1 +Q∗

2 +N2)
−1

and hence, (Q∗
1 + Q∗

2 + N1)
−1 � (Q∗

1 + Q∗
2 + N2)

−1, which
results in N2 � N1. This means that the legitimate channel is
degraded with respect to the eavesdropper channel, and hence,
no positive secrecy rate can be achieved. This contradicts
our assumption. The second case: � is not full-rank. Due to
the similarity of the complementary slackness conditions for
the artificial noise and the Gaussian coding with fixed mean
settings, we have also (47), and from (64), we have

M4 − M3 =(Q∗
1 + Q∗

2 + N1)
−1−(Q∗

1 + Q∗
2 + N2)

−1 + M1

(69)

substituting this in (47), we have the following implications:

�(Q∗
1 + Q∗

2 + N1)
−1 − �(Q∗

1 + Q∗
2 + N2)

−1

+�M1 = −�M3 (70)

�[(Q∗
1 + Q∗

2 + N2)
−1 − �(Q∗

1 + Q∗
2 + N1)

−1]
= �M1 + �M3 (71)

Then, [(Q∗
1 + Q∗

2 + N2)
−1 − (Q∗

1 + Q∗
2 + N1)]−1 	 0 to

have (71) hold true [33], and then we have N2 � N1 as in
the previous case, which also contradicts the assumption of
having a positive secrecy rate. Hence, Q∗

1 + Q∗
2 = S2. For

the second part of the lemma, we now have S2 − Q∗
2 = Q∗

1,
and from the complementary slackness condition Q∗

1M1 = 0.
Then, we conclude that (S2 − Q∗

2)M1 = 0, completing the
proof of Lemma 4.
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Using Lemma 4, we can prove rate preservation for the
legitimate receiver as follows:

(Ñ + S2)(Q∗
2 + Ñ)−1

= (S2 − Q∗
2)(Q

∗
2 + Ñ)−1 + I (72)

= (S2 − Q∗
2)[(Q∗

2 + N1)
−1 + M1] + I (73)

= (S2 − Q∗
2)(Q

∗
2 + N1)

−1 + I (74)

= [(N1 + S2) − (Q∗
2 + N1)](Q∗

2 + N1)
−1 + I (75)

= (N1 + S2)(Q∗
2 + N1)

−1 (76)

where (73) follows from the definition of the enhanced
channel (67), and (74) follows from Lemma 4. Therefore,
we have:

|S2 + Ñ|
|Q∗

2 + Ñ| = |S2 + N1|
|Q∗

2 + N1| (77)

Hence, the secrecy capacity of the enhanced channel is
given by:

C̃s = 1

2
log

|S2 + Ñ|
|Ñ| − 1

2
log

|S2 + N2|
|N2| (78)

= 1

2
log

|S2 + Ñ|
|S2 + N2| · |N2|

|Ñ| (79)

= 1

2
log

|S2 + Ñ|
|S2 + N2| · |Q∗

2 + N2|
|Q∗

2 + Ñ| (80)

= 1

2
log

|S2 + Ñ|
|Q∗

2 + Ñ| · |Q∗
2 + N2|

|S2 + N2| (81)

= 1

2
log

|S2 + N1|
|Q∗

2 + N1| · |Q∗
2 + N2|

|S2 + N2| (82)

= 1

2
log

|S2 + N1|
|Q∗

2 + N1| − 1

2
log

|S2 + N2|
|Q∗

2 + N2| (83)

= 1

2
log

|Q∗
1 + Q∗

2 + N1|
|Q∗

2 + N1| − 1

2
log

|Q∗
1 + Q∗

2 + N2|
|Q∗

2 + N2|
(84)

= C(S1, S2, H, G) (85)

where (80) follows from (68), (82) follows from (77), and (84)
follows from Q∗

1+Q∗
2 = S2, completing the converse proof for

the case of Gaussian signalling with Gaussian artificial noise.

V. EXTENSIONS TO RELATED CHANNEL MODELS

A. Gaussian MIMO Wiretap Channel Under Dual Minimum
Receiver-Side Power Constraints

In this section, we consider the case where we impose
dual receiver-side minimum power constraints, i.e., receiver-
side power constraints both on the legitimate receiver and
the eavesdropper. Then, we have the following constraint in
addition to the constraints in (3) and (4):

tr(E[YYT ]) ≥ E2 (86)

where E2 is the minimum power level that should be delivered
to the legitimate receiver. The following theorem characterizes
the secrecy capacity of this model.

Theorem 2: The secrecy capacity of a MIMO wiretap chan-
nel with a transmitter-side power constraint P and dual

receiver-side power constraints E1, E2, C(E1, E2, P, H, G),
is given as

C(E1, E2, P, H, G)

= max
Q	0,µ

1

2
log |I + HQHT | − 1

2
log |I + GQGT |

s.t. tr(Q + µµT ) ≤ P

tr(G(Q + µµT )GT ) ≥ Ẽ1

tr(H(Q + µµT )HT ) ≥ Ẽ2 (87)

where Ẽ1 = E1− Ne, and Ẽ2 = E − Nr . This secrecy capacity
is achieved by X ∼ N (µ, Q), i.e., with a mean but no channel
prefixing. Alternatively, C(E1, E2, P, H, G) is also given as

C(E1, E2, P, H, G)

= max
Q1,Q2	0

1

2
log

|I + H(Q1 + Q2)HT |
|I + HQ2HT |

− 1

2
log

|I + G(Q1 + Q2)GT |
|I + GQ2GT |

s.t. tr(Q1 + Q2) ≤ P

tr(G(Q1 + Q2)GT ) ≥ Ẽ1

tr(H(Q1 + Q2)HT ) ≥ Ẽ2 (88)

where X = V + U, with jointly Gaussian V ∼ N (0, Q1) and
U ∼ N (0, Q2), where U, V are independent, i.e., Gaussian
signalling with Gaussian channel prefixing.

Proof: The proof relies on verifying that the double-sided
correlation matrix constraint constructed in Section IV-A is
sufficient for this case also. First, we define the set SP E1 E2 as:

SP E1 E2 = {S 	 0 : tr(S) ≤ P, tr(GSGT ) ≥ Ẽ1,

tr(HSHT ) ≥ Ẽ2} (89)

To show the direct implication

C(E1, E2, P, H, G) ≥ max
S1,S2∈SP E1 E2 ,S1�S2

C(S1, S2, H, G)

(90)

we note that for any Q such that S1 � Q � S1 where
S1, S2 ∈ SP E1 E2 , we have tr(Q) ≤ tr(S2) ≤ P , tr(GQGT ) ≥
tr(GS1GT ) ≥ E1 and tr(HQHT ) ≥ tr(HS1HT ) ≥ E2.
Consequently, Q ∈ SP E1 E2 , i.e., the feasible set under S1, S2 ∈
SP E1 E2 is a subset of the feasible set under P, E1, E2 con-
straints. Moreover, SP E1 E2 ⊆ SP E defined in Section II, and
hence SP E1 E2 is also a compact set. Hence the implication

C(E1, E2, P, H, G) ≤ max
S1,S2∈SP E1 E2 ,S1�S2

C(S1, S2, H, G)

(91)

can be proved by following the reverse implication (24) of the
proof of Lemma 2 for the compact set SP E1 E2 , we can show
that:

C(E1, E2, P, H, G) = max
S1,S2∈SP E1 E2 ,S1�S2

C(S1, S2, H, G)

(92)

Then, the inner problem under the dual receiver-side power
constraints is identical to its counterpart under a single
receiver-side power constraint on the eavesdropper side only.
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Consequently, achievability schemes of mean based and arti-
ficial noise based signalling are optimal for the dual receiver-
side minimum power constraints.

It only remains to show that the achievable rates with
Gaussian signalling with fixed mean match the converse,
i.e., that when the covariance matrix representing the mean is
left unrestricted for converse purposes, at the optimal, it takes
a unit-rank so that it can be implemented with a mean vector
in the achievability. That is, we need to show that Lemma 1
extends to the current setting under P, E1, E2 constraints.
To show this, as a generalization of (13), we need to solve:

max
Q2	0

α1tr(GQ2GT ) + α2tr(HQ2HT ) s.t. tr(Q2) = P̃

(93)

This optimization problem is equivalent to:

max
λi ,qi

r∑

i=1

λi

(
α1‖Gqi‖2 + α2‖Hqi‖2

)
s.t.

r∑

i=1

λi = P̃

(94)

which has a beam-forming optimal solution of assigning all
P̃ to qm such that

m = arg max
i

α1‖Gqi‖2 + α2‖Hqi‖2 (95)

and hence the optimal Q2 is unit-rank and the mean-based
signalling is feasible.

B. Gaussian MIMO Wiretap Channel Under Maximum
Receiver-Side Power Constraints

In this section, we consider the MIMO wiretap channel
under maximum receiver-side power constraints. This general-
izes Gastpar’s problem [1] to include a secrecy requirement.
In this case, we limit the interference at both receivers instead
of maintaining the received power levels at both receivers as in
Section II. Then, we impose the following constraints together
with (3):

tr(E[ZZT ]) ≤ E1, tr(E[YYT ]) ≤ E2 (96)

Theorem 3: The secrecy capacity of the MIMO wire-
tap channel with a transmitter-side power constraint P
and maximum receiver-side power constraints E1, E2,
C(E1, E2, P, H, G), is

max
Q	0

1

2
log |I + HQHT | − 1

2
log |I + GQGT |

s.t. tr(Q) ≤ P, tr(GQGT ) ≤ Ẽ1,

tr(HQHT ) ≤ Ẽ2 (97)

This secrecy capacity is achieved by X ∼ N (0, Q), i.e., neither
mean or channel prefixing is required.

Proof: Similar to the previous section, we construct a
suitable correlation matrix set S′

P E1 E2
as:

S′
P E1 E2

= {S 	 0 : tr(S) ≤ P, tr(GSGT ) ≤ Ẽ1,

tr(HSHT ) ≤ Ẽ2} (98)

Now, we show that, using a single-sided correlation matrix
constraint Q � S is sufficient for maximum receiver-side

power constraints, unlike the double-sided correlation con-
straint that was necessary for minimum receiver-side power
constraints so far. Since, for all Q � S, we have tr(Q) ≤
tr(S) ≤ P , tr(GQGT ) ≤ tr(GSGT ) ≤ Ẽ1 and tr(HQHT ) ≤
tr(HSHT ) ≤ Ẽ2, we thus have Q ∈ S′

P E1 E2
. Moreover, the

set S′
P E1 E2

is closed and bounded and hence compact. Conse-
quently, we can find a sequence of codes C (nk, S0 +δI, R, εk)
with S0 ∈ S′

P E1 E2
, achieving small probability of error, that

has a limit point of C(S0, H, G) and hence

C(E1, E2, P, H, G) = max
S∈S′

P E1 E2

C(S, H, G) (99)

Consequently, the inner problem under a correlation matrix
constraint for the wiretap channel with maximum receiver-
side power limitations is identical to the inner problem for the
classical wiretap channel without the extra maximum receiver-
side power constraints. Hence, the classical Gaussian coding
with zero-mean and no channel-prefixing is optimal.

C. Gaussian MIMO Broadcast Channel Under Minimum
Receiver-Side Power Constraints

In this section, we consider the MIMO BC with no secrecy
constraints under minimum receiver-side power constraints.
In this setting, the transmitter is required to communicate
messages simultaneously and reliably with the largest possible
rate, and at the same time, deliver the minimum required
powers to the receivers: tr(E[ZZT ]) ≥ E1, tr(E[YYT ]) ≥ E2.
The problem without the receiver-side constraints is solved by
Weingarten et al. [11]. The rate region is achieved using DPC
along with time sharing. We show in the following theorem
that the DPC is optimal even after imposing the receiver-side
power constraints.

Theorem 4: The capacity region of a MIMO broad-
cast channel with a transmitter-side power constraint P
and minimum receiver-side power constraints E1, E2,
C (E1, E2, P, H, G), is given by the DPC region, which is the
convex hull of the union of two regions R D PC

1 and R D PC
2 ,

corresponding to the two orders of encoding, given as:

R D PC
1 =

{
(R1, R2) : R1 ≤ 1

2
log |I + HQ1HT |,

R2 ≤ 1

2
log

|I + G(Q1 + Q2)GT |
|I + GQ1GT |

}

R D PC
2 =

{
(R1, R2) : R1 ≤ 1

2
log

|I + H(Q1 + Q2)HT |
|I + HQ2HT | ,

R2 ≤ 1

2
log |I + GQ2GT |

}
(100)

both of which subject to

tr(Q1 + Q2) ≤ P

tr(G(Q1 + Q2)GT ) ≥ Ẽ1

tr(H(Q1 + Q2)HT ) ≥ Ẽ2 (101)
Proof: We consider, without loss of generality, the region

of rates achieved by R D PC
1 . We first note that, due to the

presence of the minimum receiver-side power constraints,
we need to consider a double-sided correlation matrix con-
straint S1 � Q1 + Q2 � S2, for any fixed S1, S2 in SP E1 E2

in (89). Following the original channel enhancement proof of
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the aligned MIMO (not necessarily degraded) BC (AMBC)
in [11], it suffices to prove that under a double-sided corre-
lation matrix constraint S1 � Q1 + Q2 � S2, there exists
an enhanced aligned degraded BC (ADBC) such that for
α1 ≤ α2, noise covariances of the enhanced channel satisfy
the covariance increment Ñ1 � Ñ2 and supporting hyperplane
preservation.

First, the achievable DPC rates in the aligned case with the
encoding order in R D PC

1 are

max
Q1,Q2	0

α1 · 1

2
log

|Q1 + N1|
|N1| + α2 · 1

2
log

|Q1 + Q2 + N2|
|Q1 + N2|

s.t. Q1 + Q2 	 S1, Q1 + Q2 � S2 (102)

The Lagrangian for this problem is:

L = α1 · 1

2
log

|Q1 + N1|
|N1| + α2 · 1

2
log

|Q1 + Q2 + N2|
|Q1 + N2|

+ tr(Q1M1) + tr(Q2M2) + tr((Q1 + Q2 − S1)M3)

− tr((Q1 + Q2 − S2)M4) (103)

The KKT optimality conditions for Q∗
1, Q∗

2 are:

α1

2
(Q∗

1 + N1)
−1 + α2

2
(Q∗

1 + Q∗
2 + N2)

−1

−α2

2
(Q∗

1 + N2)
−1 + M1 + M3 − M4 = 0 (104)

α2

2
(Q∗

1 + Q∗
2 + N2)

−1 + M2 + M3 − M4 = 0 (105)

and the complementary slackness conditions are as
in (28)-(30). From (105) and (104), we have:

α1

2
(Q∗

1 + N1)
−1 + M1 = α2

2
(Q∗

1 + N2)
−1 + M2 (106)

Consequently, we construct the enhanced channels as:

α1

2
(Q∗

1 + N1)
−1 + M1 = α1

2
(Q∗

1 + Ñ1)
−1 (107)

α2

2
(Q∗

1 + N2)
−1 + M2 = α2

2
(Q∗

1 + Ñ2)
−1 (108)

Then, Ñ1 � N1 and Ñ2 � N2, and thus, the constructed
channels are enhanced. We need show that the enhanced
BC is degraded in favor of receiver 1. Since α1 ≤ α2,
from (106)-(108),

(Q∗
1 + Ñ1)

−1 = α2

α1
(Q∗

1 + Ñ2)
−1 	 (Q∗

1 + Ñ2)
−1 (109)

and hence Ñ1 � Ñ2. Moreover, we have the rate preservation
relation of receiver 1,

|Q∗
1 + Ñ1|
|Ñ1|

= |Q∗
1 + N1|
|N1| (110)

and the rate preservation for user 2 can be shown as:

(Q∗
1 + Q∗

2 + Ñ2)(Q∗
1 + Ñ2)

−1

= Q∗
2(Q

∗
1 + Ñ2)

−1 + I (111)

= Q∗
2[(Q∗

1 + N2)
−1 + 2

α2
M2] + I (112)

= Q∗
2(Q

∗
1 + N2)

−1 + I (113)
= (Q∗

1 + Q∗
2 + N2)(Q∗

1 + N2)
−1 (114)

leading to:

|Q∗
1 + Q∗

2 + Ñ2|
|Q∗

1 + Ñ2|
= |Q∗

1 + Q∗
2 + N2|

|Q∗
1 + N2| (115)

Hence, we have an enhanced ADBC whose rate region is
achieved by a Gaussian codebook and use full S2 [11]. Addi-
tionally, from (110) and (115), we conclude that the rate region
of the original AMBC coincides with the optimal Gaussian rate
region R G(S2, Ñ1, Ñ2) of the enhanced ADBC. To complete
the proof, we need to show that the supporting hyperplane
{(R1, R2) : α1 R1 + α2 R2 = b} is also a supporting hyper-
plane for the Gaussian rate region of the enhanced ADBC
R G(S2, Ñ1, Ñ2), i.e., that

∑2
i=1 αi RG

i (Q1, Q2, Ñ1, Ñ2) is
maximized by the Q∗

i that solves the AMBC problem. The
proof of this follows from [11].

We note that the related work [34] considers a MISO BC
with multiple receivers, where each receiver requires either
data or energy, but not both. The energy-requiring users are
satisfied by the transmission of pseudo-random signals, that are
known to all receivers, which can be subtracted out for com-
munication purposes with the information-requiring users. The
information-requiring users are served with a DPC scheme,
which is optimal in that case due to [11], as energy transfer
does not interact with data transfer. The emphasis in [34] is
the optimization of the system for this transmission scheme.
In our work, all users require both data and information
simultaneously. We prove by developing a suitable channel
enhancement method using double-sided correlation matrix
constraints that DPC is optimal for this system.

D. Gaussian MIMO Broadcast Channel With Confidential
Messages Under Minimum Receiver-Side
Power Constraints

In this section, we consider the MIMO BCCM where we
transmit a message to each receiver secret from the other.
In this setting, the transmitter is required to communicate
messages reliably, securely and at the same time deliver
minimum amounts of energy E1 and E2 to the receivers. The
problem without receiver-side power constraints was solved
in [20], and it was shown that secure DPC (S-DPC) attains
the secrecy capacity region. We show in the following theorem
that S-DPC is optimal in the presence of receiver-side power
constraints as well.

Theorem 5: The secrecy capacity region of a MIMO broad-
cast channel with a transmitter-side power constraint P
and minimum receiver-side power constraints E1, E2 and
with secrecy constraints, C (E1, E2, P, H, G), is given by the
S-DPC region,

R1 ≤ max
Q1,Q2	0

1

2
log |I + HQ1HT | − 1

2
log |I + GQ1GT |

R2 ≤ max
Q1,Q2	0

1

2
log

|I + G(Q1 + Q2)GT |
|I + GQ1GT |

− 1

2
log

|I + H(Q1 + Q2)HT |
|I + HQ1HT |

s.t. tr(Q1 + Q2) ≤ P
tr(G(Q1 + Q2)GT ) ≥ Ẽ1

tr(H(Q1 + Q2)HT ) ≥ Ẽ2 (116)



3882 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 9, SEPTEMBER 2016

This region is achieved by S-DPC (Gaussian double binning)
using jointly Gaussian random variables (V1, V2) → X →
(Y, Z) such that V1 = U1 + FU2, V2 = U2, X = U1 + U2,
where U1 ∼ N (0, Q1), U2 ∼ N (0, Q2) are independent and
F = Q1HT (I + HQ1HT )−1H.

Proof: In this case also, we have a double-sided cor-
relation matrix constraint S1 � Q1 + Q2 � S2, where
S1, S2 in SP E1 E2 in (89). From Lemma 4, we know that,
to have a positive secrecy rate at receiver 2, we must use
the full correlation matrix S2, i.e., Q1 + Q2 = S2. Since the
outer optimization problem chooses S2 from the set SP E1 E2 ,
and X has the covariance Q = Q1 + Q2, the receiver-side
power constraints are satisfied. The achievability of the corner
point follows from [20] by using the double binning scheme
presented in [35].

We next need to show that the achievable scheme matches
the converse. For receiver 2: From Theorem 1, noticing that
G in this case corresponds to the main channel and H corre-
sponds to the eavesdropper channel, the achievable rate R2,max
in (116) is equal to the secrecy capacity C(S1, S2, G, H)
in (19) proving the converse. For receiver 1: The achievable
rate R1,max in (116) is the same as the secrecy capacity
C(S1, S2, H, G) in (11) except for the correlation constraint
S1 � Q1 + µµT � S2. Recall that, in Section IV-B,
we proved the converse for arbitrary Q2, not necessar-
ily unit-rank. Therefore, using S-DPC encoding scheme
induces the required extra covariance component Q2 that
supports the receiver-side constraint. Moreover, we observe
that

C(S1, S2, G, H) = C(S1, S2, H, G) + 1

2
log

|I + GS2GT |
|I + HS2HT |

(117)

This implies that Q1 maximizes the secrecy capacities of
both users simultaneously. Consequently, the two users can
receive the confidential messages at their respective maxi-
mum secrecy rates as individual wiretap channels, i.e., the
secrecy rate region is rectangular under the S1, S2 cor-
relation matrix constraints. Hence, the S-DPC scheme is
optimal.

VI. PRACTICAL OPTIMIZATION APPROACHES

In this section, we provide several optimization approaches
to evaluate the capacities under receiver-side power constraints
stated in Theorems 1-5. Without loss of generality, we consider
the case of a single minimum receiver-side power constraint
in the wiretap channel in Theorem 1. This is one of the
most challenging optimization problems among the results in
Theorems 1-5, as the optimization problem in this case is not
convex.

A. MISO Problem With Gaussian
Mean-Based Coding Scheme

The MISO problem with Gaussian mean-based coding
scheme can be exactly cast as a convex optimization problem

by considering a linear fractional transformation (Charnes-
Cooper transformation) [36] as follows:

max
Q1,Q2	0

1

2
log(1 + hT Q1h) − 1

2
log(1 + gT Q1g)

s.t. tr(Q1) + tr(Q2) ≤ P

gT (Q1 + Q2)g ≥ Ẽ (118)

The objective function is generally not concave. Considering
the monotonicity of log, the objective function can be replaced
with the linear fractional objective function 1+hT Q1h

1+gT Q1g
. Follow-

ing the linear fractional transformation [36] by multiplying by
positive variable t > 0 and defining Q1 = Q̃1/t , Q2 = Q̃2/t ,
and fixing the resultant denominator as t + gT Q̃1g = 1, we
obtain the convex equivalent of the problem in (118) as

max
Q̃1,Q̃2	0,t>0

t + hT Q̃1h

s.t. t + gT Q̃1g = 1

tr(Q̃1) + tr(Q̃2) ≤ t P

hT (Q̃1 + Q̃2)h ≥ t Ẽ (119)

The optimal solution of (119) can be obtained efficiently using
convex solvers, e.g., CVX.

B. MISO Problem With Gaussian Artificial
Noise Based Coding Scheme

In this case, we cannot fully transform the problem to
a convex form. However, we can apply similar techniques
together with an extra step of line search [37] to solve the
problem. The problem in this case is:

max
Q1,Q2	0

1

2
log

(
1 + hT Q1h

1 + hT Q2h

)

− 1

2
log

(
1 + gT Q1g

1 + gT Q2g

)

︸ ︷︷ ︸
≤β

s.t. tr(Q1) + tr(Q2) ≤ P

gT (Q1 + Q2)g ≥ Ẽ (120)

Next, we upper bound the second term in the optimization

problem by 1
2 log β, where β is the line-search variable. This

results in an extra constraint gT Q1g
1+gT Q2g

≤ β − 1. We write the

optimization problem by considering the monotonicity of log
and rearranging terms as:

max
Q1,Q2	0

1 + hT (Q1 + Q2)h
β(1 + hT Q2h)

s.t. gT (Q1 − (β − 1)Q2)g ≤ β − 1

tr(Q1) + tr(Q2) ≤ P

gT (Q1 + Q2)g ≥ Ẽ (121)

Now, by linear fractional transformation [36], we multi-
ply (121) by t > 0, define Q1 = Q̃1/t, Q2 = Q̃2/t and
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fix β(t + hT Q̃2h) = 1. Note that using this transforma-
tion, the resultant problem is a convex problem for fixed β.
Hence, iterating over β along its range 1 ≤ β ≤ 1 + P‖h‖2,
the problem becomes

max
β

ϕ(β), s.t. 1 ≤ β ≤ 1 + P‖h‖2 (122)

which together with the following can be solved effectively

ϕ(β) = max
Q̃1,Q̃2	0,t>0

t + hT (Q̃1 + Q̃2)h

s.t. gT (Q̃1 − (β − 1)Q̃2)g ≤ t (β − 1)

β(t + hT Q̃2h) = 1

tr(Q̃1) + tr(Q̃2) ≤ t P

gT (Q̃1 + Q̃2)g ≥ t Ẽ (123)

C. General MIMO Problem

For the general MIMO case, we cannot provide a direct
convex optimization equivalent as in the MISO case even
by adding a line search. This is due to the concavity of
log-determinant functions, which result in difference of con-
cave functions. To tackle the problem, we can approximate
the objective function using sequential convex optimization
techniques [38], [39]. The idea here is to approximate the
second term in the objective function by its first order expan-
sion. To show that, first, consider the objective function of
the Gaussian coding with fixed mean 1

2 log |I + HQ1HT | −
1
2 log |I + GQ1GT |, which is equivalent to log |Q1 + N1| −
log |Q1 + N2|. We approximate the second term with an
affine function using the Taylor series expansion of the log det
function around Q(k), where k denotes the kth iteration:

log |Q1 + N2|∼= log |Q(k)
1 + N2|+tr((Q(k)

1 +N2)
−1(Q1−Q(k)))

(124)

Since the constant terms do not affect the optimal solution,
we can use

log |Q1 + N2| ∼= tr((Q(k)
1 + N2)

−1Q1) (125)

The optimization problem in the kth iteration is

max
Q1,Q2	0

log |Q1 + N1| − tr((Q(k)
1 + N2)

−1Q1)

s.t. tr(Q1) + tr(Q2) ≤ P

tr(G(Q1 + Q2)GT ) ≥ Ẽ (126)

which is a convex problem, and can be solved efficiently.

We update Q(k)
1 , Q(k)

2 by solving such convex optimization
problems until convergence.

Finally, using similar ideas, we can perform linearization in
the case of Gaussian with artificial noise coding scheme, where
the corresponding optimization problem in the kth iteration is

max
Q2,S	0

log |S + N1| + log |Q2 + N2|
− tr((Q(k)

2 + N1)
−1Q2) − tr((S(k) + N2)

−1S)

s.t. tr(S) ≤ P, tr(GSGT ) ≥ Ẽ (127)

Fig. 2. Secrecy capacity receiver-side power constraint region for a 4-1-1
MISO wiretap channel.

Fig. 3. Secrecy capacity receiver-side power constraint region for a 2-2-2
MIMO wiretap channel.

VII. NUMERICAL RESULTS

In this section, we present simple simulation results for the
secrecy capacity of the MIMO wiretap channel with maximum
transmitter-side power constraint and minimum receiver-side
(eavesdropper-side) power constraint. In these simulations, the
average transmit power at the transmitter is taken as P = 10
and the noise covariance is identity at both receivers.

Fig. 2 shows a secrecy capacity receiver-side power con-
straint region for a MISO 4-1-1 system, i.e, a system with
4 antennas at the transmitter and single antenna at both
the legitimate receiver and the eavesdropper. The figure
shows the optimality of the Gaussian signalling with a mean
and Gaussian coding with Gaussian artificial noise coding
schemes; in particular, the regions corresponding to the mean
and artificial noise coding schemes are identical. Moreover,
the secrecy rate region with receiver-side power region of
the standard Gaussian coding scheme with no mean or no
artificial noise is noticeably smaller than the optimal schemes.
That is, the standard Gaussian signaling scheme is strictly
sub-optimal for the case of receiver-side power constraints.
In addition, we observe that, as the receiver-side power con-
straint is increased, the secrecy capacity decreases, i.e., there
is a trade-off between the power that should be delivered to
the eavesdropper’s receiver and the confidentiality that can
be provided to the legitimate receiver. This is because, when
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the receiver-side power constraint is increased, the problem
becomes more confined and more power should be concen-
trated for the receiver-side power constraint, which decreases
the set of signalling choices for the secrecy communications.
Fig. 3 shows similar observations for the 2-2-2 MIMO wiretap
system.

VIII. CONCLUSIONS

We considered the MIMO wiretap channel with the usual
transmitter-side maximum power constraint and an additional
receiver-side minimum power constraint. For the converse, we
first proved that the problem is equivalent to solving a secrecy
capacity problem with a double-sided correlation matrix con-
straint on the channel input. We then extended the channel
enhancement technique to our setting. For the achievability,
we proposed two optimum schemes that achieve the converse
rate: Gaussian signalling with a fixed mean and Gaussian
signalling with Gaussian channel prefixing (artificial noise).
This is the first instance of a problem where transmission with
a mean or channel prefixing are strictly necessary for a MIMO
wiretap channel under power constraints. The transmission
scheme with a mean enables us to deliver the needed power
to the receiver without creating interference to the legitimate
receiver as it is a deterministic signal. On the other hand,
the transmission scheme with Gaussian artificial noise, both
jams the eavesdropper contributing to the secrecy as well as
delivering the needed power to the receiver. We note that the
optimal coding scheme for the MIMO wiretap channel under
a transmitter-side power constraint only, which is Gaussian
signalling with no channel prefixing or mean, is strictly sub-
optimal when we impose a receiver-side power constraint,
showing similar to the cases of [1] and [2], that receiver-
side power constraints may change the solution significantly
and may introduce non-trivial trade-offs. We then extended
our setting to the cases of minimum power constraints at
both receivers in a wiretap channel; maximum receiver-side
power constraints at both receivers in a wiretap channel; min-
imum receiver-side power constraints in a broadcast channel
(i.e., no secrecy constraints); and minimum receiver-side
power constraints in a broadcast channel with confidential
messages (i.e., double-sided secrecy constraints).

APPENDIX

CONTINUITY OF THE CAPACITY FUNCTION

We prove our claim in Lemma 2 that C(S1, S2, H, G) is a
continuous function with respect to S2. Although contiguity
defined in [11], which is a weaker notion than continuity,
suffices to prove Lemma 2, we prove continuity here. To prove
this, we begin by writing the optimization problem in a general
form as in [11, Appendix IV] by concatenating the rows of
Q1, Q2 to form a vector y ∈ R

2t2
, where t = max{Nt , Nr }.

We denote the point-to-set map �(S2) to be a mapping from
S2 to the power set of all subsets of the corresponding feasible
set, i.e.,

�(S2) = {row concatenation of (Q1, Q2) :
Q1, Q2 	 0, S1 � Q1 + Q2 � S2} (128)

Denote C(S1, S2, H, G) by C(S2) for notational simplicity as
we focus on the argument S2 here. From (11) with Q2 = µµT ,
we write C(S2) as

C(S2) = max
y∈�(S2)

f (y) (129)

where f (y) = 1
2 log |I + HQ1HT | − 1

2 log |I + GQ1GT |. Note
that in this case f (y) depends only on the first t2 elements
of y. Now, we use [40, Th. 7], which states conditions on
the continuity of the optimal value function in mathematical
programming to prove the continuity of C(S2). In the sequel,
we verify that all requirements of [40, Th. 7] are satisfied.

Since the determinant of an n × n matrix A can be written
as det(A) = ∑

σ sgn(σ )
∏n

i=1 aiσ(i), where the sum is over all
n! permutations of {1, 2, · · · , n}, the determinant in this form
is a polynomial in n2 variables, and det(A) is continuous.
Consequently, f (y) is also continuous. �(S2) consists of
linear matrix inequalities, hence it is a continuous point-to-set
map. Furthermore, �(S2) is uniformly compact because for
any sequence S(i)

2 in the neighborhood of S2, i.e., the metric

distance d(S(i)
2 , S2) = tr

(
(S(i)

2 − S2)(S
(i)
2 − S2)

T
)

≤ δ2 for

some finite δ > 0, one can find ki = max λ(S(i)
2 ) where λ(S(i)

2 )

is an eigenvalue of matrix S(i)
2 such that

�(S(i)
2 ) ⊆ Y = {row concatenation of (Q1, Q2) :

Q1, Q2 	 0, tr(Q1 + Q2) ≤ k} (130)

where k = maxi ki ≤ P + δ, where P is the power constraint
imposed on SP E . Since Y is compact and contains

⋃
i �(S(i)

2 ),
�(S2) is uniformly compact. Hence, the requirements
of [40, Th. 7] are satisfied and C(S1, S2, H, G) is continuous
with respect to S2.

REFERENCES

[1] M. Gastpar, “On capacity under receive and spatial spectrum-sharing
constraints,” IEEE Trans. Inf. Theory, vol. 53, no. 2, pp. 471–487,
Feb. 2007.

[2] L. R. Varshney, “Transporting information and energy simultaneously,”
in Proc. IEEE ISIT, Jul. 2008, pp. 1612–1616.

[3] J. G. Smith, “The information capacity of amplitude- and variance-
constrained sclar Gaussian channels,” Inf. Control, vol. 18, pp. 203–219,
Apr. 1971.

[4] A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8,
pp. 1355–1387, 1975.

[5] I. Csiszár and J. Korner, “Broadcast channels with confidential mes-
sages,” IEEE Trans. Inf. Theory, vol. 24, no. 3, pp. 339–348, May 1978.

[6] S. Leung-Yan-Cheong and M. E. Hellman, “The Gaussian wire-tap
channel,” IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 451–456, Jul. 1978.

[7] S. Shafiee, N. Liu, and S. Ulukus, “Towards the secrecy capacity of the
Gaussian MIMO wire-tap channel: The 2-2-1 channel,” IEEE Trans. Inf.
Theory, vol. 55, no. 9, pp. 4033–4039, Sep. 2009.

[8] A. Khisti and G. W. Wornell, “Secure transmission with multiple
antennas—Part II: The MIMOME wiretap channel,” IEEE Trans. Inf.
Theory, vol. 56, no. 11, pp. 5515–5532, Nov. 2010.

[9] F. Oggier and B. Hassibi, “The secrecy capacity of the MIMO wiretap
channel,” IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4961–4972,
Aug. 2011.

[10] T. Liu and S. Shamai (Shitz), “A note on the secrecy capacity of the
multiple-antenna wiretap channel,” IEEE Trans. Inf. Theory, vol. 55,
no. 6, pp. 2547–2553, Jun. 2009.

[11] H. Weingarten, Y. Steinberg, and S. Shamai (Shitz), “The capacity region
of the Gaussian multiple-input multiple-output broadcast channel,” IEEE
Trans. Inf. Theory, vol. 52, no. 9, pp. 3936–3964, Sep. 2006.

[12] S. Goel and R. Negi, “Guaranteeing secrecy using artificial noise,”
IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2180–2189,
Jun. 2008.



BANAWAN AND ULUKUS: MIMO WIRETAP CHANNEL UNDER RECEIVER-SIDE POWER CONSTRAINTS 3885

[13] E. Tekin and A. Yener, “The general Gaussian multiple-access and two-
way wiretap channels: Achievable rates and cooperative jamming,” IEEE
Trans. Inf. Theory, vol. 54, no. 6, pp. 2735–2751, Jun. 2008.

[14] Z. Li, R. Yates, and W. Trappe, “Achieving secret communication for
fast Rayleigh fading channels,” IEEE Trans. Wireless Commun., vol. 9,
no. 9, pp. 2792–2799, Sep. 2010.

[15] Z. Rezki, A. Khisti, and M.-S. Alouini, “On the secrecy capacity of the
wiretap channel with imperfect main channel estimation,” IEEE Trans.
Commun., vol. 62, no. 10, pp. 3652–3664, Oct. 2014.

[16] X. Zhou and M. R. McKay, “Secure transmission with artificial noise
over fading channels: Achievable rate and optimal power allocation,”
IEEE Trans. Veh. Tech., vol. 59, no. 8, pp. 3831–3842, Oct. 2010.

[17] A. Mukherjee and A. L. Swindlehurst, “Robust beamforming for security
in MIMO wiretap channels with imperfect CSI,” IEEE Trans. Signal
Process., vol. 59, no. 1, pp. 351–361, Jan. 2011.

[18] S.-C. Lin, T.-H. Chang, Y.-L. Liang, Y.-W. P. Hong, and C.-Y. Chi,
“On the impact of quantized channel feedback in guaranteeing secrecy
with artificial noise: The noise leakage problem,” IEEE Trans. Wireless
Commun., vol. 10, no. 3, pp. 901–915, Mar. 2011.

[19] J. Xie and S. Ulukus, “Secure degrees of freedom of one-hop wireless
networks,” IEEE Trans. Inf. Theory, vol. 60, no. 6, pp. 3359–3378,
Jun. 2014.

[20] R. Liu, T. Liu, H. V. Poor, and S. Shamai (Shitz), “Multiple-input
multiple-output Gaussian broadcast channels with confidential mes-
sages,” IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4215–4227,
Sep. 2010.

[21] L. Liu, R. Zhang, and K.-C. Chua, “Secrecy wireless information and
power transfer with MISO beamforming,” IEEE Trans. Signal Process.,
vol. 62, no. 7, pp. 1850–1863, Apr. 2014.

[22] D. W. K. Ng, E. S. Lo, and R. Schober, “Robust beamforming for
secure communication in systems with wireless information and power
transfer,” IEEE Trans. Wireless Commun., vol. 13, no. 8, pp. 4599–4615,
Aug. 2014.

[23] J. Zhang, C. Yuen, C.-K. Wen, S. Jin, K.-K. Wong, and H. Zhu,
“Achievable ergodic secrecy rate for MIMO SWIPT wiretap channels,”
in Proc. IEEE ICC, Jun. 2015, pp. 453–458.

[24] J. Zhang, C. Yuen, C.-K. Wen, S. Jin, K.-K. Wong, and H. Zhu, “Large
system secrecy rate analysis for SWIPT MIMO wiretap channels,” IEEE
Trans. Inf. Forensics Security, vol. 11, no. 1, pp. 74–85, Jan. 2016.

[25] T. M. Cover and J. A. Thomas, Elements of Information Theory.
New York, NY, USA: Wiley, 2012.

[26] M. Bloch and J. Barros, Physical-Layer Security: From Information
Theory to Security Engineering. Cambridge, U.K.: Cambridge Univ.
Press, 2011.

[27] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2011.

[28] R. G. Gallager, Information Theory and Reliable Communication.
New York, NY, USA: Wiley, 1968.

[29] E. Ekrem and S. Ulukus, “The secrecy capacity region of the Gaussian
MIMO multi-receiver wiretap channel,” IEEE Trans. Inf. Theory, vol. 57,
no. 4, pp. 2083–2114, Apr. 2011.

[30] V. Bryant, Metric Spaces: Iteration and Application. Cambridge, U.K.:
Cambridge Univ. Press, 1985.

[31] H. L. Royden and P. Fitzpatrick, Real Anal.. Prentice Hall, 2010.
[32] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, U.K.:

Cambridge Univ. Press, 2012.
[33] A. R. Meenakshi and C. Rajian, “On a product of positive semidefinite

matrices,” Linear Algebra Appl., vol. 295, nos. 1–3, pp. 3–6, Jul. 1999.
[34] S. Luo, J. Xu, T. J. Lim, and R. Zhang, “Capacity region of MISO

broadcast channel with SWIPT,” in Proc. IEEE ICC, Jun. 2015,
pp. 4235–4240.
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