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The Secrecy Capacity Region of the Gaussian MIMO
Multi-Receiver Wiretap Channel

Ersen Ekrem, Student Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—In this paper, we consider the Gaussian multiple-input
multiple-output (MIMO) multi-receiver wiretap channel in which
a transmitter wants to have confidential communication with an
arbitrary number of users in the presence of an external eaves-
dropper. We derive the secrecy capacity region of this channel for
the most general case. We first show that even for the single-input
single-output (SISO) case, existing converse techniques for the
Gaussian scalar broadcast channel cannot be extended to this
secrecy context, to emphasize the need for a new proof technique.
Our new proof technique makes use of the relationships between
the minimum-mean-square-error and the mutual information,
and equivalently, the relationships between the Fisher information
and the differential entropy. Using the intuition gained from the
converse proof of the SISO channel, we first prove the secrecy
capacity region of the degraded MIMO channel, in which all
receivers have the same number of antennas, and the noise covari-
ance matrices can be arranged according to a positive semi-definite
order. We then generalize this result to the aligned case, in which
all receivers have the same number of antennas; however, there
is no order among the noise covariance matrices. We accomplish
this task by using the channel enhancement technique. Finally, we
find the secrecy capacity region of the general MIMO channel by
using some limiting arguments on the secrecy capacity region of
the aligned MIMO channel. We show that the capacity achieving
coding scheme is a variant of dirty-paper coding with Gaussian
signals.

Index Terms—Gaussian MIMO broadcast channel, information
theoretic security, secrecy capacity region.

I. INTRODUCTION

NFORMATION theoretic secrecy was initiated by Wyner in

his seminal work [1]. Wyner considered a degraded wiretap
channel, where the eavesdropper gets a degraded version of the
legitimate receiver’s observation. For this degraded model, he
found the capacity-equivocation rate region where the equiv-
ocation rate refers to the portion of the message rate that can
be delivered to the legitimate receiver, while the eavesdropper
is kept totally ignorant of this part. Later, Csiszar and Korner
considered the general wiretap channel, where there is no pre-
sumed degradation order between the legitimate user and the
eavesdropper [2]. They found the capacity-equivocation rate re-
gion of this general, not necessarily degraded, wiretap channel.
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In recent years, information theoretic secrecy has gathered a
renewed interest, where most of the attention has been devoted
to the multi-user extensions of the wiretap channel, see for ex-
ample [3]-[21]. One natural extension of the wiretap channel to
the multi-user setting is the problem of secure broadcasting. In
this case, there is one transmitter which wants to communicate
with several legitimate users in the presence of an external eaves-
dropper. Hereafter, we call this channel model the multi-receiver
wiretap channel. Finding the secrecy capacity region for the most
general form of this channel model seems to be quite challenging,
especially if one remembers that, even without the eavesdropper,
we do not know the capacity region for the underlying channel,
which is a general broadcast channel with an arbitrary number
of users. However, we know the capacity region for some special
classes of broadcast channels, which suggests that we might be
able to find the secrecy capacity region for some special classes of
multi-receiver wiretap channels. This suggestion has been taken
into consideration in [8]-[11]. In particular, in [9]-[11], the de-
graded multi-receiver wiretap channel is considered, where there
is a certain degradation order among the legitimate users and the
eavesdropper. The corresponding secrecy capacity region is de-
rived for the two-user case in [9], and for an arbitrary number of
users in [10], [11]. The importance of this class lies in the fact
that the Gaussian scalar multi-receiver wiretap channel belongs
to this class.

In this work, we start with the Gaussian scalar multi-receiver
wiretap channel, and find its secrecy capacity region. Although,
in the later parts of the paper, we provide the secrecy capacity
region of the Gaussian multiple-input multiple-output (MIMO)
multi-receiver wiretap channel which subsumes the scalar case,
there are two reasons for the presentation of the scalar case sepa-
rately. The first one is to show that, existing converse techniques
for the Gaussian scalar broadcast channel, i.e., the converse
proofs of Bergmans [22] and El Gamal [23], cannot be extended
in a straightforward manner to provide a converse proof for the
Gaussian scalar multi-receiver wiretap channel. We explicitly
show that the main ingredient of these two converses in [22],
[23], which is the entropy-power inequality [24]-[26],! is insuf-
ficient to conclude a converse for the secrecy capacity region.
The second reason for the separate presentation is to present the
main ingredients of the technique that we will use to provide
a converse proof for the general MIMO channel in an isolated
manner in a simpler context. We provide two converse proofs for

I'Throughout this paper, the entropy-power inequality refers to the original
form of this inequality that was proposed by Shannon [24], but not its subsequent
variants such as Costa’s entropy-power inequality [27]. Indeed, the shortcoming
of the entropy-power inequality [24]-[26] to prove the secrecy capacity region
of the Gaussian scalar multi-receiver wiretap channel can be alleviated by using
Costa’s entropy-power inequality as shown in [28].
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the Gaussian scalar multi-receiver wiretap channel. The first one
uses the connection between the minimum-mean-square-error
(MMSE) and the mutual information along with the proper-
ties of the MMSE [29], [30]. In additive Gaussian channels,
the Fisher information, another important quantity in estima-
tion theory, and the MMSE have a one-to-one relationship in
the sense that one of them determines the other one, and vice
versa [31]. Thus, the converse proof relying on the MMSE has
a counterpart which replaces the Fisher information with the
MMSE in the corresponding converse proof. Hence, the second
converse uses the connection between the Fisher information
and the differential entropy via the De Bruijn identity [24]-[26]
along with the properties of the Fisher information. This reveals
that the Fisher information matrix or equivalently the MMSE
matrix should play an important role in the converse proof of
the MIMO case.

Keeping this motivation in mind, we consider the Gaussian
MIMO multi-receiver wiretap channel next. Instead of directly
tackling the most general case in which each receiver has an
arbitrary number of antennas and an arbitrary noise covariance
matrix, we first consider two sub-classes of MIMO channels.
In the first sub-class, all receivers have the same number of
antennas and the noise covariance matrices exhibit a positive
semi-definite order, which implies the degradedness of these
channels. Hereafter, we call this channel model the degraded
Gaussian MIMO multi-receiver wiretap channel. In the second
sub-class, although all receivers still have the same number of
antennas as in the degraded case, the noise covariance matrices
do not have to satisfy any positive semi-definite order. Here-
after, we call this channel model the aligned Gaussian MIMO
multi-receiver wiretap channel. Our approach will be to first
find the secrecy capacity region of the degraded case, then to
generalize this result to the aligned case by using the channel
enhancement technique [32]. Once we obtain the secrecy ca-
pacity region of the aligned case, we use this result to find the
secrecy capacity region of the most general case by some lim-
iting arguments as in [32], [33]. Thus, the main contribution and
the novelty of our work is the way we prove the secrecy ca-
pacity region of the degraded Gaussian MIMO multi-receiver
wiretap channel, since the remaining steps from then on are
mainly adaptations of the existing proof techniques [32], [33]
to an eavesdropper and/or multi-user setting.

At this point, to clarify our contributions, it might be useful to
note the similarity of the proof steps that we follow with those in
[32], where the capacity region of the Gaussian MIMO broad-
cast channel was established. In [32] also, the authors consid-
ered the degraded, the aligned and the general cases succes-
sively. Although, both [32] and this paper has these same proof
steps, there are differences between how and why these steps
are taken. In [32], the main difficulty in obtaining the capacity
region of the Gaussian MIMO broadcast channel was to extend
Bergmans’ converse for the scalar case to the degraded vector
channel. This difficulty was overcome in [32] by the invention
of the channel enhancement technique. However, as discussed
earlier, Bergmans’ converse cannot be extended to our secrecy
context, even for the degraded scalar case. Thus, we need a new
technique which we construct by using the Fisher information
matrix and the generalized De Bruijn identity [34]. After we ob-
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tain the secrecy capacity region of the degraded MIMO channel,
we adapt the channel enhancement technique to our setting to
find the secrecy capacity region of the aligned MIMO channel.
The difference of the way channel enhancement is used here
as compared to the one in [32] comes from the presence of an
eavesdropper, and its difference from the one in [33] is due to
the presence of many legitimate users. After we find the secrecy
capacity region of the aligned MIMO channel, we use the lim-
iting arguments that appeared in [32], [33] to prove the secrecy
capacity region of the general MIMO channel.

The single user version of the Gaussian MIMO multi-receiver
wiretap channel we study here, i.e., the Gaussian MIMO wiretap
channel, was solved by [35], [36] for the general case and by
[37] for the 2-2-1 case. Their common proof technique was to
derive a Sato-type outer bound on the secrecy capacity, and then
to tighten this outer bound by searching over all possible corre-
lation structures among the noise vectors of the legitimate user
and the eavesdropper. Later, [33] gave an alternative, simpler
proof by using the channel enhancement technique.

II. MULTI-RECEIVER WIRETAP CHANNELS

In this section, we first revisit the multi-receiver wiretap
channel. The general multi-receiver wiretap channel consists
of one transmitter with an input alphabet X', K legitimate
receivers with output alphabets Vi, k = 1,..., K, and an
eavesdropper with output alphabet Z. The transmitter sends
a confidential message to each user, say wr € Wy to the
kth user, and all messages are to be kept secret from the
eavesdropper. The channel is memoryless with a transition
prObabﬂity p(y17 Y2, -5 YK 2 | ‘17)

A (271 2nRx p) code for this channel consists of K
message sets, Wy, = {1,...,2"%} k= 1,... K, an encoder
Wi x---xWg — &A™, K decoders, one at each legitimate
receiver, g, : Vx — Wy, k = 1,..., K. The probability of error
is defined as P! = maxg=1__x Pr[gp(Y}) # Wy], where
Wi is a uniformly distributed random variable in Wy, k =
1,..., K. A rate tuple (Ry,...,Rx) is said to be achievable

if there exists a code with lim,, ., P = 0 and

lim lH(S(W)|Z”)z > Ri, VSW) (D
n—oo n keS(W)

where S(W) denotes any subset of {W7, ..., Wg}. Hence, we
consider only perfect secrecy rates. We also note that since we
are interested in the perfect secrecy case, it is sufficient to con-
sider the constraint

=

1
lim —H(Wy,..., Wk |2") > Ry )

n—oo n, =1

because (2) implies (1) [11]. The secrecy capacity region is de-
fined as the closure of all achievable rate tuples.
The degraded multi-receiver wiretap channel exhibits the fol-
lowing Markov chain:
X-Y— - =Yy —Z 3)

whose capacity region was established in [10], [11] for an arbi-
trary number of users and in [9] for two users.
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Theorem 1 ([11, Theorem 1]): The secrecy capacity region
of the degraded multi-receiver wiretap channel is given by the
union of the rate tuples (R, ..., Rx) satisfying?

Ry < I(Up; Yy |Upy1,2), k=1,....K 4)
where Uy = X, Uk 11 = 0, and the union is over all probability
distributions of the form

plug)p(ur—1|uK) ... p(uz | uz)p(x |uz). 5

We remark here that since the channel is degraded, i.e., we
have the Markov chain in (3), the capacity expressions in (4)
are equivalent to

Ry < I(Ug; Yy |Uky1) — I(Uk; Z | Ug41)

?

(6)

We will use this equivalent expression frequently hereafter. For
the case of two users and one eavesdropper, i.e., K = 2, the
expressions in (6) reduce to

Ry < I(X3Y1|Usz) — I(X; Z | Us) @)
Ry < I(U;Yo) — I(Uy; Z). (8)

Finding the secrecy capacity region of the two-user degraded
multi-receiver wiretap channel is tantamount to finding the op-
timal joint distributions of (X, Us) that trace the boundary of
the secrecy capacity region given in (7)—(8). For the K -user de-
graded multi-receiver wiretap channel, we need to find the op-
timal joint distributions of (X, Us, ..., Uk) in the form given
in (5) that trace the boundary of the region expressed in (4).

III. GAUSSIAN MIMO MULTI-RECEIVER WIRETAP CHANNEL

A. Degraded Gaussian MIMO Multi-Receiver Wiretap
Channel

In this paper, we first consider the degraded Gaussian MIMO
multi-receiver wiretap channel which is defined through

Y = X + Ng,
7Z=X+Ny,

k=1,... K ©)
(10

where the channel input X is subject to a covariance constraint

E[XX'] =<8 (11)

where S = 0, and {N,}X_, N are zero-mean Gaussian

random vectors with covariance matrices {3 k},{":17 3, which
satisfy the following ordering:

0<% X3 =<+ XXg 23z (12)

In a multi-receiver wiretap channel, since the capacity-equiv-

ocation rate region depends only on the conditional marginal

2Although in [10] and [11], this secrecy capacity region is expressed in a
different form, the equivalence of the two expressions can be shown.
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distributions of the transmitter-receiver links, but not on the
entire joint distribution of the channel, the correlations among
{N}£ |, Nz have no consequence on the capacity-equivoca-
tion rate region. Thus, without changing the corresponding se-
crecy capacity region, we can adjust the correlation structure
among these noise vectors to ensure that they satisfy the fol-
lowing Markov chain:

X—=-Y —...2= Y —7Z (13)
which is always possible because of our assumption regarding
the covariance matrices in (12). Moreover, the Markov chain in
(13) implies that any Gaussian MIMO multi-receiver wiretap
channel satisfying the semi-definite ordering in (12) can be
treated as a degraded multi-receiver wiretap channel; hence,
Theorem 1 gives its capacity region. Hereafter, we will assume
that the degraded Gaussian MIMO wiretap channel satisfies the
Markov chain in (13).

In Section V, we obtain the secrecy capacity region of the de-
graded Gaussian MIMO multi-receiver wiretap channel, which
is stated in the following theorem.

Theorem 2: The secrecy capacity region of the degraded
Gaussian MIMO multi-receiver wiretap channel is given by the
union of the rate tuples R, ..., Rg satisfying

1 ’ZleKz'JrEk‘
Ry, < 5log g ————

2 ‘21‘,:_1 Kﬁzk‘
)2 R P

——log
2 ‘Zf:_f K+ EZ’

where the union is over all positive semi-definite matrices
{K;} X, that satisfy

15)

(X,Us,...,Uk) are sufficient to evaluate the region given in
Theorem 1 for the degraded Gaussian MIMO multi-receiver
wiretap channel. The details of the proof of Theorem 2 are
deferred to Section V. We acknowledge an independent and
concurrent work in [28], where the secrecy capacity region of
the degraded Gaussian MIMO multi-receiver wiretap channel
is found for K = 2. Their proof is different than ours in the
sense that it first provides a vector generalization of Costa’s
entropy-power inequality [27], and next uses this general-
ized inequality to establish the secrecy capacity region of the
two-user degraded Gaussian MIMO multi-receiver wiretap
channel.

B. Aligned Gaussian MIMO Multi-Receiver Wiretap Channel

Next, we consider the aligned Gaussian MIMO multi-receiver
wiretap channel which is again defined by (9)—(10), and the
input is again subject to a covariance constraint as in (11) with
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S > 0. However, for the aligned Gaussian MIMO multi-re-
ceiver wiretap channel, noise covariance matrices do not have
any semi-definite ordering, as opposed to the degraded case
which exhibits the ordering in (12). For the aligned Gaussian
MIMO multi-receiver wiretap channel, the only assumption on
the noise covariance matrices is that they are strictly positive-
definite, i.e., 3; > 0,72 = 1,...,K and Xz > 0. Since this
channel does not have any ordering among the noise covari-
ance matrices, it cannot be considered as a degraded channel;
thus, there is no single-letter formula for its secrecy capacity
region. Moreover, we do not expect superposition coding with
stochastic encoding to be optimal, as it was optimal for the de-
graded channel. Indeed, we will show that dirty-paper coding
with stochastic encoding is optimal in this case.

In Section VI, we obtain the secrecy capacity region of the
aligned Gaussian MIMO multi-receiver wiretap channel, which
will be stated next. To this end, we introduce some notation
which is necessary to express the secrecy capacity region of the
aligned Gaussian MIMO multi-receiver w1retap channel. Given
the covariance matrices {K;} X, such that ZL 1K <8, let
us define the following rates:

R?PC( AKHE A, 22)
’Zq 1 Ky + Bry
‘Zk | Koy + Zae)
‘Zl 1 Ky + 22
‘Zk 1K7‘r(1',)+2Z

——1 og (16)

where k¥ = 1,...,K and «(-) is a one-to-one permu-
tation on {l,...,K}. We also note that the subscript of
RPPC(n {K;} K, {=,}K,,22) does not denote the kth
user, instead it denotes the (K — k + 1)th user in line to be
encoded. Rather, the secrecy rate of the kth user is given by
RERCEIC)( AKHL {ZiH, 22) 17

when dirty-paper coding with stochastic encoding is
used with an encoding order of w. We define the region
RPPC(r, 8, {X;},,2,) as given by (18), shown at the
bottom of the page.

The secrecy capacity region of the aligned Gaussian MIMO
broadcast channel is given by the following theorem.

Theorem 3: The secrecy capacity region of the aligned
Gaussian MIMO multi-receiver wiretap channel is given by the
convex closure of the following union:
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where II is the set of all possible one-to-one permutations on
{1,...,K}.

We show the achievability of the region in Theorem 3 by
using dirty-paper coding with stochastic encoding. We provide
the converse proof of Theorem 3 by using our capacity result for
the degraded Gaussian MIMO multi-receiver wiretap channel
given in Theorem 2 in conjunction with the channel enhance-
ment technique [32]. The details of the proof of Theorem 3 are
deferred to Section VI.

C. General Gaussian MIMO Multi-Receiver Wiretap Channel

Finally, we consider the most general form of the Gaussian
MIMO multi-receiver wiretap channel which is given by

Y, = Hi X 4+ Ny,
Z=H,X + Ny

k=1,... K (20)

2n

where the channel input X, which is a £ X 1 column vector, is
again subject to a covariance constraint as in (11) with S > 0.
The channel output for the kth user is denoted by Y which
is a column vector of size ., x 1,k = 1,..., K. The eaves-
dropper’s observation Z is of size rz x 1. The covariance ma-
trices of the Gaussian random vectors {N;}X | N are de-
noted by {2 }X_,, 23, which are assumed to be strictly pos-
itive definite. The channel gain matrices {Hj,}X , H are of
sizes {r, x t}_ | 7z x t, respectively, and they are known to
the transmitter, all legitimate users and the eavesdropper.

Similar to the aligned Gaussian MIMO multi-receiver
wiretap channel, we obtain the secrecy capacity region of the
general Gaussian MIMO multi-receiver wiretap channel by
showing the optimality of the dirty-paper coding with stochastic
encoding. Next, we state the secrecy capacity region of the
general Gaussian MIMO multi-receiver wiretap channel. To
this end, we introduce some notation which is necessary to
express the secrecy capacity region of the general Gaussian
MIMO multi-receiver wiretap channel. Given the covariance
matrices {Kk}le such that Zle K; < S, we define the
following rates:

Rk]?PC( {K i= 17{2J }z 172Z7{H'}zKl7HZ)

’H‘n-(k (ZL 1KT(1) (k) +2”(k)‘
—log
e (24 Ke)) By + Ser|
B2 (2 1Kw<>)Hz+Ez‘
log (22)

‘Hz (Zk 1 K‘fr(i)) 7zt Ez‘

3Although, for the general Gaussian MIMO multi-receiver wiretap channel,
there is no loss of generality to assume that the noise covariance matrices are

U RPPC (71', S, { Ei}f(:p h Z) (19)  identity matrices, we let them be arbitrary for the consistency of our presenta-
xell tion.
DPC —
Ry < R—l(k)( {Kl} I{E}L 125 )»k—17~~-7K

RDPC (ﬂ S, (=%, ): (Ry,...,Rk)

for some {K;}X, such that K; = 0,i =1,..., K

(18)
and Zfil K, <S
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where k¥ = 1,...,K and w(-) is a one-to-one permu-
tation on {1,...,K}. We also note that the subscript of
R?PC(W,{Ki}fil,{Ei}fil,zz,{Hi}i}il,Hz) does not

denote the kth user, instead it denotes the (K — k + 1)th user
in line to be encoded. Rather, the secrecy rate of the kth user
is given by

REFSk) (7r7 {Ki}iK:h {El}zk:l/ Yz, {HZ}ZK:U HZ) (23)
when dirty-paper coding with stochastic encoding is
used with an encoding order of w. We define the region
RPPC (71', S, {E’i}iKzl'/ Xz, {HL}LK:M HZ) as given by (24),
shown at the bottom of the page.

The secrecy capacity region of the general Gaussian MIMO
broadcast channel is given by the following theorem.

Theorem 4: The secrecy capacity region of the general
Gaussian MIMO multi-receiver wiretap channel is given by the
convex closure of the following union:

U RPPC (7r7S‘,{Ei}fil:EZv{Hi}filsz) (25)
well

where II is the set of all possible one-to-one permutations on
{1,...,K}.

We prove Theorem 4 by using some limiting arguments in
conjunction with our capacity result for the aligned Gaussian
MIMO multi-receiver wiretap channel given in Theorem 3. The
details of the proof of Theorem 4 are deferred to Section VII.

D. A Comment on the Covariance Constraint

In the literature, it is more common to define capacity regions
under a total power constraint, i.e., tr(E[XX]) < P, instead
of the covariance constraint that we imposed, i.e., [XXT] <
S. However, as shown in [32], once the capacity region is ob-
tained under a covariance constraint, then the capacity region
under more lenient constraints on the channel inputs can be ob-
tained, if these constraints can be expressed as compact sets
defined over the input covariance matrices. For example, the
total power constraint and the per-antenna power constraint can
be described by compact sets of input covariance matrices as
follows:

Stotal — 1§ > 0:tr(S) < P}
Sper—ant — {S t 0: S” S PZ,IL = 177t}

(26)
27)
respectively, where S;; is the ith diagonal entry of S, and ¢ de-

notes the number of transmit antennas. Thus, if the secrecy ca-
pacity region under a covariance constraint E[XXT] < S is
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under the total power constraint and the per-antenna power con-
straint can be expressed as

ctotal — U C(S) (28)
SeStotal
¢cper—ant _ U C(S) (29)
SeSper—ant

respectively.

One other comment about the covariance constraint on the
channel input is regarding the positive definiteness of S. Fol-
lowing Lemma 2 of [32], it can be shown that, for any degraded
(resp. aligned) Gaussian MIMO multi-receiver channel under a
covariance constraint E[XX ] < S where S is a noninvert-
ible positive semi-definite matrix, i.e., S > 0 and |S| = 0,
we can find another equivalent degraded (resp. aligned) channel
with fewer transmit and receive antennas under a covariance
constraint F/ [XXT] =< S’ such that S’ > 0. Here the equiv-
alence refers to the fact that both of these channels will have the
same secrecy capacity region. Thus, as long as a degraded or an
aligned channel is considered, there is no loss of generality in
imposing a covariance constraint with a strictly positive definite
matrix S, and this is why we assumed that S is strictly positive
definite for the degraded and the aligned channels.

IV. GAUSSIAN SISO MULTI-RECEIVER WIRETAP CHANNEL

We first visit the Gaussian SISO multi-receiver wiretap
channel. The aims of this section are to show that a straight-
forward extension of existing converse techniques for the
Gaussian scalar broadcast channel fails to provide a converse
proof for the Gaussian SISO multi-receiver wiretap channel,
and to provide an alternative proof technique using either the
MMSE or the Fisher information along with their connections
with the differential entropy. To this end, we first define the
Gaussian SISO multi-receiver wiretap channel

Vi=X+ N, k=12 (30)
Z =X+ Ny (€29

where we also restrict our attention to the two-user case for
simplicity of the presentation. The channel input X is sub-
ject to a power constraint E[X?2] < P. The variances of the
zero-mean Gaussian random variables Ny, Ny, Nz are given
by 02,03, 0%, respectively, and satisfy the following order:

(32)

0? <03 <o%.

Since the correlations among Ny, N, Nz have no effect on the
secrecy capacity region, we can adjust the correlation structure
to ensure the following Markov chain:

found and denoted by C(S), then the secrecy capacity regions X—-Y1—-Yy— 7 (33)
RPFC (7(, S, {El}szl Yz, {Hl}filv HZ)
Rk S Rgl)l(ék) (7{', {Kt}f(:h {EL}LI(:h EZ: {H’i}ilih HZ)
=< (Ry,...,RK) k=1,..., Kfor some {K;}X such that K; = 0 24)

i=1,...,Kand Y K; < S
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Thus, this channel can be considered as a degraded channel,
and its secrecy capacity region is given by Theorem 1, in par-
ticular, by (7) and (8). Hence, to compute the secrecy capacity
region explicitly, we need to find the optimal joint distributions
of (X,U3) in (7) and (8). The corresponding secrecy capacity
region is given by the following theorem.

Theorem 5: The secrecy capacity region of the two-user
Gaussian SISO wiretap channel is given by the union of the
rate pairs (Ry, Ry) satisfying

1 aP 1 aP
Slog 14+ 5 ) =210 (14 &
zOg('*o%> 2‘%< +a§)

Ry < tlog (14 T Liog (14 P
2=79°0% aP + o3 g 8 aP + 0%
(35)

Ry

IN

(34)

where the union is over all @ € [0, 1], and & denotes 1 — .

The achievability of this region can be shown by selecting
(X, Us) to be jointly Gaussian in Theorem 1. We focus on the
converse proof.

A. Revisiting Converse Proofs for the Gaussian Scalar
Broadcast Channel

As a natural approach, one might try to adopt the converse
proofs of the scalar Gaussian broadcast channel for the converse
proof of Theorem 5. In the literature, there are two converses for
the Gaussian scalar broadcast channel which share some main
principles. The first converse was given by Bergmans [22] who
used Fano’s lemma in conjunction with the entropy-power in-
equality [24]-[26] to find the capacity region. Later, E1 Gamal
gave a relatively simple proof [23] which does not recourse to
Fano’s lemma. Rather, he started from the single-letter expres-
sion for the capacity region and used entropy-power inequality
[24]-[26] to evaluate this region. Thus, the entropy-power in-
equality [24]-[26] is the main ingredient of these converses.*

We now attempt to extend these converses to our secrecy con-
text, i.e., to provide the converse proof of Theorem 5, and show
where the argument breaks. In particular, what we will show
in the following discussion is that a stand-alone use of the en-
tropy-power inequality [24]-[26] falls short of proving the op-
timality of Gaussian signalling in this secrecy context, as op-
posed to the Gaussian scalar broadcast channel. For that pur-
pose, we consider El Gamal’s converse for the Gaussian scalar
broadcast channel. However, since the entropy-power inequality
is in a central role for both El Gamal’s and Bergmans’ converse,
the upcoming discussion can be carried out by using Bergmans’
proof as well.

4We again note that, in this work, the entropy-power inequality refers to the
original form of this inequality which was proposed by Shannon [24], but not the
subsequent variants of this inequality such as Costa’s entropy-power inequality
[27]. Indeed, using Costa’s entropy-power inequality, it is possible to provide
a converse proof for the secrecy capacity region of the Gaussian scalar multi-
receiver wiretap channel [28].
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First, we consider the bound on the second user’s secrecy rate.
Using (8), we have

1(Uz;Y2) = I(Uz; Z) = [I(X;Y2) — I(X; Z)]

—[I(X;Y2|Us) — I(X;Z|U2)]  (36)

where the right-hand side is obtained by using the chain rule,
and the Markov chain Uy — X — (Y1,Y2, Z). The expression
in the first bracket is maximized by Gaussian X [38] yielding

I(X:Ys) = I(X: Z) < 2 log (1 4 52)
2 o5

11 1—|—P
5108 )

Moreover, using the Markov chain Us — X — Y, — Z, we
can bound the expression in the second bracket as

(37)

0<I(X;Y2|Us) - I(X;Z|Us) (38)
<I(X;Ys) - I(X; 2) (39)
1 P 1 P
< =1 1+ =) —=log|1+ — 4
—2‘%( +oz> z‘%< +a§> @

which implies that for any (X, Us) pair, there exists an o €
[0, 1] such that

1 P
I(X: Y2 | Us) = I(X; Z|U) = 5 log (1 + (:‘7—2)
2
1 aP
——logl|l+— ). 41
s (14 7) - @
Combining (37) and (41) in (36) yields the desired bound on R»
given in (35).
From now on, we focus on obtaining the bound given in (34)
on the first user’s secrecy rate. To this end, one needs to solve
the following optimization problem3

max I(X;Y1|U2) — I(X;Z|Us) (42)

st. I(X:Ya |Uy) — I(X; Z|Us)

1 aP 1 aP
=1 1+ — ) —=1 14— ). 4
yos (1+57) -gms (1457 ) @

When the term [(X; Z | Us) is absent in both the objective func-
tion and the constraint, as in the case of the Gaussian scalar
broadcast channel, the entropy-power inequality [24]-[26] can
be used to solve this optimization problem. However, the pres-
ence of this term complicates the situation, and a stand-alone
use of the entropy-power inequality [24]-[26] does not seem to

SEquivalently, one can consider the following optimization problem:

max I(X; Y1 |Uz) — I(X; Y2 | Us)
st I(X: Yo |Us) — I(X; Z| Us)

_11 14 P 11 1+0P
=58 7 %8 =)

«
2
T3

which, in turn, would yield a similar contradiction.
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be sufficient. To substantiate this claim, let us consider the ob-
jective function in (42)

I(X;Y1|Uz) = I(X; Z | Uy)

1 o?
= h(Y1|U2) = W(Z|Us) = 5 log — (44)
z

< %log (e2h(Z 1U2) _ 9re (0% — O'%)) — h(Z|Us)
1 o?
— Zlog —L 45
2852 45)

where the inequality is obtained by using the entropy-power
inequality [24]-[26]. Since the right-hand side of (45) is mono-
tonically increasing in h(Z |Us), to show the optimality of
Gaussian signalling, we need
WZ | Us) < % log 2me (P + o) (46)

which will result in the desired bound on (42), i.e., the desired
end-result in (34).

We now check whether (46) holds under the constraint given
in (43). To this end, consider the difference of mutual informa-
tions in (43)

I(X;Y3 |Uz) = I(X; Z | Uy)

1
= h(Y2|Uz) = W(Z |Uz) — 5108 (47)

2

92
2

0z

< =log (eZh(ZlUQ) —2me (0% — O';)) — h(Z|Uy)

DN | =

1 o2
Zlog =2 48
2852 (48)
where the inequality is obtained by using the entropy-power in-
equality [24]-[26]. Now, using the constraint given in (43) in

(48), we get

11 aP + o2
_0 —
2 & aP—{—U%

1
< 3 log (eZh(Z 1U2) _ 9re (O’% — 0'%))

Zh(z|U) (49)

which implies

%log 2re(aP + 0%) < W(Z|Us). (50)
Thus, as opposed to the inequality that we need to show the
optimality of Gaussian signalling via the entropy-power in-
equality [24]-[26], i.e., the bound in (46), we have an opposite
inequality. This discussion reveals that if Gaussian signalling
is optimal, then its proof cannot be deduced from a straightfor-
ward extension of the converse proofs for the Gaussian scalar
broadcast channel in [22], [23]. Thus, we need a new technique
to provide the converse for Theorem 5. We now present two
different proofs. The first proof relies on the relationship be-
tween the MMSE and the mutual information along with the
properties of the MMSE, and the second proof replaces the
MMSE with the Fisher information.
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B. Converse for Theorem 5 Using the MMSE

We now provide a converse which uses the connection be-
tween the MMSE and the mutual information established in
[29], [30]. In [30], the authors also give an alternative converse
for the scalar Gaussian broadcast channel. Our proof will follow
this converse, and generalize it to the context where there are se-
crecy constraints.

First, we briefly state the necessary background information.
Let N be a zero-mean unit-variance Gaussian random variable,
and (U, X) be a pair of arbitrarily correlated random variables
which are independent of N. The MMSE of X when it is ob-
served through U and vtX + N is

mmse(X,t|U) = E[(X — E[X |VtX + N,U])?. (1)
As shown in [29], [30], the MMSE and the conditional mutual
information are related through

t
I(X;\/ZX—i-NIU):%/ mmse(X, ¢|U)dt.  (52)
J0

For our converse, we need the following proposition which was
proved in [30].

Proposition 1 ([30, Proposition 12]): LetU, X, N be as spec-
ified above. The function

02

ft) = P mmse(X,t|U)

(53)
has at most one zero in [0, co) unless X is Gaussian conditioned
on U with variance 2, in which case the function is identically
zero on [0, 00). In particular, if tg < oo is the unique zero,
then f(¢) is strictly increasing on [0, ¢o], and strictly positive
on (g, 00).

We now give the converse. We use exactly the same steps
from (36) to (41) to establish the bound on the secrecy rate of

the second user given in (35). To bound the secrecy rate of the
first user, we first restate (41) as

I(X;Y5|Up) — I(X; Z|Us)
= (X5 (1/02)X + N|Us) = I(X: (1/5) X + N| U)

(54)
1 aP 1 aP
=—logll+—5 ] —=1 1+ — 55
yios (1+57) - s (1+ 57 o)
1 Yo ap
== ——dt 56
2 /1/(,3 taP +1 (56)
Furthermore, due to (52), we also have
I(X;Y2|Uz) = I(X; Z | Uy)
1 Y3
= —/ mmse(X,t|Us)dt. (57)
2 1/0’2
Comparing (56) and (57) reveals that either we have
P
mmse(X,t|Us) = a (58)

taP +1
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for all t € [1/0%,1/03], or there exists a unique to €
(1/0%,1/03) such that

aP
X, =
mmse(X, to | Uz) P T 1 (59)
and
aP
mmse(X,t|Us) < P 1 (60)

for t > tg, because of Proposition 1. The former case occurs if
X is Gaussian conditioned on Us with variance P, in which
case we arrive at the desired bound on the secrecy rate of the first
user given in (34). If we assume that the latter case in (59)—(60)
occurs, then, we can use the following sequence of derivations
to bound the first user’s secrecy rate:

I(X:Y1|Us) = I(X; Z | Us)
= I(X;(1/y/o1)X + N | Us)

—I(X;(1/\/oz)X + N |U,) (61)
1 Yo
_ 1 / mmse(X, ¢ | Up)dt (62)
1/0%
1 1/o3
== / mmse(X,t | Us)dt
2, 1/0%
1 1/01
+ = / mmse(X, ¢ | Us)dt (63)
2 . 1/0"
1
1 1/o}
+ = / mmse(X, ¢ | Uz)dt (64)
2, 1/02
1 aP 1 aP
< Zlog pratul I =
_210g<1+o§> 2log(1+0%>
1 1/07 aP
- ——dt
ta /1/(,5 taP + 1 ©3)

1 alP 1 alP
= log (1420 ) — 1o (14 22 66
2°g<+a%> z"g(U%) ©0

where (64) follows from (56) and (57), and (65) is due to (60).
Since (66) is the desired bound on the secrecy rate of the first
user given in (34), this completes the converse proof.

C. Converse for Theorem 5 Using the Fisher Information

We now provide an alternative converse which replaces the
MMSE with the Fisher information in the above proof. We first
provide some basic definitions. The unconditional versions of
the following definition and the upcoming results regarding the
Fisher information can be found in standard detection-estima-
tion texts; to note one, [39] is a good reference for a detailed
treatment of the subject.

Definition 1: Let X,U be arbitrarily correlated random
variables with well-defined densities, and f(z|u) be the
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corresponding conditional density. The conditional Fisher
information of X is defined by

<a1og§ix|u))2]

where the expectation is over (U, X).

The vector generalization of the following conditional form
of the Fisher information inequality will be given in Lemma 15
in Section V-D; thus, its proof is omitted here.

JX|U)=E (67)

Lemma 1: Let U, X,Y be random variables, and let the den-
sity for any combination of them exist. Moreover, let us assume
that given U, X and Y are independent. Then, we have

JX+Y|U)SB2IX|U)+ (1 =3I |U) (68)

for any 8 € [0,1].

Corollary 1: Let X,Y,U be as specified above. Then, we
have

1 1 1

TX Y0 2 a0 oy

Proof: Select

J(Y|U)

A= J(X|U)+J(Y|U)

(70)

in the previous lemma. ]

Similarly, the vector generalization of the following con-
ditional form of the Cramer—Rao inequality will be given in
Lemma 13 in Section V-D, and hence, its proof is omitted here.

Lemma 2: Let X,U be arbitrarily correlated random vari-
ables with well-defined densities. Then, we have

1

TXN) 2 5o

(71)

with equality if (U, X) is jointly Gaussian.

We now provide the conditional form of the De Bruijn iden-
tity [24]-[26]. The vector generalization of this lemma will be
provided in Lemma 16 in Section V-D, and hence, its proof is
omitted here.

Lemma 3: Let X,U be arbitrarily correlated random vari-
ables with finite second order moments. Moreover, assume that
they are independent of N which is a zero-mean unit-variance
Gaussian random variable. Then, we have

J(X +VIN|U).

dh(X + VIN|U) 1 a2
2

dt

We now note the following complementary relationship be-
tween the MMSE and the Fisher information [29], [31]:

J(VtX + N)=1—t- mmse(X,t) (73)

which itself suggests the existence of an alternative converse
which uses the Fisher information instead of the MMSE. We
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now provide the alternative converse based on the Fisher in-
formation. We first bound the secrecy rate of the second user
as in the previous section, by following the exact steps from
(36) to (41). To bound the secrecy rate of the first user, we first
rewrite (41) as follows:

I(X;Y2|Uz) = I(X; Z| Uy)
1 2
:h(X+azN|U2)—h(X+aZN|U2)—51og;’—§

z
(74)
1 (r% 1 2
:__/ J(X+\/EN|U2)dt——10gU—§ (75)
2 o2 2 0z
1 [z
= _5/ J(X +Vt—t*N'+Vt*N" |Uy)dt
1 o
— Zlog =2 76
2 o8 0% 7o

where (75) follows from Lemma 3, and in (76), we used the sta-
bility of Gaussian random variables where, N’, N” are two in-
dependent zero-mean unit-variance Gaussian random variables.
Moreover, t* is selected in the range of (0,03). We now use
Corollary 1 to bound the conditional Fisher information in (76)
as follows:

1
J(X +Vt—t"N' +/t*N" | Uy)
1

1
> + 77
T J(X +VEN"|Up)  J(VE=TN'|Us) 77
1
= +(t—t"

J(X +VE*N" | Us) ( )
where the equality follows from Lemma 2. The inequality in
(78) is equivalent to

J(X +Vt—=t*N'+ Vt*N" | U>)
J(X +Vt*N" | Uy)

(78)

79
T L4 J(X +VENT|Uy)(t — t*) 9
using which in (76) yields
I(X;Y2 | Uz) — I(X; Z | Us)
>_1/“z J(X +VE*N" | Us)
T 20 14+ J(X + VENT|Us)(t —t*)
1 ol
— ~log—= 80
2852 (80)
110 L+ J(X +VI*N"|Us) (0% — t¥)
2 T 1+ J(X + VN |Us) (03 — t*)
Lo 7 (81)
2 gaz'

zZ

We remind that we had already fixed the left-hand side of this
inequality as

1 P
1(X; 2| Us) = I(X: 2| Uz) =  log <1+ 0;_2>
2

1 aP
—1 14—
5 0g< + o%) (82)
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in (41). Comparison of (81) and (82) results in
1
J(X +Vt*N"|Uy) > ., 0<t* <ol 83
(X+VEN"|Uy) 2 ———py 0<tT <oy (83

At this point, we compare the inequalities in (60) and (83).
These two inequalities imply each other through the comple-
mentary relationship between the MMSE and the Fisher infor-
mation given in (73) after appropriate change of variables and
by noting that J(aX) = (1/a?)J(X) [39]. We now find the
desired bound on the secrecy rate of the first user via using the
inequality in (83)

I(X;Y1|Uz) — I(X; Z | Us)
=h(X 4+ 01N |Us) — (X +0zN|Us)

g~ (84)

(85)

Il
|
N

/im
<
+
S
=
S
=

log 7L (86)

€ 1 P+ o2
= - / J(X+\/%N|U2)dt—§1og<m>

OlP-l-U%

87)

2

CE| 1 aP + 0%
< - dt — - log | ———%
- /0? aP +t 20g<(¥P+U%

(88)

aP + o3 _110‘ aP + 0%
aP + o2 2 aP + o2

o2

log 71 (89)
9z

_110 1+aP 110* 1+aP
T2 & a% 2 8 a%

where (87) follows from (75) and (82), and (88) is due to (83).
Since (90) provides the desired bound on the secrecy rate of the
first user given in (34), this completes the converse proof.

|

I

(o}
R

(90)

D. Summary of the SISO Case, Outlook for the MIMO Case

In this section, we first revisited the standard converse proofs
[22], [23] of the Gaussian scalar broadcast channel, and showed
that a straightforward extension of these proofs will not be able
to provide a converse proof for the Gaussian SISO multi-re-
ceiver wiretap channel. Basically, a stand-alone use of the en-
tropy-power inequality [24]-[26] falls short of resolving the am-
biguity on the auxiliary random variables. We showed that, in
this secrecy context, either the connection between the mutual
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information and the MMSE or equivalently the connection be-
tween the differential entropy and the Fisher information can be
used, along with their properties, to come up with a converse.

In the next section, we will generalize this converse proof tech-
nique to the degraded MIMO channel. One way of generalizing
this converse technique to the MIMO case might be to use the
channel enhancement technique, which was successfully used in
extending Bergmans’ converse proof from the Gaussian scalar
broadcast channel to the degraded vector Gaussian broadcast
channel. In the degraded Gaussian MIMO broadcast channel, the
nontrivial part of the converse proof was to extend Bergmans’
converse to a vector case, and this was accomplished by the
invention of the channel enhancement technique. However, as
we have shown in Section IV-A, even in the Gaussian SISO
multi-receiver wiretap channel, a Bergmans type converse does
not work. Thus, we do not expect that the channel enhancement
technique will be sufficient to extend our converse proof from the
SISO case to the MIMO case, similar to [40], where the channel
enhancement technique alone was not sufficient for the extension
of a converse proof technique from the scalar Gaussian case to
the vector Gaussian case. Consequently, we will not pursue a
channel enhancement approach to extend our proof from the
SISO channel to the degraded MIMO channel. Instead, we will
use the connections between the Fisher information and the
differential entropy, as we did in Section IV-C, to come up with
a converse proof for the degraded MIMO channel. We will then
use the channel enhancement technique to extend our converse
proof to the aligned MIMO channel from the degraded MIMO
channel. Finally, we will use some limiting arguments, as in
[32], [33], to come up with a converse proof for the most general
MIMO channel.

V. DEGRADED GAUSSIAN MIMO MULTI-RECEIVER
WIRETAP CHANNEL

In this section, we establish the secrecy capacity region of
the degraded Gaussian MIMO multi-receiver wiretap channel,
which was stated in Theorem 2. The achievability of the
rates in Theorem 2 follows from Theorem 1 by selecting
(X, Us,...,Uk) to be jointly Gaussian. Thus, to prove The-
orem 2, we only need to provide a converse. Since the converse
proof is rather long and involves technical digressions, we first
present the converse proof for K = 2. In this process, we will
develop all necessary tools which we will use to provide the
converse proof for arbitrary K in Section V-E.

The secrecy capacity region of the two-user degraded MIMO
channel, from (14), is the union of the rate pairs (R, R2)
satisfying

Ki+%:] 1 |K;+ 3y

1
Ry < —log 1=l Zog 1)
2R T2y

1 S+, 1 IS + X 4|
Ry < —log 2220 _ “jog 2T 220 (g
2S o le e T T2 e K s, P

where the union is over all selections of K that satisfies 0 <
K; < S. We note that these rates are achievable by choosing
X = Uy + V in Theorem 1, where U; and V are independent
Gaussian random vectors with covariance matrices S — K7 and
K, respectively. Next, we prove that the union of the rate pairs
in (91) and (92) constitute the secrecy capacity region of the
two-user degraded MIMO channel.
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A. Proof of Theorem 2 for K = 2

To prove that (91) and (92) give the secrecy capacity region,
we need the results of some intermediate optimization prob-
lems. The first one is the so-called worst additive noise lemma
[41], [42].

Lemma 4 ([42, Lemma I1.2]): Let N be a Gaussian random
vector with covariance matrix ¥, and K x be a positive semi-
definite matrix. Consider the following optimization problem:

min  I(N;N + X)

p(x)
s.t. Cov(X) =Kx (93)
where X and N are independent. A Gaussian X is the minimizer
of this optimization problem.

The second optimization problem that will be useful in the
upcoming proof is the conditional version of the following

theorem.

Theorem 6: Let X,N7,N3, N be independent random
vectors, where N1, N2, N are zero-mean Gaussian random
vectors with covariance matrices 0 < ;1 = 3, <X X,
respectively. Moreover, assume that the second moment of X
is constrained as

EXX'] <S8 (94)
where S is a positive definite matrix. Then, for any admissible
X, there exists a matrix K* such that 0 < K* < S, and

1 IK* + 34|
h(X+Ngz)—h(X+ Ny) =-log ——=— (95
(X-+Nz) = h(X+ No) = S log B 95)

1 IK* + X 7]
hM(X+Ny)—h(X+Np) > =-log——. (96
(X+Ny) (X + 1)_20g|K*+21| (96)

The conditional version of Theorem 6 is given as follows.

Theorem 7: Let U, X be arbitrarily correlated random vec-
tors which are independent of N1, N2, Nz, where N1, Ny, N,
are zero-mean Gaussian random vectors with covariance ma-
trices 0 < ¥; < 3y < 3, respectively. Moreover, assume
that the second moment of X is constrained as

E[XXT]<S (97)
where S is a positive definite matrix. Then, for any admissible

(U, X)) pair, there exists a matrix K* such that 0 < K* < S,
and

1 IK* + 27|

A(X+Nz|U) -—~h(X+N,|U)==log —-—

(X4 N7 |U) = h(X + Na | U) = § log et
(98)

1 |K* + 3|

A(X+NZz|U) —h(X+N;|U)> —log ———=.

(X +Nz[U) - h(X+Ny| )_20g|K*—|—21|
99)

Theorem 6 serves as a step towards the proof of Theorem 7.
Proofs of these two theorems are deferred to Sections V-C
and V-D.
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We are now ready to show that the secrecy capacity region
of the two-user degraded MIMO channel is given by (91)—(92).
We first consider R, and bound it using Theorem 1 as follows:

Ry < I(Uy;Y2) — I(Ug; Z) (100)
=[I(X;Y2) - I(X;Z)]
- [I(X,YQ |U2) —I(X,Z|U2)] (101)

where the equality is obtained by using the chain rule and the
Markov chain Uy — X — (Y2, Z). We now consider the ex-
pression in the first bracket of (101)

I(X;Y2) = I(X;Z) = h(Y2) — h(Y2 | X) = h(Z)
+ W(Z|X) (102)

B 1 |3

=h(Ys) — h(Z) — 3 log 5|
(103)

where the second equality follows from the facts that
hMY2|X) = h(Ny) and h(Z|X) = h(Nz). We now
consider the difference of differential entropies in (103). To
this end, let us introduce the Gaussian random vector Nz with
covariance matrix Xz — X, which is independent of X, Ns.
Then, we have

h(Y32) — h(Z) = h(Y3) — h(Y2 + Ny) (104)
= —I(N2;Ys + Ny) (105)

K + 3

< Z = =4l
= oiné"is 28Ky, 1%

|S + 22|

= 1 L 11 107
|S + Xz (107

where (104) follows from the fact that the difference of entropies
depends only on the marginal distributions of Y, and Z, and
the stability of Gaussian random vectors,® (106) follows from
Lemma 4, and (107) is a consequence of the fact that

B __BtaA
A+B| " [A+B+A|

(108)

when A;B, A > 0,and A + B > 0 [32]. Plugging (107) into
(103) yields
1 IS + Xy
- I(X;Z) < =log ————
(X;2) < 2 %]

RS
2 Xzl

I(X;Y>)
(109)

We now consider the expression in the second bracket of (101).
For that purpose, we use Theorem 7. According to Theorem 7,
for any admissible pair (Us, X), there exists a K* such that

}L(X + Nz | UQ) — h(X + Ny | UQ)
K43,

1 LA
|K*+2|

(110)

6Stability of Gaussian random vectors refers to the fact that the sum of two in-
dependent Gaussian random vectors is Gaussian, and the corresponding covari-
ance matrix is the sum of the covariance matrices of the independent Gaussian
random vectors.
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which is equivalent to
K+ X
I(X;Z|Usp) — I(X; Yo |Us) = logM
2 1Xz|
K"+ 3|
——1 r—————= . (111)
|32
Thus, using (109) and (111) in (101), we get
S+X S+X¥%
1 S+3,[ S+ ¥ (112)
IK*+22| K* 4+ Xz

which is the desired bound on R2 given in (92). We now obtain
the desired bound on R; given in (91). To this end, we first
bound R; using Theorem 1

Ry <I(X; Y1 |U2) - (X Z|Uy) (113)
— WY1 |Us) = h(Y1|Us, X) = W(Z | Us)
+ h(Z| Uz, X) (114)
3
=h(Y1|Uz) — h(Z|U3) — —1 ||2 || (115)

where the second equality follows from the facts that
}L(Yl | UQ,X) = h(N1> and }L(Z|U27X) = }L(Nz). To
bound the difference of conditional differential entropies in
(115), we use Theorem 7. Theorem 7 states that for any admis-
sible pair (Us, X), there exists a matrix K* such that it satisfies
(110) and also

1 |IK* + X 7]
hZ|Us) — h(Y1|Us) > =log ———. 116
(Z|Uz) — h(Y1] 2)_2 8K 13, (116)
Thus, using (116) in (115), we get
1 IK*+ 3] 1 |IK* 4+ 3]
Ri<-log——F——-log———— 117
5108 =] 5 108 =] (117)

which is the desired bound on R; given in (91), completing the
converse proof for K = 2.

As we have seen, the main ingredient in the above proof was
Theorem 7. Therefore, to complete the converse proof for the
degraded channel for K = 2, from this point on, we will focus
on the proof of Theorem 7. We will give the proof of Theorem
7 in Section V-D. In preparation to that, we will give the proof
of Theorem 6, which is the unconditional version of Theorem
7, in Section V-C. The proof of Theorem 6 involves the use of
properties of the Fisher information, and its connection to the
differential entropy, which are provided next.

B. Fisher Information Matrix

‘We start with the definition [39].

Definition 2: Let U be a length-n random vector with dif-
ferentiable density fi(u). The Fisher information matrix of
U, J(U), is defined as

(118)
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where p(u) is the score function which is given by

p(u) = Vlog fu(u)
dlog fu(u) dlog fu(w)]"
ouq ouy, (119)

Since we are mainly interested in the additive Gaussian channel,
how the Fisher information matrix behaves under the addition
of two independent random vectors is crucial. Regarding this,
we have the following lemma which is due to [43].

Lemma 5 ([43, Lemma 3]): Let U be a random vector with
differentiable density, and let 3y > 0 be its covariance matrix.
Moreover, let V be another random vector with differentiable
density, and be independent of U. Then, we have the following
facts:

1) Matrix form of the Cramer—Rao inequality

JU) == (120)
which is satisfied with equality if U is Gaussian.
2) For any square matrix A
JU+V)AJUAT +T-A)JV)IT-A)T. (121)

We will use the following consequences of this lemma.

Corollary 2: Let U,V be as specified before. Then:
1) J(U+V) =< J(U).
2) J(U+V) < [JU) L+ J(V)~ 1L
Proof: The first part of the corollary is obtained by
choosing A =T, and the second part is obtained by choosing
A=JU) +J(V)”

1) (122)

and also by noting that J( - ) is always a symmetric matrix. ®

The following lemma regarding the Fisher information matrix
is also useful in the proof of Theorem 6.

Lemma 6: Let U, V1, V4 be random vectors such that U and
(V1, Vy) are independent. Moreover, let V1, Vy be Gaussian
random vectors with covariance matrices 0 < ¥; < 5. Then,
we have

JU4Vy) ' =2 = J(U+V,) ' -3, (123)

Ijroof: Without loss of generality, let Vo = V1 4 \71 such
that V; is a Gaussian random vector with covariance matrix
3o — ¥4, and independent of V5. Due to the second part of

Corollary 2, we have

J(U+Vy)=J(U+V,+Vy) (124)
S[PFU+V)L+IV)TE (125
SPU+V) TS - (126)
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which is equivalent to

JU+Vy) ' =JU+Vy) 48, -8 (127

which proves the lemma. ]

Moreover, we need the relationship between the Fisher infor-
mation matrix and the differential entropy, which is due to [34].

Lemma 7 ([34, Theorem 4]): Let X and N be independent
random vectors, where N is zero-mean Gaussian with covari-
ance matrix X = 0, and X has a finite second order moment.
Then, we have

Vs (X +N) =

%J(X +N). (128)

C. Proof of Theorem 6

To prove Theorem 6, we first consider the following expres-
sion:
h(X + Nz) = h(X + Ny) (129)
and show that (129) is bounded and finite due to the covariance
constraint on X. In particular, we have

IS+ =]
1 g 22 < B(X +Ny)— h(X+N
515+ =, ( 7) = 2)
1. %z
< Zlog 130
2 |22| (130)

where the lower bound can be shown by following the analysis
given in (104)—(107). To show the upper bound in (130), first,
we define N which is Gaussian with covariance matrix 7z —
39, and is independent of N and X. Thus, without loss of
generality, we can assume Z = X + Ny + N by noting the
stability of Gaussian random vectors. Then, the right-hand side
of (130) follows from

h(X + Nz) — h(X 4+ Ny)
:I(N~X+NZ) (131)
= h(N) — h(N|X + N) (132)
< h(N) = h(N | X 4 N, X) (133)
= h(N) - h(N |Ny) (134)
=I(N;Ny) = L 5 log 24| (135)
|32

where (133) comes from the fact that conditioning cannot in-
crease entropy, and (134) is due to the fact that X and (N3, N)
are independent. Thus, we can fix the difference of the differen-
tial entropies in (130) to an « in this range, i.e., we can set
MX+Nz)—h(X+Ny)=a (136)
where o € [L1log|S + Zz|/|S + |, 3 log |Ez|/|Z2|]. We
now would like to understand how the constraint in (136) affects
the set of admissible random vectors. For that purpose, we use
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Lemma 7, and express this difference of entropies as an integral
of the Fisher information matrix?

a=h(X+Nz)—h(X+Ny)

1 [*”
= —/ J(X + N)dSy.
2 Jx,

(137)

Using the stability of Gaussian random vectors, we can express
J(X + N) as

J(X +N) =J(X + N, +N) (138)
where N is a zero-mean Gaussian random vector with covari-

ance matrix Xy — 3, > 0, and is independent of N5. Using
the second part of Corollary 2 in (138), we get

J(X+N)=J(X+N;,+N) (139)
S FX+N) L+ I (140)
=[J(X+Ny) L4+ Sy -]t (141)

where we used the fact that J(N) = (Zy — 25)~! which is
a consequence of the first part of Lemma 5 by noting that N is
Gaussian. We now bound the integral in (137) by using (141).
For that purpose, we introduce the following lemma.

Lemma 8: Let K, K be positive semi-definite matrices sat-
isfying 0 < K; < Ko, and f(K) be a matrix-valued function
such that f(K) > 0 for K; < K < K. Moreover, f(K) is
assumed to be the gradient of some scalar field. Then, we have

Ko
/ £(K)dK > 0.
JK,

(142)

Proof: Since f(K) is the gradient of some scalar field, the
integral in (142) is path-free. Thus, this integral is equivalent to

/ - f(K)dK

K;

= /1 1T [f(K; +t(Ky — K1) © (Ko — Ky)]1dt  (143)

where © denotes the Schur (Hadamard) product, and
1 = [1...1]T with appropriate size. Since the Schur product
of two positive semi-definite matrices is positive semi-definite
[44], the integrand is non-negative implying the non-negativity
of the integral. ]

In light of this lemma, using (141) in (137), we get

1 [E7 -1
a< - [I(X+No)™ '+ 2y -] dEx
2 /s,
(144)

. 1 log |J(X + NQ)_I +X¥; - 22|

2 [J(X + N3)~!|

"The integration in (137), i.e., f;:zz J(-)dX, is a line integral of the vector-
valued function J( - ). Moreover, since J (- ) is the gradient of a scalar field, the
integration expressed in f; Z J(-)dX is path-free, i.e., it yields the same value
for any path from 3, to X ;. This remark applies to all upcoming integrals of

I().

(145)
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where we used the well-known fact that Vs; log || = =T for
Y > 0. We also note that the denominator in (145) is strictly
positive because

J(X+Ny) ' = I(Ny) ' =55 >0 (146)

which implies |J(X + N3)~1| > 0.
Following similar steps, we can also find a lower bound on «.
Again, using the stability of Gaussian random vectors, we have

JX+Nz)=J(X+N+N) (147)

where N, N are zero-mean Gaussian random vectors with co-
variance matrices X, Xz — X, respectively, s <X Xy =<
3z, and they are independent. Using the second part of Corol-
lary 2 in (147) yields

J(X+Nz)=J(X+N+N) (148)
<PX+N)T I
=IX+N)' 4+, -3y (149)

where we used the fact that J(IN) = (X, — Zy)~! which
follows from the first part of Lemma 5 due to the Gaussianity of
N. Then, (149) is equivalent to

JX+Nz) ' =IJX+N) ' +3; -y (150)
and that implies
JX+NZ) '+ 2y -2 ' <IX+N). (51)

Use of Lemma 8 and (151) in (137) yields

3z

o> / X +N) '+ 2y -7 2y (152)
J 3,
1 J(X +Nz)~

=-lo
2 % |IJ(X +Nz)~! + 3y — Xy

(153)

where we again used Vs log || = £~ T for ¥ > 0. Here also,
the denominator is strictly positive because

JX4ANZ) 4+ -3, =J(Ny) 4+ 2, -3,
(154)
=%, -0 (155)

which implies [J(X + Nz)~! + X5 — ¥| > 0. Combining
the two bounds on « given in (145) and (153) yields
—1
Lig BN
2 |J(X+Nz)_1+22—zz|
|J(X + Nz)il + 37— 22|
[J(X +N2)~'|

Next, we will discuss the implications of (156). First, we have
a digression of technical nature to provide the necessary infor-
mation for such a discussion. We present the following lemma
from [44].

Lemma 9 ([44, Theorem 7.6.4]): Let A, B € M, where M,
is the set of all square matrices of size n x n over the complex
numbers, be two Hermitian matrices and suppose that there is
a real linear combination of A and B that is positive definite.
Then there exists a nonsingular matrix C such that both CH# AC

1
< ;log (156)
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and CEBC are diagonal, where (-)#
transpose.

denotes the conjugate

Lemma 10: Consider the function
[A+B+iA

)= —lopg 22T <
7(t) 218 Tagiay 0 0StS

(157)
where A, B, A are real, symmetric matrices, and A >~ 0, B >
0, A > 0. The function 7(t) is continuous and monotonically
decreasing in .

Proof: We first define the function inside the log( - ) as

jy = A+ BLAl

0<t<1.
A+tA] 0 'S

(158)
We first prove the continuity of 7(¢). To this end, consider the
function

g(t) = [E + 1A,

0<t<1 (159)

where E > 0 is areal, symmetric matrix. By Lemma 9, there ex-
ists a nonsingular matrix C such that both CTEC and CT AC
are diagonal. Thus, using this fact, we get

g(t)=|C"TCTECC™" +tC~TCTACC™"| (160)
= |C*T||CTEC +tCTAC||ICY (161)
|C|2 ——|CTEC+tCTAC]| (162)
|C|2|DE+ILDA| (163)

where (161) follows from the fact that [AB| =
comes from the fact that [C~ | |C1 1/|C|, and

in (163), we defined the diagonal matrices Dy = CTEC,
DA = CTAC. Let the diagonal elements of Dy and DA
be {dg,:} , and {da,;}} ., respectively. Then, g(¢) can be
expressed as

g(t) = H (dp.i +tda ;) (164)

|C |2
which is polynomial in ¢; thus, g(t) is continuous in ¢. Being the
ratio of two nonzero continuous functions, f(¢) is continuous as
well. Then, continuity of (¢) follows from the fact that compo-
sition of two continuous functions is also continuous.

We now show the monotonicity of r(t). To this end, consider
the derivative of r(t)

dr(t) 1 df(t)

dt 2f(t) dt
where we have f(t) > 0 because of the facts that A > 0, B =
0,A > 0,and 0 < ¢t < 1. Moreover, f(t) is monotonically
decreasing in ¢, which can be deduced from (108), implying
df(t)/dt < 0. Thus, we have dr(t)/dt < 0, completing the
proof. [ |

(165)

After this digression, we are ready to investigate the implica-
tions of (156). For that purpose, let us select A, B, A in r(¢) in
Lemma 10 as follows:

A =J(X +Ny)™*

B=%,-3,
A=JX+Ny™?

(166)
(167)
+ 35 — Bz — J(X + Ny)~'(168)
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where clearly A > 0, B > 0, and also A > 0 due to Lemma
6. With these selections, we have

1 |J(X+N2)_1—|—Ez—22|
0)==1 169
O T Ny (1o

1 [J(X+Nz)~ !
1) = =1 . 170
RS PR A P
Thus, (156) can be expressed as

r(1) < a < r(0). (171)

We know from Lemma 10 that r(¢) is continuous in ¢. Then,
from the intermediate value theorem, there exists a ¢* such that
r(t*) = «. Thus, we have

|A+t*A + Xz — 3]
= r(t* :_1 172
a=r(t") 0g ATiA (172)
1 K+ 3,
= —log —— =1 173
2 P K+ 3, (173)

where K* = A + t*A — X5, Since 0 < ¢* < 1, K* satisfies
the following orderings:

JX+Np) ' =B <K* 2 J(X+Nz)"' =2z (174)
which in turn, by using Lemma 5 and Corollary 2, imply the

following orderings:

K= JX+Ny) ' -5, (175)
= J(Ny) ™' = %, (176)
=35 — 3 77
=0 (178)
and
K*<JX+Ny) -3, (179)
<R Cov(X)+ Xz -3y (180)
= Cov(X) (181)
<S8 (182)
which can be summarized as follows:
0<K"=<S (183)
In addition, using Lemma 6 in (174), we get
K >JX+N)"!' -2y (184)

for any Gaussian random vector N such that its covariance ma-
trix satisfies ¥y < X. The inequality in (184) is equivalent to
JX+N)»= (K*+Zy)", forESy =<3,  (185)
where N is a Gaussian random vector with covariance matrix
Y.
Returning to the proof of Theorem 6, we now lower bound
X +Ngz) -

(X +Ny) (186)
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while keeping

K + 3]
hM(X+Nz)—(X+Ny)=a=- 10 —. (187
o z) = ( 2) K 5, (187)

The lower bound on (186) can be obtained as follows:

h(X+Ngz)—h(X+Ny)
1 [®z
= - J(X+N)dEy (188)
2 El
1 [
- —/ I(X + N)dSy
2 Js,
1 [¥z
+§/ J(X+N)dEy (189)
J=,
1 [ |K*+EZ|
1 |K*+EZ|
> = K* 4+ Sn) L dSy + — log o 22|
_2/ (K" 4+ Xn) N+ og|K*+22|
(191)
1 |K* 4+ 3] |K* 4+ X 4]
=—-log————+ -log ——— 192
2 CIK + x| 2 8K+ 2 (192)
1 |IK* + X 7]
= _log——— =2 1
2 K+ 3 (193)

where (189) follows from the fact that the integral in (188) is
path-independent, and (191) is due to Lemma 8 and (185).

Thus, we have shown the following: For any admissible
random vector X, we can find a positive semi-definite matrix
K* such that 0 < K* < S, and

K* + X z|
X +N X+ N 1 T2 (194
h(X+Nyz)— (X+Ny)=-log K 15, (194)
and
1 IK* + X7
MX +Nyz) - h(X+N —log ——— =21 (195
(X +Nz) —h(X+Ny) 2 5 T (195)

which completes the proof of Theorem 6.

D. Proof of Theorem 7

We now adapt the proof of Theorem 6 to the setting of The-
orem 7 by providing the conditional versions of the tools we
have used in the proof of Theorem 6. Main ingredients of the
proof of Theorem 6 are: the relationship between the differen-
tial entropy and the Fisher information matrix given in Lemma
7, and the properties of the Fisher information matrix given in
Lemmas 5, 6 and Corollary 2. Thus, in this section, we basi-
cally provide the extensions of Lemmas 5, 6, 7 and Corollary 2
to the conditional setting. From another point of view, the mate-
rial that we present in this section can be regarded as extending
some well-known results on the Fisher information matrix [39],
[43] to a conditional setting.

We start with the definition of the conditional Fisher informa-
tion matrix.
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Definition 3: Let (U, X) be an arbitrarily correlated length-n
random vector pair with well-defined densities. The conditional
Fisher information matrix of X given U is defined as

J(X|U) = E[p(X|U)p(X|U)T] (196)
where the expectation is over the joint density f(u,x), and the

conditional score function p(x | u) is

p(x | u) = Vlog f(x | )
) T
dlog f(x|u) Odlog f(x|u) (197)
Jry Oy,

The following lemma extends Stein identity [39], [43] to a
conditional setting. We provide its proof in Appendix L.

Lemma 11 (Conditional Stein Identity): Let U, X be as speci-
fied above. Consider a smooth scalar-valued function of x, g(x),
which well-behaves at infinity in the sense that

135:1 gx)f(x|u)=0, i=1,...,n (198)
For such a g(x), we have
Elg(X)p(X|U)] = -E[Vg(X)]- (199)

The following implications of this lemma are important for
the upcoming proofs.

Corollary 3: Let U, X be as specified above.
D E[p(X|U)] = 0
2) E[Xp(X|U)T] = -1
Proof: The first and the second parts of the corollary follow
from the previous lemma by selecting g(x) = 1 and ¢g(x) = z;,
respectively. ]

We also need the following variation of this corollary whose
proof is given in Appendix II.

Lemma 12: Let U, X be as specified above. Then, we have

D) Ep(X|U)|U] = 0.

2) Let g(u) be a finite, scalar-valued function of u. For such
a g(u), we have

Elg(U)p(X|U)] = (200)
3) Let E[X | U] be finite, then we have
E[EX|Ulp(X|U)"] = (201)

We are now ready to prove the conditional version of the
Cramer—Rao inequality, i.e., the generalization of the first part
of Lemma 5 to a conditional setting.

Lemma 13 (Conditional Cramer—Rao Inequality): Let U,
X be arbitrarily correlated random vectors with well-defined
densities. Let the conditional covariance matrix of X be
Cov(X|U) > 0, then we have

J(X|U) = Cov(X |U)™! (202)
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which is satisfied with equality if (U, X) is jointly Gaussian
with conditional covariance matrix Cov(X | U).

Proof: We first prove the inequality in (202), and next show
that jointly Gaussian (U, X) with conditional covariance matrix
Cov(X | U) satisfies the inequality in (202) with equality. To
this end, we consider

0 < E[(p(X|U) + Cov(X |U)~! x (X — E[X|U]))

(p(X|U) + Cov(X|U)""(X - EX|U]))"]

= E[p(X|U)p(X|U)"]
+ E[p(X|U)(X - E[X|U])T]Cov(X |U)~!
+ Cov(X |U) T E[(X — E[X|U])p(X |U) ]
+ Cov(X |U) 'E[(X - E[X|U])(X - E[X|U])"]
x Cov(X |U)™! (204)

=J(X|U) + E[p(X|U)(X - E[X|U])T]Cov(X | U)~*
+ Cov(X|U) " E[(X - E[X|U])p(X|U)T]
+ Cov(X |U) !

(203)

(205)

where for the second equality, we used the definition of the con-
ditional Fisher information matrix, and the conditional covari-
ance matrix. We note that

(E[(X - EX|UDp(X|U) T
= E[p(X|U)(X - E[X|U])T] (206)
= E[p(X | U)X ] - E[p(X | U)E[X|U]"] 07)
= E[p(X|U)X] (208)
=1 (209)

where (208) is due to the third part of Lemma 12, and (209) is
a result of the second part of Corollary 3. Using (209) in (205)
gives

0 < J(X|U) - Cov(X|U)~* - Cov(X |U)~

+ Cov(X |U)™!
=J(X|U) - Cov(X|U)™ !

(210)
@211)

which concludes the proof.
For the equality case, consider the conditional Gaussian dis-
tribution

f(x]u)
— Ce(fé(xfE[X | U:u])TCOV(X | U)fl(xfE[X | U=u)))

212)

where C' is the normalizing factor. The conditional score func-
tion is

p(x|u) = —Cov(X|U) Hx - EX|U=u]) (213)
which implies J(X | U) = Cov(X | U)~ % ]

We now present the conditional convolution identity which is
crucial to extend the second part of Lemma 5 to a conditional
setting.
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Lemma 14 (Conditional Convolution Identity): Let X, Y, U
be length-n random vectors and let the density for any combi-
nation of these random vectors exist. Moreover, let X and Y
be conditionally independent given U, and let W be defined as
W = X + Y. Then, we have

p(w|u) = Flo(X|U = uw) |[W=w,U=u] Q14
=EpY|U=u)|W=w,U=u]. (215

The proof of this lemma is given in Appendix III. We will use
this lemma to prove the conditional Fisher information matrix
inequality, i.e., the generalization of the second part of Lemma
5.

Lemma 15 (Conditional Fisher Information Matrix Ineq.):
Let X,Y,U be as specified in the previous lemma. For any
square matrix A, we have

JX+Y|U)<AJX|U)AT
+I-A)J(Y|U)IT-A)T. (216)
The proof of this lemma is given in Appendix IV. The fol-
lowing implications of Lemma 15 correspond to the conditional
version of Corollary 2.

Corollary 4: Let X,Y,U be as specified in the previous
lemma. Then, we have

DJIX+Y|U) JX]|U).

) IX+Y|U) = [IX|U) T +I(Y|U) L

Proof: The first part of the corollary can be obtained by set-

ting A = I in the previous lemma. For the second part, the se-
lection A = [J(X|U)~! + J(Y | U)7~1I(X | U)~! yields
the desired result. ]

Using this corollary, one can prove the conditional version
of Lemma 6 as well, which is omitted. So far, we have proved
the conditional versions of the inequalities related to the Fisher
information matrix, that were used in the proof of Theorem 6. To
claim that the proof of Theorem 6 can be adapted for Theorem
7, we only need the conditional version of Lemma 7. In [34],
the following result is implicity present.

Lemma 16: Let (U, X) be an arbitrarily correlated random
vector pair with finite second order moments, and be indepen-
dent of the random vector N which is zero-mean Gaussian with
covariance matrix X = 0. Then, we have

1
Vs WX +N|U) = JJ(X+N|U). @17

Proof: Let Fyy(u) be the cumulative distribution function
of U, and f(x+n| U = u) be the conditional density of X+ N
which is guaranteed to exist because N is Gaussian. We have

2V h(X + N|U)

=2Vs, /h(X +N|U = u)dFy(u) (218)

= Z/VENh(X + N | U= ll)dFU(ll) 219)
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= /E[Vlogf(X+N|U:u)
x Vlog f[(X+N|U=u)']

x dFy(u) (220)

= E[Vlog f(X+N|U)Vlog f(X+N|U)"]
(221)
=J(X+N|U) (222)

where in (219), we changed the order of integration and differ-
entiation, which can be done due to the finiteness of the con-
ditional differential entropy, which, in turn, is ensured by the
finite second-order moments of (U, X), (220) is a consequence
of Lemma 7, and (222) follows from the definition of the con-
ditional Fisher information matrix. [ ]

Since we have derived all necessary tools, namely conditional
counterparts of Lemmas 5, 6, 7 and Corollary 2, the proof The-
orem 6 can be adapted to prove Theorem 7.

E. Proof of Theorem 2 for Arbitrary K

We now prove Theorem 2 for arbitrary K. To this end, we
will mainly use the intuition gained in the proof of Theorem 6
and the tools developed in the previous section. The only new
ingredient that is needed is the following lemma whose proof is
given in Appendix V.

Lemma 17: Let (V, U, X) be length-n random vectors with
well-defined densities. Moreover, assume that the partial deriva-

tives of f(u|v,x) with respect to z;,7 = 1,...,n, exist and
satisfy
Of(ulx,v)
— 1 <
11£?§xn oz, < g(u) (223)

for some integrable function g(u). Then, if (V,U, X) satisfy
the Markov chain V — U — X, we have

J(X|U) = I(X]|V). (224)

We now start the proof of Theorem 2 for arbitrary K. First, we
rewrite the bound given in Theorem 1 for the K'th user’s secrecy
rate as follows:

I(UK,YK)—I(UK,Z)
=1(X;Yg) - I[(X;Z)

XY |Ug) - I(X:Z|Ug)] (225)
< llog—|s +3x] 1 og IS + 24|
T2 P 2 1Xz|

-[I(X; Yk |Uk) - I(X;Z|Uk)]  (226)

where in (225), we used the Markov chain Uy — X —
(Yg,Z), and obtained (226) using the worst additive noise
lemma given in Lemma 4. Moreover, using the Markov chain
Uk — X — Y — Z, the other difference term in (226) can
be bounded as follows:

0<IX;Yx|Uk)—I(X;Z|Ug) (227)
<I(X;Yy) - I(X;Z) (228)
1, |S+3g| 1. |S+3Zy

< —log 2T KL Z g P T 221 229
S R T R R Py (229
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The proofs of Theorems 6 and 7 reveal that for any value of
I(X;Yk |Ug) — I(X;Z|Uk) in the range given in (229),
there exists positive semi-definite matrix K g such that

JX+Ng|Ug) ' =2 <Kg <8 (230)
and
IX; Yk |Uk) - I(X;Z|Uk)
_ llog Kx + Zk|
2 X k|

231)

I(X;Yg-1|Uk) - I(X;Z|Uk)

1 Kk +3k_
§§10g| K+ Xr_1]

(232)

Using (231) in (226) yields the desired bound on the Kth user’s
secrecy rate as follows:

1 S+ X 1
Ri < =1 M——lo

IS+ Xz|
og — ——
2 Kk + x| 2

! . 233)
Kk + Xz

We now bound the (K — 1)th user’s secrecy rate. To this end,
first note that

Rg 1 < I(Uk ;Yg 1 |Uk) = I(Uk1;Z|Uk)
(234)
=I(X;Yr_1|Uk) - I(X;Z|Uxk)
— (X Y1 |Uk—1) = (X5 Z | U —1)]

(235)
< llog Kx + Zx_1| B llog Kx + 27|
-2 Xk 1] 2 Xz]
—I(X;Yx-1|Uk-1)—I(X;Z| Uk 1))
(236)

where in order to obtain (235), we used the Markov chain Uy —
Uk-1 — X — (Yk_1,Z), and (236) comes from (232).
Using the Markov chain Uy — Ugx 1 — X — Yg 1 — Z,
the mutual information difference in (236) is bounded as

0<IX;Yr-1|Uk-1)—I(X;Z|Uk_1)

<IX;Yg-1|Uk) - I(X,Z|Uk) (237)
1 |KK+EK—1| 1 |KK+EZ|

<-log—=—+——-log——=——"=. (239)
2 % T Ska] 2 =]

Using the analysis carried out in the proof of Theorem 6, we can
get a more refined lower bound as follows:

I()(7 YK,1 | UK,1> - I(X, Z | UK,1)

1 . |J(X + Ng—1|Ur—1)""|

> 0
-2 |Ex 1]
1 JX4+Ng_1|Uk1)) ' 42, -2k
——10g| (X4+Ng_1|Ug=1)" " +X22 K 1|.(239)
2 Xzl
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Combining (238) and (239) yields

|J(X +Ng_1|Ug_1) |

log IJ(X+Ng 1 |Ug 1) '+ 3z - g
SI(X Y 1|Uk 1) = I(X;Z|Uk 1)
1 |Zk—1]
Xz
< llogw. (240)
2 Krx + Xz

Now, using the lower bound on Kx given in (230), we get

Kr = J(X+Ng|Ug) ™t - Zg
= J(X 4+ Ng_1|Ug)™ =2k

(241)
(242)

where (242) is obtained using Lemma 6. Moreover, since we
have U — Ug_1 — X + N _1, the following order exists:

J(X+Ng_1|Ug-1) = I(X+Ng_1|Uk)  (243)
due to Lemma 17. Equation (243) is equivalent to
J(X+Ng_1|Uk-1) P 2 I(X+Nr—1 |[Uk) ™t (244)
using which in (242), we get
Kg = J(X+Ng 1 |Ug 1) =Bk 1. (245)
We now consider the function
r(t):i og% 0<t<1 (246)
with the following parameters:
A=JX+Ng 1 |Ug 1) (247)
B=X;-%r (248)

A=Kk +3g_1—J(X+Ng_1|Ug-1)™" (249)

where A > 0 due to (245). Using this function, we can para-
phrase the bound in (240) as

—7(0)
SI(X YK 1|UB 1)—I<X,Z|UK_1>
(k1]
+—1
1Xz]
< —7“(1)- (250)

As shown in Lemma 10, () is continuous and monotonically
decreasing in ¢. Thus, there exists a t* such that

—r(t")=I(X;Yg_1 |Ug—1) = I(X;Z|Ug_1)

1 Yr_
Lo Bl

251
2 12z @D

due to the intermediate value theorem. Let K K1 =A+t*"A—
Y k-1, then we get
I(X; YK 1| Uk-1) —

Kr_1+Zx_1] _11
Xk 1]

I(X;Z|Uk—1)
Kr_1+ 27|

1
1%z]

(252)
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We note that using (252) in (236) yields the desired bound on
the (K — 1)th user’s secrecy rate as follows:

1 Ki+3x
Ry 1 < 2log S+ Tkl
2 IKg_1+ Xk_1]

1 Kk + 27|
2 Kr_1+ Xz

Moreover, since A = 0and 0 < ¢t < LIN(K,l =A+t*A —
3 i1 satisfies the following orderings:

(253)

JX+Ng_1|Ug—1)"' = Bg-1 < Kg_1 <Kg. (254)
Furthermore, the lower bound in (254) implies the following
order: .

Kg 1 =JX+N|Ug 1)~

-2y (255)

for any Gaussian random vector N such that Xy < Mg 4,
and is independent of Ugx_1,X, which is a consequence of
Lemma 6. Using (255), and following the proof of Theorem 6,
we can show that

1(X; YK 2| Uk—1) — (X5 Z| Uk —y)
|KB 1+ k-2
|E k2]

1 log Kr_1+ 37|
2 12z] '

1
(256)

Thus, as a recap, we have showed that there exists K K—1such
that

J(X+Ng_1|Uk-1)~
and

1 _Sp 1 <Kk 1 <Kg (257)

I(X; YK | Uk—) = (X5 Z | U2y
Kx 1+3x 1] 1 Ki 1+ 27|
1 r— = = — —log ——————= (258)
pra 2% 3y
I(X; YK o | Uk—1) = I(X; Z| Uk —1)
|KK 1+ 3k 1 |KK—1+EZ|
1 = — —Jog ——————"(259)
Skl 2% 3y

which are analogous to (230), (231), (232). Thus, proceeding
in the same manner, for any selection of the joint distribution
pur)p(ur 1 | ug) .. .p(x|uz), we can show the existence of
matrices {Kj, } <! such that

=K1 <Ky=< ... <Ky =Kgu1 =8 (260)
and
I(X; Yk|Uk) I(X;Z|Uy)
1 1K), + 34 L Ky + 37|
P ik ] ) O i B 1
|2k 2 |Xz|
k=2,...,K (26)
I(X; Yk 1| Uk) = I(X; Z | Uy)
1 1K + Zi— 1|_llog|Kk+Ez|
oy 2 Xz

(262)
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where Uk 11 = ¢. We now define K; = Kk+1 - Kk,k =

., K, which yields Kk+1 = Zle K;, and in particular,
S = Zfil K. Using these new variables in conjunction with
(261) and (262) results in

R < I(Uk; Y | Uks1) = 1(Uk; Z | Up41) (263)
=I(X; Yk |Upt1) = I(X; Z| Upa)
—I(X;Ye | Uk) — I(X;Z|Ug)] (264)
< llog K1 + 3] 1 [Kiq1 + 3]
2 |2 2 Xz
1, |Ke+3 1, [Ki+ g
~ Clog PR SR LD, BEE 2L 6
25T T2
_1 |Kig1 + S Lo K1 + 3z (266)
2 Ky + i 2 Ky + 37|
RESWND v i 2 N
2 |Z LK+
1 K, +X2
1 |Ez 1 + 3z (267)
2 |Z LK, + 3z
fork = 2,..., K. For k = 1, the bound in (262), by setting

k = 2 in the corresponding expression, yields the desired bound
on the first user’s secrecy rate

Ry < I(X'Yl |U2) — (X' Z|Us) (268)
|K1+21| |K1+Ez|
1 —_— - —1 — (269
3] %]
Since for any selection of the joint distribution

p(ug)p(ug 1| uk)...p(x|uz), we can establish the bounds
in (267) and (269) with positive semi-definite matrices {K;} X,
such that S = ZLK=1 K, the union of these bounds over such
matrices would be an outer bound for the secrecy capacity region,
completing the converse proof of Theorem 2 for an arbitrary K.

VI. ALIGNED GAUSSIAN MIMO MULTI-RECEIVER
WIRETAP CHANNEL

‘We now consider the aligned Gaussian MIMO multi-receiver
wiretap channel, and obtain its secrecy capacity region given in
Theorem 3. First, we will show the achievability of the secrecy
rates in Theorem 3 by extending Marton’s achievable scheme
for broadcast channels [45] to multi-receiver wiretap channels.
For that purpose, we will use Theorem 1 of [46], where the
authors provided an achievable rate region for Gaussian vector
broadcast channels using Marton’s achievable scheme in [45].
While using this result, we will combine it with a stochastic en-
coding scheme for secrecy purposes.

Next, we will provide a converse proof for Theorem 3 by
using our capacity result for the degraded Gaussian MIMO
multi-receiver wiretap channel in Section V in conjunction
with the channel enhancement technique [32]. In particular, to
provide a converse proof for Theorem 3, we will show that for
any point on the boundary of the secrecy capacity region, there
exists a degraded channel such that its secrecy capacity region
includes the secrecy capacity region of the original channel,
and furthermore, the boundaries of these two regions intersect
at this specific point. The channel enhancement technique

2101

comes into the picture to show the existence of such a degraded
channel by explicitly constructing it, and our capacity result for
the degraded case is used to obtain the secrecy capacity region
of this constructed degraded channel.

A. Achievability

To show the achievability of the secrecy rates in Theorem 3,
we mostly rely on the derivation of the dirty-paper coding re-
gion for the Gaussian MIMO broadcast channel in [46, The-
orem 1]. We employ the achievable scheme in [46] in conjunc-
tion with a stochastic encoding scheme due to secrecy concerns.
Without loss of generality, we consider the identity permutation,
ie,m(k)=kk=1,...,K.Let (Vy,...,Vg) be arbitrarily
correlated random vectors such that

(Vi,...,Vg) =X = (Y1,...,Yg,Z). (270)

Using these correlated rand01~n vectors, we can con-
struct  codebooks {V} (Wi, Wi)}i—,, where Wi €
{1,...,2"Yy Wy, e {1,...,2"%} k = 1,...,K, such
that each legitimate receiver can decode the following rates:

Sl K+ 3

RHRk_ 5 log k=1
‘21 lK +Ek‘

K

gy

(271)

for some positive semi-definite matrices {K;}X , such that
Zszl K; =< S [46]. The messages {Wk}le do not carry
any information, and their sole purpose is to confuse the
eavesdropper. In other words, the purpose of these messages
is to make the eavesdropper spend its decoding capability on
them, preventing the eavesdropper to decode the confidential
messages {Wk}kK - Thus, we need to select the rates of these
dummy messages {Rk} o as follows:

‘27 lK +2Z‘
Rk——l

L k=1,.... K.
2 ‘Zz 1K+EZ‘

(272)

To achieve the rates given in (271), {V;}+_, should be taken
as jointly Gaussian with appropriate covariance matrices. More-
over, it is sufficient to choose X as a deterministic function of
{V}E_ |, and the resulting unconditional distribution of X is
also Gaussian with covariance matrix Zszl K. [46].

To complete the proof, we need to show that the above code-
book structure fulfills all of the secrecy constraints in (1). To
this end, we take a shortcut, by using the fact that, if a codebook

satisfies
K
> R
k=1

then it also satisfies all of the remaining secrecy constraints in
(1) [11]. Thus, we only check (273)

lim H(Wl,...,

n— 00

Wi | Z") (273)

_H<W17"'7WK|ZH/)
1 1
= —H(Wh,...,Wg,Z") — —H(Z") (274)
n n
1
=-H (V?,lv V%J:Wh 7WK7Zn)



2102

1
— H (Vg Ve [ Wa o Wi, 27)
~ Luem 275)
n
1 n n
= EH (V1717 K71)
1
+EH(W17.“.WK Zn|V117"'7V711(,1)
1
_EH( 1,17 VK1|W17 : 7WK7Z”)
~ Luem (276)
n
1 n n _l n n
Z EH (V1717..., K,l) TLI(VLI./' KI’Z )
1
VR WLz e

We will treat each of the three terms in (277) separately. Since

K "
(Vi1,..., Vi ) can take 2" Doy (Bt Bi) (oo uniformly,
for the first term in (277), we have

K K
_H( 1,15 AI)ZZRk+ZRk (278)
k=1 k=1
The second term in (277) can be bounded as
1 n n n
ﬁl( 1,1 ~7VK,1; Y/ )
<I(Vii,....Vi1:Z)+ €, (279)
<I(X;Z)+en (280)
11 ‘Zk 1Kk+EZ‘ 281)
= —lo + €n
2 % Xz

where €, — 0 as n — oo. The first inequality can be shown
following [1, Lemma 8], the second inequality follows from
the Markov chain in (270), and the equality in (281) comes
from our choice of X, which is Gaussian with covariance matrix
Z,I::l K. We now consider the third term in (277). First, we
note that given (W, = wy, ..., Wk = wg), (Vﬁ17 .. ,V’}(’l)

K = ~
can take 2" 2 B values, where Zszl Ry, is given by

‘Zk 1K+ Ez‘
X 7]

Sh=l

k=1

(282)

using our selection in (272). Thus, (282) implies that given
(W1 = wy,...,Wk = wg), the eavesdropper can decode
(Vi1,---, Vi 1) with vanishingly small probability of error.
Hence, using Fano’s lemma, we get
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where v, — 0 as n — oo. Thus, plugging (278), (281), and
(283) into (277) yields
K

1
lim —H(Wq,... Wk |Z") > R 284
nl_)H;on(l,7K| )_;k (284)
which ensures that the rates
‘E 1 Ki +2k’ 1 ‘qu—l K; +EZ‘
RkZ‘l S i v | 2 %8 it
‘Zz 1K +Ek‘ ‘Zz—l K7+2Z’
(285)
can be transmitted in perfect secrecy for k = 1,..., K.

B. Converse

To show the converse, we consider the maximization of the
following expression:

K

> iRy (286)
k=1

where pup, > 0,k =1,..., K. We note that the maximum value
of (286) traces the boundary of the secrecy capacity region,
i.e., its maximum value for any non-negative vector [p1 . . . px]
will give us a point on the boundary of the secrecy capacity
region. Let us define 7(-) to be a one-to-one permutation on
{1,..., K} such that

0 <ty £+ < (k) (287)

Furthermore, let 0 < m < K of { Nk}szl be strictly positive,
Le, pr(r) = "+ = Pa(k—m) = 0, and fir(x my1) > 0. We
now define another permutation 7'( -) on the strictly positive
elements of {1} such that ©'(l) = n(K —m +1),l =
1,...,m. Then, (286) can be expressed as

K K m
Z e Ry = Z Hor (k) R (i) = Zuw'(k)Rﬂ’(k)
k=1 k=1 k=1

We will show that
K m
max Z e R = max Z P (k) R
k=1 k=1

k
< maXZ ) 1 L Ko + B
= ’Ek Koy + Ew(k)‘
Hom k)l ‘Zz 1 Krr i)+22‘
k—
‘Z 'K x(i) 22’

(288)

(k) (289)

Ms

(290)
k=1

where the last maximization is over all positive semi-definite
matrices {K /() }, such that >, K. ) < S. Since the
right hand side of (290) is achievable, if we can show that (290)
holds for any non-negative vector [y1 . . . x|, this will complete
the proof of Theorem 3. To simplify the notation, without loss
of generality, we assume that 7’'(k) = k,k = 1,...,m. This
assumption is equivalent to the assumption that 0 < pu; < ... <
m,and pr =0,k =m+1,... K.

We now investigate the maximization in (290). The objective
function in (290) is generally nonconvex in the covariance ma-
trices {K/(x)}7=; implying that the KKT conditions for this
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problem are necessary, but not sufficient. Let us construct the
Lagrangian for this optimization problem

LML, Mz) =Y e RY + > tr(KpMy)
k=1 k=1

+tr <<s - ZKk> MZ> (291)
k=1

where the Lagrange multipliers {M;}"™,, M are positive
semi-definite matrices, and we defined {Rg}:zl as follows:

1 ’Zle K;+ zk‘ 1
It ——1lo

‘Zle K + EZ‘
5 Og‘ k—1 K » ‘ 2
E:i:l ) + k

& k—1
SErE.

RS = (292)

where k = 1,...,m. The gradient of L({M,;}™,, M) with
respect to K, forj = 1,.. ., m, is given by (293), shown at the

bottom of the page. The KKT conditions are given by

Vi, L({M;}",Mz) =0, j=1,...,m (294

tr(K;M;) =0, j=1,....,m (295)

tr ((s - Z Kk> MZ) =0. (296)
k=1

We note that since tr(K;M;) = tr(M,;K;), and M; >
0,K; >~ 0, we have M;K; = K;M; = 0. Thus, the KKT
conditions in (295) are equivalent to

M;K; = K,;M, =0, (297)

7=1,....,m.

Similarly, we also have

Mg <S — iKk) = (S - Xm:Kk> Mz =0. (298)

k=1 k=1

Subtracting the gradient of the Lagrangian with respect to K ;1
from the one with respect to K, forj = 1,...,m — 1, we get

ijL ({M'i}?;h MZ) - VK]'+1L ({M'i}?;h MZ)
Ky 4 - Hj+1 4 B
= 7] (Z Ki+ 21’) - ]2+ (Z K;+ 2j+1>
=1 1=1
—1

. j K j
—%(Zszz) +HE <ZK1:+EZ)
i=1 i=1
+M, - M (299)
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Thus, using (297), (298), (299), we can express the KKT con-
ditions in (294), (295), (296) as follows:

j -1 j
Hj (ZKH-E]') - (ZKH-EZ)
i=1 i=1
j -1 j
= Kj+1 (Z KZ + 2]’-1-1) - <Z Kl + Ez)
=1

-1

+ M;

-1

=1
+M;1, j=1,...,m—1 (300)
m -1
[im (Z K, + Em) +M,,
=1
m —1
= KUm (Z Kz’ + EZ)
=1
+M; (301)
K]'Mj = M]'K]' = 07 J = 1, ..., M (302)
My (S—ZKk> = (S—ZKk) M;=0 (303)
k=1 k=1

where we also embed the multiplications by 2 into the Lagrange
multipliers.

We now present a lemma which will be instrumental in con-
structing a degraded Gaussian MIMO multi-receiver wiretap
channel, such that the secrecy capacity region of the constructed
channel includes the secrecy capacity region of the original
channel, and the boundary of the secrecy capacity region of this
constructed channel coincides with the boundary of the secrecy
capacity region of the original channel at a certain point for a
given non-negative vector [ . .. ux].

Lemma 18: Given the covariance matrices {K;}7.; satis-
fying the KKT conditions given in (300)—(303), there exist noise
covariance matrices {X;}7"; such that:

D <2,i=1,...,m
)D0<3; <...<%, <%,

3) , -1 .
j j
1hj (Z K, + 2]') - (Z K, + 22)
i=1 i=1

-1

-1

-1

M:

J
= [j+1 (Z K; +
i=1
J
- (Z K+ 2z>
=1

Vi, L({M;};L, Mz)

m X k -1 m . k—1 -1
Yy (21::1 K + 2k> =Dk (271:1 K + Ek)

= — i (Zle K; + 2Z)
+M_] - MZ;
m -1
(i Kit+X2,) -8

1 m Wi k—lK » -1
+Zk:j+17 Zi:l itz

(X Ki+32) " + M, — My,

(293)
ifj=1,....m—1
ifj=m
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fory =1 — 1, and
m -1 m -1
L <ZK1+Em> = lm <ZK +Ez) + My
i=1 =1
4)

i=1 i=1
fory =1
5)
m -1
(S + im) (Z K; + i]m)
i=1

-1
= (S+32) (ZK +zz> :

The proof of this lemma is given in Appendix VI.

Without loss of generality, we have already fixed [p1 ... px]
suchthat 0 < gy < -+ < fm, and pp = 0,k = m +
1,...,K for some 0 < m < K. For this fixed [i11 ... jux],
assume that {Kj}7* ; achieves the maximum of (290). Since
these covariance matrices need to satisfy the KKT conditions
given in (300)—(303), Lemma 18 ensures the existence of the
covariance matrices {f] j}j<q that have the properties listed in
Lemma 18. Thus, we can define a degraded Gaussian MIMO
multi-receiver wiretap channel that has the following noise co-
variance matrices:

gk — { Ek? -
Qf—m 21,

1<k<m

m+1<k< K (304)

where 0 < a—.,, < 1 are chosen to satisfy ak_mfll < Xy for
k=m+1,..., K, where the existence of such {ak_m}kK:m+1
are ensured by the positive definiteness of {3 }le. The noise
covariance matrix of the eavesdropper is the same as in the orig-
inal channel, i.e., 3 7. Since this channel is degraded, its se-
crecy capacity region is given by Theorem 2. Moreover, since
3 < 3k, k=1,..., K, and the noise covariance matrices in
the constructed degraded channel and the original channel are
the same, the secrecy capacity region of this degraded channel
outer bounds that of the original channel. Next, we show that for
the so-far fixed [y . . . k], the boundaries of these two regions
intersect at this point. For this purpose, reconsider the maxi-
mization problem in (286)

K m
max E e R = max E i Ry,
k=1 k=1
m
>
- K, 2
{K; 3, b1

(305)

< max

K;>=0,Yi

X s

" K K Ki+32
Zi:l it Ei:m+1 it 2k
Z K + Zl m+1 K + Ek‘

X log‘
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‘Zf:l K+ Efim+1 K; + EZ‘

— log P I (306)
‘Zizl Ki+Y, . Ki+ zZ’
% -
m Ki + 3|
= max ‘u?k log M
b kel ‘ZZ LK+ 5y
Yo K=s
‘Zf—l Ki+ EZ’
— log 7—— (307)
‘Eb—l K; + EZ‘
where (305) is implied by the fact that for the fixed [p41 ... @ K]

we assumed that pp, = 0,k = m+1,..., K and 0 < py <

- < ltm, (306) follows from the facts that the constructed
degraded channel includes the secrecy capacity region of the
original channel, and the secrecy capacity region of the degraded
channel is given by Theorem 2. The last equation, i.e., (307),

comes from the fact that, since ur, = 0,k = m+1,... K,
there is no loss of optimality in choosing K = 0,k = m +
1,..., K. We now claim that the maximum in (307) is achieved

by {K} }7 . To prove this claim, we first define
1 Zf:l K+ S
2 ik 5,

——log (308)
2 Ty 1K* +3y
fork =1,...,m, and
s 1 ‘21 1 Ki + X,
Ry =
‘EL 1 K + Ek
‘27 lK + EZ
—— og (309)
’Zz 1 K + EZ
for k =1,...,m and some arbitrary positive semi-definite ma-

trices {Kl} " suchthat }." | K; < S. To prove that the max-
imum in (307) is achieved by {Kj } 7~ ,, we will show that

Z pie Ry — Z/%Rk > 0.
k=1 k=1

To this end, consider the first summation in (310)

(310)

Z i
k=1

m k k
:Z% (log ZKsz ~log ZKHEZ)
k=1 1=1 =1
m [ k—1 . k—1
—27’“ (log ZKsz — log ZK;‘+22)
k=2 =1 =1
>
e %1 G11)

2 Xz
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m k k : :
. We define the following matrices:
o 1223 * *
_;7(@ Z;Ki—i—Ek—log z;K,L-—i—EZ) . .
o T - Ap=) K-> K;, k=1,...,m. (316)
— Mk-2+1 <log ZK; + 3 i=1 i=1
k=1 =1 Using (314), (315) and (316), the difference in (310) can be
k
expressed as
— log ZKZ‘ +3z ) le .
> ekt =Yl
_m |1 k=1 k=1
5 1 |2 | (312)
zZ *
i= m = ——log *
" log 5 IK M |Zz 1K + 3]
i= K + 2z
m—1 ' 1 ‘EL 1K +E ‘
—I-Z%(log ZK*—I—Ek —log ZK —I—Ez) g;|2311K + Xz|
1 i=1 i=1 m—1 k -1
m—1 k 1223 % <
-y Hy I+(ZK-+E) Ay
Hr+1 g i k k
— 5 <log ZK + 3 k=1 2 i=1
k=1 i=1 1 k 1
k — He+1 — Mk *
— log ZK;+EZ> —“72 log [T+ ZlKi—i—EZ Ay
=1 = 1=
< -1
11 1] m—1 k )
_ Py 1 k41 %
2 %8s, (313) + ; =y log T+ Z;K +31 | ARLGBI7)
3K+ 5]
=""log We first note that
1200t K* + 37|
m— PO K;"-l—f)m‘ S+2m‘
L5, ZK* + 3 | — -
= 2 s K+ 3z [S+3g]
m—1 _ Zm K—{—é ‘
Hk+4+1 HEk * i=1 ) m
+ —————log K +Xz > - 318
k=1 2 zz; B |Zi:1 K+ 37| G18)
mg:l Ph+1 ) Z K*+ 5 where the equality is due to the fifth part of Lemma 18, and the
08 - k41 inequality follows from the fact that the function
k=1 1=
p |3 A+ %
_ Mg 121l 314 o (319)
2 515y G149 A+ 3]

is monotonically increasing in the positive semi-definite matrix
Similarly, we have A as can be deduced from (108), and that ;- | K; < S. Fur-
thermore, we have the relationships given by (320)—(321)

i . —1
pore R .
kz::l Ph_jog T+ (ZK +2k) Ay

k41

=1
‘Zl 1 K + Em‘ —1
— log
> is 1K + 2] g Ml 7 Py I—|—<ZK*—|—EZ> Ay
m— Hk+1 =
e
s K g ZK L5 S
= <log [T+ ZK*+Ek Ay
m 1 L Hk+1 =1
+ / k+1 / k ZK +y, »
k=1
m—1 ) e el (Z K* + 2Z> Axl (320
. k41 log ZKl + 2k+1 Hr+1 P
k=1 i=1 L 1
b)) - £y ‘
_ &log | 1|. (315) log [T+ (ZKq + Ek+1) Ay (321)
2 |Ez| 1=1
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where the inequality in (320) follows from the concavity of log |-
| in positive semi-definite matrices, and (321) follows from the
third part of Lemma 18. Using (318) and (321) in (317) yields

m m .
ZﬂkRZ - ZukRk >0
k=1 k=1

which implies that the maximum in (307) is achieved by
{K} }7_,. Thus, using this fact in (307), we get

max Z i Ry

(322)

k=1
o Een
k=1 2 ‘Zk 1K*+2k’
‘ZLKMFE:Z‘
— log 7 —— (323)
pomp SR
zzm:ﬂ log ’Zz 1K'+Ek‘
2 ‘Zk 1K*+2k’
[
T (324)
St

where the equality follows from the fourth part of Lemma 18.
Since the right hand side of (324) is achievable, and we can get a
similar outer bound for any non-negative vector [ . . . x|, this
completes the converse proof for the aligned Gaussian MIMO
channel.

VII. GENERAL GAUSSIAN MIMO MULTI-RECEIVER
WIRETAP CHANNEL

In this final part of the paper, we consider the general
Gaussian multi-receiver wiretap channel and obtain its secrecy
capacity region given in Theorem 4. The main idea in this
section is to construct an aligned channel that is indexed by
a scalar variable, and then show that this aligned channel has
the same secrecy capacity region as the original channel in
the limit of this indexing parameter on the constructed aligned
channel. This argument was previously used in [32], [33]. The
way we use this argument here is different from [32] because
there are no secrecy constraints in [32], and it is different from
[33] because there are multiple legitimate receivers here.

Achievability of the region given in Theorem 4 can be shown
by following the achievability proof of Theorem 3 given in
Section VI-A; hence, it is omitted. For the converse, we basi-
cally use the ideas presented in [32], [33]. Following Section
V-B of [32], we can construct an equivalent channel which
has the same secrecy capacity region as the original channel
defined in (20)—(21). In this constructed equivalent channel, all
receivers, including the eavesdropper, and the transmitter have
the same number of antennas, which is ¢

Yk = I:IkX+Nk7
Z = fIZX+NZ

k=1,....K (325)

(326)
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where I:Ik = Aka, V. is at x t orthonormal matrix, and Ak
isat x t diagonal matrix whose first (¢ — 7 ) diagonal entries
are zero, and the rest of the diagonal entries are strictly positive.
Here, 7, is the rank of the original channel gain matrix, Hy.
The noise covariance matrix of the Gaussian random vector Nk
is given by 32, which has the following block diagonal form:

. 50
where 3! is of size (t—7x) x (t—7), and £F is of size 7', x 7.
Similar notations hold for the eavesdropper’s observation Z

as well. In particular, Hz = AZVZ where Vz isat x t or-
thonormal matrix, and Az isa t x ¢ diagonal matrix whose first
(t — 7z) diagonal entries are zero, and the rest of the diagonal
entries are strictly positive. Here, 7 is the rank of the original
channel gain matrix of the eavesdropper, Hz. The covariance
matrix of the Gaussian random vector N z 1s given by b)) 7 which
has the following block diagonal form:

. 34 0

Yz = [ 0 ﬁ:?} (328)
where 334 is of size (t—7 ) x (t—7 ) and B8 is of size 7 7 X 7' .
Since this new channel in (325)—(326) can be constructed from
the original channel in (20)—(21) through invertible transforma-
tions [32], both have the same secrecy capacity region. More-
over, these transformations preserve the dirty-paper coding re-
gion as well, i.e.,

Rgpc( {K }L 17{2 }L 172Z7{H }L 1» )
[ (S Ko By + S|

= —log ‘Hr(k) (Zk LK )> T+ Er(k)‘
‘Hz(zz 1 K (Z) Z+EZ‘
_—log‘H( le ) _,_2‘
z @)z z

= Liog ’H’f““ (S Koo BT +E”(k)‘

2 I:Iﬂ(k) (ZZ 1 Krii )) (k) T Er(k)‘
B e

s (I

We now define another channel which does not have the same
secrecy capacity region or the dirty paper coding region as the
original channel:

1K7r<>) Z+2Z‘

k=1,....K. (329)

Yk:I:IkX+Nk7 k=1

7Z-H,X+N,

K (330)
(331)

where H;, = (Ak + aik)Vk and o > 0,and Iy isat x ¢
diagonal matrix whose first (¢ — 74) diagonal entries are
1, and the rest of the diagonal entries are zero. Similarly,
H; = (Ay + ol;)Vy, where I is a t x t diagonal matrix
whose first (¢ — 77) diagonal entries are 1, and the rest are
zero. We note that {ﬂk}{;hﬂ 7z are invertible; hence, the
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channel defined by (330)—(331) can be considered as an aligned
Gaussian MIMO multi-receiver wiretap channel. Thus, since it
is an aligned Gaussian MIMO multi-receiver wiretap channel,
its secrecy capacity region is given by Theorem 3.

We now show that as « — 0, the secrecy capacity region
of the channel described by (330)—(331) converges to a region
that includes the secrecy capacity region of the original channel
in (20)—(21). Since the original channel in (20)—(21) and the
channel in (325)—(326) have the same secrecy capacity region
and the dirty-paper coding region, checking that the secrecy
capacity region of the channel described by (330)—(331) con-
verges, as a — 0, to a region that includes the secrecy capacity
region of the channel described by (325)—(326), is sufficient. To
this end, consider an arbitrary (277 ... 2"fx ) code which
can be transmitted with vanishingly small probability of error
and in perfect secrecy when it is used in the channel given in
(325)—(326). We will show that the same code can also be trans-
mitted with vanishingly small probability of error and in perfect
secrecy when it is used in the channel given in (330)—(331) as
a — 0. This will imply that the secrecy capacity region of the
channel given in (330)—(331) converges to a region that includes
the secrecy capacity region of the channel given in (325)—(326).
We first note that

Y, = (Ak n aIk) V. X + N, (332)
oIV, X
_ |k 333
v [ } e
_ [y
- [Yf} k= (334)

where IA contains the first (¢ — 7 ) rows of 1), and AB contains
the last 73, rows of Ak N,f is a Gaussian random vector that
contains the first (¢ — 71, ) entries of N}, and NkB is a vector that
contains the last 74, entries. The covariance matrices of N;;‘, N{f
are ﬁ)f, ﬁ)f , respectively, and Nf and N,’f are independent as
can be observed through (327). Similarly, we can write

Y, = A VX + Ny, (335)
0 N

= . Sk 336
vt o

A
:[Yg}, k=1,...,K. (337)

Yk

We note that Y2 = Yf,k =1,..., K; thus, we have

X—>Ye—Yy k=1,....K (338)

which ensures the any message rate that is decodable by the
kth user of the channel given in (325)-(326) is also decodable
by the kth user of the channel given in (330)—(331). Thus, any
(2nFa .. 2nEx ) code which can be transmitted with van-
ishingly small probability of error in the channel defined by
(325)—(326) can be transmitted with vanishingly small proba-
bility of error in the channel defined by (330)—(331) as well.
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We now check the secrecy constraints. To this end, we note
that

7 — (AZ + aiz) V,X + Ny, (339)
aigvzx} [Ng‘}
_ |« A (340)
[ ABV,X NE
ZA
= |:ZB } (341)

where ié contains the first (£—7) rows of I 7, and Ag contains
the last 7 rows of A Z. Né is a Gaussian random vector that
contains the first ¢ — 74 entries of N z,and N3 ~ 1s a vector that
contains the last 77 entries. The covariance matrices of NA NB
are 34, 38 respectively, and N4 and N2 are 1ndependent as
can be observed through (328). S1m1larly, we can write

Z=AzV;X+Ny (342)

0 N4
= R 343
PEIEIE IS

74

= {ZB ] (344)

We note that ZB = ZB, and thus, we have
X —Z—Z. (345)
We now show that any (27F1 ... 2"Bx)  code
that achieves the perfect secrecy rates (Ry,...,

Rk) in the channel given in (325)-(326) also achieves
the same perfect secrecy rates in the channel given in
(330)—(331) when a — 0. To this end, let S be a nonempty

subset of {1, ..., K'}. We consider the following equivocation:
H(Ws|Z")

= H(Ws) — I(Ws; Z") (346)
= H(Ws|Z") + 1(Ws; Z") — I(Ws; Z")  (347)

= H(Ws |24 ZP") + [(Ws; 24", 2P ™)
— I(Ws; 24", ZB™) (348)

= H(Ws|Z*",25™) + I(Ws; Z5™)

— I(Wgs; Z4", Z5™) (349)

= H(Ws |24, ZP") — [(Ws; 24" | Z57)
(350)

where (349) follows from the facts that W and ZAn = NAn
are independent, and ZZ" = Z">". We now bound the mutual
information term in (350)

I(Ws; 24" | Z5™)

< I(X™; 24 | 2B (351)
= h(ZA™ | ZPm) — W(ZA" | 2P X)) (352)
= W(ZA" | ZP™) — h(ZA™ | X" (353)
< MZA") = h(ZA | XT) (354)
= I(X"Z2%7) (355)
< Z I(X;;ZY (356)

i=1
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< max  [(X;; 23 (357)
Z E[X;X[]=s )
< Zn: L Q2IAV,SVIANT + 2;‘ s
L2 S ’
=1 zZ
N \azrgvzsvg(igw n zfg\
= 2log (359)

=2

where (351) follows from the Markov chain Wg — X" —
(ZA™, ZBm), (353) is due to the Markov chain Z4™ — X" —
VA (354) comes from the fact that conditioning cannot in-
crease entropy, (356) is a consequence of the fact that channel is
memoryless, (358) is due to the fact that subject to a covariance
constraint, Gaussian distribution maximizes the differential en-
tropy. Thus, plugging (359) into (350) yields

1 - 1 N
—H(Ws|Z") > —H(Ws|Z")
n n

| [erigvasvEaYT + 5]

——log - (360)
: =
which implies that
1 _
lim —H(Ws|Z")
n—oo N
1 ~
> lim —H(Ws|Z")
n—oo N,
2IAVZSVT( T 4 2;‘
— (PE}] 3 log ‘ (361)
Z
= lim H(WS | Z™) (362)
> > Ry (363)
keS

where (362) follows from the fact that log|a?A + B is
continuous in « for positive definite matrices A, B, and (363)
comes from our assumption that the codebook under con-
sideration achieves perfect secrecy in the channel given in
(325)—(326). Thus, we have shown that if a codebook achieves
the perfect secrecy rates (Ry, ..., Rx) in the channel defined
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by (325)—(326), then it also achieves the same perfect secrecy
rates in the channel defined by (330)-(331) as & — 0. Thus,
the secrecy capacity region of the latter channel converges to a
region that includes the secrecy capacity region of the channel
in (325)-(326), and also the secrecy capacity region of the
original channel in (20)—(21). Since the channel in (330)—(331)
is an aligned channel, its secrecy capacity region is given by
Theorem 3, and it is equal to the dirty-paper coding region.
Thus, to find the region that the secrecy capacity region of the
channel in (330)—(331) converges to as &« — 0, it is sufficient
to consider the region which the dirty-paper coding region
converges to as a — 0. For that purpose, pick the kth user,
and the identity encoding order, i.e., 7(k) = k,k = 1,..., K.
The corresponding secrecy rate is given by (364), shown at the
bottom of the page, which converges to

[ (S Ka)) By + S|
Hg (205 Kay) Bl + S

(Zf K, .)) H) + ﬁ)z‘
’Hz (Zz 1 me)

1
——log

- (365)
7+ EZ’

as & — 0 due to the continuity of log |-| in positive semi-definite
matrices. Moreover, (365) is equal to

By (T8 K Hl g + Zen|
‘Hr(m (Zz 1 Knii >) (k) +Er(k>‘
Bz (SF Ke) HE + 32|
’HZ (Zk ! K,r@) H] + 22’

10

—— log (366)

which implies that the secrecy capacity region of the general
Gaussian MIMO multi-receiver wiretap channel is given by the
dirty-paper coding region, completing the proof.

VIII. CONCLUSION

We characterized the secrecy capacity region of the Gaussian
MIMO multi-receiver wiretap channel. We showed that it is
achievable with a variant of dirty-paper coding with Gaussian

Lo ‘H (k) (Zl 1 Koy ) (k) T 2 k)’ 1 Diog ‘ﬂz (Zle Kw(o) H) + ﬁz‘
? \wa) (ZZ 1 Krm) ﬂ(k)+2w<k>\ ‘Hz z’“ lK,r(i))I:I}-i-ﬁ)Z‘
L (ﬂw(m +aley Va k)) (Zq 1 me) (Hw«) + ol Ve Ty M
= ~log
’ ‘(I:Ir(k) + ey w(k)) (Zz 1 Ko ) ( m(k) T aIr(mVr(k)) + Sy
1 H, + OéiZVZ) (2521 Kw(z’)) (I:IZ + Oéizvz) +3y
-3 (364)

Y

A+l V) (S K ) (B 40l V2 435,
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signals. Before reaching this result, we first visited the scalar
case, and showed the necessity of a new proof technique for the
converse. In particular, we showed that the extensions of ex-
isting converses for the Gaussian scalar broadcast channels fall
short of resolving the ambiguity regarding the auxiliary random
variables. We showed that, unlike the stand-alone use of the en-
tropy-power inequality [24]-[26], the use of the relationships
either between the MMSE and the mutual information or be-
tween the Fisher information and the differential entropy re-
solves this ambiguity. Extending this methodology to degraded
vector channels, we found the secrecy capacity region of the de-
graded Gaussian MIMO multi-receiver wiretap channel. Once
we obtained the secrecy capacity region of the degraded MIMO
channel, we generalized it to arbitrary channels by using the
channel enhancement method and some limiting arguments as
in [32] and [33].

APPENDIX I
PROOF OF LEMMA 11

dlog f(x|u) .

Let p;(x|u) oz

p(x|u). Then, we have

e., the ith component of

Elg(X)pi(X|U)]
8féx | u)
— [ )ty e ) (367)
= / (2L ¢ dx du (368)
_ of(x|u)
= / g(x) 01, dz;| f(u)dx™ du
(369)
where dx~ = dzy...dv;_1dx;y1...dxz,. The inner integral

can be evaluated using integration by parts as
Of(x|u)

/_ :o 9(x) 07,

+
= [g(x)f(x|u)]

i=—

dazi

oo dg(x)
_ /_ ST P, (370)
+oo
_ / f(x|u)ag§‘) d: 371)

where (371) comes from the assumption in (198). Plugging
(371) into (369) yields

9g(x)
—/ oz, f(x,u)dxdu (372)

__x [39(X)]

Elg(X)pi(X[U)]

0z (373)

which concludes the proof.
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APPENDIX II
PROOF OF LEMMA 12
Let pi(x|u) = “eafEdm
p(x | u). Then, we have

e., the ¢th component of

Flp(X|U) U = u] = /f§h<ﬂwﬁ a74)
s, ]
_/ |:/—oo Jz; dxi] =

(375)

:dxl...

e of(x|u)
/ " om

where dx~ dz;_1dz;y; ...dx,. The inner integral is

+o0

= f(x|u) =0 (376)

—00 xT;=—00

since f(x |u) is a valid probability density function. This com-
pletes the proof of the first part. For the second part, we have

Elg(U)p(X|U)] = E[g(U)E[p(X|U) |U = u]] = 0

(377)

where the second equality follows from the fact that the inner
expectation is zero as the first part of this lemma states. The last
part of the lemma follows by selecting g(U) = E[X | U] in the
second part of this lemma.

APPENDIX IIT
PROOF OF LEMMA 14

Throughout this proof, the subscript of f will denote the
random vector for which f is the density. For example,
fx(x]u) is the conditional density of X. We first note that

fw(w]|u) = /fX,W (x,w|u)dx (378)

= /fX(X|11)fy(W—X|u)dx (379)
where the second equality is due to the conditional indepen-

dence of X and Y given U. Differentiating both sides of (379),
we get

Ofw(w|u) 8f3 (w x|u)
- / Fr(x ST X Mk (380)
_ 3fY( —x|u)

- /f\ Sk (8D

= el et —x w7

Ofx(x|u)

—I—/fy(w—x|u)de

(382)

Ofx(x|u)

— [ Frtw-xw
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where (381) is due to

Ofy(w—x|u)  Ify(w—x|u)d(w; — ;)
_ _9fy(w=x]u) (w; — i)
B (()(’LUZ — SEi) 0:171
(385)
_ _f(w=xu (386)
8:1:1;
and (382) follows from the fact that fx (x| u), fy (w — x| u)

vanish at infinity since they are probability density functions.
Using (383), we get

= Fuwlw 387
fyr(w—x|u) dfx(x|u)
d 388
fw(w|u) O X (388)
Fx (¢ [w) fye (w — x| w) 2252
—dx (389
fw(w|u) Fre(x|w) x  (389)
Afx (x]u)
/fX x| 1, w) i —dx (390)
fx(x[u)
= 1 Ofx(x|u) B -
_E[fx(xm) o, W—W7U_u}
(391)
where (390) follows from the fact that
Fxaw(x, wlw)
fx(x|u,w)= fw (w | u)
_ Ix(x]u)fy(w—x]|u) )
fw(w|u)

Equation (391) implies

p(w|u) = E[p(X|U=u)|W=w,U=u] (393)
and due to symmetry, we also have
p(w|u)=E[p(Y|U=u)lW=w,U=u] (394)
which completes the proof.
APPENDIX IV
PROOF OF LEMMA 15
Let W = X 4+ Y. We have
0 X E[(Ap(X|U) + (I- A)p(Y |U) - p(W |U))
X (Ap(X|U) + (I~ A)p(Y |U) — p(W|U))"]
(395)

= AE[p(X|U)p(X|U)T]AT
+AE[PX|U)p(Y|U)T]I-A)T
~ AE[p(X|U)p(W|U)]
+(I-A)E[p(Y|U)p(X|U)"JAT
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+(I - A)E[p(Y|U)p(Y |U) "1~ A)"
~(I-A)E [p(Y[U)p(W|U)]

~ E[p(W|U)p(X|U)"]AT

~ E[p(W|U)p(Y |U)T](I-A)"

Elp(W [ U)p(W |U)T] (396)

‘We note that, from the definition of the conditional Fisher infor-
mation matrix, we have

E[p(X|U)p(X|U)"] = I(X|U) (397)
[(Y|U (Y |U) ]: (Y |U) (398)
E[p(W|U)p(W|U)T] =J(W|U). (399)
Moreover, we have
Elp(X|U)p(Y |U)"]
= (Elp(Y|U)p(X|U)])T (400)

= (E[E[p(X|U)|U = u]E[p(Y | U)|U = u]))"
(401)
=0 (402)

where (401) comes from the fact that given U = u, X and Y
are conditionally independent, and (402) follows from the first
part of Lemma 12, namely

E[p(X | U)[U = u] = E[p(Y |U)[U = u] = 0.

Furthermore, we have

(403)

E[p(X|U)p(W|U)]
= E[E[p(X|U = u)|W = w,U = ulp(W|U)"]

404)
= E[p(W |U)p(W|U)"] (405)
= J(W|U) (406)

where (405) follows from Lemma 14, and (406) comes from the
definition of the conditional Fisher information matrix. Simi-
larly, we also have

E[p(Y |U)p(W |U)T] = E [p(W | U)p(X |U) ]

(407)
= E[p(W |U)p(Y |U)]

(408)
= J(W|U). (409)

Thus, using (397)-(399), (402), and (406)—(409) in (396), we
get

0<AJX|U)AT — AJ(W|U)
+T-A)JY|UIT-A)T —(I-A)J(W|U)
(410)
+J(W|U)

11)

—JW|UAT —JW|U)I-A)"

=AIJX|UAT + (1~
- J(W|U)

A)J(Y|U)(I-A)T
412)

which completes the proof.
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APPENDIX V
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Consider J(X | U)

J(X|U)
— J(X|U,V)
= E[Vylog f(X |U, V)V, log f(X|U, V)]

(413)

(414)
= E[Vylog f(X,U, V)V, log f(X,U, V)] (415

= E[(Vxlog f(X,V) + Vxlog f(U|X,V))

x (Vylog f(X, V) + Vylog f(U|X, V)] (416)
= E[Vylog f(X, V)V, log f(X, V)]

+ E[Vylog f(X,V)Vylog f(U|X,V)T]

+ E[Vylog f(U|X,V)Vylog f(X, V)]

+ E[Vylog f(U|X, V)V, log f(U|X, V)] 417)

where (413) is due to the Markov chain V — U — X, (415)
comes from the fact that

Vi log f(x|u,v) = Vx(log f(x,u,v)

= VX IOg f(X7 u, V)

—log f(u,v)) (418)
419)

and (416) is due to the fact that f(x,u, v)
We note that

= f(X,V)f(ll | X, V).

J(X|V) = E[Vxlog f(X,V)Vylog f(X, V)] (420)
and

E[Vxlog f(U|X,V)Vylog f(U|X,V)T] = 0. (421)
Using (420) and (421) in (417), we get
JIX|U) = IX]|V)

+ E[Vylog f(X,V)Vylog f(U| X, V)]
]

+ E[Vylog f(U[X, V)Vylog f(X, V)] (422)

We now show that the cross-terms in (422) vanish. To this end,
consider the (4, j)th entry of the first cross-term

E[Vx log f(X, V)V log f(U| X, V)"];;

. [alogf(X,V) dlog f(U|X, V) (423)
011 81']
af(x,v) df(u |x v)
/fBTZ u|x V) f(x7u7v)dudVdX
(424)
_ / 01, V) 00X, ) 4, gy i (425)
) ox; 8:Ej
_ / If(x,v) |:/ Of(u|x,v) dll:| dv dx (426)
dz; |, dx;
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where the inner integral can be evaluated as

a(1)

=~ = 427
e (427)
where the interchange of the differentiation and the integration
is justified by the assumption given in (223). Thus, using (427)
in (426) implies that

E[Vylog f(X, V)V, log f(U|X, V)] =0 (428)
Thus, using (428) in (422), we get
IX|U) = J(X]|V) (429)

which completes the proof.
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Since we assumed p; > 0,5 = 1,...,m, we can select

) 1 -1
J
~ 1
Y= (Z K; + Z3J'+1) + er+1
i=1 7+1
J

- K, j=0,1....m
=1

—1 (430)

which is equivalent to

-1 -1

J
Hjt1 (Z K; + 2j+1) = Pj+1
=1

J
J+1

01

II/ ~

+ M1, ~1 @31
and that implies 0 < E < X;,5 = 1,..., m. Furthermore, for
7=0,....m-—1, wehave

j+1 i i i

Y Ki+3 =K+ <Z K; + 21+1> (432)

i=1 i=1

o -1 -1
J
1
=K1+ ( E K; + Ej+1> + o Mj+1]

i=1 J+1
(433)
- . —1
1 J
=Kj;1+ [T+ <Z K; + Ej+1> Mj+1‘|
| M+ G439
J
x <Z K; + 2j+1> (434)
i=1
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-1

j+1
=K1+ [T+ ZK7 +30 | M
i+ \ =
J
i=1
j+1 -t 1 -t
=Kji + (Z K, + 2j+1> + M1
i=1 Hi+1
j+1 L
X <Z K; + E]-+1> <Z K; + 2]'+1> (436)
i=1 i=1
j+1 -1 ) -t
=K1+ (Z K; + 2j+1> + M,y
=1 Hj+1
j+1 it
X <ZK7J+2]'+1) (ZKZ‘-FE]'H _Kj+1>
i=1 i=1
“437)
j+1 -1 ) -t
=K1+ (Z K; + 2j+1> + M,y
i=1 Hi+1
j+1 -1 1 -t
- Z K +3;41 + M;1
im1 Hj+1
j+1 -1
X <Z Kz + E]'+1> Kj+1 (438)
i=1
j+1 -1 -t
=K1+ (Z K; + 2j+1> + M,y
i=1 Hi+1
[ 7i+1 -1 1t
- <Z K; + Ej+1> + M;
i=1 Hi+1
[ /i1 -t ]
X <Z Ki+ 2j+1> + Mji1 | Kjn
po fhj+1
(439)
j+1 -1 ) -t
=K1+ Z K;+ 341 + M;i 1
=1 Hj+1
-Kj (440)
j+1 -1 -t
= [ Ki+Z11) +—Mp (441)
im1 Hj+1

where (433) follows from (431), (435) and (439) are conse-
quences of the KKT conditions M;K; = K;M; = 0,5 =
1,...,m. Finally, (441) is equivalent to

—1 —1

41 i 1

Hj+1 <Z K; + 2j+1> = [j+1 <Z K; + Ej+1>
=1 =1

j=0,....m—1.

+M 11, (442)
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Plugging (431) and (442) into the KKT conditions in (300) and
(301) yields the third part of the lemma.

We now prove the second part of the lemma. To this end,
consider the second equation of the third part of the lemma, i.e.,
the following:

m -1 m -
" (z Ko+ m) o (z Ko+ zz)
i=1 i=1

1
+ Mz

(443)

which implies flm < 3Xz. Now, consider the first equation of
the third part of the lemma for j = m — 1, i.e., the following:

Since the matrix on the right hand side of the equation is positive
semi-definite due to the fact that 33,,, < ¥, and we assume that
Hm Z Hm—1, (444) 1mphes

m—1 -1 m—1 -
(ZKi‘}‘iml) —(Z Kz’"‘EZ)
1=1 1=1
m—1 -1 m—1
- <Z K,i+2m> —(Z K,i+zz>
i=1 i=1

which, in turn, implies 2,1 < X,, < X. Similarly, if one
keeps checking the first equation of the third part of the lemma
in the reverse order, one can get

1

—1
(445)

3 <...%%,<3%,. (446)
Moreover, the definition of 531, ie., (431)forj =0
. 1 -1
3= [211 + —Ml} (447)
251

implies that -0 completing the proof of the second part of
the lemma.
We now show the fourth part of the lemma

-1

j+1 i j i
<Z K, + 2j+1) <Z K, + Ej+1)

i=1 i=1
J+1 i L i+t )
= <Z K, + 2]-+1> <Z K+ 3,1 — Kj+1>(448)
1=1 1=1
j+1 i -1
=1-— <Z K, + 2j+1> Kj+1 (449)
=1
i+ -1
1
=1- (Z K; + 2j+1) + M1 | K;j4+1(450)
im1 Hi+1
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-1

j+1
i=1
J+1 -1 /it
=1 =1
j+1 -1
D Ki+Zm ] Kin (452)
i=1
i+l L
= ZKH-EJ'H ZKH-E]'H
i=1 i=1
j=0,...,m—1 (453)

where (450) follows from (442) and (451) is a consequence of
the KKT conditions K;M; = M;K; =0,5 =1,...,m.
The proof of the fifth part of the lemma follows similarly

m —1
(S+%0) S Ki+Sn
1=1
m m m -1
=[S Y Ki+) Ki+Zn | (D Ki+Zn
=1 =1 =1 (454)
m m —1
= (s - ZK <Z K, +3,, +1 (455)
=1 1=1
m m -1
Z(S—ZKi { ZKi+2Z +LMZ +1
i=1 i=1 m
(456)
m m -1
= (s - Z K, <Z Ki+2;| +I (457)
=1 =1
m m —1
:(S_ZKi <ZKZ'+EZ
=1 1=1
m m —1
+H X Ki+Sz ) Y Ki+3s (458)
1=1 1=1
m -1
=(S+22) () _Ki+3z (459)
=1

where (456) follows from the second equation of the third part
of the lemma, and (457) is a consequence of the KKT condition
in (298), completing the proof.
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