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Capacity Region of Gaussian MIMO Broadcast
Channels With Common and Confidential Messages
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Abstract—We study the two-user Gaussian multiple-input
multiple-output (MIMO) broadcast channel with common and
confidential messages. In this channel, the transmitter sends a
common message to both users, and a confidential message to
each user which needs to be kept perfectly secret from the other
user. We obtain the entire capacity region of this channel. We also
explore the connections between the capacity region we obtain for
the Gaussian MIMO broadcast channel with common and con-
fidential messages and the capacity region of its nonconfidential
counterpart, i.e., the Gaussian MIMO broadcast channel with
common and private messages, which is not known completely.

Index Terms—Gaussian multiple-input multiple-output
(MIMO) broadcast channel, secrecy capacity region.

I. INTRODUCTION

W E consider the two-user Gaussian multiple-input mul-
tiple-output (MIMO) broadcast channel, where each

link between the transmitter and each user is modelled by
a linear additive Gaussian channel. We study the two-user
Gaussian MIMO broadcast channel for the following scenario:
The transmitter sends a common message to both users, and
a confidential message to each user which needs to be kept
perfectly secret from the other user. In other words, in this
channel model, there are three messages , , , where

denotes the common message sent to both users, de-
notes the first user’s confidential message that needs to be kept
hidden from the second user, and denotes the second user’s
confidential message that needs to be kept hidden from the first
user. We call the corresponding channel model the Gaussian
MIMO broadcast channel with common and confidential mes-
sages (see Fig. 1).
The Gaussian MIMO broadcast channel with common and

confidential messages subsumes several other channel models
as special cases. These special cases can be obtained from
our channel model by disabling some of the messages ,
, . The first such channel model is the Gaussian MIMO

wiretap channel, where the transmitter has only one confidential
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Fig. 1. GaussianMIMObroadcast channel with common and confidential mes-
sages.

message for one (legitimate) user, which is kept perfectly secret
from the other user (eavesdropper). This channel model can be
obtained from our channel model by setting .
The secrecy capacity of the Gaussian MIMO wiretap channel
is obtained in [1] and [2] for the general case, and in [3] for
the 2-2-1 case. The second such channel model is the Gaussian
MIMO wiretap channel with common message [4], in which
the transmitter sends a common message to both the legitimate
user and the eavesdropper, and a confidential message to the
legitimate user that is kept perfectly secret from the eaves-
dropper. This channel model can be obtained from our channel
model by setting . The capacity region of the Gaussian
MIMO wiretap channel with common message is obtained
in [4]. The third such channel model is the Gaussian MIMO
broadcast channel with confidential messages [5], where the
transmitter sends a confidential message to each user which is
kept perfectly secret from the other user. This channel model
can be obtained from our channel model by setting .
The capacity region of the Gaussian MIMO broadcast channel
with confidential messages is established in [5].
Here, we obtain the capacity region of the Gaussian MIMO

broadcast channel with common and confidential messages.1

In particular, we show that a variant of the secret dirty-paper
coding (S-DPC) scheme proposed in [5] is capacity-achieving.
Since the S-DPC scheme proposed in [5] is for the transmission
of only two confidential messages, it is modified here to incor-
porate the transmission of a common message as well. Similar
to [5], we also notice an invariance property of this achievable
scheme with respect to the encoding order used in the S-DPC
scheme. In other words, two achievable rate regions arising
from two possible encoding orders used in the S-DPC scheme
are identical, and equal to the capacity region. We provide the

1The same result is obtained independently and concurrently in [6] and [7].
The conference version [6] and the conference version of this paper [8] ap-
peared concurrently at the IEEE ISIT 2010 as well as at [arXiv: 1001.2806]
and [arXiv:1001:3297].
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proof of this statement as well as the converse proof for the ca-
pacity region by using the channel enhancement technique [9]
and an extremal inequality [10].
We also explore the connections between our channel model

and its nonconfidential counterpart, i.e., the (two-user) Gaussian
MIMO broadcast channel with common and private messages.
In the Gaussian MIMO broadcast channel with common and
private messages, the transmitter again sends a common mes-
sage to both users, and a private message to each user, for
which there is no secrecy constraint now, i.e., private message
of each user does not need to be kept secret from the other user.
Thus, the channel model we study here can be viewed as a
constrained version of the Gaussian MIMO broadcast channel
with common and private messages, where the constraint
comes through forcing the private messages to be confidential.
We note that although there are partial results for the Gaussian
MIMO broadcast channel with common and private messages
[11], [12], its capacity region is not known completely. How-
ever, here, we are able to obtain the entire capacity region for a
constrained version of the Gaussian MIMO broadcast channel
with common and private messages. We provide an intuitive
explanation of this at-first-sight surprising point as well as the
invariance property of the achievable rate region with respect
to the encoding orders that can be used in the S-DPC scheme,
by using a result from [12]. In particular, we use the following
result from [12]: For a given common message rate, the private
message sum rate capacity of the Gaussian MIMO broadcast
channel with common and private messages is achieved by the
dirty-paper coding (DPC) scheme in [13], and any one of the
two possible encoding orders that can be used in DPC gives the
private message sum rate capacity. Using this result, we show
that there is a one-to-one correspondence between the points
on the boundary of the achievable rate region of the Gaussian
MIMO broadcast channel with common and confidential mes-
sages that are obtained by using a specific encoding order in
the S-DPC scheme, and those points which are private message
sum rate capacity-achieving for the Gaussian MIMO broadcast
channel with common and private messages. This correspon-
dence intuitively explains why the achievable rate regions
arising from the use of different encoding orders in S-DPC
are the same, and also why we can obtain the entire capacity
region of the Gaussian MIMO broadcast channel with common
and confidential messages although the capacity region of its
nonconfidential counterpart is not known completely.

II. CHANNEL MODEL AND MAIN RESULT

We study the two-user Gaussian MIMO broadcast channel
(see Fig. 1) which is defined by

(1)

(2)

where the channel input is a vector, is the channel
gain matrix of size , the channel output of the user
is a vector, and the Gaussian random vector is of

size with a covariance matrix which is assumed to be

strictly positive definite, i.e., . We consider a covariance
constraint on the channel input as follows:

(3)

where .
We study the following scenario for the Gaussian MIMO

broadcast channel: There are three independent messages
with rates , respectively, where

is the common message that needs to be delivered to both users,
is the confidential message of the first user which needs to

be kept perfectly secret from the second user, and similarly,
is the confidential message of the second user which needs to
be kept perfectly secret from the first user. The secrecy of the
confidential messages is measured by the normalized mutual
information rates [14], [15], i.e, we require

(4)

as , where denotes the number of channel uses. The
closure of all achievable rate triples is defined to
be the capacity region, and will be denoted by . We next
define the following shorthand notations:

(5)

(6)

(7)

using which, our main result can be stated as follows.

Theorem 1: The capacity region of the Gaussian MIMO
broadcast channel with common and confidential messages

is given by

(8)

where is given by the union of rate triples
satisfying

(9)

(10)

(11)

for some positive semidefinite matrices , such that
, and can be obtained from

by swapping the subscripts 1 and 2.
Theorem 1 states that the common message, for which a co-

variance matrix is allotted, should be encoded
by using a standard Gaussian codebook, and the confidential
messages, for which covariance matrices , are allotted,
need to be encoded by using the S-DPC scheme proposed in
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[5]. S-DPC is a modified version of DPC [16] to meet the se-
crecy requirements. The receivers first decode the commonmes-
sage by treating the confidential messages as noise, and then
each receiver decodes the confidential message intended to it-
self. Depending on the encoding order used in S-DPC, one of
the users gets a clean link for the transmission of its confiden-
tial message, where there is no interference originating from the
other user’s confidential message. Although one might expect
that the two achievable regions arising from two possible en-
coding orders that can be used in S-DPC could be different, i.e.,

, and taking a convex closure of
these two regions would yield a larger achievable rate region,
Theorem 1 states that , i.e., the
achievable rate region is invariant with respect to the encoding
order used in S-DPC. This invariance property of S-DPC was
first noticed in [5] for the case where there was no commonmes-
sage to be transmitted.
We acknowledge [6] and [7], where the authors obtain

Theorem 1 (capacity region of the Gaussian MIMO broadcast
channel with common and confidential messages) indepen-
dently and concurrently. Their proof is identical to the one we
present here.

A. Aligned Channel

We define a subclass of Gaussian MIMO broadcast channels
called the aligned Gaussian MIMO broadcast channel, which
can be obtained from (1)–(2) by setting , i.e.,

(12)

(13)

To distinguish the notation used for the aligned GaussianMIMO
broadcast channel from the one used for the general model in
(1)–(2), we denote the capacity region of the aligned channel
by , the rate expressions in (5)–(7) for the special
case by , ,

, and the regions , for
the special case by ,

.
In this paper, we first prove Theorem 1 for the aligned

Gaussian MIMO broadcast channel. Then, we establish the
capacity region for the general channel model in (1)–(2) by
following the analysis in [9, Sec. V.B] and [17, Sec. 7.1] in
conjunction with the capacity result we obtain for the aligned
channel.

B. Capacity Region Under a Power Constraint

We note that the covariance constraint on the channel input
in (3) is a rather general constraint that subsumes the power
constraint

(14)

as a special case, see Lemma 1 and [9, Corollary 1]. Therefore,
using Theorem 1, the capacity region arising from the average
power constraint in (14), , can be found as follows.

Corollary 1: The capacity region of the Gaussian MIMO
broadcast channel with common and confidential messages sub-
ject to a power constraint , , is given by

(15)

where is given by the union of rate triples
satisfying

(16)

(17)

(18)

for some positive semidefinite matrices , , such that
, and are de-

fined as

(19)
Moreover, can be obtained from by
swapping the subscripts 1 and 2.

III. PROOF OF THEOREM 1 FOR THE ALIGNED CASE

A. Achievability

Here, we prove the achievability of the regions
and . To this end, we

consider the two-user discrete memoryless channel for the
scenario where a common message is delivered to both users,
and each user gets a confidential message which needs be kept
perfectly secret from the other user. For this scenario, we have
the following achievable rate region [18].

Lemma 1 [18, Theorem 1]: The rate triples sat-
isfying

(20)

(21)

(22)

for some such that 2

are achievable.
We now use Lemma 1 to show the achievability of the

region . We first introduce three independent
Gaussian random vectors , , with covariance matrices

, , , respectively. Using these Gaussian
random vectors, we set the auxiliary random variables in
Lemma 1 as follows:

(23)

(24)

(25)

where is the precoding matrix for the
second user to suppress the interference originating from
[16]. Furthermore, we set the channel input as follows:

(26)

2In [18], the necessaryMarkov chain that needs to sat-
isfy is given by . However, their achievable
rate region is valid for the looser Markov chain
as well, which we use here.
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Using the definitions in (23)–(26) for the common message rate
given in Lemma 1, we get

(27)
Next, we compute the confidential message rates. To this end,
we note the following identity:

(28)

which is due to [16, Th. 1]. Now, we compute the second user’s
confidential message rate as follows:

(29)

(30)

(31)

(32)

where (31) is due to (28). Next, we compute the first user’s con-
fidential message rate as follows:

(33)

(34)

(35)

(36)

(37)

(38)

where (36) is due to (28). Hence, we show the achievability of
the region . Due to the symmetry, achievability
of follows.

B. Converse

Since the capacity region is convex due to time-
sharing, it can be characterized by the tangent planes to it, i.e.,
by the solution of

(39)

for We already have

(40)

due to achievability of and ,
where is given by

(41)

and is the convex hull operator. Here, we show that

(42)

(43)

to provide the converse proof. We first characterize the
boundary of by studying the following opti-
mization problem:

(44)

which can be written as

(45)

Let , be the maximizer of (45). The necessary
Karush–Kuhn–Tucker (KKT) conditions that , need to
satisfy are given in the following lemma, whose proof is given
in Appendix I.

Lemma 2: , need to satisfy

(46)

(47)

for some positive semidefinite matrices , such
that

(48)

(49)

(50)

and for some such that it satisfies and

(51)

We now use channel enhancement [9] to define a new noise
covariance matrix as follows:

(52)

This new noise covariancematrix has useful properties which
are listed in the following lemma.

Lemma 3: We have the following facts:
1) ;
2) , ;
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3)
;

4) ;
5)

.
The proof of Lemma 3 is given in Appendix II. We now con-
struct an enhanced channel using the new covariance matrix
as follows:

(53)

(54)

(55)

(56)

where is a Gaussian random vector with a covariance ma-
trix . In the enhanced channel defined by (53)–(56), the en-
hanced first and second users have the same observation, i.e.,

. From now on, we denote the observations
of the enhanced first and second users by a single random vector
. We now consider the following scenario for the enhanced

channel in (53)–(56): There are three independent messages
with rates , respectively, where the

common message is directed to all users, i.e., the users with
observations , , , ; is the confidential message
of the enhanced first user, i.e., the one with observation ,
which needs to be kept perfectly secret from the second user,
i.e., the one with observation ; and is the confidential
message of the enhanced second user, i.e., the one with obser-
vation , which needs to be kept perfectly secret from the first
user, i.e., the one with observation . Here also, we measure
the secrecy of the confidential messages by normalized equivo-
cation rates, i.e., we require

(57)

(58)

We define the capacity region of the enhanced channel in
(53)–(56) arising from this scenario as the convex closure of all
achievable rate pairs and denote it by .
We note that the process of obtaining a new enhanced channel

from the original one by means of channel enhancement can be
visualized as shown in Figs. 2 and 3. First, we provide an alter-
native view of the original channel model as depicted in Fig. 2.
In this alternative view, each user is split into two identical users
where one of them (user 11 for the first user and user 22 for the
second user) gets a confidential message, and the other one (user
10 for the first user and user 20 for the second user) gets the
common message and eavesdrops the other confidential mes-
sage. Second, we enhance the users who are getting the con-
fidential messages, i.e., user 11 and user 22, to improve their
observations as shown in Fig. 3. This idea of splitting users
and then enhancing them is also used in [4]. Since in the en-
hanced channel, the receivers to which only the common mes-
sage is sent are identical to the receivers in the original channel
in (12)–(13), and the receivers to which confidential messages
are sent have better observations with respect to the receivers in

Fig. 2. Alternative view of the Gaussian MIMO broadcast channel with
common and confidential messages.

Fig. 3. New Gaussian MIMO broadcast channel obtained by channel enhance-
ment.

the original channel in (12)–(13), we have . We
next introduce an outer bound on in the following lemma.

Lemma 4: The capacity region of the enhanced channel
in (53)–(56), , is contained in the union of rate triples

satisfying

(59)

(60)

(61)

for some such that

(62)

and .
The proof of this lemma is given in Appendix III. We also

introduce the following extremal inequality from [10]:

Lemma 5 [10, Corollary 4]: Let be an arbitrarily cor-
related random vector, where has a covariance constraint

and . Let , , be Gaussian
random vectors with covariance matrices , , , respec-
tively. They are independent of . Furthermore, , ,

satisfy . Assume that there exists a co-
variance matrix such that and

(63)
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where and is positive semidefi-
nite matrix such that . Then, for any ,
we have

(64)

We now use this lemma. For that purpose, we note that using
the second statement of Lemma 3 in (46) yields

(65)

using which in conjunction with Lemma 5, we get

(66)

which will be used subsequently.
We are now ready to complete the converse proof as follows:

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

where (67) comes from the fact that , the set
denotes the set of feasible random vectors , i.e.,

(76)

(68) is due to Lemma 4, (69) results from the fact that
, (71) is due to the maximum entropy theorem, (72)

comes from (66), (74) results from

(77)

and (75) will be shown next. We first note the following:

(78)

(79)

(80)

where (79) is due to the fourth statement of Lemma 3 and (80)
comes from the third statement of Lemma 3. We next note the
following identity:

(81)

(82)

(83)

where (82) is due to the third statement of Lemma 3, and (83)
comes from the fourth statement of Lemma 3. Identities in (80)
and (83) give (75).
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Thus, in the view of (75), we have shown that

(84)

Similarly, we can show the following:

(85)

completing the converse proof.

IV. PROOF OF THEOREM 1 FOR THE GENERAL CASE

We now prove Theorem 1 for the general channel model in
(1)–(2). Achievability of Theorem 1 for the general channel
model in (1)–(2) can be shown as we did for the aligned case
in the previous section. In particular, the only difference of the
achievability proof for the general channel model in (1)–(2)
from the achievability proof for the aligned case will be the se-
lection of the precoding matrix , which needs to be chosen
as in this general case.
Thus, in the rest of this section, we consider the converse proof.
For that purpose, we follow the analysis in [9, Sec. V.B] and
[17, Sec. 7.1] in conjunction with the capacity result obtained
for the aligned case in the previous section. To this end, we
first note that, following the approaches in [9, Sec. V.B] and
[17, Sec. 7.1], it can be shown that a new channel can be con-
structed from any channel described by (1)–(2), such that the
new channel has the same capacity region as the original one,
and in the new channel, both receivers have the same number
of antennas as the transmitter, i.e., . Thus, without
loss of generality, we assume that . We next apply
singular-value decomposition to the channel gain matrices ,

as follows:

(86)

where , are orthogonal matrices, and is a diag-
onal matrix. We now define a new Gaussian MIMO broadcast
channel as follows:

(87)

(88)

where is defined as

(89)

for some . We denote the capacity region of the channel
defined in (87)–(88) by , and achievable rate regions for
this channel by , . Since , are
invertible, the capacity region of the channel in (87)–(88) is
equal to the capacity region of the following aligned channel:

(90)

(91)

Thus, using the capacity result for the aligned case, which was
proved in the previous section, we get

(92)

We next show the following inclusion:

(93)

To this end, assume that is achievable in
the channel given by (1)–(2), i.e., .
To prove the inclusion in (93), we need to show that

. To this end, we note the
following Markov chains:

(94)

which imply that if the message triple with rates
is transmitted with a vanishingly small probability

of error in the original channel given by (1)–(2), they will be
transmitted with a vanishingly small probability of error in the
channel given by (87)–(88) as well. In other words, each re-
ceiver in the channel given by (87)–(88) will decode the mes-
sages intended to itself. However, we still need to check the se-
crecy requirements on the confidential messages , . We
first check the secrecy of the first user’s confidential message as
follows:

(95)

where we used the fact that since , we have

(96)

We now bound the term on the right hand-side of as follows
(95):

(97)

(98)

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)
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where (98) is due to theMarkov chain in (94), (100) comes from
the fact that conditioning cannot increase entropy, (101) is due
to the fact that the channel is memoryless, (102) results from
the Markov chain in (94), and (104) can be shown by using the
worst additive noise lemma in [19] and [20]. Before showing the
steps in (105) and (106), we note that the following function:

(107)

is concave and monotonically increasing in positive semidefi-
nite matrices (see [21, Lemma 4]). Thus, (105) follows from
Jensen’s inequality by noting the concavity of the function in
(107) and (106) comes from the monotonicity of the function in
(107) and the covariance constraint on the channel input. Hence,
using (106) in (95), we have

(108)

where the right-hand side vanishes as , i.e.,

(109)

due to the continuity of in positive semidefinite matrices
and . Thus, we have shown that if a confi-
dential message with rate can be transmitted in perfect
secrecy in the original channel given by (1)–(2), we have

(110)

Similarly, if a confidential message with rate can be
transmitted in perfect secrecy in the original channel given by
(1)–(2), we have

(111)

These two conditions in (110) and (111) enable us to conclude
that if , we also have

. Thus, we have shown that

(112)
where we have

(113)

(114)

due to the continuity of the rate expressions in
and in . Since and are
achievable in the channel defined by (1)–(2), we have

(115)

in the view of (112)–(114), completing the proof.

V. CONNECTIONS TO THE GAUSSIAN MIMO BROADCAST
CHANNEL WITH COMMON AND PRIVATE MESSAGES

Here, we provide intuitive explanations for the two facts that
Theorem 1 reveals: 1) the achievable rate region does not de-
pend on the encoding order used in S-DPC, i.e.,

; and 2) the capacity region of the Gaussian MIMO
broadcast channel with common and confidential messages can
be completely characterized, although the capacity region of the
its nonconfidential counterpart, i.e., the Gaussian MIMO broad-
cast channel with common and private messages, is not known
completely.
In the Gaussian MIMO broadcast channel with common

and private messages, there are again three messages , ,
with rates , , , respectively, such that is again

sent to both users, (respectively, ) is again directed to
only the first (respectively, second) user, however, there are
no secrecy constraints on , . The capacity region of the
Gaussian MIMO broadcast channel with common and private
messages will be denoted by . The achievable rate re-
gion for the Gaussian MIMO broadcast channel with common
and private messages that can be obtained by using DPC will
be denoted by (depending on
the encoding order), where is given by the rate
triples satisfying

(116)

(117)

(118)

for some positive semidefinite matrices
, such that , and

are defined as

(119)

(120)

(121)

Moreover, can be obtained from
by swapping the subscripts 2 and 1.We now state a result of [12]
on the capacity region of the GaussianMIMO broadcast channel
with common and private messages: For a given common mes-
sage rate , the private message sum rate capacity, i.e.,
, is achieved by both and . This result can

also be stated as follows:

(122)

(123)

for . This result is crucial to understand the
aforementioned two points suggested by Theorem 1, which will
be explained next using (122)–(123).
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In the proof of Theorem 1, first, we characterize the boundary
of by finding the properties of the covariance ma-
trices that achieve the boundary of , see Lemma 2.
According to Lemma 2, the boundary of can be
achieved by using the covariance matrices satisfying

(124)

(125)

On the other hand, using these covariance matrices, we can also
achieve the boundary points of , which are ac-
tually on the boundary of the capacity region as well,
and are the private message sum rate capacity points for a given
common message rate. To see this point, we define

and Thus, the
conditions in (124)–(125) can be written as

(126)

(127)

which are the necessary conditions that the following problem
needs to satisfy

(128)

On the other hand, due to (122)–(123), we know that the solution
of (128) gives us the private message sum rate capacity for a
given common message rate, i.e., the points that achieve the
maximum in (128) are on the boundary of the capacity region

. Furthermore, the maximum value in (128) can also be
achieved by using the other possible encoding order, i.e.,

(129)

Thus, this discussion reveals that there is a one-to-one cor-
respondence between any rate triple on the boundary of

and the private message sum rate capacity points
on . Hence, the boundary of , similarly

, can be constructed by considering the private
message sum rate capacity points on . This connection
between the private message sum rate capacity points and the
boundaries of , intuitively explains
the two facts suggested by Theorem 1: 1) the achievable rate re-
gion for the Gaussian MIMO broadcast channel with common
and confidential messages is invariant with respect to the
encoding order, i.e., because the
boundaries of these two regions correspond to those points on
the DPC region for the Gaussian MIMO broadcast channel with
common and private messages, for which encoding order does

not matter either; and 2) we can obtain the entire capacity region
of the Gaussian MIMO broadcast channel with common and
confidential messages, although the capacity region of its non-
confidential counterpart is not known completely. The reason is
that the boundary of the capacity region of the Gaussian MIMO
broadcast channel with common and confidential messages
comes from those points on the boundary of the DPC region
of its nonconfidential counterpart, which are known to be tight,
i.e., which are known to be on the boundary of the capacity
region of the Gaussian MIMO broadcast channel with common
and private messages.

VI. CONCLUSION

We study the Gaussian MIMO broadcast channel with
common and confidential messages, and obtain the entire
capacity region. We show that a variant of the S-DPC scheme
proposed in [5] is capacity-achieving. We provide the converse
proof by using channel enhancement [9] and an extremal
inequality from [10]. We also uncover the connections between
the Gaussian MIMO broadcast channel with common and
confidential messages and its nonconfidential counterpart, i.e.,
the Gaussian MIMO broadcast channel with common and
private messages, to provide further insight into capacity result
we obtained.

APPENDIX I
PROOF OF LEMMA 2

Since the program in (45) is not necessarily convex, the KKT
conditions are necessary but not sufficient. We first rewrite the
program in (45) as follows:

(130)

where we introduce an additional variable . Thus, the optimiza-
tion in (130) is over three variables , , . The Lagrangian
of (130) is given by

(131)

where , , are positive semidefinite matrices and
. Let be the maximizer for

(130). The necessary KKT conditions that they need to satisfy
are given as follows:

(132)

(133)

(134)

(135)

(136)

(137)

(138)
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The first KKT condition in (132) implies .We define
and consequently . The second KKT

condition in (133) implies

(139)

Adding to both sides yields
(46). Subtracting (133) from (134) yields (47). Since

and for ,
(135)–(137) imply (48)–(50). Furthermore, (138) states the
conditions if , ,
if , , and if

, is arbitrary, i.e., .

APPENDIX II
PROOF OF LEMMA 3

We first note the following identities:

(140)

(141)

where (140) is the definition of the new noise covariance matrix
in (52) and (141) comes from plugging (52) in (47). Using the
fact that for , , if , then in
(140)–(141) yields the second statement of the lemma.
Now, we prove the first statement of the lemma as follows:

(142)

(143)

(144)

(145)

(146)

(147)

(148)

(149)

where (142) is due to (140), and (144) and (147) follow from
(49).
We next show the third statement of the lemma as follows:

(150)

(151)

(152)

(153)

(154)

(155)

(156)

(157)

where (150) is due to (141), (152) and (156) come from (48).
We now show the fourth statement of the lemma as follows:

(158)

(159)

(160)

(161)

where (159) comes from (140), and (160) is due to (49).
We finally show the last, i.e., fifth, statement of the lemma as

follows:

(162)

(163)

(164)

(165)

where (163) comes from the second statement of this lemma,
and (164) is due to (48).
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APPENDIX III
PROOF OF LEMMA 4

We prove this lemma for a discrete memoryless broadcast
channel with a transition probability which
satisfies and

(166)

Consequently, Lemma 4 can be concluded from the proof for
this discrete memoryless broadcast channel. We note that if

is achievable, we need to have , such that
both and vanish as , and

(167)

(168)

(169)

(170)

where (167)–(168) are due to Fano’s lemma, and (169)–(170)
comes from the perfect secrecy conditions in (58). We define
the following auxiliary random variables:

(171)

which satisfy the following Markov chains for all :

(172)

since the channel is memoryless, and degraded, i.e., satisfies the
Markov chain in (166).
We first bound the common message rate as follows:

(173)

(174)

(175)

(176)

(177)

(178)

where (177) comes from the Markov chain

(179)

which is a consequence of the fact that the channel is degraded,
i.e., satisfies the Markov chain in (166). Similarly, we can get

(180)

We next bound the confidential message rate of the enhanced
first user, i.e., , as follows:

(181)

(182)

(183)

(184)

(185)

(186)

(187)

(188)

(189)

(190)

(191)

(192)

where (185) comes from the Markov chain

(193)

which is a consequence of the fact that the channel is degraded,
i.e., satisfies the Markov chain in (166), (187) comes from the
Markov chain

(194)

which is due to the fact that the channel is memoryless, (189)
comes from the fact that conditioning cannot increase entropy,
(190) results from the Markov chain in (194), and (192) stems
from the Markov chain in (172). Similarly, we can get the fol-
lowing bound on the confidential message rate of the enhanced
second user :

(195)

The bounds in (178), (180), (192) and (195) can be single-
letterized yielding the following bounds:

(196)

(197)

(198)

from which, Lemma 4 can be concluded.
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