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Abstract—The two user multiple-input single-output (MISO)
broadcast channel with confidential messages (BCCM) is studied,
in which the nature of channel state information at the trans-
mitter (CSIT) from each user can be of the form I;, i = 1,2
where I, I € {P, D, N}, and the forms P, D, and N correspond
to perfect and instantaneous, completely delayed, and no CSIT,
respectively. Thus, the overall CSIT can alternate between nine
possible states corresponding to all possible values of 111, with
each state occurring for A, j, fraction of the total duration.
We assume that perfect and instantaneous CSI is available at the
all receivers. The main contribution of this paper is to establish
the secure degrees of freedom (s.d.o.f.) region of the MISO
BCCM with alternating CSIT with the symmetry assumption,
where A7, 1, = Ap, - The main technical contributions include
developing 1) novel achievable schemes for MISO BCCM with
alternating CSIT with security constraints, which also highlight
the synergistic benefits of inter-state coding for secrecy; 2) new
converse proofs via local statistical equivalence and channel
enhancement; and 3) showing the interplay between various
aspects of channel knowledge and their impact on s.d.o.f.

Index Terms— Information theoretic security, secure degrees of
freedom, multiple-input single-output (MISO), broadcast chan-
nel, alternating channel state information (CSI).

I. INTRODUCTION

IRELESS systems are particularly vulnerable to
Wsecurity attacks because of the inherent openness of
the transmission medium. With the widespread adoption of
multiple-input multiple-output (MIMO) systems, there has
been a significant recent interest in information theoretic
physical layer security, the main premise of which is to exploit
the difference in the wireless channels between different
users. Information theoretic security has been investigated
for a variety of channel models ranging from fading
channels [1]-[4], MIMO wiretap channels [5]-[8],
multiple access channels [9]-[13], multi-receiver wiretap
channels [14]-[16], broadcast channels with confidential
messages [17]-[19], wiretap channels with helpers [20], [21],
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Fig. 1. MISO broadcast channel with confidential messages (BCCM).
interference channels with confidential messages [22]-[25],
X-channels with confidential messages [26], [27], relay
eavesdropper channels [28]-[32], etc.

The focus of this paper is on the secure degrees of
freedom (s.d.o.f.) region of the fading two-user multiple-
input single-output (MISO) broadcast channel with confiden-
tial messages (BCCM), in which the transmitter with two
antennas has two confidential messages, one for each of
the single antenna users (see Fig. 1). The secrecy capacity
region of the MISO broadcast channel for the case of perfect
and instantaneous CSI at all terminals (transmitter and the
receivers) has been characterized in [18] and [19]. Using
these results, it follows that for the two-user MISO BCCM,
the sum s.d.o.f. is 2 with perfect and instantaneous channel
state information at the transmitter (CSIT). In practice, the
assumption of perfect and instantaneous CSIT may be too
optimistic as CSIT may be delayed, imprecise or may not
even be available at all.

The impact of relaxing such assumptions on the
d.o.f. (secure or otherwise) has been widely studied in the
literature. With perfect CSIT (P), the sum d.o.f. for the two-
user MISO broadcast channel is 2. With no CSIT (N) however,
reference [33] showed that the sum d.o.f.! collapses to 1.
With delayed®> CSIT (D), it is shown in [34] that the sum
d.o.f. for the two-user MISO BC increases to %. Reference [34]
also presents novel results for the more general setting of
K-user MISO BC, for K > 2. With delayed CSI, [35] estab-
lished the d.o.f. region for the two-user MIMO BC. Other
channel models besides the BC has also been investigated.

IWe refer to sum d.o.f. as the sum degrees of freedom for a network without
any confidentiality constraints (e.g., MISO BC); and sum s.d.o.f. as the sum
secure degrees of freedom for the same network with confidential messages
(e.g., MISO BCCM).

sz delayed CSIT, we refer to the standard assumption as in [34] in which
the delay in acquiring CSIT is larger than the channel coherence time.
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Reference [36] provided the d.o.f. region of the MIMO
interference channel with delayed CSIT and output feedback.
For the X-channel, [37], [38] showed that the optimal sum
d.of.is % with perfect channel knowledge. With delayed CSIT
the optimal sum d.o.f. of the X-channel remains unknown
in general. However, with a restriction of the transmission
policies to linear schemes, reference [39] determined the
sum d.o.f. of the channel to be g (also see [40], [41] and
the references therein). With global feedback, where each
transmitter receives output feedback from every receiver, [42]
showed that the sum d.o.f. of the two-user X-channel with
delayed CSIT is the same as that of the two-user MISO
broadcast channel with 2 antennas at the transmitter; thus,
all the transmitters can cooperate and behave like a single
2-antenna MISO system, and the optimal sum d.o.f. is ‘3—‘.

When security constraints are introduced, the s.d.o.f. is
known for several scenarios of delayed or no CSIT. For the
two-user MISO BCCM with no CSIT, the sum s.d.o.f. is
zero as the two users are statistically equivalent and hence
no secrecy is possible. On the other hand, with completely
outdated CSIT from both users, [43] showed that the sum
s.d.o.f. increases to 1. For the two-user SISO X-channel with
confidential messages and global output feedback, [44] showed
that the optimal s.d.o.f. is 1; thus, two distributed transmitters
with one antenna each are as good as a single transmitter
with 2 antennas and the X-channel behaves like a two-user
MISO BCCM. The aforementioned literature primarily deals
with homogeneous CSIT scenarios in which the nature of
channel knowledge supplied by every receiver is of the same
form. In practice, however, the nature of CSIT can vary
across users. This observation naturally leads to the setting
of heterogeneous (or hybrid) CSIT which models the vari-
ability in the quality/delay of channel knowledge supplied by
different users. In contrast to homogeneous CSIT, the setting
of heterogeneous CSIT is much less understood. To the best of
our knowledge, the complete characterization of the d.o.f. of
all fixed heterogeneous CSIT configurations is only known
for the two-user MISO broadcast channel: see [45], [46]
for state PD for which the optimal sum d.o.f. is shown to
be 3/2; and [47] which recently settled the states PN and DN
through a novel converse proof and showed that the optimal
sum d.o.f. is given by 1. Beyond these results, partial results
are available for the three-user MISO BC with hybrid CSIT
in [48] and [49] but by and large the problem of heterogeneous
CSIT even without secrecy constraints remains open.

Besides exhibiting heterogeneity across users, the nature
of channel knowledge may also vary over time/frequency.
Such variability can arise either naturally (due to the time
variation in tolerable feedback overhead from a user) or
it can be artificially induced (by deliberately altering the
channel feedback mechanism over time/frequency). For exam-
ple, instead of requiring perfect CSIT from one user and
delayed CSIT from the other user throughout the duration of
communication, one may require that for half of the time,
the first user provide perfect CSIT while the second user
provide delayed CSIT (state PD), and the roles of the users
are reversed for the remaining half of the time (state DP),
the total network feedback overhead being the same in both
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cases. This leads naturally to the setting of alternating CSIT
in which multiple CSIT states, for instance, PD and DP in
the above example, arise over time. The alternating CSIT
framework was introduced in [50] where the d.o.f. region was
characterized for the two-user MISO BC. It was shown that
synergistic gains in d.o.f. are possible by jointly coding across
these states. It was observed in [50] for the two-user case that
the final d.o.f. region depends only on the marginal fractions
of perfect, delayed and no CSIT, that is, the fractions of the
time a user provides perfect, delayed and no CSIT. Given these
results, several natural questions arise: a) do such synergistic
gains still exist with additional confidentiality constraints on
the messages, b) if yes, what is the optimal s.d.o.f. region and
how to achieve it, ¢c) what is the penalty for incorporating
confidentiality in contrast to [50] and d) the fundamental
impact of the variability of channel knowledge on secrecy.

In this paper, we consider the two-user MISO BCCM
with alternating CSIT with all 9 possible CSIT states:
PP, PD, PN, DP, NP, DD, DN, ND, and NN.
We assume that these states occur for arbitrary fractions of
time, except for a mild condition of symmetry, which is that
states I1Ip and IpI7 occur for equal fractions of the time if
I # . We assume that perfect and instantaneous CSI is
available at the all receivers. The main contribution of this
paper is the characterization of the optimal s.d.o.f. region
for this general model.> With 9 states, each occurring for
arbitrary fractions of the time, it is not immediately clear
how to optimally code across the states and the achievability
of the s.d.o.f. region is highly non-trivial. To this end, we
first develop several key constituent schemes, where each
scheme uses a subset of the 9 states to achieve a particular
s.d.o.f. value. We present all the constituent schemes in
Section IV. Now given an arbitrary* probability mass function
(pmf) on the 9 CSIT states, we need to judiciously time
share between the constituent schemes to achieve the optimal
s.d.o.f. region. It is not immediately clear how this should
be done. Thus, we consider different sub-cases based on
the relative proportions of the various states and explicitly
characterize how the constituent schemes should be time
shared to obtain the optimal s.d.o.f. region in each sub-case.
This characterization is done in Section V.

Next, we provide a matching converse for the full region.
We first generalize the local statistical equivalence property
introduced in [51]. The idea behind the converse is to first
enhance the channel by providing more CSIT to obtain a
new channel with fewer number of states but at least as large
secrecy capacity as the original channel. Outer bounds on the
s.d.o.f. region for the enhanced channel give us the desired
outer bounds for the original channel.

Thus, the main contributions of this paper can be summa-
rized as follows: a) We obtain the full s.d.o.f. region with
all possible 9 states occurring for arbitrary fractions of time
constrained only by the requirement of symmetry, which is

3In our preliminary work [51], we considered the problem with only two
states, PD and DP and established the optimal s.d.o.f. region for this specific
problem. Reference [52] considered another special case with four states: PP,
PD, DP and DD, but provided only an inner bound for the s.d.o.f. region.

4Arbitrary subject to mild symmetry, i.e., 17,1, = 4p 1,
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that states 11/l and I 17 occur for equal fractions of the time
if I1 # I. b) To achieve this region, we provide several
new optimal achievable schemes for different alternating CSIT
scenarios. ¢) In addition, we provide an explicit method
of combining the various achievable schemes judiciously to
achieve the region. d) We provide a matching converse for
the full region using channel enhancement and generalizing
the local statistical equivalence property introduced in [51].
e) We establish the s.d.o.f. regions of the MISO BCCM under
two heterogeneous CSIT settings: PD and DN states alone.
These results completely settle the problem of characterizing
the s.d.o.f. regions of all individual heterogenous CSIT states:
PD, PN, DN. f) We show synergistic benefits of coding across
the different alternating states even under security constraints.

II. SYSTEM MODEL

We consider a two-user MISO BC, shown in Fig. 1, where
the transmitter TX, equipped with 2 antennas, wishes to
send independent confidential messages to two single antenna
receivers 1 and 2. The input-output relations at time ¢ are given
by,

Y (1) = Hi()X(r) + Ni (1) 1
Z(1) = Ho()X (1) + N2 (1), 2
where Y(t) and Z(t) are the channel outputs of

receivers 1 and 2, respectively. The 2 x 1 channel input
X(r) is power constrained as E[||X(1)||?] < P, and Ni(r)
and N, (¢) are circularly symmetric complex white Gaussian
noises with zero-mean and unit-variance. The 1 x 2 channel
vectors Hj(¢) and Hy(¢) of receivers 1 and 2, respectively, are
independent and identically distributed (i.i.d.) with continuous
distributions, and are also i.i.d. over time. We denote
H(:) = {H;(r),H2(¢)} as the collective channel vectors
at time r and H" = {H(1),...,H(n)} as the sequence of
channel vectors up until and including time 7.

In practice, the receivers estimate the channel coefficients
and feed them back to the transmitter. In general, the receiver
can choose to send not only the current measurements, but
rather any function of all the channel measurements it has
taken upto that time. The CSIT at time ¢ can thus be any func-
tion of the measured channel coefficients upto time ¢. There
are two key aspects to the CSIT: precision and delay. Precision
captures the fact that the measurements made at the receivers
and sent to the transmitter are imprecise (usually, quantized)
and noisy. Delay is introduced since making measurements
and feeding them back to the transmitter takes time. We will
focus on the delay aspect of CSIT, and assume that the CSIT
when available, has infinite precision.

In order to model the delay in CSIT, we assume that at each
time ¢, there are 3 possible CSIT states for each user:

e Perfect CSIT (P): This denotes the availability of precise
and instantaneous CSI of a user at the transmitter. In this
state, the transmitter has precise channel knowledge
before the start of the communication.

o Delayed CSIT (D): In this state, the transmitter does not
have the CSI at the beginning of the communication.
In slot ¢, the receiver may send any function of all the
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channel coefficients upto and including time ¢ as CSI
to the transmitter. However, the CSIT becomes available
only after a delay such that the CSI is completely
outdated, that is, independent of the current channel
realization.
e No CSIT (N): In this state, there is no CSI of the user
available at the transmitter.
Denote the CSIT of user 1 by /1 and the CSIT of user 2 by />.
Then,

I, € {P,D,N}. (3)

Thus, for the two-user MISO BC, we have 9 CSIT states,
namely PP, DD, NN, PD, DP, PN, NP, DN, and ND. Let
A1 1, be the fraction of the time the state /I occurs. Then,

S nn =1. @)

I,
We also assume symmetry: Ay, = App for every Ils.
Specifically,
APD = ADP (5)
ADN = AND (6)
APN = ANP. @)

Further, we assume that perfect and global CSI is available at
both receivers.

A secure rate pair (R, Ry) is achievable if there exists a
sequence of codes which satisfy the reliability constraints at

the receivers, namely, Pr [Wi #* Wi] <€y, fori = 1,2, and

the confidentiality constraints, namely,
1 1
—I(W; 2", H") <€, —I(W; YY", H") <€,, (8)
n n

where ¢, — 0 as n — o0o. Informally, the constraints
in (8) ensure that the information leakage, per channel use,
of the first receiver’s message at the second receiver should
be arbitrarily small, and vice versa. A s.d.o.f. pair (dy, dy) is
achievable, if there exists an achievable rate pair (R, R2) such
that

lim

R
, dy= lim —
P—oo log P

dy = = .
P—oo log P

)
In other words, an s.d.o.f. pair (di,d>) is achievable if and
only if a rate pair (d; log P + o(log P), d log P + o(log P))
is achievable, where o(.) is the little-o notation.

Let us define the following:

Ap = App+App + ApN (10)
Ap = App+ App + ADN (1)
AN = ApN + ADN + ANN. (12)
Using these definitions, it is easy to verify that
Ap+Ap+ iy = 1. (13)

Here, we can interpret these three quantities as follows:
o Ap: represents the total fraction of time the CSIT of a
user is in the P state.
o Ap: represents the total fraction of time the CSIT of a
user is delayed, that is, the state D.
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sum s.d.o.f.

Fig. 2. The sum s.d.o.f. as a function of Ap and Ap.

o An: represents the total fraction of time a user supplies
no CSIT.

Given the probability mass function (pmf), A, our

goal is to characterize the s.d.o.f. region of the two-user
MISO BCCM.

III. MAIN RESULT AND DISCUSSION

Theorem 1: The s.d.o.f. region for the two-user MISO
BCCM with alternating CSIT, D(4y,1,), is the set of all non-
negative pairs (dy, dy) satisfying,

242 —
dy < min (w,l—zw) (14)
2420p — 2
dy < min (# 1- ANN) (15)
3di +dy <24 24p (16)
di+3dy <2+2p 17
di+dy <2(Ap+ ip). (18)

A proof for the achievability of this region will be pro-
vided in Section V using constituent schemes presented in
Section IV. A converse is provided in Section VI.

We next make a series of remarks highlighting the conse-
quences and interesting aspects of this theorem.

Remark 1 (Sum s.d.o.f.: max(d) + d3)): From the region
stated in (14)-(18), it is clear that the sum s.d.o.f. is given by,

242lp — App

sum s.d.o.f. = min (2( 3

) ,2(1 = ANN),

205 +4p), 1 + zp) . (19)

The sum s.d.o.f. expression in (19) can be significantly sim-

plified by noting that the first two terms in the minimum are

M)
3

inactive due to the inequalities 1 +Ap < 2 ( , and

2(Ap + Ap) = 2(1 — Ay) < 2(1 — Anyn). These inequalities

follow directly from (10)-(13). Using these inequalities, the
sum s.d.o.f. expression above is equivalent to

sum s.d.o.f. = min 2(1p + 1p), 1 + Ap) 20)

=min 2(Ap + 1p),2Ap + Ap + An) (21)

=2Ap 4+ Ap + min(ip, in). (22)

Fig. 2 shows the sum s.d.o.f. as a function of 1p and Ap.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 6, JUNE 2017

Remark 2 (Same Marginals Property): From (22), we
notice that the marginal probabilities Ap, Ap and Ay are
sufficient to determine the sum s.d.o.f. Thus, for any given
pmf A, satisfying the symmetry conditions (5)-(7), there
exists an equivalent alternating CSIT problem having only
three states: PP, DD and NN occurring for Ap, Ap and
AN fractions of the time, respectively, that has the same sum
s.d.o.f. This observation is similar to the case when there is
no secrecy [50]. However unlike in [50], the s.d.o.f. region
does not have the same property in general as we can see the
explicit dependence of the s.d.o.f. region in (14)-(18) on App
and iNN'

Remark 3 (Channel Knowledge Equivalence): We
next highlight an interesting property which shows
that from the sum s.d.o.f. perspective, no CSIT is
equivalent to delayed CSIT when Ap > Ay, and
delayed CSIT 1is equivalent to perfect CSIT when
ﬂ.D < iN.

Equivalence of delayed and no CSIT when Ap > Ay: From
a sum s.d.o.f. perspective, we see that when Ap > Ay, the sum
s.d.o.f. expression in (22) simplifies to (1 + Ap) using (13),
and thus, the sum s.d.o.f. depends only on Ap. Hence, as long
as Ap > Ay holds, the N states behave as D states in the
sense that, if the N states were enhanced to D states, the sum
s.d.o.f. would not increase. Essentially, the N states can be
combined with various D states and we obtain the same sum
s.d.o.f. as if every N state were replaced by a D state. Consider
an example, where the states PD, DP and NN occur for %th,

%th and %th fractions of the time, respectively. Note that Ap =
% > Ay = % in this case. The sum s.d.o.f., from (22),is 2Ap+

Ap+ANy = % Now, if we enhance the N states to D states, we
get the states PD, DP and DD occur for %th, %th and éth of the
time, respectively. The sum s.d.o.f. of this enhanced system is
still £.

Equivalence of delayed and perfect CSIT when Ap < Ay:
From a sum s.d.o.f. perspective, we see that when Ap < Ay,
the sum s.d.o.f. expression in (22) simplifies to 2(Ap + Ap) =
2(1 — Ay) using (13), and thus, the sum s.d.o.f. depends
only on Ay. Hence, in this case, if Ap < Ay, the delayed
CSIT is as good as perfect CSIT, that is, every D state can
be enhanced to a P state without any increase in the sum
s.d.o.f. For example, consider a system where the states PD,
DP and NN occur for %th, éth and %th fractions of the time,
respectively. Note that Ap = + < Ay = % in this case. The
sum s.d.o.f. for this system is ‘5—‘, from (22). By enhancing
the D states to P states, we get a system, where the states
PP and NN occur for %th and %th fractions of the time,
respeftively. The sum s.d.o.f. in for this enhanced system is

Remark 4 (Minimum CSIT Required for a Sum
s.d.o.f. Value): Fig. 3 shows the trade-off between
Ap and Ap for a given value of sum s.d.o.f. The

highlighted corner point in each curve shows the most
efficient point in terms of CSIT requirement. Any other
feasible point either involves redundant CSIT or unnecessary
instantaneous CSIT where delayed CSIT would have sufficed.
For example, following are the minimum CSIT requirements
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Ap

(Apin, /\gfn) _ (s,d.o.f. 11— SA(lfzr)Af,)

-

1
s.d.o.f.

1/2

i

Ap

Fig. 3. Trade-off between delayed and perfect CSIT.

for various sum s.d.o.f. values:

sum s.d.o.f. =2 : (Ap, Ap)min = (1,0) (23)
3 11
sum s.d.o.f. = 3 :(Ap, AD)min = (5, 4_1) 24)
4 11
sum s.d.o.f. = 3 (Ap, AD)min = (5, 5) (25)
1
sum s.d.o.f. =1:(Ap, Ap)min = (O, 5) . (26)

In general, for a given value of sum s.d.o.f. = s, the minimum
CSIT requirements are given by:

s—1,1-%), ifl<s<2
2

0,3), if0<s<1.

(0,3)

Remark 5 (Cost of Security): We recall that in the case with
no security [50], the sum d.o.f. is given by,

22 AN, 22
sum d.of. =2 — TN . W.

Comparing with (22), we see that the loss in d.o.f. that must
be incurred to incorporate secrecy constraints is given by,

(AP’ j'D)min = [ 27

(28)

(sum d.o.f.) — (sum s.d.o.f.) £ loss

/11\1, if ﬂ.}v >2Ap
= 13Qiy—ip), if22p=Anv=ip  (29)
10N +2p), if Ap = A.

If we define « = Ap/(Ap + An), we can rewrite (29) as
follows,

(1-a), ifa<i
loss = (lp +n) x { (2 —20), if L =a>1 (30
5 if a > 5.

We show this loss as a function of a in Fig. 4. Note that
Ap+ Ay is the fraction of the time a user feeds back imperfect
(delayed or none) CSIT. If this fraction is fixed, increasing
the fraction of the delayed CSIT decreases the penalty due to
the security constraints, but only to a certain extent. When
AN > Ap, increasing the fraction of delayed CSIT leads
to a decrease in the penalty due to the security constraints.
However, once the fraction of the delayed CSIT (state D)
matches that of no CSIT (N), that is, Ap > 1y, increasing the
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loss

Ap + An

%(/\[) + )\N)

jen)
W= ===
l= === -

Fig. 4. Cost of security.

fraction of delayed CSIT further does not reduce the penalty
any more.

Remark 6. (S.d.o.f. Characterization of Individual CSIT
States): As an additional relevant result, we also characterize
the respective s.d.o.f. regions for the 6 individual CSIT states.
To the best of our knowledge, the only CSIT states for which
the s.d.o.f. regions were previously known are: PP (with sum
s.d.o.f.=2), DD (with sum s.d.o.f.= 1), PN (with s.d.o.f.= 1),
and NN (with s.d.o.f.= 0). For the remaining two CSIT states,
i.e., PD and DN, we establish the optimal s.d.o.f. regions.
In particular, for the PD CSIT state, we show in Appendix D
that the s.d.o.f. region is given by d1+d> < 1. For the DN state,
we show in Appendix E that the s.d.o.f. region is given by
di +dy < 1/2. As the next remark shows, these complete set
of results for the individual CSIT states confirm the synergistic
benefits (or lack thereof) in various alternating CSIT scenarios.

Remark 7 (Synergistic Benefits): It was shown in [50] that
by coding across different states one can achieve higher sum
d.o.f. than by optimal encoding for each state separately and
time sharing. A similar result holds true in our case as well.
We illustrate this with the help of a few examples.

Example 1: Consider a special case where only states
PD and DP occur, each for half of the time. In our previous
work, [51], we showed that optimal sum s.d.o.f. is % in
this case; see also (22) here. The best achievable scheme for
the PD (or DP) state alone was known to achieve a sum
s.d.o.f. of 1. This was either by treating the PD state as a
PN state and zero forcing, or by treating PD as a DD state.
However a converse proof showing the optimality of 1 sum
s.d.o.f. was not known. In Appendix D, we present a converse
proof to show that the sum s.d.o.f. of 1 is indeed optimal for
the PD state alone. Thus, by encoding for each state separately
and time sharing between the PD and DP states, we can
achieve only 1 sum s.d.o.f., whereas joint encoding across the
states achieves sum s.d.o.f. of % Thus, we have synergistic
benefit of 50% in this case.

Example 2: Consider another special case with three states:
PD, DP and NN each occurring for one-third of the time.
The optimal sum s.d.o.f. is %. If we encode for each state
separately and time share between them, we can achieve a sum
s.d.o.f. of % X 1—{—% X 1—{—% x0 = %, since the NN state does not
provide any secrecy. If we encode across the PD and DP states
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TABLE I

CONSTITUENT SCHEMES

Summary of Constituent Schemes (CS)
Sum s.d.o.f. | CS Notation CSIT States Fractions of States | (di, d»)
2 57 PP 1 (1,1)
3/2 g
3/2 5}3/2 oD bF 1(%’%)1 (éé)
5 PD, DP, PN, NP (1:4:1:1) (1)
P A R S ST NS
Sy PN, NP, DD (3:1:3) (3.%)
5 oD 1 0
1 Sl DD, NN 11 i1
S3 DN, ND 23 55
S DD 1 (2,0)
273 S5/? DD, NN (2.%) (3.0)
2/3
s | ownpn | (nh) | (o)

optimally and then time share with the NN state, we can
achieve % X % + % x 0 = 1 sum s.d.o.f. Thus, in this case
too, we get synergistic benefit by coding across all the states
together.

Example 3: Now, assume we have the following three states:
PN, NP and DD each occurring for one-third of the time. The
optimal sum s.d.o.f. for this case is %. On the other hand, the
optimal sum s.d.o.f. of the PN state ‘alone is 1, [47], and that
of the DD state alone is also 1, [43]. Thus, by separately
encoding for each state and time sharing, we can achieve
% x 1+ % x 1+ % x 1 =1 sum s.d.o.f. Note that the optimal
sum s.d.o.f. for PN and NP states, each occurring for half of
the time, is also 1, using (22). Thus, by optimal encoding for
PN and NP together and time sharing with the DD state also
yields sum s.d.o.f. of 1. Therefore, there is synergistic benefit
to be gained by coding across all the states together in this
case too.

Example 4: Consider the case where the two states, DD
and NN occur for equal fractions of time. The optimal sum
s.d.o.f. of the DD state alone is 1 [43]. The NN state, by itself
does not provide any secrecy and its s.d.o.f.= 0. Thus, by
encoding for the individual states and time sharing, at most
1x %—}—Ox % = % sum s.d.o.f. is achievable. However, by jointly
encoding across both the DD and NN states, the optimal sum
s.d.o.f. of 1 is achievable. Thus, we have synergistic benefit
of 100% in terms of sum s.d.o.f. in this case.

Example 5: Finally, consider the case where the two states,
DN and ND occur for equal fractions of time. We show
in Appendix E that the optimal sum s.d.o.f. for DN state
is % Thus, by separately encoding across the individual states,
only % sum s.d.o.f. is achievable. However, by jointly encoding
across both the DN and DN states, the optimal sum s.d.o.f. of 1
is achievable. Thus, we have synergistic benefit of 100% in
terms of sum s.d.o.f. in this case.

Remark 7 (Lack of Synergistic Benefits): There are some
situations where joint encoding across alternating states does

not yield any benefit in terms of the s.d.o.f. region. For
example, consider a case with only 2 states, PN and NP, each
occurring for half of the time. The optimal sum s.d.o.f. for the
PN state alone is 1, which is achieved by zero forcing. The
optimal sum s.d.o.f. of both PN and NP states together is
also 1; thus, encoding for each state separately is optimal in
this case. Indeed separable encoding for each individual state
suffices to achieve the full s.d.o.f. region as well. This result is
perhaps surprising, since in the case with no security, we do
get synergistic benefits of joint encoding across the PN and
NP states. The optimal sum s.d.o.f. with joint encoding is %
while that for each state alone is 1, [50].

IV. CONSTITUENT SCHEMES

Before we present the achievability of the s.d.o.f. region,
we first present the key constituent schemes that will be
instrumental in the proof. We combine these schemes carefully
and time share between them to achieve the s.d.o.f. region.
A summary of these constituent schemes is shown in Table I.
Before we discuss the individual schemes we make the fol-
lowing remark that applies to all the schemes presented here.

A. A Note on the Achievable Security Guarantee

Each scheme described in the following sections can be
outlined as follows. Then, to achieve a certain s.d.o.f. pair
(d1,d2), we send n; symbols u = (ul,...,u,,l) and np
symbols v = (v1, ..., 0,,) intended for the first and second
receivers, respectively, in np slots, such that dy = nj/np
and d» = ny/np. Each symbol u; (or v;) is drawn from a
Gaussian distribution with zero-mean and variance a P, where
o is chosen to satisfy the power constraint. Finally, we argue
that the leakage of information symbols at the unintended
receiver is o(log P). We however want a stronger guarantee
of security, namely,

1 1
_I(Wlizn,Hn)an, _1(W2;Yn,Hn)§€n- 3D
n n
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To achieve this, we view the np slots described in the scheme
as a block and treat the equivalent channel from u to (Y, H)
and (Z,H) as a memoryless wiretap channel (with (Y, H)
being the legitimate receiver) by ignoring the CSI of the
previous block. We do the same for the channel from v to
(Z,H) and (Y,H) (with (Z, H) as the legitimate receiver).
Note also that no information about H is used to create
the codebooks for u and v in any of the schemes. More
formally, the following secrecy rate pair is achievable for
receivers 1 and 2, respectively, from [53]:

Ry =1 Y,H)— I(v;Z,H) = I (u; YIH) — I(v; Z|H)
(32)

Ry =1(v;Z,H)—I1(w;Y,H) = I(v; ZIH) — I (u; Y|H),
(33)

where we noted that u and v are all independent of H. Using
the proposed scheme, u (resp., v) can be reconstructed from

(Y,H) (resp., (Z,H)) to within a noise distortion. More
precisely, the output Y is of the form
u
Y:A[E:|+N1 (34

where A is an invertible square matrix whose entries do not
scale with P, and L denotes additional linear combinations
of u, v and artificial noise symbols q. Using Y, one can create
a reconstruction B

ul o
[L} —AlY (35)
= [i} +ATIN (36)
Thus,
[(u; YIH) = h(u/H) — h(u|Y, H) (37)
> h(u/H) — h(u —a|[H) (38)
= nylog P 4+ o(log P) (39)

where (38) follows since the determinant of the covariance
matrix E [(u — @)(u — &)7] does not scale with P. Similarly,

I(v; ZIH) > nylog P + o(log P). (40)

Also, for each scheme,
1(v; YIH) = o(log P) (41)
I(u; ZIH) = o(log P). 42)

Thus, from (32) and (33), the achievable blockwise secure
rates, RPs are,
ng nilog P + o(log P)

= (43)
R% > nylog P + o(log P).

(44)

Since our block contains n g channel uses, the effective secure
rates are

R > Liog P + o(log P) (45)
ng

Ry > n log P + o(log P). (46)
np
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These rates clearly yield the required s.d.o.f. pair (di, d2),
while also conforming to our stringent security requirement.

In the following subsections, we now present the achiev-
ability of each scheme in detail.

Notation: A particular sum s.d.o.f. value can be achieved
in various ways through alternation between different
possible sets of CSIT states. To this end, we use
the following notation: if there are r schemes achiev-
ing a particular s.d.o.f. value, we denote these schemes
as: S;um s.d.o.f.’ Ssum s.d.o.f.’ e Sﬁum s.d.o.f.. For example, in
Table I, for achieving the sum s.d.o.f. value of 1, we
present r = 3 distinct schemes and these are denoted as
S{, S} and SJ.

Given a 1 x 2 channel vector H(t), we denote by H(r)*,
a 2 x 1 beamforming vector that is orthogonal to the 1 x 2
channel vector H(); in other words, H(r)H(r)* = 0.

B. Scheme Achieving Sum s.d.o.f. of 2

A sum s.d.o.f. of 2 is achievable only in the state PP, that
is, when the transmitter has perfect CSIT from both users.
This is achievable using zero-forcing. The following scheme
achieves a sum s.d.o.f. of 2.

1) Scheme S?: The scheme S2 uses the state PP and
achieves the rate pair (di,d2) = (1,1). The scheme is as
follows. We wish to send confidential symbols u and v to
receivers 1 and 2, respectively, in one time slot, thus achieving
a sum s.d.o.f. of 2. Since the transmitter knows both channel
coefficients H; and Ho, it sends,

X = uHy + oH7, 47)

where, H; ()" is a 2 x 1 beamforming vector that is orthogonal
to the 1 x 2 channel vector H;(¢) for i = 1,2. This is to
ensure that the symbols do not leak to unintended receivers.
For s.d.o.f. calculations, we disregard the additive noise and
the outputs at the receivers are:

Y = uHHy
Z = vHpH{,

(48)
(49)

which allows both receivers to decode their respective mes-
sages. Also, since u does not appear at all in Z, the confi-
dentiality of u is guaranteed. Similarly, the confidentiality of
v too is satisfied.

C. Schemes Achieving Sum s.d.o.f. of 3/2

The following schemes achieve % sum s.d.o.f.:

1) Scheme Sf/ 2: In this subsection, we present the
scheme S13/ % which uses the states (PD, DP) with fractions
(%, %) to achieve rate pair (dy, d2) = (%, %).

This scheme was presented in [51]. For the sake of com-
pleteness we reproduce the scheme here. We wish to send 3
confidential symbols from the transmitter to each of the
receivers in 4 channel uses at high P (that is negligible noise).
Let us denote by (u1, uz,u3) and (vy, v2, v3) the confidential
symbols intended for receivers 1 and 2, respectively. Also,
in 2 of the 4 channel uses, the channel is in state PD; in the
remaining 2 uses, the channel is in state DP. The scheme is
as follows:
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t=3 t=4

CSIT State — PD

U1

|decode (ul,.ug, us) |

L(u17 q)
=

| decode (v1, va,v3) |

Fig. 5. Achieving % s.d.o.f. using scheme S%/z.

a) At Time t = 1, S(1) = PD: As the transmitter knows
H, (1), it sends:

X(1) =[u; 017 +qH (1), (50)

where H; (1)H;(1)* = 0, and ¢ denotes an artificial noise
distributed as CA/(0, P). Here H; (1) is a 2 x 1 beamforming
vector orthogonal to the 1 x 2 channel vector H;(1) of
receiver 1 that ensures that the artificial noise ¢ does not create
interference at receiver 1. The receivers’ outputs are:

Y(1) = h11(Duy
Z(1) = hay(Duy + gHa(DH (1) 2 K.

(51
(52)

Thus, receiver 1 has observed u; while receiver 2 gets a
linear combination of u; and ¢, which we denote as K.
Due to delayed CSIT from receiver 2, the transmitter can
reconstruct K in the next channel use and use it for
transmission.

b) At Time t = 2, S(2) = DP: The transmitter knows
H>(2) and K. It sends

X(2) =[o1 +K v2+K]" +uHr(2)* (53)
The received signals are:
Y(2) = h11(2)v1 + h12Q)vz + (h11(2) + h12(2))K
+usH  ()Hy (2)* (54)
= Li(v1, 02, K) + u2H; 2)H2(2)* (55)
Z(2) = ho1Q)v1 + hn2(2)vr + (h21(2) + h(2))K  (56)
2 L1, 02, K), (57)

where we have defined L{(vy,v2, K) and Ly(vy,v2, K) as
linear combinations of v{,v, and K at receivers 1 and 2,
respectively.

c) At Time t = 3, S(3) = DP: The transmitter knows
H>(3) and Li(v1, 02, K) (via delayed CSIT from ¢t = 2).
Using these, it transmits:

X(3) = [Li(v1,02,K) 01" +usH2(3)%, (58)

K LQ(Ul,’UQ,K>

DP DP PD

a1 Ly (v1, v, K) + ug as Ly (v1,v2, K) + ug

Ly (v1,v2, K)

Li(vi,v, K) @ BLi(v1, 09, K) + v3

and the channel outputs are:

Y(3) = h11(3)L1(v1, v2, K) + usH; 3)H2(3) 1
Z(3) = h21(3)L1(v1, 02, K).

(59)
(60)

At the end of this step, note that, receiver 2 can decode v and
vy by first eliminating K using Z(1) and Z(3) to get a linear
combination of v and vy, which it can then use with Z(2) to
solve for v; and v5.

d) At Time t = 4, S(4) = PD: The transmitter knows
H;(4) and it sends

X(@4) = [L1(v1, 02, K) 0] +v3Hi(4)", (61)

and the channel outputs are:
Y(4) = h11(4)L1(v1, 02, K) (62)
Z(4) = ha1(4) L1 (01,02, K) + 03Ho (@H (4. (63)

Thus, at the end of these four steps the outputs at the two
receivers can be summarized (see Fig. 5) as:

Ui K
vo o1L1(vy,v2, K) +us 7 Ly(v1, 02, K)
arLi(v1, 02, K) +u3 |’ Li(vy, 02, K)
Li(vy, 02, K) BLi(v1,02, K) + 03
Using Y, receiver 1 can decode all three symbols
(uy,uz,u3) and wusing Z, receiver 2 can decode

(v1, 02, 03). Next we prove that the information leakage is
only o(log P).

Security guarantees: We consider the four slots as a single
block and the equivalent channel from u = (uy, us, u3) to
(Y,H) and (Z, H) as a memoryless channel by ignoring the
CSI of the previous block. We do the same for the channel
from v = (v, v2, v3) to (Y, H) and (Z, H). Recall that all the
random variables {u;,v;,i = 1,2,3} and ¢ are independent
and distributed as CA/ (0, P).

First, let wus consider
first user’s symbols u.

the
The

confidentiality of the
information leakage at
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CSIT State — PD DP NN
7 T e
u1 a1 Ly (vi,v2, K) + us : Li(vi,v9, K)
| decode u1, ug |
L(u17q>
2 LZ(UlaUZvK) Ll(vlaUQaK)

| decode v1, vg |

Fig. 6. Achieving sum s.d.o.f. of % using S‘fﬂ.

user 2 is:

I(w; ZIH) = I(uy, uz, u3; Z|H) (64)
= [(u1; Z/H) (65)
< I(ur; K|H) (66)
= I(u1; hor(Duy 4 gHo(DH; (1)1 H) (67)

= h(h21(1)u; + gH2()H; (1)*H)
— h(ha1 (Duy + gHy(DH (1) [uy, H)  (68)

= h(ha1 (Du; + gHz(HH; (1) [H)
— h(gHx()H; (1)*[H) (69)
= (log P + o(log P)) — (log P 4+ o(log P)) (70)
= o(log P), (71)

where (65) follows from the fact that Z does not have any term
involving (u2, u3), and (66) follows from the Markov chain
uy — K - 7.

For the second user’s symbols, the information leakage at
the first receiver is:

1(v; YIH) = I(v1,v2,03; Y[H) (72)
= I(v1,02; Y|H) (73)
< I(v1,02; Li(v1, 02, K)[H) (74)
= h(Ly(v1, 02, K)[H)
—h(Li(v1, 02, K)oy, 02, H) (75)
< log P — h(K|v1,v2, H) + o(log P) (76)
= log P — h(K|H) 4+ o(log P) a7
= log P — log P + o(log P) (78)
= o(log P), (79)
where (73) follows since 03 does not appear
in Y and (74) follows from the Markov chain

(v1,02) = Li(vy, 02, K) > Y.

2) Scheme S23/ 2: In this sub-section, we present the scheme
Sg/ % which uses the states (PD, DP, PN, NP) with fractions
(4% 4. 1) to achieve (d1,d2) = (3, ).

Let us consider the utilization of CSIT in the scheme 513/ 2
stated above. In the first slot, delayed CSIT is required from
the second user, since that knowledge allows the transmitter
to reconstruct K and use it in the second slot. Similarly, in
the second time slot, delayed CSIT from the first user is
required so that the transmitter can reconstruct L (v, v2, K)
to transmit in the third and fourth slots. However, in the third
and fourth slots, the transmitter does not require any CSIT of
the first and second users, respectively. Thus, the same scheme
works with PN and NP states in the last two slots. Since it
is essentially the same scheme interpreted in a different way,
the security of the scheme follows from that of 513

D. Schemes Achieving Sum s.d.o.f. of 4/3
1) Scheme S;l/ 3: In this sub-section, we present the scheme

S?/S which uses the states (PD,DP,NN) for fractions
(%, %, %) to achieve s.d.o.f. pair (di, d2) = (%, %).

We wish to send 2 symbols to each user in 3 time slots.
Let (u1, u2) and (v1, v2) be the symbols intended for the first
and second users, respectively. Fig. 6 shows the scheme. It is
as follows:

a) At Time t = 1, S(I) = PD: As the transmitter knows

H, (1), it sends:
X(1) = [u; 017 +gH;(1)*, (80)

where H{(1)H; (1)~ = 0, and ¢ denotes an artificial noise

distributed as CA/(0, P). Here H;(1)* is a 2 x 1 beamforming

vector that ensures that the artificial noise g does not create

interference at receiver 1. The receivers’ outputs are:
Y(1) = hin(Duy

Z(1) = ha(Duy + gH(DH (D)F 2

(81)
(82)

Thus, receiver 1 has observed u; while receiver 2 gets a
linear combination of u; and ¢, which we denote as K.
Due to delayed CSIT from receiver 2, the transmitter can
reconstruct K in the next channel use and use it for
transmission.
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CSIT State — DD

Ky G Li(u Ky +

| decode u = (uq, ug, uz, usg) |

\

4/3
S5/,

| decode v = (vy,v9, v3,v4)

Fig. 7. Achieving sum s.d.o.f. % using

b) At Time t = 2, S(2) = DP: The transmitter knows
H>(2) and K. It sends

XQ2) =[v1+K v+KI" +uHa(2)t. (83)
The received signals are:

Y(2) = h11(Qo1 + hi2(2)vz + (h11(2) + h12(2)) K
+uH i (QH2(2)*
Li(v1,v2, K) + usH1 (2)H(2)*
h21(2)o1 + h22(2)v2 + (h21(2) + h22(2))K
L (v1, 02, K),

(84)
(85)

Z(2)

=l

(86)

where we have defined Lj(vy,v2, K) and Ljy(v1, 02, K)
as independent linear combinations of vj,v2 and K at
receivers 1 and 2, respectively.

c) At Time t = 3, S(3) = NN: The transmitter transmits:

X(3) =[Li(v1,v2,K) 0]". (87)
The receivers get:

Y(3) = hii(3)L1(v1, 02, K) (88)

Z(3) = h213)Li(v1, 02, K). (89)

At the end of three slots, therefore, the received outputs can
be summarized as:

Ui K
Y=|arLi(v1,02,K)+uz |, Z=| La(v1,02,K)
Li(vy, 02, K) Li(vy1, 02, K)

Using Y, receiver 1 can decode (up,us), while receiver 2
can decode (v1, vp) using Z. The information leakage is only
o(log P) as we show next.

Security guarantees: The equivocation calculation follows

similar to that of the scheme 513/ 2. For the first user’s symbols
u = (uy, uz), we have,

I(u; ZIH) = I(uy,uz; Z|H) (90)
= I(u; Z|H) ©On
< I(u1; K|H) (92)
= o(log P), 93)

Cr(v, Ko Ly(w) +Gh (v, o) Lo(u, K))

Ko Lo(u, K1 )i+ Go(v, Ks) & Gi(v, K»)

NP

G Ko iha(w Ky) + La(u)

{La(u, K4 Go() G (v, ) + Gu(w) ] L, K)

where (91) follows from the fact that Z does not have any
term involving u;, and (92) follows from the Markov chain
uy —> K - 7.

For the second user’s symbols, the information leakage at
the first receiver is:

I(v; Y|H) < I(v1,v2; L1(v1, 02, K)|H) (94)
= h(L1(v1, 02, K)[H)
—h(L1(v1, 02, K)o, 02, H) 95)
< log P — h(K|vy, 02, H) + o(log P) (96)
= log P — h(K|H) 4 o(log P) 97)
= log P — log P + o(log P) (98)
= o(log P), 99)
where (94) follows from the Markov chain (vy,v2) —

Li(v,02,K) — Y.

2) Scheme S;l/ 7. We now present the scheme Sg/ 3 which
uses the states PN, NP, DD with fractions (%, %, %) to achieve
(d1,d2) = (3, 3)-

In this case we will send 4 symbols to each user in 6 time
slots. Let w = (uy, up, u3,us) and v = (v, v2, 03, 04) be the
symbols intended for the first and second users, respectively.
Fig. 7 shows the scheme. It is as follows:

a) At time ¢t = 1, S(1) = DD: In this slot, the transmitter
sends artificial noise symbols to create keys that can be used
in later slots. The channel input is

X()=I[q1 q1", (100)

where ¢ and g; are i.i.d. as CN(0, P). The received signals
are:

Y(1) = hii(Dg1 + hia(Dg2 2 K,
Z(1) = ho1(D)g1 + ha(1)q2 é K.

(101)
(102)

Due to delayed CSIT, the transmitter learns K and K, and
uses them in the next time slots.
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b) At time t = 2, S(2) = DD: In this slot, the transmitter
sends:

uy +ux +03 +o04 + Ky
X(2) = . 1
@) [01+02+u3+u4+K2i| (103)
The received signals are:

Y(2) = h11(2)(u1 +uz + 03 + 04 + K1)
+h122)(v] +v2 + u3z + ug + Ko) (104)
= Li(u, K1) + G1(v, K2) (105)

Z(2) = ho1 Q) (w1 +up +v3 +va + Ky)
+hnQ2)(0) +v2 +usz +us+ Kz)  (106)
= L2(u, K1) + Ga(v, K2). (107)

Note that since K; (or K3) is known at the first (or second)
receiver, it can be removed. The unintended symbols remain
buried in the artificial noise, ensuring security. Also, if G
(or Ly) could be sent to the second (or first) receiver, it would
provide a linear combination of the intended symbols that is
linearly independent of G (or Lp). This is what we will do
in the third and fourth time slots.

c) At time ¢t = 3, S(3) = NP: In this state, the transmitter
knows H» perfectly. It sends,

X(3) = [Gi(v, kK2) 0]" + LswH2(3)*,

where L3 is linearly independent of both L; and L». The
received signals are:

Y(3) = h11(3)G1(v, K2) + L3H; 3)H2(3) (109)
Z(3) = h21(3)G1(v, K»). (110)

(108)

d) At time ¢ = 4, S(4) = PN: In this state, the transmitter
knows Hj(4) perfectly. It sends,

X@) = [La@, K1) 0]" + GsmHi 4, (1)

where G3 is linearly independent of both G; and G;. The
received signals are:

Y(4) = h11(4)L2(u, K1)
Z@4) = ha1(4)La(u, K1) + G3(v)Ha(HH; (4.

(112)
(113)

Now note that if we could supply G and L to the first
and second receivers, respectively, both receivers will end up
with 3 linearly independent combinations of their intended
symbols. Thus, in the next two slots, the transmitter will supply
G1 and L to the first and second receivers, respectively, as
well as send one more linearly independent combination of
the intended information symbols to each receiver.

e) At time t = 5, S(5) = PN: In this state, the transmitter
knows Hj(5) perfectly. It sends,

X() =[Gi1(v. K2) 0] + GaH (5).  (114)
The receivers receive:
Y(5) = h11(5)G1(v, K2) (115)

Z(5) = hy1(5)G1(v, K2) + Ga(mHx(5)H  (5) . (116)

f) At time t = 6, S(6) = NP: Now the transmitter knows
H, (6) perfectly, and it sends:

X(6) = [La, K1) 0] + LsH2(6)".  (117)
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The received signals are:

Y(6) = h11(6)L2(u, K1) + La()H; (6)H2(6)" (118)
Z(6) = hy1(6)La(u, Ky). (119)

Let us summarize the received signals at each receiver after
these 6 time slots:
K
Li(u, K1) + Gi(v, K2)
a1G1(v, K2) + L3(u)
L (u, K1) '
Gi(v, K2)
o2L2(u, K1) + La(w)

ol s !
Ly(u, K1) + G2(v, K»)
Gi(v, K2)
BiL2(u, K1) + G3(v)
B2G1(v, K2) + Ga(v)
L(u, K1)

The information symbols can now be decoded at the
intended receivers from these observations. Also the leakage
of information is only o(log P), as we prove next.

Security guarantees: For the first user’s symbols u =
(u1,u2,usz, uq), we have,

I(uw; ZIH) < I(u; Ly(u, K1)|H) (120)
= h(L2(u, K)[H) — h(L2(u, Ky)u, H) (121)

Y =

< log P — h(K{|u, H) + o(log P) (122)
= log P — h(K{|H) + o(log P) (123)
= log P —log P + o(log P) (124)
= o(log P), (125)

where (120) follows from the Markov chain U —
Ly(u, Ky) — Z.

For the second user’s symbols, the information leakage at
the first receiver is:

[(v; YH) < I(v; Gi(v, K2)[H) (126)

= h(Gi (v, K2)[H) — h(G1(v, K2)|y, H) (127)

< log P — h(K>|v, H) + o(log P) (128)

= log P — h(K>|H) + o(log P) (129)

= log P — log P + o(log P) (130)

= o(log P), (131)

where  (94) follows from the Markov chain

v— Gi(v,K2) = Y.

E. Schemes Achieving Sum s.d.o.f. of 1

1) Scheme S': We first recap the scheme S| which uses
the state DD to achieve (d;, d2) = (%, %). This scheme was
presented in [43]. The scheme was used to transmit 2 infor-
mation symbols to each receiver in 4 time slots. At r = 1, the
transmitter sends artificial noise symbols using both antennas.
The received signals act as keys K1 and K; for the respective
users 1 and 2. Since there is delayed CSIT, the transmitter can
reconstruct these keys and use them in the next slots. At7 = 2,
the transmitter sends the two information symbols (u1, u2)
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t=1 t=2 t=3 t=4
CSIT State — DD DD NN NN
K, : ; G1(vi,v9, K3)

Ky

| decode vy, vo |

Fig. 8. Achieving sum s.d.o.f. of 1 using Szl.

intended for the first receiver linearly combined with the first
user’s key. Thus, the first user can retrieve a linear combination
of just its intended symbols. However, the second user gets
a linear combination L(u1,us, K1). Due to delayed CSIT
however, the transmitter can reconstruct L. In the third slot,
the roles of the receivers are reversed and the transmitter
sends the second user’s symbols (v;, v2) linearly combined
with the second user’s key K»>. This allows the second user to
retrieve a linear combination of just its information symbol,
which however remain secure at the first user, which receives
G(v1, 02, K»). In the fourth slot, the transmitter sends a linear
combination of L and G. Essentially this provides the first
user with L, from which it can eliminate K; to get another
independent linear combination of (11, u3). A similar situation
takes place at the second user. Finally, each user has two
linearly independent combinations of two symbols and thus
can decode the information symbols intended for it. The
information leakage is only o(log P), as shown in [43].

2) Scheme Sé : In this sub-section, we present the scheme S21
which uses the states (DD, NN) with fractions (%, %) to
achieve (d1, d2) = (3, %).

The scheme Sl1 requires delayed CSIT from at least one user
for the first 3 time slots. We need to modify this scheme to
ensure that delayed CSIT is required only for 2 of the 4 time
slots. Fig. 8 shows the new scheme. It is as follows:

a) Attime r = 1, S(1) = DD: The strategy in this slot is the
same as in the scheme Sll. In this slot, the transmitter sends
artificial noise symbols to create keys that can be used in later
slots. The channel input is

X()=I[qg1 ¢,

where ¢ and g; are i.i.d. as CA/(0, P). The received signals
are:

(132)

A
Y(1) = hii(1)q1 + hi2(1)g2 = Ky
A
Z(1) = ha1 (g1 + h22(1)q2 = K.
Due to delayed CSIT, the transmitter learns K and K, and
uses them in the next time slots.

b) At time ¢+ = 2, S(2) = DD: Instead of sending only the
first user’s symbols as in scheme Sll, the transmitter now sends

(133)
(134)

Ly(uy,ug, K1) +G1(v1,ve, Ka)vt Lo(uy, ug, Ki) -

Lg(ul,UQ,Kl)+GQ(U17’1)27K2) S L2(u17u27K1) S

Gl(U17U2, K2)

linear combination of both users’ symbols. It sends:

X(Q2) =[us +o1 + K1 ur+v2+K2]". (135)

The received signals are:
Y(2) = hii(ur + o1+ K1) +hip(ua +v2 + K2)  (136)
£ L@, 12, K1) + G101, 02, K2) (137)
Z(2) = ho1(uy + 01 + K1) + hoo(ua +v2 + K2)  (138)
2 LoGur, uz, K1) + Ga(v1, 02, K2). (139)

We notice that if L, and G could be provided to both
users, each user can get 2 linear combinations of the symbols
intended for it and hence decode both symbols. Hence, in the
remaining two slots, we will transmit L, and G to both users
and this will not require any CSIT from any user.

c) At time r = 3, S(3) = NN: The transmitter does not
have any CSIT. It sends:

X(3) = [La(u1, u2, K1) 01" (140)

The received signals are:
Y(3) = h11(3)La(u1, u2, K1) (141)
Z(3) = h21(3)La(uy, uz, K1). (142)

d) At time t = 4, S(4) = NN: The transmitter sends:

X(@4) =[G (1,02, K2) 0I". (143)

The received signals are:
Y(4) = h11(4)G1(v1, 02, K2) (144)
Z(4) = ha1(9)G1(v1, 02, K2). (145)

Thus, at the end of 4 slots the received signals may be
summarized as:
K
Li(uy,u2, K1) + G1(v1, 02, K2)
Lo(uy,uz, K1) ’
G1(v1,02, K2)
K>
La(uy, uz, K1) + Ga2(v1, 02, K2)
Lo(uy,uz, K1)
G1(v1, 02, K2)

Y =

7 =
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Block A Duration: n State: DN CSIT acquired
o &
‘é & B
Block B Duration: 7 State: ND
Lyi(K, A L3(Ks, A3) Lon—1(Kon—1,A2n—1) (Z)
é)- @D G, 22
Block C Duration: n State: ND
v
Yé- CEaB> EEDD -
\ ;") (1)
K27B2 (K4,B4) G2n(K2mBQn)
_Block D Duration: n + 1 State: DN \\
Y é — Ly + Gy Ly+ Gs Lop + Gop—1 ('C)
U \ Hy ™’ (t)
é — Lo+ Gy Ly+ Gs Loy + Gopn—1

Fig. 9. Achieving sum s.d.o.f. of 4n/(4n 4 1) using scheme 531.

Clearly, user 1 can decode (u1, u») and user 2 can get (v1, v72).
The information leakage is at most o(log P) as we show below.

Security guarantees: For the first user’s symbols u =
(u1,u2), we have,

[(u; ZIH) < I(u; Lo(u, K1)[H) (146)
= h(L2(u, K1)|H) — h(L2(u, K1)[u, H) (147)
< log P — h(Ki|u, H) 4+ o(log P) (148)
=log P — h(K|H) + o(log P) (149)
= log P —log P + o(log P) (150)
= o(log P), (151)

where (146) follows
Lr(u, K1) — Z.

For the second user’s symbols v = (v1, v2), the information
leakage at the first receiver is:

from the Markov chain U —

I1(v; YH) < I(v; Gi(v, K2)[H) (152)
= h(G1(v, K2)[H) — h(G1 (v, K2)|y, H) (153)

< log P — h(K3|v, H) + o(log P) (154)
= log P — h(K>2|H) + o(log P) (155)
= log P —log P + o(log P) (156)
= o(log P), (157)

where (152) follows from the Markov chain v —
Gi(v,Ky) > Y.

3) Scheme S}: 3: We next present a novel scheme S3 which
uses the states (DN, ND) with fractions (2 2) to achieve
(d,dr) = (2, 5). In particular, we present a scheme which

achieves the s.d.o.f. pair (dy, d2) = (2—” 2

TntT’ Tt ) as a function

of the block length n. Taking the limit n — oo yields the
s.d.o.f. pair (%, %)

The scheme is shown in Fig. 9. Unlike all the other schemes
in this paper where the optimal sum s.d.o.f. can be achieved
within a finite number of time slots, this scheme cannot
achieve sum s.d.o.f. of 1 in a finite number of slots. Indeed,
there does not exist a scheme that can achieve sum s.d.o.f. of 1
in finitely many slots. To see why, assume that there exists such
a scheme with 7 slots. In this scheme, states DN and ND occur
for equal fractions of time; thus, lp = Ay = % Now, note
that the delayed CSIT in the last slot cannot be used; thus,
the scheme would work equally well if the last slot were NN
instead of DN or ND. However, changing the state in the last
slot to NN would imply Ap < % which in turn implies that
d1+dy < 1 from (18). Thus, no scheme that uses only a finite
number of slots can achieve a sum s.d.o.f. of 1.

Here we provide an asymptotic scheme that achieves a sum
s.d.o.f. of Tt +1 in n slots. As the number of slots n — oo,
the sum s.d.o.f. approaches 1. We wish to send 2n symbols
to each receiver in 4n 4+ 1 time slots. The scheme involves
transmission in 4 blocks where the first 3 blocks, say A, B
and C each have n time slots, while the last block D has
n + 1 slots; thus, a total of 4n + 1 time slots are required in
the scheme. The scheme is as follows:

a) In block A, S(¢) = DN: In each time slot i in block A,
the transmitter generates two artificial noise symbols and sends
them using its two antennas. The receivers receive different
linear combinations of the two artificial noise symbols K2;_1
and K»; as shown in Fig. 9. Due to delayed CSIT from the first
user, the transmitter can reconstruct each of Ko;_1,i =1,...,
by the end of block A. Thus, they can act as shared keys
between the transmitter and the first receiver. However, since
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the second receiver does not feedback any CSIT (due to the
fact that the state in the block is DN), the transmitter cannot
reconstruct the observations of the second receiver at the end
of block A.

b) In block B, S(t) = ND: At the beginning of this slot, the
transmitter has the keys K»;_1,i = 1,...,n shared with the
first user. It uses these keys to send information intended for
the first user. It creates 2n linearly independent combinations
of the 2n symbols intended for the first receiver: ay, ..., a,.
In slot i, it transmits

XP(i) = [azie1 + Kai1 azi + K2i71]T . (158)
The first and second receivers receive linearly independent
combinations Ly;_1(Azi—1, K2;—1) and Lj; (A3, K2i—1) in
slot i, where A; denotes the ith linear combination of the first
user’s symbols, as shown in Fig. 9. Since the state is ND,
the second user provides delayed CSIT to the transmitter.
In the ith slot, the second user feeds back H? (i), that is, the
channel coefficients of the second user in slot i within block A.
Note that this is unlike any other achievable scheme we have
encountered so far; in all other schemes, the receiver feeds
back the channel coefficients of the current slot which appears
as delayed CSIT at the beginning of the next slot. Thus, at the
end of slot B, the transmitter has all the channel coefficients
of the second user from block A; thus, it can reconstruct the
outputs of the second receiver in block A, Ky, i =1,...,n,
which now act as shared keys between the transmitter and the
second receiver.

¢) In block C, S(tr) = ND: At the beginning of this
slot, the transmitter has the keys K»;,i = 1,...,n shared
with the second user. It uses these keys to send information
securely to the second user. It creates 2n linearly independent
combinations of the 2n symbols intended for the second
receiver: by, ..., az,. In slot i, it transmits

XC (i) = [baiz1 + Kai1 bai + K2i—1]T~ (159)
The first and second receivers receive linearly independent
combinations Go;—1(B2i—1, K2;) and G2;(Bz;, K»;) in slot i,
where B; denotes the ith linear combination of the second
user’s symbols, as shown in Fig. 9. As CSIT, in the ith slot,
the second user feeds back the channel coefficients HZB @),
which allows the transmitter to reconstruct L»;(Az;, K2i—1).
Note that now if Ly; (A2;, K2;—1) and G;—1(B2i—1, K2;) could
be exchanged, each of the receivers would receive 2n linear
combinations of the 2n symbols intended for it, thus, allow-
ing both receivers to decode their own messages. However,
Goi—1(B2i—1, K2;) is not known to the transmitter yet, since
the first user has not fed back its channel in block C. This
CSIT will be obtained in the next block.

d) In block D, S(t) = ND: The transmitter wishes to
send the symbols Ly; (A2, K2i—1) + G2i—1(Bai—1, K2i),i =
1,...,n, in this block. To do so, the transmitter does not
transmit anything in the first slot in this block. It only
acquires the channel coefficients ch(i) from the first user
who is supplying delayed CSIT in this block. In the ith slot,
i =1,...,n, the transmitter acquires the channel coefficients
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H{ (i) and transmits:

XP(i) = [inz(Aziz, K>i—3) + G2i—3(B2i—3, K2i2):|
0 9

i=2,...,n+1. (160)

The first user can now obtain Lp;—j(A2i—1, K2i—1) and
Lyi(Az;, Koi—1) for every i = 1,...,n, while the second
user obtains Go;_1(B2i—1, K2;) and Go;(By;, K2;) for i =
1,...,n. Now by eliminating the respective keys, each user
can decode the 2n symbols intended for it from the 2n lin-
early independent combinations available to it. Also the keys
ensure the confidentiality, and the information leakage is only
o(log P), as we show next.
Security guarantees: Let u =

(a1,...,az;) and v =

(b1, ...,by,) be the symbols intended for users 1 and 2,
respectively. The leakage of u at user 2 is given by
I(u; ZIH) < I(u; {L2i(Azi, K2i—1)}}_; [H) (161)
= h({L2i (A2, K2i-1)}/_; [H)
—h({L2i(A2i, K2i—1)}/_, [u, H) (162)

< nlog P — h({Kzi—1};_; |H) + o(log P) (163)

=nlog P —nlog P + o(log P) (164)

= o(log P), (165)
where (161) follows due to the Markov chain u —
{L2i(A2i, K2i-1)}}_, — Z, and (164) follows from the
fact that {K»;1}7_, are mutually independent and each is
distributed as N'(0, P).

Similarly, for the second user’s symbols, the leakage at the
first user is given by,

I1(v; YIH) < I(v; {G2i—1(Bai—1, K2)}7—; [H) (166)
= h({G2i—1(B2i—1, K2i)}/_, H)
—h({G2i—1(B2i—1, K2)}{— [v, H)  (167)

< nlog P — h({Kzi}{_; [H) + o(log P) (168)
=nlog P —nlog P + o(log P) (169)
= o(log P), (170)

where (166) follows due to the Markov chain v —
{Goi—1(B2i-1, Kgl-)}l’.’=1 — Y, and (169) follows from the fact
that {K»;}_, are mutually independent and each is distributed

as (0, P).

F. Schemes Achieving Sum s.d.o.f. of 2/3

1) Scheme S?B: The scheme 512/3 uses the state DD to
achieve (dy,dr) = (%,0). Such a scheme was presented
in [43]. The scheme can be summarized as follows. At time
t = 1, the transmitter sends two artificial noise symbols
using its two antennas. Each user receives a different linear
combination of the noise symbols and they act as keys. Let
K1 and K> be the keys at receivers 1 and 2, respectively. Due
to delayed CSIT, the transmitter can reconstruct Kj. At time
t = 2, the transmitter sends the two symbols intended for the
first receiver (uy, up), linearly combined with K. Receiver 1
can remove K; from its received signal and get one linear
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combination of (u1,uy) at the end of this slot. The second A. Achievability for Case A: Ap > Ay

user receives a linear combination of uj,u> and K, say
L(uy,u2, K1); however, not knowing Kj, it cannot decode
the information symbols. Due to delayed CSIT, the transmitter
learns L and transmits it in # = 3. The second receiver gets no
new information but the first receiver can get a second linear
combination of (u1, u2) by eliminating K from L. This allows
receiver 1 to decode (u1, uz), while the information leakage
to receiver 2 is o(log pP).

2) Scheme Sz/ The scheme Sg/ uses the states (DD, NN)
with fractlons ( ) to achieve (dy, d2) = (3 , 0). We note that
in scheme 5%/ 1 the delayed CSIT in slot t = 3 is not required.
Thus, the scheme can work with the states (DD, NN) with
fractions (3, 3) and we call this Sz/ 3

3) Scheme S3 . Finally, the scheme Sg/ ? uses the states
(DN ND, NN) with fractions (3, 3) to achieve (di,d>) =
(3 ,0). We notice that instead of having DD state in the first
two slots, it suffices to have DN in the first slot (since the
transmitter does not need K») and ND in the second slot
(since the transmitter only needs to reconstruct the second
user’s received signal L). Thus, it sufﬁces to have the states
(DN, ND, NN) with fractlons (3, 7 3) for the scheme to

work, and we call this S3

V. ACHIEVABILITY

Now that we have all the required constituent schemes
summarized in Table I, we proceed to show how these schemes
can be combined to achieve the region stated in Theorem 1.
We restate the region of Theorem 1 here for convenience:

) (2+21P—1PP
min | ———————

di <
h= 3

1— /INN) (171)

24 20p —

d» < min (# 1— /INN) (172)
3dy+dy <2420p (173)
dy+3dy <2+2p (174)

dy+dy < 2(p + Ap). (175)

We note that the bounds in (173) and (174) imply the
following bound on the sum s.d.o.f.:

di+dy <1+ p (176)

By comparing the bounds in (175) and (176), we classify this
region into two cases:
e Case A: in which d;| +d; bound of (175) is inactive. This
corresponds to the condition
I+ Aip <24p+24p, (177)
which is equivalent to
AN < ip. (178)

e Case B: in which di + d> bound of (175) is active which

corresponds to
/1N > /1D- (179)

In the next two sub-sections, we present the achievability for
each of these cases separately.
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For Case A, the s.d.o.f. region reduces to:
242ip— 4
dy < min (# 1— ANN) (180)
242ip— 4
d» < min (# 1— ANN) (181)
3d) +dy <2+2p (182)
di+3dy <2+4+21p. (183)

Depending on which single user bound is active, we con-
sider two cases:
1) M < 1 — Ayn, which is equivalent to the
condition App + 2Apy > 24NN,
2) M > 1 — Ayn, which is equivalent to the
condition App +2Apn < 2ANN.
As shown in Fig. 10, due to symmetry, it suffices to achieve
the points P; and P, in each case.
1) Achievability of Point P1: We first show the achievability
of the point P; in both cases. To do so, let us consider the
two cases one by one:

1) App + 2iApy > 2inny: In this case, the single user

bounds are:
24+2ip—2A
dy < # (184)
242lp — A
b < # (185)

As seen in Fig. 10a, the point Pj is (M, App).

To achieve this point, using the state PP, we achieve
(1, 1), with PD, DP, PN, NP, we achieve the pair (1, 0)
either through zero-forcing, or by transmitting artificial
noise in a direction orthogonal to the first user’s channel.
For the states (DD, NN) ~ (3 3) and (DN, ND, NN) ~
(3, 7 3) we achieve the pair (3, 0) by using the
schemes S, 2/3 and Sg/ , respectively. Essentially, the
NN state can be fully alternated with the DD state and
the DN and ND states to achieve 2 s.d.o.f. for user 1.

3
Time sharing yields the following s.d.o.f. pair:

d» = App (186)
dy = App +2ipp +22pN
2
+ 3 (App +24pN + ANN) (187)
——
52
2
=2p —App + g(/IDD + Ann) (188)
2
=2lp—App+ 5(1 —2ip+4ipp) (189)
24+2Ap— 4
= u. (190)
3
2) App + 2ipn < 2iypn: In this case the single user
bounds are:
di <1—Ann (191)
dy < 1—JANN. (192)
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A A
d2 (A 2+2/\p—>\pp) d2
PP; 3 (2ANN —App — 2ApN + App, 1 — Ann)
P/ P/
1 P (1+/\p 1+AP) 1 P (1+/\p 1+AP)
2 2 72 2 2 2
2+2Ap—App ) )
P, ( 3 s APP )
(1= AnN,2A\NN — ApD — 2ADN + App)

d1 dl

(a) (b)

Fig. 10. s.d.o.f. regions in case A. (a) App +24Apny = 2AnN. (b) App +2ipN <2ANN-

Again, we wish to achieve the point P; in Fig. 10b. The
point P is given by:

Py :(di,d2) = (1 — Ann, Arp
+ 2Ayn —2ApN — ADD)).

Here we consider two further subcases

e ANN < App+Aapn: Inthis case, to achieve the point
Py, we first use up the full DN and ND states with a
part of the NN state using scheme 532 /3. We alternate
the remaining (Axyy — Apn) duration of NN state
with the DD state using two schemes: Sg/ 3 and Szl.
Note that in this subcase, 0 < 2(App + Apn —
ANN) < App. We use the state DD for duration
2(App + Apn — Ann) and state NN for duration
(App + ApN — AnN) together using scheme S§/3
to achieve the s.d.o.f. pair (%,0). The remaining
(2ANN —2ApN — App) duration of the state NN is
alternated with the remaining 2Ayy —2Apy—4pp)
duration of state DD using the scheme 521 to achieve
the s.d.o.f. pair (1, %). The state PP allows us to
achieve the s.d.o.f. pair (1, 1) while the remaining
states PD, DP, PN, and NP each achieves (1, 0).
Thus, by using time sharing, the s.d.o.f. pair is:

(193)

2
di =App+1x2lpp+1x2ipy+ =

) X3ApN
~—
537
2
+ 5 x3(App + ApN — ANN)
~—
5373
1
+ 5 x2(Q2ANN —2ADN — ADD) (194)
~——
55
1
——
55

= iPP + (211\/1\/ —ZADN - ADD), (196)

which is precisely the point Pj.

e ANN = App + Apn: In this case, the state NN
cannot be completely used with the states DD, DN
and ND. But we note that Ap > Ay implies that
Ap > Ann. We first use up the DN and ND states
by alternating with the NN state using scheme Sg/ 3,
A portion App of the remaining (Axyy — Apn)
duration of the NN state uses up the DD state in
scheme 521 achieving the pair (%, %) The remaining
(AnnN — Apn — App) portion of the NN state is
used with the PD and DP states through the scheme
S;‘/ ? to achieve the pair (%, %) For the remainder

of the state PD, DP and the states PN, NP, we can

achieve the pair (1,0), while (1, 1) is achieved in
the PP state. By time sharing, we get

2
di = App+2ipN + 3

x3ApN + l x2ADD
= 2
s3/3 s}
2
+ 3 x3(Any —ApN — ADD)
——
i3
+2(App — AnN + ApN + ADD) (197)
—1—JAyy (198)
dy = App+ % x3(ANN — ADN — ADD)
——
si3
1
+ 5 X2pp (199)
N
53
= App +2ANN —2ADN — ADD, (200)

which is again the point P;.
2) Achieving the Sum s.d.o.f. Achieving Point P,: The
point P, corresponds to:

(201)

14+2p 14+
Pzi(dl,d2)=( tor 17 P)~

)
We rewrite the condition Ap > Ay corresponding to case A
as:

App+App = Apn + ANN. (202)
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From this condition it is not immediately clear how the
constituent schemes should be jointly utilized. Hence we break
this condition into three mutually exclusive cases:

a) Sub-case Al: App > Apy and App > Ann,

b) Sub-case A2: App > Apy and App < Ann,

¢) Sub-case A3: App < Apy and App > AnnN.
Now, we consider these three sub-cases one by one:

a) Sub-Case Al: Lpp > Apny and App > Ann. In this
sub-case, the original condition Ap > Ay is automatically
satisfied. For this sub-case, it is clear that the states PN and
NP can be fully alternated along with the PD and DP using
scheme S;/ ? to achieve % s.d.o.f. The remaining fraction of
time for PD (and DP) is hence: App —Apy. The state NN can
be fully utilized along with DD to achieve 1 s.d.o.f. using the
scheme Szl. The DN and ND states are alternated with each
other to achieve 1 s.d.o.f. Thus, we achieve the following sum
s.d.o.f.

3
di+dy=_2 Xlpp+ > x(2App +24pN)
S2 ~—
3/2
SZ
4+ 1 x(App+ AnN) +2iDN (203)
83
= 2ipp +3App +3ipN + App + ANN +2ADN
(204)
=1+ 2p. (205)

b) Sub-Case A2: Jpp > Apn, App < AnN. As in sub-
case Al, we can fully alternate the PN and NP states with
the PD and DP states using the scheme S;/ 2 to achieve the
s.d.o.f. of % Since App < Ann, we instead fully alternate
the state DD along with NN using scheme S} to achieve a
sum s.d.o.f. of 1. The remaining fraction of the NN state
is ANy — App which can be alternated with the remaining
fraction of (PD, DP), which is App — Apy as long as A1pp —
Apn = Ann — App. This achieves ‘3—‘ sum s.d.o.f. Indeed,
this is feasible as this is precisely the condition 1p > Ay.
The DN and ND states are alternated with each other to
achieve 1 s.d.o.f.

3
di+dy= 2 xAipp+ 5 X(4lpN)
S2 ~—~—
3
+ 1 x@2App)+2ipn
Sl
2
4
+ 3 x(B(ANN — ADD))
——
5?3/3
+ 3 x2(App —Apn — ANN + ADD) (206)
<
32

=2App +6ApN +2ipp +4AnN —4ADD
+3ipp +32pp —32pn — 3AnN +24pN (207)
=2App +3App +3ipN + ApDp + ANN + 24DN
(208)

=14 41p. (209)
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c) Sub-Case A3: App < Apn, App > Ann. Unlike the
previous two sub-cases, here, we cannot fully alternate the
PN and NP states with the PD and DP states. Instead, we
fully use up the PD and DP states with a part of the PN and
NP states using scheme S;/z to achieve the sum s.d.o.f. of %
The remaining duration of PN (or the NP) state is Apy —
App. Now, we can also fully alternate the NN state with DD
since App > Anyn using the scheme 521 to achieve the sum
s.d.o.f. of 1; and thus, the remaining fraction of DD state is
App — AnN. We now alternate the remaining PN and NP
states with the remaining DD state using the scheme Sg/ 3
to achieve the sum s.d.o.f. of %. For this to be feasible, we
require App — ANN = Apny — App which is again precisely
the condition Ap > Ap. The remaining DD state achieves
sum s.d.o.f. of 1 using scheme Sll. The DN and ND states are
alternated with each other to achieve 1 s.d.o.f.

3
di+dy=_2 xipp+ 5 x@lpp)+ 1 xQ2AnnN)
S2 ~—~— sl
§32 2
2
+ 1 x(App —ANN —ApN +App) +24pN
5]
4
+ 3 x(3(ApN — APD)) (210)
——
5373
=2App +6App +2ANN +4ipny —4ApD
+App+App —Apn — ANN +2ADN (211)

= 2App +3App +3ipn +App + ANN +2ADN
212)

=1+ 2p. 213)

Hence, for Case A, i.e., when Ap > An, we have the
complete characterization of the s.d.o.f. region.

B. Achievability for Case B: Ay > Ap

In this case, the 3d| + da2/d; + 3d> bounds are inactive at
the symmetric sum rate point. However, these 3d| + d>/d; +
3d, bounds play a role at other points in the region, in
particular, when one of the users requires full secure rate, the
3d) + d>/dy + 3d, bounds are relevant in some cases. Thus,
these bounds are still partially relevant. Based on whether the
3dy +d>/dy + 3d> bounds are partially relevant or completely
irrelevant, we divide our achievability into two broad cases:

1) 3d;+d> bounds are partially relevant, at the point where

one user requires full secret rate,

2) 3d; + d> bounds are completely irrelevant to the region.
Now let us investigate each of these two cases individually.

1) When 3d; +d> Bounds Are Partially Relevant: This case
happens when the intersection of the lines defined by the 3d; +
d> bound and the single user bound is inside the region defined
by the lines di = 0, do = 0, single user bounds and the
d1 + d> bound. We note that this depends on which of the
single user bounds is active, giving rise to two cases, as shown

in Fig. 11:
e 1l — Ayn > Wf—w, in which case, the
3diy + d; bounds are always relevant, since
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ds 2420, A
(o, 22

(Ap +2Xp — An, Ap + Ay)
()\p + Av, Ap +2Ap — )\N)

2420~ App
<7’§ ) APP)

»
»

dy
(@

Fig. 11.

App < 20p + Ap) — w. In this case,
when one user requires full rate, it suffices to achieve
extremal point given by:

2+2ip —App

Pi(dl,dz)Z( 3

: App) . (214

o 1—dyy < Z2=2PP in which case, the 3di+d> bounds
are relevant as long as Axyy < Ap. We will need to show
the achievability of one of the extremal points when one
of the users requires full rate, given by:

Q:(d,d?) = (1 —Ainn, ApP
+ 2Ayn —2ApN — ApD)).

However, we note that in both cases, the extremal points that
achieve the sum rate are defined by the intersection of the lines
3di+dr =242Ap and di +d> = 2(Ap 4+ Ap). These points
are symmetric with respect to the line di = d» and it suffices
to show the achievability of either one of them. As shown in
the figures, it suffices to achieve the point

S:(d,dr) =(Ap+An,Ap +21p — AN).

(215)

(216)

Thus, to show the achievability of the full region, we need to
show how the points P, Q and S are achieved in their relevant
cases. We will begin with point S since it remains unaffected
by which of the single user bounds is active.

The Sum Rate Point S: Now we are effectively operating
under the constraint Ayy < Ap < Ay, and wish to achieve
the point (Ap + Ay, Ap +2Ap — Ay). From this condition it
is not immediately clear how the constituent schemes should
be jointly utilized. Hence we focus on the second half of the
inequality, which simplifies to App+App < Apn +Ann, and
break this condition into three mutually exclusive cases:

a) Sub-case Bl: App < Apy and App < Ann,

b) Sub-case B2: App > Apy and App < Annw,

¢) Sub-case B3: App < Apny and App > AnnN.
Now let us consider each case one by one:

a) Sub-Case Bl: Lpp < Apny and App < Anpn: In this
case, the full DD state will be used up with a part of the NN
state using scheme S21 to achieve the rate pair (%, %) The
duration of the remaining NN state is (Ayy — App). Now if
ANN —ADD < Apn, this remaining NN state can be fully used
up with the DN and ND states using scheme S32/ 3 achieving
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(2ANN — App — 2ApNn + App, 1 — Ann)

()\p + Av, Ap +2Ap — )\N)

(1 = ANN,2ANN — App — 2ApN + App)

»
»

dy
(b)

s.d.o.f. regions in case B when 3d| + d and d| + 3d, bounds are partially active. (a) App +2Apy > 24ynN. (b) App +24ipN < 2ANN.

the pair (%, 0). The remaining DN and ND states achieve the
pair (%, %) using the scheme S). The PD and DP states are
fully alternated with the PN and NP states using scheme Sg/ 2
to achieve the pair (3, 2). The remaining PN and NP states
achieve the pair (1, 0). The rate pair achieved then is

3 1
di = App + 1 x4ipp + 3 X2ApD
—_ <
3 53
2
+1x2(Apn — APD) + 3 x3(ANN — ADD)
-
5373
1
+ = x2(lpn — ANN + 4DD) (217)
<
83
= App+Aipp +ApN + ANN + 2PN (218)
=ip+in (219)
3 1
dy = App + 2 x4ipp + 3 x2App
—_ <=
3 83
1
4+ = x2(ipy —ANN + ADD) (220)
<
$3
= App +3App +2ipp + ADpN — ANN (221)
— Ap+2p —An. (222)

If on the other hand, Axyy — App > Apy, the remaining
state NN cannot be fully alternated with the states DN and
ND. However, Ayy < Apn + App + App from our original
condition. Therefore, the full DN and ND states are alternated
with a part of the NN state using scheme Sg/ 3 achieving the
pair (%, 0). The remaining duration of the NN state is (Ayn —
App — 2pn), which can be fully alternated with the PD and
DP states using the scheme S?/ 3 achieving the pair (% , %). The
remaining PD and DP states can be alternated with the PN
and NP states using scheme Sg/ 2 achieving the point (43_1’ %).
The rest of the PN and NP states achieve the point (1, 0).
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Thus, we have,

1 2
di=App+ 5 x2App + 3 x3ADN
< ——
sk 533
2
+ 3 x3(ANN — ADN — ADD)
——
st
3
+ 2 x4(App — (ANN — ADN — ADD))
—_—
s3/2
+1x2(Apny —ipp + (AnN — ADpN — ADD)) (223)
=ip+Ain (224)
1 2
dy = App + 3 x2App + 3 x3(ANN — ADN — ADD)
< ——
sk s
3
+ — x4(lpp — (ANN — ADN — ADD)) (225)
—_
532
=Ap+2ip —y. (226)

b) Sub-Case B2: Jpp > Apn and App < Anpy: In this
case, since Ayy > App, the entire DD state is alternated with
a portion of the NN state using scheme 521 to achieve the
s.d.o.f. pair (%, %) The remaining duration of the NN state
is ANy — App. Now if Axyy — App < App, the remaining
NN state is used with a part of the PD and DP states in
scheme S;‘/ 3 achieving the pair (%, %) The remaining portion
of the PD and DP states can then be utilized with the PN and
NP states using scheme S;/ 2 achieving the pair (—, —) The
remaining PN and NP states are utilized to just achieve the
rate pair (1, 0). The DN and ND states are used to achieve the
pair (%, %) using the scheme S31. Thus, we have,

1 2
dy = dpp + 5 X (2App) + 3 % (3(AnN — 4DD))
< ——
s) st
3 1
+ i @4 (App — (ANN — ADD))) + 5 X 2ApN
—_
32
+1x 2ipy —2(App — (ANN — ADD))) (227)
=Ap+An (228)
1 2
dy=Jpp+ 5 xQipp)+ 5 x(BUny —ipD))
< N
s) s
3 1
+ 7 X (4 (pp — (ANN — ADD))) + 3 X 2ApN
—_—
s/
(229)
= App +2App +3ipp — ANN + ADN (230)
— Ap+24p — AN. (231)
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If on the other hand, Ayy — App > App, the full PD and DP
states will be used up with a part of the remaining NN state
using scheme Si‘/ 3 achieving the pair (%, %). The remaining
duration of the NN state is Ayy — App — App, which is
less than Apy from our original condition. Therefore, this
remaining NN state can be fully utilized with the DN and
ND states using scheme S2 to achieve the pair (% 3 0). The
remaining DN and ND states achieve the pair (2, 2) while
the PN and NP states achieve the pair (1, 0). Thus, we have,

1 2
di = App+ 3 x24pp + 3 x3App
< ——
, & e
+ 3 x3(ANN —ipp —App) +1 x 22pyN
N
23
1
+ = xX2(ApN+2ipp+App — ANN) (232)
<
Sl
= App+App +2Apn + ApN + ANN (233)
=Ap+ AN (234)
1 2
dry = App + 3 x24pp + 3 x3App
< ——
, e
+ 5 x2(ApN + App + App — ANN) (235)
<
Sl
_lpp+2iDD+3ipD+iDN—iNN (236)
= Ap+2ip — An. (237)

c) Sub-Case B3: App < Apny and App > AnnN:
To achieve the sum rate point, we should alternate the entire
PD and DP states with part of the PN and NP states using
the scheme 52 . Also the entire NN state should be alternated
with the DD state using the scheme 52 The remaining DD
state can then be fully utilized w1th a part of the remaining
PN and NP states using scheme 52 , since, App — Ay <
ApN—App. The remaining PN and NP states will be exploited
to achieve the s.d.o.f. pair (1,0). The DN and ND states
together achieve the pair (%, %). Thus, we have,

di = App+ % x (44pp) + % X (2ANN)

— ——
sy? S;

2 1
+ 3 x B3(App — Ann)) + 5 X 2ApN
——
4/3
SZ
+1x 2(Apy — App) —2(App — Ann)) (238)
= App +ipp +2ipN + ANN + ADN (239)

= Ap + AN (240)

dy = ipp + x (44pp) + X (2ANN)

3
4
~—

3/2
S)

N[”_{NI»—k

1
X (3(/11)0 — ANN) + 5 X 2/11)N) (241)

m»{uﬂw



= App +3App +2ipp — ANN + ADN (242)
— Ap+24p —An. (243)

The Points P and Q:
Point P: Recall that we need to achieve the point P :
(2+2Ag—APP’/1PP) when 1 — Ayy > 2+2Ag—zpp7 a

condition that simplifies to App + 2Apy > 24nN.
To achieve this point, using the state PP, we achieve
(1, 1), with PD, DP, PN, NP, we achieve the pair (1, 0).
For the states (DD, NN) ~ (3, 2) and (DN, ND, NN) ~
(3, 33 ) we achieve the pair (3 , 0) by using the schemes

Sg/ 3 and S3/ 3, respectively. Essentially, the NN state is
used up with the DD state and the DN and ND states to
achieve % s.d.o.f. for user 1.

Time sharing yields the following s.d.o.f. pair:

dy = App (244)
dy = App +2ipp +22pN
+ 3 (App +2ApN + AnN) (245)
——

52/3

2
=2lp—App+ g(lDD +2ipNn + Ann)  (246)

2
=2lp—App+ (1 =2lp+Aipp) (247)
24 2ip— 12
_ # (248)

Point Q: We need to achieve the point O : (1 —
ANN,>App + (2ANN —2ApN — App)) When 1 — Ayy <
M or equivalently, when App +2ipy < Ann
and under the added constraint Ayy < Ap. Here, we
consider two further subcases:

— Ann < App + Apn: In this case, to achieve the
point Q, we first use up the full DN and ND states
with a part of the NN state using scheme S32/ 3,
We alternate the remaining (Ayy — Apy) duration
of NN state with the DD state using two schemes:
52/3 and Szl. Note that in this case, 0 < 2(App +
ADN — ANN) < App. We use the state DD for
duration 2(App + Apny — Ann) and state NN for
duration (App +Apn — Ann) together using scheme
55/3 to achieve the s.d.o.f. pair (% , O). The remaining
2ANN —2ApN — App) duration of the state NN is
alternated with the remaining 2Ayy —2Apn —2pD)
duration of state DD using the scheme 52 to achieve
the s.d.o.f. pair (3, 2) The state PP allows us to
achieve the s.d.o.f. pair (1,1) while the remaining
states PD, DP, PN, and NP each achieves (1, 0).
Thus, by using time sharing, the s.d.o.f. pair is:

2
di=App+1x2lpp+1x2lpy + 5 x3ApN
——
sy

+ x3(App + ApN — ANN)

N(/)N
SR ETRN)
W
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1

+ 3 x2(2ANN —2ADN — ADD) (249)
~~—
S

=1-—Ann (250)

1

~—

5;

:ipp—i—(Zj,NN—zj.DN_iDD), (251)

which is precisely the point Q.

— ANN > App+Apn: In this case, the state NN cannot
be completely used with the states DD, DN and ND.
But we note that Ap > Ayy. We first use up the
DN and ND states by alternating with the NN state
using scheme S3/ A portion App of the remaining
(ANN — Apn) duration of the NN state uses up the
DD state in scheme S} achieving the pair (3, 1).
The remaining (Axny — Apny — App) portion of the
NN state is used with the PD and DP states through
the scheme S 43 to achieve the pair (2, 2). For the
remainder of the state PD, DP and the states PN,
NP, we can achieve the pair (1,0), while (1, 1) is
achieved in the PP state. By time sharing, we get

di = App +2lpNn + % x3Apn + % x2App
—— <
523 s)
2
+ 3 x3(ANN — ADN — ADD)
——
st
+2(App — ANN + ADN + ADD) (252)
=1-—Ayn (253)
d=ipp+ 5 X3y — oy~ ipD)
——
st
+ L x2inn (254)
Z
85
= App +2ANN —2ApN — ADD, (255)

which is again the point Q.
Thus, we have achieved the point Q as well.
This completes the achievability of the full region when the
3d; 4+ d> bounds are relevant.
2) When 3d; + d> Bounds Are Irrelevant: This case occurs
when Ayy > Ap. In this case, the single user bounds are

di
d>

1= inw (256)
1 —AnN, (257)

=
=

and as shown in Fig. 12a the only point to achieve is given
by:
R:(di,d2) = (1 — ANN,App +2Lpp + ApD). (258)

Note that App + 2App + App < 1 — Ayn with equality if
and only if Apy = Apy = 0. Thus, it suffices to achieve the
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dy
(App +2Xpp + App, 1 — Ann)

R/

R

\

d

(2)
Fig. 12.

point R which goes to the degenerate point (1—Ayy, | —Ayn)
when Apy = Apny = 0, as shown in Fig. 12b.

To achieve this point, we alternate part of the NN state with
the DD state using scheme S3 to achieve the pair (3, %), and

with the PD and DP states using the scheme S|’ to achieve

the pair (3,2) and with the DN and ND states using the
scheme S32 to achieve the pair (%,O). The remaining NN

state is left unused. The PN and NP states, if available, is
used to achieve the s.d.o.f. pair (1, 0). Thus, we have,

1
di = App + 7 X (22pp) + 3 X (34pD)
- N
s} s;m
2
+ g x3Apn +1 x2Apy (259)
N
23
=1—Aiyn (260)
1 2
d) = App + 7 X (2App) + 3 X (3irp) (261)
- N
s) s;m
= App +ipp +2iPD (262)
=1 — Ay if Apy = Apy = 0. (263)

This completes the proof of the achievability.

VI. PROOF OF THE CONVERSE

A. Local Statistical Equivalence Property
and Associated Lemma

We introduce a property of the channel which we call local
statistical equivalence. Let us focus on the channel output of
receiver 2 corresponding to the state PD and DD at time ¢:

Zpa(t) = Ha, pa()Xpa(t) + N2, pa (1) (264)
Zaa(t) = Ho44(1)Xqa(t) + N2,aa(t). (265)

Now consider (Ha, pa(t), H2.4a (1)), (N2 pa(t), N2aa(t)),

which are i.i.d. as (Hz, pa (1), H2,q4(1)) and
(N2,pa(t), N2,qa(t)), respectively. Using these random
variables, we define artificial channel outputs as:
Zpa(t) = H, pa ()X pa(t) + N2, pa (1) (266)
Zaa(t) = Ha,qa(1)Xaa(t) + N2,aa(t). (267)

(1 = Anns App +2Xpp + App)
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dp

o (1= nn,1—Ann)

R

\

dq
(b)

s.d.o.f. regions in case B, when 3d; + dp and di + 3dp bounds are completely irrelevant. (a) Apy + Apy #0. (b) Apy =ipy =0.

Let Q = (H",H"). Now the local statistical equivalence
property is the following:
W(Zpa(), Zaa 1 Z}pg' Zig", Q)

= h(Zpa(t), Zaa)| 2", Z1), Q).

e (268)

This property shows that if we consider the outputs of a
receiver for such states in which it supplies delayed CSIT,
then the entropy of the channel outputs conditioned on the
past outputs is the same as that of another artificial receiver
whose channel is distributed identically as the original receiver.
Note that in an alternating CSIT setting, we focus on only
the states in which the receiver provides delayed CSIT;
hence we call it local. The original and artificial receivers
have statistically equivalent channels in the sense that the
conditional differential entropies of the outputs at the real and
the artificial receivers given the past outputs are equal. The
proof of this property is given in Appendix A. We next present
the following lemma which together with the local statistical
equivalence property is instrumental in the converse proofs.

Lemma 1: For our channel model, with CSIT alternating
among the states DD, PD and DP we have:

h(Z"|Q) > h(Y pg, Yigl Z", Q) (269)
2h(ZMQ) = h(Y g, Yiyg1Q) (270)
h(Y"|Q) > h(Zy,, Zgg1Y", Q) (271)
2h(Y"Q) = h(Z},, Z}1419), (272)

where a > b denotes Pliinw @ > Pliinw @.
This lemma is proved in Appendix B.

In the following sections, we use the local statistical equiv-
alence property along with Lemma 1 to prove the bounds on
individual d.o.f. d; and d3, the sum d.o.f. (d|; + d) and the
weighted d.o.f. 3d; + d> and d; + 3d>.

B. The Single User Bounds
We recall the single user bounds in (14)-(15):

242lp— A
dlfmin(—+ ; PP,l—lNN)

24+2ip —App
3

(273)

dy < min( 11— /INN). (274)
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1) Proof of di < M’%“’P i = 1,2: In this section, we
prove the following single-user bounds:

g < 2+42ip —App _ 2+24p+2ipp +2ipN

1 =< 3 3 (275)
242ip — 4 2424 22 22
& < + 1; PP _ +24p + 3pD—i- PN 276)

To do so, we enhance the transmitter in the following way:

o First, if in any state, the transmitter has perfect CSIT
from any of the users, we provide perfect CSI for the
other user too, that is, the states PP, PD, DP, PN, NP
are all enhanced to the state PP.

o Next, we enhance all the remaining states,
DD, DN, ND, NN) to DD.

The enhanced channel has two states: PP occurring for 1, =
App+2ipp+22py (using symmetry of the alternation), and
DD occurring for the remaining fraction of the time. Now,
we have the following lemma for such a channel with only
PP and DD states.

Lemma 2: Consider the two-user MISO BCCM with only
two states: PP and DD occurring for 1,, and 144 fractions
of time, respectively, such that 1,, 4+ Agq = 1. Then,

(.e.,

241

d < % 277)
241

d < % (278)

The proof of this lemma is provided in Appendix C-A.

Now using Ap, = App +2App + 2Apy in Lemma 2, we
get the bounds in (275)-(276).

2) Proof of di < 1 — Ann, I = 1,2: In this section, we
prove the following single user bounds:

di
dr

(279)
(280)

<1-2nn
<1—JAnn.

To prove these, we again enhance the transmitter, but in a
different way. We provide the transmitter with perfect CSIT
in every state except the NN state, that is, every state except
the NN state is enhanced to the PP state. Thus, we end up
with a system with two states: PP occurring for 1 — Anyn
fraction of the time and NN occurring for Ayx fraction of the
time. Note that since there is no delayed CSIT in the enhanced
system, there is no feedback. For such a system we have the
following lemma.

Lemma 3: For the two-user MISO BCCM with only two
states: PP and NN occurring for 1 — 4,,, and A,, fractions of
time, respectively, and no feedback,

di
dr

1 — Ann
1 — Zun-

281)
(282)

IATA

The proof of this lemma is provided in Appendix C-B.
Using A,, = Ayny in Lemma 3, we get the bounds
in (279)-(280).
Combining the bounds in (275)-(276) and (279)-(280), we
have the bounds in (14)-(15).
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C. Proof of d; + d> Bound
Recall the sum s.d.o.f. bound from (18):

di+dr <2(Ap + ip). (283)

The original system model has nine possible states, namely,
PP, DD, NN, DP, PD, PN, NP, DN, and ND. We enhance
the transmitter in the following way: whenever in any state,
the transmitter receives delayed CSI of a channel, we provide
perfect CSI of the channel to the transmitter; in other words,
we convert each D state to a P state. This clearly does not
decrease the secrecy capacity (and thus, the s.d.o.f. region).
Also note that the enhanced system does not have any delayed
CSIT, and hence no feedback. Now the enhanced system has
only four states: PP, PN, NP, NN, occurring for 1,, = App+
App+Aipp+App, Apn = ApN+ADN, Anp = AnpP+ANp and
Ann = Ann fractions of time, respectively. For such a system
with four states we have the following lemma:

Lemma 4: Consider the two-user MISO BCCM with only
four of the nine states: PP, PN, NP and NN occurring for
App> Apns Anp and Ay, fractions of the time, with A,y + 4y, +
Anp + Ann = 1. Also, assume there is no feedback. Then,

di +dy < 2ipp + ipn + inp. (284)

Proof of this lemma is presented in Appendix C-C.

Thus, using App = App+Aipp+App+Aipp, Apn = ApN+
ADN, Anp = ANp + Anp and A, = Ayy in Lemma 4, we
have,

di+d, <2(App+Aipp+ipp +App) + ApN + ADN
+Anp + AND (285)
=2(Ap + ip), (286)

where (286) follows due to the assumed symmetry: App =

App, and this completes the proof of the bound on dj + d>.

D. Proof of 3d; + d> and d;j + 3d> Bounds

In this section, we
from (16)-(17):

prove the following bounds

3di+dr <2+4+2pp+2ipp +2ipN
di+3dy <2+2ipp +2lpp +2ipN.

(287)
(288)

To do so, we enhance the system in the following way: When-
ever in any state, the transmitter has no CSIT from a user, we
provide the transmitter delayed CSIT of that user’s channel; in
other words, we enhance each N state to a D state. After this
enhancement, we are left with only four states, namely PP,
PD, DP and DD occurring for A,, = App, Apa = App+APN,
Adp = App + Anp and Agq = App + ApN + AND + ANN
fractions of the time, respectively. We have the following
lemma for such a system with four states:

Lemma 5: Consider the two-user MISO BCCM with only
four of the nine states: PP, PD, DP and DD occurring for
App> Apd, Adp and Agqq fractions of the time, with 1,4 = Agp
and App + Apg + Aap + Aga = 1. Then,

3di+dy <24 2App +24pa
d +3dy <24 24pp +22pa.
We provide a proof for this lemma in Appendix C-D.

(289)
(290)
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Using App = App, Apa = App + APN, Aip =
App + Anp and igqa = JApp + Apn + AND + AnN
in Lemma 5, and symmetry of the alternating states,
we have,

3d) +dy <2+2pp +2ipp +21pN (291)
— 242 (292)
d1+3dy <2+4+2pp+2ipp +24pN (293)
=2+27p, (294)

which completes the proofs for the bounds on 3d; + d> and
d) + 3d>.

VII. CONCLUSIONS

In this paper, we studied the two-user MISO broadcast
channel with confidential messages (BCCM) and characterized
its secure degrees of freedom (s.d.o.f.) region with alter-
nating channel state information at the transmitter (CSIT).
The converse proofs for the s.d.o.f. region presented in the
paper are based on novel arguments such as local statistical
equivalence property and enhancing the system model in dif-
ferent ways, where each carefully chosen enhancement strictly
improves the quality of CSIT in a certain manner. For each
such enhanced system, we invoke the local statistical equiva-
lence property and incorporate the confidentiality constraints
and obtain corresponding upper bounds on the individual
(d1,d2), sum (d; + do) and weighted (3d; + dy, d; + 3d3)
s.d.o.f.

To establish the achievability of the s.d.o.f. region, several
constituent schemes are developed, where each scheme by
itself only operates over a subset of 9 states. The achiev-
ability of the optimal s.d.o.f. region is then established by
time-sharing between the core constituent schemes. The core
constituent schemes not only serve the purpose of establishing
the s.d.o.f. region but also highlight the synergies across
multiple CSIT states which can be exploited to achieve higher
s.d.o.f. in comparison to their individually optimal s.d.o.f. val-
ues. Besides highlighting the synergistic benefits of alternating
CSIT for secrecy, the optimal s.d.o.f. region also quantifies the
information theoretic minimal CSIT required from each user
to attain a certain s.d.o.f. value. In addition, we also quantify
the loss in d.o.f., as a function of the overall CSIT qual-
ity, which must be incurred for incorporating confidentiality
constraints.

APPENDIX A
PROOF OF LOCAL STATISTICAL EQUIVALENCE

In this section, we prove the local statistical equivalence
property:

h(Zpa(0), ZaaOIZLy', Zig', Q)

= W(Zpa(t), Zaa)| 21, 21, Q).

s (295)

To this end, first dgnote the~ common distribution of
(H,pa (), Ha, 44 (1)), (Hz,pa(t),H244(t)) by F. Let Q =
{Hl(t),Hz(t),Hl(t),Hz(t),t = 1n} be the set of all
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channel vectors upto and including time n. Also, let
Q = Q\ {Hz,pd(l), Hy, pa (1), Ha,a4(t), ﬁz,dd(l)}~ We have,
W(Zpa(t), Zaa )| Z}y', 247" Q)
= Er [h(Zpa(0). Zaa )| 2y, 2l Q0. o pa(0),
Ho.4a(1), B, pa(1) = h(0), Ho.aa()) = 8(1)]  (296)
= Ep [h(0(@)Xpa(t) + Nao, pa (1), ) Xaa (1) + Noga ()]
zv )z, Q,)] (297)
= Er [A(O)Xpa () + N2.pa 1), 80Xaa (0) + Nraa )]
z )z, Q,)]

= Er [0 Xpa 1)+ N2, pa 1), 80 Xaa (1) + No.aa (1)

(298)

Z;:ll, Z;:ll, Q, Hy, pa(t), Ha a4 (1), Ha, pa (1), ﬁz,dd(f))]
(299)
=Er [h(zpd(t),zdd(t)|Z;:11, Z0t QL Ha pa (1), Ho aa (1),

f2,pa(0) = h(0), Ao.aa(t) = 8(0) (300)
= h(Zpa(t), Zaa | Z}y,', Zitg', Q), (301)

where (297) follows because (Xpq(t),Xqq(t)) does not
depend on (Hy ,a(t), Ha, pa(t), H2 a4a(t), H2,dd(t))» (298)
follows since the additive noises (N2 pa(t), N2,4q(t)) and
(1(/2, pd (1), NZ,dd (1)) are i.i.d. and independent of all other ran-
dom variables, (299) follows since (X,q(t), X44(1)) does not
depend on (Hy, pq (1), Hz, pa (1), Ha, pa(r), Hz,44(1)) and (300)
follows since (Hy pq(?), Hz,4q(¢)) and (Hz, pa(1), H2 q4(1))
have the same distribution F'.

APPENDIX B
PROOF OF LEMMA 1

We consider the scenario in which there are only three
CSIT states, namely DD,PD and DP. For such a spe-
cific alternating CSIT model, we define the channel outputs
as:

A

72 (0707
A

v e (Vi Yig Yiy)

Also let Q denote the set of all channel vectors upto
and including time n, that is, in other words, Q =

{Hl(t), Hy (1), Hy (1), Ha (1), 0 =1, ..., n} We wish to prove

that with CSIT alternating among the states DD, PD and DP
we have:

h(Z"|1Q) > h(Y g, Y1 Z", Q) (302)
2h(ZMQ) = h(Ypy, Y]y (303)
h(Y"Q) = h(Zy,, Zy,|Y", Q) (304)
2h(Y"Q) = h(Z},, Z}1419). (305)
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First we note that due to symmetry, it suffices to prove (302)
and (303). We proceed as follows:

W(Z"Q) = h(Zlyg, Z5|Q) + h(Z),| 2y, Z5,Q)  (306)
n
= > W(Zpa(1), ZaaW 243", Zli' . Q)
=1
+h(ZZp|ZZd,ZZd,Q). (307)
Using the local statistical equivalence property, we get,
n
h(Z"Q) = D" (Zpa(1), ZaaWN 20", 2l s @)
=1
+h(Z;p|ZZd,Z;d,Q). (308)
Adding (307) and (308), and lower bounding, we get,

21(Z"|Q)

> Zh(zpd(t)»de(t)»Zpd(t),de(t)|Z;;vl»Zé;1»Q)
=1

+2h(Z},|Z"

n s 284 (309)

n
> Zh(zpd(t),de(t),Zpd(f),de(f)|Z;;vl,Zé;1,Q)
=1

+h(Zl,Z,

pd,ZZd,Q)—}-no(log P) (310)

= Zh(zpd(f), Zaa(t), Zpa(t), Zaa(t), Ypa(t), Yaa ()]
=1
z;;,l, zi Q)
- Zh(Ypd(f), Yaa(O1Zpa(t), Zaa(t), Zpa(t), Zaa(t),
=1

-1 -1
Zod Zag Q)
+h(Zly,| 20y, Z5g, Q) + no(log P) (311)
n
> > W(Zpat), Zaa(t), Ypa (1), Yaa DI ZL,', Ziy", Q)
=1
+h(Zly| 20y, Z5g, Q) + no(log P) (312)
n
2 Zh(zpd(t), de(t)’ Ydd(t)Ypd(tNZ;?jl’ Zé;l, Yll;gl’
=1
-1
Y7 Q)
+h(Zy,| 20 Ypas Yias Zya» @) + no(log P) (313)
= (Zhy Zag» Y pas Yial Q) + 1(Zy | Z3 1. Y pas Zgs Y g €2)
+no(log P) (314)
= h(Z", l’;d, Y},1Q) + no(log P), (315)

where (310) follows by noting that

(316)
and (1D ~follows since given
(Zpa(t), Zpa(t), Zaa(t), Zaa(t)), one can reconstruct

(Xpa(t), Xqq(t)) and hence (Ypq(t), Yqq(t)) within noise
distortion, implying that
h(Ypa(t), Yaa O Zpa(t), Zaa(t) Zpa(t), Zaa(t), Z;,:,l, Q)
< no(log P). (317)
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Now both (302) and (303) can be derived from (315).
We simply expand the right hand side of (315) in two ways:

21(Z"1Q) = h(Z", Yy, Y341Q2) + no(log P) (318)
= h(Z"|Q) + h(Y;;d» Y1 Z", Q) + no(log P),
(319)
which implies h(Z"|Q) > h(Y; , Y7,1Z2",Q), which is
exactly (302). Alternatively from (315), we also have
2h(Z™Q) > h(Y;yld» Y5.19Q) + h(Z"|Y1')’d, Y;,Q) + no(log P)
(320)
(321)

> h( ;,Zd, Y;41€) + no(log P),

which implies 24(Z"|Q) > h(Y;’ , Y} ,1Q), thus proving the
relation in (303). This completes the proof of Lemma 1.

APPENDIX C
PROOFS OF LEMMAS 2-5

A. Proof of Lemma 2

Recall that we wish to prove that for the two-user MISO
BC with only two states: PP and DD occurring for 1,, and
Ada fractions of time, respectively, such that 1,, + Aqq = 1,

<2 g <2 (322)
3 3
To do so, we proceed as follows:
nRy < I(Wy; Yl’; , Y7,1Q) + no(n) (323)
=T (Wi Y,1Q) + T (Wr; ng|Yal,'1d> Q) +no(n) (324)
< nipplog P+ I(W1; Y}, |Q) + no(n) (325)
< nipplog P +1(Wy; Y}, Z;,1Q) + no(n) (326)
< nipplog P +1(Wy; Yy ,1Z},, Q) + no(log P)

+ no(n) (327)

< nipplog P +h(Y},1Z},, Q) + no(log P) + no(n)
(328)

IA

nipplog P+ h(Z;,;1Q) + no(log P) + no(n), (329)

where (323) follows from decodability of W; at receiver 1
and Fano’s inequality, (328) follows from confidentiality con-
straint of message Wj at receiver 2, and (329) follows from
application of Lemma 1.

Starting from (325), we also have

nR
< nipplog P+ I(Wy; Y}, |Q) + no(n) (330)
< nipplog P+ I(Wy; YI,1Q) — 1(Wy; Z1,1Q)

+no(log P) 4+ no(n) (331)

< nipplog P + h(Y;d|Q) — h(Y£d|W1 , Q) — h(ZZd|Q)
+h(Z},;|W1, Q) + no(log P) + no(n) (332)
1
< nipplog P + h(Y;d|Q) — Eh(Z;d|W1, Q) — h(ZZd|Q)
+h(Z},;|W1, Q) + no(log P) + no(n) (333)
1
< nipplog P + h(Y;d|Q) + Eh(Z;d|W1, Q) — h(ZZd|Q)
+no(log P) + no(n) (334)
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1
= nipplog P+ h(¥jy|Q) + Sh(Zje1Q)
+no(log P) + no(n)

—h(Z;,419)
(335)

1
= nipplog P +h(Y},|Q) — Eh(Z;dIQ) + no(log P)

+no(n) (336)
1
< nlpplog P +nlyqlog P — Eh(Z§d|Q) + no(log P)
+no(n), (337)

where (331) follows from confidentiality constraint of
message Wp at receiver 2, (333) follows from application of
Lemma 1, and (335) follows from the fact that conditioning
reduces differential entropy.

Eliminating 7(Z};,1€2) from the bounds (337) and (329), we
have,

3nRy < (Bnipp +2nlqq)log P + no(log P) + no(n)
(338)
= (2+ App)nlog P 4 no(log P). (339)

Now first dividing by n and letting n — oo, then dividing by
log P and letting P — oo, we get,
24 App
—3

By symmetry, we get the same single user bound for user 2,
completing the proof of Lemma 2.

dy < (340)

B. Proof of Lemma 3

We want to show that for the two-user MISO BC with only

two states: PP and NN occurring for 1— 4,, and 4,, fractions
of time, respectively,

di

d>

1 — Ann
1 — Ann.

(341)
(342)

=
=

To prove this, we note that since there is no feedback, the
secrecy capacity depends only on the marginal distributions
of channel outputs given the input distribution; [54]. Since the
transmitter does not have channel knowledge of any of the
users in the state NN, our system with outputs

(343)
(344)

=, pp? Yy

(pr’ rm)

has the same secrecy capacity of a new system with outputs
given by

= (Y}, V) (345)
= (Z”p, Yr). (346)
Thus, from the secrecy requirement, we get,
I(Wy Y ) = 1(Wy; Z,) < T(Wy; Z™) < no(log P). (347)
Then we have,
nRy < I(W1; Y pp, Y! )+ no(n) (348)
— T(Wis Y + T(Wis Y1, 1Y0) +no(n)  (349)
< I(Wl; YpolY,,) +no(log P) +no(n)  (350)
< h(, )+no(log P) +no(n) (351)
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(352)
(353)

h(Y,,) + no(log P) + no(n)
n(l — Aup)log P 4+ no(log P) + no(n),

=
=

where, (350) follows from equation (347), (351) follows since

(Y] Y0, Wi) = h(Y] Y2, Wi, X") = o(log P), and (352)

follows since conditiomng reduces differential entropy.
Dividing by n, and letting n — oo, we get,

Ry < (1 —Aun)log P + o(log P). (354)
Dividing by log P and letting P — oo, we have,
di <1 — (355)
By symmetry, we also have,
dy <1 — Ann. (356)

This completes the proof of Lemma 3.

C. Proof of Lemma 4

We wish to prove that for the two-user MISO BC with no
feedback and only four of the nine states: PP, PN, NP and
NN occurring for A,p, Apn, Anp and A,, fractions of the time,
with App + Apn + App + Apn =1,

di+dy < 20pp + Apn + Anp. (357)

To that end, for each of the two receivers, we introduce another
statistically equivalent receiver. At receiver 1, we introduce a
virtual receiver I, with channel output denoted by 17, while the
channel output at the virtual receiver 2 at receiver 2 is denoted
by Z. Since the secrecy capacity without feedback depends
only on the marginals [54], without loss of generality, we can
assume that the channels in the state NN are the same for all
receivers. The outputs at each of the receivers are

=, pn,Y,:’p,Y,fn) (358)
= (Zpys s Zinys V) (359)
= (s Yo ¥ Vi) (360)
=(Z}p, meZ’p»er’n) (361)
where
Yop (8) = Hiup ()Xo (1) + Ninp (1) (362)
Zpn(t) = Hy, p ()X (t) + Nopn (1), (363)

such that Ifll,np, I:IQJ pn are iid. with the same distribution
as Hy ,p, H pn, respectively, and ]\71,,117, szpn are i.1.d. with
same distribution as N1 ,p, N2,pn. We upper bound the first
receiver’s rate as

nR;
< I(Wy; pp,Yl’,’n, p> Yo 1) + no(n) (364)
=I(W,Y pn, np, nle)—}-no(n)

+1I(W1,Yp,1Yy,, ,,p, nn,Q) (365)
§n/1pplogP+1(W1, o> Yups Yan|) +no(n)  (366)
:nxlpplogP—f-I(Wl,Y;’nY,fle)

+I(W; Y, |Y;}n Y", Q) + no(n) (367)
_nipplogP—i—I(Wl, o> ,m|Q)+n0(n)

+hYap 1Yo Yo, Q) = (Y, 1Y 5,0 Yy, Wi, Q) (368)
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<n(ipp —i—lnp)logP +I(Wy; Y pn, Y |Q) + no(n)

—h (Y, | Y s Y W1, Q) + no(log P) (369)
§n(/1pp+/1np)logP h (Y, 1Y s Y Wi, €)

+1(Wi; pn,Y;’n,Zzn,ZZm Zy,, Wa|Q)

+no(n) + no(log P) (370)
:n(/lpp—i—lnp)logP—h(Y” 1Y s Yo W1, Q)

LWL Yy Z 1V Ziogs Zhy W2, )

+no(n) + no(log P) (371)
:n(ipp—i—inp)logP—h( | o Yy, Wi, Q)

+h(Y, pn> 2 pnlYons Zpns Zp> W2, Q)

—h(Yh, 2020 Y0 20 W, Wa, Q)

+no(n) + no(log P) (372)
< n(pp —i—lnp)logP —h(Y” |Y”n, W1, Q)

Yoy 2| Zle Zip Yy W2, Q) + m0(n)

+no(log P) (373)
=n(App + Anp)log P — h(Y,), pn, Yy, Wi, Q)

+h( I VA A nn,Wg,Q)—i—no(logP)

+h(Y | Z ), pn,Zﬁp, Y), W2, Q)+nom) (374)
§n(/1pp+inp)logP h(Y} Ipn, Yy, Wi, Q)

+h(Z |an, Y, Wa, Q) 4+ no(n) + no(log P) (375)
:n(ipp—i—inp)logP—i—h(Z | Znps Yans Wo, Q)

—h(Y, 1Y p> Yo W1, Q) + no(n) + no(log P), (376)

where (371) follows since,
L(Wis Z0y, 20, Y, WalQ)

<IWi Zy,, Z)), Zyyo Yy W2lQ) (377)
=1W, Zy,, Zs Zyp Y 190)

+HIWi; WalZ)y,, Z0ns Zys Yo ) (378)
= no(log P) + I(Wy; Wa|Z3,,, Z, Zyys Vs ) (379)
< no(log P) + HW2|Z},,, Z'ys Zyps Yyns ) (380)
< no(log P) + no(n), (381)

where, (379) and (381) follow from the secrecy and decodabil-
ity requirements respectively In addition, (373) follows since
B Vs Zal Zs Zips Vs Wi, W2, @) 2 o(log P), (375) fol-
lows smce given Z and Z pn, one can reconstruct X;

and hence Y;}n to withln noise distortion, and (376) follows

due to the statistical equivalence of receivers 2 and 2 in the
state PN.
Similarly, by symmetry, we have,

nRy < n(App + /lp,,)logP +h(Y,),
—h(Z, 122

Y50 Yo Wi, Q)
Ws, Q) + no(n) + no(log P).
(382)

np» nn’

Adding (376) and (382), we have,

n(R;i+ Ry) < n(ZApp + ipn + inp) log P

+2no(n) + no(log P). (383)
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First dividing by n log(P) and letting n — oo, and then letting
P — o0, we obtain,

dy+dy < 20pp + Apn + Anp. (384)

This completes the proof of Lemma 4.

D. Proof of Lemma 5

We want to show that for the two-user MISO BC with only
four of the nine states: PP, PD, DP and DD occurring for
App> Apd, Adp and Ag4q fractions of the time, with 1,4 = Agp
and App + Apg + Aap + Aaa =1,

3d) +dy <2420y + 22 pa
dy +3dy < 2—}-21171) +2ipd.

(385)
(386)

To do so, for each of the two receivers, we introduce another
statistically equivalent receiver. At receiver 1, we introduce a
virtual receiver 1, with channel output denoted by Y, while
the channel output at the virtual receiver 2 at receiver 2 is
denoted by Z. Since the capacity depends on the marginals,
without loss of generality, we can assume that the channels
in the state NN are the same for all receivers. The outputs at
each of the receivers can be written as

=, rp’ pd’de’Yn (387)
= (Zpp» Zpas Zap> Vi) (388)
=, rp’ pd’de’Yn (389)
= (2, pd,zdp,yn) (390)
where
Yap(t) = Hiap()Xap(t) + Niap(t) (391)
Zpa(t) = Ha pa()Xpa(t) + N, pa (1), (392)

such that Ijll,dp, I:Iz, pa are i.i.d. with the same distribution as
Hi 4p, Hp pa, respectively, and Nljdp, ]Vz,pd are i.i.d. with
same distribution as Nigp, N2 pq. We consider a special
case with only four states PP, PD, DP and DD. Aided by
Lemma 1, we proceed to prove Lemma 5, as follows:

nRy < I(Wy; Y"|Q) + no(n) (393)
< T(Wi YPQ) — T(Wi; Zy,Z5,19Q)
+no(log P) + no(n) (394)
1
< hY"1Q) = Sh(Zlys Zig Wi, @) — h(Z, Zigl D)
+ h(ZZp, Z5,1W1, Q) + no(log P) 4+ no(n)  (395)

1
= h("|Q) + Sh(Z],. Zig W1, Q) = h(Z,. ;|

+ no(log P) 4+ no(n) (396)
1
< hOYIQ) + Sh(Ziys Z5g19) — h(Ziy Z51)
+no(log P) 4+ no(n) (397)

1
=h("|Q) — Eh(Z;p, Z5,1Q) + no(log P) 4+ no(n)
(398)
1
<nlogP — Eh(ZZp, Z5,1Q) + no(log P) + no(n),
(399)
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where (394) follows from the security constraints, (395) fol-
lows from a conditioned version of Lemma 1 (conditioned
on Wi), and (397) follows, since conditioning reduces differ-
ential entropy.

We also have the following bounds for user 1:

nRy < I(Wy; Y"|Wa, Q) +no(n) (400)
< I(Wy; Y", Z"|W2, Q) + no(n) (401)
= I(Wy; Y Z", W2, Q) + no(log P) + no(n) (402)
< h(Y"|Z", W, Q) + no(log P) + no(n) (403)
= h(Y;’d, Y;p, Y1 Z", Wa, Q) + no(log P) + no(n)
RV YR Y Y 2" W, Q) (404)
< nipplog P + h(Y£p|Z", W, Q) + no(log P) + no(n)
RV, Y01 Z", W), Q) (405)
< n(App + Aap)log P + h(Yl’;d, Y\ Z", Wa, Q)
+no(log P) 4+ no(n) (406)
< n(App + Aap)log P+ h(Z"|W2, Q)
+no(log P) + no(n), (407)
where (402) follows since,
I(Wy; Z"|Wa, Q) < 1(Wy; 2", W2|Q) (408)

= I(Wy; Z"(|Q) + I (Wy; Wa|Z", Q) (409)
< no(log P) + H(W>|Z", Q) (410)
< no(log P) + no(n), 411)

A

using the security and reliability constraints. In addition, (407)
follows from the conditional version of Lemma 1 (conditioned
on Wy).

For receiver 2, we have

nRy < I(Wy; Z"|Q) + no(n)
= h(Z"|Q) — h(Z"|W2, Q) + no(n)

412)
(413)

= h(ZZp|ZZd, ng, Z,, Q)+ h(ZZd, ZZP, Z,19Q)
—h(Z"|W3, Q) + no(n) 414)
< nipplog P +h(Z},,19) + h(Zy,, Z;,12)
— W(Z"| W2, Q) + no(n) (415)
< n(App + Aap)log P + h(ZZp, Z5,19)
— h(Z"|Ws, Q) + no(n). (416)
In summary, from (399), (407) and (416), we have,
1
nRy <nlogP — Eh(ng, Z5419)
+no(log P) + no(n), 417)
nR1 < n(App + Aap)log P + h(Z"|W>, Q)
+no(log P) + no(n), (413)
nRy < n(App + Zap) log P + h(Zy,, Z,1Q)
—h(Z" W2, Q) + no(n). (419)

Eliminating h(ZZp,Z§d|Q) and h(Z"\W;,Q) from these

inequalities and taking the limit n — oo, we arrive at

3Ri+ Ry < 2+24pp +2A4p)log P +o0(log P).  (420)
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Dividing by log P and taking the limit P — oo, we get the
required result

3dy +dr <24 24pp + 244p. 421)
APPENDIX D
PROOF OF THE S.D.O.F. REGION FOR PD STATE

In this section, we present the proof for the s.d.o.f. region
of the fixed PD state (perfect CSIT from user 1 and delayed
CSIT from user 2). The s.d.o.f. region in this case is given by
all non-negative pairs (d;, d») satisfying,

di+d> < 1. (422)

To prove this claim, we first provide a proof of the converse
and then two achievable schemes that are sufficient to achieve
the full region.

A. Converse

To this end, we create a virtual receiver with output 7" with

a channel that is statistically equivalent to user 2. The channel
output Z is given by

Z(t) = B2 ()X(1) + N2 (1), (423)

where ﬁz and Ng are i.i.d. as Hp and N, respectively. Then,

the local statistical equivalence property implies that
hZO\Z' ™ Wa, @) = h(Z0)|Z'7 W2, Q). (424)

where Q is the set of all channel coefficients upto and
including time n. Let us now bound the rate of user 1:

nR
< I(W1; Y"|W2, Q) + no(n) (425)
< I(Wy; Y", Z"|W2, Q) + no(n) (426)
= I(Wy; YMZ", Wa, Q) + no(log P) + no(n) (427)
< I(Wy; Y™, Z"Z", W), Q) + no(log P) + no(n) (428)
= h(Y", Z"Z", W2, Q) — h(Y", Z"|Z", Wi, Wa, Q)
+no(log P) 4+ no(n) (429)
< h(Y", Z"Z", Wa, Q) + no(log P) + no(n) (430)
= h(Z"|Z", W2, Q)+ h(Y"|Z", 2", W>, Q)
+no(log P) + no(n) (431)
< h(Z™|Z", W2, Q) + no(log P) + no(n) (432)
n
= > h(Z®)|Z'7", 2", W2, Q) + no(log P) + no(n)  (433)
t=1
n
< D h(ZMIZ'™", W2, Q) + no(log P) + no(n) ~ (434)
t=1
n
= D h(Z®)|Z'"", W2, Q) + no(log P) + no(n) (435)
t=1
= h(Z"|W», Q) + no(log P) + no(n), (436)

where (427) follows since I(Wy; Z"|W5,Q) < no(log P)
from (408), (432) follows due to the fact that given Z" and
Z”, it is possible to reconstruct X” and hence Y” to within
noise distortion, and (435) follows from (424).
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For the second user, we have,

nRy < I(Wy; Z"|Q) + no(n) (437)
= h(Z"|Q) — h(Z" W2, Q) + no(n) (438)
< nlog P — h(Z"|W3, Q) + no(n). (439)

Adding (436) and (439), we have,
n(Ry + R2) < nlog P + no(log P) 4+ no(n). (440)

Dividing by n and letting n — oo,
Ri 4+ Ry <log P + o(log P). (441)

Now dividing by log P and letting P — oo,

di+dr <1 (442)

This completes the proof of the converse for the case of
PD state alone.

B. Achievable Schemes

Note that it is sufficient to achieve only two points:
a) (d1,d2) = (1,0) and b) (d1, d2) = (0, 1). The achievability
of these corner points follow in straightforward manner from
existing arguments as follows: sending message to user 1 by
superimposing it with artificial noise in a direction orthogonal
to user 1’s channel to achieve the pair (1,0); and sending
the message to user 2 in a direction orthogonal to user 1’s
channel to achieve the pair (0, 1). This completes the proof of
the achievability of the region in (422).

APPENDIX E
PROOF OF THE S.D.O.F. REGION FOR DN STATE

For the MISO BCCM with the fixed state DN (delayed CSIT
from the first user and no CSIT from the second user), the
s.d.o.f. region is given by the set of all non-negative pairs
(d1, dp) satisfying,

1
di+dy < - (443)

To prove this claim, we first provide a proof of the converse
and then two achievable schemes that are sufficient to achieve
the full region.

A. Converse

We first create a virtual receiver with output ¥ with a sta-
tistically equivalent channel as user 1. The channel output Y (¢)
is given by

Y (1) = Hi ()X () + Ny (1), (444)

where fIl and ]\71 are i.i.d. as H; and Nj, respectively. Then,
the local statistical equivalence property implies that

YOI Wi, Q) =h(Y ()Y, Wi, Q),  (445)

where Q is the set of all channel coefficients upto and includ-
ing time n. Similar to the proof of Lemma 1, Appendix B, it
can be readily shown that,

(YW, Q) > h(Z"|W1, Q) + o(log P).  (446)
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Then, for the first user, we have,

nRy < I(Wy; YMQ) — I(Wy; Z"|Q) 4+ no(n) + no(log P)

(447)
= h(Y"1Q) — h(Y"| W1, Q) — h(Z"|Q) + h(Z"| Wy, Q)
(448)

< h(r"1Q) — H(Z" W1, Q) — h(Z"19)
+h(Zn|W1, Q) (449)
— h(Y"|Q) + %h(znwbﬂ) ~h(Z"9) (450)
< h(Y"|Q) + %h(Z”lQ) — h(Z"|Q) (451)
= h1Q) ~ Sh(Z'10), 452)

where (449) follows from (446). For the second user,

nRy < I(Wy; Z"|Q) — I(Wy; Y Q) + no(n) + no(log P)
(453)
= h(Z"|Q) — h(Y"|Q) + no(n) + no(log P)

+ (h(Y" W2, Q) — h(Z"'|W2, Q)) . (454)

Adding (452) and (454), we obtain,

n(R; + Ry) < %h(z"m) + (R(Y" W2, Q) — h(Z"| W2, Q))
4+ no(n) 4+ no(log P) (455)
< %logP + (h(Y"|Wa, Q) — h(Z" | W2, Q))
+ no(n) + no(log P). (456)

Thus, in order to obtain di + d» < 1/2, it suffices to
show that (h(Y"|W,, Q) — h(Z"|W>, Q)) < no(log P), where
the transmitter has delayed CSIT from user 1 and no
CSIT from user 2. To this end, we invoke a recent result
in [47, eqns. (39)—(66)], which showed that the maximum of
h(Y"|Wa, Q) —h(Z"|W>, Q) is less than no(log P), under the
assumption of perfect CSIT from user 1 and no CSIT from
user 2. Hence, the same upper bound on the maximum value
also holds under a weaker assumption of delayed CSIT from
user 1. Thus, using the fact that

(h(Y"|Wa, Q) — h(Z"|W2, Q)) < no(log P),  (457)

and substituting in (456), we have,
n(Ry + R) < g log P + no(n) + no(log P).  (458)

Dividing by n and letting n — oo, we get,

1
Ri+ Ry < 3 log P + o(log P). (459)
Dividing by log P and letting P — oo yields
1
di+dy < 3 (460)

This completes the proof of the converse.
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B. Achievable Schemes

To prove the achievability of the s.d.o.f. region in (443), it
suffices to consider only the two points: a) (d1,d2) = (3. 0)
and b) (dy,dy) = (0, %) Every other point in the region
can be obtained by time-sharing. A scheme for achieving
(d1,dr) = (%,0) was presented in [43]. We include it here
for completeness.

1) Scheme Achieving (dy, dy) = (%, 0) :» We wish to send 1
symbol u securely to the first user in 2 time slots. This can
be done as follows:

a) At Time t = 1: The transmitter does not have any
channel knowledge. It sends:

X() =g ¢,

where g1 and ¢ denote independent artificial noise symbols
distributed as CN (0, P). Both receivers receive linear combi-
nations of the two symbols ¢ and g>. The receivers’ outputs
are:

(461)

Y(1) = hy(Dg1 + hia(Dg2 2 Li(g1, 42)
Z(1) = ho1(Dgq1 + h22(1)qga.

Due to delayed CSIT from receiver 1, the transmitter can
reconstruct L(g1,g2) in the next time slot and use it for
transmission.

b) At Time t = 2: The transmitter sends:

(462)
(463)

X(2) =[u Li(g1,¢)1". (464)

The received signals are:
Y (2) = h11(2Qu + h12(2)L1(q1, q2) (465)
Z(2) = ho1Qu + h22(2)L1(q1, 92)- (466)

Since the receivers have full channel knowledge, receiver 1
can recover u by eliminating L;(g1, g2) from Y(1) and Y(2).
On the other hand, the information leakage to the second user
is given by,

I(u; Z(1), Z(2)1Q) (467)
=h(Z(1), Z(2)|Q) — h(Z(1), Z(2)|u, Q)  (468)
< 2log P — h(h21(1)gq1 + h22(1)q2,

hii(Mgi + hi2(1)g2|€2) (469)
= 2log P —2log P + o(log P) (470)
= o(log P). 471)

2) Scheme Achieving (d;, d2) = (0, é) In this scheme, we
wish to send 1 symbol u securely to the second user in 2 time
slots. This can be done as follows:

a) At Time t = 1: The transmitter does not have any
channel knowledge. It sends:

X()=[u ql,

where g denotes an independent artificial noise symbol distrib-
uted as CN'(0, P). Both receivers receive linear combinations

472)

of the two symbols u and ¢g. The receivers’ outputs are:
A
Y(1) = huu(Du + hi2(1)g = L(u, q) (473)
A
Z(1) = har(Du + ho2(1)g = G(u, q). (474)
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Due to delayed CSIT from receiver 1, the transmitter can
reconstruct L(u,q) in the next times lot and use it for
transmission.

b) At Time t = 2: The transmitter sends:

X2 =[L(u,q) 0. (475)

The received signals are:
Y(2) = h11(2)L(u, q) (476)
Z(2) = h21(2)L(u, q). 477)

Since the receivers have full channel knowledge, receiver 2
can recover u by eliminating g from L(u,q) and G(u, q).
On the other hand, the information leakage to the first user is
given by,

I(u; Y(1), Y (2)1Q) = I(u; L(u, q)|) (478)
= h(L(u, q)|Q) — h(L(u, q)lu, Q) (479)
< log P —log P + o(log P) (480)
= o(log P). (481)

This completes the proof of achievability.
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