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Abstract—We use the idea of dependence balance to obtain a
new outer bound for the capacity region of the discrete memory-
less multiple-access channel with noiseless feedback (MAC-FB).
We consider a binary additive noisy MAC-FB whose feedback
capacity is not known. The binary additive noisy MAC considered
in this paper can be viewed as the discrete counterpart of the
Gaussian MAC-FB. Ozarow established that the capacity region
of the two-user Gaussian MAC-FB is given by the cut-set bound.
Our result shows that for the discrete version of the channel
considered by Ozarow, this is not the case. Direct evaluation of our
outer bound is intractable due to an involved auxiliary random
variable whose large cardinality prohibits an exhaustive search.
We overcome this difficulty by using a composite function and
its properties to explicitly evaluate our outer bound. Our outer
bound is strictly less than the cut-set bound at all points on the
capacity region where feedback increases capacity. In addition,
we explicitly evaluate the Cover–Leung achievable rate region for
the binary additive noisy MAC-FB in consideration. Furthermore,
using the tools developed for the evaluation of our outer bound, we
also explicitly characterize the boundary of the feedback capacity
region of the binary erasure MAC, for which the Cover–Leung
achievable rate region is known to be tight. This last result con-
firms that the feedback strategies developed by Kramer for the
binary erasure MAC are capacity achieving.

Index Terms—Cut-set bound, dependence balance, multiple-ac-
cess channel with feedback (MAC-FB).

I. INTRODUCTION

N OISELESS feedback can increase the capacity region of
the discrete memoryless multiple-access channel (MAC),

unlike for the single-user discrete memoryless channel. This
was shown by Gaarder and Wolf in [2] for the binary erasure
MAC, which is defined as . Ozarow showed
in [3] that feedback can also increase the capacity region of
a two-user Gaussian MAC with feedback (MAC-FB). A con-
structive achievability scheme based on the classical Schalk-
wijk–Kailath [4] feedback scheme was shown to be optimal for
the two-user Gaussian MAC-FB. Moreover, the cut-set outer
bound was shown to be tight in this case.
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Subsequently, Cover and Leung obtained an achievable rate
region for the general MAC-FB based on block Markov super-
position coding [5]. Even though this region is in general larger
than the capacity region of the MAC without feedback, it is not
optimal for the two-user Gaussian MAC-FB, as was shown in
[3]. Kramer [6] used the notion of directed information to ob-
tain an expression for the capacity region of the discrete memo-
ryless MAC-FB. Unfortunately, this expression is in an incom-
putable non-single-letter form. Recently, Bross and Lapidoth
[7] proposed an achievable rate region for the two-user discrete
memoryless MAC-FB and showed that their region includes the
Cover–Leung region, the inclusion being strict for some chan-
nels.

For a specific class of MAC-FB, Willems [8] developed an
outer bound that equals the Cover–Leung achievable rate region.
For this class of MAC-FB, each channel input (say ) should
be expressible as a deterministic function of the other channel
input and the channel output . The binary erasure MAC
considered by Gaarder and Wolf, where , falls
into this class of channels. Therefore, Cover–Leung region is
the feedback capacity region for the binary erasure MAC.

A general outer bound for MAC-FB is the cut-set bound. Al-
though the cut-set bound was shown to be tight for the two-user
Gaussian MAC-FB, it is in general loose. An intuitive reason
for the cut-set bound to be loose for the general MAC-FB is
its permissibility of arbitrary input distributions, some of which
yielding rates which may not be achievable. For instance, even
though Cover–Leung achievability scheme introduces correla-
tion between and , it is a limited form of correlation, as
the channel inputs are conditionally independent given an auxil-
iary random variable, whereas the cut-set bound allows all pos-
sible correlations.

The idea of dependence balance was introduced by Hekstra
and Willems in [9] to obtain an outer bound on the capacity re-
gion of the single-output two-way channel. The basic idea be-
hind this outer bound is to restrict the set of allowable input
distributions, consequently restricting arbitrary correlation be-
tween channel inputs. The authors also developed a parallel
channel extension for the dependence balance bound. The par-
allel channel extension can be interpreted as follows: the parallel
channel output can be considered as a genie-aided information
which is made available at both transmitters and the receiver and
it also affects the set of allowable input distributions through
the dependence balance bound. Depending on the choice of the
genie information (which is equivalent to choosing a parallel
channel), there is an inherent tradeoff between the set of allow-
able input distributions and the excessive mutual information
rate terms which appear in the rate expressions as a consequence
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of the parallel channel output. We will exploit this tradeoff pro-
vided by the parallel channel extension of the dependence bal-
ance bound to obtain a strict improvement over the cut-set bound
for a particular MAC whose feedback capacity is not known.

To motivate the choice of our MAC, consider the binary era-
sure MAC used by Gaarder and Wolf given by .
If we introduce binary additive noise at the channel output, then
the channel becomes , where all , ,
and are binary and has a uniform distribution. This is
a nondeterministic noisy MAC which does not fall into any
class of channels for which the feedback capacity is known.
We should mention that this particular MAC was extensively
studied by Kramer in [6], [10], where the first improvement over
the Cover–Leung achievable rate region was obtained.

We extend the idea of dependence balance to obtain an outer
bound for the entire capacity region of this binary additive noisy
MAC-FB. Direct evaluation of the parallel-channel-based de-
pendence balance bound is intractable due to an involved aux-
iliary random variable whose large cardinality prohibits an ex-
haustive search. We use composite functions and their proper-
ties to obtain a simple characterization for our bound. Our outer
bound strictly improves upon the cut-set bound at all points on
the boundary where feedback increases capacity. In addition,
we explicitly evaluate the Cover–Leung achievable rate region
for our binary additive noisy MAC-FB.

We particularly focus on the symmetric-rate1 point on the
feedback capacity region of this channel. Cover–Leung’s
achievable symmetric rate for this channel was obtained in
[10] as 0.43621 bits/transmission. In [10], Kramer obtained an
improved symmetric-rate inner bound as 0.43879 bits/transmis-
sion by using superposition coding and binning with code trees.
The cut-set upper bound on the symmetric rate was obtained in
[10] as 0.45915 bits/transmission. We obtain a symmetric-rate
upper bound of 0.45330 bits/transmission which strictly im-
proves upon the cut-set bound. Furthermore, we also show that
a binary and uniform selection of the involved auxiliary random
variable is sufficient to obtain our symmetric-rate upper bound.

It should be remarked that the channel we consider in this
paper can be thought of as the discrete counterpart of the
channel considered by Ozarow [3]. Although the cut-set bound
was shown to be tight for the two-user Gaussian MAC-FB, our
result shows that the cut-set bound is not tight for the discrete
version of the additive noisy MAC-FB.

As an application of the properties of the composite func-
tions developed in this paper, we are able to obtain the entire
boundary of the capacity region of the binary erasure MAC-FB.
The evaluation of the asymmetric rate pairs on the boundary of
the feedback capacity region of the binary erasure MAC was
mentioned as an open problem in [11]. It was shown in [12] that
a binary and uniform auxiliary random variable is sufficient
to attain the sum–rate point on the capacity region of the binary
erasure MAC-FB. We show here that this is also the case for any
asymmetric rate point on the boundary of the feedback capacity
region. This result also complements the work of Kramer [13],
where feedback strategies were developed for the binary erasure

1By symmetric-rate point, we refer to the maximum rate � such that the rate
pair ����� lies in the capacity region of MAC-FB.

Fig. 1. The MAC with noiseless feedback (MAC-FB).

MAC-FB and it was shown that these strategies achieve all rates
yielded by a binary selection of the auxiliary random variable
in the capacity region. Our result hence shows in effect that the
feedback strategies developed in [13] for binary erasure MAC
are optimal and capacity achieving.

II. SYSTEM MODEL

A discrete memoryless two-user MAC-FB (see Fig. 1) is de-
fined by the following: two input alphabets and , an output
alphabet , and the channel defined by a probability transition
function for all . An

code for the MAC-FB consists of two sets of
encoding functions for and a decoding
function

The two transmitters produce independent and uniformly dis-
tributed messages and ,
respectively, and transmit them through channel uses. The
average error probability is defined as

. A rate pair is said to be achievable for
MAC-FB if for any , there exists a pair of encoding
functions , , and a decoding function such
that , , and for
sufficiently large . The capacity region of MAC-FB is the
closure of the set of all achievable rate pairs .

III. CUT-SET OUTER BOUND FOR MAC-FB

By applying Theorem 14.10.1 in [14], the cut-set outer bound
on the capacity region of MAC-FB can be obtained as

(1)

(2)

(3)

where the random variables have the joint distri-
bution

(4)

The cut-set outer bound allows all input distributions ,
which makes it seemingly loose since an achievable scheme
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might not achieve arbitrary correlation and rates given by the
cut-set bound. Our aim is to restrict the set of allowable input
distributions by using a dependence balance approach.

IV. DEPENDENCE BALANCE OUTER BOUND FOR MAC-FB

Hekstra and Willems [9] showed that the capacity region of
MAC-FB is contained within , where

(5)

(6)

(7)

where the random variables have the joint dis-
tribution

(8)

and also satisfy the following dependence balance bound:

(9)

where is subject to a cardinality constraint of
. The dependence balance bound restricts the set

of input distributions in the sense that it allows only those input
distributions which satisfy (9). It should be noted
that by ignoring the constraint in (9), one obtains the cut-set
bound.

V. ADAPTIVE PARALLEL CHANNEL EXTENSION OF THE

DEPENDENCE BALANCE BOUND

In [9], Hekstra and Willems also developed an adaptive par-
allel channel extension for the dependence balance bound which
is given as follows: Let denote the set of all distribu-
tions of and denote the set of all conditional dis-
tributions of given . Then for any mapping

, the capacity region of the MAC-FB
is contained in

(10)

(11)

(12)

(13)

(14)

(15)

where the random variables have the joint
distribution

(16)
such that for all

(17)

and such that

(18)

where is subject to a cardinality bound of .

We should remark that the parallel channel (defined by
) is selected a priori, and for every choice of

the parallel channel, one obtains an outer bound on the capacity
region of MAC-FB, which is in general tighter than the cut-set
bound. The set of allowable input distributions
are those which satisfy the constraint in (18). Also note that
only the right-hand side of (18), i.e., only ,
depends on the choice of the parallel channel. By carefully
selecting , one can reduce ,
thereby making the constraint in (18) more stringent, conse-
quently reducing the set of allowable input distributions. To
obtain an improvement over the cut-set bound, we need to
select a “good” parallel channel such that it restricts the input
distributions to a small allowable set and yields small values of

and at the same time.
These two mutual information “leak” terms are the extra terms
that appear in (10) and (11) relative to the rates appearing in (5)
and (6), respectively.

To motivate the choice of our particular parallel channel, first
consider a trivial choice of (a constant). For this
choice of , (18) reduces to (9) and we are not restricting the set
of allowable input distributions any more than the bound.
Moreover, for a constant selection of , (10) and (11) reduce
to (5) and (6), respectively. Thus, a constant selection of for

is equivalent to itself.
Also note that the smallest value of

is zero. Thus, it follows that if we select a parallel channel
such that for every input distribu-
tion , then by (18). Hence,
the smallest set of input distributions permissible by
consists of those for which and are con-
ditionally independent given . Furthermore, for a parallel
channel such that , the bound in (15) is
redundant. This can be seen from

(19)

Using (19), it is clear that the sum of constraints (10) and
(11) is at least as strong as the constraint (15). This shows
that (15) is redundant for the class of parallel channels where

.

VI. BINARY ADDITIVE NOISY MAC-FB

In this paper, we will consider a binary-input additive noisy
MAC given by

(20)

where is binary, uniform over , and independent of
and . The channel output takes values from the set

. This channel does not fall into any class of MAC
for which the feedback capacity region is known. This channel
was also considered by Kramer in [6], [10] where it was shown
that the Cover–Leung achievable rate is strictly suboptimal for
the sum-rate.
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We select a parallel channel such
that . By (18), this will imply

, and hence only distributions of the type

will be allowed. By doing so, we restrict the set of allowable
input distributions to be the smallest permitted by ,
although we pay a penalty due to the positive “leak” terms

and .
Two simple choices of which yield
are and . For each of these choices, the

corresponding outer bounds are

(21)

(22)

(23)

(24)

and

(25)

(26)

(27)

(28)

where both and are evaluated over the set of input
distributions of the form . We
should remark here that these two outer bounds can also be ob-
tained by extending the approach of Zhang, Berger, and Schalk-
wijk [15] to the MAC-FB.

Lemma 1: For the binary additive noisy MAC-FB given in
(20), the following equalities hold for any distribution of the
form :

(29)

(30)

The proof of Lemma 1 is given in the Appendix .
Using Lemma 1, we can simplify and as

(31)

(32)

(33)

and

(34)

(35)

(36)

where both bounds are evaluated over the set of distributions
of the form and the auxil-
iary random variable is subject to a cardinality constraint of

. The evaluation of the above outer bounds is
rather cumbersome because for binary inputs, the bound on
is . To the best of our knowledge, no one has been able
to conduct an exhaustive search over an auxiliary random vari-
able whose cardinality is larger than . In Section VIII, we will
obtain an alternate characterization for our outer bounds using
composite functions and their properties. For that, we will first
develop some useful properties of composite functions in the
next section.

A valid outer bound is given by the intersection of and
:

(37)

We will show that this outer bound is strictly smaller than the
cut-set bound at all points on the capacity region where feedback
increases capacity.

VII. COMPOSITE FUNCTIONS AND THEIR PROPERTIES

Before obtaining a characterization of our outer bounds,
we will define a composite function and prove two lemmas
regarding its properties. These lemmas will be essential in
obtaining simple characterizations for our outer bounds and the
Cover–Leung achievable rate region. Throughout the paper, we
will refer to the entropy function as which is
defined as

(38)

for , , and , where all logarithms
are to the base . We will denote simply as .
To characterize our bounds, we will make use of the following
function:

for

for
(39)

It was shown in [12] that the composite function is sym-
metric around and concave in for . The
functions and are illustrated in Fig. 2. From the
definition of in (39) it is clear that for any , the
function satisfies the following property:

(40)

As a consequence, the following holds as well:

(41)

For any , the following holds from the definition of
:

(42)
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Fig. 2. Functions ���� and �������.

For any and , let us define a function

(43)

(44)

From the above definition, it is clear that the function
lies in the range . We now state two lemmas regarding
the function .

Lemma 2: The variable

(45)

is always lower-bounded by for any
, .

Lemma 3: The function is jointly convex in for
.

The proofs of Lemmas 2 and 3 are given in the Appendix.

VIII. EVALUATION OF THE DEPENDENCE BALANCE OUTER

BOUND

We now present the main result of this paper.

Theorem 1: The feedback capacity region of the binary addi-
tive noisy MAC given by (20) is contained in the region

(46)

where

(47)

and

(48)

and the set is defined as

(49)

Proof: We will explicitly characterize our outer bounds
and . Let the cardinality of the auxiliary random

variable be fixed and arbitrary, say . Then, the joint dis-
tribution can be described by the following
variables:

(50)

We will characterize our outer bounds in terms of three variables
, , and which are functions of , and are defined

as

(51)

(52)

(53)

where we have defined

(54)

(55)

(56)

It should be noted that since , for ,
, the variables and all lie in the range

. Our outer bounds and are comprised of
the following information-theoretic entities:

1) ,
2) ,
3) .
We will first obtain upper bounds for each one of these entities

individually in terms of .
We upper-bound as follows:

(57)

(58)
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(59)

(60)

where (58) follows due to (41), (59) follows from (54), and (60)
follows from the fact that is concave in and the ap-
plication of Jensen’s inequality [14]. Using a similar set of in-
equalities for , we obtain

(61)

We will now upper-bound in terms of the vari-
able . For this purpose, let us first define

(62)

(63)

(64)

(65)

We now proceed as

(66)

(67)

(68)

(69)

(70)

(71)

where (69) follows by the concavity of the entropy function and
the application of Jensen’s inequality [14]. Using a similar set
of inequalities, we also have

(72)

We will now obtain an upper bound on . First
note that

(73)

(74)

where

(75)

(76)

(77)

(78)

Using the following fact:

(79)

(80)

(81)

(82)

where (80) follows by the concavity of the entropy function and
the application of Jensen’s inequality [14], we now obtain an
upper bound on by continuing from (74)

(83)

(84)

(85)

where (84) follows by (82) and (85) follows from the fact that
using (76) and (77), where is as

defined in (53).
We have obtained upper bounds on the information-theoretic

entities which comprise our outer bounds in terms of three vari-
ables and . We will now give a feasible region for these
triples based on the structures of these variables. We claim that
the following set is feasible:

(86)

First, note that for any , the following holds:
. Similarly, . Hence,

we have

(87)

(88)

We now obtain a lower bound on as

(89)

(90)

(91)

(92)

where (90) follows by Lemma 2 and (91) follows by Lemma 3
and the application of Jensen’s inequality [14]. We now obtain
another lower bound on

(93)

(94)
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(95)

(96)

(97)

(98)

Finally, we obtain an upper bound on in terms of and

(99)

(100)

(101)

(102)

(103)

where (102) follows by the inequality
.

By noting that

(104)

(105)

(106)

(107)

and using (92), we note that the lower bound in (98) is redun-
dant.

Therefore, from (92) and (103), we have the following fea-
sible range for the variable in terms of and :

(108)

Combining (87), (88), and (108), we obtain the set of feasible
given in (86).

From (107), observe that only if
. The lower bound was sufficient for

characterizing the symmetric feedback capacity of the binary
erasure MAC [12]. Moreover, this characterization was pos-
sible by using only one variable . On the other hand, our outer
bounds are asymmetric in terms of the expressions appearing
in the individual upper bounds for and . Therefore, the
bifurcation of information contained in any input distribution

in terms of three variables and
an improved lower bound2 on the variable using the nonlinear

2Note that from the definition of � in (53), we also have � � ���� �� � �.
Therefore, roughly speaking, � � � reflects the correlation between � and
� . Hence, obtaining a good lower bound on � is equivalent to limiting the
correlation between � and � . This interpretation is in accordance with the
basic idea of dependence balance.

bivariate function turn out to be crucial in capturing
this asymmetry. This can be considered as a heuristic explana-
tion as to why we are able to obtain explicit characterizations of
our outer bounds and the Cover–Leung achievable rate region
for both channel models considered in this paper.

It should be noted that the set of triples obtained in (86)
may not necessarily be the smallest feasible set of all triples

. Since we are interested in a maximization over these
set of triples, a possibly larger set suffices.

Using the upper bounds on , ,
, , and in (60), (61),

(71), (72), and (85) in terms of along with a feasible
set of triples in (86), we arrive at the desired characterizations
for and given in (47) and (48), respectively.
Finally, the intersection of two outer bounds is also a valid
outer bound. Therefore, the outer bound given in (46)
contains the feedback capacity region of the binary additive
noisy MAC.

We will plot these outer bounds and their intersection in
Fig. 4. In the next section, we will explicitly characterize our
upper bounds for the symmetric-rate point on the feedback
capacity region of the binary additive noisy MAC.

IX. EXPLICIT CHARACTERIZATION OF THE SYMMETRIC-RATE

UPPER BOUND

For the binary additive noisy MAC-FB in consideration, it
was shown by Kramer [6] that the symmetric-rate cut-set bound
is 0.45915 bits/transmission. It was also shown in [6] that the
Cover–Leung achievable symmetric rate is 0.43621 bits/trans-
mission and it was improved to 0.43879 bits/transmission by
using superposition coding and binning with code trees. For
completeness and comparison with existing bounds, we will first
completely characterize our outer bound for the symmetric rate
by providing the input distribution which
achieves it. By symmetric rate we mean a rate such that the
rate pair lies in the capacity region of MAC-FB. For
the symmetric rate, both and will yield the same
upper bound. Hence, we will focus on . Using (47), we
are interested in obtaining the largest over all
such that

(109)

(110)

(111)

We will show that a seemingly weaker version of the above
bound will improve upon the symmetric-rate cut-set bound. We
will also show that the weaker bound is in fact the same as the
above bound, and its sole purpose is the simplicity of evaluation
and insight into the input distribution that attains it. We first ob-
tain a weakened version of (109) as

(112)

Next, consider (111)

(113)
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(114)

(115)

where (115) follows from (92) and the fact that the binary en-
tropy function is monotonically increasing in for

. Combining (110), (112), and (115), we are interested in
the largest such that

(116)

We note that this upper bound on the symmetric rate depends
only on and , and therefore, we replace the feasible set
with .

We know that is concave in for . Hence,
it follows that both and are concave in

and , respectively, and hence concave in the pair .
We also have the following lemma.

Lemma 4: The function

(117)

is monotonically decreasing and jointly concave in the pair
for .

The proof of Lemma 4 is given in the Appendix .
Using Lemma 4, we conclude that all three functions in the

in (116) are concave in . Invoking the fact that
the minimum of concave functions is concave, we conclude
that the maximum in (116) is unique. We will now show that
the unique pair that attains this maximum satisfies the
property that .

For this purpose, we first characterize those pairs
such that the following holds:

(118)

By using (118), we obtain two equations for and , as

(119)

(120)

From (119), one can see that is the unique solution
of the equation

(121)

Obtaining the optimal from the above equation is illustrated
in Fig. 3. The unique solutions of (119) and (120) are

(122)

Fig. 3. Characterization of the optimal � .

We will now show that this pair yields the maximum
in (116)

Returning to the maximization problem (116), first denote
as the region of allowable

(123)

Also, define a subset of this region

(124)

where is given by (122). We will now show that the
pair yields the solution of the maximization problem
in (116). Consider the following two cases.

1) If , then by Lemma 4, we have that
, using which we obtain

(125)

2) If , we either have or
or both. Using this along with the fact that is
monotonically increasing in for , we obtain

(126)
The above two cases show the following:

(127)

(128)

(129)

Thus, the maximum in (116) is obtained at .
We now obtain a distribution which attains
this symmetric-rate upper bound. Fix to be binary, and select
the involved probabilities as

(130)

(131)

(132)
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The reason for constructing such an input distribution is that, at
this specific distribution, we have the following exact equalities:

(133)

(134)

(135)

and we achieve the outer bound we developed with equality.
Substituting the values of , we obtain a distribution
given by

(136)

(137)

(138)

The above input distribution yields a symmetric rate of
0.45330 bits/transmission. Moreover, the corresponding to
this distribution is given by

(139)

(140)

(141)

where (140) is by construction of the input distribution
and (141) is obtained by substituting the distribu-

tion specified in (136)–(138). Moreover, ,
hence, we also have that

(142)

This shows that the weakened version of the upper bound ob-
tained in (116) is indeed tight and a binary auxiliary random
variable with uniform distribution over is sufficient to
attain this symmetric-rate upper bound.

X. EVALUATION OF THE COVER–LEUNG ACHIEVABLE RATE

REGION

For completeness we will also obtain a simple characteriza-
tion of the Cover–Leung inner bound for our binary additive
noisy MAC-FB. For this purpose, we follow a two-step ap-
proach. In the first step, we first obtain an outer bound on the
achievable rate region in terms of two variables . In the
second step, we specify an input distribution, as a function of

, which achieves the outer bound. We therefore arrive
at an alternate characterization of the Cover–Leung achievable
rate region in terms of the variables .

The Cover–Leung achievable rate region [5] is given as

(143)

(144)

(145)

where the random variables have the joint dis-
tribution

(146)

and the random variable is subject to a cardinality constraint
of .

We now state the main result of this section.

Theorem 2: The Cover–Leung achievable rate region for the
binary additive noisy MAC given by (20) is given as

(147)

where the set is defined as

(148)

Proof: For the binary additive noisy MAC in consideration,
the constraints in (143)–(145) simplify as

(149)

(150)

(151)

We will first obtain an outer bound on the region specified by
(149)–(151) in terms of two variables . For every pair

, we will then specify an input distribution which will at-
tain this outer bound. Note that the three constraints (149)–(151)
are of similar form as in the case of and , and we
proceed in a similar manner to obtain upper bounds on the three
terms above in terms of and as

(152)

(153)

(154)

where the variables belong to the set defined in
(123). Hence, an outer bound on the rate region specified by
(149)–(151) is given as , where

(155)
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Let be any arbitrary pair which belongs to . Consider
an input distribution for which , and is uniform over

and

(156)

(157)

(158)

For this input distribution, we obtain the following exact equal-
ities:

(159)

(160)

(161)

We have thus shown that the outer bound we obtained on the
achievable rate region in terms of can be attained by
a set of input distributions for which the involved auxiliary
random variable is binary and uniform. This in turn implies
that a binary and uniform random variable is sufficient to
characterize the entire Cover–Leung achievable rate region for
the binary additive noisy MAC-FB. By varying over all such
input distributions, or equivalently, by varying in the
set , we obtain the entire Cover–Leung achievable rate region
given in (147).

We should remark here that when evaluating the
bound in the previous section for and , it was
not necessary to specify the distribution which achieves the
bound, since it was an outer bound. On the other hand, when
evaluating the Cover–Leung bound, since it is an achievability,
it is necessary to give a distribution which achieves the bound.

The dependence balance bounds corresponding to the par-
allel channel choices and , along with the
cut-set upper bound and the Cover–Leung achievable rate re-
gion are shown in Figs. 4 and 5. It is interesting to note that our
bound improves upon the cut-set bound at all points where the
Cover–Leung achievable rate region is strictly larger than the
capacity region without feedback. In other words, our bound
improves upon the cut-set bound at all points where feedback
increases capacity.

We should remark that our choices of parallel channels;
namely, and are the simplest ones
which ensure that but they yield
fixed information leaks. We believe that by a more elaborate
choice of a parallel channel, i.e., by carefully selecting a
parameterized parallel channel such that

, one would still be able to restrict the
input distributions to a conditionally independent form and then
optimize the parameters of the parallel channel to minimize the
information leak terms. This approach can potentially improve
upon our outer bound. However, for explicitly characterizing
such outer bounds, one might require a new approach and
possibly a different composite function than the one used in
this paper.

Fig. 4. Illustration of our bounds for the capacity of binary additive noisy
MAC-FB.

Fig. 5. An enlarged illustration of the portion of Fig. 4 where feedback in-
creases capacity.

XI. THE CAPACITY REGION OF THE BINARY ERASURE

MAC-FB

The capacity region of a class of discrete memoryless
MAC-FB was characterized in [8] by establishing a converse
and it was shown to be equal to the Cover–Leung achievable
rate region. This class of channels satisfy the property that
at least one of the channel inputs, say , can be written
as a deterministic function of the other channel input
and the channel output . The binary erasure MAC, where

, falls into this class of channels. In addition, the
binary erasure MAC-FB is the noiseless version of the binary
additive noisy MAC-FB studied in this paper.

Willems showed in [12] that a binary selection of auxiliary
random variable is sufficient to obtain the sum–rate point of the
capacity region of the binary erasure MAC-FB. In this section,
we will show that by using our results for composite functions
which were presented in previous sections, it is possible to ob-
tain all points on the boundary of this capacity region using a
binary auxiliary random variable. The feedback capacity region
of this channel is given by the CoveLeung achievable rate region
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given in (143)–(145) which can be simplified for the binary era-
sure MAC-FB as

(162)

(163)

(164)

We now state the main result of this section.

Theorem 3: The feedback capacity region of the binary era-
sure MAC is given as

(165)

where the set is defined as

(166)

Proof: We start by obtaining three upper bounds on the
expressions appearing in the bounds (162)–(164). We first have

(167)

Similarly, we also have

(168)

We now obtain an upper bound on , by first noting that

(169)

where

(170)

(171)

(172)

Now, we use the following inequality established in [12]:

(173)

(174)

(175)

where (174) follows by the concavity of the entropy function
and by the application of Jensen’s inequality [14]. Using (175)
and continuing from (169), we obtain

(176)

(177)

(178)

where is defined in (53). Using (167), (168), and (178), we
can write an outer bound on the capacity region as follows:

(179)

where

(180)

and the set is defined in (86). We will now obtain a sim-
pler characterization of in terms of two variables
by showing that , where

(181)

where

(182)

The proof of the claim is given in the Appendix .
Hence, we have an outer bound on the capacity region as given
by .

The outer bound is evaluated over the set of pairs
such that . For any such arbitrary pair , an
input distribution which achieves the set of rate pairs specified
by is obtained by selecting , and

(183)

(184)

(185)

The set of rates achievable by the distribution specified in
(183)–(185) are obtained as

(186)

(187)

(188)

This shows that the capacity region of binary erasure
MAC-FB can be obtained by a binary and uniform selection of
the auxiliary random variable .

The capacity region of the binary erasure MAC with and
without feedback and the cut-set bound are illustrated in Figs. 6
and 7. It was shown in [12] that the sum–rate point on the
boundary of the capacity region lies strictly below the “total
cooperation” line. This is equivalent to saying that the cut-set
bound is not tight for the sum–rate point. From our result, it is
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Fig. 6. Illustration of the capacity region of binary erasure MAC-FB.

Fig. 7. An enlarged illustration of the portion of Fig. 6 where feedback in-
creases capacity.

now clear that the cut-set bound is not tight for asymmetric rate
pairs either. In fact, it is not tight at all boundary points where
feedback increases capacity.

Moreover, our result also shows that a simple selection of bi-
nary and uniform is sufficient to evaluate the boundary of the
capacity region of binary erasure MAC-FB. Simple feedback
strategies for a class of two-user MAC-FB were developed in
[13]. It was shown that for the binary erasure MAC, these feed-
back strategies yield all rate points for a binary selection of the
auxiliary random variable . Thus, our result shows that these
feedback strategies are indeed optimal for the binary erasure
MAC-FB and yield all rates on the boundary of its feedback
capacity region.

XII. CONCLUSION

In this paper, we obtained a new outer bound on the capacity
region of a MAC-FB by using the idea of dependence balance.
We considered a binary additive noisy MAC-FB for which it
is known that feedback increases capacity but the feedback ca-
pacity region is not known. The best known outer bound on
the feedback capacity region of this channel was the cut-set
bound. We used the dependence balance bound to improve upon
the cut-set bound at all points in the capacity region of this

channel where feedback increases capacity. Our result is some-
what surprising once it is realized that the channel we consid-
ered in this paper is the discrete version of the two-user Gaussian
MAC-FB considered by Ozarow in [3], where the cut-set bound
was shown to be tight.

Our outer bound is difficult to evaluate due to an involved
auxiliary random variable . For binary inputs, the cardinality
bound on is which makes it intractable to evaluate
the outer bound. We overcome this difficulty by making use of
composite functions and their properties to obtain a simple char-
acterization of our bound. As an application of the properties of
the composite functions developed in this paper, we are also able
to completely characterize the Cover–Leung achievable rate re-
gion for this channel.

The capacity region of the binary erasure MAC-FB is known
and it coincides with the Cover–Leung achievable rate region.
Although the capacity region is known in principle, it is not
known how to compute the entire region, the difficulty arising
again due to the involved auxiliary random variable. We again
make use of the composite functions to give an alternate charac-
terization of the capacity region of the binary erasure MAC-FB.
In addition, we go on to show that a binary and uniform auxiliary
random variable selection is sufficient to evaluate its feedback
capacity region.

APPENDIX

A. Proof of Lemma 1

For a given distribution , we have

(189)

(190)

(191)

(192)

where (190) follows from the fact that is uniquely deter-
mined when we have or , or we have

or and (191) follows by noting that

(193)

(194)

and

(195)

(196)
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We have therefore proved (29) and the proof of (30) follows
similarly. This completes the proof of Lemma 1.

B. Proof of Lemma 2

We prove Lemma 2 by considering all four possible cases.
1) If , then from (42),

, , and hence

(197)

2) If , then from (42),
, , and hence

(198)

3) If , then from (42),
, , and hence

(199)

where follows by the fact that
.

4) If , then from (42),
, , and hence

(200)

where follows by the fact that
.

Thus, for any pair , where , , we
have shown that .

C. Proof of Lemma 3

A function is jointly convex [16] in if for any
two pairs, and , we have ,

, for all .
Showing that the function is jointly convex in

is equivalent to showing that the Hessian matrix of is
positive semi-definite, which is equivalent to showing that the
eigenvalues of are nonnegative. The Hessian matrix of

is

(201)

The two eigenvalues of are

(202)

which are nonnegative for all and , thus
completing the proof.

D. Proof of Lemma 4

It suffices to show that for a fixed , the function
is monotonically decreasing in . Substituting the value of

, we have

(203)

(204)

Now using the fact that is increasing in for ,
we have that for , . Moreover, the
following holds:

(205)

since . Now using the above inequality along with
the fact that the binary entropy function is increasing for

, we have that for

(206)

This shows that for a fixed , the function is mono-
tonically decreasing in . As the function is symmetric in
and , the monotonicity of in follows.

To show the concavity of in the pair , we
first note from Lemma 3 that is jointly convex in
the pair . We define another function

(207)

Note that is jointly concave in the pair .
Furthermore, the binary entropy function is concave and
nondecreasing for . Hence, rewriting the function

as a composition of two functions, we obtain

(208)

From the theory of composite functions [16], we know that a
composite function is concave in if is con-
cave and nondecreasing and is concave in . Identifying

with and with , the concavity of
in the pair is established.

E. Proof of the Claim

The inclusion is straightforward by forcing
in . We will now show that . For this

purpose, we will need the following lemma.

Lemma 5: The function

(209)
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is concave in for and takes its maximum value
at . Moreover, the function is increasing in for

and decreasing in for .

The proof of this lemma follows from the fact that both
and are concave in .

Now consider any arbitrary triple . We can
classify any such triple into one of the following cases.

1) If : for any such , there
exists a pair , such that

(210)

(211)

(212)

One such pair can be obtained as follows. Using
the fact that for a fixed , is increasing in ,
we select and solve for for which

. The required is obtained as

(213)

For such a pair , the following inequalities hold:

(214)

(215)

(216)

2) If , then we have
by Lemma 5

(217)

(218)

Now consider the pair , for which we
have . Hence, we have that

(219)

(220)

(221)

We have thus shown that for any triple , there ex-
ists a pair , such that ,
which in turn implies that , and consequently

.
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