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Delay-Minimal Transmission for Average Power
Constrained Multi-Access Communications

Jing Yang, Student Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—We investigate the problem of minimizing the overall
transmission delay of packets in a multi-access wireless commu-
nication system, where the transmitters have average power con-
straints. We use a multi-dimensional Markov chain to model the
medium access control layer behavior. The state of the Markov
chain represents current queue lengths. Our goal is to minimize
the average packet delay through controlling the probability of
departure at each state, while satisfying the average power con-
straint for each queue. We consider a general asymmetric system,
where the arrival rates to the queues, channel gains and average
power constraints of the two users are arbitrary. We formulate
the problem as a constrained optimization problem, and then
transform it to a linear programming problem. We analyze the
linear programming problem, and develop a procedure by which
we determine the optimal solution analytically. We show that
the optimal policy has a threshold structure: when the sum of
the queue lengths is larger than a threshold, both users should
transmit a packet during the current slot; when the sum of
the queue lengths is smaller than a threshold, only one of the
users, the one with the longer queue, should transmit a packet
during the current slot. We provide numerical examples for both
symmetric and asymmetric settings.

Index Terms—Delay minimization, multi-access communica-
tion, medium-access control, queue control, power allocation,
cross-layer design.

I. INTRODUCTION

IN many applications, the average delay packets experience
is an important quality of service criterion. Therefore, it

is important to allocate the given resources, e.g., average
power, energy, etc., in a way to minimize the average delay
packets experience. Since power and energy are physical
layer resources, and the delay is a medium access control
(MAC) layer issue, such resource allocation problems require
close collaboration of physical and MAC layers, and yield
cross-layer solutions. Our goal in this paper is to combine
information theory and queueing theory to devise a transmis-
sion protocol which minimizes the average delay experienced
by packets, subject to an average power constraint at each
transmitter.
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Similar goals have been undertaken by various authors in
recent years. Reference [2] considers a time-slotted system
with 𝑁 queues and one server. The length of the slot is equal
to the transmission time of a packet in the queue. In each
slot, the controller allocates the server to one of the connected
queues, such that the average delay in the system is minimized.
The authors develop an algorithm named longest connected
queue (LCQ), where the server is allocated to the longest of
all connected queues at any given slot. The authors prove
that in a symmetric system, LCQ algorithm minimizes the
average delay. Reference [2] does not consider the issue of
power consumption during transmissions.

Reference [3] combines information theory and queueing
theory in a multi-access communication over an additive
Gaussian noise channel. Authors consider a continuous time
system, where the arrival of packets is a Poisson process,
and the service time required for each packet is random.
Once a packet arrives, it is transmitted immediately with a
fixed power, i.e, there are no queues at the transmitters. Each
transmitter-receiver pair treats the other active pairs as noise.
Because of the interference from the other transmitters, the
service rate for each packet is a function of the number of
active users in the system. Reference [3] derives a relationship
between the average delay and a fixed probability of error
requirement.

References [4]–[12] consider the data transmission problem
from both information theory and queueing theory perspec-
tives. Reference [4] (see also [5], [6]) aims to minimize the av-
erage delay through rate allocation in a multi-access scenario
in additive Gaussian noise. Unlike [3], in the setting of [4],
packets arrive randomly into the buffers of the transmitters.
When the queue at a transmitter is not empty, it transmits a
packet with a fixed power. Simultaneously achievable rates
are characterized by the capacity region of a multiple-access
channel, which, for the non-fading Gaussian case, is a pen-
tagon. The purpose of [4] is to find an operating point on the
capacity region of the corresponding multiple-access channel
such that the average delay is minimized. The author develops
the longer-queue-higher-rate (LQHR) allocation strategy in the
symmetric multi-access case, which is shown to minimize the
average delay of the packets. The LQHR allocation scheme
selects an extreme point (i.e., a corner point) in the multi-
access capacity region.

Reference [7] (see also [8]) considers the problem of
rate/power control in a single-user communication over a
fading channel. It considers a discrete-time model, and in-
vestigates adapting rate/power in each slot according to the
queue length, source state and channel state. The objective
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is to minimize the average power with delay constraints. It
discusses two transmission models. In the first model, the
transmission time of a codeword is fixed, while the rate varies
from block to block. In the second model, the transmission
time for each codeword varies. It formulates the problem into
a dynamic programming problem and develops a delay-power
tradeoff curve.

References [9]–[12] have similar formulations. Reference
[9] uses dynamic programming to numerically calculate the
optimal power/rate control policies that minimize the average
delay in a single-user system under an average power con-
straint. Reference [10] derives bounds on the average delay in
a system with a single queue concatenated with a multi-layer
encoder. Reference [11] formulates the power constrained
average delay minimization problem into a Markov decision
problem and analyzes the structure of the optimal solution
for a single-user fading channel. Reference [12] proposes
a dynamic programming formulation to find optimal power,
channel coding and source coding policies with a delay
constraint. As in [7], in these papers as well, because of the
large number of possible rate/power choices at each stage, it
is almost impossible to get analytical optimal solutions.

Reference [13] considers a cognitive multiple access sys-
tem. In the model of [13], the primary user (PU) always
transmits a packet during a slot whenever its queue is not
empty. The secondary user (SU) always transmits when the
PU is idle, and it transmits with some probability (which is a
function of its own queue length) when the PU is active. The
receiver operates at the corner point of the multiple access
channel capacity region where the SU is decoded first and
the PU is decoded next, so that even though the SU expe-
riences interference from the PU, the PU is always decoded
interference-free. Reference [13] aims to minimize the average
delay through controlling the transmission probability of the
SU. It formulates the problem as a one-dimensional Markov
chain and derives an analytical result to minimize the average
delay of the SU under an average power constraint.

In this paper, we generalize [13] to a two-user multi-access
system, where both users have equal priority. Our goal is
to minimize the average delay of the packets in the system
under an average power constraint for each user. As in [7],
[9], [11], [13], we consider a discrete-time model. We divide
the transmission time into time slots. Packets arriving at the
transmitters are stored in the queues at each transmitter. In
each slot, each user decides on a transmission rate based
on the current lengths of both queues. Unlike [7], [9], [11],
where the rate per slot is a continuous variable, we restrict the
transmission rate for each user in a slot to be either zero or
one packet per slot. We define the probabilities of choosing
each transmission rate pair, which can be (0, 0), (0, 1), (1, 0)
or (1, 1), for each given pair of queue lengths.

Our objective is to find a set of transmission probabilities
that minimizes the average delay while satisfying the average
power constraints for both users. As in [13], there are two main
reasons that we introduce transmission probabilities: First, a
randomized policy is more general than a deterministic policy;
probability selections of 0 and 1 correspond to a deterministic
policy, which is a special case of the randomized policy.
Secondly, since we cannot choose arbitrary departure rates in

each slot, the use of transmission probabilities enables us to
control the average rate per slot at a finer scale. Compared to
[7], [9], [11], our model has a more restricted policy space at
each stage, however, this model enables us to construct a two-
dimensional discrete-time Markov chain and eventually gives
us a closed-form optimal solution.

In the rest of this paper, we first express the average delay
and the average power consumed for each user as functions of
the transmission probabilities and steady state distribution of
the queue lengths. We then transform our problem into a linear
programming problem, and derive the optimal transmission
scheme analytically. We show that the optimal transmission
policy has a threshold structure, i.e., if the sum of the queue
lengths exceeds a threshold, both users transmit a packet
from their queues, and if the sum of the queue lengths is
smaller than a threshold, only one user, which has the larger
queue length, transmits a packet from its queue, while the
other user remains silent (equal queue length case is resolved
by flip of a potentially biased coin). We provide a rigorous
mathematical proof for the optimality of the solution. We
also provide numerical examples for both symmetric and
asymmetric settings.

II. SYSTEM MODEL

A. Physical Layer Model

We consider a discrete-time additive Gaussian noise
multiple-access system with two transmitters and one receiver.
The received signal is

𝑌 =
√
ℎ1𝑋1 +

√
ℎ2𝑋2 + 𝑍 (1)

where 𝑋𝑖 is the signal of user 𝑖,
√
ℎ𝑖 is the channel gain of

user 𝑖, and 𝑍 is a Gaussian noise with zero-mean and variance
𝜎2. Here, ℎ1 and ℎ2 are real constants, with ℎ1 ∕= ℎ2 in
general.

In this two-user system, since the multiple-access capacity
region is given as [14]

𝑅1 ≤ 1

2
log

(
1 +

ℎ1𝑃1

𝜎2

)
(2)

𝑅2 ≤ 1

2
log

(
1 +

ℎ2𝑃2

𝜎2

)
(3)

𝑅1 +𝑅2 ≤ 1

2
log

(
1 +

ℎ1𝑃1 + ℎ2𝑃2

𝜎2

)
(4)

the region of feasible received powers is given by [15]

ℎ1𝑃1 ≥ 𝜎2(22𝑅1 − 1) (5)

ℎ2𝑃2 ≥ 𝜎2(22𝑅2 − 1) (6)

ℎ1𝑃1 + ℎ2𝑃2 ≥ 𝜎2(22(𝑅1+𝑅2) − 1) (7)

In each slot, the transmitters adjust their transmitted powers to
achieve the desired transmission rates. We assume that for each
user, the average transmitted power over all of the slots must
satisfy a constraint. We denote the average power constraints
for the first and second user as 𝑃1𝑎𝑣𝑔 and 𝑃2𝑎𝑣𝑔 , respectively.

B. Medium Access Control (MAC) Layer Model

In the MAC layer, we assume that packets arrive at the
transmitters at a uniform size of 𝐵 bits per packet. We partition
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Fig. 1. System model.

the time into small slots such that we have at most one packet
arrive and/or depart during each slot. Let 𝑎1[𝑛] and 𝑎2[𝑛]
denote the number of packets arriving at the first and second
transmitters, respectively, during time slot 𝑛; see Figure 1. We
assume that the packet arrivals are i.i.d. from slot to slot, and
the probabilities of arrivals are

𝑃𝑟{𝑎𝑖[𝑛] = 1} = 𝜃𝑖 (8)

𝑃𝑟{𝑎𝑖[𝑛] = 0} = 1− 𝜃𝑖 (9)

where 𝜃𝑖 is the arrival rate for user 𝑖, 𝑖 = 1, 2.
There is a buffer with capacity 𝑁 at each transmitter to

store the packets, where 𝑁 is a finite positive integer. Once
the buffer is not empty, the transmitters decide to transmit one
packet in the slot with some probability based on the current
lengths of both queues. Let 𝑑1[𝑛] and 𝑑2[𝑛] denote the number
of packets transmitted in time slot 𝑛. The queue length in each
buffer evolves according to

𝑞1[𝑛+ 1] = (𝑞1[𝑛]− 𝑑1[𝑛])
+ + 𝑎1[𝑛] (10)

𝑞2[𝑛+ 1] = (𝑞2[𝑛]− 𝑑2[𝑛])
+ + 𝑎2[𝑛] (11)

where (𝑥)+ denotes max(0, 𝑥).
The departure rate for each queue in each slot is either zero

or one packet per slot, and the decision whether it should
be zero or one packet per slot depends on the current queue
lengths. When both queues are empty, the departure rates
for both queues should be zero packet per slot. In all other
situations where there is at least one packet in at least one of
the queues, the departure rates for both queues should not be
zero packet per slot simultaneously. This is because, keeping
both transmitters idle does not save any power, but causes
unnecessary delay. Therefore, in these situations, there are
three possible departure rate pairs: (𝑑1, 𝑑2) = (1, 0), (0, 1)
or (1, 1), i.e., one packet is transmitted from queue 1 and no
packet is transmitted from queue 2; no packet is transmitted
from queue 1 and one packet is transmitted from queue 2;
or, one packet is transmitted from each queue. We enumerate
them as 𝑑1, 𝑑2, 𝑑3. When the first queue length is 𝑖 and
the second queue length is 𝑗, we define the probabilities of
choosing each pair of these departure rates as 𝑔1𝑖𝑗 , 𝑔2𝑖𝑗 , 𝑔3𝑖𝑗 ,
respectively. Note that 𝑔1𝑖𝑗 + 𝑔2𝑖𝑗 + 𝑔3𝑖𝑗 = 1. We also note that
𝑔1𝑖𝑗 , 𝑔2𝑖𝑗 , 𝑔3𝑖𝑗 , for 𝑖 = 0, 1, . . . , 𝑁 and 𝑗 = 0, 1, . . . , 𝑁 are the
main parameters we aim to choose optimally in this paper.

The state space of the Markov chain consists of all possible
pairs of queue lengths. We denote the state as q ≜ (𝑞1, 𝑞2).
When both of the queues are empty, i.e., q[𝑛] = (0, 0),
transmitters have no packet to send, and from (10)-(11),
q[𝑛 + 1] = a[𝑛]. The corresponding transition probabilities

in this case are:

𝑃𝑟{q[𝑛+ 1] = (0, 0)∣q[𝑛] = (0, 0)} = (1− 𝜃1)(1− 𝜃2)

𝑃𝑟{q[𝑛+ 1] = (1, 0)∣q[𝑛] = (0, 0)} = 𝜃1(1 − 𝜃2)

𝑃𝑟{q[𝑛+ 1] = (0, 1)∣q[𝑛] = (0, 0)} = 𝜃2(1 − 𝜃1)

𝑃𝑟{q[𝑛+ 1] = (1, 1)∣q[𝑛] = (0, 0)} = 𝜃1𝜃2 (12)

When one of the queues is empty, there is only one possible
departure rate pair, which is either (0, 1) or (1, 0), depending
on which queue is empty. Therefore, from our argument above,
the departure probabilities should not be free parameters, but
must be chosen as 𝑔1𝑖0 = 𝑔20𝑗 = 1. The corresponding transition
probabilities are:

𝑃𝑟{q[𝑛+ 1] = (𝑖 − 1, 0)∣q[𝑛] = (𝑖, 0)} = (1− 𝜃1)(1 − 𝜃2)

𝑃𝑟{q[𝑛+ 1] = (𝑖 − 1, 1)∣q[𝑛] = (𝑖, 0)} = 𝜃2(1− 𝜃1)

𝑃𝑟{q[𝑛+ 1] = (𝑖, 0)∣q[𝑛] = (𝑖, 0)} = 𝜃1(1− 𝜃2)

𝑃𝑟{q[𝑛+ 1] = (𝑖, 1)∣q[𝑛] = (𝑖, 0)} = 𝜃1𝜃2 (13)

A similar argument is valid when the first queue is empty,
i.e., q[𝑛] = (0, 𝑗). Transition probabilities in this case can be
written similar to (13).

When neither of the queues is empty, i.e., for q[𝑛] = (𝑖, 𝑗),
where 1 ≤ 𝑖, 𝑗 ≤ 𝑁 , the transition probabilities are:

𝑃𝑟{(𝑖− 1, 𝑗 − 1)∣(𝑖, 𝑗)} = 𝑔3𝑖𝑗(1− 𝜃1)(1− 𝜃2)

𝑃𝑟{(𝑖− 1, 𝑗 + 1)∣(𝑖, 𝑗)} = 𝑔1𝑖𝑗𝜃2(1− 𝜃1)

𝑃𝑟{(𝑖+ 1, 𝑗 − 1)∣(𝑖, 𝑗)} = 𝑔2𝑖𝑗𝜃1(1− 𝜃2)

𝑃𝑟{(𝑖, 𝑗 + 1)∣(𝑖, 𝑗)} = 𝑔1𝑖𝑗𝜃1𝜃2 (14)

𝑃𝑟{(𝑖+ 1, 𝑗)∣(𝑖, 𝑗)} = 𝑔2𝑖𝑗𝜃1𝜃2

𝑃𝑟{(𝑖− 1, 𝑗)∣(𝑖, 𝑗)} = 𝑔3𝑖𝑗𝜃2(1− 𝜃1)+𝑔1𝑖𝑗(1− 𝜃1)(1− 𝜃2)

𝑃𝑟{(𝑖, 𝑗 − 1)∣(𝑖, 𝑗)} = 𝑔3𝑖𝑗𝜃1(1− 𝜃2)+𝑔2𝑖𝑗(1− 𝜃1)(1− 𝜃2)

𝑃𝑟{(𝑖, 𝑗)∣(𝑖, 𝑗)} = 𝑔1𝑖𝑗𝜃1(1− 𝜃2)+𝑔2𝑖𝑗𝜃2(1−𝜃1)+𝑔3𝑖𝑗𝜃1𝜃2

For example, the first equation in (14) is obtained by noting
that, for the next queue state to be (𝑖− 1, 𝑗 − 1), we need to
transmit one packet from each queue and we should have no
arrivals to either of the queues. The probability of this event is
𝑔3𝑖𝑗 , probability of transmitting one packet from each queue,
multiplied by (1 − 𝜃1), probability of having no arrivals to
queue 1, and (1 − 𝜃2), probability of having no arrivals to
queue 2.

In this paper, we assume that the average power constraints
are large enough to prevent any packet losses. In order to
prevent overflows, we always choose to transmit one packet
from a queue whenever its length reaches 𝑁 . Therefore, we
have 𝑔1𝑖𝑁 = 𝑔2𝑁𝑗 = 𝑔3𝑁𝑁 = 1. The two-dimensional Markov
chain is shown in Figure 2.

In [16], it is proven that, for all irreducible, positive re-
current discrete-time Markov chains with state space 𝑆, there
exists a stationary distribution {𝜋𝑠, 𝑠 ∈ 𝑆}, which is given by
the unique solution to∑

𝑠∈𝑆

𝜋𝑠𝑝𝑠𝑟 = 𝜋𝑟,
∑
𝑠∈𝑆

𝜋𝑠 = 1 (15)

It is also stated that for a reducible Markov chain with a single
closed positive recurrent aperiodic class and a nonempty set
𝑇 , where for any 𝑖 ∈ 𝑇 , the probability of getting absorbed
in the closed class starting from state 𝑖 is 1, and the steady
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Fig. 2. Two-dimensional Markov chain.

state distribution exists. In our problem, we first assume that
the stationary distribution exists for the optimal solution. Once
we determine the solution, we verify that the corresponding
Markov chain has a unique stationary distribution.

Let us define the steady state distribution of this Markov
chain as 𝝅 = [𝜋00, 𝜋01, ⋅ ⋅ ⋅ , 𝜋0𝑁 , 𝜋10, ⋅ ⋅ ⋅ , 𝜋𝑁𝑁 ]. Then, the
steady state distribution must satisfy

𝝅ℙ = 𝝅, 𝝅1 = 1 (16)

where ℙ is the transition matrix defined by the transition
probabilities (12)-(14). We can express the average number of
packets in the system as

∑
𝑖,𝑗 𝜋𝑖𝑗(𝑖+ 𝑗). According to Little’s

law [16], for a fixed sample path in a queueing system, if the
limits of average waiting time 𝑊 and average arrival rate 𝜆
exist as time goes to infinity, then the limit of average queue
length 𝐿 exists and they are related as 𝐿 = 𝜆𝑊 . For our
problem, in a system without overflow, these limits exist and
the average delay 𝐷 is equal to

𝐷 =
1

𝜃1 + 𝜃2

∑
𝑖,𝑗

𝜋𝑖𝑗(𝑖+ 𝑗) (17)

where 𝜃1 + 𝜃2 is the average arrival rate for the system.

III. PROBLEM FORMULATION

The transmission rate for both transmitters during a slot
is either one packet per slot or zero packet per slot. Equiv-
alently, the transmission rate is either 𝐵/𝜏 bits/channel use
or 0 bits/channel use, where 𝜏 is the number of channel
uses in each slot. We assume that in each slot we can use
codewords with finite block length to get arbitrarily close to
the boundary of feasible powers and achieve a satisfactory
level of reliability.

Next, let us consider the power consumptions during each
slot. When only one user transmits, since there is no interfer-

ence from the other transmitter, the transmitted power for the
active user needs to satisfy

ℎ𝑖𝑃𝑖 ≥ 𝜎2(22𝑅 − 1) ≜ 𝛼 (18)

where 𝑅 = 𝐵/𝜏 . In order to minimize the power, the trans-
mitted power for the active user should be 𝛼/ℎ𝑖, depending
on which user is transmitting. When both users transmit
simultaneously, the received powers should additionally satisfy

ℎ1𝑃1 + ℎ2𝑃2 ≥ 𝜎2(24𝑅 − 1) ≜ 𝛽 (19)

The feasible transmitted power region is shown in Figure
3. Let us denote the received power pair as (𝛽1, 𝛽2). In
order to minimize the transmit power, this pair should be
on the dominant face of the feasible power region, i.e.,
𝛽1 + 𝛽2 = 𝛽. Then, the corresponding transmit power pair
is (𝛽1/ℎ1, 𝛽2/ℎ2). Note that different operating points need
different sum of transmit powers.

Thus, for any state (𝑖, 𝑗) ∕= (0, 0), the average power con-
sumed for the first queue is 1

ℎ1
(𝑔1𝑖𝑗𝛼+𝑔3𝑖𝑗𝛽1), while the average

power consumed for the second queue is 1
ℎ2
(𝑔2𝑖𝑗𝛼+𝑔3𝑖𝑗𝛽2). Our

goal is to find the transmission policy, i.e., the probabilities
𝑔𝑘𝑖𝑗 , 𝑘 = 1, 2, 3, 𝑖 = 0, 1, . . . , 𝑁 , 𝑗 = 0, 1, . . . , 𝑁 along with
the operating point (𝛽1, 𝛽2), such that the average delay is
minimized, subject to an average power constraint for each
user. Therefore, our problem can be expressed as:

min
g,𝛽1,𝛽2

1

𝜃1 + 𝜃2

∑
𝑖,𝑗

𝜋𝑖𝑗(𝑖+ 𝑗) (20)

s.t.
1

ℎ1

∑
𝑖,𝑗

𝜋𝑖𝑗(𝑔
1
𝑖𝑗𝛼+ 𝑔3𝑖𝑗𝛽1) ≤ 𝑃1𝑎𝑣𝑔 (21)

1

ℎ2

∑
𝑖,𝑗

𝜋𝑖𝑗(𝑔
2
𝑖𝑗𝛼+ 𝑔3𝑖𝑗𝛽2) ≤ 𝑃2𝑎𝑣𝑔 (22)

𝝅ℙ = 𝝅, 𝝅1 = 1 (23)

𝑔1𝑖𝑗 + 𝑔2𝑖𝑗 + 𝑔3𝑖𝑗 = 1, 𝑖, 𝑗 = 0, 1, . . . , 𝑁 (24)

𝑔𝑘𝑖𝑗 ≥ 0, 𝑖, 𝑗 = 0, 1, . . . , 𝑁, 𝑘 = 1, 2, 3 (25)

We note that the state transition matrix ℙ is filled with
variables in (12)-(14) which depend on 𝑔𝑘𝑖𝑗s. Also, through
(23), 𝜋𝑖𝑗s depend on 𝑔𝑘𝑖𝑗s, as well. Unlike [13], we have a
two-dimensional Markov chain, and it does not admit closed-
form expressions for the steady state distribution 𝜋𝑖𝑗s in terms
of 𝑔𝑘𝑖𝑗s. Therefore, solving the above optimization problem
becomes rather difficult. Our methodology will be to transform
our optimization problem into a linear programming problem,
and exploit its special structure to obtain the globally optimal
solution analytically.

IV. ANALYSIS OF THE PROBLEM

Note that 𝑔1𝑖𝑗+𝑔2𝑖𝑗+𝑔3𝑖𝑗 = 1 for any (𝑖, 𝑗) ∕= (0, 0), therefore
𝜋𝑖𝑗 = 𝜋𝑖𝑗(𝑔

1
𝑖𝑗 + 𝑔2𝑖𝑗 + 𝑔3𝑖𝑗). Define 𝑥00 = 𝜋00, 𝑥𝑘

𝑖𝑗 = 𝜋𝑖𝑗𝑔
𝑘
𝑖𝑗 ,

𝑘 = 1, 2, 3, 𝑖 = 0, 1, . . . , 𝑁 , 𝑗 = 0, 1, . . . , 𝑁 . Since 𝑔𝑘𝑖𝑗 is the
conditional probability of choosing policy 𝑘 when the system
is in state (𝑖, 𝑗), 𝑥𝑘

𝑖𝑗 can be interpreted as the unconditional
probability of staying in state (𝑖, 𝑗) and choosing policy 𝑘.
Our aim is to find optimal 𝑔𝑘𝑖𝑗s. However, as we will see, our
analysis will be more tractable with variables 𝑥𝑘

𝑖𝑗s. Once we
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𝛽2/ℎ2

𝛽1/ℎ1

𝛽/ℎ2

𝛽/ℎ1

𝑃1

𝑃2𝛼/ℎ2

𝛼/ℎ1

Fig. 3. Feasible power region.

find optimal 𝑥𝑘
𝑖𝑗s, we can obtain optimal 𝑔𝑘𝑖𝑗s through

𝑔𝑘𝑖𝑗 =
𝑥𝑘
𝑖𝑗∑3

𝑘=1 𝑥
𝑘
𝑖𝑗

(26)

Let us construct a vector of all of our unknowns x =
[𝑥00, 𝑥

1
01, 𝑥

2
01, 𝑥

3
01, . . . , 𝑥

3
𝑁𝑁 ]𝑇 .

First, we consider the average power consumption when
average power constraints for both users are large enough
such that each user is able to transmit a packet during a
slot whenever its queue is not empty. In this scenario, the
corresponding Markov chain has four non-transient states,
(0,0), (0,1), (1,0), (1,1), and the stationary distribution is

𝜋01 = 𝜃2(1− 𝜃1), 𝜋00 = (1− 𝜃1)(1 − 𝜃2),

𝜋10 = 𝜃1(1− 𝜃2), 𝜋11 = 𝜃1𝜃2 (27)

The average power consumption for each queue is

𝑃1𝑐𝑠𝑚𝑝 =
1

ℎ1
(𝜋10𝛼+ 𝜋11𝛽1)

=
1

ℎ1
(𝜃1(1 − 𝜃2)𝛼+ 𝜃1𝜃2𝛽1) (28)

𝑃2𝑐𝑠𝑚𝑝 =
1

ℎ2
(𝜋01𝛼+ 𝜋11𝛽2)

=
1

ℎ2
(𝜃2(1 − 𝜃1)𝛼+ 𝜃1𝜃2𝛽2) (29)

We note that

𝑃1𝑐𝑠𝑚𝑝ℎ1 + 𝑃2𝑐𝑠𝑚𝑝ℎ2 = (𝜃1 + 𝜃2 − 2𝜃1𝜃2)𝛼+ 𝜃1𝜃2𝛽 (30)

From Figure 3, we note that 𝛽1, 𝛽2 ≥ 𝛼, therefore, each
individual term in (30) must additionally satisfy

𝑃1𝑐𝑠𝑚𝑝 ≥ 1

ℎ1
𝜃1𝛼 (31)

𝑃2𝑐𝑠𝑚𝑝 ≥ 1

ℎ2
𝜃2𝛼 (32)

Therefore, if the average power constraints 𝑃1𝑎𝑣𝑔 and 𝑃2𝑎𝑣𝑔

satisfy the following inequalities

𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2 ≥ (𝜃1 + 𝜃2 − 2𝜃1𝜃2)𝛼+ 𝜃1𝜃2𝛽 (33)

𝑃1𝑎𝑣𝑔 ≥ 1

ℎ1
𝜃1𝛼 (34)

𝑃2𝑎𝑣𝑔 ≥ 1

ℎ2
𝜃2𝛼 (35)

then we can always find an operating point (𝛽1, 𝛽2) such that
𝑃1𝑐𝑠𝑚𝑝 ≤ 𝑃1𝑎𝑣𝑔 and 𝑃2𝑐𝑠𝑚𝑝 ≤ 𝑃2𝑎𝑣𝑔 , and we achieve the
minimal possible delay in the system, which is one slot. The
available power in this case is so large that the solution is
trivial. If

𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2 < (𝜃1 + 𝜃2 − 2𝜃1𝜃2)𝛼+ 𝜃1𝜃2𝛽 (36)

and 𝑃1𝑎𝑣𝑔 and 𝑃2𝑎𝑣𝑔 are large enough to prevent any over-
flows, both power constraints should be tight. Therefore, from
(21)-(22), we have two equality power constraints,

1

ℎ1

∑
𝑖,𝑗

(𝑥1
𝑖𝑗𝛼+ 𝑥3

𝑖𝑗𝛽1) = 𝑃1𝑎𝑣𝑔 (37)

1

ℎ2

∑
𝑖,𝑗

(𝑥2
𝑖𝑗𝛼+ 𝑥3

𝑖𝑗𝛽2) = 𝑃2𝑎𝑣𝑔 (38)

Because the average arrival rate must be equal to the average
departure rate when there is no overflow, we also have∑

𝑖,𝑗

(𝑥1
𝑖𝑗 + 𝑥3

𝑖𝑗) = 𝜃1 (39)

∑
𝑖,𝑗

(𝑥2
𝑖𝑗 + 𝑥3

𝑖𝑗) = 𝜃2 (40)

Solving (37)-(40), we obtain

𝛽1 = 𝛼+
(𝛽 − 2𝛼)(𝑃1𝑎𝑣𝑔ℎ1 − 𝜃1𝛼)

𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2 − (𝜃1 + 𝜃2)𝛼
(41)

𝛽2 = 𝛼+
(𝛽 − 2𝛼)(𝑃2𝑎𝑣𝑔ℎ2 − 𝜃2𝛼)

𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2 − (𝜃1 + 𝜃2)𝛼
(42)

∑
𝑖,𝑗

𝑥1
𝑖𝑗 = 𝜃1 − 𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2 − (𝜃1 + 𝜃2)𝛼

𝛽 − 2𝛼
(43)

∑
𝑖,𝑗

𝑥2
𝑖𝑗 = 𝜃2 − 𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2 − (𝜃1 + 𝜃2)𝛼

𝛽 − 2𝛼
(44)

∑
𝑖,𝑗

𝑥3
𝑖𝑗 =

𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2 − (𝜃1 + 𝜃2)𝛼

𝛽 − 2𝛼
(45)

By jointly considering the normalization equation in (23), we
also have

𝑥00 = 1− (𝜃1 + 𝜃2)(𝛽 − 𝛼)− (𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2)

𝛽 − 2𝛼
(46)

Thus, we transform our optimization problem in (20)-(24) into

min
x

∑
𝑖,𝑗

(
3∑

𝑘=1

𝑥𝑘
𝑖𝑗(𝑖+ 𝑗)

)
(47)

s.t. 𝑥00 = 1− (𝜃1+ 𝜃2)(𝛽−𝛼)−(𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2)

𝛽−2𝛼
(48)

∑
𝑖,𝑗

𝑥1
𝑖𝑗 = 𝜃1 − 𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2 − (𝜃1 + 𝜃2)𝛼

𝛽 − 2𝛼
(49)
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∑
𝑖,𝑗

𝑥2
𝑖𝑗 = 𝜃2 − 𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2 − (𝜃1 + 𝜃2)𝛼

𝛽 − 2𝛼
(50)

∑
𝑖,𝑗

𝑥3
𝑖𝑗 =

𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2 − (𝜃1 + 𝜃2)𝛼

𝛽 − 2𝛼
(51)

ℚx = 0, 𝑥𝑘
𝑖𝑗 ≥ 0, 𝑖,𝑗 = 0, 1, . . . , 𝑁, 𝑘=1, 2, 3 (52)

which is in terms of 𝑥𝑘
𝑖𝑗s. Here, ℚ is a (𝑁 + 1)2 × (4(𝑁 +

1)2 − 3) matrix defined by matrix ℙ. We get the equations in
(52) from (23) by substituting 𝜋𝑖𝑗𝑔

𝑘
𝑖𝑗 for 𝑥𝑘

𝑖𝑗 .

The optimization problem in (47)-(52) is a linear program-
ming problem. In addition, we observe that, in the objective
function, all of the 𝑥𝑘

𝑖𝑗s with the same sum of indices share
the same weight 𝑖 + 𝑗. If we look into the two-dimensional
Markov chain, this corresponds to the states on the diagonals
running from the upper right corner to the lower left corner.
This motivates us to group the 𝑥𝑘

𝑖𝑗s along the diagonals of the
two-dimensional Markov chain in Figure 2 and define their
sum, for the 𝑛th diagonal, as

𝑦𝑛 =

𝑛∑
𝑖=0

(𝑥1
𝑖,𝑛−𝑖 + 𝑥2

𝑖,𝑛−𝑖) (53)

𝑡𝑛 =

𝑛∑
𝑖=0

𝑥3
𝑖,𝑛−𝑖 (54)

Then, 𝑦𝑛 ≥ 0, 𝑡𝑛 ≥ 0, and the objective function in (47) is
equivalent to

2𝑁∑
𝑛=1

(𝑦𝑛 + 𝑡𝑛)𝑛 (55)

We also get 2𝑁 flow-in-flow-out equations between the diag-
onal groups. For 𝑛 = 0, 1, we have

𝑥00 (𝜃1 + 𝜃2 − 𝜃1𝜃2) = (𝑦1 + 𝑡2)(1 − 𝜃1)(1 − 𝜃2) (56)

(𝑥00 + 𝑦1)𝜃1𝜃2 = (𝑦2+𝑡3)(1−𝜃1)(1−𝜃2) + 𝑡2 (1−𝜃1𝜃2)
(57)

and for 𝑛 = 2, 3, . . . , 2𝑁 − 2, we have

𝑦𝑛𝜃1𝜃2 = (𝑦𝑛+1+𝑡𝑛+2)(1−𝜃1)(1−𝜃2) + 𝑡𝑛+1 (1−𝜃1𝜃2)
(58)

𝑦2𝑁−1𝜃1𝜃2 = 𝑡2𝑁 (1− 𝜃1𝜃2) (59)

Figure 4 shows the transitions between diagonal groups for a
system with 𝑁 = 3; we use different colors to distinguish the
transitions caused by different departure rate pairs.

We multiply both sides of the 𝑛th equation in (56)-(59) with
𝑧𝑛 and sum with respect to 𝑛 to obtain

𝑥00(𝜃1 + 𝜃2 − 𝜃1𝜃2 + 𝜃1𝜃2𝑧)

+
(
𝜃1𝜃2 − (1− 𝜃1)(1 − 𝜃2)𝑧

−1
) 2𝑁∑
𝑛=1

𝑦𝑛𝑧
𝑛

− ((1− 𝜃1𝜃2)𝑧
−1 + (1− 𝜃1)(1 − 𝜃2)𝑧

−2
) 2𝑁∑
𝑛=1

𝑡𝑛𝑧
𝑛 = 0

(60)

Taking the derivative of (60) with respect to 𝑧 and letting

0 , 30 , 0

2 , 0

3 , 0

1 , 0 1 , 2 1 , 31 , 1

2 , 2 2 , 32 , 1

3 , 1 3 , 2 3 , 3

0 , 1 0 , 2

Fig. 4. The transitions between diagonal groups when 𝑁 = 3.

𝑧 = 1, we have

2𝑁∑
𝑛=1

𝑡𝑛𝑛 =
1

2− 𝜃1 − 𝜃2

(
(𝜃1 + 𝜃2 − 1)

(
2𝑁∑
𝑛=1

𝑦𝑛𝑛

)

+ (1 − 𝜃1)(1− 𝜃2)

(
2𝑁∑
𝑛=1

𝑦𝑛

)
(61)

+
(
1−𝜃1𝜃2+2(1−𝜃1)(1−𝜃2)

)( 2𝑁∑
𝑛=1

𝑡𝑛

)
+𝑥00𝜃1𝜃2

)

From the definition of 𝑦𝑛 and 𝑡𝑛 in (53) and (54), we note

2𝑁∑
𝑛=1

𝑦𝑛 =
2𝑁∑
𝑛=1

𝑛∑
𝑖=0

(𝑥1
𝑖,𝑛−𝑖 + 𝑥2

𝑖,𝑛−𝑖) =
∑
𝑖,𝑗

(𝑥1
𝑖𝑗 + 𝑥2

𝑖𝑗) (62)

2𝑁∑
𝑛=1

𝑡𝑛 =

2𝑁∑
𝑛=1

𝑛∑
𝑖=0

𝑥3
𝑖,𝑛−𝑖 =

∑
𝑖,𝑗

𝑥3
𝑖𝑗 (63)

From (62) and (63), and using (49)-(51), we conclude that∑2𝑁
𝑛=1 𝑦𝑛 and

∑2𝑁
𝑛=1 𝑡𝑛 are constants that depend on system

parameters 𝛼, 𝛽, 𝜃1, 𝜃2 and 𝑃1𝑎𝑣𝑔 , 𝑃2𝑎𝑣𝑔 . Using (62) and
(49)-(50), for future reference, let us define

2𝑁∑
𝑛=1

𝑦𝑛 =
∑
𝑖,𝑗

𝑥1
𝑖𝑗 +

∑
𝑖,𝑗

𝑥2
𝑖𝑗 (64)

= 𝜃1 + 𝜃2 − 2(𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2 − (𝜃1 + 𝜃2)𝛼)

𝛽 − 2𝛼

≜ Ψ

Using the definition of 𝑦𝑛, 𝑡𝑛 and (61), the objective
function in (47) becomes

2𝑁∑
𝑛=1

(𝑦𝑛 + 𝑡𝑛)𝑛 =
1

2− 𝜃1 − 𝜃2

(
2𝑁∑
𝑛=1

𝑦𝑛𝑛

)
+ 𝐶 (65)

where 𝐶 is a constant, and 1
2−𝜃1−𝜃2

is positive. Therefore,
minimizing the original objective function in (47) is equivalent
to minimizing

∑2𝑁
𝑛=1 𝑦𝑛𝑛. Since from (64) the sum of 𝑦𝑛s

is fixed, and 𝑦𝑛s are positive, intuitively, the optimization
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problem requires us to assign larger values to 𝑦𝑛s with smaller
indices 𝑛, without conflicting with the transition equation
constraints.

V. THE MODIFIED OPTIMIZATION PROBLEM AND A

TWO-STEP SOLUTION

In this section, we will prove the following main result
of our paper: If the average power constraints 𝑃1𝑎𝑣𝑔 , 𝑃2𝑎𝑣𝑔

are large enough to prevent any packet losses, the delay-
optimal policy has a threshold structure. When the sum of the
queue lengths is larger than the threshold, both users should
transmit; when the sum of the queue lengths is smaller than the
threshold, only the user with the longer queue should transmit;
the equal queue length case can be resolved through flip of a
potentially biased coin.

We propose to solve our original optimization problem in
two steps. In the first step, we will consider the optimization
problem in terms of 𝑦𝑛s and 𝑡𝑛s, where the objective function
is
∑2𝑁

𝑛=1 𝑦𝑛𝑛, and the constraints are (64), (48), (56)-(59), and
positivity constraints on 𝑦𝑛s and 𝑡𝑛s. The objective function
of this optimization problem is exactly the same as that of
our original optimization problem in (47)-(52), however, our
constraints are more lenient than those of (47)-(52). First, (64)
is weaker than (49)-(51), as it imposes a constraint on the
sum while (49)-(51) impose constraints on individual terms.
Secondly, the transition equations in (52) are between all of
the states in the two-dimensional Markov chain, while the
transition equations in (56)-(59) are only between the diagonal
groups in the Markov chain. Finally, we do not explicitly
impose the sum constraint on 𝑡𝑛 on the new problem. These
imply that, the result we obtain in the first step, in principle,
may not be feasible for the original problem.

Therefore, in the second step we allocate 𝑦𝑛s and 𝑡𝑛s
we obtain from the first step to 𝑥𝑘

𝑖𝑗s in such a way that
the remaining independent transition equations in (52) are
satisfied. We note that (39) and (40) can be derived from (52),
therefore, once (52) is satisfied, (39) and (40) will be satisfied.
Together with (64), we can make sure that (49)-(51) are all
satisfied. Therefore, if we can find a valid allocation in the
second step, we will conclude that the solution found in the
first step is a feasible solution to our original problem. Since
the problem we solve in the first step has the cost function
of our problem, but is subject to more lenient constraints, its
solution, in principle, may be better than the solution of our
original problem. However, when we prove that the solution
we obtain in our first step is within the feasible set of our
original problem, we will have solved our original problem.
In addition, once we prove the optimality of the solution in the
first step, it will be globally optimal for the original problem.

First, we will minimize
∑2𝑁

𝑛=1 𝑦𝑛𝑛 subject to (64), (48),
(56)-(59), and 𝑦𝑛, 𝑡𝑛 ≥ 0. This means that we will allocate Ψ
to 𝑦𝑛s in a way to minimize

∑2𝑁
𝑛=1 𝑦𝑛𝑛. This will require us

to allocate larger values to 𝑦𝑛s with smaller 𝑛, while making
sure that (64), (48), and (56)-(59) are satisfied. We state the
result of our first step in the following theorem.

Theorem 1 The optimal solution of the problem

min
2𝑁∑
𝑛=1

𝑦𝑛𝑛

s. t. (64), (48), (56)− (59), and 𝑦𝑛 ≥ 0, 𝑡𝑛 ≥ 0, ∀𝑛
(66)

has a threshold structure. In particular, there exists a threshold
𝑛̄ such that for 𝑛 < 𝑛̄, 𝑡𝑛 = 0 and for 𝑛 > 𝑛̄, 𝑦𝑛 = 0.

The proof of this theorem is given in Appendix A.
In the following, we consider the transition equations within

groups for each state. Since adding more constraints cannot
improve the optimization result, if we can find a way to
allocate 𝑦𝑛s and 𝑡𝑛s to 𝑥𝑘

𝑖𝑗s, such that all of the remaining
transition equations are satisfied, then we will conclude that
the assignments we obtained in the first step are actually
feasible for the original problem. Therefore, next, in our
second step, we focus on the assignment of the 𝑦𝑛s and 𝑡𝑛s
found in the first step to 𝑥𝑘

𝑖𝑗s.
First, we use a simple example to illustrate the procedure

of allocation within each group, then, we generalize the pro-
cedure to arbitrary cases. In this simple example, we assume
that 𝑁 = 4.

Assume that after the group allocation, we obtained
𝑦1, . . . , 𝑦5 and 𝑡5, 𝑡6 ∕= 0, and the rest of the 𝑦𝑛s and 𝑡𝑛s
are equal to zero. In order to keep the allocation simple,
when we assign 𝑦3, 𝑦5, 𝑡5 in each group, we assign them
only to two states: (1, 2), (2, 1) and (2, 3), (3, 2), respectively;
while we assign 𝑦4 to three states: (1, 3), (2, 2), (3, 1), and
we assign 𝑡6 to a single state (3, 3). Figure 5 illustrates the
allocation pattern within groups. We do not assign any values
to the states with dotted circles. The dotted states will be
transient states after the allocation. We need to guarantee that
the nonzero-valued states only transit to other nonzero-valued
states. This requires us to set 𝑥1

12 = 𝑥2
21 = 𝑥1

23 = 𝑥2
32 = 0,

and 𝑥1
13 = 𝑥3

13 = 𝑥2
31 = 𝑥3

31 = 0. The valid transitions
are represented as arrows in Figure 5. We can see that the
transitions are within the positive recurrent class.

Then, let us examine each group and find transi-
tion equations to be satisfied for each state. For states
(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), the transition equations to be
satisfied are

𝑥2
01(1− 𝜃2(1− 𝜃1)) =(𝑥00 + 𝑥1

10)𝜃2(1− 𝜃1)

+ (𝑥2
02 + 𝑥1

11)(1 − 𝜃1)(1− 𝜃2)

𝑥2
02(1− 𝜃2(1− 𝜃1)) =𝑥1

11𝜃2(1 − 𝜃1)

𝑥2
12(1− 𝜃2(1− 𝜃1)) =(𝑥2

02 + 𝑥1
11)𝜃1𝜃2 + 𝑥1

21𝜃2(1− 𝜃1)

+ (𝑥2
13 + 𝑥1

22 + 𝑥3
23)(1− 𝜃1)(1− 𝜃2)

𝑥2
13(1− 𝜃2(1− 𝜃1)) =(𝑥1

11 + 𝑥3
23)𝜃2(1− 𝜃1)

𝑥2
23(1 − 𝜃2(1− 𝜃1)) +𝑥3

23(1− 𝜃1𝜃2) = (𝑥2
13 + 𝑥1

22)𝜃1𝜃2

+ (𝑥1
32 + 𝑥3

33)𝜃2(1− 𝜃1) (67)

We have five more similar transition equations for states
(0, 1), (0, 2), (1, 2), (1, 3), (2, 3). All the unknown variables
are interacting with each other through these equations. How
to find an allocation satisfying all of these equations simulta-
neously becomes rather difficult. After simple manipulations,
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equations in (67) become equivalent to

𝑥2
01 =(𝑥00+𝑥1

10+𝑥2
01)𝜃2(1− 𝜃1)+(𝑥2

02 + 𝑥1
11)(1 − 𝜃1)(1− 𝜃2)

𝑥2
02 =(𝑥1

11 + 𝑥2
02)𝜃2(1 − 𝜃1)

𝑥2
12 =(𝑥2

02 + 𝑥1
11)𝜃1𝜃2 + (𝑥2

12 + 𝑥1
21)𝜃2(1− 𝜃1)

+ (𝑥2
13 + 𝑥1

22 + 𝑥3
23)(1− 𝜃1)(1 − 𝜃2)

𝑥2
13 =(𝑥1

22 + 𝑥2
13 + 𝑥3

23)𝜃2(1− 𝜃1)

𝑥2
23 =(𝑥2

13 + 𝑥1
22)𝜃1𝜃2 + (𝑥1

32 + 𝑥2
23 + 𝑥3

33)𝜃2(1− 𝜃1)

− 𝑥3
23(1− 𝜃1𝜃2) (68)

Observing the right hand sides of (68), we note that, 𝑥00,
𝑥1
10 + 𝑥2

10, 𝑥2
12 + 𝑥1

21, 𝑥1
32 + 𝑥2

23, 𝑥3
33 are known, therefore,

the allocation for states (0, 1), (0, 2), (1, 2), (1, 3), (2, 3) de-
pends only on the values of 𝑥2

02 + 𝑥1
11, 𝑥1

22 + 𝑥2
13, and 𝑥3

23.
Similarly, the allocation for states (1, 0), (2, 0), (2, 1), (3, 1),
(3, 2) also depends on the values of 𝑥1

20+𝑥2
11, 𝑥2

22+𝑥1
31, and

𝑥3
32 only. Since

𝑦2 = (𝑥2
02 + 𝑥1

11) + (𝑥1
20 + 𝑥2

11) (69)

𝑦4 = (𝑥1
22 + 𝑥2

13) + (𝑥2
22 + 𝑥1

31) (70)

𝑡5 = 𝑥3
23 + 𝑥3

32 (71)

the allocation actually depends on how we split 𝑦2, 𝑦4 and
𝑡5 between (𝑥2

02 + 𝑥1
11) and (𝑥1

20 + 𝑥2
11), (𝑥1

22 + 𝑥2
13) and

(𝑥2
22+𝑥1

31), 𝑥
3
23 and 𝑥3

32, respectively. Once we fix the values
of 𝑥2

02 + 𝑥1
11, 𝑥1

22 + 𝑥2
13, and 𝑥3

23, we obtain the values of all
of the states, completing the allocation. We note that there is
more than one feasible allocation within groups, and for each
feasible allocation, all of the transition equations are satisfied,
and the power constraints are satisfied as well. In order to
keep the solution simple, we let

𝑥2
02 + 𝑥1

11 = 𝑦2/2 (72)

𝑥1
22 + 𝑥2

13 = 𝑦4/2 (73)

𝑥3
23 = 𝑡5/2 (74)

Plugging these into (68), we get

𝑥2
01 =(𝑥00 + 𝑦1)𝜃2(1− 𝜃1) +

1

2
𝑦2(1− 𝜃1)(1 − 𝜃2)

𝑥2
02 =

1

2
𝑦2𝜃2(1− 𝜃1)

𝑥2
12 =

1

2
𝑦2𝜃1𝜃2 + 𝑦3𝜃2(1− 𝜃1) +

1

2
(𝑦4 + 𝑡5)(1 − 𝜃1)(1− 𝜃2)

𝑥2
13 =

1

2
(𝑦4 + 𝑡5)𝜃2(1− 𝜃1)

𝑥2
23 =

1

2
𝑦4𝜃1𝜃2 + (𝑦5 + 𝑡6)𝜃2(1− 𝜃1)− 1

2
𝑡5(1− 𝜃1𝜃2) (75)

Going back to (72)-(73), we obtain

𝑥1
11 =

1

2
𝑦2(1− 𝜃2(1− 𝜃1))

𝑥1
22 =

1

2
𝑦4 − 1

2
(𝑦4 + 𝑡5)𝜃2(1− 𝜃1) (76)

Since 𝑦𝑛 ≥ 𝑡𝑛+1𝜌/𝛿, we can easily verify that 𝑥2
23 ≥ 0, 𝑥1

22 ≥
0. The allocation for the remaining half of the states has a
similar structure. Thus, each state has a positive value, and
the allocation is feasible.

Once we obtain the values of 𝑥𝑘
𝑖𝑗s, we can compute the

4 , 1

0 , 0 0 , 1 0 , 2 0 , 4

1 , 41 , 31 , 21 , 11 , 0

2 , 0 2 , 1 2 , 2 2 , 3 2 , 4

3 , 43 , 33 , 23 , 13 , 0

4 , 0 4 , 2 4 , 3 4 , 4

0 , 3

Fig. 5. Example: allocation within groups when 𝑁 = 4.

transmission probabilities using 𝑔𝑘𝑖𝑗 =
𝑥𝑘
𝑖𝑗∑3

𝑘=1 𝑥𝑘
𝑖𝑗

. Here, we

have

𝑔111 =
1− 𝜃2(1− 𝜃1)

2− 𝜃2(1 − 𝜃1)− 𝜃1(1− 𝜃2)
(77)

𝑔211 =
1− 𝜃1(1− 𝜃2)

2− 𝜃2(1 − 𝜃1)− 𝜃1(1− 𝜃2)
(78)

𝑔122 =
𝑦4 − (𝑦4 + 𝑡5)𝜃2(1− 𝜃1)

2𝑦4 − (𝑦4 + 𝑡5)(𝜃2(1− 𝜃1) + 𝜃1(1 − 𝜃2))
(79)

𝑔222 =
𝑦4 − (𝑦4 + 𝑡5)𝜃1(1− 𝜃2)

2𝑦4 − (𝑦4 + 𝑡5)(𝜃2(1− 𝜃1) + 𝜃1(1 − 𝜃2))
(80)

We observe that a threshold structure exists. In this example,
the threshold is 5. When the sum of the two queue lengths
is greater than 5, both users transmit during a slot. When the
sum of the two queue lengths is less than 5, only one user with
longer queue transmits during a slot; in this case, if both queue
lengths are the same, users transmit according to probabilities
in (77)-(80).

Following steps similar to those in the example above, we
can assign 𝑦𝑛s and 𝑡𝑛s to 𝑥𝑘

𝑖𝑗s and obtain a feasible allocation
for general settings. The following theorem states this fact
formally.

Theorem 2 For the 𝑦𝑛s and 𝑡𝑛s obtained in the first step,
there always exists a feasible 𝑥𝑘

𝑖𝑗 assignment, such that 𝑥𝑘
𝑖𝑗s

are positive and satisfy all of the transition equations.

The proof of this theorem is given in Appendix B. Since this is
a constructive proof, it also gives the exact method by which
𝑦𝑛s and 𝑡𝑛s are assigned to 𝑥𝑘

𝑖𝑗s.
Therefore, in order to prove the optimality of the 𝑥𝑘

𝑖𝑗

assignment, it suffices to prove the optimality of the solution
of the first step. The following theorem proves the optimality
of the first step.
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Theorem 3 The allocation scheme in Theorem 1 minimizes
the average delay in the system.

The proof of this theorem is given in Appendix C.
In summary, the two-step allocation scheme is feasible and

optimal for our original problem. The transition probabilities
can be computed once we determine the allocation for each
sate. From our allocation, we note that there exists a threshold
𝑛̄, where 𝑛̄ is the largest group index 𝑛 such that 𝑦𝑛 ∕= 0. We

have 𝑡𝑛 > 0 only when 𝑛 ≥ 𝑛̄. Since 𝑔𝑘𝑖𝑗 =
𝑥𝑘
𝑖𝑗∑

3
𝑘=1 𝑥𝑘

𝑖𝑗

, we

have 𝑔3𝑖𝑗 = 1 when 𝑛 > 𝑛̄. When 𝑛 < 𝑛̄, we have 𝑔1𝑖𝑗 = 1 if
𝑖 > 𝑗 and 𝑔2𝑖𝑗 = 1 if 𝑖 < 𝑗. Then, for 𝑛 ≤ 𝑛̄, and 𝑛 is even,
we have

𝑔1𝑛/2,𝑛/2 =
𝑦𝑛 − (𝑦𝑛 + 𝑡𝑛+1)𝜃2(1− 𝜃1)

2𝑦𝑛−(𝑦𝑛+𝑡𝑛+1)(𝜃2(1−𝜃1)+𝜃1(1−𝜃2))+𝑡𝑛
(81)

𝑔2𝑛/2,𝑛/2 =
𝑦𝑛 − (𝑦𝑛 + 𝑡𝑛+1)𝜃1(1− 𝜃2)

2𝑦𝑛−(𝑦𝑛+𝑡𝑛+1)(𝜃2(1−𝜃1)+𝜃1(1−𝜃2))+𝑡𝑛
(82)

𝑔3𝑛/2,𝑛/2 =
𝑡𝑛

2𝑦𝑛−(𝑦𝑛+𝑡𝑛+1)(𝜃2(1−𝜃1)+𝜃1(1−𝜃2))+𝑡𝑛
(83)

If 𝑡𝑛, 𝑡𝑛+1 = 0, which happens when 𝑛 < 𝑛̄ − 1, (81)-(83)
reduce to

𝑔1𝑛/2,𝑛/2 =
1− 𝜃2(1− 𝜃1)

2− 𝜃2(1− 𝜃1)− 𝜃1(1− 𝜃2)
(84)

𝑔2𝑛/2,𝑛/2 =
1− 𝜃1(1− 𝜃2)

2− 𝜃2(1− 𝜃1)− 𝜃1(1− 𝜃2)
(85)

Therefore, if the sum of the two queue lengths is greater
than 𝑛̄, both users should transmit one packet during the slot.
If the sum of the two queue lengths is less than 𝑛̄, only
the user with the longer queue transmits one packet in the
slot and the other user remains silent; if in this case both
queues have the same length, then the probability that the first
user transmits one packet while the second user keeps silent
is 1−𝜃2(1−𝜃1)

2−𝜃2(1−𝜃1)−𝜃1(1−𝜃2)
, and the probability that the second

user transmits one packet while the first user keeps silent
is 1−𝜃1(1−𝜃2)

2−𝜃2(1−𝜃1)−𝜃1(1−𝜃2)
. When the system is symmetric, i.e.,

𝜃1 = 𝜃2, these probabilities become 1/2 and 1/2.

VI. NUMERICAL EXAMPLES

Here we give simple examples to show how our allocation
scheme works. We choose 𝑁 = 10, i.e., each queue has a
buffer of size 10 packets. Therefore, the joint queue sates is
represented by an 11× 11 Markov chain.

First, we consider the symmetric scenario, where 𝜃1 = 𝜃2 =
𝜃, ℎ1 = ℎ2 = ℎ and 𝑃1𝑎𝑣𝑔 = 𝑃2𝑎𝑣𝑔 = 𝑃𝑎𝑣𝑔 . We assume the
arrival rate 𝜃 = 1/2, and the power levels 𝛼 = 1, 𝛽 = 3.
Therefore, we have 𝜂 = 3, 𝛿 = 1, 𝜌 = 3. From the analysis,
we know that if 𝑃𝑎𝑣𝑔 ≥ 5/8, the average delay is one slot,
which is the minimal possible delay in the system.

If 𝑃𝑎𝑣𝑔 = 9/16, we have 𝑥00 = 1/8,
∑

𝑖,𝑗 𝑥
1
𝑖𝑗 =∑

𝑖,𝑗 𝑥
2
𝑖𝑗 = 3/8,

∑
𝑖,𝑗 𝑥

3
𝑖𝑗 = 1/8. Therefore, Ψ = 3/4. Fol-

lowing our allocation scheme, we have 𝑦1 = 3/8, 𝑦2 = 3/8,
𝑡3 = 1/8. Then, we need to allocate these within groups.

We start with 𝑦1. Because of the symmetry of the setting,
we simply let 𝑥1

10 = 𝑥2
01 = 𝑦1/2 = 3/16, 𝑥3

12 = 𝑥3
21 =

𝑡3/2 = 1/16. Then, we consider 𝑦2. We also let 𝑥1
20 = 𝑥2

02,
𝑥1
11 = 𝑥2

11. This symmetric allocation guarantees that the flow
equations for states (0, 1) and (1, 0) are satisfied. The values
of 𝑥1

20 and 𝑥1
11 also depend on the allocation of 𝑡3. The state

(2, 0) must satisfy the transition equation

𝑥1
20

(
𝜃(1− 𝜃) + 𝜃2 + (1− 𝜃)2

)
= (𝑥2

11 + 𝑥3
21)𝜃(1− 𝜃)

Together with the symmetric allocation, we have

𝑥1
20 + 𝑥2

11 = 𝑦2/2 = 3/16

Solving these equations, we get the allocation for the second
group as

𝑥1
20 = 𝑥2

02 = 1/16, 𝑥2
11 = 𝑥1

11 = 1/8

We see that the two values are positive, thus feasible. Then,
the transmission probabilities are 𝑔111 = 𝑔211 = 1/2, 𝑔312 =
𝑔321 = 1. The threshold of the sum of the queue lengths is 2
in this case. If the sum of the queue lengths is greater than 2,
both users transmit, if the sum of the queue lengths is less than
or equal to 2, only the user with the longer queue transmits
and the other user remains silent; if both queues have one
packet in their queues, each queue transmits with probability
1/2 while the other queue remains silent.

If 𝑃𝑎𝑣𝑔 = 17/32, we have 𝑥00 = 1/16,
∑

𝑖,𝑗 𝑥
1
𝑖𝑗 =∑

𝑖,𝑗 𝑥
2
𝑖𝑗 = 7/16,

∑
𝑖,𝑗 𝑥

3
𝑖𝑗 = 1/16. Therefore, Ψ = 7/8.

Following our allocation scheme, we have 𝑦1 = 3/16, 𝑦2 =
𝑦3 = 1/4, 𝑦4 = 3/16, 𝑡5 = 1/16. Then, we assign these within
groups. For 𝑦1, we simply let 𝑥1

10 = 𝑥2
01 = 𝑦1/2 = 1/32.

Then, considering to allocate 𝑦2, we have 𝑥1
20 = 𝑥2

02 = 1/32,
𝑥2
11 = 𝑥1

11 = 3/32. After completing the allocation, we have
𝑥1
21 = 𝑥2

12 = 1/8, 𝑥1
31 = 𝑥2

13 = 1/32, 𝑥2
22 = 𝑥1

22 = 1/16,
𝑥3
23 = 𝑥3

32 = 1/32. The transmission probabilities are
𝑔111 = 𝑔211 = 𝑔122 = 𝑔222 = 1/2, 𝑔110 = 𝑔201 = 𝑔120 = 𝑔202 =
𝑔121 = 𝑔212 = 𝑔113 = 𝑔231 = 𝑔332 = 𝑔323 = 1. The threshold of the
sum of the queue lengths is 4 in this case. If the sum of the
queue lengths is greater than 4, both users transmit, if the sum
of the queue lengths is less than or equal to 4, only the user
with the longer queue transmits and the other user remains
silent; if both queues have equal length, which is either 1 or 2
in this case, each queue transmits with probability 1/2 while
the other queue remains silent.

We compute the average delay as a function of average
power for 𝜃 = 0.5, 𝜃 = 0.48 and 𝜃 = 0.46, and plot them
in Figure 6. We observe that it is a piecewise linear function,
and each linear segment corresponds to the same threshold
value. This is because based on our optimal allocation scheme,
for a fixed threshold value, the objective function is a linear
function in 𝑥00, thus it is linear in 𝑃𝑎𝑣𝑔 . If 𝑃𝑎𝑣𝑔 increases,
𝐷𝑎𝑣𝑔 decreases, and the threshold decreases as well. The
minimum value of 𝑃𝑎𝑣𝑔 on each curve corresponds to the
maximum threshold, which is 19 in this example. This is also
the minimum amount of average power required to prevent
any overflows. We also observe that the delay-power tradeoff
curve is convex, which is consistent with the result in [7]. We
note that although these three values of 𝜃 are close to each
other, the average delay varies significantly. This is because
the average delay is not a linear function of 𝜃.

For the asymmetric scenario, we assume 𝜃1 = 1/2, 𝜃2 =
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Fig. 6. The average delay versus average power in the symmetric scenario.

1/3, then 𝜂 = 2, 𝛿 = 1/2, 𝜌 = 5/2. We assume ℎ1 = 1,
ℎ2 = 2. From (33), we know that if 𝑃1𝑎𝑣𝑔ℎ1 + 𝑃2𝑎𝑣𝑔ℎ2 ≥
1, 𝑃1𝑎𝑣𝑔 ≥ 1/2, 𝑃2𝑎𝑣𝑔 ≥ 2/3, then each user can always
transmit a packet whenever its queue is not empty, and the
average delay is one slot.

If 𝑃1𝑎𝑣𝑔 = 19/36, 𝑃2𝑎𝑣𝑔 = 13/18, then 𝑃1𝑎𝑣𝑔ℎ1 +
𝑃2𝑎𝑣𝑔ℎ2 = 8/9. Plugging these into (41)-(48), we have
𝛽1 = 1/2, 𝛽2 = 1/2,

∑1
𝑖,𝑗 𝑥

1
𝑖𝑗 = 4/9,

∑2
𝑖,𝑗 𝑥

1
𝑖𝑗 = 5/18,∑3

𝑖,𝑗 𝑥
1
𝑖𝑗 = 1/18, 𝑥00 = 2/9. Then, Ψ = 13/18. Following

the group allocation scheme, we have 𝑦1 = 4/9, 𝑦2 = 5/18,
𝑡3 = 1/18. Then, we need to assign them within groups. From
(118)-(124), we get 𝑥2

01 = 1/6, 𝑥1
10 = 5/18, 𝑥2

02 = 1/36,
𝑥1
11 = 4/36, 𝑥2

11 = 3/36, 𝑥1
20 = 2/36, and 𝑥3

12 = 𝑥3
21 = 1/18.

The transmission probabilities are 𝑔111 = 4/7, 𝑔211 = 3/7,
𝑔110 = 𝑔201 = 𝑔120 = 𝑔202 = 𝑔312 = 𝑔321 = 1. The threshold
is 2. If the sum of the queue lengths is greater than 2, both
users transmit, if the sum of the queue lengths is less than or
equal to 2, only the user with the longer queue transmits and
the other user remains silent; if both queues have one packet
in their queues, the first queue transmits with probability 4/7,
and the second queue transmits with probability 3/7.

VII. CONCLUSIONS

We investigated the average delay minimization problem
for a two-user multiple-access system with average power
constraints for the general asymmetric scenario, where users
have arbitrary powers, channel gains, and arrival rates. We
considered a discrete-time model. In each slot, the arrivals at
each queue follow a Bernoulli distribution, and we transmit at
most one packet from each queue with some probability. Our
objective is to find the optimal set of departure probabilities.
We modeled the problem as a two-dimensional Markov chain,
and minimized the average delay through controlling the
departure probabilities in each time slot. We transformed
the problem into a linear programming problem and found
the optimal solution analytically. The optimal policy has a
threshold structure. Whenever the sum of the queue lengths
exceeds a threshold, both queues transmit one packet during
the slot, otherwise, only one of the queues, which is longer,
transmits one packet during the slot and the other queue

remains silent; if both queues have the same length, only one
of the queues transmits with a probability which depends on
the arrival rates to both queues while the other queue remains
silent.

APPENDIX

A. The Proof of Theorem 1

Let us define

𝜂 =
𝜃1 + 𝜃2 − 𝜃1𝜃2
(1− 𝜃1)(1 − 𝜃2)

(86)

𝛿 =
𝜃1𝜃2

(1− 𝜃1)(1 − 𝜃2)
(87)

𝜌 =
1− 𝜃1𝜃2

(1− 𝜃1)(1 − 𝜃2)
(88)

Then, (56)-(59) are equivalent to

𝑥00𝜂 = 𝑦1 + 𝑡2 (89)

(𝑥00 + 𝑦1)𝛿 = (𝑦2 + 𝑡3) + 𝑡2𝜌 (90)

and for 𝑛 = 2, 3, . . . , 2𝑁 − 2,

𝑦𝑛𝛿 = (𝑦𝑛+1 + 𝑡𝑛+2) + 𝑡𝑛+1𝜌 (91)

𝑦2𝑁−1𝛿 = 𝑡2𝑁𝜌 (92)

The optimization requires us to assign larger values to 𝑦𝑛s
with smaller indices 𝑛 as much as possible. Examining (89)-
(92), we note that for fixed 𝑥00, maximizing 𝑦1, 𝑦2, . . .
requires us to set 𝑡2, 𝑡3, . . . to zero. Therefore, we choose

𝑦1 = 𝑥00𝜂 (93)

𝑦2 = (𝑥00 + 𝑦1)𝛿 (94)

𝑦𝑛 = 𝑦𝑛−1𝛿, 𝑡𝑛 = 0, 𝑛 = 1, 2, . . . , 𝑛∗ (95)

where 𝑛∗ is the largest integer satisfying
∑𝑛∗

𝑛=1 𝑦𝑛 < Ψ.
Let Δ = Ψ −∑𝑛∗

𝑛=1 𝑦𝑛. We need to check that all of the
group transition equations are satisfied.

Assume that 𝑛∗ > 2. If Δ = 𝑦𝑛∗𝛿𝜌/(𝛿 + 𝜌), then let

𝑦𝑛∗+1 = Δ, and 𝑦𝑛 = 0, 𝑛 = 𝑛∗ + 2, . . . , 𝑁 − 1 (96)

𝑡𝑛∗+2 = 𝑦𝑛∗+1𝛿/𝜌, and 𝑡𝑛 = 0, 𝑛 ∕= 𝑛∗ + 2 (97)

We can verify that after this allocation, group transition equa-
tions (56)-(59) are satisfied. We also note that Ψ is allocated
to {𝑦𝑛}𝑛

∗+1
𝑛=1 , among which, {𝑦𝑛}𝑛∗

𝑛=1 attain their maximum
possible values. Therefore, the objective function achieves its
minimal possible value for the first step.

If Δ ∕= 𝑦𝑛∗𝛿𝜌/(𝛿 + 𝜌), if we assign it to 𝑦𝑛∗+1 directly,
the group transition equations are not satisfied automatically.
In order to satisfy the group transition equations, we need to
do some adjustments.

If Δ > 𝑦𝑛∗𝛿𝜌/(𝛿 + 𝜌), we assign Δ to 𝑦𝑛∗+1 and 𝑦𝑛∗+2

proportionally. Specifically, we let

𝑦𝑛∗+1 =
Δ(𝜌+ 𝛿) + 𝑦𝑛∗𝛿𝜌2

𝜌2 + 𝛿𝜌+ 𝛿 + 𝜌
(98)

𝑦𝑛∗+2 =
Δ(𝜌+ 𝛿)𝜌− 𝑦𝑛∗𝛿𝜌2

𝜌2 + 𝛿𝜌+ 𝛿 + 𝜌
(99)

𝑡𝑛∗+2 =
𝑦𝑛∗𝛿(𝛿𝜌+ 𝛿 + 𝜌)−Δ(𝜌+ 𝛿)

𝜌2 + 𝛿𝜌+ 𝛿 + 𝜌
(100)
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𝑡𝑛∗+3 =
Δ(𝜌+ 𝛿)𝛿 − 𝑦𝑛∗𝛿2𝜌

𝜌2 + 𝛿𝜌+ 𝛿 + 𝜌
(101)

Since 𝑦𝑛∗𝛿 > Δ > 𝑦𝑛∗𝛿𝜌/(𝛿 + 𝜌), we can verify that
each value above is positive, and the sum constraint and the
group transition equations are satisfied. Among the non-zero
{𝑦𝑛}𝑛

∗+2
𝑛=1 , although {𝑦𝑛}𝑛∗

𝑛=1 attain their maximum, 𝑦𝑛∗+1

does not. Therefore, different from the first scenario, in this
case, we cannot immediately claim that the result is optimal.
We will give the mathematical proof for the optimality of this
assignment later.

If Δ < 𝑦𝑛∗𝛿𝜌/(𝛿+𝜌), we need to remove some value from
𝑦𝑛∗ and assign it to 𝑦𝑛∗+1 to satisfy the equations. Define
Δ′ = Δ+ 𝑦𝑛∗ and assign Δ′ to 𝑦𝑛∗ and 𝑦𝑛∗+1 as follows

𝑦𝑛∗ =
Δ′(𝜌+ 𝛿) + 𝑦𝑛∗−1𝛿𝜌

2

𝜌2 + 𝛿𝜌+ 𝛿 + 𝜌
(102)

𝑦𝑛∗+1 =
Δ′(𝜌+ 𝛿)𝜌− 𝑦𝑛∗−1𝛿𝜌

2

𝜌2 + 𝛿𝜌+ 𝛿 + 𝜌
(103)

𝑡𝑛∗+1 =
𝑦𝑛∗−1𝛿(𝛿𝜌+ 𝛿 + 𝜌)−Δ′(𝜌+ 𝛿)

𝜌2 + 𝛿𝜌+ 𝛿 + 𝜌
(104)

𝑡𝑛∗+2 =
Δ′(𝜌+ 𝛿)𝛿 − 𝑦𝑛∗−1𝛿

2𝜌

𝜌2 + 𝛿𝜌+ 𝛿 + 𝜌
(105)

Since 𝑦𝑛∗−1𝛿 < Δ′ < 𝑦𝑛∗−1𝛿(𝛿𝜌/(𝛿 + 𝜌) + 1), we can also
verify that each value above is positive, and the sum constraint
and the group transition equations are satisfied. Similar to the
second case, we cannot immediately claim that this result is
optimal because after the adjustment, 𝑦𝑛∗ does not achieve its
maximum value. We will give the proof of optimality later.

When 𝑛∗ = 1, the allocation will be in a different form. If
Δ ≥ (𝑥00 + 𝑦1)𝛿𝜌/(𝛿 + 𝜌), then we need to use (𝑥00 + 𝑦1)
instead of 𝑦𝑛∗ in (96)-(101). If Δ < (𝑥00 + 𝑦1)𝛿𝜌/(𝛿 + 𝜌),
then

𝑦𝑛∗ =
Ψ(𝜌+ 𝛿) + 𝑥00(𝜂 − 𝛿)𝜌

𝜌2 + 𝛿𝜌+ 𝛿 + 𝜌
(106)

𝑦𝑛∗+1 =
Ψ(𝜌+ 𝛿)𝜌− 𝑥00(𝜂 − 𝛿)𝜌

𝜌2 + 𝛿𝜌+ 𝛿 + 𝜌
(107)

𝑡𝑛∗+1 =
𝑥00(𝜂𝛿𝜌+ 𝜂𝛿 + 𝜂𝜌2 + 𝛿𝜌)−Ψ(𝜌+ 𝛿)

𝜌2 + 𝛿𝜌+ 𝛿 + 𝜌
(108)

𝑡𝑛∗+2 =
Ψ(𝜌+ 𝛿)𝛿 − 𝑥00(𝜂 − 𝛿)𝛿

𝜌2 + 𝛿𝜌+ 𝛿 + 𝜌
(109)

When 𝑛∗ = 2, if Δ ≥ 𝑦𝑛∗𝛿𝜌/(𝛿 + 𝜌), the allocation of Ψ
has the same form as in (96)-(101). If Δ < 𝑦𝑛∗𝛿𝜌/(𝛿 + 𝜌),
then we need to use (𝑥00+𝑦1) instead of 𝑦𝑛∗−1 in (102)-(105).

B. The Proof of Theorem 2

While we generalize the simple example to an arbitrary
setting, we follow the same basic allocation pattern. If 𝑛 is
odd, we assign 𝑦𝑛 and 𝑡𝑛 only to two states

(
𝑛+1
2 , 𝑛−1

2

)
and

(
𝑛−1
2 , 𝑛+1

2

)
; if 𝑛 is even, we assign 𝑦𝑛 to three states:(

𝑛
2 + 1, 𝑛

2 − 1
)
,
(
𝑛
2 ,

𝑛
2

)
,
(
𝑛
2 − 1, 𝑛2 + 1

)
, and we assign 𝑡𝑛 to

a single state
(
𝑛
2 ,

𝑛
2

)
. We illustrate the allocation pattern in

Figure 7. We need to make sure that the transitions only
happen within the positive recurrent class. Therefore, when
𝑛 is odd, we let 𝑥1

𝑛−1
2 ,𝑛+1

2

= 𝑥2
𝑛+1
2 ,𝑛−1

2

= 0; when 𝑛 is even,

we let 𝑥1
𝑛
2 −1,𝑛2 +1 = 𝑥2

𝑛
2 +1,𝑛2 −1 = 0. Then, let us examine the

N+2

n= 21 3 N-1

. .
 .

N-2. . .

. .
 .

2N

n*

N+1

N40

2N-1

Fig. 7. Allocation pattern within groups.

transition equations for the states. For 𝑛 = 1, we have

𝑥2
01(1 − 𝜃2(1− 𝜃1)) = (𝑥00 + 𝑥1

10 + 𝑥3
11)𝜃2(1− 𝜃1)

+ (𝑥2
02 + 𝑥1

11 + 𝑥3
12)(1− 𝜃1)(1− 𝜃2)

(110)

For 𝑛 = 2, 3, . . ., if 𝑛 is even, the transitions between states
are illustrated in Figure 8. The transition equation for state(
𝑛
2 − 1, 𝑛2 + 1

)
is

𝑥2
𝑛
2 −1,𝑛2 +1(1−𝜃2(1−𝜃1)) =(𝑥1

𝑛
2 ,𝑛2

+𝑥3
𝑛
2 ,𝑛2 +1)𝜃2(1−𝜃1)

(111)

If 𝑛 is odd, the transitions between states are illustrated in
Figure 9. The transition equation for state

(
𝑛−1
2 , 𝑛+1

2

)
is

𝑥2
𝑛−1
2 ,𝑛+1

2

(1 − 𝜃2(1− 𝜃1)) + 𝑥3
𝑛−1
2 ,𝑛+1

2

(1− 𝜃1𝜃2)

= (𝑥2
𝑛−3
2 ,𝑛+1

2

+ 𝑥1
𝑛−1
2 ,𝑛−1

2

)𝜃1𝜃2

+ (𝑥1
𝑛+1
2 ,𝑛+1

2

+ 𝑥2
𝑛−1
2 ,𝑛+3

2

+ 𝑥3
𝑛+1
2 ,𝑛+3

2

)(1 − 𝜃1)(1 − 𝜃2)

+ (𝑥1
𝑛+1
2 ,𝑛−1

2

+ 𝑥3
𝑛+1
2 ,𝑛+1

2

)𝜃2(1 − 𝜃1) (112)

After a transformation, (110) is equivalent to

𝑥2
01 =(𝑥00 + 𝑥1

10 + 𝑥2
01 + 𝑥3

11)𝜃2(1 − 𝜃1)

+ (𝑥2
02 + 𝑥1

11 + 𝑥3
12)(1 − 𝜃1)(1− 𝜃2) (113)

where 𝑥00 is known, 𝑥1
10 + 𝑥2

01 = 𝑦1, 𝑥3
11 = 𝑡2.

For 𝑛 = 2, 3, . . ., when 𝑛 is even, (111) is equivalent to

𝑥2
𝑛
2 −1,𝑛2 +1 =(𝑥1

𝑛
2 ,𝑛2

+ 𝑥2
𝑛
2 −1,𝑛2 +1 + 𝑥3

𝑛
2 ,𝑛2 +1)𝜃2(1− 𝜃1)

(114)

and when 𝑛 is odd, (112) is equivalent to

𝑥2
𝑛−1
2

,𝑛+1
2

= (𝑥2
𝑛−3
2

,𝑛+1
2

+ 𝑥1
𝑛−1
2

,𝑛−1
2

)𝜃1𝜃2 − 𝑥3
𝑛−1
2

,𝑛+1
2

(1− 𝜃1𝜃2)

+ (𝑥1
𝑛+1
2

,𝑛+1
2

+ 𝑥2
𝑛−1
2

,𝑛+3
2

+ 𝑥3
𝑛+1
2

,𝑛+3
2

)(1− 𝜃1)(1− 𝜃2)

+ (𝑥1
𝑛+1
2

,𝑛−1
2

+ 𝑥2
𝑛−1
2

,𝑛+1
2

+ 𝑥3
𝑛+1
2

,𝑛+1
2

)𝜃2(1− 𝜃1) (115)



YANG and ULUKUS: DELAY-MINIMAL TRANSMISSION FOR AVERAGE POWER CONSTRAINED MULTI-ACCESS COMMUNICATIONS 2765

. . .

. . .

. . .. . .

. . .

. . .

𝑛
2
, 𝑛
2

𝑛
2
, 𝑛
2

+1

𝑛
2

+1,𝑛
2

-1

𝑛
2

-1,𝑛
2

+1

𝑛
2
+ 1, 𝑛

2

𝑛
2

,𝑛
2

-1

𝑛
2

-1,𝑛
2

Fig. 8. The transitions between states when 𝑛 is even.

where 𝑥1
𝑛+1
2 ,𝑛−1

2

+ 𝑥2
𝑛−1
2 ,𝑛+1

2

= 𝑦𝑛, 𝑥3
𝑛+1
2 ,𝑛+1

2

= 𝑡𝑛+1.

The transition equations for the remaining half of the
recurrent states can be expressed in a similar form. Therefore,
the values of 𝑥𝑘

𝑖𝑗s are determined only by the allocation of 𝑦𝑛
between 𝑥1

𝑛
2 +1,𝑛2 −1 + 𝑥2

𝑛
2 ,𝑛2

and 𝑥2
𝑛
2 −1,𝑛2 +1 + 𝑥1

𝑛
2 ,𝑛2

when 𝑛

is even, and the allocation of 𝑡𝑛 to 𝑥3
𝑛+1
2 ,𝑛−1

2

and 𝑥3
𝑛−1
2 ,𝑛+1

2

when 𝑛 is odd. If we let

𝑥1
𝑛
2 ,𝑛2

+ 𝑥2
𝑛
2 −1,𝑛2 +1 = 𝑦𝑛/2, when 𝑛 is even (116)

𝑥3
𝑛−1
2 ,𝑛+1

2

= 𝑡𝑛/2, when 𝑛 is odd (117)

and solve equations (113)-(115), then, for 𝑛 = 1, we obtain

𝑥2
01 =(𝑥00 + 𝑦1 + 𝑡2)𝜃2(1 − 𝜃1)

+
1

2
(𝑦2 + 𝑡3)(1− 𝜃1)(1 − 𝜃2)

𝑥1
10 =(𝑥00 + 𝑦1 + 𝑡2)𝜃1(1 − 𝜃2)

+
1

2
(𝑦2 + 𝑡3)(1− 𝜃1)(1 − 𝜃2) (118)

For 𝑛 = 2, 3, . . ., if 𝑛 is even, we get

𝑥2
𝑛
2 −1,𝑛2 +1 =

1

2
(𝑦𝑛 + 𝑡𝑛+1)𝜃2(1− 𝜃1) (119)

𝑥1
𝑛
2 +1,𝑛2 −1 =

1

2
(𝑦𝑛 + 𝑡𝑛+1)𝜃1(1− 𝜃2) (120)

𝑥1
𝑛
2 ,𝑛2

=
1

2
𝑦𝑛 − 1

2
(𝑦𝑛 + 𝑡𝑛+1)𝜃2(1 − 𝜃1) (121)

𝑥2
𝑛
2 ,𝑛2

=
1

2
𝑦𝑛 − 1

2
(𝑦𝑛 + 𝑡𝑛+1)𝜃1(1 − 𝜃2) (122)

and if 𝑛 is odd, we have

𝑥2
𝑛−1
2 ,𝑛+1

2

=
1

2
𝑦𝑛−1𝜃1𝜃2 + (𝑦𝑛 + 𝑡𝑛+1)𝜃2(1− 𝜃1)

+
1

2
(𝑦𝑛+1 + 𝑡𝑛+2)(1 − 𝜃1)(1 − 𝜃2)− 1

2
𝑡𝑛(1− 𝜃1𝜃2)

(123)

𝑥1
𝑛+1
2 ,𝑛−1

2

=
1

2
𝑦𝑛−1𝜃1𝜃2 + (𝑦𝑛 + 𝑡𝑛+1)𝜃1(1− 𝜃2)

+
1

2
(𝑦𝑛+1 + 𝑡𝑛+2)(1 − 𝜃1)(1 − 𝜃2)− 1

2
𝑡𝑛(1− 𝜃1𝜃2)

(124)

. . .

. . .
. . .

𝑛−1
2

, 𝑛+1
2

𝑛+1
2

, 𝑛−3
2

𝑛−3
2

, 𝑛+1
2

𝑛−1
2

, 𝑛+3
2

𝑛+1
2

, 𝑛+1
2

𝑛+3
2

, 𝑛−1
2

𝑛+1
2

, 𝑛−1
2

𝑛−1
2

, 𝑛−1
2

𝑛+1
2

, 𝑛+3
2

𝑛+3
2

, 𝑛+1
2

Fig. 9. The transitions between states when 𝑛 is odd.

This completes the allocation. Note that 𝑡𝑛 ∕= 0 only when 𝑛 is
equal to 𝑛∗+1, 𝑛∗+2, and/or 𝑛∗+3, depending on the value of
Δ. When 𝑡𝑛+1 = 0, it automatically disappears from the right
hand sides of (118)-(124). From the group transition equations,
we have 𝑦𝑛 ≥ 𝑡𝑛+1𝜌

′/𝛿′, and it is easy to verify that all states
have nonnegative assignments and the transition equations are
also satisfied in this case. Therefore, there always exists a
feasible allocation to satisfy all of the transition equations with
𝑦𝑛s defined through this allocation scheme.

C. The Proof of Theorem 3

In a convex optimization problem, where the inequality
constraints are convex and the equality constraints are affine,
if 𝑥∗ is such that there exists a set of Lagrange multipliers
which together with 𝑥∗ satisfy the KKT conditions, then
𝑥∗ is a global minimizer for the problem [17] [18]. In the
first step, we have a linear objective function and linear
constraints. Therefore, if we prove that the point achieved by
the assignment satisfies the KKT conditions, then we can say
that it is the global minimizer for our problem.

In the allocation scheme, if Δ = 𝑦𝑛∗𝛿𝜌/(𝛿 + 𝜌), then
it is easy to prove that the resulting allocation is opti-
mal, since every 𝑦𝑛, 𝑛 < 𝑛∗ achieves its maximum pos-
sible value. However, this is not the case when Δ ∕=
𝑦𝑛∗𝛿𝜌/(𝛿 + 𝜌), because the second to last nonzero 𝑦𝑛 does
not achieve its maximum. In the following, we prove that
our allocation is optimal for this case as well. Define y =
[𝑦1, 𝑦2, . . . , 𝑦2𝑁−1, 𝑡2, . . . , 𝑡𝑁−1, 𝑡2𝑁 ]. Then, the linear equal-
ity constraints, including the 2𝑁 group transition equations
and the sum constraint can be written as a (2𝑁+1)×2(2𝑁−1)
matrix form as follows⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ⋅ ⋅ ⋅ 0 1 0 0 ⋅ ⋅ ⋅ 0
−𝛿 1 0 ⋅ ⋅ ⋅ 0 𝜌 1 0 ⋅ ⋅ ⋅ 0
0 −𝛿 1 ⋅ ⋅ ⋅ 0 0 𝜌 1 ⋅ ⋅ ⋅ 0

...
. . .

...
. . .

0 0 0 ⋅ ⋅ ⋅ 1 0 0 0 ⋅ ⋅ ⋅ 1
0 0 0 ⋅ ⋅ ⋅ −𝛿 0 0 0 ⋅ ⋅ ⋅ 𝜌
1 1 1 ⋅ ⋅ ⋅ 1 0 0 0 ⋅ ⋅ ⋅ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
y𝑇=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥00𝜂
𝑥00𝛿
0
...
0
0
Ψ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

which we write equivalently as,

𝔸y𝑇 = b (125)
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b𝑇 =
(
𝑥00𝜂 𝑥00𝛿(1 + 𝜂) 𝑥00𝛿2(1 + 𝜂) ⋅ ⋅ ⋅ 𝑥00𝛿2𝑁−1(1 + 𝜂) Ψ

)𝑇
(126)

𝔸 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ⋅ ⋅ ⋅ 0 1 0 0 ⋅ ⋅ ⋅ 0
0 1 0 ⋅ ⋅ ⋅ 0 𝜌+ 𝛿 1 0 ⋅ ⋅ ⋅ 0
0 0 1 ⋅ ⋅ ⋅ 0 (𝜌+ 𝛿)𝛿 𝜌+ 𝛿 1 ⋅ ⋅ ⋅ 0

...
. . .

...
. . .

0 0 0 ⋅ ⋅ ⋅ 1 (𝜌+ 𝛿)𝛿2𝑁−3 (𝜌+ 𝛿)𝛿2𝑁−4 (𝜌+ 𝛿)𝛿2𝑁−5 ⋅ ⋅ ⋅ 1
0 0 0 ⋅ ⋅ ⋅ 0 (𝜌+ 𝛿)𝛿2𝑁−2 (𝜌+ 𝛿)𝛿2𝑁−3 (𝜌+ 𝛿)𝛿2𝑁−4 ⋅ ⋅ ⋅ 𝜌+ 𝛿
1 1 1 ⋅ ⋅ ⋅ 1 0 0 0 ⋅ ⋅ ⋅ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(127)

by defining b, 𝔸 in (126) and (127) at the top of the page.
The Lagrangian is expressed as

𝐿(y,𝝀,𝝁) = c𝑇y − 𝝀𝑇 (𝔸y − b)− 𝝁𝑇y (128)

where c = [1, 2, ⋅ ⋅ ⋅ , 2𝑁 − 1, 0, 0, ⋅ ⋅ ⋅ , 0], 𝝀 ∈ R2𝑁+1 and
𝝁 ∈ R4𝑁−2.

We need to prove that there exists a set of 𝝀∗, 𝝁∗ associated
with our allocation y∗, such that they satisfy

𝝁∗ ≥ 0, 𝝁∗𝑇y∗ = 0 (129)

y∗ ≥ 0, 𝔸y∗𝑇 = b (130)

c = 𝔸𝑇𝝀∗ + 𝝁∗ (131)

Consider the y we obtained with the algorithm. Let us
consider the case when Δ < 𝑦𝑛∗𝛿𝜌/(𝛿+𝜌) first. The allocation
indicates that 𝑦𝑛 > 0 only when 𝑛 = 1, 2, . . . , 𝑛∗ + 1, and
𝑡𝑛 > 0 only when 𝑛 = 𝑛∗ + 1, 𝑛∗ + 2. Because of the
complementary slackness in (129), we obtain

𝜇𝑛 = 0, 𝑛 = 1, 2, . . . , 𝑛∗ + 1, 𝑛∗ + 2𝑁 − 1, 𝑛∗ + 2𝑁
(132)

Plugging this into (131), and solving the equations, we have

𝜆𝑛 =
1

𝜌+ 1
+ 𝑛− 𝑛∗ − 1, 𝑛 = 1, 2, . . . , 𝑛∗ + 1

𝜆2𝑁+1 =
𝜌

𝜌+ 1
+ 𝑛∗

𝜇𝑛+2𝑁−2 = −
(
𝜆𝑛−1 + (𝜌+ 𝛿)

𝑛∗−1∑
𝑖=𝑛

𝜆𝑖𝛿
𝑖−𝑛 + 𝜌𝛿𝑛

∗−𝑛𝜆𝑛∗

)
,

𝑛 = 2, 3, . . . , 𝑛∗ (133)

Thus, we have 𝜆𝑛 < 0 when 𝑛 ≤ 𝑛∗, which guarantees the
positiveness of {𝜇𝑛}𝑛∗+2𝑁−2

𝑛=2𝑁 . We also have

2𝑁∑
𝑖=𝑛∗+2

𝜆𝑖𝛿
𝑖−𝑛∗−2 = − 1

(𝜌+ 𝛿)(𝜌+ 1)
(134)

and

𝜇𝑛 =
1

𝜌+ 1
+ 𝑛− 𝑛∗ − 1− 𝜆𝑛, 𝑛 = 𝑛∗ + 2, . . . , 2𝑁 − 1

𝜇𝑛 = −
(
𝜆𝑛−1 + (𝜌+ 𝛿)

2𝑁∑
𝑖=𝑛

𝜆𝑖𝛿
𝑖−𝑛

)
,

𝑛 = 𝑛∗ + 2𝑁 + 1, . . . , 4𝑁 − 2 (135)

We can always find a set of negative {𝜆𝑖}2𝑁𝑖=𝑛∗+2 to sat-
isfy (134). Since they are all negative, this guarantees that
{𝜇𝑛}2𝑁−1

𝑛=𝑛∗+2 and {𝜇𝑛}4𝑁−2
𝑛=𝑛∗+2𝑁+1 are positive. Therefore, at

the point y∗, we can always find a set of multipliers satisfying
all of the KKT constraints. This proves that the allocation our
algorithm gives is a global minimizer.
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