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Secure Degrees of Freedom Regions of Multiple
Access and Interference Channels:

The Polytope Structure
Jianwei Xie and Sennur Ulukus, Senior Member, IEEE

Abstract— In this paper, we determine the entire secure degrees
of freedom (s.d.o.f.) regions of the K -user Gaussian multiple
access (MAC) wiretap channel and the K -user interference chan-
nel (IC) with secrecy constraints. For the IC, we consider three
secrecy constraints: K-user IC with an external eavesdropper (IC-
EE), K-user IC with confidential messages (IC-CM), and their
combination Kuser IC with confidential messages and external
eavesdropper (IC-CM-EE). The converse for the IC includes
constraints both due to secrecy as well as due to interference.
For the IC, although the portion of the region close to the
optimum sum s.d.o.f. point is governed by the upper bounds
due to secrecy constraints, the other portions of the region are
governed by the upper bounds due to interference constraints.
Different from the existing literature, in order to fully understand
the characterization of the s.d.o.f. region of the IC, one has
to study the four-user case, i.e., the two- or three-user cases
do not illustrate the full generality of the problem. In order
to prove the achievability, we use the polytope structure of
the converse region. In both MAC and IC cases, we develop
explicit schemes that achieve the extreme points of the polytope
region given by the converse. In particular, the extreme points
of the MAC region are achieved by an m-user MAC wiretap
channel with K − m helpers, i.e., by setting K − m users’ secure
rates to zero and utilizing them as pure (structured) cooperative
jammers. The extreme points of the IC region are achieved by
a (K − m)-user IC with confidential messages, m helpers, and
N external eavesdroppers, for m ≥ 1 and a finite N. A byproduct
of our results in this paper is that the sum s.d.o.f. is achieved
only at one extreme point of the s.d.o.f. region, which is the
symmetric-rate extreme point, for both MAC and IC channel
models.

Index Terms— Wiretap channel, multiple access channel,
interference channel, secure degrees of freedom, cooperative
jamming, interference alignment.

I. INTRODUCTION

IN THIS paper, we consider two fundamental multi-
user network structures under secrecy constraints:
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K -user multiple access channel (MAC) and K -user
interference channel (IC). Information-theoretic security
of communication was first considered by Shannon in [1]
via a noiseless wiretap channel. Noisy wiretap channel
was introduced by Wyner who showed that information-
theoretically secure communication was possible if the
eavesdropper was degraded with respect to the legitimate
receiver [2]. Csiszar and Korner generalized Wyner’s
result to arbitrary, not necessarily degraded, wiretap
channels, and showed that information-theoretically secure
communication was possible even when the eavesdropper
was not degraded [3]. Leung-Yan-Cheong and Hellman
extended Wyner’s setting to a Gaussian channel, which is
degraded [4]. This line of research has been extended to
many multi-user scenarios, for both general and Gaussian
channel models, see e.g., [5]–[26]. The secrecy capacity
regions of most of these multi-user channels remain open
problems even in simple Gaussian settings. In the absence
of exact secrecy capacity regions, the behaviour of the
secrecy rates at high signal-to-noise ratio (SNR) regimes
have been studied by focusing on the secure degrees of
freedom (s.d.o.f.), which is the pre-log of the secrecy rates,
in [27]–[41].

In this paper, we focus on the K -user Gaussian MAC
wiretap channel and the K -user Gaussian IC with secrecy
constraints. The secrecy capacity regions of both of these
models remain open. Early references [28]–[32] studied the
sum s.d.o.f. of the MAC and IC models by developing
achievable schemes. In particular, [28]–[30] achieved a sum
s.d.o.f. of K−1

K for the MAC wiretap channel; [31], [32]
achieved a sum s.d.o.f. of K (K−1)

2K for the IC-EE; and [31]

achieved a sum s.d.o.f. of K (K−2)
2K−1 for the IC-CM. The best-

known upper bounds for the MAC wiretap channel was 1,
and for the IC-EE and IC-CM was K

2 , which are the upper
bounds for the corresponding non-secrecy settings [42]–[44].
References [28]–[32] directly applied interference alignment
techniques to the secrecy settings. While interference align-
ment naturally provides some amount of secrecy due to
aligning all unwanted signals in a separate dimension, in order
to attain the optimum s.d.o.f., signals need to be designed more
intricately. The exact sum s.d.o.f. of both of these channel
models have been determined recently as K (K−1)

K (K−1)+1 for the

MAC wiretap channel [45], [46], and as K (K−1)
2K−1 for the

IC-EE and IC-CM [47], [48]. In particular, [45]–[48] utilize
interference alignment together with intricately designed coop-
erative jamming signals to obtain the optimum sum s.d.o.f.
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Fig. 1. K -user multiple access (MAC) wiretap channel.

In this paper, we determine the entire s.d.o.f. regions of the
MAC and IC models.

We start with the MAC wiretap channel, where multiple
legitimate transmitters wish to have secure communication
with a legitimate receiver in the presence of an eavesdropper;
see Fig. 1. The converse for the sum s.d.o.f. is developed
in [45] and [46] using two lemmas1: the secrecy penalty
lemma [46, Lemma 1] and the role of a helper lemma
[46, Lemma 2], which, respectively, quantify the rate penalty
due to the existence of an eavesdropper, and quantify
the impact of a helper (interferer) on the rate of another
legitimate transmitter. The achievability for the sum s.d.o.f.
in [45] and [46] is based on real interference
alignment [49], [50] and structured cooperative jamming [14]
with an emphasis on simultaneous alignments at both
the legitimate receiver and the eavesdropper. We develop
the converse for the entire region by starting from the
converse proof given in [45] and [46] for the sum s.d.o.f.
While [45] and [46] developed asymmetric upper bounds
for the secure rates, since the sum s.d.o.f. was achieved by
symmetric rates, [45], [46] summed up the asymmetric upper
bounds to get a single symmetric upper bound to match the
achievability. We revisit the converse proof in [45] and [46]
and develop a converse for the entire region by keeping the
developed asymmetric upper bounds. Therefore, the converse
proofs developed in [45] and [46] to obtain a converse for the
sum s.d.o.f. suffice to obtain a tight converse for the entire
region.

The converse region for the s.d.o.f. problem has a general
polytope structure, as opposed to the non-secrecy counterpart
for the MAC which has a polymatroid structure [51]. Polytope
is a bounded polyhedron, which is an intersection of a finite
number of half-spaces. Such definition is called a half-space
representation, which is exactly the way our converse is
expressed. In order to show the achievability of the polytope
region, we need to show the achievability of the boundaries of
all of the half-spaces, which is inefficient. We use Minkowski
theorem [52, Th. 2.4.5] which states that the polytope region
discussed in this paper can be represented by the convex
hull of all of its extreme points, which there are only

1These lemmas are stated and a brief discussion is provided in Section III-B
for completeness.

Fig. 2. K -user interference channel (IC) with secrecy constraints.

finitely many. We, therefore, first determine the extreme points
of this converse (polytope) region, and then develop an achiev-
able scheme for each extreme point of the converse region;
the achievability of the entire region then follows from time-
sharing. In particular, each extreme point of the converse
region is achieved by an m-user MAC wiretap channel with
K −m helpers, for m = 1, . . . , K , i.e., by setting K −m users’
secure rates to zero and utilizing them as pure (structured)
cooperative jammers.

We then consider the IC with secrecy constraints; see
Fig. 2. In particular, we consider three different secrecy
constraints in a unified framework as in [47] and [48]:
1) K -user IC with one external eavesdropper (IC-EE),
where K transmitter-receiver pairs wish to have secure com-
munication against an external eavesdropper. 2) K -user IC
with confidential messages (IC-CM), where there are no
external eavesdroppers, but each transmitter-receiver pair
wishes to secure its communication against the remaining
K − 1 receivers. 3) K -user IC with confidential messages
and one external eavesdropper (IC-CM-EE), which is a com-
bination of the previous two cases, where each transmitter-
receiver pair wishes to secure its communication against the
K − 1 receivers and the external eavesdropper. The converse
for the sum s.d.o.f. (the sum s.d.o.f. is the same for all
three models) was developed in [47] and [48] by using the
secrecy penalty lemma and the role of a helper lemma in a
certain way, and then by summing up the obtained asymmetric
upper bounds into a single symmetric upper bound. The
achievability for the sum s.d.o.f. in [47] and [48] is based
on asymptotical real interference alignment [49] to enable
simultaneous alignment at multiple receivers.

In order to develop a converse for the entire region for the
IC case, similar to the MAC case, we start by re-examining the
converse proof in [47] and [48] for the sum s.d.o.f. However,
unlike the MAC case, the original steps used in [47] and [48]
for the sum s.d.o.f. are not tight for the characterization
of the entire region. There are two reasons for this: First,
in the case of the MAC wiretap channel, since there is a
single legitimate receiver, each transmitter (helper/interferer)
impacts the total rate of all other legitimate transmitters at
the legitimate receiver, and therefore, there is a single manner
in which the role of a helper lemma is applied. In the
IC case, there are many different ways in which the role of a
helper lemma can be invoked as there are multiple receivers.
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In this case, by pairing up helpers (interferers) and the
receivers we obtain (K − 1)K upper bounds; even after
removing the redundancies, we get

(( K
K−1

)) = (2K−2
K−1

)
upper

bounds.2 In order to obtain the tightest subset of these
upper bounds, we choose the most binding pairing of the
helpers/interferers and the receivers. In particular, when devel-
oping the converse for the sum s.d.o.f. in [47], for each
transmitter i , we applied the role of a helper lemma by
choosing only one of its neighbors k (k = i − 1 or k = i + 1)
as the helper/interferer. Instead, in this paper, we choose all of
the transmitters as interfering with a single transmitter-receiver
pair; see (124) and (141) in this paper. This yields the tightest
upper bounds. Second, we observe that, when we study the
s.d.o.f. region, we need to consider the non-secrecy upper
bounds for the underlying IC [43], [44] as additional upper
bounds. We note that such upper bounds are not needed for
the s.d.o.f. region of the MAC wiretap channel, or the sum
s.d.o.f. of MAC or IC. In fact, such non-secrecy upper bounds
are not needed even for the s.d.o.f. region of the IC for the
cases of K = 2 or K = 3. We observe that these upper
bounds are needed for the IC with secrecy constraints starting
with K ≥ 4. To the best of our knowledge, this is the first
time in network information theory that K = 2 or K = 3 do
not capture the full generality of the problem, and we need to
study K = 4 to observe a certain multi-user phenomenon
to take effect.3 That is, if one studied only K = 2 or
K = 3 user cases, one might not have realized that interference
constraints as well as secrecy constraints are needed in the
s.d.o.f. region expressions for the IC; only after K ≥ 4 do
these constraints become binding. The intuitive reason for this
is that for K < 4, interference constraints are implied by
the secrecy constraints, whereas after K ≥ 4, interference
constraints introduce new constraints that are not represented
by the secrecy constraints. For larger numbers of users, at
the edges of the s.d.o.f. region, some users do not transmit
messages but serve only as helpers by sending cooperative
jamming signals; in such cases, decodabilitys at the legitimate
receiver (interference) becomes a more dominant factor than
secrecy at the eavesdropper.

The converse region for the IC with secrecy constraints has
a polytope structure as well, and similar to the MAC wiretap
channel case, we need to determine the extreme points of this
polytope region. However, different from the MAC wiretap
channel case, the converse region consists of two classes
of upper bounds, due to secrecy and due to interference.
This makes it difficult to identify the extreme points of the
converse polytope. Finding the extreme points is related to
finding full-rank sub-matrices from an overall matrix of size
2K + K (K − 1)/2. Since there are approximately K K such
matrices, an exhaustive search is intractable, and therefore
we investigate the consistency of the upper bounds, which
reduces the possible number of sub-matrices to examine. After
determining the extreme points of the converse polytope,

2Here,
((n

k
))

is the multiset coefficient, which is equal to
(n+k−1

k
)
.

3See an example of K = 2 not representing the full generality of the
setting, and the need to study K = 3 to observe a phenomenon to take effect
in [53].

since most of the extreme points have multiple zero elements,
in order to achieve them, it suffices to develop an achievable
scheme for each extreme point by considering a (K −m)-user
IC-CM with m helpers and N independent external eaves-
droppers, for m ≥ 1 and finite N . This is because,
if there are m zero elements in an extreme point, then only
K − m transmitters need to have positive s.d.o.f., the remain-
ing m transmitters will be helpers, and the corresponding
m receivers become eavesdroppers, i.e., N = 1 + m.

Finally, after characterizing the entire s.d.o.f. regions of the
MAC and IC with secrecy constraints, as a byproduct of our
results in this paper, we note that the sum s.d.o.f. is achieved
only at one extreme point of the s.d.o.f. region, which is the
symmetric-rate extreme point, for both MAC and IC channel
models.

II. SYSTEM MODEL, DEFINITIONS AND RESULTS

A. K -User Gaussian MAC Wiretap Channel

The K -user Gaussian MAC wiretap channel (see Fig. 1) is:

Y1 =
K∑

i=1

hi Xi + N1 (1)

Y2 =
K∑

i=1

gi Xi + N2 (2)

where Y1 is the channel output of the legitimate receiver, Y2 is
the channel output of the eavesdropper, Xi is the channel
input of transmitter i , hi and gi are the channel gains of
transmitter i to the legitimate receiver and the eavesdropper,
respectively, and N1 and N2 are independent Gaussian random
variables with zero-mean and unit-variance. All the channel
gains are independently drawn from continuous distributions,
and are time-invariant throughout the communication session.
We further assume that all hi and gi are non-zero. All channel
inputs satisfy average power constraints, E

[
X2

i

] ≤ P , for
i = 1, . . . , K .

Each transmitter i has a message Wi intended for the
legitimate receiver. For each i , message Wi is uniformly and
independently chosen from set Wi . The rate of message i is

Ri
�= 1

n log |Wi |. Transmitter i uses a stochastic function

fi : Wi → Xi where the n-length vector Xi
�= Xn

i denotes the
i th user’s channel input in n channel uses. All messages are
needed to be kept secret from the eavesdropper. A secrecy rate
tuple (R1, . . . , RK ) is said to be achievable if for any ε > 0
there exist n-length codes such that the legitimate receiver can
decode the messages reliably, i.e., the probability of decoding
error is less than ε

Pr
[
(W1, . . . , WK ) �= (Ŵ1, . . . , ŴK )

]
≤ ε (3)

and the messages are kept information-theoretically secure
against the eavesdropper

1

n
H (W1, . . . , WK |Y2) ≥ 1

n
H (W1, . . . , WK ) − ε (4)

where Ŵ1, . . . , ŴK are the estimates of the messages based

on observation Y1, where Y1
�= Y n

1 and Y2
�= Y n

2 .
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Fig. 3. The receiver sides of the three channel models: (a) K -user IC-EE, (b) K -user IC-CM, and (c) K -user IC-CM-EE, where W K
1

�= {W1, . . . , WK } and

W K−i
�= {W1, . . . , Wi−1, Wi+1, . . . , WK }.

The s.d.o.f. region is defined as:

D =
{

d : (R1, . . . , RK ) is achievable and

di
�= lim

P→∞
Ri

1
2 log P

, i = 1, . . . , K
}

(5)

where d = (d1, . . . , dK ).
The sum s.d.o.f. is defined as:

Ds,�
�= lim

P→∞ sup

∑K
i=1 Ri

1
2 log P

(6)

where the supremum is over all achievable secrecy rate tuples
(R1, . . . , RK ).

In this paper, we characterize the s.d.o.f. region of the
K -user Gaussian MAC wiretap channel in the following
theorem.

Theorem 1: The s.d.o.f. region D of the K -user Gaussian
MAC wiretap channel is the set of all d satisfying

K di + (K − 1)

K∑

j=1, j �=i

d j ≤ K − 1, i = 1, . . . , K (7)

di ≥ 0, i = 1, . . . , K (8)

for almost all channel gains.
From the symmetry in Theorem 1, the sum s.d.o.f. is

attained when di = d,∀i . Using this in (7) gives the sum
s.d.o.f. in the following corollary, which was originally proved
in [46].

Corollary 1 ([46, Th. 1]): The sum s.d.o.f. of the K -user

Gaussian MAC wiretap channel is K (K−1)
K (K−1)+1 for almost all

channel gains.

B. K -User Gaussian IC With Secrecy Constraints

The K -user Gaussian IC with secrecy constraints
(see Fig. 2) is:

Yi =
K∑

j=1

h j i X j + Ni , i = 1, . . . , K (9)

Z =
K∑

j=1

g j X j + NZ (10)

where Yi is the channel output of receiver i , Z is the channel
output of the external eavesdropper (if there is any), Xi is
the channel input of transmitter i , h j i is the channel gain
of the j th transmitter to the i th receiver, g j is the channel
gain of the j th transmitter to the eavesdropper (if there
is any), and {N1, . . . , NK , NZ } are mutually independent
zero-mean unit-variance Gaussian random variables. All the
channel gains are independently drawn from continuous distri-
butions, and are time-invariant throughout the communication
session. We further assume that all h j i are non-zero, and all g j

are non-zero if there is an external eavesdropper. All channel
inputs satisfy average power constraints, E

[
X2

i

] ≤ P , for
i = 1, . . . , K .

Each transmitter i intends to send a message Wi , uniformly
chosen from a set Wi , to receiver i . The rate of message i

is Ri
�= 1

n log |Wi |, where n is the number of channel uses.
Transmitter i uses a stochastic function fi : Wi → Xi to

encode the message, where Xi
�= Xn

i is the n-length channel
input of user i . The legitimate receiver j decodes the message
as Ŵ j based on its observation Y j . A secrecy rate tuple
(R1, . . . , RK ) is said to be achievable if for any ε > 0,
there exist joint n-length codes such that each receiver j can
decode the corresponding message reliably, i.e., the probability
of decoding error is less than ε for all messages,

max
j

Pr
[
W j �= Ŵ j

]
≤ ε (11)

and the corresponding secrecy requirement is satisfied.
We consider three different secrecy requirements:

1) In IC-EE, Fig. 3(a), all of the messages are kept
information-theoretically secure against the external
eavesdropper,

1

n
H (W1, . . . , WK |Z) ≥ 1

n
H (W1, . . . , WK ) − ε (12)

2) In IC-CM, Fig. 3(b), all unintended messages are kept
information-theoretically secure against each receiver,

1

n
H (W K−i |Yi ) ≥ 1

n
H (W K−i) − ε, i = 1, . . . , K (13)

where W K−i
�= {W1, . . . , Wi−1, Wi+1, . . . , WK }.

3) In IC-CM-EE, Fig. 3(c), all of the messages are
kept information-theoretically secure against both
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the K − 1 unintended receivers and the eavesdropper,
i.e., we impose both secrecy constraints in (12) and (13).

The s.d.o.f. region and the sum s.d.o.f. are defined as
in (5) and (6).

In this paper, we characterize the s.d.o.f. region of the
K -user IC-EE, IC-CM, and IC-CM-EE in the following
theorem.

Theorem 2: The s.d.o.f. region D of K -user IC-EE, IC-CM,
and IC-CM-EE is the set of all d satisfying

K di +
K∑

j=1, j �=i

d j ≤ K − 1, i = 1, . . . , K (14)

∑

i∈V

di ≤ 1, ∀ V ⊆ {1, . . . , K }, |V | = 2 (15)

di ≥ 0, i = 1, . . . , K (16)

for almost all channel gains.
From the symmetry in Theorem 2, the sum s.d.o.f. is

attained when di = d,∀i . Using this in (14) gives the sum
s.d.o.f. in the following corollary, which was originally proved
in [48].

Corollary 2 ([48, Th. 1]): The sum s.d.o.f. of the K -user

Gaussian IC-EE, IC-CM, and IC-CM-EE is K (K−1)
2K−1 for almost

all channel gains.

III. PRELIMINARIES

A. Polytope Structure and Extreme Points

A set P ⊆ Rn is a polyhedron if there is a system of finitely
many inequalities Hx ≤ h such that

P = P(H, h)
�= {

x ∈ Rn | Hx ≤ h
}

(17)

where H has n columns and an arbitrary number of rows, and
h is a column vector.

The regions defined in Theorems 1 and 2 are bounded
polyhedrons. We will study these polyhedrons by expressing
all of their internal points in terms of their extreme points.
First, we define a convex hull of points.

Let X ⊆ Rn . The convex hull of X , Co(X), is the set of all
convex combinations of the points in X :

Co(X)
�=

{∑

i

λi xi | xi ∈ X and

∑

i

λi = 1, λi ∈ R, λi ≥ 0, ∀i

}
(18)

Next, we note that a set P ⊆ Rn is a polytope if there is a
finite set X ⊆ Rn such that P = Co(X). In addition, we have
the following theorem.

Theorem 3 ([52, Th. 3.1.3]): Let P ⊆ Rn. Then, P is a
bounded polyhedron if and only if P is a polytope.

Therefore, the regions defined in Theorems 1 and 2 are
polytopes, and can be expressed as a convex hull of a finite
set.

Further, if P ⊆ Rn is a polytope, then it is a convex hull
of some finite set X as stated above, and by the properties
of the convex hull of a finite set X , P is a bounded, closed,
convex set. Since P is a subset of the Euclidean space, P is

a compact convex set. Minkowski theorem below states that
such a set can be expressed as a convex hull of its extreme
points.

Theorem 4 (Minkowski [52, Th. 2.4.5]): Let P ⊆ Rn be a
compact convex set. Then,

P = Co(Ex(P)). (19)

An extreme point is formally defined as follows.
Definition 1 (Extreme Point): Let P ⊆ Rn. An x ∈ P is

an extreme point if there are no y, z ∈ P \ {x} such that
x = λy + (1 − λ)z for any λ ∈ (0, 1). Then, Ex(P) is the set
of all extreme points of P.

Minkowski theorem plays an important role in this paper,
since it tells that, instead of studying the polytope P itself,
for certain problems, e.g., achievability proofs, we can simply
concentrate on all extreme points Ex(P).

Finally, the following theorem helps us find all extreme
points of a polytope P efficiently: We select any n linearly
independent active/tight boundaries and check whether they
give a point in the polytope P .

Theorem 5 ( [54, Th. 7.2(b)]): x ∈ Rn is an extreme
point of polyhedron P(H, h) if and only if Hx ≤ h and
H′x = h′ for some n × (n + 1) sub-matrix (H′, h′) of (H, h)
with rank(H′) = n, where H′ is an n × n matrix and h′ is a
column vector.

B. Converse Tools: Secrecy Penalty and Role of a Helper

In this subsection, we review two lemmas that are used
in the converse arguments. In the following lemma, we give
a general upper bound for the secrecy rate. This lemma
is first motivated by, and stated for, the Gaussian wiretap
channel with M helpers [36], [46]. The goal of this lemma
is to quantify the secrecy penalty due to the presence of an
eavesdropper. Here, there is legitimate transmitter with channel
input X1, and M helpers with channel inputs X2 through
X M+1, a legitimate receiver with channel output Y1, and an
eavesdropper with channel output Y2. We work with n-letter
signals (hence bold vectors) and introduce small independent
Gaussian fudge variables Ñi and state inequalities in terms
of slightly perturbed channel inputs X̃i ; this is for regularity
purposes only, so that we can use differential entropies even
for discrete signals.

This lemma states that the secrecy rate of the legitimate pair
is upper bounded by the difference of the sum of differential
entropies of all channel inputs (perturbed by small noise)
and the differential entropy of the eavesdropper’s observation;
see (20). This upper bound can be interpreted as follows: If we
consider the eavesdropper’s observation as the secrecy penalty,
then the secrecy penalty is tantamount to the elimination of
one of the channel inputs in the system; see (21).

Lemma 1 (Secrecy Penalty Lemma [36], [46]): The sec-
recy rate of the legitimate pair is upper bounded as

n R ≤
M+1∑

i=1

h(X̃i ) − h(Y2) + nc (20)

≤
M+1∑

i=1,i �= j

h(X̃i ) + nc′ (21)
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where X̃i = Xi + Ñi for i = 1, 2, · · · , M + 1, and Ñi is
an i.i.d. sequence (in time) of random variables Ñi which
are independent Gaussian random variables with zero-mean
and variance σ̃ 2

i with σ̃ 2
i < min(1/h2

i , 1/g2
i ). In addition,

c and c′ are constants which do not depend on P, and
j ∈ {1, 2, · · · , M + 1} could be arbitrary.

In the following lemma, we give a general upper bound for
the differential entropy of the signal of a helper based on the
decodability of the message of the legitimate transmitter at
the legitimate receiver. This lemma is also motivated in the
helper setting, but as with Lemma 1 above, it is valid for
more general settings [36], [46]. The goal of this lemma is
to quantify the role of a helper, in terms of its affect on the
system. In this lemma, W is the message of the legitimate
transmitter, and its entropy H (W ) is the message rate. Here,
X j is the j th helper’s channel input, and Y1 is the legitimate
receiver’s channel output. Again, we use slightly perturbed
channel inputs for regularity.

This lemma develops a constraint on the differential entropy
of (the noisy version of) the cooperative jamming signal of
any given helper, helper j in (22), in terms of the differential
entropy of the legitimate user’s channel output and the mes-
sage rate H (W ). The inequality in (22) states that, for a given
message rate H (W ), the entropy of the signal that the helper
puts into the channel should not be too much. Alternatively,
H (W ) can be moved to the left hand side of (22), and this
inequality can be interpreted as an upper on the message
rate given the helper signal’s entropy. In particular, the higher
the differential entropy of the cooperative jamming signal the
lower this upper bound on the message rate will be.

Lemma 2 (Role of a Helper Lemma [36], [46]): For reli-
able de-coding at the legitimate receiver, the differential
entropy of the input signal of helper j , X j , must satisfy

h(X j + Ñ) ≤ h(Y1) − H (W ) + nc (22)

where c is a constant which does not depend on P, and Ñ is a
new Gaussian noise independent of all other random variables
with σ 2

Ñ
< 1

h2
j
, and Ñ is an i.i.d. sequence of Ñ .

C. Achievability Tools: Real Interference Alignment

In this subsection, we review pulse amplitude modula-
tion (PAM) and real interference alignment [49], [50], similar
to the review in [35, Sec. III]. The purpose of this subsection
is to illustrate that by using real interference alignment, the
transmission rate of a PAM scheme can be made to approach
the Shannon achievable rate at high SNR. This provides a
universal and convenient way to design capacity-achieving
signalling schemes at high SNR by using PAM for different
channel models as will be done in later sections.

1) Pulse Amplitude Modulation: For a point-to-point scalar
Gaussian channel,

Y = X + Z (23)

with additive Gaussian noise Z of zero-mean and variance σ 2,
and an input power constraint E

[
X2

] ≤ P , assume that the
input symbols are drawn from a PAM constellation,

C(a, Q) = a {−Q,−Q + 1, . . . , Q − 1, Q} (24)

where Q is a positive integer and a is a real number to
normalize the transmit power. Note that, a is also the min-
imum distance dmin(C) of this constellation, which has the
probability of error

Pr(e) = Pr
[

X �= X̂
]

≤ exp

(

−d2
min

8σ 2

)

= exp

(
− a2

8σ 2

)
(25)

where X̂ is an estimate for X obtained by choosing the closest
point in the constellation C(a, Q) based on observation Y .

The transmission rate of this PAM scheme is

R = log(2Q + 1) (26)

since there are 2Q + 1 signalling points in the constellation.
For any small enough δ > 0, if we choose Q = P

1−δ
2 and

a = γ P
δ
2 , where γ is a constant independent of P , then

Pr(e) ≤ exp

(
−γ 2 Pδ

8σ 2

)
and R ≥ 1 − δ

2
log P (27)

and we can have Pr(e) → 0 and R → 1
2 log P as

P → ∞. That is, we can have reliable communication at
rates approaching 1

2 log P .
Note that the PAM scheme has small probability of error

(i.e., reliability) only when P goes to infinity. For arbitrary P ,
the probability of error Pr(e) is a finite number. Similar to
the steps in [49] and [55], we connect the PAM transmission
rate to the Shannon rate in the following derivation. We note
that Shannon rate of I (X; Y ) is achieveable with arbitrary
reliability using a random codebook:

R′ = I (X; Y ) (28)

≥ I (X; X̂) (29)

= H (X) − H (X |X̂) (30)

= log(2Q + 1) − H (X |X̂) (31)

≥ log(2Q + 1) − 1 − Pr(e) log(2Q + 1) (32)

≥
[
1 − Pr(e)

]1 − δ

2
log P − 1 (33)

where we use the Markov chain X → Y → X̂ and bound
H (X |X̂) using Fano’s inequality. Therefore, we can achieve
the rate in (33) with arbitrary reliability, where for any fixed P ,
Pr(e) in (33) is the probability of error of the PAM scheme
given in (27), which is a well-defined function of P . For a
finite P , while Pr(e) may not be arbitrarily small, the rate
achieved in (33), which is smaller than the rate of PAM in (26),
is achieved arbitrarily reliably. We finally note that as P goes
to infinity Pr(e) goes to zero exponentially, and from (33),
both PAM transmission rate and the Shannon achievable rate
have the same asymptotical performance.

2) Real Interference Alignment: This PAM scheme for the
point-to-point scalar channel can be generalized to multiple
data streams. Let the transmit signal be

x = aT b =
L∑

i=1

ai bi (34)
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where a1, . . . , aL are rationally independent real numbers4 and
each bi is drawn independently from the constellation C(a, Q)
in (24). The real value x is a combination of L data streams,
and the constellation observed at the receiver consists of
(2Q + 1)L signal points.

By using the Khintchine-Groshev theorem of Diophantine
approximation in number theory, [49], [50] bounded the min-
imum distance dmin of points in the receiver’s constellation:
For any δ > 0, there exists a constant kδ , such that

dmin ≥ kδa

QL−1+δ
(35)

for almost all rationally independent {ai}L
i=1, except for a set of

Lebesgue measure zero. Since the minimum distance of the
receiver constellation is lower bounded, with proper choice
of a and Q, the probability of error can be made arbitrarily
small, with rate R approaching 1

2 log P . This result is stated
in the following lemma, as in [35, Proposition 3].

Lemma 3 ([49], [50]): For any small enough δ > 0, there
exists a positive constant γ , which is independent of P, such
that if we choose

Q = P
1−δ

2(L+δ) and a = γ
P

1
2

Q
(36)

then the average power constraint is satisfied,
i.e., E

[
X2

] ≤ P, and for almost all {ai}L
i=1, except for

a set of Lebesgue measure zero, the probability of error is
bounded by

Pr(e) ≤ exp
(−ηγ Pδ

)
(37)

where ηγ is a positive constant which is independent of P.
Furthermore, as a simple extension, if bi are sampled inde-

pendently from different constellations Ci (a, Qi ), the lower
bound in (35) can be modified as

dmin ≥ kδa

(maxi Qi )L−1+δ
(38)

IV. s.d.o.f. REGION OF K -USER

MAC WIRETAP CHANNEL

In this section, we study the K -user MAC wiretap channel
defined in Section II-A and prove the s.d.o.f. region stated
in Theorem 1. We first illustrate the regions for K = 2 and
K = 3 cases as examples. We then provide the converse in
Section IV-A, investigate the converse region in terms of its
extreme points in Section IV-B, and show the achievability of
each extreme point in Section IV-C.

For K = 2, the s.d.o.f. region in Theorem 1 becomes

D =
{

d : 2d1 + d2 ≤ 1,

d1 + 2d2 ≤ 1,

d1, d2 ≥ 0
}

(39)

and is shown in Fig. 4. The extreme points of this region
are: (0, 0), ( 1

2 , 0), (0, 1
2 ), and ( 1

3 , 1
3 ). In order to provide the

4a1, . . . , aL are rationally independent if whenever q1, . . . , qL are rational
numbers then

∑L
i=1 qi ai = 0 implies qi = 0 for all i .

Fig. 4. The s.d.o.f. region of the K = 2-user MAC wiretap channel.

achievability of the region, it suffices to provide the achiev-
ability of these extreme points. In fact the achievabilities of
( 1

2 , 0), (0, 1
2 ) were proved in [36] and [46] in the helper setting

and the achievability of ( 1
3 , 1

3 ) was proved in [45] and [46].
Note that ( 1

3 , 1
3 ) is the only sum s.d.o.f. optimum point.

For K = 3, the s.d.o.f. region in Theorem 1 becomes

D =
{

d : 3d1 + 2d2 + 2d3 ≤ 2,

2d1 + 3d2 + 2d3 ≤ 2,

2d1 + 2d2 + 3d3 ≤ 2,

d1, d2, d3 ≥ 0
}

(40)

and is shown in Fig. 5. The extreme points of this region are:
(

0, 0, 0

)

(
2

3
, 0, 0

)
,

(
0,

2

3
, 0

)
,

(
0, 0,

2

3

)

(
2

5
,

2

5
, 0

)
,

(
2

5
, 0,

2

5

)
,

(
0,

2

5
,

2

5

)

(
2

7
,

2

7
,

2

7

)
(41)

which correspond to the maximum individual s.d.o.f.
(see Gaussian wiretap channel with two helpers [36], [46]), the
maximum sum of pair of s.d.o.f. (see two-user Gaussian MAC
wiretap channel with one helper, proved in Section IV-C),
and the maximum sum s.d.o.f. (see three-user Gaussian MAC
wiretap channel [45], [46]). Note that ( 2

7 , 2
7 , 2

7 ) is the only
sum s.d.o.f. optimum point.

Regarding the region in Theorem 1, as illustrated in the
examples above, we provide a few general comments here:
First, we note that, without secrecy constraints, i.e., with
only decodability constraints, the d.o.f. region is simply
∑K

j=1 d j ≤ 1. In contrast, the region in Theorem 1 is strictly
dominated by the upper bounds due to secrecy constraints.
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Fig. 5. The s.d.o.f. region of the K = 3-user MAC wiretap channel.

Second, we note that the pattern of the extreme points is that
they all have K −m zero components (these users do not send
messages, they act as pure helpers), while the rest of the m
users get equal individual s.d.o.f., which also correspond to the
maximum sum s.d.o.f. for these m users. This will motivate
the achievability proof in Section IV-C.

A. Converse

In order to prove the converse of the K -user MAC, we start
with a multi-user version of the secrecy penalty lemma5:

n
K∑

i=1

Ri ≤
K∑

j=1

h(X̃ j ) − h(Y2) + nc1 (42)

≤
K∑

j=2

h(X̃ j ) + nc2 (43)

where all {ci } in this paper are constants independent of P .
In addition, from the multi-user version of the role of a helper
lemma,6 we have, for each j ,

h(X̃ j ) ≤ h(Y1) −
∑

i �= j

H (Wi) + nc3 (44)

Then, combing (43) and (44), we have

n
K∑

i=1

Ri ≤
K∑

j=2

h(X̃ j ) + nc4 (45)

≤
K∑

j=2

⎡

⎣h(Y1) −
∑

i �= j

H (Wi)

⎤

⎦ + nc5 (46)

5Single-user version of the secrecy penalty lemma and the role of a helper
lemma are reviewed in Section III-B. Equations (42)-(43) are the multi-user
version in the sense that we have the sum of rates on the left hand side,
compared to (20)-(21). A detailed proof of the multi-user version of the
secrecy penalty lemma can be found in [46, Sec. IX].

6Multi-user version because we have sum of all rates but the j th on the
right hand side of (44), compared to (22). A detailed proof of the multi-user
version of the role of a helper lemma can be found in [46, Sec. IX].

Noting that H (Wi) = n Ri , this is equivalent to:

n Ri + (K − 1)

K∑

j=1

n R j ≤ (K − 1)h(Y1) + nc6 (47)

where i = 1, . . . , K .
Clearly, (47) is not symmetric. However, the lower bound

derived in [46] was achieved by a symmetric scheme.
Therefore, in [46], in order to obtain a matching upper bound
for sum s.d.o.f., we summed up (47) for all i to obtain:

[K (K − 1) + 1]
K∑

j=1

n R j ≤ K (K − 1)h(Y1) + nc7 (48)

≤ K (K − 1)
n

2
log P + nc8 (49)

which provided the desired upper bound for the sum s.d.o.f.

Ds,� ≤ K (K − 1)

K (K − 1) + 1
(50)

which is the converse for Corollary 1.
In fact, (47) provides more information than what is needed

for the sum s.d.o.f. only. In this paper, we start from (47)

n Ri + (K − 1)

K∑

j=1

n R j ≤ (K − 1)
(n

2
log P

)
+ nc9 (51)

divide by n
2 log P and take the limit P → ∞ on both sides to

obtain,

di + (K − 1)

K∑

j=1

d j ≤ K − 1, i = 1, . . . , K (52)

that is,

K di + (K − 1)

K∑

j=1, j �=i

d j ≤ K − 1, i = 1, . . . , K (53)

which concludes the converse proof of Theorem 1.

B. Polytope Structure and Extreme Points

To prove that the region D in Theorem 1 is tight
(i.e., achievable), we first express it in terms of its extreme
points, explicitly characterize all of its extreme points, and
develop a scheme to achieve each of its extreme points.

The region in Theorem 1 is a polytope, which is a convex
hull of some finite set X , as discussed in Section III-A. By the
properties of the convex hull of a finite set X , D is a bounded,
closed, convex set. Since D ⊂ RK, D is a compact convex set.
From Minkowski theorem, the polytope D in Theorem 1 is a
convex hull of its extreme points. Then, in order to prove that
D is tight, it suffices to prove that each extreme point of D is
achievable. Then, from convexification through time-sharing,
all points in D are achievable.

In order to speak of the polytope, we re-write the constraints
in (7) and (8) as

K di + (K − 1)

K∑

j=1, j �=i

d j ≤ K − 1, i = 1, . . . , K (54)

−di ≤ 0, i = 1, . . . , K (55)
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Then, we write all the left hand sides of (54) and (55) as an
N × K matrix H with corresponding right hand sides forming
an N-length column vector h, i.e., all points d in D satisfy

Hd ≤ h (56)

where N
�= 2K . By Theorem 5, exploring all extreme points

of D is equivalent to finding all sub-matrices (HJ , hJ ) of
(H, h), such that

rank(HJ ) = K (57)

and

HJ d = hJ , and Hd ≤ h (58)

where HJ is a sub-matrix of H with rows indexed by the index
set J , and hJ is the sub-vector of h with rows indexed by J .

Let d ∈ D be a non-zero extreme point of D. Define a
subset S ⊆ {1, . . . , N} as

S
�=

{
si

�= s(i) : Hsi d = hsi such that

K di + (K − 1)

K∑

j=1, j �=i

d j = K − 1,

i ∈ {1, . . . , K }
}

(59)

where s(i) is a function of the coordinate i with the value
as the row index of H corresponding to the active boundaries
in (54). Similarly, define the set Z ⊆ {1, . . . , N} as

Z
�=

{
zi

�= z(i) : Hzi d = hzi such that

di = 0, i ∈ {1, . . . , K }
}

(60)

where z(i) is a function of the coordinate i with the value
as the row index of H corresponding to the active boundaries
in (55). Clearly, S and Z are disjoint, i.e.,

S ∩ Z = φ (61)

For any row index set J , which corresponds to a set of active
boundaries for d, we have

J = S ∪ Z (62)

For example, for the three-user case, K = 3, according
to (54) and (55), we have H and h as

H =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

3 2 2
2 3 2
2 2 3

−1 0 0
0 −1 0
0 0 −1

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

, h =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

2
2
2
0
0
0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

(63)

If the equalities with i = 1, 2 hold in (54) and the equality
with i = 3 holds in (55), then the corresponding sets S, Z , J
are

S = {s1, s2} = {1, 2} (64)

Z = {z3} = {6} (65)

J = S ∪ Z = {1, 2, 6} (66)

with the row-index functions

si = s(i) = i (67)

zi = z(i) = i + 3 (68)

In this example, it is easy to check that

rank(HJ ) = rank

⎛

⎝

⎡

⎣
3 2 2
2 3 2
0 0 −1

⎤

⎦

⎞

⎠ = 3 = K (69)

and the solution given by HJ d = hJ is

d =
(

2

5
,

2

5
, 0

)
(70)

which satisfies (58). Therefore, this is an extreme point.
For the general case, we have the following theorem.
Theorem 6: A point d ∈ D of Theorem 1 is an extreme

point if and only if it is equal to, up to element reordering,
(


, . . . ,
︸ ︷︷ ︸
m items

, 0, . . . , 0︸ ︷︷ ︸
(K−m) items

)
, 0 ≤ m ≤ K (71)

where


 = K − 1

m(K − 1) + 1
(72)

Proof: First, for any m, 0 ≤ m ≤ K , let the point d be
as in (71). It is easy to check that the sub-matrix (HJ , hJ ),
where

J =
{

si : 1 ≤ i ≤ m
}

∪
{

z j : m + 1 ≤ j ≤ K
}

(73)

satisfies all the conditions in Theorem 5, which means that d
is an extreme point.

In order to show the other direction, we need to show
that any extreme point d has the structure in (71) for some
m, 0 ≤ m ≤ K . To this end, we find the sub-matrix
in Theorem 5.

If |Z | = K , due to (55), the sub-matrix HZ is simply a
diagnoal matrix with −1s on the diagonal, and consequently,
rank(HZ ) = K . Then, the solution of HZ d = hZ is 0,
which satisfies (58). This extreme point corresponds to the case
m = 0 in Theorem 6.

In the rest of the proof, we focus on non-zero extreme
points, i.e., |Z | < K . Due to (54), it is easy to verify that
HS has |S| rows with rank(HS) = |S| where S is defined
in (59). In order to make rank(HJ ) = rank(HS∪Z) = K , we
need at least K − |S| more rows from H, i.e., |Z | ≥ K − |S|.
If S is empty, then |Z | ≥ K , which contradicts the assumption
|Z | < K . Therefore, S is non-empty, i.e., |S| ≥ 1.

First, we claim that

di = dk, ∀si , sk ∈ S (74)

If |S| = 1, there is nothing to prove, and the proof of (74) is
completed. If |S| > 1, consider any si , sk ∈ S, i �= k. By the
definition of S, we have

(K − 1)dk + K di + (K − 1)
∑

l �=i,k

dl = K − 1 (75)

(K − 1)di + K dk + (K − 1)
∑

l �=i,k

dl = K − 1 (76)
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which implies that di = dk for any si , sk ∈ S, proving (74)
for |S| ≥ 1.

Next, we claim

di > 0, ∀si ∈ S (77)

If |S| = K , due to (74), (77) is trivially true since we are
focusing on a non-zero extreme point. If |S| < K , then we
observe that

di ≥ d j , ∀si ∈ S, s j �∈ S (78)

which indicates that for any si ∈ S the corresponding element
in vector d is the largest one, i.e., di = maxk dk , which
implies (77). Hence, it now suffices to show (78). We prove it
by contradiction. Assume that there exists a coordinate j such
that s j �∈ S and d j is strictly larger than di for any si ∈ S.
By the definition of S in (59), we have

K − 1 = K di + (K − 1)d j + (K − 1)

K∑

l=1,l �=i, j

dl

(79)

< K di + (K − 1)d j + (K − 1)

K∑

l=1,l �=i, j

dl + (d j − di)

(80)

= K d j + (K − 1)di + (K − 1)

K∑

l=1,l �=i, j

dl (81)

= K d j + (K − 1)

K∑

l=1,l �= j

dl (82)

which contradicts the constraint (54). Therefore, we must
have (78) and consequently (77).

Finally, denote m
�= |S|, and, without loss of generality,

assume that S = {si : 1 ≤ i ≤ m}. By (77) and the
definition of Z in (60), we note that z j ∈ Z only if s j �∈ S.
Together with the constraint |Z | ≥ K − |S| = K − m, we
conclude that we must have Z = {z j : m + 1 ≤ j ≤ K },
i.e., d j = 0 for m + 1 ≤ j ≤ K . Thus, rank(HS∪Z) = K , and,
by (74), the solution given by the corresponding equations can
be characterized as (71), which satisfies (58), completing the
proof.

C. Achievability

The previous section showed that the converse region is
a polytope with extreme points which have m coordinates all
equal to 
 given in (72), and the remaining K −m coordinates
all equal to zero. It is clear that zero vector is an extreme point
in D and is trivially achievable. The rest of the achievability
proof focuses on non-zero extreme points. In this section, we
prove that each of these extreme points is achievable. Without
loss of generality, we prove that the s.d.o.f. point of

d =
(


, . . . ,
︸ ︷︷ ︸
m items

, 0, . . . , 0︸ ︷︷ ︸
(K−m) items

)
(83)

is achievable for all 1 < m < K with 
 in (72). By symmetry,
this proves the achievability of all extreme points. Note that
m = K is shown in [45] and [46], and m = 1 is shown in [36].

Theorem 7: The extreme point d ∈ D given in (83) is
achieved by m-user Gaussian MAC wiretap channel with
K − m helpers for almost all channel gains.

Proof: Consider the m-user Gaussian MAC wiretap chan-
nel with K −m helpers where transmitter i , i = 1, . . . , m, has
confidential message Wi intended for the legitimate receiver
and the remaining K − m transmitters serve as independent
helpers without messages of their own.

In order to achieve the extreme point d in (83), transmitter
i , i = 1, . . . , m, divides its message into K − 1 mutually
independent sub-messages. Each transmitter sends a linear
combination of signals that carry the sub-messages. In addition
to message carrying signals, all transmitters also send coop-
erative jamming signals Ui , i = 1, . . . , K , respectively. The
messages are sent in such a way that all of the cooperative
jamming signals are aligned in a single dimension at the
legitimate receiver, occupying the smallest possible space at
the legitimate receiver, and hence allowing for the reliable
decodability of the message carrying signals. In addition,
each cooperative jamming signal is aligned with at most
K − 1 message carrying signals at the eavesdropper to limit
the information leakage rate to the eavesdropper. An example
of K = 3, m = 2, and K − m = 1 is given in Fig. 6.

More specifically, we use a total of m(K −1)+ K mutually
independent random variables

Vij , i ∈ {1, . . . , m}, j ∈ {1, · · · , K } \ {i} (84)
Uk, k ∈ {1, · · · , K } (85)

where {Vij } j �=i denote the message carrying signals and Ui

denotes the cooperative jamming signal sent from transmitter i .
In particular, Vij carries the j th sub-message of transmitter i .
Each of these random variables is uniformly and independently
drawn from the same discrete constellation C(a, Q) given
in (24), where a and Q will be specified later. We choose
the input signals of the transmitters as

Xi =
K∑

j=1, j �=i

g j

h j gi
Vi j + 1

hi
Ui , i ∈ {1, . . . , m} (86)

X j = 1

h j
U j , j ∈ {m + 1, . . . , K } (87)

With these input selections, observations of the receivers are

Y1 =
⎡

⎣
m∑

i=1

K∑

j=1, j �=i

g j hi

h j gi
Vi j

⎤

⎦ +
(

K∑

k=1

Uk

)

+ N1 (88)

and

Y2 =
K∑

j=1

g j

h j

⎛

⎝U j +
m∑

i=1,i �= j

Vi j

⎞

⎠ + N2 (89)

where the terms inside the parentheses (·) in (88) and (89) are
aligned.

By [29, Th. 1], we can achieve the following sum secrecy
rate for the m users

sup
m∑

i=1

Ri ≥ I (V; Y1) − I (V; Y2) (90)

where V
�= {Vij : i ∈ {1, . . . , m}, j ∈ {1, · · · , K } \ {i}}.
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Fig. 6. Illustration of secure interference alignment for the s.d.o.f. triple ( 2
5 , 2

5 , 0) for the two-user MAC wiretap channel with one helper; K = 3 and m = 2.

Here, we define Vi
�= {Vi j : j = 1, 2, 3, j �= i} for i = 1, 2.

By Lemma 3, for any δ > 0, if we choose

Q = P
1−δ

2(m(K−1)+1+δ) and a = γ P
1
2 /Q, where γ is a constant

independent of P to meet the average power constraint, then

Pr
[
V �= V̂

]
≤ exp

(−β Pδ
)

(91)

for some constant β > 0 (independent of P), where V̂ is the
estimate of V by choosing the closest point in the constella-
tion based on observation Y1. This means that we can have
Pr[V �= V̂] → 0 as P → ∞.

By Fano’s inequality and the Markov chain V → Y1 → V̂,
we know that

H (V|Y1) ≤ H (V|V̂) (92)

≤ 1 + exp
(−β Pδ

)
log(2Q + 1)m(K−1) (93)

= o(log P) (94)

where o(·) is the little-o function. This means that

I (V; Y1) = H (V) − H (V|Y1) (95)

= log(2Q + 1)m(K−1) − H (V|Y1) (96)

≥ log(2Q + 1)m(K−1) − o(log P) (97)

On the other hand, we can bound the second term in (90) as

I (V; Y2) ≤ I (V; Y2 − N2) (98)

=
K∑

j=1

H

⎛

⎝U j +
m∑

i=1,i �= j

Vi j

⎞

⎠ − H (U1, . . . , UK )

(99)

≤ K log
2K Q + 1

2Q + 1
(100)

≤ K log K (101)

= o(log P) (102)

where (100) is due to the fact that entropy of each U j +∑m
i=1,i �= j Vi j is maximized by the uniform distribution which

takes values over a set of cardinality 2K Q + 1.

Combining (97) and (102), we obtain

sup
m∑

i=1

Ri ≥ I (V; Y1) − I (V; Y2) (103)

≥ log(2Q + 1)m(K−1) − o(log P) (104)

= m(K − 1)(1 − δ)

m(K − 1) + 1 + δ

(
1

2
log P

)
+ o(log P)

(105)

By choosing δ arbitrarily small, we can achieve the sum
s.d.o.f. of m(K−1)

m(K−1)+1 for almost all channel gains, which
implies that the s.d.o.f. tuple of

(
(K − 1)

m(K − 1) + 1
, . . . ,

(K − 1)

m(K − 1) + 1︸ ︷︷ ︸
m item(s)

, 0, . . . , 0︸ ︷︷ ︸
(K−m) item(s)

)
(106)

is achievable by symmetry, which is (83).

V. s.d.o.f. REGION OF K -USER IC WITH

SECRECY CONSTRAINTS

In this section, we study the K -user IC with secrecy
constraints defined in Section II-B and prove the s.d.o.f. region
stated in Theorem 2. To this end, we consider both IC-CM
and IC-EE and their combination IC-CM-EE in a unified
framework. We first illustrate the regions for K = 2, 3, 4
cases as examples. The purpose of presenting K = 4 as
an example is to show that, unlike the MAC case, starting
with K = 4 interference constraints become effective and
binding. We then provide converses separately for IC-EE and
IC-CM in Section V-A and Section V-B, respectively, which
imply a converse for IC-CM-EE. Finally, we show the achiev-
ability for IC-CM-EE, which implies the achievability for
IC-EE and IC-CM. Specifically, we investigate the converse
region in terms of its extreme points in Section V-C and show
the general achievability in Section V-D.
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For K = 2, the s.d.o.f. region in Theorem 2 becomes

D =
{

d : 2d1 + d2 ≤ 1,

d1 + 2d2 ≤ 1,

d1, d2 ≥ 0
}

(107)

which is the same as (39), and is shown in Fig. 4. Note
that (15) is not necessary for the two-user case, since summing
the bounds 2d1 + d2 ≤ 1 and d1 + 2d2 ≤ 1 up gives a new
bound

d1 + d2 ≤ 2

3
(108)

which is the result in Theorem 2 and makes the constraint
in (15) strictly loose.

In order to provide the achievability, it suffices to check
that the extreme points (0, 0), ( 1

2 , 0), (0, 1
2 ), and ( 1

3 , 1
3 ) are

achievable. In fact the achievabilities of ( 1
2 , 0), (0, 1

2 ) are
similar to [36] and [46] and will be shown in Section V-C.
The achievability of ( 1

3 , 1
3 ) was proved in [47] and [48]. Note

that ( 1
3 , 1

3 ) is the only sum s.d.o.f. optimum point.
For K = 3, the s.d.o.f. region in Theorem 2 becomes

D =
{

d : 3d1 + d2 + d3 ≤ 2,

d1 + 3d2 + d3 ≤ 2,

d1 + d2 + 3d3 ≤ 2,

d1, d2, d3 ≥ 0
}

(109)

and (15) is not necessary for the three-user case, either. This
is because, due to the positiveness of each element in d, from
the first two inequalities in (109), we have

3d1 + d2 ≤ 3d1 + d2 + d3 ≤ 2 (110)

d1 + 3d2 ≤ d1 + 3d2 + d3 ≤ 2 (111)

Summing the left hand sides up of (110) and (111) gives us

d1 + d2 ≤ 1 (112)

which is (15) with V = {1, 2}, and we have (15) for free
from (109).

The extreme points of this region are:
(

0, 0, 0

)

(
2

3
, 0, 0

)
,

(
0,

2

3
, 0

)
,

(
0, 0,

2

3

)

(
1

2
,

1

2
, 0

)
,

(
1

2
, 0,

1

2

)
,

(
0,

1

2
,

1

2

)

(
2

5
,

2

5
,

2

5

)
(113)

which correspond to the maximum individual s.d.o.f.
(see Gaussian wiretap channel with two helpers [36], [46] and
Section V-C), the maximum sum of pair of s.d.o.f. (proved in
Section V-C), and the maximum sum s.d.o.f. (see three-user
Gaussian IC-CM-EE in [47] and [48]). Note that, ( 1

2 , 1
2 ) is

the maximum sum d.o.f. for a two-user IC without secrecy
constraints, and ( 2

5 , 2
5 , 2

5 ) is the only sum s.d.o.f. optimum
point. Finally, note the difference of the extreme points of the

3-user IC in (113) from the corresponding 3-user MAC in (41),
even though the s.d.o.f. regions and the extreme points of the
2-user IC and 2-user MAC in (107) and (39) were the same.

For K = 4, the s.d.o.f. region in Theorem 2 becomes

D =
{

d : 4d1 + d2 + d3 + d4 ≤ 3,

d1 + 4d2 + d3 + d4 ≤ 3,

d1 + d2 + 4d3 + d4 ≤ 3,

d1 + d2 + d3 + 4d4 ≤ 3,

d1 + d2 ≤ 1,

d1 + d3 ≤ 1,

d1 + d4 ≤ 1,

d2 + d3 ≤ 1,

d2 + d4 ≤ 1,

d3 + d4 ≤ 1,

d1, d2, d3, d4 ≥ 0
}

(114)

The extreme points of this region are:
(

0, 0, 0, 0

)

(
3

4
, 0, 0, 0

)
,

(
0,

3

4
, 0, 0

)
,

(
0, 0,

3

4
, 0

)
,

(
0, 0, 0,

3

4

)

(
2

3
,

1

3
, 0, 0

)
up to element reordering

(
1

2
,

1

2
,

1

2
, 0

)
,

(
1

2
,

1

2
, 0,

1

2

)
,

(
1

2
, 0,

1

2
,

1

2

)
,

(
0,

1

2
,

1

2
,

1

2

)

(
3

7
,

3

7
,

3

7
,

3

7

)
(115)

Here, in contrast to the two-user and three-user cases, (15)
is absolutely necessary. For example, the point ( 3

5 , 3
5 , 0, 0)

satisfies (14), but not (15). In fact, it cannot be achieved,
and (15) is strictly needed to enforce that fact.

Regarding the region in Theorem 2, as illustrated in the
examples above, we provide a few general comments here:

1) Although (15) only states the constraints for all pairs
of rates, due to the same argument in [44], it can
equivalently be stated as

∑
i∈V di ≤ |V |

2 for all |V | ≥ 2.
We note that, when |V | = K , the correspond-
ing upper bound is strictly loose due to Theorem 1
in [47] and [48], and that is why such bounds were
not needed in [47] and [48], where sum s.d.o.f. was
characterized.

2) As shown in the examples, when K = 2 or 3, (15)
is not necessary. When K ≥ 4, we need
both (14) and (15) to completely characterize the
region D. Neither of them can be removed from the
theorem. For example, the all 1

2 vector, ( 1
2 , 1

2 , . . . , 1
2 ),

satisfies (15), but not (14). On the other hand, the
point ( K−1

K+1 , K−1
K+1 , 0, 0, . . ., 0), which has only two

non-zero elements, satisfies (14), but not (15) for any
K ≥ 4. Therefore, (15) emerges only when K ≥ 4.
To the best of our knowledge, this is the first time that
K = 2 or K = 3 do not represent the full generality of
a multi-user problem, and we need to go up to K = 4
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for this phenomenon to appear. An intuitive explanation
for this phenomenon is given in the next comment.

3) Different portions of the region D are governed by
different upper bounds. To see this, we can study the
structure of the extreme points of D, since D is the
convex hull of them. The sum s.d.o.f. tuple, which is
symmetric and has no zero elements, is governed by
the upper bounds in (14) due to secrecy constraints.
However, as will be shown in Theorem 8 in Section V-C,
all other extreme points have zeros as some ele-
ments, and therefore are governed by the upper bounds
in (15) due to interference constraints in [43] and [44].
An explanation can be provided as follows: When some
transmitters do not have messages to transmit, we may
employ them as “helpers”. Even though secrecy con-
straint is considered in our problem, with the help of
the “helpers”, the effect due to the existence of the
eavesdropper in the network can be eliminated. Hence,
this portion of the s.d.o.f. region is dominated by the
interference constraints.

A. Converse for K -User IC-EE

The constraint in (15) follows from the non-secrecy con-
straints on the K -user IC in [43] and [44]. We note that this
same constraint is valid for the converse proof of IC-CM in
the next section as well.

In order to prove (14) in Theorem 2, we start with a multi-
user version of the secrecy penalty lemma:

n
K∑

j=1

R j ≤
K∑

j=1

h(X̃ j ) − h(Z) + nc10 (116)

≤
K∑

j=1, j �=i

h(X̃ j ) + nc11 (117)

for any i = 1, . . . , K . Then, we apply the role of a helper
lemma, Lemma 2, by treating the signal from transmitter j
as the unintended noise to its neighboring transmitter-receiver
pair j − 1, i.e., for any i = 1, . . . , K ,

n
K∑

j=1

R j ≤
K∑

j=1, j �=i

h(X̃ j ) + nc11 (118)

≤ [h(YK ) − n RK ] + [h(Y1) − n R1] + · · ·
+ [

h(Yi−2) − n Ri−2
] + [h(Yi ) − n Ri ] + · · ·

+ [
h(YK−1) − n RK−1

] + nc12 (119)

By noting that h(Y j ) ≤ n
2 log P + nc′

j for each j , we have

2n
K∑

j=1

R j ≤ (K − 1)
n

2
log P + n Ri + nc13 (120)

Therefore, we have a total of K bounds for i = 1, . . . , K .
Summing these K bounds, we obtained:

(2K − 1)n
K∑

j=1

R j ≤ K (K − 1)
n

2
log P + nc14 (121)

which gave

Ds,� ≤ K (K − 1)

2K − 1
(122)

completing the converse proof for the sum s.d.o.f. of IC-EE
in [48] (also Corollary 2 in this paper).

Here, we continue from (117) and re-interpret it as:

n
K∑

j=1

R j ≤
K∑

j=1, j �=i

h(X̃ j ) + nc15 (123)

≤ [h(Yi ) − n Ri ] + · · · + [h(Yi ) − n Ri ]︸ ︷︷ ︸
K−1 items

+nc16

(124)

= (K − 1)h(Yi ) − (K − 1)n Ri + nc16 (125)

≤ (K − 1)
(n

2
log P

)
− (K − 1)n Ri + nc17 (126)

where i ∈ {1, . . . , K } is arbitrary. Here, the second inequality
means that we apply Lemma 2 by treating the signal from all
transmitters j �= i as the unintended noise to the transmitter-
receiver pair i .

Rearranging the terms in (126), dividing both sides by
n
2 log P , and taking the limit P → ∞ on both sides, we obtain

K di +
K∑

j=1, j �=i

d j ≤ K − 1, i = 1, . . . , K (127)

which is (14) in Theorem 2, completing the converse proof
for IC-EE.

B. Converse for K -User IC-CM

Similarly, in order to prove (14) in Theorem 2 for K -User
IC-CM, we start with a multi-user version of the secrecy
penalty lemma:

n
K∑

j=1, j �=i

R j ≤ ∑K
j=1 h(X̃ j ) − h(Yi ) + nc18 (128)

where we focus on the secrecy constraint (13) at a single
receiver, say i , as an eavesdropper, and start with the sum
rate corresponding to all unintended messages at receiver i .

For the sum s.d.o.f. of IC-CM, we apply Lemma 2 to (128)
by treating the signal from transmitter j as the unintended
noise to its neighbor transmitter-receiver pair j + 1, i.e., for
any i = 1, . . . , K

n
K∑

j=1, j �=i

R j ≤
K∑

j=1

h(X̃ j ) − h(Yi ) + nc19 (129)

≤
⎡

⎣
K−1∑

j=1

[
h(Y j+1) − n R j+1

]
⎤

⎦ + [
h(Y1) − n R1

]

−h(Yi ) + nc20 (130)

=
K∑

j=1

[
h(Y j ) − n R j

] − h(Yi ) + nc20 (131)
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By noting that h(Y j ) ≤ n
2 log P + nc′

j for each j , we have

n Ri + 2n
K∑

j=1, j �=i

R j ≤ ∑K
j=1, j �=i h(Y j ) + nc20 (132)

≤ (K − 1) n
2 log P + nc21 (133)

Therefore, we have a total of K bounds for i = 1, . . . , K .
Summing these K bounds, we obtained

(2K − 1)n
K∑

j=1

R j ≤ K (K − 1)
n

2
log P + nc22 (134)

which gave

Ds,� ≤ K (K − 1)

2K − 1
(135)

completing the converse proof for the sum s.d.o.f. of IC-CM
in [48] (also Corollary 2 in this paper).

Here, we continue from (128) and re-interpret it as follows:
For any i ∈ {1, . . . , K }, we select

k
�=

{
i − 1, if i ≥ 2
K , if i = 1

(136)

and then have

n
K∑

j=1, j �=i

R j

≤
⎡

⎣
K∑

j=1

h(X̃ j )

⎤

⎦ − h(Yi ) + nc23 (137)

≤ h(X̃k) +
⎡

⎣
K∑

j=1, j �=k

h(X̃ j )

⎤

⎦ − h(Yi ) + nc24 (138)

≤ h(Yi ) − n Ri +
⎡

⎣
K∑

j=1, j �=k

h(X̃ j )

⎤

⎦ − h(Yi ) + nc25

(139)

=
⎡

⎣
K∑

j=1, j �=k

h(X̃ j )

⎤

⎦ − n Ri + nc25 (140)

≤ [h(Yk) − n Rk] + · · · + [h(Yk) − n Rk ]︸ ︷︷ ︸
K−1 items

− n Ri + nc26 (141)

= (K − 1)h(Yk) − (K − 1)n Rk − n Ri + nc26 (142)

≤ (K − 1)
(n

2
log P

)
− (K − 1)n Rk − n Ri + nc26 (143)

which is

(K − 1)n Rk + n
K∑

j=1

R j ≤ (K − 1)
(n

2
log P

)
+ nc26 (144)

Here, inequality (139) means that we apply Lemma 2 by
treating the signal from transmitter k as the unintended noise
to the transmitter-receiver pair i . Similarly, inequality (141)
means that we apply Lemma 2 by treating the signal from
transmitter j �= k as the unintended noise to the transmitter-
receiver pair k.

Rearranging the terms in (144), dividing both sides by
n
2 log P , and taking the limit P → ∞ on both sides, we obtain

K dk +
K∑

j=1, j �=k

d j ≤ K − 1, k = 1, . . . , K (145)

which is (14) in Theorem 2, completing the converse proof
for IC-CM.

C. Polytope Structure and Extreme Points

Similar to the discussion and approach in the MAC problem
in Section IV-B, it is easy to see that the region D character-
ized by Theorem 2 is a polytope, which is equal to the convex
combinations of all extreme points of D due to Theorem 4.
Therefore, in order to show the tightness of region D,
it suffices to prove that all extreme points of D are achievable.

We first assume that K ≥ 3, and determine the structure of
all extreme points of D in the following theorem.

Theorem 8: For the K -dimensional region D, K ≥ 3, in
Theorem 2, any extreme point must be a point with one of the
following structures:

(0, 0, . . . , 0), (146)
( K − 1 − p

K − p
,

1

K − p
, . . . ,

1

K − p
︸ ︷︷ ︸

p items

, 0, . . . , 0︸ ︷︷ ︸
m items

)
,

K − 2 ≥ p ≥ 0, m = K − 1 − p ≥ 1 (147)
( 1

2
, . . . ,

1

2︸ ︷︷ ︸
p′ items

, 0, . . . , 0︸ ︷︷ ︸
m′ items

)
,

K − 2 ≥ p′ ≥ 3, m′ ≥ 1, p′ + m′ = K ≥ 5 (148)
( K − 1

2K − 1
,

K − 1

2K − 1
, . . . ,

K − 1

2K − 1

)
(149)

up to element reordering.
The proof of Theorem 8 is provided in Appendix A.
Now, in order to show the tightness of region D, it suffices

to show the achievability for each structure in Theorem 8.
Clearly, the zero vector in (146) is trivially achievable. The
symmetric tuple in (149) is achievable due to [47] and [48].
Therefore, it remains to show the achievability of the structures
in (147) and (148).

In order to address the achievabilities of (147) and (148),
we formulate a new channel model as a (p + 1)-user
IC-CM-EE channel with m independent helpers and N inde-
pendent external eavesdroppers. The formal definition of this
channel model is given in Section V-D. Then, we have the
following theorem.

Theorem 9: For the (p+1)-user IC-CM-EE channel with m
independent helpers and N independent external eavesdrop-
pers, as far as p ≥ 0, m ≥ 1, and N is finite, the following
s.d.o.f. tuple is achievable:

( m

m + 1
,

1

m + 1
,

1

m + 1
, . . . ,

1

m + 1︸ ︷︷ ︸
p items

)
(150)

for almost all channel gains.
The proof of Theorem 9 is provided in Section V-D.
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Here, we provide a few comments about Theorem 9.
Theorem 9 provides quite general results, and subsumes some
other known cases:

1) The result in [36] is a special case of Theorem 9 with
p = 0, m ≥ 1, N = 1.

2) (147) is a special case of Theorem 9 with p ≥ 0,
m = K − 1 − p ≥ 1, N = m + 1.

3) (148) is a byproduct of Theorem 9: By choosing
p = p′ − 1, m = 1, N = m′ + 1, we know that with just
one helper, the following s.d.o.f. tuple is achievable:

( 1

2
,

1

2
, . . . ,

1

2︸ ︷︷ ︸
p′ items

, 0
)

(151)

Now, if we add m′ − 1 more independent helpers into
the network, (148) can be achieved trivially.

Therefore, with the help of Theorem 9, each structure in
Theorem 8 can be achieved, which provides the achievability
proof for Theorem 2 for K ≥ 3.

Finally, we address the K = 2 case. In this case, the region
D characterized by (14)-(16) in Theorem 2 is given by (107).
In order to provide the achievability, it suffices to prove that the
extreme points ( 1

2 , 0), (0, 1
2 ), and ( 1

3 , 1
3 ) are achievable.

The achievability of ( 1
3 , 1

3 ) was proved in [47] and [48].
The achievabilities of ( 1

2 , 0), (0, 1
2 ) are the special cases of

Theorem 9 with p = 0, m = 1, N = 2.

D. Achievability

The (p + 1)-user IC-CM-EE channel with m independent
helpers and N independent external eavesdroppers is

Yi =
p+1+m∑

j=1

h j i X j + Ni , i = 1, . . . , p + 1 (152)

Zk =
p+1+m∑

j=1

g jk X j + Nzk , k = 1, . . . , N (153)

where Yi is the channel output of receiver i , Zk is the channel
output of external eavesdropper k, X j is the channel input of
transmitter j , h j i is the channel gain of the j th transmitter to
the i th receiver, g jk is the channel gain of the j th transmitter
to the kth eavesdropper, and {N1, . . . , Np+1, Nz1 , . . . , NzN }
are mutually independent zero-mean unit-variance Gaussian
random variables. All the channel gains are independently
drawn from continuous distributions, and are time-invariant
throughout the communication session. We further assume that
all h j i and g jk are non-zero. All channel inputs satisfy average

power constraints, E
[

X2
j

]
≤ P , for j = 1, . . . , p + 1 + m.

Transmitter j , j = p + 2, . . . , p + 1 + m, is an inde-
pendent helper in the network. On the other hand, each
transmitter i , i = 1, . . . , p + 1, has a message Wi intended
for the receiver Yi . A rate tuple (R1, . . . , Rp+1) is said to
be achievable if for any ε > 0, there exist joint n-length
codes such that each receiver i can decode the corresponding
message reliably, i.e., the probability of decoding error is less
than ε for all messages,

max
i

Pr
[
Wi �= Ŵi

]
≤ ε (154)

where Ŵi is the estimation based on its observation Yi . The
secrecy constraints are defined as follows:

1

n
H (W p+1

−i |Yi ) ≥ 1

n
H (W p+1

−i ) − ε (155)

1

n
H (W1, . . . , Wp+1|Zk) ≥ 1

n
H (W1, . . . , Wp+1) − ε (156)

where i = 1, . . . , p + 1, k = 1, . . . , N , W p+1
−i

�=
{W1, . . . , Wp+1}\{Wi }. A s.d.o.f. tuple, (d1, . . . , dp+1),
is achievable if there exists an achievable rate tuple
(R1, . . . , Rp+1) such that

di = lim
P→∞

Ri
1
2 log P

(157)

for i = 1, . . . , p + 1.
Now, we prove Theorem 9, i.e., for p ≥ 0, m ≥ 1, and N

is finite, the following s.d.o.f. tuple is achievable:
( m

m + 1
,

1

m + 1
,

1

m + 1
, . . . ,

1

m + 1︸ ︷︷ ︸
p items

)
(158)

for almost all channel gains.
The purpose of Theorem 9 is to prove the achievability

of the structure (147) in Theorem 8. As shown in (147),
we partition the transmitters into three groups: 1) the first
group consists of only one transmitter with the largest s.d.o.f.,
K−1−p

K−p , which is no smaller than 1
2 , 2) the second group

consists of p ≥ 0 transmitters with the same s.d.o.f., 1
K−p ,

which is no larger than 1
2 , and 3) the third group consists of

m ≥ 1 transmitters serving as independent helpers. Therefore,
in (158), we consider the (p+1)-user IC with m helpers where
K = p + 1 + m. Therefore, (158) and Theorem 9 show the
achievability of (147). We know from remark 2) above that the
achievability of (148) is a byproduct of Theorem 9. Also, (146)
is trivially achieved, and the achievability of (149) is shown
in [47] and [48]. Therefore, we focus on Theorem 9, from this
point on.

The technique we use in the proof of Theorem 9 is
asymptotical interference alignment [49] and cooperative jam-
ming [14] with structured signals. The alignment scheme is
illustrated in Fig. 7 with m = 3, p = 2, N = 1. In Fig. 7,
we partition the transmitters into three groups, which are
{X1} as the first group, p = 2 other transmitters {X2, X3}
as the second group, and m = 3 helpers as the third group.
From the perspective of Y1 and the eavesdropper Z , due to
the existence of independent helpers, the alignment signaling
design is similar to that in wiretap channel with helpers
in [36, Fig. 4]. However, from the perspective of Y2, Y3,
and the eavesdropper Z , the alignment signaling design is
similar to that in the interference channel in [47, Fig. 2]
(see the details of the corresponding design in [48]). This
suggests that the signalling scheme that achieves on arbitrary
extreme point of the s.d.o.f. region is in between the sig-
nalling scheme that achieves the sum s.d.o.f. of IC-CM-EE
in [47] and [48] and the signalling scheme used in the helper
network in [36]. Furthermore, if we let p = 0, the signaling
scheme in Fig. 7 would be almost identical to [36, Fig. 4].



XIE AND ULUKUS: SECURE DEGREES OF FREEDOM REGIONS OF MAC AND ICs 2059

Fig. 7. Illustration of secure interference alignment of Theorem 9 with m = 3, p = 2, N = 1.

However, we cannot let m be equal to 0. As far as the number
of independent helper(s) in Fig. 7, m, is non-zero, in contrast
to the scheme in [47, Fig. 2], the legitimate transmitters in
the first and second groups do not send cooperative jam-
ming signals by themselves, however, in [47] and [48] for
IC-CM-EE without helpers, each legitimate transmitter needed
to send both message signals and a cooperative signal. Note
that in Fig. 7 here, legitimate transmitters {X1, X2, X3} do not
send any cooperative jamming signals (no shaded boxes).

Here, we give the general achievable scheme. Let l be a
large constant. Let us define a set T1 which will represent
dimensions as follows:

T1
�=

{ (
∏

( j,k)∈L h
r jk
j k

)(
∏N

k=1
∏p+1+m

j=1 g
s jk
j k

)
:

r jk, s jk ∈ {1, . . . , l}
}

(159)

where L contains almost all pairs corresponding to the cross-
link channel gains

L =
{
( j, k) : j ∈ {2, . . . , p + 2}, k = 1

}

∪
{
( j, k) : j ∈ {1, . . . , p + 1 + m},

k ∈ {2, . . . , p + 1}, j �= k
}

(160)

Clearly, starting from the second helper X p+3, if there
exists any, the cross-link channel gains to the first legitimate
receiver Y1 are not in the set L. Therefore, we define the

sets {Tj }m
j=2

Tj = 1

h p+1+ j,1
T1, j = 2, . . . , m (161)

Let Mi be the cardinality of Ti , i = 1, . . . , m. Note that
all Mi are the same, thus we denote them as M ,

M
�= l |L|+N(p+1+m) = lθ (162)

where θ
�= (p + 1 + m)p + p + N(p + 1 + m) + 1.

Let ti j and t( j ) be the vector containing all the elements
in the set Tj for any possible i . Therefore, ti j and t( j ) are
M-dimensional vectors containing M rationally independent
real numbers in Tj . The sets ti j and t( j ) will represent
the dimensions along which message signals are transmitted.
In particular, as illustrated in Fig. 7, for each legitimate trans-
mitter i , i = 1, . . . , p+1, the message signal Vi1 is transmitted
in dimensions ti1. In order to asymptotically align U1 from
the first helper X p+2 with all Vi1s, the cooperative jamming
signal U1 is transmitted in dimensions t(1). Similarly, for the
first transmitter X1, the message signal V1 j , j = 2, . . . , m,
is transmitted in dimensions t1 j . Since we want to align the
cooperative jamming signal U j from the helper X p+1+ j with
V1 j one by one, the jamming signal U j is transmitted in
dimensions t( j ).

Let us define an mM dimensional vector b1 by stacking
ti1s as

bT
1 =

[
tT
11, tT

12, . . . , tT
1m

]
(163)
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Then, transmitter 1 generates a vector a1, which contains a
total of mM discrete signals each identically and indepen-
dently drawn from C(a, Q) given in (24). For convenience,
we partition this transmitted signal as

aT
1 =

[
vT

11, vT
12, . . . , vT

1m

]
(164)

where v1 j represents the information symbols in V1 j . Each of
these vectors has length M , and therefore, the total length of
a1 is mM . The channel input of transmitter 1 is

x1 = aT
1 b1 (165)

Similarly, for the second group transmitters Xi ,
i = 2, . . . , p + 1, let bi be bi = ti1. Then, transmitter i
generates a vector ai = vi1, which contains a total of
M discrete signals each identically and independently
drawn from C(a, Q) given in (24). The channel input of
transmitter i is

xi = aT
i bi = vT

i1ti1, i = 2, . . . , p + 1 (166)

Finally, for the third group transmitters Xk , k =
p + 2, . . . , p + 1 + m, serving as the helpers, let bk be
bk = t(k−p−1). Then, helper k generates a vector uk−p−1
representing the cooperative jamming signal in Uk−p−1, which
contains a total of M discrete signals each identically and
independently drawn from C(a, Q) given in (24). The channel
input of transmitter k is

xk = uT
k−p−1bk = uT

k−p−1t(k−p−1) (167)

where k = p + 2, . . . , p + 1 + m.
Before we investigate the performance of this signalling

scheme, we analyze the structure of the received signals at
the receivers. To see the detailed dimension structure of the
received signals at the receivers, let us define T̃i as a superset
of Ti , as follows

T̃1
�=

{( ∏

( j,k)∈L

h
r jk
j k

)( N∏

k=1

p+1+m∏

j=1

g
s jk
j k

)
:

r jk, s jk ∈ {1, . . . , l + 1}
}

(168)

T̃ j = 1

h p+1+ j,1
T̃1, j = 2, 3, . . . , m (169)

where L is defined in (160) and the cardinalities of all Ti sets
are the same and are denoted as M̃ = (l +1)θ . Also, it is easy
to check that since pair (p +1+ j, 1) �∈ L for j ≥ 2, we must
have

T̃i ∩ T̃ j = φ (170)

for all i �= j .
We first focus on receiver 1, which has the channel output

y1 =
p+1+m∑

i=1

hi1x1 + n1 (171)

Substituting (165), (166) and (167) into (171), we get

y1 = h11x1 +
p+1∑

j=2

h j1x j +
p+1+m∑

k=p+2

hk1xk + n1 (172)

= h11

(
m∑

i=1

vT
1i t1i

)

+
⎛

⎝
p+1∑

j=2

h j1vT
j1t j1

⎞

⎠

+
⎛

⎝
p+1+m∑

k=p+2

hk1uT
k−p−1t(k−p−1)

⎞

⎠ + n1 (173)

=
(

vT
11h11t11

)
+

(
vT

12h11t12

)
+ . . . +

(
vT

1mh11t1m

)

+
( p+1∑

j=2

h j1vT
j1t j1 +

p+1+m∑

k=p+2

hk1uT
k−p−1t(k−p−1)

)
+ n1

(174)

Since vi j and uk−p−1 are integer signals in C(a, Q), it
suffices to study their dimensions. In addition, note that
ti j and t( j ) represent the same dimensions in Tj defined
in (159) and (161). It is easy to verify that

h j1T1 ⊆ T̃1, j = 2, . . . , p + 1 (175)

hk1Tk−p−1 ⊆ T̃1, k = p + 2, . . . , p + 1 + m (176)

which implies that except the intended message signals v1i ,
i = 1, . . . , m, all unintended signals including message signals
and cooperative jamming signals are all transmitted in the
dimensions belonging to T̃1. On the other hand, for intended
signals,

h11T1 ⊂ h11T̃1 (177)

h11Ti ⊆ h11T̃i = h11

h p+1+i,1
T̃1, i = 2, . . . , m (178)

Note that the pair (p + 1 + i, 1) �∈ L for i ≥ 2 which implies
that

h11T̃i ∩ h11T̃ j = φ (179)

for all i, j ∈ {1, . . . , m}, i �= j . Furthermore, (1, 1) �∈ L either,
which implies that

h11T̃i ∩ T̃1 = φ, i ∈ {1, . . . , m} (180)

Together with (179), this indicates that the dimensions are
separable as suggested by the parentheses in (174) and also
the Y1 side of Fig. 7, which further implies that all the elements
in the set

R1
�=

⎛

⎝
m⋃

j=1

h11T̃ j

⎞

⎠ ∪ T̃1 (181)

are rationally independent, and thereby the cardinality
of R1 is

MR
�= |R1| = (m + 1)M̃ = (m + 1)(l + 1)θ (182)
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For the legitimate receivers Yi , i = 2, . . . , p + 1, without
loss of generality, we focus on receiver 2; by symmetry, a
similar structure will exist at all other receivers. We observe
that

y2 = h12x1 +
p+1∑

j=2

h j2x j +
p+1+m∑

k=p+2

hk2xk + n2 (183)

= h12

(
m∑

i=1

vT
1i t1i

)

+
⎛

⎝
p+1∑

j=2

h j2vT
j1t j1

⎞

⎠

+
⎛

⎝
p+1+m∑

k=p+2

hk2uT
k−p−1t(k−p−1)

⎞

⎠ + n2 (184)

=
(

h22vT
21t21

)

+
(

vT
11h12t11 +

p+1∑

j=3

vT
j1h j2t j1 + uT

1 h p+2,2t(1)

)

+
(

vT
12h12t12 + uT

2 h p+3,2t(2)

)
+ . . .

+
(

vT
1mh12t1m + uT

mh p+1+m,2t(m)

)
+ n2 (185)

Similarly, we observe that in the second set of parentheses
of (185), since ti1 and t(1) represent the same dimensions
in T1 for all i , we have

hi2T1 ⊆ T̃1, i ∈ {1, . . . , p + 2}, i �= 2 (186)

Starting from the third set of parentheses of (185), we have

h12Tj ⊆ T̃ j (187)

h p+1+ j,2Tj ⊆ T̃ j (188)

for all j = 2, . . . , m. In addition, since the pair (2, 2) �∈ L,
we can infer that

h22T1 ⊆ h22T̃1 (189)

and

h22T̃1 ∩ T̃ j = φ (190)

for j = 1, . . . , m. Together with (170), this indicates that
the dimensions are separable as suggested by the parentheses
in (185) and also the Y2 side of Fig. 7, which further implies
that all the elements in the set

R2
�=

⎛

⎝
m⋃

j=1

T̃ j

⎞

⎠ ∪ h22T̃1 (191)

are rationally independent, and thereby the cardinality of R2
is MR in (182).

For the external eavesdropper Zk , we note that

zk = g1kx1 +
p+1∑

j=2

g jkx j +
p+1+m∑

i=p+2

gik xi + nzk (192)

= g1k

(
m∑

i=1

vT
1i t1i

)

+
⎛

⎝
p+1∑

j=2

g jkvT
j1t j1

⎞

⎠

+
⎛

⎝
p+1+m∑

i=p+2

gikuT
i−p−1t(i−p−1)

⎞

⎠ + nzk (193)

=
(

vT
11g1kt11 +

p+1∑

j=2

vT
j1g jkt j1 + uT

1 gp+2,kt(1)

)

+
(

vT
12g1kt12 + uT

2 gp+3,kt(2)

)
+ . . .

+
(

vT
1m g1kt1m + uT

m gp+1+m,kt(m)

)
+ nzk (194)

In the first set of parentheses of (194), since ti1 and t(1)

represent the same dimensions in T1 for all i , we have

gik T1 ⊆ T̃1, i ∈ {1, . . . , p + 2} (195)

Starting from the second set of parentheses of (194), we have

g1kTj ⊆ T̃ j (196)

gp+1+ j,kTj ⊆ T̃ j (197)

for all j = 2, . . . , m. Due to (170), this indicates that the
dimensions are separable as suggested by the parentheses
in (194) and also the Z side of Fig. 7, which further implies
that all the elements in the set

RZ
�=

⎛

⎝
m⋃

j=1

T̃ j

⎞

⎠ (198)

are rationally independent, and thereby the cardinality of RZ

is MRZ

MRZ

�= |RZ | = mM̃ = m(l + 1)θ (199)

We will compute the secrecy rates achievable with the
asymptotic alignment based scheme proposed above by using
the following theorem.

Theorem 10 ([48, Th. 2]): For K ′-user interference chan-
nels with confidential messages, the following rate region is
achievable

Ri ≥ I (Vi ; Yi ) − max
j∈K′−i

I (Vi ; Y ′
j |V K ′

−i ), i = 1, . . . , K ′

(200)

where V K ′
−i

�= {Vj }K ′
j=1, j �=i and K′−i = {1, . . . , i − 1, i +

1, . . . , K ′}. The auxiliary random variables {Vi }K ′
i=1 are mutu-

ally independent, and for each i , we have the following Markov
chain Vi → X ′

i → (Y ′
1, . . . , Y ′

K ′).
We can reinterpret Theorem 10 as follows: For the (p + 1)-

user IC-CM-EE with m helpers and N external eavesdroppers,
since each independent helper’s contribution is the same as
noise to both items in (200), which depend only on marginal
distributions, we can treat the (p+1)-user IC-CM-EE channel
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as a (p + 1 + N)-user IC-CM with N new transmitters which
keep silent, i.e., Vi and X ′

i , i = p + 2, . . . , p + 1 + N , are
equal to zero, and

p(y ′
1, . . . , y ′

p+1+N |x ′
1, . . . , x ′

p+1+N )

= p(y1, . . . , yp+1, z1, . . . , zN |x1, . . . , x p+1) (201)

where x ′ and y ′ are the transmitter and receiver of the
(p + 1 + N)-user IC-CM and x, y, z are the entities of the
original (p+1)-user IC-CM-EE with m helpers and N external
eavesdropper.

We thereby first select Vi as

V1
�= a1 (202)

Vi
�= vi1, i = 2, . . . , p + 1 (203)

where a1 is defined in (164). Then, we evaluate the (200) for
i = 1, . . . , p + 1.

For i = 1, by Lemma 3, for any δ > 0, if we choose

Q = P
1−δ

2(MR +δ) and a = γ1 P
1
2

Q , the probability of error of

estimating V1 as Ṽ1 based on Y1 can be upper bounded by

Pr(e1) ≤ exp
(−ηγ1 Pδ

)
(204)

Furthermore, by Fano’s inequality, we can conclude that

I (V1; Y1) ≤ I (V1; Ṽ1) (205)

= H (V1) − H (V1|Ṽ1) (206)

≥ mM(1 − δ)

MR + δ

(
1

2
log P

)
+ o(log P) (207)

= m(1 − δ)

(m + 1)
(
1 + 1

l

)θ + δ
lθ

(
1

2
log P

)
+ o(log P)

(208)

where o(·) is the little-o function. This provides a lower bound
for the first term in (200) with i = 1.

Next, we need to derive an upper bound for the second
item in (200), i.e, the secrecy penalty, for i = 1. For and
j ∈ {2, . . . , p + 1}, by the Markov chain,

V1 →
⎛

⎝
p+1∑

k=1

hkj Xkj , V p+1
2

⎞

⎠ → Y j (209)

we have

I (V1; Y j |V p+1
2 ) ≤ I

⎛

⎝V1;
p+1∑

k=1

hkj Xk

∣
∣
∣V p+1

2

⎞

⎠ (210)

= H

⎛

⎝
p+1∑

k=1

hkj Xk

∣
∣
∣V p+1

2

⎞

⎠

−H

⎛

⎝
p+1∑

k=1

hkj Xk

∣
∣
∣V p+1

1

⎞

⎠ (211)

The first term in (211) can be rewritten as

H

⎛

⎝
p+1∑

k=1

hkj Xk

∣
∣∣V p+1

2

⎞

⎠

= H

[
m∑

i=k

(
vT

1kh1 j t1k + uT
k h p+1+k, j t(k)

)
]

(212)

Note that there are in total mMR rational dimensions each
taking value from C(a, 2Q). Regardless of the distribution in
each rational dimension, the entropy is maximized by uniform
distribution, i.e.,

H

⎛

⎝
p+1∑

k=1

hkj Xk

∣
∣
∣V p+1

2

⎞

⎠ ≤ log
[
(2Q + 1)mM̃

]
(213)

= mM̃(1 − δ)

MR + δ

(
1

2
log P

)
+ o(log P)

(214)

The second term in (211) is

H

⎛

⎝
p+1∑

k=1

hkj Xk

∣
∣
∣V p+1

1

⎞

⎠ = H

[
m∑

i=k

(
uT

k h p+1+k, j t(k)

)
]

(215)

= log
[
(2Q + 1)mM

]
(216)

= mM(1 − δ)

MR + δ

(
1

2
log P

)
+ o(log P)

(217)

Substituting (214) and (217) into (211), we get

I (V1; Y j |V p+1
2 ) ≤ m(M̃ − M)(1 − δ)

MR + δ

(
1

2
log P

)
+ o(log P)

(218)

We note that

ξ
�= m(M̃ − M)(1 − δ)

MR + δ
(219)

= m(M̃ − M)(1 − δ)

(m + 1)M̃ + δ
(220)

= m
[
(l + 1)θ − lθ

]
(1 − δ)

(m + 1)(l + 1)θ + δ
(221)

=
m

[∑θ−1
k=0

(θ
k

)
lk
]
(1 − δ)

(m + 1)(l + 1)θ + δ
(222)

The maximum power of l in the numerator is θ − 1 and
is less than the power θ of l in the denominator. This
implies that when m and δ are fixed, by choosing l large
enough, the factor before the 1

2 log P term in (218), ξ , can
be made arbitrarily small. Due to the non-perfect (i.e., only
asymptotical) alignment, the upper bound for the information
leakage rate is not a constant as in [46], but a function which
can be made to approach zero d.o.f.

Similarly, we can derive the following

I (V1; Zk|V p+1
2 ) ≤ ξ

( 1
2 log P

) + o(log P) (223)



XIE AND ULUKUS: SECURE DEGREES OF FREEDOM REGIONS OF MAC AND ICs 2063

where Zk , k = 1, . . . , N , is the external eavesdropper. Sub-
stituting (208), (218) and (223) into (200), we obtain a lower
bound for the achievable secrecy rate R1 as

R1 ≥
⎡

⎣ m(1 − δ)

(m + 1)
(
1 + 1

l

)θ + δ
lθ

− ξ

⎤

⎦
(

1

2
log P

)
+ o(log P)

(224)

Similarly, it is easy to derive that

Ri ≥
⎡

⎣ (1 − δ)

(m + 1)
(
1 + 1

l

)θ + δ
lθ

− ξ ′
⎤

⎦
(

1

2
log P

)
+ o(log P)

(225)

for i = 2, . . . , p + 1 and ξ ′ can be made arbitrarily small.
By choosing l → ∞ and δ → 0, we can achieve a s.d.o.f. tuple
arbitrarily close to

( m

m + 1
,

1

m + 1
, . . . ,

1

m + 1︸ ︷︷ ︸
p items

,
)

(226)

which is (150), completing the proof of Theorem 9.

VI. CONCLUSIONS

In this paper, we determined the entire s.d.o.f. regions
of K -user MAC wiretap channel, K -user IC-EE, K -user
IC-CM, and K -user IC-CM-EE. The converse for MAC
directly followed from the results in [45] and [46]. The con-
verse for IC was shown to be dominated by secrecy constraints
and interference constraints in different parts. To show the
tightness and achieve the regions characterized by the con-
verses, we provided a general method to investigate this class
of channels, whose s.d.o.f. regions have a polytope structure.
We provided an equivalence between the extreme points in the
polytope structure and the rank of sub-matrices containing all
active upper bounds associated with each extreme point. Then,
we achieved each extreme point by relating it to a specific
channel model. More specifically, the extreme points of the
MAC region can be achieved by an m-user MAC wiretap
channel with K −m helpers, i.e., by setting K −m users’ secure
rates to zero and utilizing them as pure (structured) cooperative
jammers. On the other hand, the asymmetric extreme points
of the IC region can be achieved by a (p + 1)-user IC-CM
with m helpers, and N external eavesdroppers.

APPENDIX A
PROOF OF THEOREM 8

Regarding Theorem 8, first, we have few comments:
1) (148) will not be possible until K ≥ 5 due to the

constraint K − 2 ≥ p′ ≥ 3.
2) The point in (148) with p′ = K−1, i.e., ( 1

2 , 1
2 , . . . , 1

2 , 0),
is actually an extreme point, but since (147) with p =
K − 2 also includes it, we classify it as (147) here.

3) Assume that we allow p′ = 2 in (148) with K ≥ 5.
Then, the point becomes

d1 =
(

1

2
,

1

2
, 0, 0, . . . , 0

)
(227)

However, this is just the middle point of two points
in (147). More specifically, by choosing p = 1 in (147),
we have d′

1 = ( K−2
K−1 , 1

K−1 , 0, 0, . . . , 0) and d′′
1 =

( 1
K−1 , K−2

K−1 , 0, 0, . . . , 0) (by swapping the first two ele-
ments in d′

1). Here d′
1 �= d′′

1 due to K ≥ 5, and also it is
easy to check that d1 = 1

2 (d′
1 + d′′

1), which means that
d1 is not an extreme point. Therefore, in (148) p′ must
satisfy p′ ≥ 3.

Now, we start the proof of Theorem 8. In order to speak of
a polytope, we re-write (16) as

−di ≤ 0, i = 1, . . . , K (228)

Then, we can write all the left hand sides of (14), (15), (228)
as an N̂ × K matrix H with corresponding right hand sides
forming an N̂ -length column vector h, i.e., all points d in D
satisfy

Hd ≤ h (229)

where N̂
�= 2K + (K

2

) = 2K + K (K − 1)/2. For any extreme
point d ∈ D, let J (d) be a set such that

J (d) =
{

l : Hld = hl , l ∈ {1, . . . , N̂ }
}

(230)

where Hl is the lth row of H and hl is the lth element
of h. Therefore, J (d) represents all active boundaries. The
remaining rows satisfy

Hld < hl (231)

for l �∈ J .
For convenience, denote by HJ the sub-matrix of H with

rows indexed by J
�= J (d). Similarly denote by hJ the sub-

vector of h with rows indexed by J . In order to find all extreme
points in D, by Theorem 5 in Section III-A, we need to find all
K ×(K +1) sub-matrices (H′, h′) of (H, h) with rank(H′) = K
such that Hd ≤ h and H′d = h′, which is also equivalent to
finding all index sets J representing the active boundaries such
that Hd ≤ h, HJ d = hJ , and rank(HJ ) = K .

For convenience of presentation, we always partition the
set J as a union of mutually exclusive sets S, P and Z , i.e.,

J = S ∪ P ∪ Z (232)

We denote by S the row indices representing the active
boundaries in (14)

S
�=

{
si

�= s(i) : Hsi d = hsi such that

(K − 1)di +
K∑

j=1

d j = K − 1, i ∈ {1, . . . , K }
}

(233)

where si stands for the function s(i) of the coordinate i with
the value as the row index of H corresponding to the active
boundaries (K − 1)di + ∑K

j=1 d j = K − 1. Thus, we have a
one-to-one mapping between the row index and the function

si
�= s(i), i.e., if the row index si ∈ J , we know exactly the i th

upper bound in (14) is active; on the other hand, if we know
the coordinate i , we can determine the unique corresponding
row index in H by the mapping s : i �→ si .
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Similarly, we denote by P the row indices representing the
active boundaries in (15)

P
�=

{
pV

�= p(V ) : HpV d = h pV such that
∑

i∈V

di = 1, V ⊆ {1, . . . , K }, |V | = 2
}

(234)

where the value of pV is the corresponding row index of H.
Finally, we denote by Z the row indices representing the

active boundaries in (228)

Z
�=

{
zi

�= z(i) : Hzi d = hzi such that

di = 0, i ∈ {1, . . . , K }
}

(235)

where the value of zi is the corresponding row index of H.
In order to find all K × (K + 1) sub-matrices (H′, h′) of

(H, h) with rank(H′) = K such that H′d = h′, there are
approximately in total

(
N̂

K

)
≈

( K+2
2

)K
eK

√
2π K

(236)

possible selections of K equations in (229) for large K ;
in getting (236), we used N̂ = 2K + K (K − 1)/2 and
Stirling’s approximation [56]. In order for this search to have a
reasonable complexity, we need to investigate the structure of
D more carefully. We identify the following simple properties
for the extreme points in the following lemmas.

Lemma 4: Let d be a non-zero extreme point in D. Then,
it must satisfy the following properties:

1) maxk dk ≤ K−1
K .

2) At most one element, if there is any, in d is strictly larger
than 1

2 .
3) If there exists an element, say di , which is equal to 1

2 ,
then, d j ≤ di = 1

2 for all j .
4) If |S| ≥ 2 and ∀si , s j ∈ S, where i �= j , then 0 < di =

d j ≤ 1
2 .

5) If si ∈ S, then d j ≤ di for all j . Equivalently, if |S| ≥ 1
and si ∈ S, then di = max j=1,...,K d j . Equivalently, if |S| ≥ 1
and di = max j=1,...,K d j , then si ∈ S.

6) If maxi di > 1
2 , then |S| ≤ 1.

The proof of Lemma 4 is provided in Appendix B. In addi-
tion to the properties of the elements of the extreme points,
we also need some results regarding the rank of the sub-
matrices. It is easy to verify that a trivial necessary condition
for rank(HJ ) = K is |S|+ |P|+ |Z | ≥ K . More formally, we
have the following lemma.

Lemma 5: For an extreme point d, rank(HJ ) = K only if

rank(HS∪P) + |Z | ≥ K (237)

Lemma 6: Let d be a non-zero extreme point of D. If |P|≥1
and maxk dk > 1

2 , then there exists a coordinate i∗ such that

K − 1

K
≥ di∗ = max

k
dk >

1

2
(238)

and a non-empty set

U ′ �=
{

j : d j = 1 − di∗ > 0
}

(239)

with cardinality m′ �= |U ′| = |P| and

P = P ′ �=
{

pV : V = {i∗, j}, j ∈ U ′} (240)

In addition, S is either empty or

S = {si∗ } (241)

Futhermore,

rank(HS∪P) = |P| + 1{|S|≥1} (242)

where 1{·} is the indicator function.
Lemma 7: Let d be a non-zero extreme point of D.

If |P| ≥ 1 and maxk dk ≤ 1
2 , then there exists a non-empty

set

U ′′ =
{

i : di = 1

2

}
(243)

with cardinality m′′ �= |U ′′|, 2 ≤ m′′ ≤ K − 1, and

P = P ′′ �=
{

pV : V = {k, j}, k �= j, and k, j ∈ U ′′} (244)

with rank

rank(HP) =
{

m′′, |P| > 1
1, |P| = 1

(245)

In addition, S is either empty or

S =
{

si : i ∈ U ′′} (246)

Futhermore,

rank(HS∪P) =
{

1, |P| = 1 and |S| = 0
m′′ + 1{|S|≥1}, o.w.

(247)

where 1{·} is the indicator function.
The proofs of Lemmas 5, 6, and 7 are provided in

Appendix B.
Now, we are ready to prove Theorem 8.
Case: |Z | = K . Clearly, rank(HZ ) = K and only the zero

vector satisfies

H0 ≤ h (248)

HZ 0 = hZ (249)

Thus, 0 is an extreme point of D, which is (146). Therefore,
in the remaining discussion we focus on non-zero points and
|Z | < K .

Case: |P| = 0. Since |Z | < K , by Lemma 5, |S| ≥ 1.
If |S| = 1, then again by Lemma 5, |Z | = K − 1.

By property 5) of Lemma 4, S = {si } for some i and
Z = {z j : j �= i}. The extreme point d has the structure
(147) with p = 0.

If |S| = K , then by property 4) of Lemma 4, Z = φ, and
the corresponding extreme point is (149).

If 2 ≤ |S| ≤ K −1, due the positiveness implied by property
4) of Lemma 4 and the cardinality constraint by Lemma 5, the
only consistent Z , which gives a solution for HJ d = hJ , is

Z =
{

z j : s j �∈ S
}

(250)
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Denote by x any di for si ∈ S. Then, we have

K x + (|S| − 1)x = K − 1 (251)

which implies that

x = K − 1

K − 1 + |S| (252)

Since P is empty, x must satisfy x < 1
2 due to |S| ≥ 2

and property 4) of Lemma 4. Substituting (252) into x < 1
2

gives |S| > K −1, which contradicts the assumption |S| < K .
Therefore, the solution given by HJ d = hJ , where J = S∪ Z ,
violates (231).

Case: |P| ≥ 1 and maxk dk > 1
2 . First of all, due to the

positiveness implied by (238) and (239), the consistent set Z
must satisfy

Z ⊆
{

zk : k �∈ {i∗} ∪ U ′} (253)

which implies |Z | ≤ K − |U ′| − 1 = K − |P| − 1.
If S is empty, by Lemma 6, rank(HS∪P) = |P|, which

implies

rank(HS∪P) + |Z | < K (254)

which implies that rank(HJ ) < K , which does not give any
extreme point, by Lemma 5.

Therefore, S is non-empty and determined by (241).
In addition, Lemma 6 gives

rank(HS∪P) = |P| + 1 (255)

If |P| = K −1, due to (239) and (241), we have the equality
in (14) hold for i∗, i.e.,

K di∗ + (K − 1)(1 − di∗) = K − 1 (256)

which leads to di∗ = 0 contradicting (238).
Therefore, |P| < K−1. Then, the consistent set Z satisfying

Lemma 5 is

Z =
{

zk : k �∈ {i∗} ∪ U ′} (257)

In addition, due to (239) and (241), we have the equality
in (14) hold for i∗, i.e.,

K di∗ + |P|(1 − di∗) = K − 1 (258)

which implies that

di∗ = K − 1 − |P|
K − |P| (259)

Since di∗ = maxk dk > 1
2 , we have

|P| < K − 2 (260)

The solution of this choice is exactly (147) with 1 ≤ p <
K − 2, and it satisfies (229).

Case: |P| ≥ 1 and maxk dk ≤ 1
2 . If S is empty, then by

Lemma 7,

rank(HS∪P) =
{

m′′, |P| > 1
1, |P| = 1

(261)

where m′′ is the cardinality of U ′′ defined in (243).
Since m′′ ≥ 2, for both cases, rank(HS∪P) ≤ m′′. Due to

the positiveness of the elements in U ′′, |Z | ≤ K − m′′.
Therefore, by Lemma 5, the cardinality of Z can only take
the value |Z | = K − m′′, i.e.,

d j = 0, ∀ j �∈ U ′′ (262)

Also, Lemma 5 implies that |P| > 1 and m′′ > 2; otherwise,
rank(HS∪P) + |Z | = 1 + |Z | ≤ 1 + K − m′′ ≤ K − 1 < K .

Therefore, the elements in d are either 1
2 or 0, and the

number of 1
2 s is m′′. Note that S is empty. Therefore, for

any i ∈ U ′′, we must have the equality in (14) not hold, i.e.,

K

2
+ (m′′ − 1)

1

2
< K − 1 (263)

which indicates that

m′′ < K − 1 (264)

Combining with the condition m′′ > 2 gives an extreme point
that has the structure (148).

It remains to discuss the case where S is non-empty.
By Lemma 7, S is determined by (246) and

rank(HS∪P) = m′′ + 1 (265)

If m′′ = K − 1, then the only solution is given by choosing
Z = {z j : j �∈ U ′′} with |Z | = 1, which is the structure
in (147) with p = K − 2.

If m′′ < K − 1, then rank(HS∪P) < K . By Lemma 5 and
the positiveness implied by U ′′ with cardinality m′′, Z must
satisfy

K − m′′ ≥ |Z | ≥ K − rank(HS∪P) = K − m′′ − 1 > 0

(266)

i.e., Z is not empty and the extreme point d has either
K − m′′ − 1 or K − m′′ zero(s). On the other hand, d also
has in total m′′ 1

2 s due to the definition of U ′′ in (243).
If |Z | = K − m′′, then the extreme point d has the following
form

di =
{

1
2 , i ∈ U ′′

0, i �∈ U ′′ (267)

and we must have the equality in (14) hold for some
i ∈ U ′′, i.e.,

K

2
+ (m′′ − 1)

1

2
= K − 1 (268)

which is not valid since m′′ < K −1. Therefore, the equations
corresponding to the selection of J are inconsistent. On the
other hand, if |Z | = K − m′′ − 1, then the extreme point d
has the following form

di =

⎧
⎪⎨

⎪⎩

1
2 , i ∈ U ′′

0, zi ∈ Z

x, o.w.

(269)

where 0 < x < 1
2 . Again, we must have the equality in (14)

hold for some i ∈ U ′′, i.e.,

K

2
+ (m′′ − 1)

1

2
+ x = K − 1 (270)
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which implies that

x = K − 1 − m′′

2
(271)

Substituting this formula into 0 < x < 1
2 leads to

K − 2 < m′′ < K − 1 (272)

which is not possible since m′′ is an integer, which completes
the proof of Theorem 8.

APPENDIX B
PROOFS OF LEMMA 4 THROUGH 7

A. Proof of Lemma 4

We prove all the properties one by one.
1) The constraint (14) and the positiveness constraint in (16)

imply that for any coordinate i , we have

K di ≤ K di +
∑

j �=i

d j = K − 1 (273)

i.e., di ≤ K−1
K for any i . Therefore, maxk dk ≤ K−1

K .
2) We prove by contradiction. Assume that we have distinct

coordinates, i, j , such that di , d j > 1
2 in d. Then, the set V

�=
{i, j} with |V | = 2 violates the constraint in (15). Therefore,
this contradiction implies that at most one element, if any,
in d is strictly larger than 1

2 .
3) Similarly, assume that there exists a j such that d j > 1

2 .
Since di = 1

2 by assumption, di + d j > 1, which violates
constraint (15). This implies that d j ≤ di = 1

2 for all j .
4) Let i, j ∈ S and i �= j . Due to the definition of S,

si , s j ∈ S, i.e., from (233)

K di + d j +
K∑

k=1,k �=i, j

dk = K − 1 (274)

K d j + di +
K∑

k=1,k �=i, j

dk = K − 1 (275)

which implies (K − 1)di = (K − 1)d j . Since K − 1 > 0,
di = d j . Furthermore, due to property 2), both are no
larger than 1

2 , and due to property 3), for any k, dk ≤ di .
If di = 0, then the point d is the zero vector, which contradicts
the assumption that d is a non-zero extreme point in D.
Therefore, di = d j > 0.

5) The three equivalent statements in this property are
simply from three different perspectives addressing the same
fact that the coordinates of d, which are associated with the
elements in S, are the most significant coordinates, whose
corresponding elements have the maximum value in d.
We will prove the first statement and then prove the equiv-
alence of all three statements.

We prove the first statement of property 5) by contraction.
Assume that there exists a j such that d j > di . Then, consider

the following expression (for K ≥ 3)

K d j +di +
K∑

k=1,k �=i, j

dk = d j +di +(K − 1)d j +
K∑

k=1,k �=i, j

dk

(276)

> d j +di +(K − 1)di +
K∑

k=1,k �=i, j

dk

(277)

= K di +
K∑

k=1,k �=i

dk (278)

= K − 1 (279)

where the last equality is due to the assumption si ∈ S. This
result violates the constraint (14). Therefore, for all j , d j ≤ di .

Next, we prove the second statement of property 5) using
the first statement. This is trivially true because the assumption
|S| ≥ 1 and si ∈ S imply that, by the first statement, di ≥ d j

for all j , i.e., di = max j d j .
Then, we prove the third statement of property 5) using the

second statement. By assumption, let di = maxk dk . However,
assume that si �∈ S. This implies that there exists another
coordinate j , j �= i such that s j ∈ S (since |S| ≥ 1) and
thereby by the second statement d j = maxk dk = di . Then,
consider

K di + d j +
K∑

k=1,k �=i, j

dk = K d j + di +
K∑

k=1,k �=i, j

dk = K − 1

(280)

where the last equality is due to s j ∈ S. This implies that si

must belong to S by definition in (233), i.e., si ∈ S, which
contradicts the assumption that si �∈ S.

Finally, we prove the first statement of property 5) using
the third statement. We prove this by contradiction as well.
As stated in the condition of the first statement, si ∈ S, this
means |S| ≥ 1. Assume that there exists at least one element
which is strictly larger than di . Choose the largest one among
them and denote it by d j . Clearly, j �= i and d j =maxk dk >di .
By the third statement, s j ∈ S. Then, |S| ≥ 2 and by property
4) di = d j , which contradicts the assumption d j > di .

6) We prove |S| ≤ 1 by contraction. Assume that |S| ≥ 2.
Due to property 4) and the second statement of property 5), we
have two distinct j, k ∈ S such that 1

2 ≥ d j =dk =maxi di >
1
2 ,

which leads to a contradiction. Thus, |S| ≤ 1.

B. Proof of Lemma 5

It is straightforward that

rank(HZ ) = |Z | (281)

since there are in total |Z | 1s in the sub-matrix HZ and the
row index and column index of any two 1s are different. Since
(S ∪ P) ∩ Z = φ, we have

K = rank(HJ ) = rank(HS∪P∪Z ) (282)

≤ rank(HS∪P) + rank(HZ ) (283)
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C. Proof of Lemma 6

If |P| = 1, then P = {pV } for a unique V = {i, j} with
|V | = 2. If di = d j , then di = d j = 1

2 and maxk dk ≤ 1
2 due

to property 3) of Lemma 4, which contradicts the condition
maxk dk > 1

2 . Therefore, di �= d j . Without loss of generality,
let di > d j , then di > 1

2 and i is the i∗ required in Lemma 6
due to property 2) of Lemma 4. By property 1) of Lemma 4,
d j = 1 − di∗ > 0, thus j ∈ U ′. If there exists any k, k �= j ,

such that dk = 1 − di∗ , then clearly V ′ �= {i∗, k} �= V , but
pV ′ ∈ P , which contradicts the condition |P| = 1. Hence,
U ′ = { j} and P satisfies (240).

If |P| ≥ 2, assume that V1 = {i, j}, V2 = {x, y},
V1 �= V2, and pV1, pV2 ∈ P . Without loss of generality,
let di = maxk∈{i, j,x,y} dk . If di < 1

2 , then d j + di < 1,
which contradicts pV1 ∈ P . If di = 1

2 , then due to
property 3) of Lemma 4, maxk dk ≤ 1

2 , which contradicts the
condition maxk dk > 1

2 . Therefore, di = maxk∈{i, j,x,y} dk > 1
2

and i is the i∗ required in Lemma 6. For any pV ∈ P , let
V = {a, b} and assume da ≥ db. If da = 1

2 , this leads to a
contradiction of di∗ > 1

2 due to property 3) of Lemma 4. Thus,
da > 1

2 . Due to property 2) of Lemma 4, the coordinate a must
be i∗, i.e., a = i∗. Then, db = 1 − di∗ > 0 and that is true for
any pV . Hence, |P| = |U ′| and (240) are trivially true.

If S is empty, we have a sub-matrix which has the form (by
removing all columns containing all zeros and rearranging the
columns)

HS∪P = HP
·=

⎡

⎢
⎢
⎣

1 1 0 0 . . . 0
1 0 1 0 . . . 0
...

...
...

...
. . .

...
1 0 0 0 . . . 1

⎤

⎥
⎥
⎦ (284)

where the number of rows is |P| = |U ′|, the number
of columns is |P| + 1, and the index of the first column
corresponds to i∗ and the indices of other columns correspond
to U ′ defined in (239). Therefore, rank(HS∪P) = |P| and the
proof is completed.

If S is not empty, due to (238) and property 6) of Lemma 4,
|S| = 1. Furthermore, due to property 5) of Lemma 4,
si∗ ∈ S, which is (241). Note that HS is a K -length row
vector containing no zeros. If |P|+1 < K , then HS has more
columns than the sub-matrix on the right hand side of (284).
HS∪P = |P| + 1 is true. If |P| + 1 = K , then

HP∪S =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 0 0 . . . 0
1 0 1 0 . . . 0
...

...
...

...
. . .

...
1 0 0 0 . . . 1
K 1 1 1 . . . 1

⎤

⎥
⎥
⎥
⎥
⎦

�= M(K ) (285)

where M(n) is n × n square matrix as in (285), where n ≥ 2.

Therefore, HP∪S = M(K ). If we denote f (n)
�= det[M(n)],

then it is easy to write the recursive formula as

f (n) = (−1)n − f (n − 1), n ≥ 3 (286)

f (2) = 1 − K (287)

which gives that f (n) = (−1)n(n − K − 1), i.e., det HP∪S =
det M(K ) = (−1)K+1 �= 0 and rank(HP∪S) = |P| + 1 = K ,
which completes the proof.

D. Proof of Lemma 7

If maxk dK < 1
2 , then |P| = 0, which contradicts

the assumption |P| ≥ 1. Therefore, maxk dK = 1
2 ,

which implies |U ′′| ≥ 1. Assume that i∗ ∈ U ′′. Due to
property 3) of Lemma 4, d j ≤ di∗ = 1

2 for all j .
If maxk �=i∗ dk < 1

2 , then we cannot find a set V such that
|V | = 2 and

∑
k∈V dk = 1, i.e., |P| = 0, which contradicts

the assumption |P| ≥ 1. Thus, m′′ �= |U ′′| ≥ 2. On the
other hand, if m′′ = K , by definition of U ′′, all elements
in d are 1

2 , which violates the constraint (14). Therefore,
m′′ ≤ K − 1.

Next, P ′′ defined in (244) satisfies P ′′ ⊆ P . On the other
hand, for any coordinate pair (k ′, j ′) such that k ′ �= j ′ and
p{k′, j ′} ∈ P , since dk′ , d j ′ ≤ 1

2 , we must have dk′ = d j ′ = 1
2 ,

and by definition of U ′′, k ′, j ′ ∈ U ′′, which implies
p{k′, j ′} ∈ P ′′. Therefore, P = P ′′.

If S is empty, then HP = 1 if |P| = 1 and the proof
is completed. If S is empty but |P| > 1, the index set of
the columns of HP , which contains nonzero elements, is U ′′
due to (244). Therefore, rank(HP) ≤ |U ′′| = m′′. In order to
study the rank, we remove the columns containing all zeros
and rearrange the columns. Assume that

U ′′ =
{

i1, i2, . . . , im′′
}

(288)

where i1 = i∗. Then, consider a m′′ × m′′ sub-matrix
of HP

HJ ′′ ·=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎣

1 1 0 0 0 . . . 0

1 0 1 0 0 . . . 0

1 0 0 1 0 . . . 0

...
...

...
...

...
. . .

...

1 0 0 0 0 . . . 1

0 1 1 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎦

(289)

where

J ′′ �= {pV : V = {i∗, i j }, j = 2, . . . , m′′} ∪ {p{i2,i3}} ⊆ P

(290)

It is easy to verify that det HJ ′′ = (−1)m′′ × 2 �= 0, therefore
rank(HJ ′′) = m′′, i.e., rank(HP) = m′′. This completes the
proof of the case where S is empty.

Assume that |S| ≥ 1, by property 5) of Lemma 4, S must
have the form of (246). If |P| = 1, m′′ = |U ′′| = 2. Then, the
3 × K matrix HP∪S must have the structure

HP∪S=
⎡

⎢
⎣

1 1 0 0 0 . . . 0

K 1 1 1 1 . . . 1

1 K 1 1 1 . . . 1

⎤

⎥
⎦ (291)

where the indices of the first two columns belong to U ′′.
Clearly, HP∪S = 3 = m′′ + 1 since m′′ = 2.
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If |P| > 1, by using the J ′′ in (290) and the condition
m′′ ≤ K − 1, we have

HJ ′′∪S =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 . . . 0 0 0 0 . . . 0
1 0 1 0 . . . 0 0 0 0 . . . 0
...

...
...

...
. . .

...
...

...
...

. . .
...

1 0 0 0 . . . 0 1 0 0 . . . 0
0 1 1 0 . . . 0 0 0 0 . . . 0
K 1 1 1 . . . 1 1 1 1 . . . 1
1 K 1 1 . . . 1 1 1 1 . . . 1
...

...
...

...
. . .

...
...

...
...

. . .
...

1 1 1 1 . . . K 1 1 1 . . . 1
1 1 1 1 . . . 1 K 1 1 . . . 1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

(292)

Due to [57, Sec. 2.2, Problem 7],

rank(HP∪S) = rank(HJ ′′∪S) = rank(HJ ′′) + 1 = m′′ + 1

(293)

which completes the proof.
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