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Polar Coding for the General Wiretap Channel
With Extensions to Multiuser Scenarios

Yi-Peng Wei, Student Member, IEEE, and Sennur Ulukus, Fellow, IEEE

Abstract—Information-theoretic work for wiretap channels is
mostly based on random coding schemes. Designing practical cod-
ing schemes to achieve information-theoretic secrecy is an impor-
tant problem. By applying two recently developed techniques for
polar codes, namely, universal polar coding and polar coding for
asymmetric channels, we propose a polar coding scheme to achieve
the secrecy capacity of the general wiretap channel. We then apply
this coding scheme to achieve the best-known inner bounds for the
multiple access wiretap channel (MAC-WTC), and the broadcast
and interference channels with confidential messages (BC-CM and
IC-CM).

Index Terms—Wiretap channel, broadcast channel with confi-
dential messages, interference channel with confidential messages,
multiple access wiretap channel, universal polar coding, chaining
construction.

I. INTRODUCTION

T HE WIRETAP channel was first introduced by Wyner [1],
in which a legitimate transmitter (Alice) wishes to send

messages to a legitimate receiver (Bob) secretly in the pres-
ence of an eavesdropper (Eve). Wyner [1] characterized the
capacity equivocation region for the degraded wiretap chan-
nel, in which the received signal at Eve is a degraded version
of the received signal at Bob. Later, Csiszár and Körner [2]
characterized the capacity equivocation region for general, not
necessarily degraded, wiretap channels. These works are based
on information-theoretic random coding schemes.

Polar coding, invented by Arıkan [3], is the first code that
provably achieves the capacity of the binary-input discrete sym-
metric output channels (B-DMC). The idea of polar coding has
been extended to lossless source coding [4], lossy source coding
[5], and to multi-user scenarios, such as, multiple access chan-
nel [6]–[8], broadcast channel [9], [10], interference channel
[11], and Slepian-Wolf coding problem [12].

On a B-DMC, polarization results in two kinds of sub-
channels [3]1. The first kind is good sub-channels. The capacity
for these sub-channels approaches 1 bit per channel use. The
second kind is bad sub-channels. The channel output for these
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1Here, and later in the discussion of asymmetric channels, we neglect

partially polarized sub-channels, which are of order o(n).

sub-channels is independent of the channel input; therefore
the capacity for these sub-channels approaches 0. In particu-
lar, if a B-DMC A is degraded with respect to a B-DMC B,
then the good sub-channels of A must be a subset of the good
sub-channels of B [13]. We call this the subset property.

Polar coding schemes for degraded wiretap channels with
symmetric main and eavesdropper channels are developed using
the subset property in [14]–[17]. For degraded wiretap chan-
nels, the good sub-channels of Eve is a subset of the good
sub-channels of Bob. The polar coding scheme is designed
to transmit the confusion messages (random bits) on the sub-
channels simultaneously good for Bob and Eve, and to transmit
the secret messages on the sub-channels only good for Bob.
However, for non-degraded wiretap channels, the subset prop-
erty no longer holds [18]–[22], i.e., the good sub-channels of
Eve is not necessary a subset of the good sub-channels of
Bob. Moreover, the secrecy capacity achieving input distribu-
tion is not necessarily a uniform distribution. Therefore, the
polar coding schemes in [14]–[17] cannot directly extend to the
non-degraded wiretap channel.

By applying two recently developed techniques for polar
codes, we can achieve the secrecy capacity of the general wire-
tap channel. The first technique is universal polar codes [21],
[22]. Universal polar coding allows us to align the good sub-
channels of Bob and Eve together. Therefore, we can artificially
construct the subset property for the non-degraded wiretap
channel. Then, Alice transmits the random bits on the sub-
channels simultaneously good for Bob and Eve, and the secret
message on the sub-channels only good for Bob. The sec-
ond technique is polar coding for asymmetric models [23],
which allows us to deal with the non-uniform input distribution.
Different from B-DMC, polarization for asymmetric channels
results in three different kinds of sub-channels.

Another polar coding scheme for the general wiretap channel
is provided in [24], which uses a concatenated code consisting
of two polar codes. The inner layer ensures that the transmitted
message can be reliably decoded by Bob, and the outer layer
guarantees that the message is kept secret from Eve. Our work
jointly handles these two goals in one shot. Hence, the decod-
ing error probability of our scheme is approximately O(2−n1/2

),
whereas it is O(

√
n2−n1/4

) in [24]. Although the scheme in [24]
does not require to share randomness, for practical code con-
struction, there is still no efficient way to characterize the outer
index set [24, Sec. III. C.], while our coding scheme can be
efficiently constructed by [19].

Next, we extend our coding scheme to several multiuser
scenarios: multiple access wiretap channel (MAC-WTC) [25],
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[26], broadcast channel with confidential messages (BC-CM)
[27], and interference channel with confidential messages (IC-
CM) [27]. We are motivated by wireless communications
scenarios for these extensions. Wireless communications envi-
ronment is naturally a multi-user environment, where multiple
users access the channel simultaneously in transmitting data,
and the signal is received simultaneously by multiple receivers.
In addition, the wireless environment is particularly susceptible
to eavesdropping attacks [28]–[30] due to its inherent openness.
The three models considered represent the most basic network
structures with multiple transmitters and receivers. In the MAC-
WTC, two transmitters wish to send independent messages to
the legitimate receiver in the presence of an eavesdropper. In
the BC-CM2, the transmitter wishes to send independent mes-
sages to two receivers, while keeping the messages secret from
the unintended receiver. In the IC-CM, two transmitters wish
to send independent messages to their respective receivers, and
keep the messages confidential from the other receiver.

In each of these models, multiple messages need to be pro-
tected from eavesdroppers. To the best of our knowledge, there
are no practical coding schemes for these multiuser scenarios.
We develop polar coding schemes to achieve the best-known
secrecy rates achievable by random coding schemes in each
one of these channel models. For the MAC-WTC, we achieve
the entire dominant face of the best-known achievable region
by combining the coding scheme for the general wiretap chan-
nel we introduce here with the monotone chain rule [12]. For
the BC-CM, we introduce a double chaining construction to
achieve the best-known inner bound. Finally, we extend the
coding scheme for the general wiretap channel to the setting
of IC-CM.

We acknowledge independent and concurrent papers which
present similar results on polar coding for general wiretap chan-
nels at the same conference; see [31]–[33]. Reference [31]
generalizes the polar coding scheme for strong secrecy in [34],
while in our work, we artificially construct the subset property
to extend the polar coding scheme in [14]–[17]. Interestingly,
these two points of view lead to the same chaining construc-
tion method [33]. Moreover, references [31], [33] provide a
strong secrecy proof, while in our work, we provide a weak
secrecy proof. The remaining parts of these three works are
different. References [31], [33] mainly deal with the broad-
cast channel with a confidential component [2]. However, we
not only achieve the secrecy capacity of [2] but also propose
coding schemes to achieve the best-known inner bounds of the
multiuser models of MAC-WTC, BC-CM and IC-CM, which
require different constructions.

II. SYSTEM MODEL

A. Wiretap Channel Model

A wiretap channel consists of a legitimate transmitter who
wishes to send messages to a legitimate receiver secretly in

2Although the naming of BC-CM is similar to [2], these two channel models
are different. In particular, [2] is a “single-user” wiretap channel, in the sense
that there is only one message to be secured; it is a generalization of [1] to non-
degraded channels, together with the introduction of a common message to be
sent (insecurely) to both Bob and Eve. BC-CM [27], on the other hand, has two
messages each to be secured from the unintended receiver.

the presence of an eavesdropper. Let X denote the single-letter
input to the main and eavesdropper channels. Let Y and Z
denote the corresponding single-letter outputs of the main and
the eavesdropper channels, respectively. W represents the mes-
sage to be sent to Bob and kept secret from Eve with W ∈ W =
{1, · · · , 2n R}. Let Pe = Pr(Ŵ �= W) denote the probability of
error for Bob’s decoding.

The equivocation rate is given by

1

n
H(W |Zn), (1)

which reflects the uncertainty of the message given the eaves-
dropper’s channel observation. A rate pair (R, Re) is achievable
if for any ε > 0, as n → ∞,

Pr(Ŵ �= W) ≤ ε,
1

n
H(W |Zn) ≥ Re − ε. (2)

Perfect (weak) secrecy is achieved if R = Re [2]. Therefore,
perfect secrecy is achieved if 1

n I (W ; Zn) → 0, and the secrecy
capacity Cs is the highest achievable perfect secrecy rate R,
which is also the highest possible equivocation rate [2]. Csiszár
and Körner characterized the secrecy capacity for the general
wiretap channel as [2]

Cs = max
V →X→Y,Z

I (V ; Y ) − I (V ; Z). (3)

B. Multiple Access Wiretap Channel

A MAC-WTC consists of two transmitters, one receiver and
an eavesdropper. For k ∈ {1, 2}, the two transmitters, with chan-
nel inputs Xk , wish to send independent messages Wk ∈ Wk =
{1, · · · , 2n Rk } to the legitimate receiver, with channel output Y ,
in the presence of an eavesdropper, with channel output Z . A
rate pair (R1, R2) is achievable if for any ε > 0, as n → ∞,

Pr(Ŵk �= Wk) ≤ ε,

1

n
H(W1, W2|Zn) ≥ R1 + R2 − ε. (4)

The secrecy capacity region of the MAC-WTC is still an open
problem. The best-known achievable rate region is [25], [26]
(see also [29], [35], [36]):

R1 ≤ [I (V1; Y |V2, T ) − I (V1; Z |T )]+,

R2 ≤ [I (V2; Y |V1, T ) − I (V2; Z |T )]+,

R1 + R2 ≤ [I (V1, V2; Y |T ) − I (V1, V2; Z |T )]+, (5)

for any distribution of the form

P(t)P(v1|t)P(v2|t)P(x1|v1)P(x2|v2)P(y, z|x1, x2). (6)

C. Broadcast Channel With Confidential Messages

A BC-CM consists of a transmitter and two receivers. For k ∈
{1, 2}, the transmitter wishes to send independent messages,
Wk ∈ Wk = {1, · · · , 2n Rk }, to their respective receiver k, while
keeping the messages secret from the unintended receiver. Let
X , Y1, Y2 denote the single-letter input and outputs of the
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broadcast channel. A rate pair (R1, R2) is achievable if for any
ε > 0, as n → ∞,

Pr(Ŵk �= Wk) ≤ ε,

1

n
H(W1|Y n

2 ) ≥ R1 − ε,

1

n
H(W2|Y n

1 ) ≥ R2 − ε. (7)

The secrecy capacity region of the BC-CM is still an open
problem. The best-known achievable rate region [27] is:

R1 ≤ I (V1; Y1|T ) − I (V1; V2|T ) − I (V1; Y2|V2, T ),

R2 ≤ I (V2; Y2|T ) − I (V1; V2|T ) − I (V2; Y1|V1, T ), (8)

over all distributions of the form

P(t)P(v1, v2|t)P(x |v1, v2)P(y1, y2|x). (9)

D. Interference Channel With Confidential Messages

An IC-CM consists of two transmitters and two receivers.
The two transmitters wish to send independent messages to
their respective receivers, and keep the messages confidential
from the other receiver. For k ∈ {1, 2}, let Xk , Yk denote the
single-letter input and output of the interference channel with
messages Wk ∈ Wk = {1, · · · , 2n Rk }. A rate pair (R1, R2) is
achievable if for any ε > 0, as n → ∞,

Pr(Ŵk �= Wk) ≤ ε,

1

n
H(W1|Y n

2 ) ≥ R1 − ε,

1

n
H(W2|Y n

1 ) ≥ R2 − ε. (10)

The secrecy capacity region of the IC-CM is still an open
problem. The best-known achievable rate region [27] is:

R1 ≤ I (V1; Y1|T ) − I (V1; Y2|V2, T ),

R2 ≤ I (V2; Y2|T ) − I (V2; Y1|V1, T ), (11)

over all distribution of the form

P(t)P(v1|t)P(v2|t)P(x1|v1)P(x2|v2)P(y1, y2|x1, x2). (12)

III. EXISTING RANDOM CODING SCHEMES FOR

SECURE COMMUNICATION

In this section, we summarize the well-known random
coding techniques for secure communication. We first show
how to achieve the secrecy rate, I (X; Y ) − I (X; Z), through
the stochastic encoding technique introduced in [1] for the
degraded wiretap channel. We then show how to apply chan-
nel prefixing introduced in [2] for the general wiretap channel
to achieve the secrecy capacity in (3). We next summarize some
relevant extensions to multiuser scenarios.

To achieve the secrecy rate I (X; Y ) − I (X; Z), we fix
the input distribution P(x) and generate a random codebook
by using independent and identically distributed realizations

according to P(x). The random codebook consists of 2n(Rs+R̃s )

n-length codewords. We take Rs = I (X; Y ) − I (X; Z) and
R̃s = I (X; Z). Let Ws ∈ {1, 2, . . . , 2n Rs } denote the secret
message, and let W̃s ∈ {1, 2, . . . , 2n R̃s } denote the confusion
message. W̃s carries no information and only serves to pro-
tect Ws . In the encoding procedure, after we choose the
secure message Ws , we randomly pick the confusion message
W̃s to determine the codeword for transmission. Therefore,
Ws and W̃s together determine the transmitted codeword
xn(Ws, W̃s). This stochastic encoding procedure enables secure
communication.

Since the code rate is Rs + R̃s = I (X; Y ), Bob decodes both
Ws and W̃s reliably. In order to prove secrecy against Eve,
we evaluate the equivocation rate 1

n H(Ws |Zn) at Eve, i.e., the
entropy of the secure message given Eve’s observation (similar
steps in (45)-(48)) [1], [2]:

1

n
H(Ws |Zn) ≥1

n
H(Ws) + 1

n
H(W̃s)

− 1

n
I (Xn; Zn) − 1

n
H(W̃s |Ws, Zn), (13)

where 1
n H(W̃s) ≈ I (X; Z) ≈ 1

n I (Xn; Zn), and 1
n H(W̃s |Ws,

Zn) ≈ 0 through Fano’s inequality. Therefore, 1
n H(Ws |Zn) ≥

1
n H(Ws) − ε, and the (weak) secrecy constraint is satisfied.

To achieve the secrecy capacity in (3) for the general wire-
tap channel, we create an artificial channel PX |V , which is
called channel prefixing in [2]. Although from data processing
inequality, I (V ; Y ) ≤ I (X; Y ) and I (V ; Z) ≤ I (X; Z), the
difference I (V ; Y ) − I (V ; Z) may be larger than I (X; Y ) −
I (X; Z), and channel prefixing, in general, is useful. For
degraded channels, optimum V equals X , and the secrecy
capacity is Cs = maxX I (X; Y ) − I (X; Z) [1], [2].

For the achievable rate regions for multiuser scenarios in (5),
(8) and (11), T serves as the time-sharing random variable,
and V1 and V2 denote the channel prefixing auxiliary random
variables. For MAC-WTC in (5), both users apply stochas-
tic encoding, with sacrificed confusion message rates of R̃k ≤
I (Vk; Z |T ) for k ∈ {1, 2}, with R̃1 + R̃2 = I (V1, V2; Z |T ).
For BC-CM in (8), each user k ∈ {1, 2} sacrifices the rate
I (Vk; Y j |Vj , T ), k �= j for stochastic encoding, and each user
uses the rate I (V1, V2; Z |T ) for binning. For IC-CM in (11),
each user sacrifices the rate of I (Vk; Y j |Vj , T ), k �= j for
stochastic encoding.

IV. EXISTING POLAR CODING TECHNIQUES

A. Polar Codes for Asymmetric Channels

Let PXY be the joint distribution of a pair of random variables
(X, Y ), where X is a binary random variable and Y is any finite-
alphabet random variable. Let us define the Bhattacharyya
parameter as follows:

Z(X |Y ) = 2
∑

y

PY (y)
√

PX |Y (0|y)PX |Y (1|y). (14)

Let U n = XnGn , where Xn denotes n independent copies of
the random variable X with X ∼ PX , and Gn = G⊗k where
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G =
[

1 0
1 1

]
and ⊗ denotes the Kronecker product of matrices

for n = 2k . Reference [4] shows that as n → ∞, Ui is almost
independent of Ui−1 and uniformly distributed, or otherwise
Ui is almost determined by Ui−1. Therefore, [n], the index
set {1, 2, . . . , n}, is almost polarized into two sets HX and
LX [10]:

HX = {i ∈ [n] : Z(Ui |Ui−1) ≥ 1 − δn}, (15)

LX = {i ∈ [n] : Z(Ui |Ui−1) ≤ δn}, (16)

where δn = 2−nβ
and β ∈ (0, 1/2). Moreover,

lim
n→∞

1

n
|HX | = H(X), (17)

lim
n→∞

1

n
|LX | = 1 − H(X). (18)

Let P be a discrete memoryless channel with a binary input
X and finite alphabet output Y . Here, P does not have to be a
symmetric channel. Fix a distribution PX for X . Reference [23]
generalizes the above argument to achieve a rate close to
I (X; Y ). Consider two subsets of [n], HX |Y and LX |Y ,

HX |Y = {i ∈ [n] : Z(Ui |Ui−1, Y n) ≥ 1 − δn}, (19)

LX |Y = {i ∈ [n] : Z(Ui |Ui−1, Y n) ≤ δn}. (20)

Similar to (17) and (18), we have

lim
n→∞

1

n
|HX |Y | = H(X |Y ), (21)

lim
n→∞

1

n
|LX |Y | = 1 − H(X |Y ). (22)

With (15) and (20), we define the following three sets

I = HX ∩ LX |Y , (23)

Fr = HX ∩ Lc
X |Y , (24)

Fd = Hc
X . (25)

In the following, we call the set I the information set, and sets
Fr and Fd the frozen set. Although we call them the frozen set,
Fr and Fd have different operational meanings which will be
illustrated below. Note that for the symmetric channel capacity
achieving code design, Fd is an empty set [3].

To achieve rate I (X; Y ) for channel P , let us consider the
following coding scheme. First, the encoder transmits the infor-
mation bits in the index set I. For i ∈ I in (23), since i ∈ HX ,
Ui is almost independent of Ui−1 and uniformly distributed.
Therefore, the encoder can freely assign values to UI, where
UI denotes a sub-vector {Ui }i∈I. Moreover, since i ∈ LX |Y ,
Ui is almost determined by Ui−1 and Y n , which means that
given the channel output Y n , Ui can be decoded in a successive
manner.

Second, for i ∈ Fr in (24), Ui is almost independent of Ui−1

and uniformly distributed, and given the channel output Y n , Ui

cannot be reliably decoded. The encoder transmits UFr with
a uniformly random sequence and the randomness is shared
between the transmitter and receiver.

Last, for i ∈ Fd in (25), Ui is almost determined by Ui−1.
The values of UFd are computed in successive order through
the following mapping:

ui = arg max
u∈{0,1} PUi |Ui−1(u|ui−1). (26)

By (17) and (21), it is easy to verify that

lim
n→∞

1

n
|I| = I (X; Y ). (27)

Moreover, by applying successive cancellation decoder, the
block error probability Pe can be upper bounded by [37]

Pe ≤
∑
i∈I

Z(Ui |Ui−1, Y n) = O(2−nβ

) (28)

for any β ∈ (0, 1/2), with complexity O(n log n). Therefore,
the rate I (X; Y ) is achieved.

B. Universal Polar Coding

Consider two B-DMCs P : X → Y and Q : X → Z , and
assume that these two channels have identical capacities, i.e.,
C(P) = C(Q). Let U n = XnGn , and denote P and Q as the
information set defined in (23), i.e.,

P = {i ∈ [n] : Z(Ui |Ui−1, Y n) ≤ δn}, (29)

Q = {i ∈ [n] : Z(Ui |Ui−1, Zn) ≤ δn}, (30)

where δn = 2−nβ
and β ∈ (0, 1/2). Since we assume C(P) =

C(Q), we also have |P| = |Q|.
In general, the differences P \ Q and Q \ P are not empty

sets [18]–[20]; therefore, it is not straightforward to apply
standard polar coding to achieve the capacity of the compound
channel consisting of P and Q. Reference [21] proposes a
method, called chaining construction, to solve this problem;
see also [34].

Definition 1: (Chaining construction [21]) Let m ≥ 2. The
m-chain of P and Q is a code of length mn that consists of m
polar blocks of length n. In each of the m blocks, the set P ∩ Q

is set to be an information set. In the i th block, 1 ≤ i < m, the
set P \ Q is also set to be an information set. Moreover, the set
P \ Q in the i th block is chained to the set Q \ P in the (i + 1)th
block in the sense that the information is repeated in these two
sets. All other indices are frozen. Therefore, in each block, the
set (P ∪ Q)c is frozen, and the set Q \ P in the 1st block and
the set P \ Q in the mth block are frozen, too. The rate of the
chaining construction is

|P ∩ Q| + m−1
m |P \ Q|

n
. (31)

Next, we discuss the decoding procedure for the compound
channel consisting of P and Q. If channel P is used, then we
decode from the first block. On the other hand, if channel Q is
used, then we decode from the last block.

First, suppose that channel P is used and a code of length
mn has been received. For this case, we decode from the first
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block. In the 1st block, all the information bits are put in the set
P; thus, the decoder can decode correctly. For the 2nd block,
through chaining construction, the set P \ Q in the 1st block is
chained to the set Q \ P in the 2nd block, and the set (P ∪ Q)c is
frozen. Equivalently, the decoder only needs to decode the bits
in the set P, which can be correctly decoded. The same pro-
cedure holds until the (m − 1)th block. For the mth block, the
information bits are only put in the set P ∩ Q, and the remain-
ing part has been determined. Hence, information bits can be
reliably decoded.

Second, consider the case that channel Q is used. In this
case, we decode from the last block. In the mth block, since
the information bits are put in the set Q, reliable decoding is
guaranteed. For the (m − 1)th block, due to the chaining pro-
cess, the set Q \ P in the mth block is chained to the set P \ Q
in the (m − 1)th block, and note that the set (P ∪ Q)c is frozen.
The decoder only needs to decode the information bits in the set
Q, thus correct decoding is ensured. This procedure is applied
until the 2nd block. For the 1st block, information bits which
have not been determined fall in the set P ∩ Q, thus the decoder
can decode them correctly.

In summary, for a fixed m, if we let n → ∞, we can achieve
the rate in (31) with arbitrary small error probability, which
also means that the rate C(P) − 1

m
|P\Q|

n can be achieved.
Additionally, if we let m → ∞, then the rate C(P), which is
the capacity of the compound channel consisting of channels
P and Q, can be achieved.

C. Polar Coding for MAC Based on Monotone Chain Rules

Consider a two-user MAC (X1 × X2, P(y|x1, x2),Y) with
binary input alphabets X1 and X2. The capacity region of this
channel is the union of convex hull of all rate pairs satisfying

R1 ≤ I (X1; Y |X2),

R2 ≤ I (X2; Y |X1),

R1 + R2 ≤ I (X1, X2; Y ), (32)

over the distributions of the form P(x1)P(x2). The rate pairs
satisfying R1 + R2 = I (X1, X2; Y ) are said to be on the domi-
nant face of the rate region.

Reference [12] gives a polar coding scheme that achieves
the entire dominant face based on the monotone chain rules.
Consider U n

1 = Xn
1 Gn and U n

2 = Xn
2 Gn . We call J 2n as a

monotone permutation of U n
1 U n

2 if the elements of both U n
1

and U n
2 appear in increasing order in J 2n . When we expand

the mutual information term I (U n
1 , U n

2 ; Y n) according to the
monotone permutation, we say that it follows the monotone
chain rule

I (U n
1 , U n

2 ; Y n) =
2n∑

i=1

I (Ji ; Y n|J i−1). (33)

Moreover, define the rates as follows (similar to [11], [12]):

Rx = 1

n

∑
{i∈[2n]:Ji =U1,k ,k∈[n]}

I (Ji ; Y n|J i−1),

Ry = 1

n

∑
{i∈[2n]:Ji =U2,k ,k∈[n]}

I (Ji ; Y n|J i−1). (34)

Reference [12] shows that the rate pair (Rx , Ry) in (34) can be
set arbitrarily close to the rate pairs on the dominant face of
(32) by the permutations of the form J 2n = (Ui

1, U n
2 , Ui+1:n

1 ),
where Ui+1:n

1 denotes U1,i+1, . . . , U1,n .

V. POLAR CODING FOR THE GENERAL WIRETAP

CHANNEL

Assume now that we know the optimal distributions [38] to
achieve the secrecy capacity Cs in (3), i.e., we know the optimal
V and X . For illustration, we consider the case of a binary input
channel, i.e., |X| = 2. The cardinality bound for channel prefix-
ing, V , is |V| ≤ 2. Although we focus on developing a coding
scheme for binary inputs below, there is no difficulty to extend
the work to q-ary inputs [39]–[42].

A. The Scheme

Let U n = V nGn . Consider the following sets:

HV = {i ∈ [n] : Z(Ui |Ui−1) ≥ 1 − δn},
LV |Y = {i ∈ [n] : Z(Ui |Ui−1, Y n) ≤ δn},
LV |Z = {i ∈ [n] : Z(Ui |Ui−1, Zn) ≤ δn}, (35)

where δn = 2−nβ
and β ∈ (0, 1/2).

The set [n] can be partitioned into the following four sets:

GY∧Z = HV ∩ LV |Y ∩ LV |Z ,

GY\Z = HV ∩ LV |Y ∩ Lc
V |Z ,

G Z\Y = HV ∩ Lc
V |Y ∩ LV |Z ,

BY∧Z = Hc
V ∪ (Lc

V |Y ∩ Lc
V |Z ). (36)

From a successive decoding point of view, the sub-channels cor-
responding to the set GY∧Z are simultaneously good for Bob
and Eve. The sub-channels in the set GY\Z are good for Bob
but bad for Eve. On the other hand, the sub-channels in the set
G Z\Y are good for Eve but bad for Bob. Last, the sub-channels
in the set BY∧Z are bad for both Bob and Eve.

Similar to (23)–(25), we have:

IY = HV ∩ LV |Y ,

IZ = HV ∩ LV |Z ,

FY
r = HV ∩ Lc

V |Y ,

FZ
r = HV ∩ Lc

V |Z ,

Fd = Hc
V . (37)

By (27), we have

lim
n→∞

1

n
|IY | = I (V ; Y ),

lim
n→∞

1

n
|IZ | = I (V ; Z). (38)

For the symmetric and degraded wiretap channel [14]–[17],
G Z\Y is an empty set, since the degraded property of the chan-
nel causes IZ ⊂ IY [13]. However, for the general wiretap
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Fig. 1. Chaining construction for the general wiretap channel.

channel, G Z\Y is no longer an empty set, and |G Z\Y | cannot
be negligible [18]–[20].

Here, we consider the positive secrecy capacity case, thus, we
have |GY\Z | > |G Z\Y |. Choose a set, CY\Z , such that CY\Z ⊂
GY\Z and |CY\Z | = |G Z\Y |. Define the set S as:

S = GY\Z \ CY\Z . (39)

From (38), we have

lim
n→∞

1

n
|S| = I (V ; Y ) − I (V ; Z). (40)

We construct the code as follows. Consider an m-chain polar
code in Definition (1). For 1 ≤ i < m, the set CY\Z in the i th
block is chained to G Z\Y in the (i + 1)th block as in Fig. 1. For
each of the m blocks, the set BY∧Z is set to be frozen. Moreover,
the set G Z\Y in the 1st block is set to be frozen in the sense that
G Z\Y ⊆ FY

r , and the set CY\Z in the mth block is also set to
be frozen in the sense that CY\Z ⊆ FZ

r . In Fig. 1, we use a red
cross to denote a frozen set.

We put the secret information bits in the set S in each block.
Therefore, the set S is used for secret message transmission. For
blocks 1 ≤ i < m, we put uniformly distributed random bits to
CY\Z to serve as the confusion messages. Through the chain-
ing construction, the confusion messages are also chained to
the set G Z\Y in block 1 < i ≤ m. Moreover, the set GY∧Z in
each block are also filled with random bits to serve as confu-
sion message. For the frozen sets, if the index belongs to FY

r
or FZ

r , then we put uniformly distributed random bits and share
the randomness with the decoder (Bob and Eve). Last, if the
index belongs to Fd , then we determine the value according
to the mapping defined in (26). We summarize the encoding
procedure as follows.

Encoding procedure:
For each block, put the secret information bits in US , and

determine the bits in UFd by (26).
For the 1st block,
1) Put uniformly distributed random bits to UGY∧Z ∪CY\Z .
2) Put uniformly distributed random bits to UFY

r
, and share

the randomness with the decoder.

For the j th block, 2 ≤ j < m,
1) Put uniformly distributed random bits to UGY∧Z ∪CY\Z .
2) Chaining construction: repeat the bits in CY\Z of the

( j − 1)th block to the bits in UG Z\Y .
3) Put uniformly distributed random bits to UFY

r ∩FZ
r

, and
share the randomness with the decoder.

For the mth block,
1) Put uniformly distributed random bits to UGY∧Z .
2) Chaining construction: repeat the bits in CY\Z of the

(m − 1)th block to the bits in UG Z\Y .
3) Put uniformly distributed random bits to UFZ

r
, and share

the randomness with the decoder.
Note that in the chaining construction we require the bits

in UG Z\Y equal the bits in UCY\Z . Since we fill uniformly dis-
tributed random bits to UCY\Z , we simultaneously fill random
bits to UG Z\Y . Due to the fact that G Z\Y ∩ Fd = ∅, we can
freely choose the bits in this set.

Decoding procedure:
Bob decodes from the 1st block. If i ∈ Fd , then ûi =

arg maxu∈{0,1} PUi |Ui−1(u|ûi−1). For the 1st block,

ûi =

⎧⎪⎨
⎪⎩

ui , if i ∈ FY
r ,

arg maxu∈{0,1} PUi |Ui−1,Y n (u|ûi−1, yn),

if i ∈ GY∧Z ∪ CY\Z ∪ S.

(41)

For the j th block, 2 ≤ j < m,

ûi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui , if i ∈ FY
r ∩ FZ

r ,

arg maxu∈{0,1} PUi |Ui−1,Y n (u|ûi−1, yn),

if i ∈ GY∧Z ∪ CY\Z ∪ S,

ûi ′ in the ( j − 1)th block, where i ′ ∈ CY\Z ,

if i ∈ G Z\Y.

(42)

For the mth block,

ûi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ui , if i ∈ FZ
r ,

arg maxu∈{0,1} PUi |Ui−1,Y n (u|ûi−1, yn),

if i ∈ GY∧Z ∪ S,

ûi ′ in the (m − 1)th block, where i ′ ∈ CY\Z ,

if i ∈ G Z\Y .

(43)

Theorem 1: For any β ∈ (0, 1/2), there exists an m-chain
polar coding scheme developed in Section V-A, such that as
n → ∞, the m-chain polar coding scheme achieves the secrecy
capacity for the general wiretap channel in (3), and the block
error probability decays as O(2−nβ

).
The proof of Theorem 1 has two parts: proof of reliability at

Bob is given in Section V-B and the equivocation calculation
(proof of secrecy at Eve) is given in Section V-C.

B. Reliability

From (40), we know as n → ∞, our coding scheme can
achieve the secrecy rate in (3). Moreover, when Bob applies
the decoding procedure described in Section V-A, according to
(28), the block error probability of the whole m-chain block can
be upper bounded by
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P B
e ≤(m − 1)

∑
i∈CY\Z

Z(Ui |Ui−1, Y n)

+ m
∑

i∈GY∧Z ∪S

Z(Ui |Ui−1, Y n) = O(2−nβ

) (44)

for any β ∈ (0, 1/2) with complexity O(n log n). Thus, the
secrecy rate in (3) is achieved reliably.

C. Equivocation Calculation

We first introduce necessary notation for the calculation of
the equivocation rate. In the encoding process, we consider m
blocks each with block length n. Let Zmn denote what Eve
receives. For each block, we perform U n = V nGn , therefore,
for the total of m blocks, we have V mn and U mn .

Let Ws denote the secret message, and W̃s denote the
confusion message. Let the subscript i of a set denote the
set in the i th block. For example, Si denotes the set S in
the i th block, and GY∧Z j denotes the set GY∧Z in the j th
block. Since secret message is put in Si , 1 ≤ i ≤ m, we
have Ws = ∪1≤i≤mUSi . Also, the confusion message is put in
GY∧Zi , 1 ≤ i ≤ m and CY\Z j , 1 ≤ j < m. Therefore, we have
W̃s = ∪1≤i≤m,1≤ j<mUGY∧Zi UCY\Z j .

We can calculate the equivocation rate as follows:

H(Ws |Zmn)

= H(Ws, W̃s |Zmn) − H(W̃s |Ws, Zmn) (45)

= H(Ws, W̃s) − I (Ws, W̃s; Zmn) − H(W̃s |Ws, Zmn) (46)

≥ H(Ws, W̃s) − I (V mn; Zmn) − H(W̃s |Ws, Zmn) (47)

= H(Ws) + H(W̃s) − I (V mn; Zmn) − H(W̃s |Ws, Zmn)

(48)

which is equivalent to

1

mn
I (Ws; Zmn) ≤ 1

mn
I (V mn; Zmn)

+ 1

mn
H(W̃s |Ws, Zmn) − 1

mn
H(W̃s).

(49)

Note that in (45), to keep the notation concise we do not list
the randomness shared with the decoder (see the encoding pro-
cedure in Section V-A) in the expression of the conditional
entropy. Here, (45) is due to the chain rule of conditional
entropy, (46) is due to the definition of mutual information, (47)
comes from the data processing inequality, (48) is due to the
independence of the secret message and the confusion message.
In (49), we bound each term on the right hand side as follows:

For the first term, we have I (V mn; Zmn) ≤ ∑mn
i=1 I (Vi ; Zi )

≤ mnI (V ; Z). Therefore, 1
mn I (V mn; Zmn) ≤ I (V ; Z).

To bound the second term, suppose Eve obtains Ws and
Zmn , and wants to decode W̃s . By symmetry of chaining con-
struction, Eve can apply similar decoding rule as described in
Section V-A. However, this time Eve decodes from the mth
block, then the block error probability of the whole m-chain
block can be upper bounded by

P E
e ≤(m − 1)

∑
i∈G Z\Y

Z(Ui |Ui−1, Y n)

+ m
∑

i∈GY∧Z

Z(Ui |Ui−1, Y n) = O(2−nβ

) (50)

for β ∈ (0, 1/2). Hence, by applying Fano’s inequality, we have

H(W̃s |Ws, Zmn) ≤ H(P E
e ) + P E

e log |W̃s |
< H(P E

e ) + P E
e [mnI (V ; Z)]. (51)

Therefore, as n → ∞, 1
mn H(W̃s |Ws, Zmn) → 0.

For the last term, as n → ∞, by (31) and (38), we have
(m − 1)nI (V ; Z) < H(W̃s) < mnI (V ; Z). Hence, as m →
∞, 1

mn H(W̃s) → I (V ; Z).
From the above, we know as n → ∞ and m → ∞,

1
mn I (Ws; Zmn) → 0. Thus, the weak secrecy constraint is
achieved.

VI. POLAR CODING FOR THE MULTIPLE ACCESS

WIRETAP CHANNEL

In this section, instead of achieving the corner point of (5)
through standard polar coding techniques [6], we show how to
achieve the rate pairs on the dominant face of (5), since ref-
erence [43] shows the former scheme is strictly suboptimal3.
Here, we consider the positive rate case in (5), i.e., R1 > 0,
R2 > 0 and R1 + R2 > 0. We first consider a constant T in (5).
Following the method given in [11, Sec. III. B.], we can gener-
alize the result to a T with arbitrary distribution. For k ∈ {1, 2},
let Vk be the corresponding alphabet of the channel prefixing
Vk . As in Section V, we assume the cardinality for the channel
prefixing Vk is |Vk | = 2 for illustration.

A. The Scheme

For a fixed input distribution in (6), consider two different
MACs, the first MAC, P , consisting of two users and Bob and
the second MAC, Q, consisting of the two users and Eve. In
Fig. 2, we use a solid line to show the achievable region for the
first MAC, P , and a dotted line to represent the second MAC,
Q. Consider two rate pairs on the dominant faces of the chan-
nels P and Q, which we use green and red points to denote in
Fig. 2.

Reference [12] shows that there exist monotone permutations
J 2n and K 2n for channels P and Q to achieve the green and
red points in Fig. 2. Since the green rate pair is greater than
the red rate pair in the sense of both rate of user 1 and rate of
user 2, we can also achieve the red rate pair for channel P by
the same monotone chain J 2n . In the following, we present a
polar coding scheme such that we set the rate of the confusion

3Coding schemes for MAC-WTC are related to coding schemes for com-
pound MAC, since in a MAC-WTC there are two MACs, one to Bob and one to
Eve. Reference [43] considers ICs. In the best-known coding scheme for ICs,
i.e., the Han-Kobayashi (HK) coding scheme, each transmitter divides its mes-
sage into two, a private part and a common part. The common parts need to be
decoded by both receivers. Therefore, if private messages are ignored, IC with
HK coding scheme becomes a compound MAC. [43] shows that rate-splitting
may not achieve the optimal compound rates in such channels in general.
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Fig. 2. General MAC regions.

message as the red rate pair and the rate of the secret message
as the difference of the green and red rate pairs.

For k ∈ {1, 2}, let U n
k = V n

k Gn . Once we determine the dis-
tribution in (6), similar to (35), we can define HVk . According to
different monotone permutations, J 2n , we have different index
sets for LVk |Y,J . We define them as follows:

LVk |Y,J = {i ∈ [n] : Z(Uk,i |Y n, J j−1) ≤ δn, J j = Uk,i },
(52)

where δn = 2−nβ
and β ∈ (0, 1/2). Similarly, we can also

define LVk |Z ,K for another monotone permutation, K 2n .
The set [n] for the user k can be partitioned into the following

sets:

G(k)
Y∧Z = HVk ∩ LVk |Y,J ∩ LVk |Z ,K ,

G(k)
Y\Z = HVk ∩ LVk |Y,J ∩ Lc

Vk |Z ,K ,

G(k)
Z\Y = HVk ∩ Lc

Vk |Y,J ∩ LVk |Z ,K ,

B(k)
Y∧Z = LVk ∪ (Lc

Vk |Y,J ∩ Lc
Vk |Z ,K ). (53)

Since we consider the positive rate case in (5), we have
|G(k)

Y\Z | > |G(k)
Z\Y |. Pick C (k)

Y\Z ⊂ G(k)
Y\Z , such that |C (k)

Y\Z | =
|G(k)

Z\Y |. Define the set S(k) as follows:

S(k) = G(k)
Y\Z \ C (k)

Y\Z . (54)

According to the result in [12], we have

lim
n→∞

1

n
(|S(1)| + |S(2)|) = I (V1, V2; Y ) − I (V1, V2; Z). (55)

The encoding procedure for the two users are similar. We
show the encoding procedure in Fig. 3 for user 1. For each user,
we put the secret bits in the set S(k) and put random bits as the
confusion message in the sets G(k)

Y∧Z and C (k)
Y\Z . Moreover, we

chain the bits in the set C (k)
Y\Z in the i th block to the set G(k)

Z\Y
in the (i + 1)th block. To guarantee correct decoding, we freeze
the sets B(k)

Y∧Z in each block, G(k)
Z\Y in the 1st block, and C (k)

Y\Z in

Fig. 3. Chaining construction for the MAC-WTC for user 1.

the mth block. We use red crosses in Fig. 3 to denote the frozen
sets.

The decoding procedure is from the 1st block to the mth
block according to the monotone permutation J 2n for Bob. For
the 1st block, since the bits Bob needs to decode are all in the
sets G(k)

Y∧Z or G(k)
Y\Z , they all can be decoded reliably. For the

2nd block, due to the chaining construction in the encoding pro-
cedure, the remaining bits Bob needs to decode are also in the
sets G(k)

Y∧Z or G(k)
Y\Z . Therefore, the correct decoding can also

be guaranteed. The same procedure holds to the mth block.
Since the confusion message and the secret message can be
decoded reliably, we can guarantee that the rate in (55) can be
achieved.

Theorem 2: For any β ∈ (0, 1/2), there exists an m-chain
polar coding scheme developed in Section VI-A, such that as
n → ∞, the m-chain polar coding scheme achieves the secrecy
rate pairs on the dominant face of (5) for the MAC-WTC, and
the block error probability decays as O(2−nβ

).
The proof of reliability at Bob is similar to the proof

in Section V-B. The equivocation rate calculation (proof of
secrecy at Eve) is given in Section VI-B.

B. Equivocation Calculation

Following the notation given in Section V-A, we show
the equivocation rate calculation. For k ∈ {1, 2}, let W (k)

s and
W̃ (k)

s denote the secret message and the confusion message
sent by user k. Since we put the secret message in the set
S(k) in each block, we have W (k)

s = ∪1≤i≤mU
k,S(k)

i
. For the

confusion message, W̃ (k)
s , we have W̃ (k)

s = ∪1≤i≤m,1≤ j≤(m−1)

U
k,G(k)

Y∧Zi
U

k,C(k)
Y\Z j

. For simplicity of notation, we let Ws =
W (1)

s ∪ W (2)
s and W̃s = W̃ (1)

s ∪ W̃ (2)
s .

Similar to (45)–(48), we can calculate the equivocation rate
as follows:

H(Ws |Zmn) ≥H(Ws) + H(W̃s)

− I (V mn
1 , V mn

2 ; Zmn) − H(W̃s |Ws, Zmn),

(56)
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which is equivalent to

1

mn
I (Ws; Zmn) ≤ 1

mn
I (V mn

1 , V mn
2 ; Zmn)

+ 1

mn
H(W̃s |Ws, Zmn) − 1

mn
H(W̃s).

(57)

To bound each term in (57), we only consider the second
term since the first and third terms are similar to bounding in
(49). These two terms can be upper bounded by ε, and ε → 0
as n → ∞ and m → ∞. For the second term, suppose Eve
obtains Ws and Zmn , and wants to decode W̃s . This time Eve
decodes from the mth block to the 1st block, and note that
Eve decodes according to the monotone permutation K 2n . For
the mth block, the bits that Eve needs to decode are in the
set G(k)

Y∧Z and G(k)
Z\Y . Therefore, Eve can do the correct decod-

ing. For the (m − 1)th block, due to the chaining construction,
the remaining bits that Eve needs to decode are also in the set
G(k)

Y∧Z and G(k)
Z\Y . The same procedure holds to the 1st block.

Since Eve can do the correct decoding, we can bound this
term through Fano’s inequality. Therefore, we can guarantee
the conditions in (4).

VII. POLAR CODING FOR THE BROADCAST CHANNEL

WITH CONFIDENTIAL MESSAGES

Before we show how to achieve the corner points of the
rate region given in (8) by double chaining method, we briefly
review the result in [10], which shows how to apply polar cod-
ing to achieve the rate pair (R1, R2) = (I (V1; Y1), I (V2; Y2) −
I (V2; V1)) of the binning region. We first consider a constant T
in (8). This result can be generalized to T with arbitrary distri-
bution [11, Sec. III. B.]. Again, we consider binary code design
for illustration.

A. Polar Coding for the Binning Region

Applying polar coding to achieve R1 = I (V1; Y1) is
described in Section IV-A. Now, we discuss how to achieve
R2 = I (V2; Y2) − I (V2; V1) following [10]. Let U n

2 = V n
2 Gn .

Similar to (35), we can define HV2 and LV2|Y2 . Since V1 and V2
are dependent, by thinking of V1 as the side information of V2,
we can further define the set LV2|V1 . Similar to (36), the set [n]
can be partitioned into the following sets:

GY2∧V1 = HV2 ∩ LV2|Y2 ∩ LV2|V1 ,

GY2\V1 = HV2 ∩ LV2|Y2 ∩ Lc
V2|V1

,

GV1\Y2 = HV2 ∩ Lc
V2|Y2

∩ LV2|V1 ,

BY2∧V1 = Hc
V2

∪ (Lc
V2|Y2

∩ Lc
V2|V1

). (58)

Roughly speaking, once the values for V1 is known, the bits
corresponding to the sets GY2∧V1 and GV1\Y2 can be deter-
mined. Since the second receiver observes Y2, it can decode the
set GY2∧V1 and GY2\V1 . To guarantee that the second receiver
obtains the information bits in the set GV1\Y2 , pick CY2\V1 ⊂
GY2\V1 such that |CY2\V1 | = |GV1\Y2 | to serve the chaining
purpose of repeating the information in the set GV1\Y2 . Last,

Fig. 4. Chaining construction for the second user to achieve the binning region
in a broadcast channel.

we put the information bits for the second user in the set S =
GY2\V1 \ CY2\V1 . It can be verified that the rate of the second
user is:

lim
n→∞

1

n
|S| = I (V2; Y2) − I (V2; V1). (59)

Consider the encoding procedure in Fig. 4. The information
for the first receiver, V1, is determined first. Since V1 has been
determined, the set GY2∧V1 and GV1\Y2 can also be determined
from the 1st block to the mth block. It is important to note that
V1 in the mth block is frozen and shared with the two receivers;
therefore, the sets GY2∧V1 and GV1\Y2 can be decoded with the
information of V1 for the mth block, which we use dashed green
crosses to denote in Fig. 4. Same as before, the red crosses
denote the frozen sets in Fig. 4. By the chaining construction,
for 1 ≤ i < m, we repeat the determined value in the set GV1\Y2

in the i th block to the set CY2\V1 in the (i + 1)th block. Last, we
put the information bits for the second receiver in the set S in
each block.

Decoding procedure for the second receiver starts from the
mth block. For the mth block, the second user only needs to
decode the information in the set S and CY2\V1 . To decode the
(m − 1)th block, since the bits in the set GV1\Y2 can be obtained
from the mth block due to the chaining construction of the
encoding process, the second user only needs to decode the bits
in the set GY2∧V1 and GY2\V1 . The same procedure holds till
the 1st block, and the information in the set S can be decoded
reliably.

B. The Scheme

Here, we introduce a double chaining method to achieve the
double binning rate pair (R1, R2) = (I (V1; Y1) − I (V1; V2) −
I (V1; Y2|V2), I (V2; Y2) − I (V2; V1) − I (V2; Y1|V1)), which
is the corner point of (8) when T is a constant. Let U n

2 = V n
2 Gn .

Once we determine the distribution in (9), we can define HV2 ,
LV2|Y2 and LV2|V1 . We can further define LV2|Y1,V1 as in
Section VII-A. The set [n] can be partitioned into the following
sets:
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Fig. 5. Chaining construction for the BC-CM for user 1.

A = HV2 ∩ LV2|Y2 ∩ LV2|V1 ∩ LV2|V1,Y1 ,

B = HV2 ∩ LV2|Y2 ∩ Lc
V2|V1

∩ LV2|V1,Y1 ,

C = HV2 ∩ LV2|Y2 ∩ Lc
V2|V1

∩ Lc
V2|V1,Y1

,

D = HV2 ∩ Lc
V2|Y2

∩ LV2|V1 ∩ LV2|V1,Y1 ,

E = HV2 ∩ Lc
V2|Y2

∩ Lc
V2|V1

∩ LV2|V1,Y1 ,

F = Hc
V2

∪ (Lc
V2|Y2

∩ Lc
V2|V1

∩ Lc
V2|V1,Y1

). (60)

Similarly, let U n
1 = V n

1 Gn . We can partition the set [n] for user
1 as (60) by changing the subscript 2 to 1 and 1 to 2.

Similar to (37) and (38), we have

lim
n→∞

1

n
|A ∪ B ∪ C | = I (V2; Y2),

lim
n→∞

1

n
|A ∪ D| = I (V2; V1),

lim
n→∞

1

n
|B ∪ E | = I (V2; Y1|V1). (61)

Here, we consider the case R1 > 0 and R2 > 0. Therefore, we
can pick C1 ⊂ C with |C1| = |D|, C2 ⊂ C with |C2| = |E |,
and C1 ∩ C2 = ∅. Define the set S as follows:

S = C \ (C1 ∪ C2). (62)

By (61), we also have

lim
n→∞

1

n
|S| = I (V2; Y2) − I (V2; V1) − I (V2; Y1|V1). (63)

Now, we consider the encoding procedure. Assume we deter-
mine the information for the first receiver, V1, at first. As
described in Section VII-A, to guarantee the correct decoding
of the second user, V1 in the mth block is frozen and shared with
the two receivers. As shown in Fig. 5, the red crosses denote the
frozen sets. We put the secret message in the set S from the 1st
block to the (m − 1)th block. Later, we will show that the rate

R1 =
(

m − 1

m

)
[I (V1; Y1) − I (V1; V2) − I (V1; Y2|V2)]

(64)

can be achieved. To guarantee the secrecy, we put the random
bits in the set A, B, D and E in the 1st block. To ensure the
reliability for the user 1, we chain the message in the sets D and

Fig. 6. Chaining construction for the BC-CM for user 2.

E to the sets C1 and C2 in the 2nd block. The same procedure
holds till the (m − 2)th block. For the (m − 1)th block, we still
chain the sets D and E from the (m − 2)th block to the sets C1
and C2; however, we freeze the set D and E in the (m − 1)th
block to guarantee correct decoding for user 1.

For the second user, we put the secret message to the set S
from the 1st block to the mth block, and will show that the rate

R2 = I (V2; Y2) − I (V2; V1) − I (V2; Y1|V1) (65)

can be achieved. To guarantee the secrecy, we put the random
bits to the sets B and E as the confusion message from the 1st
block to the (m − 1)th block. Since V1 has been determined, the
sets A and D can also be determined with the knowledge of V1.
For the first chaining construction, for 1 ≤ i < m, we repeat the
determined value in the set D in the i th block to the set C1 in
the (i + 1)th block. For the second chaining construction, for
1 ≤ i < m, we repeat the determined value in the set E in the
i th block to the set C2 in the (i + 1)th block. As described in
Section VII-A, V1 in the mth block is frozen and shared with
the two receivers; thus, the sets A and D can be decoded with
the information of V1 for the mth block, which we use dashed
green crosses to denote in Fig. 6. Same as before, the red crosses
denote the frozen sets in Fig. 6. For the 1st block, we freeze the
sets C1 and C2, and for the mth block, we freeze the set E , to
guarantee the reliability.

The decoding procedure for the two users are similar. They
both decode from the mth block to the 1st block. Let us use
user 2 for illustration. For the mth block, since user 2 knows
V1, it can decode the sets A, B, C and D. Through the chaining
construction, the decoder only needs to decode the sets A, B
and C in the (m − 1)th block. The same procedure holds till the
2nd block. For the 1st block, due to the chaining construction
and the frozen sets, the decoder only needs to decode the sets
A, B and S, which can be done reliably.

Theorem 3: For any β ∈ (0, 1/2), there exists an m-chain
polar coding scheme developed in Section VII-B, such that as
n → ∞, the m-chain polar coding scheme achieves the secrecy
rate region in (8) for the BC-CM, and the block error probability
decays as O(2−nβ

).
The reliability and secrecy proofs for Theorem 3 are given in

Section VII-C and VII-D.
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C. Reliability

The block error probability of the first and second user can
be upper bounded by

Pe,1 ≤(m − 2)
∑

i∈A∪B∪C

Z(U1,i |Ui−1
1 , Y n

1 )

+
∑

i∈A∪B∪S

Z(U1,i |Ui−1
1 , Y n

1 ) = O(2−nβ

),

Pe,2 ≤(m − 2)
∑

i∈A∪B∪C

Z(U2,i |Ui−1
2 , Y n

2 )

+
∑

i∈A∪B∪S

Z(U1,i |Ui−1
2 , Y n

2 )

+
∑

i∈B∪C

Z(U1,i |Ui−1
2 , Y n

2 ) = O(2−nβ

) (66)

for any β ∈ (0, 1/2) with complexity O(n log n). Therefore,
the rate pair in (64) and (65) can be achieved reliably. Thus,
as m → ∞, we can achieve the rate pair in (8).

D. Equivocation Calculation

Following the notation given in Section V-C, we show
the equivocation calculation for receiver 2, and this result
can be extended to receiver 1 by symmetry. Since we put
the secret message in the set S in each block, we have
Ws,1 = ∪1≤i<mU1,Si . For the confusion message, W̃s,1, we
have W̃s,1 = ∪1≤i<m,1≤ j<(m−1)U1,(A∪B)i U1,(D∪E) j .

We can calculate the equivocation rate as follows:

H(Ws,1|Y mn
2 )

≥ H(Ws,1|Y mn
2 , V mn

2 , T mn) (67)

= H(Ws,1, Y mn
2 |V mn

2 , T mn) − H(Y mn
2 |V mn

2 , T mn) (68)

= H(Ws,1, V mn
1 , Y mn

2 |V mn
2 , T mn)

− H(V mn
1 |Y mn

2 , V mn
2 , T mn, Ws,1)

− H(Y mn
2 |V mn

2 , T mn) (69)

= H(Ws,1, V mn
1 |V mn

2 , T mn)

+ H(Y mn
2 |V mn

1 , V mn
2 , T mn, Ws,1)

− H(V mn
1 |Y mn

2 , V mn
2 , T mn, Ws,1)

− H(Y mn
2 |V mn

2 , T mn) (70)

= H(Ws,1, V mn
1 |V mn

2 , T mn) + H(Y mn
2 |V mn

1 , V mn
2 , T mn)

− H(V mn
1 |Y mn

2 , V mn
2 , T mn, Ws,1)

− H(Y mn
2 |V mn

2 , T mn) (71)

= H(Ws,1, V mn
1 |V mn

2 , T mn)

− H(V mn
1 |Y mn

2 , V mn
2 , T mn, Ws,1)

− I (V mn
1 ; Y mn

2 |V mn
2 , T mn) (72)

≥ H(V mn
1 |V mn

2 , T mn)︸ ︷︷ ︸
first term

− H(V mn
1 |Y mn

2 , V mn
2 , T mn, Ws,1)︸ ︷︷ ︸

second term

− I (V mn
1 ; Y mn

2 |V mn
2 , T mn)︸ ︷︷ ︸

third term

(73)

where (67) is due to conditioning reduces entropy, and (68),
(69) and (70) are due to the chain rule of entropy. Due to
the Markov chain Ws,1 → (V mn

1 , V mn
2 , T mn) → Y mn

2 , we have
I (Ws,1; Y mn

2 |V mn
1 , V mn

2 , T mn) = 0. Hence, (71) holds. (72) is
due to the definition of conditional mutual information, and (73)
is due to the chain rule of entropy.

Consider the first term in (73)

H(V mn
1 |V mn

2 , T mn)

= H(V mn
1 |T mn) − I (V mn

1 ; V mn
2 |T mn). (74)

Therefore, we can lower bound the sum of the first and the third
term in (73) as

(m − 2)nI (V1; Y1|T ) − mnI (V1; V2|T )

− mnI (V1; Y2|V2, T ). (75)

For the second term, H(V mn
1 |Y mn

2 , V mn
2 , T mn, Ws,1) =

H(W̃s,1|Y mn
2 , V mn

2 , T mn, Ws,1). Suppose receiver 2 knows
Y mn

2 , V mn
2 and Ws,1, and tries to decode W̃s,1. From Fig. 5,

it can decode from the 1st block to the (m − 1)th block, and
the block error probability can be upper bounded by O(2−nβ

)

for β ∈ (0, 1/2). By applying Fano’s inequality, we have
H(W̃s,1|Y mn

2 , V mn
2 , T mn, Ws,1) ≤ mnε. After we bound the

three terms as above, we have

1

mn
H(Ws,1|Y mn

2 )

≥
(

1 − 2

m

)
I (V1; Y1|T ) − I (V1; V2|T )

− I (V1; Y2|V2, T ) − ε. (76)

Therefore, as n → ∞ and m → ∞, the secrecy constraints in
(7) hold.

VIII. POLAR CODING FOR THE INTERFERENCE CHANNEL

WITH CONFIDENTIAL MESSAGES

In the following, we show how to achieve the corner
points of the rate region given in (11). By simple mod-
ification, this method can achieve the entire rate region.
Note that given T , V1 and V2 are independent as in (12).
Therefore, achieving (11) is also equivalent to achieving the
rate pair (R1, R2) = (I (V1; Y1) − I (V1; Y2, V2), I (V2; Y2) −
I (V2; Y1, V1)). We consider a constant T in (11), and binary
code design for illustration.

A. The Scheme

Here, we discuss the code design for user 1 only, as the code
design method for the two users is similar. Let U n

1 = V n
1 Gn .

Once we determine the distribution in (12), similar to (35), we
can define HV1 and LV1|Y1 . We can further define

LV1|Y2,V2 = {i ∈ [n] : Z(U1,i |Ui−1
1 , Y n

2 , V n
2 ) ≤ δn}, (77)

where δn = 2−nβ
and β ∈ (0, 1/2).
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By thinking of Y1 as Y and [Y2, V2] as Z in (36), we can
partition the set [n] into the following:

GY1∧[Y2,V2] = HV1 ∩ LV1|Y1 ∩ LV1|[Y2,V2],

GY1\[Y2,V2] = HV1 ∩ LV1|Y1 ∩ Lc
V1|[Y2,V2],

G[Y2,V2]\Y1 = HV1 ∩ Lc
V1|Y1

∩ LV1|[Y2,V2],

BY1∧[Y2,V2] = Hc
V1

∪ (Lc
V1|Y1

∩ Lc
V1|[Y2,V2]). (78)

Similar to (37), we also have

IY1 = HV1 ∩ LV1|Y1,

I[Y2,V2] = HV1 ∩ LV1|[Y2,V2],

FY1
r = HV1 ∩ Lc

V1|Y1
,

F[Y2,V2]
r = HV1 ∩ Lc

V1|[Y2,V2],

Fd = Hc
V1

. (79)

Same as (38), we have

lim
n→∞

1

n
|IY1 | = I (V1; Y1),

lim
n→∞

1

n
|I[Y2,V2]| = I (V1; Y2, V2). (80)

Here, we consider the case R1 > 0; therefore, we have
|GY1\[Y2,V2]| > |G[Y2,V2]\Y1 |. Pick a set, CY1\[Y2,V2], such that
CY1\[Y2,V2] ⊂ GY1\[Y2,V2] and |CY1\[Y2,V2]| = |G[Y2,V2]\Y1 |. Last,
we define the set S similar to (39) as

S = GY1\[Y2,V2] \ CY1\[Y2,V2]. (81)

From (80), we have

lim
n→∞

1

n
|S| = I (V1; Y1) − I (V1; Y2, V2). (82)

The polar coding scheme construction for IC-CM is almost
the same as the code design for the wiretap channel in
Section V-A. By replacing Y by Y1 and Z by [Y2, V2] in
Section V-A, we can construct the codebook for user 1 shown
in Fig. 7, where the red crosses indicate that the sub-channels
are frozen. Same as before, we put the secret message in the
set S, and put the random bits in the sets GY1∧[Y2,V2] and
CY1\[Y2,V2] as the confusion message. By replacing U by U1,
UFY

r
by U

1,F
Y1
r

, and UFZ
r

by U
1,F

[Y2,V2]
r

as defined in (79), we

can follow the same encoding and decoding procedures given in
Section V-A. The secrecy rate R1 = I (V1; Y1) − I (V1; Y2, V2)

can be achieved reliably since the secret message in the set S
can be correctly decoded as described in Section V-B, where
the set S ensures the rate given in (82).

Theorem 4: For any β ∈ (0, 1/2), there exists an m-chain
polar coding scheme developed in Section VIII-A, such that
as n → ∞, the m-chain polar coding scheme achieves the
secrecy rate region in (11) for the IC-CM, and the block error
probability decays as O(2−nβ

).
The proof reliability at the receivers is similar to the proof

in Section V-B. The equivocation rate calculation (proof of
secrecy) is given in Section VIII-B.

Fig. 7. Chaining construction for the IC-CM for user 1.

B. Equivocation Calculation

Following the notation given in Section V-C, we show the
equivocation calculation for receiver 2, and this result can
be extended to receiver 1 by symmetry. Since we put the
secret message in the set S in each block, we have Ws,1 =
∪1≤i≤mU1,Si . For the confusion message, W̃s,1, we have W̃s,1 =
∪1≤i≤m,1≤ j<mU1,GY1∧[Y2,V2]i U1,CY1\[Y2,V2] j .

We can calculate the equivocation rate as follows (see
(67)–(73)):

H(Ws,1|Y mn
2 ) ≥H(V mn

1 |V mn
2 , T mn)

− H(V mn
1 |Y mn

2 , V mn
2 , T mn, Ws,1)

− I (V mn
1 ; Y mn

2 |V mn
2 , T mn). (83)

Now, we discuss each term in (83). Since given T mn = tmn ,
V mn

1 and V mn
2 are independent, we have H(V mn

1 |V mn
2 , T mn) =

H(V mn
1 |T mn), and I (V mn

1 ; Y mn
2 |V mn

2 , T mn) = I (V mn
1 ; Y mn

2 ,

V mn
2 |T mn). Then, we can lower bound the sum of the first and

third term as

(m − 1)nI (V1; Y1|T ) − mnI (V1; Y2, V2|T ). (84)

For the second term, H(V mn
1 |Y mn

2 , V mn
2 , T mn, Ws,1) =

H(W̃s,1|Y mn
2 , V mn

2 , T mn, Ws,1). Suppose receiver 2 knows
Y mn

2 , V mn
2 and Ws,1, and tries to decode W̃s,1. From Fig. 7, it

can decode from the mth block to the 1st block, and the block
error probability can be upper bounded by

Pe ≤ (m − 1)
∑

i∈G[Y2,V2]\Y1

Z(U1,i |Ui−1
1 , Y n

2 )

+ m
∑

i∈GY1∧[Y2,V2]

Z(U1,i |Ui−1
1 , Y n

2 ) = O(2−nβ

) (85)

for β ∈ (0, 1/2). Hence, by applying Fano’s inequality, we have

H(W̃s,1|Y mn
2 , V mn

2 , T mn, Ws,1)

≤ H(Pe) + Pe log |W̃s |
< H(Pe) + Pe[mnI (V1; Y2, V2|T )]. (86)

Therefore, as n → ∞, H(W̃s,1|Y mn
2 , V mn

2 , T mn, Ws,1) → 0.
Finally, considering (84) and (86), we know that as n → ∞

and m → ∞, the secrecy constraints in (10) hold.
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IX. CONCLUSION

We propose practical coding schemes based on polar cod-
ing for the general wiretap channel, multiple access wiretap
channel (MAC-WTC), broadcast channel with confidential
messages (BC-CM), and interference channel with confiden-
tial messages (IC-CM). By applying the chaining construction
and polar coding for asymmetric channels, we propose a polar
coding scheme to achieve the secrecy capacity of the general
wiretap channel. Compared to the previous work, our con-
struction has better decoding error probability and it can be
constructed more efficiently. For the MAC-WTC, we combine
our coding scheme for the general wiretap channel with the
technique of monotone chain rule. For the BC-CM, we intro-
duce double chaining construction to guarantee the secrecy and
achieve the binning rate. For the IC-CM, we view the output
of the channel as the actual output and the intended message
carrying signal, and apply our coding scheme for the general
wiretap channel.
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