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Abstract— Distributed implementations are crucial in speeding
up large scale machine learning applications. Distributed gradient
descent (GD) is widely employed to parallelize the learning task
by distributing the dataset across multiple workers. A significant
performance bottleneck for the per-iteration completion time in
distributed synchronous GD is straggling workers. Coded dis-
tributed computation techniques have been introduced recently
to mitigate stragglers and to speed up GD iterations by assigning
redundant computations to workers. In this paper, we introduce
a novel paradigm of dynamic coded computation, which assigns
redundant data to workers to acquire the flexibility to dynam-
ically choose from among a set of possible codes depending on
the past straggling behavior. In particular, we propose gradient
coding (GC) with dynamic clustering, called GC-DC, and regulate
the number of stragglers in each cluster by dynamically forming
the clusters at each iteration. With time-correlated straggling
behavior, GC-DC adapts to the straggling behavior over time;
in particular, at each iteration, GC-DC aims at distributing
the stragglers across clusters as uniformly as possible based
on the past straggler behavior. For both homogeneous and
heterogeneous worker models, we numerically show that GC-DC
provides significant improvements in the average per-iteration
completion time without an increase in the communication load
compared to the original GC scheme.

Index Terms— Distributed coded computation, gradient
descent, straggler mitigation, gradient coding, clustering.
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I. INTRODUCTION

GRADIENT descent (GD) methods are widely used
in machine learning problems to optimize the model

parameters in an iterative fashion. When the size of the
training datasets and the complexity of the trained models
are formidable, it is not feasible to train the model on a
single machine within a reasonable time frame. To speed
up GD iterations, gradient computations can be distributed
across multiple workers. In a typical parameter server (PS)
framework with synchronous GD iterations, the dataset is
distributed across the workers, and each worker computes a
gradient estimate, also called a partial gradient, based on its
own local dataset. The PS aggregates these partial gradients
to obtain the full gradient and update the model. In this
distributed setting, the main performance bottleneck is the
slowest straggling workers. Many recent works have focused
on developing straggler-tolerant distributed GD schemes (see
survey in [2] for distributed learning in wireless networks and
in [3] for coded distributed computing). In these works, the
main theme is to assign redundant computations to workers to
overcome the potential delays caused by straggling workers.
One way to obtain redundancy is through coded dataset assign-
ment to workers, i.e., coded computation [4]–[25]. Among
these works, a particular use case of coded computation is
distributed matrix multiplication [8]–[10], [20], [26], where,
encoded submatrices are distributed to the workers so that
certain number of straggling/unresponsive workers can be
tolerated. In the case of linear computations, such as matrix-
vector multiplications, linear coding techniques, including
MDS codes and rateless codes, are utilized [4], [5], [14]–[16],
[21]. Another technique to introduce redundancy to the system
is through coded communication, i.e., coded transmission
[27]–[37], in which case workers perform computations on
uncoded data but send certain linear combinations of the
results to the PS. The most prominent technique in coded
transmission is gradient coding [27], which is detailed below
and is the main focus of this work. A third way of introducing
redundancy to computations is by simply using backup com-
putations, i.e., uncoded computation [38]–[43]. In this case,
no coding is implemented as in naive distributed computation,
but unlike the naive approach, the PS assigns some back up
computations to workers in order to compensate for the slower
straggling workers.

In this paper, we consider the gradient coding (GC) frame-
work introduced in [27]. The dataset is distributed across
the workers in an uncoded but redundant manner, and the
workers return coded computations to the PS. We note that
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this can also model a scenario, in which data is collected
directly by the workers, instead of being distributed by the
server. Redundancy can either be created by data sharing
among the workers, or may be inherent due to the data
collection/generation mechanism. Thanks to the redundancy in
the local datasets, partial gradients from only a subset of the
workers will be sufficient to recover the full gradient. Coded
combinations retrieved by the workers are designed such that
any subset of responses from sufficiently many workers will
allow the computation of the full gradient by the PS. Further
details of GC are presented in the next section.

To improve the performance of the GC scheme, refer-
ence [32] proposes a static clustering technique, which entails
dividing the workers into smaller clusters and applying the
original GC scheme at the cluster level. This technique is
shown to improve the average computation time compared
to the original GC scheme. With clustering, unlike in the
original GC scheme, the number of tolerated stragglers scales
with the number of clusters when the stragglers are uniformly
distributed among the clusters. However, this may not be the
case in practical scenarios as evident in the measurements
taken over Amazon EC2 clusters that indicate a time-correlated
straggling behavior for the workers [18], [27]. In this case, the
advantage of clustering diminishes since the stragglers are not
uniform across clusters.

To mitigate this problem and to further improve the per-
formance, in this paper, we introduce a novel paradigm of
dynamic coded computation, which assigns more data samples
to workers than the actual computation load (per-iteration) to
give them the flexibility in choosing the computations they
need to carry out at each iteration. This allows the PS to
choose which subset of computations each worker should try
to complete at each iteration, and which coded combination
it should transmit back to the PS. In particular, to reduce the
potential solution space, we propose a novel GC scheme with
dynamic clustering, called GC-DC, where the PS decides on
the clusters to be formed at each iteration. At each iteration in
GC-DC, the PS forms the clusters such that the stragglers are
distributed across the clusters as uniformly as possible based
on the workers’ past straggling behavior. We numerically
show that the proposed GC-DC scheme significantly improves
the average per-iteration completion time without an increase
in the communication load under both homogeneous and
heterogeneous worker environments.1

The rest of this paper is organized as follows: In Section II,
we present the GC and GC with clustering frameworks.
In Section III, we introduce the GC with dynamic code-
word assignment scheme to improve the average iteration
completion time of the static GC schemes and present the
problem formulation. In Section IV, we transform the GC with
dynamic codeword assignment problem to a dynamic cluster-
ing problem and illustrate its advantage over the original GC
and GC with static clustering schemes. Section V presents the

1In the proposed GC-DC scheme, at each iteration, each worker sends a
single codeword consisting of a linear combination of the computed partial
gradients back to the PS. Since the number of transmitted messages, which
is one in the case of GC-DC, is the same as those of the GC and GC-SC
schemes, the proposed GC-DC scheme does not increase the communication
load compared to the existing GC and GC-SC schemes.

proposed greedy dynamic clustering strategy and Section VI
demonstrates its effectiveness through numerical simulations
over the existing static GC schemes. Finally, we conclude
this paper in Section VII with a summary of the main results
along with a discussion of some future directions.

II. PRELIMINARIES: GRADIENT CODING (GC)
AND CLUSTERING

In this section, we describe our system model. Since our
focus in this work is on gradient coding and clustering,
we first present the original GC scheme [27] and the GC
with static clustering scheme [32] and demonstrate their limi-
tations, which motivate the proposed dynamic gradient coding
approach, which we formally state in Section III.

In many machine learning problems, given a labeled dataset
D = {(x1, y1), . . . (xs, ys)}, where x1, . . . ,xs ∈ R

d are the
data points with corresponding labels y1, . . . , ys ∈ R, the goal
is to solve the following optimization problem

θ∗ = argmin
θ∈Rd

s∑
i=1

l(xi, yi, θ), (1)

where l is the application-specific loss function and θ ∈ R
d is

the parameter vector to be optimized. The optimal parameter
vector can be obtained iteratively using GD. The full gradient
computed over the whole dataset at iteration t is given by
g(t) =

∑s
i=1∇l(xi, yi, θt). When the size of the dataset,

s, is large, the computation of the full gradient becomes a
performance bottleneck. To speed up GD iterations, gradient
computations can be distributed across multiple workers. How-
ever, in many implementations, particularly in the context of
‘serverless’ computing, e.g., Microsoft Azure, Amazon Web
Services (AWS), the workers’ completion time of assigned
tasks can be highly heterogeneous and stochastic over time.
In those cases, the overall computation speed of each itera-
tion becomes limited by the slowed straggling server. Coded
computing techniques tackle the bottleneck due to stragglers
by introducing redundant computations in a structured manner
such that additional computations carried out by faster servers
can compensate for the stragglers.

A. Gradient Coding (GC)

GC is a distributed coded computation technique introduced
in [27] to perform distributed GD across K workers. The com-
plete dataset D is divided into K non-overlapping equal-size
mini-batches, D1, . . . ,DK , and each worker is assigned multi-
ple mini-batches. We denote the set of indices of mini-batches
assigned to the kth worker with Ik, k ∈ [K] � {1, . . . , K}.
Let g

(t)
k denote the partial gradient for the parameter vector

θt evaluated over mini-batch Dk at the tth GD iteration, i.e.,

g
(t)
k =

1
|Dk|

∑
(x,y)∈Dk

∇l(x, y, θt). (2)

We note that the full gradient is given by g(t) = 1
K

∑K
k=1 g

(t)
k .

To tolerate straggling workers, GC assigns redundant mini-
batches, and hence, redundant computations, to the workers.

If a mini-batch Di is assigned to worker k, i.e., i ∈ Ik,
then the corresponding partial gradient g

(t)
i is computed by

the kth worker. Computation load, r, denotes the number of
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mini-batches assigned to each worker, i.e., |Ik| = r, ∀k ∈ [K].
At each iteration, each worker first computes the r partial
gradients, one for each mini-batch available locally, and sends
a linear combination of the results, c

(t)
k � Lk(g(t)

i : i ∈ Ik),
called a coded partial gradient. Thus, in GC, each worker is
responsible for computing a single predefined coded partial
gradient. The underlying code structure in GC, which dictates
the linear combinations formed by each worker, exploits the
available redundancy so that the PS can recover the full
gradient from only a subset of the combinations. Accordingly,
from now on, we refer to the coded partial gradients formed
by the workers simply as codewords. As shown in [27], the
GC scheme can tolerate up to r − 1 persistent stragglers2 at
each iteration. Formally, for any set of non-straggling workers
W ⊆ [K] with |W| = K − r + 1, there exists a set of

coefficients AW =
{
a
(t)
k : k ∈ W

}
such that

∑
k∈W

a
(t)
k c

(t)
k =

1
K

K∑
k=1

g
(t)
k . (3)

Thus, at each iteration t, the full gradient g(t) can be recovered
from any K − r + 1 codewords.

Next, we present the idea of clustering that was introduced
in [32] to reduce the average per-iteration completion time of
the GC scheme.

B. Gradient Coding With Static Clustering (GC-SC)

In GC with clustering, we divide the workers into P disjoint
equal-size clusters. Let Kp ⊂ [K] denote the set of workers
in cluster p, p ∈ [P ], where Kq ∩ Kp = ∅ for q 	= p, and⋃

p∈[P ]Kp = [K]. We denote the cluster size by � � K
P ,

where we assume that K is divisible by P for simplicity. The
assignment of the workers to the clusters is dictated by an �×p
worker assignment matrix, denoted by Acluster , where each
column corresponds to a different cluster and the entries in
each column correspond to indices of the workers assigned to
that cluster. This worker assignment matrix is fixed throughout
the training process, hence the name static clustering. From
now on, we refer to the GC with static clustering scheme as
GC-SC.

In GC-SC, each worker is assigned r mini-batches based on
its cluster. This is represented by an r ×K data assignment
matrix Adata, where each column corresponds to a different
worker, and the entries in column i, i ∈ [K], represent the
mini-batches (correspondingly the partial gradient computa-
tions) assigned to the ith worker. Equivalently, data assign-
ment can be represented by a 1 × K codeword assignment

2These are the straggler workers that either cannot complete any com-
putation or whose computations are not used while recovering the full
gradient [32].

matrix Acode, which represents the codewords assigned to the
workers, where the codeword assigned to the ith worker in
the pth cluster is denoted by cp,i, for p ∈ [P ], i ∈ [�]. Let
IKp denote the set of mini-batches assigned to the workers
in the pth cluster, i.e., IKp =

⋃
k∈Kp

Ik. In GC-SC, the GC
scheme is applied to each cluster separately and the workers
in cluster p aim at computing

1
|IKp |

∑
k∈IKp

g
(t)
k . (4)

To illustrate the advantage of the clustering technique,
consider K = 12, r = 2, and P = 4. Here, the workers
are divided into 4 clusters, each consisting of � = 3 workers,
and each cluster is responsible for computing 3 of the total
12 partial gradients. Since r = 2, each worker aims at
computing the assigned 2 partial gradients.

In our example, the worker assignment can be specified by
the following matrix:

Acluster =

⎡
⎣1 2 3 4
6 7 8 5
9 10 11 12

⎤
⎦. (5)

In this assignment, workers 1, 6 and 9 are in the first cluster,
workers 2, 7 and 10 are in the second cluster, and so on.
The corresponding Adata is given in (6), as shown at the
bottom of the page, for the cluster assignment in (5). In (6),
workers in each cluster are represented by a different color.
We use blue, red, magenta, and green for clusters 1, 2, 3,
and 4, respectively. The corresponding Acode for the cluster
assignment in (5) is given in (7), as shown at the bottom of the
page, where, codewords corresponding to different clusters are
shown in different colors. Each codeword in Acode is a linear
combination of r = 2 partial gradients. For example, c1,1 is
a linear combination of partial gradients g1 and g2; c1,2 is a
linear combination of partial gradients g2 and g3, and c1,3 is a
linear combination of partial gradients g3 and g1. Thus, given
Acluster , either Adata or Acode is sufficient to completely
characterize the partial computations that will be carried out
by each worker.

In the original GC scheme, the PS waits until it receives
K − r + 1 = 11 results at each iteration; hence only r − 1 =
1 straggler can be tolerated. With clustering, the PS needs to
receive at least � − r + 1 = 2 results from each cluster to
recover the full gradient. Thus, the non-straggling threshold
is still K − r + 1, since more than one straggler cannot
be tolerated if they are in the same cluster. However, the
non-straggling threshold represents a worst case scenario. With
clustering, up to 4 stragglers can be tolerated if they are
uniformly distributed across clusters, i.e., one straggler per
cluster, as shown in “Realization 1” in Fig. 1. This shows that,

Adata =
[

g1 g4 g7 g10 g11 g2 g5 g8 g3 g6 g9 g12

g2 g5 g8 g11 g12 g3 g6 g9 g1 g4 g7 g10

]
(6)

Acode =
[
c1,1 c2,1 c3,1 c4,1 c4,2 c1,2 c2,2 c3,2 c1,3 c2,3 c3,3 c4,3

]
(7)
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Fig. 1. Two possible straggler realizations where red and green circles
represent the straggling and non-straggling workers, respectively.

with clustering, the full gradient can be recovered in a much
larger set of realizations compared to the original GC scheme.
Thus, even if the non-straggling threshold (which corresponds
to the worst case scenario) remains the same, clustering will
reduce the average per-iteration completion time.

Formally, with clustering, it is possible to tolerate r−1 strag-
glers in each cluster in the best case scenario, which is when
the stragglers are uniformly distributed among the clusters.
In this case, it is possible to tolerate P (r − 1) stragglers
in total. However, this advantage of clustering diminishes
in the case of non-uniform distributed stragglers among the
clusters, which may be the case in practice. As shown in
“Realization 2” in Fig. 1, even though there are still 8 non-
straggling workers, the PS cannot compute the full gradient
(in the case of persistent stragglers) when the stragglers are
not uniformly distributed across the clusters. The problem
we tackle in this work is to design a dynamic gradient
coding approach that enables full recovery even in the case
of non-uniform straggler distribution across clusters. To this
end, in the next section, we introduce the concept of dynamic
codeword assignment, which dynamically changes codewords
computed by the workers at each iteration based on the past
straggler behavior to further improve the average iteration time
compared to the existing static implementations.

III. GC WITH DYNAMIC CODEWORD ASSIGNMENT

In the conventional coded computation approaches, includ-
ing GC, the assignment of the dataset to the workers and the
code to be used are static and set at the beginning of the
training. That is, at every iteration, a worker tries to compute
the gradient estimates for all the mini-batches assigned to it,
and returns their exact same linear combination. Thus, in order
to recover the desired computation result at each iteration,
the codes are designed for the worst case scenario. The core
idea behind dynamic codeword assignment is to change the
codewords assigned to the workers dynamically based on the
observed straggling behavior. Dynamic codeword assignment
is driven by two policies; namely, data assignment and code-
word assignment. The data assignment policy, denoted by Πd,
is executed only once at the beginning of training and assigns
up to m mini-batches to each worker, where m denotes the
memory constraint, i.e.,

Πd : D 
→ {I1, . . . , IK : |Ik| ≤ m} . (8)

Even though each worker can be allocated up to m mini-
batches, each will compute only r of them at each iteration;

hence, the computation load at each iteration remains the
same. We can have

(
m
r

)
codewords that can be assigned to

each worker depending on which subset of r computations it
carries out among m possibilities. Here, we introduce C =
{C1, . . . , CK}, where Ck denotes the set of feasible codewords
corresponding to dataset Ik. That is, Ck denotes the set of
codewords that may be assigned to the kth worker at each
iteration, where each codeword is a linear combination of r
gradient estimates that can be computed by this worker.

We would like to highlight that with dynamic codeword
assignment, the PS will specify at each iteration which code-
word must be computed by each worker. This introduces
additional communication requirement compared to the static
schemes, such as GC and GC-SC. On the other hand, this
information can be piggybacked on other control information
that must be communicated from the PS to the workers at
each iteration, such as signalling the end of an iteration and
the transmission of the updated model parameters. However,
it is still important to keep this additional information minimal
by designing a codebook with minimal |Ck|.

At the beginning of each iteration t, codeword assignment
policy Πa is executed by the PS based on the past straggler
behavior of the workers up to iteration t, S[t−1], i.e.,

Π(t)
a (S[t−1], Πd) : C 
→ ct =

{
ct
1, . . . , c

t
K

}
, (9)

where ct
k ∈ Ck is the codeword assigned to the kth worker

at iteration t and S[t−1] � (S1, . . . ,St−1), while St =
(St

1, . . . , S
t
K) denotes the straggler behavior at each iteration

t, where St
k = 0 if the kth worker is a straggler at iteration t,

and St
k = 1 otherwise.3 4

The completion time of iteration t for a given data assign-
ment policy Πd depends on the codeword assignment ct and
the straggler realization St. Here, our objective is to minimize
the expected completion time of each iteration based on the
past straggler behavior for a given Πd:

min
Π

(t)
a

ESt|S[t−1],Πd
Q(ct,St), (10)

where Q(ct,St) is the completion time of iteration t under
codeword assignment ct and the straggler realization St.

We remark that the codeword assignment policy Π(t)
a highly

depends on the data assignment policy Πd since in most of
the coded computation scenarios the data assignment policy
is driven by the employed coding strategy. Thus, designing a
data assignment policy Πd without any prior knowledge on the
coding strategy is a challenging task. To this end, in the next
section, we reformulate the dynamic codeword assignment
problem where the coding strategy, consequently the set of
codewords, are fixed at the beginning and data assignment is
performed based on the underlying coding strategy.

3In this work, we assume an on/off straggling behavior for each worker
such that a worker’s straggling status can change over iterations. Workers can
still deliver computation results in the straggling state but their computations
are much slower. This type of two-state straggling behavior is observed in
empirical studies over Amazon EC2 clusters [18], [27].

4Here, in order to manage the complexity of the codeword assignment policy
Πa, especially when t is large, one can determine a number t̄ such that t̄ < t
and consider the straggling behavior of the workers in the last t̄ iterations, i.e.,
St−t̄, . . . ,St−1 in making the codeword assignments in iteration t instead
of S[t−1].
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IV. GC WITH DYNAMIC CLUSTERING (GC-DC)

In this section, we reformulate the dynamic codeword
assignment problem, and introduce the GC-DC scheme. For
the construction of the GC-DC scheme, we perform three
steps; namely, codeword construction, codeword distribution,
and dynamic clustering, where the first two steps are executed
once at the beginning of training and the last one is executed
at each iteration. Our code construction will be based on
GC-SC presented in Section II-B, and we will transform
the dynamic codeword assignment problem into a dynamic
clustering problem. We note that the number of clusters P is
fixed and decided at the beginning of the training.

A. Codeword Construction

In the GC-DC scheme, we will request each worker to
compute and return a codeword at each iteration. Remember
that each codeword is a specified linear combination of the
gradient estimates for a subset of r mini-batches, and the PS
and the workers need to agree on how to form these linear
combinations in advance. Here, the set of codewords C is a
union of smaller disjoint codeword sets, i.e., C =

⋃P
p=1 Cp,

such that the codewords in each set Cp, p ∈ [P ], are encoded
and decoded independently and correspond to a particular
cluster. For example, in (7), C1 = {c1,1, c1,2, c1,3}, where
C1 is disjoint from the rest of the codeword set.

B. Codeword Distribution

The codewords in C are distributed among the workers
according to a policy Πc, i.e.,

Πc(C) : C 
→ {C1, . . . , CK} , (11)

where we remark that Ck denotes the set of codewords that can
be assigned to the kth worker at each iteration. Now, let I(c) ⊆
D be the minimal subset of mini-batches that is sufficient to
construct codeword c, where we have |I(c)| ≤ r. Given the
codeword distribution policy Πc, any feasible data assignment
policy Πd should satisfy the following constraint

Ik ⊇
⋃

c∈Ck

I(c), ∀k ∈ [K]. (12)

Based on this constraint, we observe that, given Πc(C), the
minimum memory is used when Ik =

⋃
c∈Ck
I(c), ∀k ∈ [K].

Thus, we note that the data assignment policy Πd is determined
according to the codeword distribution policy Πc. In other
words, we first perform codeword distribution and then assign
the corresponding mini-batches to the workers.

Next, we describe the codeword distribution policy Πc

in (11) for the proposed GC-DC scheme. We first assign each
worker to n clusters. Each cluster p corresponds to a set of
codewords Cp with |Cp| = �. We say that a worker is in cluster
p, if that worker is assigned all � codewords in Cp. Hence,
in the proposed scheme, each worker is assigned codewords
from an n-subset of {C1, . . . , CP}.5 With this, we form a

5That is, under the proposed GC-DC scheme, we have |Ck| = n� such that
each worker may be assigned all � codewords for each of the clusters that it
belongs to.

worker cluster assignment matrix Acluster of size �n × P .
The pth column of Acluster shows the workers assigned to
the pth cluster, where wk denotes the kth worker, k ∈ [K].
An example Acluster for our continuing example is given
in (13) for n = 2,

Acluster =

⎡
⎢⎢⎢⎢⎢⎢⎣

w1 w2 w3 w4

w6 w7 w8 w5

w9 w10 w11 w12

w4 w1 w2 w3

w7 w8 w5 w6

w10 w11 w12 w9

⎤
⎥⎥⎥⎥⎥⎥⎦
. (13)

When assigning workers to clusters, we start by dividing
workers into groups of P according to their indices. For exam-
ple, in our continuing example for P = 4 and K = 12, these
groups are {w1, . . . , w4}, {w5, . . . , w8}, and {w9, . . . , w12}.
Then, we utilize a circular shift operator and sample n shift
amounts in {0, . . . , P − 1} uniformly at random without
replacement for each of these groups. We circularly shift
each of these groups according to the corresponding sampled
shift amounts and form the worker cluster assignment matrix
Acluster . For example, in the first and fourth rows of (13),
the shift amounts for workers {w1, . . . , w4} are 0 and 1,
respectively. As a result of these random shifts, worker w1 is
assigned to the first and second clusters, worker w2 is assigned
to the second and third clusters, and so on. Similarly, from
the second and fifth rows of (13), we observe that the shift
amounts for workers {w5, . . . , w8} are 3 and 2, respectively.
We note that, since the random shifts for the same set of
workers, e.g., workers {w1, . . . , w4}, are sampled without
replacement, each worker is assigned to exactly n = 2 distinct
clusters.

We remark that, given n, the memory requirement m of
the proposed GC-DC scheme is given by m = n�. Thus, for
n = 2 and � = 3, each worker stores 6 mini-batches in this
example.

By constructing Acluster , we essentially perform the code-
word distribution as each worker is assigned all � code-
words for each of the n clusters that it is associated with.
For example, from (13) we deduce that worker 1 has all
the codewords in sets C1 and C2, i.e., C1 = C1 ∪ C2 =
{c1,1, c1,2, c1,3, c2,1, c2,2, c2,3}. With this, we perform the data
assignment and assign corresponding mini-batches to each
worker to form the data assignment matrix such that the
constraint in (12) is satisfied with equality. Correspondingly,
I1 = {D1, . . . ,D6} so that worker 1 can compute partial
gradients g1, . . . , g6 to form any one of these 6 codewords.

C. Dynamic Clustering

The key idea behind dynamic clustering is to associate
each worker to more than one cluster by assigning more than
r mini-batches to each worker. Assuming that a worker is
associated with n clusters, each worker is assigned a total of
n� codewords so that a worker can replace any worker in the
n clusters it is associated with by computing a codeword that
would be computed by the worker to be replaced in the original
GC scheme with clustering. Then, at each iteration the PS
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Fig. 2. Three steps of the proposed GC-DC scheme. Codeword construction and codeword distribution are executed only once at the beginning of training
whereas dynamic clustering is executed at each iteration.

selects one of the n� codewords for each worker based on the
previous straggler realization through a codeword assignment
policy Πa given in (9). We note that, even though more than
one codeword is assigned to each worker, computation load
is still r as in the original GC scheme, and each worker still
computes only one codeword consisting of r partial gradient
computations at each iteration.

To see the benefit of the proposed GC-DC scheme, we con-
sider Acluster and corresponding codewords for a particular
straggler realization S = [1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1], where,
colors follow the cluster assignment in the static clustering
case, i.e., Acluster given in (5). Under the GC-SC scheme,
it is not possible to recover partial gradients corresponding
to the third cluster as we do not have � − r + 1 = 2 non-
straggling workers in that cluster.6 Moreover, if this straggling
behavior persists for a substantial duration of time, the overall
computation time will suffer drastically. To mitigate this, in the
case of dynamic clustering, we observe in (13) that worker
w5 can replace worker w3 since it can compute codeword
c3,1 which is the codeword that was originally assigned to
worker w3 in (7) in the GC-SC scheme. This does not affect
the recoverability of the partial gradients assigned to the
fourth cluster, to which worker w5 initially belongs, since that
cluster has 2 more non-straggling workers, workers w4 and
w12. Further, worker w2 can replace worker w8 so that all
partial gradients can be recovered successfully. Equivalently,
we have assigned the clusters such that non-straggling workers
w2 and w5 now belong to the 3rd cluster by ensuring that
all other clusters still have at least � − r + 1 = 2 non-
straggling workers. Thus, dynamic clustering increases the set
of straggler realizations for which the full gradient recovery
is possible compared to static clustering.

Since each worker can replace any worker in all the n
clusters that it is assigned to, we essentially form the clusters,
dynamically at each iteration through codeword assignments,
hence the name dynamic clustering. That is, based on the code-
word distribution presented in Section IV-B, we can assign �
workers to each cluster according to the given worker cluster
assignment matrix Acluster without explicitly stating which
worker will compute which codeword. With this, our aim is
to dynamically form clusters at each iteration to minimize the
average completion time of an iteration given the past straggler
behavior and the worker-cluster assignment matrix Acluster .

6We note that this is the case assuming straggling workers do not return any
computation results. Even if they do, whenever there are less than �−r+1 non-
straggling workers in a cluster, the PS has to wait for at least one of the
straggling workers to return its computation which may incur a significant
delay in the completion time of that iteration.

Next, we characterize the average completion time of an
iteration for a given cluster assignment. We denote the kth
smallest of random variables Y1, . . . , Yn as Yk:n. The comple-
tion time of iteration t for cluster p is given by the time the
PS receives the earliest �− r+1 results from that cluster such
that

Qp(ct,St) = {Xp
1,r, . . . , X

p
�,r}�−r+1:�, p ∈ [P ], (14)

where ct is the set of codewords assigned to the workers as
in (9) and Xp

k,r , k ∈ [�], is the computation duration of the
kth worker of cluster p, i.e., the time it takes for that worker
to compute r partial gradients. Noting that iteration t ends
when each cluster recovers its corresponding partial gradients,
completion time of iteration t is given by

Q(ct,St) = max
p∈[P ]

Qp(ct,St). (15)

Since some of the workers are stragglers, computation
capabilities of the workers are not identical. In this case,
minimizing the iteration completion time given in (15) through
cluster assignments is not an analytically tractable problem.
Instead, in the next section, we propose a greedy dynamic
clustering strategy that aims to uniformly place stragglers
across clusters at each iteration to speed up GC.

Before we close this section, in Fig. 2, we summarize the
steps of the proposed GC-DC scheme. The scheme starts with
creating � codewords for each cluster during the codeword
construction step. Next, in the codeword distribution step,
each worker is assigned to n distinct clusters so that each
worker is assigned the corresponding mini-batches for all of
the n� codewords. Finally, in the dynamic clustering step, each
worker is assigned a single codeword at each iteration among
these n� possible codewords, essentially reforming the clusters
at each iteration.

V. GREEDY DYNAMIC CLUSTERING STRATEGY

In line with the observations on Amazon EC2 instances
in [18], [27], in this section, we consider a stochastic strag-
gling behavior for the workers. In particular, we assume that
workers’ computation statistics are independent from each
other, and follow a two-state Markov process. That is, at each
iteration a worker can be either in a straggling or a non-
straggling state. Once a worker starts straggling, it operates
significantly slower than the non-straggling performance and
remains straggling for a while. This may model an increased
load at a worker for a period of time, which reduces the
computational resources that can be allocated for the specific
computation task. Our proposed greedy algorithm utilizes
this time-correlated straggling behavior to assign straggling
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workers to different clusters. At each iteration, the PS identifies
the stragglers based on the past observations and implements
a greedy dynamic clustering strategy to uniformly distribute
the stragglers across clusters to improve the completion time
of each iteration. We note that the performance gain of the
proposed GC-DC scheme is prominent when the computation
speeds of the workers are not identically distributed over iter-
ations, e.g., they exhibit time-correlated straggling behavior,
as the GC-DC scheme gains from adapting to the straggling
behavior by carefully placing the workers to clusters at each
iteration.

Inspired by the bin packing problem [44], we consider
clusters as bins and workers as balls as in Fig. 1. Unlike the
bin packing problem, which aims to place balls of different
volumes into a minimum number of bins of finite volume,
in our setting, the number of bins (clusters) is fixed and our
aim is to distribute the straggling workers as uniformly as
possible to clusters using the worker cluster assignment matrix
Acluster . Our dynamic clustering algorithm has two phases:
in the first phase, based on the previous straggler realization,
we place straggler and non-straggler workers into clusters
separately following a specific order, and in the second phase,
any placement conflict that may happen in the first phase (i.e.,
if a worker cannot be placed into any of the remaining clusters)
is resolved through worker swap between the corresponding
clusters. During worker placement, clusters take turns based
on a specified order and we implement a greedy policy such
that, once its turn comes, each cluster selects the first available
worker that can be assigned to that cluster based on the given
worker cluster assignment matrix Acluster .

In what follows we describe in detail the proposed dynamic
clustering strategy, which is also presented in Algorithm 1.
Given the worker cluster assignment matrix Acluster , without
loss of generality, we first reorder workers in each cluster
according to their indices such that

Acluster(i, p) < Acluster(j, p), i < j, p ∈ [P ], (16)

where Acluster(i, p) denotes the index of the worker in the
ith position in cluster p. For example, in Acluster given
in (13), Acluster(1, 2) is 2 since it corresponds to worker
w2. Once its turn comes, each cluster starts selecting workers
with the lowest indices first. We note that, if the workers
have heterogeneous computing capabilities, then in this step
we order workers according to their speed of computation,
such that the fastest workers are selected first, which we
will consider in Section VI-B. For ease of exposition, here,
we provide the algorithm when all the straggling workers
have identical computation statistics, and similarly all the
non-straggling workers have the same computation statistics
with each other. Therefore, there is no preference among
workers within each group, and ordering them according to
their indices is appropriate.

We assume that at the end of each iteration, each worker
accurately detects its straggling status and informs the PS
using an instantaneous feedback. The straggling state informa-
tion is in general not available to the worker before that iter-
ation ends due to the unpredictable and highly varying nature
of computing resources in distributed computing systems.

Algorithm 1 Proposed Dynamic Clustering Strategy

1: Given Acluster , K , P , n, S0 such that w.l.o.g.
Acluster(i, p) < Acluster(j, p) for i < j, p ∈ [P ]

2: for t = 1, . . . , T do
3: Observe St−1 and deduce Kf and Ks, i.e., sets of

non-straggling and straggling workers in iteration t− 1
4: Phase I:
5: Place workers to clusters following an order
6: if |Kf | ≥ |Ks| then
7: Place non-stragglers first
8: else
9: Place stragglers first

10: Phase II:
11: Conflict resolution in the case of an assignment problem

in Phase I
12: Order determination:
13: Of (p) < Of (p̄) if |Kp

f | < |Kp̄
f | or (|Kp

f | = |Kp̄
f | and p < p̄)

for p, p̄ ∈ [P ]
14: Use Os in the case of straggler placement with Kp

s for
p ∈ [P ]

15: Non-straggler placement:
16: i = 1
17: while |Kf | > 0 and i < M do
18: j = mod (i, P ) with j ← P when mod (i, P ) = 0
19: Cluster to assign is p̄ such that Of (p̄) = j
20: if size(cluster p̄) < � then
21: Assign the first non-straggling worker from

Acluster(:, p̄) to cluster p̄
22: Remove the assigned worker from Kf and Acluster

23: i = i + 1
24: Straggler placement:
25: Follow steps 16-23 using Ks and Os

26: Conflict resolution:
27: Given a conflicted worker k and corresponding conflicted

cluster p
28: Identify the clusters Pk that worker k can be assigned to

such that |Pk| = n
29: i = 1
30: while Worker k is not assigned to any cluster do
31: Select cluster p̄ such that p̄ = Pk(i)
32: if There is a worker k̄ in cluster p̄ such that wk̄ ∈

Acluster(:, p) then
33: Assign worker k̄ to cluster p
34: Assign worker k to cluster p̄

35: i = i + 1

Since the current straggling behavior is random following
the underlying Markov process, at iteration t, the algorithm
starts by deducing the sets of non-straggling and straggling
workers Kf and Ks from St−1. We note that, at each iteration,
Kf ∪ Ks = [K]. The proposed algorithm uses the straggler
statistics from iteration t−1 to perform dynamic clustering at
iteration t, which makes this algorithm suitable for Markovian
straggling models.
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A. Phase I—Worker Placement

We place straggling and non-straggling workers separately
to the clusters following a specific order. If the number
of non-straggling workers is higher than the stragglers, i.e.,
|Kf | ≥ |Ks|, we start by placing the non-stragglers and
vice-versa.

For the sake of demonstration, we assume |Kf | ≥ |Ks| and
place the non-straggling workers first. Let Of denote the order
in which the clusters select workers such that Of (p) gives the
order in which the pth cluster selects workers. To determine
the exact order, we define Kp

f and Kp
s , which denote the set

of non-straggling and straggling nodes that can be assigned
to cluster p, respectively. We remark that worker k can be
assigned to cluster p if it is in column p of Acluster , i.e.,
wk ∈ Acluster(:, p). With this, we determine the order vector
such that

Of (p) < Of (p̄) if |Kp
f | < |Kp̄

f |p, p̄ ∈ [P ]. (17)

That is, clusters with less availability select workers first.
In the case of equal availability, i.e., |Kp

f | = |Kp̄
f |, cluster

with the smaller index selects first, i.e., Of (p) < Of (p̄) for
p < p̄. The order for straggler placement Os is determined
accordingly using Kp

s , for p ∈ [P ].
Once the order Of is determined, non-straggling workers

are placed into clusters following Of . As stated in lines 16-23
of Algorithm 1, once its turn comes, each cluster p with an
open spot, i.e., each cluster p that currently has less than
� workers, selects the first available non-straggling worker
from Acluster(:, p), p ∈ [P ]. Once a non-straggling worker
is assigned to a cluster, we remove it from Kf and Acluster .
We note that this assignment continues until there is no
unassigned non-straggling worker left in Kf or a placement
conflict is observed. Then, the straggler workers are placed
following a similar procedure with the order vector Os.

During Phase I, the algorithm makes at most M such
placement attempts, where M > 0 is a sufficiently large
number. If after M turns, a worker cannot be assigned to any
of the remaining clusters, this indicates a placement conflict
and we move on to the second phase of the algorithm.

B. Phase II—Conflict Resolution

Assume that there is a placement conflict at the end of
Phase I such that worker k cannot be placed to the remaining
cluster p. That is, all of the n clusters that worker k can be
assigned to are full, i.e., already have � workers, and cluster
p needs one more worker. In such a case, the second conflict
resolution phase of the algorithm starts.

Let Pk denote the set of possible clusters for worker k such
that |Pk| = n. In the conflict resolution step, as stated in lines
26-35 of Algorithm 1, we look for a worker k̄, which has
been assigned to one of the clusters in Pk in Phase I such that
wk̄ ∈ Acluster(:, p). That is, even though worker k̄ has been
assigned to cluster p̄ ∈ Pk during Phase I, it can be assigned to
cluster p as well. Once we detect first such worker, we swap
its position with worker k. That is, we assign worker k, the
conflicted worker, to cluster p̄ and worker k̄ to cluster p, the
conflicted cluster.

We note that there might be multiple placement conflicts at
the end of Phase I, in which case the conflict resolution step
is repeated until all cases are resolved.

To illustrate the proposed worker replacement policy in
detail, we consider the cluster assignment matrix in (13), and
without loss of generality, order workers in an increasing index
order in each column to obtain

Acluster =

⎡
⎢⎢⎢⎢⎢⎢⎣

w1 w1 w2 w3

w4 w2 w3 w4

w6 w7 w5 w5

w7 w8 w8 w6

w9 w10 w11 w9

w10 w11 w12 w12

⎤
⎥⎥⎥⎥⎥⎥⎦
, (18)

where the straggling workers are shown in red.
The straggler realization for this example is S =
[1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1]. Here, we have 5 straggling
and 7 non-straggling workers, i.e., |Ks| = 5 and |Kf | = 7.

Since there are more non-straggling workers than stragglers,
we place the non-straggling workers first. To determine a
non-straggling worker placement order, we find the number
of available non-straggling workers in each cluster. One can
observe in (18) that, cluster 1 and cluster 2 have 4 available
non-straggling workers that can be assigned to these clusters
whereas cluster 3 and cluster 4 have 3 available non-straggling
workers. That is, we have |K1

f | = |K2
f | = 4 and |K3

f | =
|K4

f | = 3. Based on these, we deduce a placement order Of =
[3, 4, 1, 2] such that clusters take turns based on this placement
order.7 At each turn of a particular cluster, a single worker is
assigned to that cluster according to the aforementioned greedy
policy. In our example, we start with the third cluster and w2 is
assigned to this cluster. Then, the fourth cluster gets w4 and
so on. This process continues until all the non-straggling
workers are placed into clusters (or until a placement conflict
is observed). If a cluster is assigned � = 3 workers, we say
that cluster is full and do not assign any more workers to that
cluster. Next, we determine the placement order of straggling
workers in a similar fashion. One can deduce from (18) that
the order of placement for the stragglers is Os = [1, 2, 3, 4] as
clusters 1 and 2 have the least availability. Based on this order,
stragglers are also placed using the greedy policy described
above and the first phase terminates with the worker placement
shown in Fig. 3. Here, we observe a placement conflict as w12

has not been assigned to any cluster whereas cluster 1 needs
one more worker, but w12 cannot be assigned there.

We start the second phase of the proposed worker placement
algorithm to place w12 into a cluster that has a worker which
can be assigned to the first cluster. We see from (18) that w12

can be assigned to clusters 3 or 4. None of the workers which
has been assigned to cluster 3 in Phase I can be assigned
to the first cluster. Then, the algorithm looks as cluster 4 and
identifies that w4, which has been assigned to the fourth cluster
in the first phase, can go to the first cluster. With this, we swap

7In a more refined implementation, this order can dynamically change
after each round of worker placement, i.e., after all clusters select one
worker, to better reflect the clusters with less availability as worker placement
continues.
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Fig. 3. The proposed worker placement strategy.

workers w4 and w12, which yields the final placement in
Fig. 3.

At the end of the algorithm we see that the stragglers
are placed into the clusters as uniformly as possible: clus-
ter 2 has two stragglers while the remaining clusters have
only 1 straggler each. We note that since we have only
7 non-straggling workers, less than the worst case scenario
of P (�− r + 1) = 8 non-stragglers, the full recovery is not
possible for the static clustering scheme. Thus, the proposed
dynamic clustering scheme does not improve the worst case
scenario. Rather, it speeds up the GC scheme by uniformly
placing the stragglers across clusters. This process is repeated
at each iteration to dynamically change the clusters based on
the straggler observations.

We note that at the end of the first phase, there are 4 other
workers, namely workers w4, w7, w9, and w10, that can be
placed into the first cluster, which had placement conflict at the
end of Phase I of the algorithm. Even if � = 3 of them would
have been assigned to cluster 2, which worker w12 cannot be
assigned, the remaining one of them still would have been
assigned to either cluster 3 or 4. Thus, it is guaranteed that
cluster 3 and cluster 4 have at least one worker that can be
assigned to cluster 1 so that the placement conflict can be
resolved. The next lemma formally states this guarantee.

Lemma 1: Assume that we have a conflicted worker k
which cannot be assigned to the remaining cluster p in Phase
I. Then, if

n >
P (K − 1)

2K
, (19)

it is guaranteed that at least one worker in one of the clusters
in Pk can be assigned to cluster p so that the placement
conflict can be resolved.

Proof: In the proof we consider the worst case scenario
such that �− 1 workers have already been assigned to cluster
p in Phase I. Thus, in the remaining P − 1 clusters other than
cluster p, there are n� − � + 1 workers that can be assigned
to cluster p. We want to make sure that, at the end of Phase
I of the algorithm, at least one of those workers is assigned
to a cluster in set Pk, which, as previously stated, denotes the
set of clusters that worker k, the conflicted worker, can be
assigned to. Except cluster p, there are P −n−1 clusters that
worker k cannot be assigned to. These P −n− 1 clusters can
at most have (P −n−1)� workers after Phase I. Thus, as long
as n� − � + 1 > (P − n − 1)�, there is at least one worker

that can be assigned to cluster p in one of the clusters in Pk,
which yields (19) since � = K

P .
In the previous example, (19) is satisfied since K = 12,

P = 4, and n = 2 such that n > 11
6 .

In the next section, we analyze the performance of this
dynamic clustering strategy through numerical simulations.

VI. NUMERICAL RESULTS

In this section, we provide numerical results comparing the
proposed GC-DC scheme with GC-SC as well as the original
GC scheme using a model-based scenario for computation
latencies.8 For the simulations, we consider a linear regression
problem over synthetically created training and test datasets,
as in [7], of sizes 2000 and 400, respectively. We set the
size of the model to d = 1000. A single simulation consists
of T = 400 iterations. For all the simulations, we use
learning rate η = 0.1. To model the computation delays at
the workers, we adopt the commonly used shifted exponential
model [45], and assume that the probability of completing r
partial gradient computations at worker k by time t is given
by

P[Xk,r ≤ t] �
{

1− e−μk( t
r −αk), if t ≥ rαk,

0, otherwise,
(20)

where αk > 0 is a constant shift indicating that a single
computation duration cannot be smaller than αk and μk > 0
denotes the straggling effect. We consider two different models
for the time-correlated straggling behavior: the homogeneous
and heterogeneous worker models, which we discuss next.

A. Gilbert-Elliot Model With Homogeneous Workers

We model the straggling behavior of the workers based on
a two-state Markov chain: a slow state s and a fast state f ,
such that computations are completed faster when a worker is
in state f . Specifically, in (20) we have rate μf in state f
and rate μs in state s, where μf > μs as in [25], [46]. That
is, each worker has two possible rates based on its straggling
statistics. We assume that the state transitions only occur at
the beginning of each iteration with probability p; that is, with
probability 1− p the state remains the same. A low switching
probability p indicates that the straggling behavior tends to
remain the same in consecutive iterations with occasional
transitions. We set p = 0.05 or p = 0.2, α = 0.01, μs = 0.1,
and μf = 10. We assume that the transition probability p along
with the computation rates μs and μf are known to the PS.
At the end of each iteration, workers inform the PS regarding
their straggling status before the next iteration starts. With this
information along with the knowledge of transition probability
p, the PS performs the dynamic clustering accordingly. For
example, when p ≤ 0.5, the PS assumes that each worker
will continue with the same straggling behavior from the past
iteration.9

8The fractional repetition scheme can also be used for GC in our work in
addition to the cyclic GC we use as a baseline. However, the proposed cyclic
GC scheme is preferred as it does not impose any constraint on the (K, r)
pairs.

9After a sufficiently long observation period, the PS can accurately estimate
the transition probability p as it is the same for all the workers and iterations.
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Fig. 4. Average per-iteration completion time under the Gilbert-Elliot model with homogeneous workers for K = 20, P = 5, r = 3, n = 3, and p = 0.05
(a) under imperfect SSI, (b) under perfect SSI.

Fig. 5. Average per-iteration completion time under the Gilbert-Elliot model with homogeneous workers for K = 20, P = 5, r = 3, n = 3, and p = 0.2
(a) under imperfect SSI, (b) under perfect SSI.

In the first simulation, we set K = 20, P = 5, r = 3,
and n = 3. We start with 10 stragglers initially. In Fig. 4,
we plot the average per-iteration completion time of the orig-
inal GC scheme, GC scheme with static clustering (GC-SC),
GC scheme with the proposed dynamic clustering (GC-DC),
and a lower bound, denoted by LB. Here, the lower bound
is obtained by assuming that the full gradient is recovered
as soon as the earliest P × (� − r + 1) workers finish their
computations at each iteration, independently of the codeword
assignment matrix. We remark that this lower bound is rather
an idealistic scenario as it requires the perfect knowledge of
computation times at each iteration as well as n = P , i.e.,
all workers can be assigned to all the clusters. We observe
in Fig. 4(a) that clustering schemes significantly improve the
performance compared to the original GC scheme. The best
performance is achieved when the dynamic clustering, the GC-
DC scheme, is implemented and the performance improvement
compared to the GC-SC scheme is approximately 34%.

In Fig. 4(a), we have considered the case in which the PS
does not know the exact straggler realization at the beginning
of an iteration, and uses previous observation to implement
the dynamic clustering strategy. In the second simulation
in Fig. 4(b), we consider the same scenario as in the first
simulation, but assume that the PS knows the exact straggler
realization at the beginning of each iteration, which we call

perfect straggler state information (SSI). That is, in the case of
perfect SSI, the PS knows exactly which workers will straggle
in the current iteration, and therefore, the proposed dynamic
clustering algorithm does not suffer from transitions in the
straggling behavior from one iteration to the next. In this case
we see similar trends as in Fig. 4(a), but observe that the
GC-DC scheme results in a larger improvement in the average
per-iteration completion time (around 45%) than that of the
imperfect SSI case.

In Fig. 5 we consider a case in which the straggler state
transitions occur more frequently and set p = 0.2. We see in
Fig. 5(a) that under imperfect SSI, with a larger p value, GC-
DC still performs the best, but the improvement over GC-SC
is less compared to Fig. 4(a) when p = 0.05. On the other
hand, under perfect SSI, i.e., the PS knows the exact straggler
realization at the beginning of each iteration, the effect of
increased p is not observed and we have approximately 45%
improvement over GC-SC as in Fig. 4(b).

Next, in Fig. 6, we consider a larger system that consists
of K = 100 workers. Since the number of workers is higher,
we set P = 10 such that workers are divided into 10 clusters
and we set r = 6, n = 6, and p = 0.2. We see in
both Figs. 6(a) and (b) that the proposed GC-DC scheme
outperforms the static GC schemes under both imperfect and
perfect SSI conditions, respectively.
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Fig. 6. Average per-iteration completion time under the Gilbert-Elliot model with homogeneous workers for K = 100, P = 10, r = 6, n = 6, and p = 0.2
(a) under imperfect SSI, (b) under perfect SSI.

TABLE I

THE PERFORMANCE OF THE GC-SC AND GC-DC SCHEMES AS A

FUNCTION OF P FOR K = 100, r = 10, n = P , AND p = 0.05

Finally, in Table I, we study the effect of the number of
clusters P on the average iteration time in clustering schemes,
i.e., GC-SC and the proposed GC-DC scheme. We have K =
100 workers and set r = 10 and n = P . In Table I, we observe
that when we have a single cluster, i.e., P = 1, both schemes
yield the same performance. We note that the performance of
the GC scheme is independent of the number of clusters and
is equal to 166.81 in this case for all P values. Table I shows
that the proposed GC-DC scheme outperforms the GC-SC
scheme for all P values and the performance of either scheme
improves as P increases even though each worker computes r
partial gradients for all P values. This is because the number
of workers in a cluster decreases as P increases so that each
cluster is more likely to finish its assigned partial gradient
computations faster.

B. Heterogeneous Worker Model

In this model, we assume that workers have different
computation rates μk, k ∈ [K]. In this case, we specify a
straggling threshold τ > 0, and a worker k is treated as a
straggler if μk < τ .

1) Gilbert-Elliot Model With Heterogeneous Workers: We
study the case in which each worker’s straggling behavior is
modeled by a two-state Markov chain such that μk = μk,f

if worker k is not straggling and μk = μk,s if worker k is
a straggler. At the beginning of each iteration, a worker’s
straggling mode switches with probability p. Here, first we
sample the non-straggling computation rates of each worker
μk,f uniformly at random from the interval [0, 5] and set
αk = 0.01, p = 0.05 or p = 0.2, for k ∈ [K]. We model
the straggling computation rates of workers μk,s such that
for worker k we have μk,s = μk,f

10 , k ∈ [K]. That is,

in the straggling mode, each worker is 10× slower than its
typical non-straggling performance, which is motivated by the
measurements taken over Amazon EC2 clusters that indicate
a similar performance drop in the straggling mode [18]. With
this, computation rates of the workers in the straggling mode
are uniformly distributed in [0, 0.5]. We assume that the
non-straggling computation rates μk,f are known to the PS for
k ∈ [K] after a certain number of iterations and from these,
the PS can deduce the straggling computation rates μk,s.

Equipped with these, after each iteration, the PS is informed
about the straggling status of each worker and performs the
proposed greedy dynamic clustering scheme with a modifi-
cation as follows: Instead of ordering the workers according
to (16), we order them according to their rates μk, k ∈ [K].
In this case, once its turn comes, each cluster selects the fastest
available worker first rather than selecting the one with the
smallest index first.

We note that since the computation rates are sampled
randomly, a worker’s straggling computation rate can still be
higher than another worker’s non-straggling rate. To account
for these scenarios, we set the straggling threshold τ = 0.5.
That is, as long as a worker’s rate is below 0.5 we treat that
worker as a straggler. We did not utilize such a threshold in the
homogeneous worker model since in that case workers have
identical computation rates μf and μs in the non-straggling
and straggling states, respectively, such that μs < μf .

Simulation results for this setup are provided in Fig. 7.
We average the results over 30 independent simulations for
a fixed Acluster that is generated according to the procedure
described in Section IV-B. We observe in Figs 7(a) and 7(b) for
p = 0.05, and in Figs 8(a) and 8(b) for p = 0.2 that the GC-DC
scheme outperforms the static clustering schemes, namely GC
and GC-SC. The performance improvement is larger in the
case of perfect SSI and when p = 0.05.

2) Heterogeneous Workers With Time-Varying Rates: So far,
we have modeled the straggling behavior based on a Gilbert-
Elliot mode. In this subsection, instead of a two-state Markov
chain model, we consider that the straggling parameters of
the workers are time-varying. We assume that each worker
samples its rate uniformly at random from the interval [0, 5]
and set αk = 0.01 for all k ∈ [K]. We assume that at the
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Fig. 7. Average per-iteration completion time under the Gilbert-Elliot model with heterogeneous workers for K = 20, P = 5, r = 3, n = 3, p = 0.05,
and τ = 0.5 (a) under imperfect SSI, (b) under perfect SSI.

Fig. 8. Average per-iteration completion time under the Gilbert-Elliot model with heterogeneous workers for K = 20, P = 5, r = 3, n = 3, p = 0.2, and
τ = 0.5 (a) under imperfect SSI, (b) under perfect SSI.

beginning of each iteration, each worker re-samples its rate
with probability p such that with probability 1 − p its rate
stays the same. That is, we have

μk,t+1 = (1− at+1)μk,t + at+1 · U [0, 5], (21)

where, μk,t denotes the rate of worker k at iteration t, at is
an i.i.d. Bernoulli(p) random variable, i.e., P(at = 1) = p, ∀t,
and U [a, b] denotes a uniform random variable over interval
[a, b]. In simulations, we use the scenario in the Fig. 4 and
start with 10 stragglers. We initialize the rates of stragglers
with μk,0 = U [0, τ) and rates of non-straggling workers with
μk,0 = U [τ, 5]. In this setup, we set p = 0.05 or p = 0.2.

Since the computation capabilities of the workers are not
identical, we apply the proposed greedy dynamic clustering
scheme with the same modification as above. We note that
this model requires the workers to accurately detect their
computation rates at the end of each iteration and send them
to the PS before the next iteration starts.

First, we consider the case in which τ = 1. In this case,
we observe in Figs. 9(a) and (b) that the GC-DC scheme
outperforms the GC and GC-SC schemes but the improvement
compared to the GC-SC scheme is not significant. In fact,
we see that in the case of perfect SSI the improvement is
around 20% compared to the GC-SC scheme whereas when

the straggler realizations are not known to the PS in advance
this improvement drops to approximately 16%.

Next, we set τ = 0.1 such that the proposed greedy dynamic
clustering scheme specifically targets the slowest workers and
carefully places them across clusters. In Figs. 10(a) and (b),
we observe for p = 0.05 that the GC-DC scheme performs the
best and the improvement compared to the GC-SC scheme is
more significant. We also note that in Fig. 10, the performance
improvement is larger but the average iteration times are also
larger for all three schemes compared to the case in Fig. 9. This
is because when τ = 0.1, we initialize the rates of the workers
considering 10× slower stragglers compared to when τ = 1.
We set p = 0.2 in Fig. 11, and observe that the GC-DC scheme
still performs the best compared to the static GC schemes
even though the improvement in performance decreases as
the transitions occur more frequently compared to the case in
which p = 0.05. We finally note that all the simulation results
given in Figs. 9, 10, and 11 are averaged over 30 independent
simulations for a fixed Acluster that is generated according to
the procedure described in Section IV-B.

C. Simulations for Shared Access Scenario

In general, the concept of a straggler refers to a state in
which a worker either does not respond at all or responds
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Fig. 9. Average per-iteration completion time under the heterogeneous worker model with time-varying rates for K = 20, P = 5, r = 3, n = 3, p = 0.05,
and τ = 1 (a) under imperfect SSI, (b) under perfect SSI.

Fig. 10. Average per-iteration completion time under the heterogeneous worker model with time-varying rates for K = 20, P = 5, r = 3, n = 3, p = 0.05,
and τ = 0.1 (a) under imperfect SSI, (b) under perfect SSI.

Fig. 11. Average per-iteration completion time under the heterogeneous worker model with time-varying rates for K = 20, P = 5, r = 3, n = 3, p = 0.2,
and τ = 0.1 (a) under imperfect SSI, (b) under perfect SSI.

with a certain delay. The delay mentioned here might be
due to several factors, such as the internal delay of the
processing units, communication delay due to possible link
failures, or due to overloading of the workers. The latter is
often observed when the computational resources are open
to access from multiple users without any central entity to
regulate the user requests or to perform resource allocation.
In such cases, workers with excessive user requests might

be identified as stragglers due to their long response time.
To this end, we perform experiments to analyze the response
time of the workers with respect to the number of ongoing
computational requests. The experiments are conducted in
our clusters where GeForce RTX 2080 Ti Graphics Cards
with CUDA toolkit 11.0 are employed as workers. In the
experiments, we consider training of ResNet-20 architecture
for classification on CIFAR-10 dataset with a batch size of
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Fig. 12. Average per-iteration completion time under the shared access model for K = 20, P = 5, r = 3, n = 3, λ = 0.1, γ = 7, C = 10 (a) under
imperfect SSI, (b) under perfect SSI.

64 as the computational task. To measure the impact of the
workload on the workers, we generate multiple users with the
same computational task and measure the latency for a single
iteration with SGD framework implemented with PyTorch.
Consequently, we observe that, when there is a single request,
the completion time of a single iteration is 20 milliseconds
(ms), however, this latency increases linearly with the number
of ongoing tasks. Based on this observation, we simulate a
scenario in which the users arrive at the system according to a
certain probabilistic model and stay in the system for a random
period of time depending on the complexity of the task.

Here, we assume that requests arrive at the workers accord-
ing to a Poisson distribution with rate λ = 0.1. Each arriving
task stays in the system for a number of iterations that is sam-
pled uniformly at random from the interval [2, 5]. We assume
that each worker can serve at most C = 10 users at a time.
This means that, for a single worker, a single iteration may
take between 20 ms and 200 ms based on our measurements.
We denote the straggling threshold in this case by γ and set
γ = 7. That is, a worker is considered straggling if it has 7 or
more ongoing task computations. Simulations results for this
setup are provided in Fig. 12. These results are averaged over
30 independent simulations for a fixed Acluster . In Fig. 12,
we observe that the proposed GC-DC scheme outperforms
the static GC schemes under this more practical setup. The
improvement is more visible in the case of perfect SSI, i.e.,
when the PS knows the number of ongoing computations at
each worker. In this setup, the performance of the GC-DC
scheme is much closer to LB compared to the results in
Section VI. Especially in the perfect SSI case, the gap is less
than 10%, which indicates that the proposed GC-DC algorithm
promises to improve the performance in more practical shared
access scenarios over computing clusters.

VII. DISCUSSION AND CONCLUSION

In this work, we considered coded computing for large-scale
distributed learning problems in the presence of straggling
workers, and introduced a novel scheme, called GC-DC,
to reduce the average per-iteration completion time of the
static GC schemes. GC-DC employs the GC scheme with
clustering introduced in [32], and assigns additional data to

the workers without increasing the per-iteration computation
load at each worker compared to the original GC scheme.
By utilizing the extra degree-of-freedom offered by additional
data, but without increasing the computation load at each
iteration, the proposed GC-DC scheme dynamically assigns
workers to different clusters at each iteration, in order to
distribute the stragglers to clusters as uniformly as possible.
Under a time-correlated straggler model, GC-DC can improve
the overall computation speed by dynamically adapting to
the straggling behavior. We showed through numerical sim-
ulations, for both homogeneous and heterogeneous worker
models, that the proposed GC-DC scheme can drastically
improve the average per-iteration completion time without an
increase in the communication load.

We would like to highlight that the proposed redundant
data assignment approach with dynamic computations is a
fairly general paradigm, and the proposed cluster-based GC
approach is only one of many possible coding techniques
that can be employed. A possible future research direction is
considering heterogeneous cluster sizes. The proposed model
assumes that number of workers in each cluster is fixed. That
is, cluster sizes are equal to � = K

P . One can consider varying
the cluster sizes to further decrease the average iteration time.
Also, in the proposed technique, workers are assigned to
clusters based on an order that does not change during the
assignment process. To improve the performance, one can
consider adaptively changing this worker assignment order.
Another potential research direction is to consider a more
complex straggling behaviour across the workers, such as
non-Markovian, Markovian with higher memory, or corre-
lated straggling behaviour across workers. Such models would
require considering all the past straggling behavior when
making dynamic clustering assignments, and reinforcement
learning techniques can be employed to find the policy that
chooses the best code or best clustering strategy to be used at
each iteration.
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