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Dependence Balance Based Outer Bounds for
Gaussian Networks With Cooperation and Feedback
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Abstract—We obtain new outer bounds on the capacity regions
of the two-user multiple access channel with generalized feedback
(MAC-GF) and the two-user interference channel with generalized
feedback (IC-GF). These outer bounds are based on the idea of de-
pendence balance which was proposed by Hekstra and Willems. To
illustrate the usefulness of our outer bounds, we investigate three
different channel models.

We first consider a Gaussian MAC with noisy feedback
(MAC-NF), where transmitter � � �, receives a feedback

, which is the channel output corrupted with additive white
Gaussian noise . For this channel model, the cut-set outer
bound is not sensitive to the feedback noise variances. We demon-
strate that our outer bound improves upon the cut-set bound for
all nonzero values of the feedback noise variances. Moreover, in
the limit as �

� � �, our outer bound collapses to
the capacity region of the Gaussian MAC without feedback.

Secondly, we investigate a Gaussian MAC with user-coopera-
tion (MAC-UC), where each transmitter receives an additive white
Gaussian noise corrupted version of the channel input of the other
transmitter. For this channel model, the cut-set bound is sensitive
to the cooperation noises, but not sensitive enough. For all nonzero
values of cooperation noise variances, our outer bound strictly im-
proves upon the cut-set outer bound. Moreover, as the cooperation
noises become large, our outer bound collapses to the capacity re-
gion of the Gaussian MAC without cooperation.

Thirdly, we investigate a Gaussian IC with user-cooperation (IC-
UC). For this channel model, the cut-set bound is again sensitive
to cooperation noise variances as in the case of MAC-UC channel
model, but not sensitive enough. We demonstrate that our outer
bound strictly improves upon the cut-set bound for all nonzero
values of cooperation noise variances.

Index Terms—Dependence balance, generalized feedback, user
cooperation, noisy feedback.

I. INTRODUCTION

I T is well known that noiseless feedback can increase the
capacity region of the discrete memoryless multiple access

channel as was shown by Gaarder and Wolf in [1]. The multiple
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access channel with generalized feedback (MAC-GF) was first
introduced by Carleial [2]. The model therein allows for dif-
ferent feedback signals at the two transmitters. For this channel
model, Carleial [2] obtained an achievable rate region using
block Markov superposition encoding and windowed decoding.
An improvement over this achievable rate region was obtained
by Willems et al. in [3] by using block Markov superposition
encoding combined with backwards decoding.

Inspired from the uplink MAC-GF channel model, the inter-
ference channel with generalized feedback (IC-GF) was studied
in [4], [5], (also see the references therein) where achievable rate
regions were obtained. It was shown in [4] and [5] that for the
Gaussian interference channel with user cooperation (IC-UC),
the overheard information at the transmitters has a dual effect of
enabling cooperation and mitigating interference, thereby pro-
viding improved achievable rates compared to the best known
evaluation of the Han-Kobayashi achievable rate region [6], [7].

As far as the converses are concerned for the MAC-GF and
the IC-GF, a well known outer bound is the cut-set outer bound
[8, Th. 14.10.1]. The cut-set bound allows all input distributions,
thereby permitting arbitrary correlation between the channel in-
puts and hence is seemingly loose. The idea of dependence bal-
ance was first introduced by Hekstra and Willems [9] to obtain
outer bounds on the capacity region of single output two-way
channel. In contrast to the cut-set bound, the dependence bal-
ance bound provides an additional nontrivial restriction over the
set of allowable input distributions thus leading to a potentially
tighter outer bound. In the same paper [9], the authors give a
variant of this bound for the two-user discrete memoryless MAC
with noiseless feedback from the receiver.

In this paper, we use the idea of dependence balance to obtain
new outer bounds on the capacity regions of the MAC-GF and
the IC-GF. To show the usefulness of our outer bounds, we will
consider three different channel models.

We first consider the Gaussian MAC with different noisy
feedback signals at the two transmitters. Specifically, trans-
mitter , receives a feedback , where

is the received signal and is zero-mean, Gaussian random
variable with variance . The capacity region is only known
when feedback is noiseless, i.e., , in which case
the feedback capacity region equals the cut-set outer bound,
as was shown by Ozarow [10]. For the case of noisy feedback
in consideration, the cut-set outer bound is insensitive to the
noise in feedback links, i.e., it is not sensitive to the variances
of and . We show that our outer bound strictly improves
upon the cut-set bound for all nonzero values of .
Furthermore, as become large, our outer bound
collapses to the capacity region of the Gaussian MAC without
feedback.

0018-9448/$26.00 © 2011 IEEE
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Fig. 1. Multiple access channel with generalized feedback (MAC-GF).

We remark here that the renewed interest in dependence bal-
ance bounds can be attributed to [11], where dependence bal-
ance bounds were used to obtain capacity results for a class of
discrete memoryless networks. In [12], novel dependence bal-
ance bounds were obtained for the -user Gaussian MAC with
noiseless feedback. Furthermore, applying the idea of depen-
dence balance to obtain improved outer bounds for Gaussian
MAC with noisy feedback was proposed by Gastpar and Kramer
in [13].

Secondly, we investigate the Gaussian MAC with transmitter
cooperation. Sendonaris, Erkip, and Aazhang [14] studied a
model where each transmitter receives a version of the other
transmitter’s current channel input corrupted with additive
white Gaussian noise. They named this model as the user
cooperation model. This model is particularly suitable for a
wireless setting since the transmitters can potentially overhear
each other. An achievable rate region for the user cooperation
model was given in [14] using the result of [3] and was shown
to strictly exceed the rate region if the transmitters ignore the
overheard signals.

We evaluate our outer bound for the user cooperation set-
ting described above. In contrast to the case of noisy feedback,
the cut-set bound for the user cooperation model is sensitive to
cooperation noise variances, but not too sensitive. Intuitively
speaking, as the backward noise variances become large, one
would expect the cut-set bound to collapse to the capacity region
of the MAC without feedback. Instead, the cut-set bound con-
verges to the capacity region of the Gaussian MAC with noise-
less output feedback [10]. On the other hand, in the limit when
cooperation noise variances become too large, our bound con-
verges to the capacity region of the Gaussian MAC with no co-
operation. For all nonzero and finite values of cooperation noise
variances, our outer bound strictly improves upon the cut-set
outer bound. Our dependence balance based outer bound co-
incides with the cut-set bound only when the backward noise
variance is identically zero and both outer bounds collapse to
the total cooperation line.

Thirdly, we evaluate our outer bound for the Gaussian IC with
user cooperation (IC-UC). For all nonzero and finite values of
cooperation noise variances, our outer bound strictly improves
upon the cut-set outer bound. We remark here that the approach
of dependence balance was also used in [15] to obtain an im-
proved sum-rate upper bound for the Gaussian IC with common,
noisy feedback from the receivers.

Evaluation of our outer bounds for MAC-NF, MAC-UC
and IC-UC is not straightforward since our outer bounds are
expressed in terms of a union of probability densities of three
random variables, one of which is an auxiliary random variable.
Moreover, these unions are over all such densities which satisfy
a nontrivial dependence balance constraint. We overcome this
difficulty by proving separately for all three models in consid-
eration, that it is sufficient to consider jointly Gaussian input
distributions, satisfying the dependence balance constraint,
when evaluating our outer bounds. The proof methodology for
showing this claim is entirely different for each of the cases
of noisy feedback and user cooperation models. In particular,
for the case of MAC-NF, we make use of a recently discovered
multivariate generalization [16] of Costa’s entropy power
inequality (EPI) [17] along with some properties of 3 3
covariance matrices to obtain this result. On the other hand,
for the case of MAC-UC and IC-UC, we do not need EPI to
show this result and our proof closely follows the proof of a
recent result by Bross, Lapidoth, and Wigger [18], [19] for the
Gaussian MAC with conferencing encoders. This approach has
also been recently used for other channel models in [20], [21].
The structure of dependence balance constraints for the channel
models in consideration are of different form, which explains
the different methodology of proofs. We believe that the proof
methodology developed for evaluating our outer bounds could
be helpful for other multiuser information theoretic problems.

II. SYSTEM MODEL

A. MAC With Generalized Feedback

A discrete memoryless two-user multiple access channel
with generalized feedback (MAC-GF) (see Fig. 1) is de-
fined by two input alphabets and , an output al-
phabet for the receiver , feedback output alphabets
and at transmitters 1 and 2, respectively, and a proba-
bility transition function , defined for
all triples , for every pair

.
A code for the MAC-GF consists of two sets

of encoding functions
for and a decoding function

. The two transmitters produce independent
and uniformly distributed messages and

, respectively, and transmit them through
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Fig. 2. Interference channel with generalized feedback (IC-GF).

channel uses. The average error probability is defined as,
. A rate pair is said to be

achievable for MAC-GF if for any , there exists a pair of
encoding functions , and a decoding function

such that
and for sufficiently large . The capacity

region of MAC-GF is the closure of the set of all achievable
rate pairs .

B. IC With Generalized Feedback

A discrete memoryless two-user interference channel with
generalized feedback (IC-GF) (see Fig. 2) is defined by two
input alphabets and , two output alphabets and at
receivers 1 and 2, respectively, two feedback output alphabets

and at transmitters 1 and 2, respectively, and a proba-
bility transition function , defined for
all quadruples , for
every pair .

A code for IC-GF consists of two
sets of encoding functions

for and two decoding functions
and . The two transmitters

produce independent and uniformly distributed messages
and , respectively, and transmit

them through channel uses. The average error probability at
receivers 1 and 2 are defined as, for

. A rate pair is said to be achievable for IC-GF
if for any pair , there exists a pair of encoding
functions , and a pair of decoding functions

such that and
for sufficiently large , for . The capacity

region of IC-GF is the closure of the set of all achievable rate
pairs .

III. CUT-SET OUTER BOUNDS

A general outer bound on the capacity region of a multiter-
minal network is the cut-set outer bound [8, Th. 14.10.1]. The
cut-set outer bound for MAC-GF is given by

(1)

(2)

(3)

where the random variables and have the
joint distribution

(4)

The cut-set outer bound for IC-GF is given by

(5)

(6)

(7)

(8)

(9)

where the random variables and have
the joint distribution

(10)

We remark here that the outer bounds and
stated above are obtained by taking a union over all input distri-
butions of the forms (4) and (10), respectively.

The cut-set bound is seemingly loose since it allows arbi-
trary correlation among channel inputs by permitting arbitrary
input distributions . Using the approach of dependence
balance, we will obtain outer bounds for MAC-GF and IC-GF
which restrict the corresponding set of input distributions for
both channel models. In particular, our outer bounds only permit
those input distributions which satisfy the respective nontrivial
dependence balance constraints.

IV. A NEW OUTER BOUND FOR MAC-GF

Theorem 1: The capacity region of MAC-GF is contained in
the region

(11)

(12)

(13)

(14)
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Fig. 3. Gaussian MAC with noisy feedback.

where the random variables have the
joint distribution

(15)

and also satisfy the following dependence balance bound

(16)

where the random variable is subject to a cardinality con-
straint .
The Proof of Theorem 1 is given in the Appendix.

V. A NEW OUTER BOUND FOR IC-GF

Theorem 2: The capacity region of IC-GF is contained in the
region

(17)

(18)

(19)

(20)

(21)

(22)

where the random variables have
the joint distribution

(23)

and also satisfy the following dependence balance bound

(24)

where the random variable is subject to a cardinality con-
straint .
The Proof of Theorem 2 is given in the Appendix.

We remark that Theorems 1 and 2 can be strengthened by
introducing two auxiliary random variables and . We also
note here that one can obtain fixed and adaptive parallel channel
extensions of the dependence balance based bounds in a similar

fashion as in [9]. The parallel channel extensions could poten-
tially improve upon the outer bounds derived in this paper. For
the scope of this paper, we will only use Theorems 1 and 2. In
the next three sections, we will consider specific channel models
of MAC with noisy feedback, MAC with user cooperation, and
IC with user cooperation.

We also remark here that dependence balance approach was
first applied by Gastpar and Kramer for the Gaussian MAC
with noisy feedback in [13] and for the Gaussian IC with noisy
feedback (IC-NF) in [15]. An interesting Lagrangian based ap-
proach was proposed in [15] to partially evaluate the depen-
dence balance based outer bound for the Gaussian IC-NF and
it was shown that dependence balance based bounds strictly im-
prove upon the cut-set outer bound. For this reason, we do not
consider the Gaussian IC-NF in this paper.

VI. GAUSSIAN MAC WITH NOISY FEEDBACK

We first consider the Gaussian MAC with noisy feedback (see
Fig. 3). The channel model is given as,

(25)

(26)

(27)

where , and are independent, zero-mean, Gaussian
random variables with variances and , respec-
tively. Moreover, the channel inputs are subject to average
power constraints, and . Note that
the channel model described above has a special probability
structure, namely

(28)

For any MAC-GF with a transition probability in the form of
(28), we have the following specialized version of Theorem 1.

Theorem 3: The capacity region of any MAC-GF, with a tran-
sition probability in the form of (28), is contained in the region

(29)

(30)

(31)
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Fig. 4. Gaussian MAC with user cooperation.

where the random variables have the
joint distribution

(32)

and also satisfy the following dependence balance bound

(33)

where the random variable is subject to a cardinality con-
straint .
The Proof of Theorem 3 follows from Theorem 1 by using (28).

In Section X, we will show that it suffices to consider jointly
Gaussian satisfying (33) when evaluating The-
orem 3 for the Gaussian MAC with noisy feedback described
in (25)–(27).

VII. GAUSSIAN MAC WITH USER COOPERATION

In this section, we consider the Gaussian MAC with user co-
operation [14], where each transmitter receives a noisy version
of the other transmitter’s channel input. The user cooperation
model (see Fig. 4) is a special instance of a MAC-GF, where the
channel outputs are described as

(34)

(35)

(36)

where , and are independent, zero-mean, Gaussian
random variables with variances and , respec-
tively. The channel gains and are assumed
to be fixed and known at all terminals. Moreover, the channel
inputs are subject to average power constraints,
and . Note that the channel model described above
has a special probability structure, namely

(37)

For any MAC-GF with a transition probability in the form of
(37), we have the following specialized version of Theorem 1.

Theorem 4: The capacity region of any MAC-GF with a tran-
sition probability in the form of (37), is contained in the region

(38)

(39)

(40)

(41)

where the random variables have the
joint distribution

(42)

and also satisfy the following dependence balance bound

(43)

where the random variable is subject to a cardinality con-
straint .
The Proof of Theorem 4 follows from Theorem 1 by using (37).

In Section XI, we will show that it suffices to consider jointly
Gaussian satisfying (43) when evaluating Theorem
4 for the Gaussian MAC with user cooperation described in
(34)–(36).

VIII. GAUSSIAN IC WITH USER COOPERATION

In this section, we will evaluate our outer bound for an IC
with user cooperation [4], [5], where the transmitters receive
noisy versions of the other transmitter’s channel input. The user
cooperation model (see Fig. 5) is a special instance of an IC-GF,
where the channel outputs are described as

(44)

(45)

(46)

(47)

where and are independent, zero-mean,
Gaussian random variables with variances and

, respectively. The channel gains and are
assumed to be fixed and known at all terminals. Moreover,
the channel inputs are subject to average power constraints
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Fig. 5. Gaussian IC with user cooperation.

and . Note that the channel model
described above has a special probability structure, namely

(48)

For any IC-GF with a transition probability in the form of (48),
we have the following specialized version of Theorem 2.

Theorem 5: The capacity region of any IC-GF with a transi-
tion probability in the form of (48), is contained in the region

(49)

(50)

(51)

(52)

(53)

(54)

where the random variables have
the joint distribution

(55)

and also satisfy the following dependence balance bound

(56)

where the random variable is subject to a cardinality con-
straint .
The Proof of Theorem 5 follows from Theorem 2 by using (48).

In Section XII, we will show that it suffices to consider
jointly Gaussian satisfying (56) when evaluating
Theorem 5 for the Gaussian IC with user cooperation described
in (44)–(47).

IX. OUTLINE FOR EVALUATING

AND

In this section, we outline the common approach for evalua-
tion of our outer bounds, for the Gaussian MAC with
noisy feedback, for the Gaussian MAC with user-co-
operation and for the Gaussian IC with user-coopera-

Fig. 6. Partition of the set of input distributions � .

tion. The main difficulty in evaluating these bounds is to identify
the optimal selection of joint densities of . Our aim
will be to prove that it is sufficient to consider jointly Gaussian

satisfying (33) for MAC with noisy feedback, (43)
for MAC with user cooperation, and (56) for IC with user coop-
eration, respectively, when evaluating the corresponding outer
bounds.

First note that the three outer bounds, namely
and have a similar structure, i.e., all

outer bounds involve taking a union over joint densities of
satisfying the constraints (33), (43), and (56),

respectively. Let us symbolically denote these constraints as
a variable , where (33) for MAC with noisy
feedback, (43) for MAC with user cooperation, and

(56) for IC with user cooperation.
We begin by considering the set of all distributions of three

random variables which satisfy the power con-
straints, and . Let us formally define
this set of input distributions as

For simplicity, we abbreviate jointly Gaussian distributions as
and distributions which are not jointly Gaussian as .

We first partition into two disjoint subsets
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We further individually partition the sets and , respec-
tively, as

and

Finally, we partition the set into two disjoint sets
and with , as

So far, we have partitioned the set of input distributions into
five disjoint sets: , and . To
visualize this partition of the set of input distributions, see Fig. 6.
It is clear that the input distributions which fall into the sets

and need not be considered since they do not sat-
isfy the constraint and do not have any consequence when
evaluating our outer bounds. Therefore, we only need to restrict
our attention on the three remaining sets , and

, i.e., those input distributions which satisfy the depen-
dence balance bound.

We explicitly evaluate our outer bound in the following three
steps:

1) We first explicitly characterize the region of rate pairs pro-
vided by our outer bound for the probability distributions
in the set .

2) In the second step, we will show that for any input distri-
bution belonging to the set , there exists an input
distribution in the set which yields a set of larger rate
pairs. This leads to the conclusion that we do not need to
consider the input distributions in the set in eval-
uating our outer bound.

3) We next focus on the set and show that for any non-
Gaussian input distribution , we can
construct a jointly Gaussian input distribution satisfying

, i.e., we can find a corresponding input distribution
in , which yields a set of rates which includes the
set of rates of the fixed non-Gaussian input distribution

.
The main step in evaluating our outer bounds is step 3 de-

scribed above. The proofs of step 3 for noisy feedback and user
cooperation models are entirely different and do not follow from

each other. The evaluation in step 1 is slightly different for all
three settings, also owing to the channel models. Hence, we
will separately focus on these models in the following three
sections. Contrary to steps 1 and 3, step 2 is common for all
channel models. Therefore, we first present the common re-
sult for all channel models here. In step 2, we consider any
non-Gaussian input distribution in with a
covariance matrix . For such an input distribution, we know
by the maximum entropy theorem [8], that the rates provided
by a jointly Gaussian triple with the same covariance matrix
are always at least as large as the rates provided by the chosen
non-Gaussian distribution. Therefore, for any input distribution
in , there always exists an input distribution in ,
satisfying , which yields larger rates. This means that we
can ignore the set altogether while evaluating our outer
bounds.

To set the stage for our evaluations in steps 1 and 3 for the
three channel models, let us define as the set of all valid 3 3
covariance matrices of three random variables . A
typical element in the set takes the following form

(57)

A necessary condition for to be a valid covariance ma-
trix is that it is positive semi-definite, i.e., and

. This implies

(58)

where we have defined for simplicity

(59)

X. EVALUATION OF

In this section we explicitly evaluate Theorem 3 for the
Gaussian MAC with noisy feedback described by (25)–(27) in
Section VI. We start with step 1. We consider an input distri-
bution in , i.e., a jointly Gaussian triple
with a covariance matrix . Let us first characterize the set of
rate constraints for this triple. It is straightforward to evaluate
the three rate constraints appearing in (29)–(31) for this input
distribution

(60)

(61)

(62)



4070 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 7, JULY 2011

where we have defined (63)–(65), shown at the bottom of the
page. Finally, evaluating the constraint in (33), we conclude that
this input distribution satisfies the constraint in (33) iff

(66)

To summarize, the set of rate pairs provided by an input distri-
bution in , with a covariance matrix , are given by those
in (60)–(62), where , in those inequalities are
subject to the constraint in (66). As we have discussed earlier,
from evaluation of step 2 in Section IX, we know that all rate
pairs contributed by input distributions in are covered
by those given in .

We now arrive at step 3 of our evaluation. Consider any input
distribution in with a covariance matrix .
By the definition of the set , we know that does not
satisfy (33), which implies

(67)

We also note that for any with a covariance matrix

(68)

(69)

(70)

which is a simple consequence of the maximum entropy the-
orem [8]. Note that so far, we have not used the fact that the
given non-Gaussian input distribution satisfies the dependence
balance constraint in (33). We will now make use of this fact by
rewriting (33) as follows:

(71)

(72)

(73)

We express the above constraint as

(74)

Before proceeding, we state a recently discovered multivariate
generalization [16] of Costa’s EPI [17].

Lemma 1: For any arbitrary random vector , inde-
pendent of , where is a zero-mean, Gaussian random
vector with each component having unit variance, the entropy
power is concave in , where the entropy power
is defined as

(75)

and is a diagonal matrix with components .
We can therefore write for any pair of diagonal matrices

and for any ,

(76)

We start by obtaining a lower bound for the first term
in (74):

(77)

(78)

(79)

where (78) follows from the conditional version of Lemma 1,
by selecting the following and

(80)

where

(81)

and

(82)

and by making the following substitutions:

(83)

(63)

(64)

(65)
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where and . A derivation of (78)
is given in the Appendix. Next, (79) follows from the fact that

is convex in for and a subsequent
application of Jensen’s inequality [8]1.

We next obtain an upper bound for the right hand side of (74)
by using the maximum entropy theorem as

(84)

where we have defined

(85)

Now, using (74), (79) and (84), we obtain an upper bound on
as follows:

(86)

where we have defined for simplicity

(87)

Using (86), we obtain an upper bound on the sum-rate
for any non-Gaussian distribution in

as,

(88)

Comparing with (70) and using the fact that satisfies (67), i.e.,
, we have the following set of inequalities

(89)

This leads to the observation that a combined application of
the EPI and the dependence balance bound yields a strictly
smaller upper bound for for any distribution
in than the one provided by the maximum entropy
theorem. Therefore, the rate pairs contributed by an input
distribution in with a covariance matrix are always
included in the set of rate pairs expressed by (68), (69) and
(88), where is defined in (87).

We now arrive at the final step of our evaluation where we will
show that for this input distribution in , we can always
find an input distribution in , with a set of rate pairs which

1We should remark here, that an application of the regular form of vector EPI
yields the following trivial lower bound on ��� � � �� � and therefore, the
new EPI is crucial for this step:

��� � � �� � �
�

�
��� ����� � �

include the set of rate pairs expressed by (68), (69), and (88).
In particular, we will show the existence of a valid covariance
matrix for which the following inequalities hold true:

(90)

(91)

(92)

and

(93)

Inequalities in (90)–(92) will guarantee that a Gaussian input
distribution with covariance matrix yields a larger set of rate
pairs than the set of rate pairs expressed by (68), (69) and (88)
and the equality in (93) guarantees that this input distribution
satisfies the dependence balance constraint with equality, hence
it is a member of the set .

Before showing the existence of such an , we first charac-
terize the set of covariance matrices which satisfy (67). First
recall that for any to be a valid covariance matrix, we had the
condition which is equivalent to , which
amounts to

(94)

In particular, it is easy to verify that for any given fixed pair
, the set of which yield a

valid are such that

(95)

where we have defined

(96)

We now consider two cases which can arise for a given covari-
ance matrix .

Case 1. is such that , for some :
This case is rather trivial and the following simple choice of
works:

(97)

(98)

Clearly, this satisfies the dependence balance bound. More-
over, the following inequalities hold as well

(99)

(100)

(101)

(102)

(103)

(104)
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Case 2. is such that , for some
and satisfies (67): For this case, we will construct a

valid covariance matrix as follows:

(105)

(106)

We define a parameterized covariance matrix with entries

(107)

(108)

where . We now define a function of the parameter
of a valid covariance matrix as

(109)

(110)

Now note the fact that

(111)

We are also given that satisfies (67) for some , which im-
plies that,

(112)

Now, we take the first derivative of the function , to obtain

which implies that is monotonically decreasing in . This
implies that there exists an such that 2.
We use this to construct our new covariance matrix as
follows:

(113)

(114)

2We should remark here that the existence of an� � ��� � �, with ��� � �
� can also be proved alternatively by invoking the mean value theorem, since
we have ���� � �� ��� � � � and ���� is a continuous function of �. Mono-
tonicity of ���� in fact proves a stronger statement that such an � exists and
is also unique.

It now remains to check wether satisfies the four conditions in
(90)–(93). The condition (93) is met with equality, since we have

. Moreover,
since is monotonically decreasing in for

. Similarly, we also have . Finally

(115)

(116)

(117)

This shows the existence of a valid covariance matrix which
satisfies (33) and yields a set of rates which includes the set of
rates of the given non-Gaussian distribution with the covariance
matrix .

Above two cases show that for any non-Gaussian distribu-
tion in the set , we can always find a jointly
Gaussian triple in that yields a set of
rates subsuming the set of rates of the given non-Gaussian distri-
bution. This consequently completes the proof of the statement
that it is sufficient to consider jointly Gaussian in

when evaluating our outer bound.
The dependence balance based outer bound can now be

written in an explicit form as follows:

(118)

where is the set of 3 3 covariance matrices of the form
(57) satisfying,

(119)

where

(120)

(121)

(122)

and

(123)

where and are all in .
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The cut-set outer bound given in (1)–(4) is evaluated for the
Gaussian MAC with noisy feedback described in (25)–(27) as

(124)

We briefly mention what our outer bound gives for the the two
limiting values of the backward noise variances and .

1) : this case corresponds to the Gaussian MAC
with noiseless feedback and the constraint (119) simplifies
to

(125)

which is simply stating that the sum-rate constraint should
be at most as large as the sum of the individual rate con-
straints, i.e., another equivalent way of writing is

(126)

This is the same constraint as obtained by Ozarow in [10],
and our outer bound coincides with the cut-set bound and
yields the capacity region of the Gaussian MAC with noise-
less feedback.

2) : this case corresponds to very noisy feed-
back and our outer bound should collapse to the no-feed-
back capacity region of the Gaussian MAC. For this case,
the constraint (119) simplifies to

(127)

On substituting the values of and in
the above inequality, we obtain

(128)

(129)

where the last inequality comes from the fact that for any
valid covariance matrix, . This implies that the de-
pendence balance bound only allows such covariance ma-
trices for which . But we know already
from (97)–(98) that we can always find an for which
we can select , which satisfies the depen-
dence balance bound and yields larger rates than any
with . Thus, we only need to restrict our
attention to those matrices for which .

Such covariance matrices correspond to those jointly
Gaussian triples which satisfy the Markov chain

. This can be observed by noting that for any
jointly Gaussian , with a covariance matrix ,
the condition holds iff

, which is equivalent to .
Proof of this statement is immediate by noting that for a
jointly Gaussian triple, we have

(130)

Therefore, can be interpreted simply as a timesharing
random variable and our outer bound yields the capacity
region of the Gaussian MAC without feedback.

Figs. 7 and 8 illustrate , the cut-set bound and the
capacity region without feedback for the cases when

, 5 and 10, where . Figs. 9
and 10 illustrate , the cut-set bound, the capacity re-
gion without feedback and an achievable rate region based on
superposition coding [3] for the case when
and .

A. Remark

For the special case of Gaussian MAC with common, noisy
feedback, where

(131)

the evaluation of follows in a similar manner as in
the case of different noisy feedback signals. The only differ-
ence arises in the application of the EPI. In particular, the reg-
ular EPI [8] suffices to provide a nontrivial upper bound on

than the one provided by the maximum en-
tropy theorem [8]. The remainder of the proof of evaluation of
our outer bound for this channel model follows along the same
lines as the proof for different noisy feedback signals. The final
expressions of outer bounds for these two channel models only
differ over the constraint (119). For the case of common, noisy
feedback, the set comprises of 3 3 covariance matrices
of the form (57) satisfying

(132)

Now consider the Gaussian MAC with different noisy feedback
signals and at the transmitters 1 and 2, respectively.
If the variances of feedback noises and are such that,

, then the dependence balance constraint (119)
simplifies as

(133)

This implies that if a covariance matrix satisfies the constraint
(132), then it also satisfies (133) but the converse statement may
not always be true. This means that the resulting outer bound for
the Gaussian MAC with common noisy feedback, with feedback
noise variance can be strictly smaller than the resulting outer
bound for Gaussian MAC with different noisy feedback signals,
when the feedback noise variances are .
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Fig. 7. Illustration of outer bounds for � � � � � � � and � � � � �� �� ��.

Fig. 8. Enlarged illustration of Fig. 7.

XI. EVALUATION OF

In this section, we will explicitly evaluate Theorem 4 for the
Gaussian MAC with user cooperation described by (34)–(36)
in Section VII. We start with step 1 and characterize the set
of jointly Gaussian triples in . For this
purpose, we rewrite (43) as follows:

(134)

(135)

(136)

and express the above constraint as follows:

(137)

Making use of the following equalities (see (138)–(140), shown
at the bottom of the next page): we obtain a simplified expres-
sion for (137) as

(141)

We further simplify (141) as (142)–(146), shown at the bottom
of the next page, where (145) follows from the Markov chain
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. Therefore, the dependence balance
constraint in (43) is equivalent to following two equalities:

(147)

(148)

Next, we show that if any jointly Gaussian triple
satisfies the constraints (147)–(148) then it satisfies the Markov
chain . Conversely, we will show that if any
jointly Gaussian triple satisfies ,
then it satisfies (147)–(148).

We start by evaluating (147) and (148) for a jointly Gaussian
which is equivalent to

(149)

(150)

These equalities are equivalent to

(151)

Using the same argument as in (130), we obtain the following
condition

(152)

This implies that a jointly Gaussian triple satisfies (147)–(148)
iff .

On the other hand, consider any jointly Gaussian triple
, with a covariance matrix which satisfies

the Markov chain . This is equivalent to
, which is equivalent to

(153)

This implies that if a jointly Gaussian triple satis-
fies the Markov chain , then it satisfies (153)
and therefore it also satisfies (147)–(148) and vice versa. As

a consequence, we have explicitly characterized the set ,
i.e., it comprises of only such jointly Gaussian distributions,

, for which .
We can now write the set of rate pairs provided by our outer

bound for a jointly Gaussian triple in the set
as

(154)

(155)

(156)

(157)

where satisfies the Markov chain
. Moreover, from the evaluation of step 2 in

Section IX, we know that all rate pairs contributed by input
distributions in are covered by those given in .
Therefore, we do not need to consider the set in
evaluating our outer bound.

We now arrive at step 3 of the evaluation of our outer bound
where we will show that for any non-Gaussian input distribution

, we can always find an input distribution
in , with a set of rate pairs which include the set of rate
pairs of the fixed non-Gaussian input distribution .
Consider any triple with a non-Gaussian input dis-
tribution , with a valid covariance matrix

. By the definition of the set , and as a consequence
of (152), this covariance matrix has the property that

. Moreover, this non-Gaussian distribution satisfies the
dependence balance bound, i.e., it satisfies (147) and (148). For
our purpose, we only need (147). Since ,
this implies (see (158)–(159), shown at the bottom of the page).
On the other hand, we also have

, which implies

(160)

(138)

(139)

(140)

(142)

(143)

(144)

(145)

(146)

(158)

(159)
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We will now construct another triple with a co-
variance matrix by selecting

(161)

This particular selection is closely related to the recent work of
Bross, Lapidoth and Wigger [18] where it was shown that jointly
Gaussian distributions are sufficient to characterize the capacity
region of Gaussian MAC with conferencing encoders.

Returning to (161), we note that is a deterministic function
of and therefore, following is a valid Markov chain.

(162)

We will now obtain the off diagonal elements of the covariance
matrix of the triple as follows:

(163)

(164)

(165)

and

(166)

(167)

and finally:
(168)

(169)

where (169) follows from (160). Therefore, the triple
satisfies

(170)

Now using the fact that
(171)

(172)

(173)

and substituting in (170) we obtain that the covariance matrix
satisfies

(174)

Therefore, from (152) any jointly Gaussian
triple with a covariance matrix , with entries
satisfies (43).

We now arrive at the final step of the evaluation. In
particular, we will show that the rates of this jointly
Gaussian triple will include the rates of
the given non-Gaussian triple . For the triple

, we have the following set of inequalities

(175)

(176)

(177)

(178)

(179)

(180)

where (177) follows from the fact that and
have the same covariance matrix and by

using the maximum entropy theorem. Next, (178) follows
from the fact that conditioning reduces differential entropy and
finally (179) follows from the fact that is a deterministic
function of and by invoking the Markov chain in (162).
Similarly, we also have

(181)

(182)
Finally, we have

(183)

(184)

(185)

(186)

Therefore, we conclude that for any non-Gaussian distribution
, there exists a jointly Gaussian distribu-

tion which satisfies the dependence balance
bound (43) and yields a set of rates which include the set of rates
given by the fixed non-Gaussian distribution. Hence, it suffices
to consider jointly Gaussian distributions in to evaluate
our outer bound.

The dependence balance based outer bound can now be
written in an explicit form as follows:

(187)

where
(188)

(189)

(190)

(191)

where
(192)
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The cut-set outer bound given in (1)–(4) is evaluated for the
Gaussian MAC with user cooperation described in (34)–(36) as
(193), shown at the bottom of the page.

We now mention how our outer bound compares with the
cut-set bound for the limiting cases of cooperation noise
variances.

1) : this case corresponds to total cooperation
between transmitters. In this case, both dependence bal-
ance bound and the cut-set bound degenerate to the total
cooperation line,

(194)

2) : this case corresponds to very noisy coop-
eration links. In this case, we have

(195)

(196)

(197)

(198)

and the dependence balance bound collapses to the ca-
pacity region of the Gaussian MAC with no cooperation.
On the other hand, the cut-set bound collapses to the ca-
pacity region of the Gaussian MAC with noiseless feed-
back [10].

Fig. 11 illustrates the outer bounds and achievable rate region
[14] for the case when and

and . Fig. 12 illustrates the
outer bounds for the case when and

and . For this case, the
achievable rate region does not provide any visual improvement
over no-cooperation. Fig. 13 illustrates these bounds and the
achievable rate region for the asymmetric setting where

and and
. Fig. 14 illustrates these bounds and the

achievable rate region for the one sided cooperation where
and and

.

XII. EVALUATION OF

In this section, we will explicitly evaluate Theorem 5 for the
Gaussian IC with user cooperation described by (44)–(47) in
Section VIII. We start with step 1 and first characterize the set
of jointly Gaussian triples in . For this
purpose, we rewrite (56) as follows:

(199)

which can be simplified as in the derivation of to the
following two equalities:

(200)

(201)

We next follow the same set of arguments used in Section XI
to arrive at the fact that a jointly Gaussian triple
satisfies (200)–(201) iff .

We can now write the set of rate pairs provided by our outer
bound for a jointly Gaussian triple in the set

as

(202)

(203)

(204)

(205)

(206)

(207)

where the triple satisfies the Markov chain
. Moreover, from the evaluation of step 2 in

Section IX, we know that all rate pairs contributed by input dis-
tributions in are covered by those given in . There-
fore, we do not need to consider the set in evaluating
our outer bound.

We now arrive at step 3 of the evaluation of our outer bound
for the Gaussian IC with user cooperation. Consider any triple

with a non-Gaussian distribution
, with a valid covariance matrix . As in the derivation

(193)
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Fig. 9. Illustration of outer bound and an achievable region based on superposition coding for � � � � � � � and � � � � ���.

Fig. 10. Enlarged illustration of Fig. 9.

of , we first construct another triple with
a covariance matrix by selecting

(208)

Following this step, we next make use of the Markov chain

(209)

to show the existence of a jointly Gaussian
with a covariance matrix and which satisfies (56).

We now arrive at the final step of the evaluation. In
particular, we will show that the rates of this jointly
Gaussian triple will include the rates of

the given non-Gaussian triple . For the triple
, we have the following set of inequalities:

(210)

(211)

(212)
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Fig. 11. Illustration of bounds for � � � � �� � � �� � � � � � and � � � � � � � � �.

Fig. 12. Illustration of outer bounds for � � � � � � �� � � � � �� and � � � � � � � � �.

(213)

(214)

(215)

where (212) follows from the fact that and
have the same covariance matrix and using

the maximum entropy theorem. Next, (213) follows from the
fact that conditioning reduces differential entropy and finally

(214) follows from the fact that is a deterministic function
of and invoking the Markov chain in (209). Similarly, we
also have

(216)

and

(217)



4080 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 7, JULY 2011

Fig. 13. Illustration of outer bounds for � � � � � � � � � � � and � � � � �� � � �� � � �.

Fig. 14. Illustration of outer bounds for � � � � � � � � � � � and � � � � �� � � �� � � �.

As in the derivation of , we also have

(218)

(219)

(220)

Therefore, we conclude that for any non-Gaussian distribu-
tion , there exists a jointly Gaussian dis-
tribution which satisfies the dependence
balance bound (56) and yields a set of rates which includes the
set of rates given by the fixed non-Gaussian distribution. Hence,
it suffices to consider jointly Gaussian distributions in to
evaluate our outer bound.

The dependence balance based outer bound can now be
written in an explicit form as

��
��

�� �
���� � ��� � � ��� ��� ��� ��

���� ��� �

�� �
�

	

����  ������ � ��� ��

�� �
�

	

����  ������ � ��� ��

�� �
�

	

����  ������ ��

�� �
�

	

����  ������ ��

���� �
�

	

����  ������ � ��� ��

���� �
�

	

����  ������ � ��� ��

(221)
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Fig. 15. Illustration of bounds for � � � � � � � � �� � � � � � and � � � � ��� and � � � � ���.

where

(222)

(223)

(224)

(225)

(226)

(227)

where

(228)

The cut-set outer bound given in (5)–(10) is evaluated for the
Gaussian IC with user cooperation described in (44)–(47) as

(229)

where

(230)

and

(231)

Fig. 15 illustrates our outer bound, cut-set bound, outer bound
in [22], an achievable rate region with cooperation [5] and an
achievable rate region without cooperation [7] for the case when

and and
and . Fig. 16 illustrates our

sum-rate upper bound, cut-set bound, upper bound in [22], upper
bound in [23] as function of , where and

and .
Fig. 17 illustrates our sum-rate upper bound, cut-set bound, and
sum-rate bound in [22] as function of , where
and and

. For the case of moderate interference, we observe
from Fig. 16 that neither the DB bound nor the upper bound
in [22] are better than each other. On the other hand, for the
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Fig. 16. Illustration of sum-rate upper bounds as functions of �, where � � � � � and � � � � ���.

Fig. 17. Illustration of sum-rate upper bounds as functions of �, where � � � � � and � � � � ���.

case of weak interference, we observe from Fig. 17, that the DB
sum-rate bound is strictly less than the upper bound in [22].

XIII. CONCLUSION

We obtained new outer bounds for the capacity regions of the
two-user MAC with generalized feedback and the two-user IC
with generalized feedback. We explicitly evaluated these outer
bounds for three channel models. In particular, we evaluated
our outer bounds for the Gaussian MAC with different noisy
feedback signals at the transmitters, the Gaussian MAC with
user cooperation and the Gaussian IC with user cooperation.

Our outer bounds strictly improve upon the cut-set bound for
all three channel models.

For the evaluation of our outer bounds for the Gaussian sce-
narios of interest, we proposed a systematic approach to deal
with capacity bounds involving auxiliary random variables. This
approach was appropriately tailored according to the channel
model in consideration which permitted us to obtain explicit ex-
pressions for our outer bounds. To evaluate our outer bounds,
we have to consider all input distributions satisfying the depen-
dence balance constraint. The main difficulty in evaluating our
outer bounds arises from the fact that there might exist some
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non-Gaussian input distribution with a covariance
matrix , such that satisfies the dependence balance
constraint but there does not exist a jointly Gaussian triple with
the covariance matrix satisfying the dependence balance con-
straint. Therefore, the regular methodology of evaluating outer
bounds, i.e., the approach of applying maximum entropy the-
orem [8] fails beyond this particular point. Through our explicit
evaluation for all three channel models, we were able to show
the existence of a jointly Gaussian triple with a covariance ma-
trix which satisfies the dependence balance constraint and
yields larger rates than the fixed non-Gaussian distribution.

In particular, for the case of Gaussian MAC with noisy feed-
back, we made use of a recently discovered multivariate EPI
[16], which is a generalization of Costa’s EPI [17]. It is worth

noting that this result could not be obtained from the classical
vector EPI. For the case of Gaussian MAC with user cooperation
and the Gaussian IC with user cooperation, our proof closely
follows a recent result of Bross, Wigger and Lapidoth [18] and
[19] for the Gaussian MAC with conferencing encoders.

APPENDIX I

A. Proof of Theorem 1

We will prove Theorem 1 by first deriving an upper bound for
as (232)–(243), shown at the bottom of the page: where (234)

follows from Fano’s inequality [8], (237) follows from the fact
that is a function of and by introducing in
both terms, (238) follows from the fact that conditioning reduces

(232)

(233)

(234)

(235)

(236)

(237)

(238)

(239)

(240)

(241)

(242)

(243)
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entropy and we drop from the conditioning in the
first term, (239) follows from the fact that conditioning reduces
entropy and by introducing in the second term and (240)
follows from the memoryless property of the channel. Finally,
we define

and , where is a random
variable which is uniformly distributed over and is
independent of all other random variables. Similarly, we have

(244)

(245)

In addition to (245), we also have the following sum-rate con-
straint which also appears in the cut-set outer bound,

(246)

The proof of the dependence balance constraint in (16) is
along the same lines as in [9] by starting from the inequality

(247)

to arrive at

(248)

This completes the Proof of Theorem 1.

B. Proof of Theorem 2

We will prove Theorem 2 by first deriving an upper bound
for as (249)–(259), shown at the bottom of the page: where
(251) follows from Fano’s inequality [8], (254) follows from the
fact that is a function of and by introducing
in both terms, (255) follows from the fact that conditioning re-
duces entropy and we drop from the conditioning

(249)

(250)

(251)

(252)

(253)

(254)

(255)

(256)

(257)

(258)

(259)
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(278)

in the first term, (256) follows from the fact that conditioning
reduces entropy and by introducing in the conditioning in
the second term and (257) follows from the memoryless prop-
erty of the channel. Finally, we define

and , where is a random variable which is uni-
formly distributed over and is independent of all
other random variables.

Similarly, we have

(260)

(261)

and we also have from the cut-set bound

(262)

(263)

(264)

The proof of the dependence balance constraint is along
the same lines as in [9] by starting from the inequality

to arrive at

(265)

This completes the Proof of Theorem 2.

C. Proof of (78)

In the following derivation of (78), we have dropped condi-
tioning on , for the purpose of simplicity. Substituting
(80), (81), (82), and (83) in (76), we have

(266)

(267)

(268)

We also note the following inequality:

(269)

(270)

where (269) follows from the scalar EPI [8] and (270) follows
from the fact that for any scalar [8].
Substituting (270) in (268), we obtain

(271)

Similarly, we also have

(272)

Therefore, we have

(273)

Moreover, the right hand side of (76) simplifies to

(274)

(275)

(276)

Using (272)–(276) and substituting in (76), we obtain

(277)

Simplifying (277) by substituting the value of and reintro-
ducing the conditioning on , we have the proof of (78)
(see (278) at the top of the page):
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