
entropy

Article

Straggler-Aware Distributed Learning:
Communication–Computation Latency Trade-Off

Emre Ozfatura 1,∗ , Sennur Ulukus 2 and Deniz Gündüz 1

1 Information Processing and Communications Lab, Department of Electrical and Electronic Engineering,
Imperial College London, London SW7 2AZ, UK; d.gunduz@imperial.ac.uk

2 Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA;
ulukus@umd.edu

* Correspondence: m.ozfatura@imperial.ac.uk

Received: 10 April 2020; Accepted: 7 May 2020; Published: 13 May 2020

Abstract: When gradient descent (GD) is scaled to many parallel workers for large-scale machine
learning applications, its per-iteration computation time is limited by straggling workers. Straggling
workers can be tolerated by assigning redundant computations and/or coding across data and
computations, but in most existing schemes, each non-straggling worker transmits one message
per iteration to the parameter server (PS) after completing all its computations. Imposing such a
limitation results in two drawbacks: over-computation due to inaccurate prediction of the straggling
behavior, and under-utilization due to discarding partial computations carried out by stragglers. To
overcome these drawbacks, we consider multi-message communication (MMC) by allowing multiple
computations to be conveyed from each worker per iteration, and propose novel straggler avoidance
techniques for both coded computation and coded communication with MMC. We analyze how
the proposed designs can be employed efficiently to seek a balance between the computation and
communication latency. Furthermore, we identify the advantages and disadvantages of these designs
in different settings through extensive simulations, both model-based and real implementation on
Amazon EC2 servers, and demonstrate that proposed schemes with MMC can help improve upon
existing straggler avoidance schemes.

Keywords: coded computation; distributed computation; gradient descent; gradient coding; machine
learning; parallel computing; polynomial codes

1. Introduction

Machine learning techniques have become highly popular thanks to their success in a wide
variety of classification and regression tasks. This success can be partially attributed to the availability
of high-quality large training datasets. Unfortunately, as the size of the datasets increases, memory
storage, management and maintenance become unmanageable within the resources of a single machine.
An efficient way to deal with such colossal computing tasks within a reasonable training time is to
exploit computation and memory resources of multiple machines in parallel.

In many supervised machine learning problems, the objective is to minimize the following
parameterized empirical loss function for a given training dataset D of (x, H) pairs, where x denotes the
input sample while H is the output (label for classification problems):

! ()) , 1
|D|

∑
(x,H) ∈D

; ((x, H),)) , (1)

Entropy 2020, 22, 544; doi:10.3390/e22050544 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-6974-5671
http://dx.doi.org/10.3390/e22050544
http://www.mdpi.com/journal/entropy

Entropy 2020, 22, 544 2 of 31

where) ∈ R3 is the parameter vector and ; is an application specific loss function. This optimization
problem can be solved by gradient descent (GD), where at each iteration C, the parameter vector) C ∈ R3
is updated along the GD direction:

) C+1 =) C − [C∇)C ! () C), (2)

where [C is the learning rate at iteration C, and the gradient with respect to current parameter vector is
given by

∇)C ! () C) =
1
|D|

∑
(x,H) ∈D

∇)C ; ((x, H),) C) . (3)

When the dataset D is large, distributed GD (DGD) [1–4] can be used to reduce the computation
time, and hence, the overall training time. In the naive parameter server (PS) type implementation with
 workers, denoted by F1, . . . F , D is divided into non-overlapping equal-size subsets �1, . . . ,� ,
where each subset is assigned to a different worker. At the beginning of iteration C, the PS broadcasts
the current parameter vector) C to all the workers. Worker F: computes the partial gradient g(C)

:
with

respect to) C , based on the assigned dataset, i.e.,

g(C)
:

=
1
|D: |

∑
(x,H) ∈D:

∇)C ; ((x, H),) C). (4)

The PS waits until it receives the partial gradients, g(C)
:

, from all the workers, aggregates them to
obtain the full gradient ∇)C ! () C) = 1

∑
:=1 g(C)

:
, and updates the parameter vector according to (2). In

this implementation, due to synchronized updates the completion time of each iteration is constrained
by the slowest, so-called straggling worker(s), which can be detrimental for the convergence of the
algorithm. Please note that although the straggling behavior is often used to describe the processing
delay of a worker, we use this term for a wide range of delays including connection failures or
congestion delays, which are likely to increase with the number of workers involved.

A wealth of straggler avoidance techniques have been proposed in recent years for DGD as
well as other distributed computation tasks [5–48]. The common design notion behind all these
schemes is the assignment of redundant computations/tasks to workers, such that faster workers can
compensate for the stragglers. The main challenge is that the computation and communication latency
of workers vary over time, and these values are not known in advance. This randomness can be treated
as packet erasures in a communication channel [17], and erasure coding techniques can be used to
efficiently combat stragglers rather than simple task replication [12–15,19–21,30]. However, most of
the existing techniques, such as gradient coding (GC) [12], Lagrange coded computation (LCC) [20],
and their variations, suffer from two drawbacks: over-computation and under-utilization. By assigning
redundant computations to workers, each iteration can be terminated with results from only a subset
of the workers, and the minimum number of workers that must complete the assigned computation
is called the non-straggling threshold. The non-straggling threshold can be reduced by increasing
the redundancy; however, a smaller threshold does not necessarily imply a lower completion time.
Workers may be assigned more tasks than required due to an inaccurate prediction of the straggling
behavior, which we refer to as over-computation. Moreover, in those schemes straggling behavior is
treated as ‘all or nothing’ (straggler/non-straggler), and the computations carried out by stragglers
are discarded as long as they cannot complete all their assigned computations. However, in practice,
non-persistent straggling servers can complete a certain (sometimes significant) portion of their assigned
tasks. This leads to under-utilization of the computational resources. Therefore, our main objective
in this paper is to introduce straggling avoidance techniques that can mitigate under-utilization and
over-computation. This will be achieved by allowing each worker to send multiple messages to the
PS at each iteration, which we refer to as multi-message communication (MMC). However, MMC may
introduce additional delays due to the communication overhead. Hence, in this paper we also address

Entropy 2020, 22, 544 3 of 31

the communication–computation latency trade-off, and provide flexible designs that can balance the
two.

Our contributions can be summarized as follows. First, we propose new straggler avoidance
techniques designed to benefit from MMC. Second, to account for the additional communication
load that may be introduced due to MMC, we provide designs that can provide a balance between
the communication and computation latencies. Third, through extensive numerical simulations we
illustrate the main advantages/disadvantages of the proposed designs compared to the existing ones.
Finally, based on real experiments on Amazon EC2 servers, we show that the proposed schemes can
improve upon existing straggler avoidance techniques.

2. An Overview of Existing Straggler Avoidance Techniques

There is already a rich literature on straggler avoidance methods in distributed
learning/computation, many of them employing some form of coding. To provide a better
understanding, we classify those schemes under three groups based on whether coding is employed
or not, and if so, at which stage; namely 1) coded computation, 2) coded communication, and finally, 3)
uncoded computation. Classification of the existing straggler-aware DGD schemes in the literature
is given in Table 1. Before explaining these schemes, we first introduce two design parameters:
computation load and communication load. Computation load, denoted by A, measures the redundancy
of computations assigned to each worker compared to naive distributed computation, where each
computation task is assigned to a single worker. Communication load characterizes the total number
of messages conveyed from the workers to the PS per iteration, where the size of each message is equal
to the size of the parameter vector, 3.

Table 1. Classification of the DGD algorithms in the literature according to the straggler avoidance
approach used.

Uncoded Computation Coded Transmission Coded Computation
[5–11,49] [12–16] [17–34]

2.1. Coded Computation Schemes

In some problems, the gradient can be expressed as an explicit function of the dataset and the
parameter vector, and more efficient straggler mitigation techniques can be introduced exploiting this
particular relation. For example, for the least-squares linear regression problem, the loss function can
be explicitly written as

! ()) = 1
2#

∑
(x,H) ∈D

(H − x)))2 , (5)

where x ∈ R3 is the input vector, H ∈ R the corresponding output, and # is the size of the dataset. For
this particular loss function, the gradient is given by

∇)! ()) = X)X) −X) y, (6)

where X = [x1, . . . , x#]) and y = [H1, . . . , H#]) are concatenation of all input vectors and output
values, respectively. Since the second term, X) y, does not include the term), it remains the same
throughout the iterations. Therefore, the main computation task is to compute X)X) C at each iteration.
In this particular case the problem can be reduced to distributed matrix-matrix multiplication, or
matrix-vector multiplication if X)X is computed beforehand, and this simplified form allows exploiting
novel ideas from coding theory.

In the naive distributed computation scenario, X can be divided into submatrices (assume, for

Entropy 2020, 22, 544 4 of 31

simplicity, that divides #), X1, . . . , X , each of size #/ × 3, such that :th worker computes X)
:

X:) C
at iteration C. Since the following equality holds

X)X) =

 ∑
:=1

X): X:) , (7)

PS can obtain the full gradient receiving the computation results from all the workers. In contrast to
the naive approach, coded computation schemes for distributed matrix multiplication [22,23,32,34]
first encode the submatrices, and then assign them to the workers to achieve a certain tolerance against
slow/straggling workers.

We note that W , X)X in (6) also remains unchanged throughout GD iterations. Hence, if
W can be computed at the beginning, the main computational task reduces to linear operations at
each iteration, which allows employing various linear coding structures, e.g., maximum distance
separable (MDS) codes, or rateless codes, to encode rows of W to achieve robustness against stragglers
[17–19,25,28,29].

We want to reemphasize that coded computation schemes are mostly designed for the full
recovery of the main task, such as the recovery of the full gradient in DGD. However, in practice,
approximate/partial gradients are commonly used instead of the full gradient to seek a balance
between the computation time and accuracy, and to eventually reduce the convergence time.
Approximate GC and partial gradient recovery schemes have also been studied in [50–52] and
[29,53,54], respectively. In the scope of this paper, we limit our focus to full-gradient recovery and
leave the MMC variation of partial gradient recovery [29] as a future work.

2.2. Coded Transmission Schemes

Let G = {g1, . . . , g } be the set of partial gradients corresponding to datasets D1, . . . ,D . In the
GC scheme with computation load A , A partial gradient computations, denoted by G: , are assigned to
worker : [12]. After computing these A partial gradients, each worker sends a linear combination of
the results,

c(C)
:
, L: (g(C)8 : g8 ∈ G:). (8)

We refer to these linear combinations c1, . . . , c as coded partial gradients. The PS waits until it receives
sufficiently many coded partial gradients to recover the full gradient. It is shown in [12] that for
any set of non-straggler workers W ⊆ [] with |W| = − A + 1, there exists a set of coefficients
AW = {0: : : ∈ W} such that ∑

:∈W
0:c(C)

:
=

1

 ∑
:=1

g(C)
:

. (9)

Hence, GC can tolerate up to A − 1 persistent stragglers at each iteration. GC can also be interpreted as
a polynomial interpolation problem [14]. In this model, the gradient assignment matrix is called a mask
matrix, and the support of the :th row M(: , :) , denoted by BD??(M(: , :)), gives the index of the partial
gradients assigned to F: , G: , and for given redundancy A , | |M(: , :) | |1 = A . For a given mask matrix M,
GC is equivalent to interpolating a polynomial with degree ℎ, where ℎ = −min: | |M(: , :) | |1; in other
words, ℎ is equal to the number of zeros in the most sparse column of M. We remark that if M is a
 × matrix then | |M(: , :) | |1 = | |M(: , :) | |1 = A, ∀: ∈ [].

In a broad sense, each partial gradient g: is embedded into a polynomial 5: , and each worker
evaluates the polynomials 51, . . . , 5 at preassigned points, and sends their sum to the PS. Let
polynomial 5: be constructed as

5: (G) =
∏

8:g:∉G8
(G − U8) (10)

Entropy 2020, 22, 544 5 of 31

for some distinct U1, . . . ,U . We define another polynomial:

ℎ(G) =
 ∑
:=1

g: 5: (G). (11)

At each iteration, each worker F8 sends ℎ(U8) to the PS. The key design trick here is that worker F8
does not need to compute g: , if 5: (G) has a root at U8 , and can compute ℎ(U8) only with the knowledge
of g:s in the set G8 .

To explain the decoding stage, consider the following mask matrix:

M =

1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1

. (12)

There will be six partial gradients g1, . . . , g6 and six corresponding polynomials 51 (G), . . . , 56 (G) to
embed their values. Observe that the number of zeros in each column, − A, is equivalent to the
number of roots of the corresponding polynomial 5 , which is three for all polynomials, in our example.
Then, the leading coefficient of ℎ(G) is equal to g =

∑6
:=1 g: , and it has degree three since the degree

of each polynomial 5: is three. Therefore, at each iteration, ℎ(G) can be interpolated using its value
at any − A + 1, 4 for the given example, different points. Accordingly, to recover g, any − A + 1
results are sufficient, which implies a non-straggling threshold of �� (A) = − A + 1. We sketch the
general design strategy and the corresponding non-straggling threshold; however implementation of
the encoding and decoding procedures, and their complexity (see [14] for further details), also affect
the completion time; nevertheless, in the scope of this paper we omit the complexity analysis and focus
on computation and communication latency.

In [13], the GC scheme is extended to seek a trade-off between the communication latency and
the non-straggler threshold, and it is shown that the length of the coded partial gradient c: can be
reduced with an increase in the non-straggling threshold. The trade-off between the communication
latency and straggler tolerance is also studied in [15], and it is shown that the PS can recover the full
gradient faster when each worker is allowed to send more than one coded partial gradient. We classify
these schemes as coded transmission since computations are carried out using uncoded data, but the
computations are transmitted to the PS in a coded manner.

2.3. Uncoded Computation Schemes

This class includes schemes that do not employ any coding. In the naive distributed approach, the
computation task is divided into disjoint subtasks to be executed in parallel. To mitigate the stragglers
each worker may perform some backup computations [5–7,21], certain unfinished subtasks (slow
workers) can be relaunched at the fast workers [10,11], or some additional backup workers can be
employed [9]. Alternatively, PS can terminate an iteration after receiving results from a subset of
workers [49,55].

Existing straggler tolerant DGD schemes focus on minimizing the non-straggling threshold, which
does not necessarily capture the average completion time statistics for one iteration of the GD algorithm.
Indeed, in certain regimes of computation load A, the average completion time may be increasing as
the non-straggling threshold decreases. Accordingly, in this paper, we consider the average completion
time as the main performance metric, and allow workers to send multiple messages at each iteration to
reduce the per-iteration completion time.

MMC can be easily applied in uncoded computation by assigning each computation task to
multiple workers [7,21]. Workers can then return each of their computations as soon as it is completed,

Entropy 2020, 22, 544 6 of 31

and the iteration is completed when each computation task is completed by at least one worker.
Multi-message coded computation is also studied in [18,25]. However, these schemes are limited to
matrix-vector multiplication. Furthermore, they ignore the communication overhead due to MMC and
its impact on the communication latency, and focus only on the computation time.

3. Coded Computation with MMC

For the coded computation we employ the LCC method introduced in [20,22], which uses
polynomial interpolation for the code design. In this section, we first explain the structure of the
Lagrange polynomial, then explain how it is used for coded computation, and finally discuss how it
can be modified to benefit from MMC.

3.1. Lagrange Coded Computation (LCC)

First, X is divided into submatrices (assume, for simplicity, that divides #), X1, . . . , X , each
of size #/ × 3. For given A , assuming is divisible by A , these submatrices are further divided into
A disjoint groups, each containing /A submatrices. Let X@,8 denote the 8th submatrix in the @th group,
and X@ denote all the submatrices in the @th group; that is, X@ is an #/A × 3 submatrix of X. Then,
for distinct real numbers U1, . . . ,U /A , we form the following A structurally identical polynomials of
degree /A − 1, taking the submatrices of X@ as their coefficients:

5@ (I) =
 /A∑
8=1

X@,8

 /A∏
9=1, 9≠8

I − U 9
U8 − U 9

, @ ∈ [A], (13)

which satisfy 5@ (U8) = X@,8 , ∀: , 8. Then, we define

� (I) ,
A∑
@=1

5@ (I)) 5@ (I)) C . (14)

Coded submatrices X̃(@)
:

, @ ∈ [A], for worker F: , : ∈ [] are obtained by evaluating 5@ (I) polynomials
at distinct values, V: ∈ R, i.e., X̃(@)

:
= 5@ (V:). At each iteration F: returns the value of

� (V:) =
A∑
@=1

(X̃(@)
:
)) X̃(@)

:
) C . (15)

The degree of polynomial � (I) is 2 /A − 2; and thus, the non-straggling threshold for LCC is given by
 !�� (A) = 2 /A − 1; that is, having received the value of � (I) at !�� (A) distinct points, the PS can
extrapolate � (I) and compute

 /A∑
8=1

� (U8) = X)X) C , (16)

When # is not divisible by A , zero-valued data points can be added to X to make it divisible by A .
Hence, in general the non-straggling threshold is given by !�� (A) = 2d#/Ae − 1.

3.2. LCC with MMC

Here, we introduce LCC with MMC by using a single polynomial 5 (I) of degree − 1, instead of
using A different polynomials each of degree /A − 1. We define

5 (I) ,
 ∑
8=1

X8
 ∏

9=1, 9≠8

I − U 9
U8 − U 9

, (17)

Entropy 2020, 22, 544 7 of 31

where U1, . . . ,U are distinct real numbers, and we construct

ℎ(I) , 5 (I)) 5 (I)) C , (18)

such that ℎ(U8) = X)
8

X8) C . Consequently, if the polynomial ℎ(I) is known at the PS, then the full gradient∑
8=1 ℎ(U8) =

∑#
8=1 X)

8
X8) C can be obtained. To this end, A coded submatrices X̃(@)

:
, : ∈ [], @ ∈ [A], are

constructed by evaluating 5 (I) at A different points, V (@)
:

, i.e.,

X̃(@)
:

= 5 (V (@)
:
), : ∈ [], @ ∈ [A], (19)

and X̃(1)
:

, X̃(A)
:

are assigned to F: , : ∈ []. F: computes (X̃(1)
:
)) X̃(1)

:
) C , . . . , (X̃(A):)

) X̃(A)
:

) C sequentially,
and transmits each of these results to the PS as soon as it is computed. Coded computation
corresponding to coded data point X̃(@)

:
at F: provides the value of polynomial ℎ(I) at point V (@)

:
. The

degrees of polynomials 5 (I) and ℎ(I) are − 1 and 2(− 1), respectively, which implies that ℎ(I) can
be interpolated from its values at any 2 − 1 distinct points. Hence, any 2 − 1 computations received
from any subset of the workers are sufficient to obtain the full gradient.

We note that in the original LCC scheme coded data points are constructed evaluating A different
polynomials at the same data point, whereas in the multi-message LCC scheme, coded data points
are constructed evaluating a single polynomial at A distinct points. Per-iteration completion time can
be reduced with MMC since the partial computations of the non-persistent stragglers are also used;
however, at the expense of an increase in the communication load. Nevertheless, it is possible to set
the number of polynomials to a different value to seek a balance between the communication load and
the per iteration completion time. This will be explored in Section 7.

4. GC with MMC

In the original GC scheme of [12], the number of messages transmitted to the PS per-iteration
per-worker is limited to one. Due to the synchronized model update, the workers that complete their
computations stay idle until they receive the updated parameter vector to start the next iteration. To
prevent under-utilization of the computation resources, we will allow each worker to send coded
partial gradients to the PS; that is, at each iteration each worker sends multiple coded partial gradients
instead of sending a single coded computation result. In the scope of this paper, we will present two
different approaches to design coded partial gradients, namely correlated code design and uncorrelated
code design, which are explained next.

4.1. Correlated Code Design

In GC, the number of partial gradients that are linearly combined to form the transmitted message
from a worker is equal to the computation load, A. In MMC, we allow each worker to compute and
transmit multiple coded partial gradients, each of which will be generated by combining< ≤ A gradient
computations. We will refer to < as the order of the corresponding partial gradient. In particular, each
worker will be able to send up to ; = A −< + 1 different messages, each of order <; that is, each of the
coded partial gradients will be a linear combination of the < most recently computed partial gradients.

The proposed scheme consists of two phases: the assignment phase and the computation phase.
In the assignment phase, executed only at the beginning of the training process, partial gradient
computations are assigned to workers according to matrix M, which is constructed using cyclic shifts
as in the GC scheme. Then, in the computation phase, repeated at each iteration, each user computes
the assigned partial gradients based on the given order, and as soon as it finishes computing the first <
of them, it starts sending the coded partial gradients to the PS. We remark that the encoding function
L used to construct coded partial gradients is identical for all the workers; thus, the coded partial
gradient depends only on the partial gradients and their order. Furthermore, the encoding function

Entropy 2020, 22, 544 8 of 31

L is the one used for the GC scheme with A = <. The overall procedure is illustrated in Algorithm 1.
Next, we provide an example to clarify the proposed strategy.

Algorithm 1 GC with MMC (correlated design)

1: Assignment phase:
2: For : ∈ [], construct G: based on M
3: Computation phase:
4: for user : ∈ [] do in parallel
5: for 9 = 1, . . . , A do
6: Compute assigned 9th gradient G: (9)
7: if 9 ≥ < then
8: Send c = L(G: (9), . . . ,G: (9 − (< − 1))

Example 1: Let = 6, A = 3, < = 2, and consider the assignment matrix M, whose 8th row
indicates the mini-batches assigned to the 8th worker; that is M(8, 9) = 1 means that partial gradient g 9
will be computed by the 8th worker. In the rest of the paper, to simplify the notation we drop the time
index from the gradients when we focus on a single iteration of the algorithm. In GC with = 6 and
A = 3, we have the following assignment matrix.

M =

1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1

(20)

When < = 2, coded gradients are obtained according to the assignment matrix "̃ , which is obtained by
removing the last A −< of the 1s in each row (shown in red above). When the assignment matrix "̃ is
used to design GC, a total of = 6 coded partial gradients, each of order two, are constructed; and the
full gradient can be obtained from any −< + 1 = 5 coded partial gradients. Let c1, . . . , c6 denote the
corresponding coded partial gradients. We remark that c1 is a linear combination of g1 and g2, while
c2 is a linear combination of g2 and g3. Since g1, g2 and g3 are assigned to the first worker, it can send
both coded messages c1 and c2. To illustrate the assignment of coded partial gradients, we use the
assignment matrix C, where the 8th column shows the assigned coded gradients to the 8th worker in
the order of computation. In Example 1, we have

C =

[
c1 c2 c3 c4 c5 c6

c2 c3 c4 c5 c6 c1

]
. (21)

We call this approach correlated code design, since the same coded partial gradient can be computed
and sent by more than one worker, e.g., in Example 1, c2 can be sent by both F1 and F2. In Example 1,
the original GC algorithm needs to receive computations from at least four workers to complete an
iteration; whereas the proposed scheme can complete an iteration with results from only three workers.
For instance, when workers 1, 2 and 4 each send two coded partial gradients, the PS will obtain
c1, c2, c3, c4, c5, and recover the full gradient. In the next section, we will analyze the uncorrelated
coded design approach, where each coded gradient is assigned to exactly one worker.

4.2. Uncorrelated Code Design

Here, we present yet another code construction to extend GC to the MMC scenario. Unlike the
previous design, now, we allow each coded partial gradient to have a different order and also to use

Entropy 2020, 22, 544 9 of 31

a different encoding strategy, so that a particular coded partial gradient is sent by at most one user.
Since the PS does not receive a coded partial gradient from more than one user, we call this scheme
uncorrelated code design. Uncorrelated code design for GC with MMC is defined by the order vector
[<0, . . . ,<;−1], where A > <8 is the order of the (8 + 1)th coded partial gradient and the order vector also
defines when to send a coded partial gradient; that is, each worker sends the (8 + 1)th coded partial
gradient when it computes the first <8 assigned partial gradients. The overall procedure is illustrated
in Algorithm 2.

Algorithm 2 GC with MMC (uncorrelated design)

1: Assignment phase:
2: For : ∈ [], construct G: based on M
3: Computation phase:
4: for user : ∈ [] do in parallel
5: Initialize 8 = 0
6: for 9 = 1, . . . , A do
7: Compute assigned 9th gradient G: (9)
8: if 9 = <8 then
9: Send c = L(G: (9), . . . ,G: (1))

10: 8 = 8 + 1

Before presenting the main result, we give an example to clarify the procedure. In the example,
the partial gradient assignments to 6 workers is governed by the mask matrix in (12). Assume that
each worker sends a coded partial gradient after computing the first two assigned partial gradients,
and then sends a second coded partial gradient after computing all its assigned partial gradients. Now,
consider the scenario with 12 workers and the following mask matrix:

M̃ =

1 1 1 0 0 0
1 1 0 0 0 0
0 1 1 1 0 0
0 1 1 0 0 0
0 0 1 1 1 0
0 0 1 1 0 0
0 0 0 1 1 1
0 0 0 1 1 0
1 0 0 0 1 1
0 0 0 0 1 1
1 1 0 0 0 1
1 0 0 0 0 1

. (22)

According to M̃ three partial gradients are assigned to six workers, whose rows are shown in red,
while two partial gradients are assigned to the remaining six workers, whose rows are shown in blue.
In terms of encoding/decoding process these two are equivalent. Therefore, sending an additional
coded partial gradient corresponds to adding a “virtual” worker, i.e., the rows in red correspond to the
real workers, while the rows in blue to the virtual ones. We note that given M̃, degree of ℎ(G) and
the non-straggling threshold will be 7 and 8, respectively, since there are exactly seven zeros in each
column.

We are reminded that in the original GC scheme, the PS waits for 4 workers to recover the
full gradient, while in the proposed scheme each worker can send a coded partial gradient as a
virtual worker, after only two computations, and the full gradient can be recovered from any 8 coded
partial gradients, including those from the virtual workers. Assume, for example, that three of the

Entropy 2020, 22, 544 10 of 31

workers are non-stragglers, and each of them sends 2 coded partial gradients, while two workers are
non-persistent stragglers, and each of them sends only one coded gradient, while the last worker is a
persistent straggler. In this case, the full gradient can be obtained by the proposed approach but not
with the original GC scheme. Hence, the proposed approach improves the per-iteration completion
time. In general, the following lemma highlight the recovery performance of the uncorrelated design.

Lemma 1. For given and order vector [<0, . . . ,<;−1] of length ;, any ; − (∑;−1
8=0 <8) + 1 coded partial

gradients are sufficient to recover full gradient.

The proof of Lemma 1 follows from the polynomial interpolation strategy explained in Section 2.2,
where each gradient is embedded into a polynomial. Since each worker is allowed to send ; messages
per iteration, we can introduce (; − 1) “virtual” workers such that <8 partial gradients are assigned
to the 8th virtual worker, resulting in a total of ; workers. Then, we design a GC scheme based on the
mask matrix of these ; workers. Given the order vector m = [<0, . . . ,<;−1], the number of zeros in
any column of the mask matrix " is given by ; − (∑;−1

8=0 <8); and thus, ; − (∑;−1
8=0 <8) + 1 coded partial

gradients are required to recover the full gradient.
We note that while the use of coded partial gradients with lower orders increases the recovery

threshold, they can be obtained faster, as they allow the PS to exploit the computations carried out
by non-persistent stragglers. We leave the optimization of the partial gradient orders depending on
system parameters and requirements as future work.

Another important issue regarding MMC is the communication load, which denotes the average
number of messages received by the PS at each iteration. The communication load increases with
the number of virtual workers; therefore, the optimal MMC strategy depends critically on the
communication architecture of the network and the protocol used to transmit messages from the
workers to the PS as well as the computation speeds of the workers.

4.3. Clustering

Next, we introduce clustering, which can further speed up the average iteration time. We divide
the workers into % equal-size disjoint clusters, where the set of workers in cluster ? is denoted by
W? ⊂ W, ? ∈ [%]. Dataset and the corresponding set of partial gradients G = {g1, . . . , g } are also
divided into % equal-size disjoint subsets, and the set of partial gradients assigned to the ?th cluster is
denoted by G? . In the clustering approach, the workers in the ?th cluster are responsible for computing

1
|G? |

∑
:∈G?

g: , (23)

and the GC scheme is applied to each cluster independently. The advantage of the clustering approach
is that when GC is applied with clustering, it is possible to tolerate A − 1 stragglers in each cluster;
hence, in the best scenario, which is when the stragglers are uniformly distributed among the clusters,
it is possible to tolerate ?(A − 1) stragglers in total. On the other hand, in the worst-case scenario;
that is, when the stragglers are accumulated in a particular cluster, it is possible to tolerate only A − 1
stragglers, which is equivalent to the performance of the GC scheme. Therefore, for a particular
straggler realization, if the full gradient can be recovered with GC (without clustering), then it can also
be recovered with clustering, while the converse is not true. This implies that it is possible to achieve a
lower iteration time on average when clustering is employed.

To illustrate the above, we consider the case with = 10 and A = 3. When GC is applied, 8
non-straggler workers are required to recover the full gradient. Alternatively, clustering the workers
into % = 2 clusters, 3 non-straggler workers from each cluster are required for full-gradient recovery.
Any straggler realization that is “good” for GC (i.e., not more than 2 stragglers) is also good for
clustering; however there are certain realizations that are good for the latter, but not for the former.

Entropy 2020, 22, 544 11 of 31

To illustrate this, in Figure 1, we depict two different straggler realizations. One can observe that
Realization 1 is good for both schemes, while in Realization 2, the full-gradient recovery can be achieved
by only the clustering strategy. We want to emphasize that although 6 non-straggling workers in
Realization 1 are sufficient for full-gradient recovery, this does not mean that any 6 non-straggling
workers would be sufficient. However, the set of straggler realizations where the full-gradient recovery
is possible using GC is a subset of the one for clustering. Consequently, while the non-straggling
threshold is the same for GC and GC with clustering, this threshold only represents the worst-case
scenario and as exemplified above, the probability of reaching recovery condition is higher when
clustering is employed; and hence the average computation time can be reduced.

At this point, we remark that the fractional repetition scheme in [12] is a special case of the
proposed clustering approach, where the size of a cluster is equal to the computation load, A. As an
example consider = 40, A = 10 and % = 4, where the workers are divided into % = 4 clusters, while
the mini-batches are divided into 4 subsets, and each cluster is responsible for a different subset. In
the fractional repetition scheme, the PS waits until at least one worker from each cluster completes
and sends its partial gradient. One can observe that if at least − A + 1 = 31 workers complete and
send their computations to the PS, there must be at least one worker from each cluster; hence, the
non-straggling threshold is − A + 1. However, the non-straggling threshold represents a worst-case
scenario. Notice that even 4 workers, each from a different cluster can be sufficient to obtain the full
gradient. On the other hand, the cyclic repetition scheme in [12], which has a circulant mask matrix as
in (12), always has to wait until receiving coded messages from at least − A + 1 workers. Although
both GC schemes achieve the same optimal non-straggling threshold, their average performance may
differ substantially. Fractional repetition scheme requires to be an integer multiple of A , whereas the
clustering approach outlined above can be applied to any (, A) pair.

We note that when MMC is allowed, clustering may also be disadvantageous. On one hand,
more straggling workers can be tolerated on average, on the other hand GC is applied to each cluster
independently; hence, a coded partial gradient from a particular cluster cannot be used for another
cluster. Consequently, the optimal clustering strategy with MMC depends on the computation statistics
of the workers.

Realization 2

Realization 1

Cluster 1 Cluster 2

Cluster 2Cluster 1
Figure 1. Two possible straggler realizations where green and red blocks illustrate the straggler and
non-straggler workers, respectively.

4.4. Hybrid Implementation

The optimal DGD strategy depends critically on the computation time statistics of the workers. In
particular, when the computation speeds of the workers are similar, MMC is expected to have a better
performance as it can exploit all the computations carried out across the workers; however, when
one of the workers is much faster compared to the others, fractional repetition can be preferred. To
illustrate this trade-off, consider the case = 5 and A = 5. With the fractional repetition scheme, the PS
waits for the fastest worker to finish all the assigned computations; however, with GC with MMC for
given order vector m = [5, 3], the PS waits for 3 coded messages sent from 2 workers; hence the overall
speed will depend on the second, or even the third fastest worker.

Entropy 2020, 22, 544 12 of 31

Accordingly, we can propose a hybrid scheme, in which the workers initially behave as dictated
by the GC-MM scheme, but if a worker is fast enough to complete all its computations, then it switches
to fractional repetition scheme, and sends the average gradient instead of a coded partial gradient.

5. Uncoded Computation with MMC

In uncoded computation, dataset D is divided into non-overlapping equal-size subsets
�1, . . . ,� , where g: denotes the partial gradient corresponding to dataset D , : ∈ []. To tolerate
straggling workers more than one partial gradient is assigned to each worker according to a certain
order. Hence, uncoded computation is defined by a partial gradient assignment and order of
computation. Let M be the assignment matrix for the partial gradients to workers, where M(9 , 8) = :
means that the :th partial gradient g: is computed by the 8th worker in the 9th order. This assignment
can be random [5], or according to a certain structure [7,29]. In this paper, we consider the circular
shifted assignment strategy, similar to the one used for GC:

M(9 , :) = circshift ([1 : #],−(9 − 1)). (24)

For instance, for = 10 and A = 4, we have:

M =

1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 1
3 4 5 6 7 8 9 10 1 2
4 5 6 7 8 9 10 1 2 3

.

We highlight that uncoded computation is actually a special case of the GC with MMC scheme, with
message order < = 1. We remark that the necessary condition to obtain the full gradient, with GC and
its multi-message variations, is that each partial gradient is computed by at least one worker. It is easy
to see that uncoded computation will always outperform GC if we only consider the computation time.
Therefore, the main advantage of the GC scheme is to reduce the communication overhead.

Although we limit our focus to full-gradient recovery in this paper, a partial gradient can be also
used to update the parameter vector at each iteration [49]. We will show in Section 7 that significant
gains can be obtained in both computation time and communication load by ignoring only 5% of the
partial gradients. Lastly, we note that under the assumption of independent and identically distributed
(i.i.d.) delays over time and over workers, the obtained partial gradient will be an unbiased estimate of
the full gradient as in the stochastic gradient descent (SGD) approach.

6. Per-Iteration Completion Time Statistics

In this section, we analyze the statistics of per-iteration completion time) for the DGD schemes
introduced above. For the analysis we consider a setup with workers, and assume that the dataset
is also divided into subsets. For the straggling behavior, we adopt the model in [17] and [18],
and assume that the probability of completing B computations at any server, performing B identical
matrix-vector multiplications, by time C is given by

�B (C) ,
{

1 − 4−` (CB−U) , if C ≥ BU,

0, otherwise.
(25)

The statistical model considered above is a shifted exponential distribution, such that the duration of
a computation cannot be less than U. We also note that although the overall computation time at a

Entropy 2020, 22, 544 13 of 31

particular worker has an exponential distribution, the duration of each computation is assumed to be
identical. Let %B (C) denote the probability of completing exactly B computations by time C. We have

�B (C) =
A∑
B′=B

%B′ (C), (26)

where %A (C) = �A (C), since there is a total of A computations assigned to each worker. One can observe
from (26) that %B (C) = �B (C) − �B+1 (C), and it can be written as follows:

%B (C) =

0, if C < BU,

1 − 4−` (CB−U) , BU ≤ C < (B + 1)U,

4−` (
C
B+1−U) − 4−` (CB−U) , (B + 1)U < C.

(27)

We divide the workers into A + 1 groups according to the number of computations completed
by time C. Let #B (C) be the number of workers that have completed exactly B computations by time C,
B = 0, . . . , A , and define N(C) , (#0 (C), . . . , #A (C)), where

∑A
B=0 #B (C) = . The probability of a particular

realization is given by

Pr(N(C)) =
A∏
B=0

%B (C)#B
(
 −∑

9<B # 9

#B

)
. (28)

At this point, we introduce " (C), which denotes the total number of computations completed by all
the workers by time C, i.e., " (C) , ∑A

B=1 B × #B (C), and let "Cℎ denote the threshold for obtaining the
full gradient. Hence, the probability of recovering the full gradient at PS by time C, Pr() ≤ C), is given
by Pr(" (C) ≥ "Cℎ). Consequently, we have

Pr() ≤ C) =
∑

N(C) :" (C) ≥"Cℎ

Pr(N(C)), (29)

and

� [)] =
∫ ∞

0
Pr() > C)3C (30)

=

∫ ∞

0

1 −
∑

N(C) :" (C) ≥"Cℎ

Pr(N(C))
 3C. (31)

Per-iteration completion time statistics of non-straggler threshold-based schemes can be derived
similarly. For a given non-straggler threshold Cℎ , and per server computation load A , we can have

Pr() ≤ C) =
 ∑

:= Cℎ

(

:

)
(1 − 4−` (CA −U)): (4−` (CA −U)) −: , (32)

when C ≥ AU, and 0 otherwise.

7. Numerical Results and Discussions

For the numerical results, we consider three different simulation setups, namely model-based,
data driven and real time implementation. In the first setup, we use the shifted exponential distribution
model for the computation time statistics to analyze the average completion time. For the second
setup, we initialize 21 Amazon EC2 instances (where the first instance is considered to be the PS), then
for each EC2 instance we measure the computation time of a certain job as well as communication time
with the parameter server, over different times of the day, to form a dataset to analyze the average
completion time statistics. Finally, in the third set of simulations, we conduct a real time experiment

Entropy 2020, 22, 544 14 of 31

via implementing a linear regression problem on Amazon EC2 instances through 1000 iterations to
monitor the average completion time statistics.

7.1. Model-Based Analysis

We first verify the correctness of the expressions provided for the per-iteration completion time
statistics in (29) and (32) through Monte Carlo simulations generating 100000 independent realizations.
Then, we will show that the MMC approach can reduce the average per-iteration completion time,
� [)], significantly. In particular, we analyze the per-iteration completion time of three different DGD
schemes, GC, LCC, and LCC with MMC (LCC-MM). For the simulations we consider two different
settings, = 6, A = 3 and = 10, A = 5, respectively, and use the cumulative density function (CDF) in
(25) with parameters ` = 10 and U = 0.01 for the completion time statistics.

In Figure 2 we plot the CDF of the per-iteration completion time) for GC, LCC, and LCC-MM
schemes according to the closed-form expressions derived in Section 6 and Monte Carlo simulations.
We observe from Figure 2 that the two match perfectly. We also observe that although the LCC-MM
and LCC schemes perform closely in the first scenario (Figure 2a), LCC-MM outperforms the LCC
scheme in the second scenario (Figure 2b). This is because, as the computation load A increases, it takes
more time for even the fast workers to complete all the assigned computations, which results in a
higher number of non-persistent stragglers. Hence, the performance gap between LCC-MM and LCC
increases with A . Similarly, as expected, since the non-straggling threshold of GC does not scale with ,
we observe that GC performs better for small A when the /A ratio is preserved.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

(a)

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

(b)
Figure 2. Per-iteration completion time statistics; (a) = 6, A = 3, and (b) # = , A = 5.

Entropy 2020, 22, 544 15 of 31

GC GC-MM-CGC-MM-U LCC LCC-MM UC-MM

Distributed computation methods

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A
v
er
a
g
e
co
m
p
le
ti
o
n
ti
m
e
E
[T

]

(a)

GC GC-MM-CGC-MM-U LCC LCC-MM UC-MM

Distributed computation methods

0

20

40

60

80

100

120

C
o
m
m
u
n
ic
a
ti
o
n
lo
a
d

(b)
Figure 3. Per-iteration completion time and communication load statistics; (a) average completion time
performance, and (b) communication load performance.

5 10 15 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a)

5 10 15 20

0

20

40

60

80

100

120

(b)
Figure 4. Per-iteration completion time and communication load statistics; (a) average completion vs.
computation load, and (b) communication load vs. computation load.

Next, we consider the setup from [20], where = 40 workers are employed for DGD with a
computation load of A = 10, and analyze the performance of six different DGD schemes, namely GC, GC
with MMC and uncorrelated design (GC-MM-U), GC with MMC and correlated design (GC-MM-C),
LCC, LCC-MM and uncoded computation with MMC (UC-MM). For the design of GC-MM-U, we
divide the workers into four equal-size clusters, and we use uncorrelated code structure with order
vector m = [6, 8, 10], so that each worker can send up to 3 coded partial gradients. Similarly, for the
design of GC-MM-C, we again divide the workers into four equal-size clusters and use the correlated
code structure with order < = 6, so that each worker can send up to 5 coded partial gradients. For
the computation time statistics, we use the distribution in (25) with parameters ` = 10 and U = 0.01.
In the performance analysis, we consider both the average per-iteration completion time � [)] and
the communication load, measured by the average total number of transmissions from the workers to
the PS, and the results obtained from 100000 Monte Carlo realizations are illustrated in Figure 3. We
observe that LCC-MM approach can provide approximately 50% reduction in the average completion
time compared to LCC, and more than 90% reduction compared to GC. A more interesting result is that
the UC-MM scheme outperforms both LCC and GC. This result is especially important since UC-MM
has no decoding complexity at the PS. Hence, when the decoding time of PS is also included in the
average per-iteration completion time this improvement will be even more significant. We also observe
that LCC-MM scheme achieves the minimum average completion time. However, Figure 3b highlights
that the MMC schemes, particularly LCC-MM and UC-MM, induce much higher communication

Entropy 2020, 22, 544 16 of 31

load compared to the conventional single-message schemes. The results illustrated in Figure 3 also
show that the multi-message variations of GC can perform as well as LCC in terms of the average
per-iteration completion time, while inducing much lower communication overhead compared to the
LCC-MM and UC-MM schemes.

Finally, on the same setup, we analyze the performance of the DGD schemes with respect to
the computation load A, and compute both the average per-iteration completion time � [)] and the
communication load for ten different A values, i.e., A = 2, 4, . . . , 20. In Section 1, we identified two
main drawbacks of the single-message coded computation schemes; namely over-computation and
under-utilization. In Figure 4a, these drawbacks are explicitly demonstrated. One can observe that
after a certain point, the average completion time of LCC starts to increase with A, which reflects
over-computation. The gap between the LCC and LCC-MM highlights under-utilization of the
computation resources.

From Figure 4a, we observe that the UC-MM scheme consistently outperforms LCC for all the
computation load values. More interestingly, UC-MM performs very close to LCC-MM, and for a small
A, such as A = 2, it can even outperform LCC-MM. Hence, in terms of the computation time UC-MM
can be considered to be a better option compared to LCC especially when A is low.

On the other hand, in Figure 4b we observe that in terms of the communication load the best
scheme is LCC, while the UC-MM introduces the highest communication load. We also observe that the
communication load of LCC-MM remains constant with A , whereas that of the LCC (UC-MM) scheme
monotonically decreases (increases) with A. Accordingly, the communication load of the LCC and
UC-MM schemes are closest at A = 2. Hence, from both Figure 4a and Figure 4b we can conclude that
when A is low, UC-MM might be a better option compared to LCC taking into account the computation
time, the communication load and decoding complexity together. We also want to underline the fact
that although LCC-MM achieves a lower average completion time, MMC increases the communication
load as well as the decoding complexity.

Remark 2. An important aspect of the average per-iteration completion time that is ignored here, and by other
works in the literature, is the decoding complexity at the PS. Among these three schemes, UC-MM has the
lowest decoding complexity, while LCC-MM has the highest. However, as discussed in Section 4, the number of
transmissions as well as the decoding complexity can be reduced via increasing the number of polynomials used
in the decoding process. To illustrate this, we consider a different implementation of the LCC-MM scheme, where
two polynomials are used, denoted by LCC-MM-2 (We use notation LCC-MM-2 and LCC-2 interchangeably.).
In this scheme, for given A, coded inputs correspond to evaluation of two polynomials, each of degree # − 2, at
A/2 different points. Each worker sends a partial result in the PS after execution of two computations, which
correspond to the evaluation of these two polynomials at the same point. Since two polynomials are used, the
number of transmissions is reduced by approximately half compared to LCC-MM as illustrated in Figure 4b. A
noticeable improvement is achieved in the communication load, at the expense of a relatively small increase in the
average per-iteration completion time as illustrated in Figure 4a.

Another important advantage of the UC-MM scheme is its applicability to partial gradient
scenario. The objective of all the straggler avoidance schemes explained in this paper is to recover the
full gradient at the PS. Accordingly, with UC-MM, the PS waits until it receives all partial gradients
to terminate the iteration. However, to reduce the computation time PS may terminate an iteration
after receiving only ̃ < partial gradients out of [49]. We refer to this variation of UC-MM scheme
as UC-MM-PG. For the UC-MM-PG scheme, the key design parameter is the tolerance rate − ̃

and

for our analysis we set the tolerance rate to 5%. The results in Figure 4a show that when A is small,
UC-MMC-PG can reduce the average completion time up to 70% compared to LCC, and up to 33%
compared to UC-MMC; while only 2 out of 40 gradient values are missing at each iteration. In addition
to an improvement in the average completion time, the UC-MMC-PG scheme can also reduce the
communication load as shown in Figure 4b. We remark that in partial gradient approach the estimated

Entropy 2020, 22, 544 17 of 31

gradient, due to missing partial gradients, is not the original gradient but an estimate of it. Although
each update is less accurate compared to full-gradient updates, since the parameter vector is updated
over many iterations, partial gradient approach may converge to the optimal value faster than the
full-gradient approach. Indeed, stochastic gradient descent is an extreme case of this partial gradient
approach, and is commonly used in practice. Moreover, tolerance rate can be dynamically updated
through iterations to achieve better convergence results.

7.2. Data Driven Simulations

In this setup, we initialized 21 Amazon EC2 t2.micro instances, where the first one is labeled as
the parameter server. We use the MPI protocol, particularly mpi4py [56], to establish connections
between instances. For the computation, we consider a matrix-vector multiplication with sizes
3000 × 3000 and 3000 × 1, respectively, which is the core computation task for GD in a linear regression
problem assuming that the whole dataset is divided into 20 subsets each containing 3000 data
points and each data point is a vector of 3000 parameters. We measure the computation time using
time.time() command before and after each computation. For message passing we use non-blocking
communication with Issend and Irecv commands for message sending and receiving, respectively.
Furthermore, we use wait() command to verify the time instant when the message is successfully
received and again we use the time.time() command to measure the time.

For data collection, we do point-to-point analysis such that in each simulation we use only one
instance and the parameter server. The chosen instance performs the computation (the assigned
matrix-vector multiplication) and sends the result to the PS, which is repeated after receiving a
new vector from the PS. In total, we form a measurement set of size 3000 for both computation
and communication latency for each node. These measurement sets are then used for our average
per-iteration time analysis. We want to note that in practice one of the predominant factors affecting
the average completion time is the congestion at the PS due to the MPI protocol; however, this is very
much dependent on the particular protocol used, and can be reduced or eliminated with more efficient
communication protocol. For example, by employing a hierarchical framework with multiple PSs
congestion issue can be resolved in large-scale implementations. Hence, we first analyze the average
completion time ignoring the effects of congestion. We refer to these simulations as data driven, which
are based on the assumptions that the communication channels from workers to PS are orthogonal.

We consider two different scenarios. In the first scenario we randomly delay the computation
time of the instances for a fixed duration. In the second simulation, in addition to computational delay,
we add exponentially distributed delay to the communication latency.

7.2.1. Scenario 1

We introduce the term delay probability, denoted by ?, to refer to the probability of a machine to
be delayed. This delay can be due to the computation process, as mostly argued in the literature, a
possible access failure (connection lost), or the queuing delay due to congestion of computation tasks.
For the simulations, we consider a fixed additional delay that comprise all aforementioned delays,
which we refer as the initial delay. Fixed initial delay approach have been also used for simulations in
[12,20].

In our simulations, we consider failure probabilities 0.2, 0.3 and 0.4, and computational loads of
A = 4 and A = 6. We use the GC-MM-C scheme with message order 3 (with cluster size of 5) and 4 (with
cluster size of 10) when A = 4 and A = 6, respectively. Similarly, we use the GC-MM-U scheme with
message order vector m = [3, 4] (with cluster size of 5) and m = [4, 5, 6] (with cluster size of 10) when
A = 4 and A = 6, respectively. We refer to each (A, ?) pair as a sub-scenario and consider six of them in
total. For each sub-scenario we vary the initial delay in the range of 6 to 36 milliseconds (ms), and the
results are shown in Figure 5.

From the results, an immediate observation is that multi-message schemes perform better than
their single-message counterparts when the computation load A is high. We note that although a higher

Entropy 2020, 22, 544 18 of 31

computation load reduces the non-straggler threshold, it also increases the computation time of the
non-straggler workers. Hence, when the ratio of non-straggler threshold to the number of workers is
less than 1 − ?; that is, when the delay probability is over-estimated, we observe the limitation due to
over-computation, and single-message schemes performs poorly as clearly illustrated in Figure 5b.
On the other hand, MMC has flexibility of either collecting fewer computations from a large set of
workers, e.g., when ? is low, or collecting more computations from fewer workers, e.g., when ? is high.
This flexibility makes MMC schemes, especially LCC-MM and UC-MM, better options compared to
their single-message counterparts.

Simulation results also point out that although LCC is superior to the GC scheme, proposed
variations of GC, particularly GC-MM-C, can outperform LCC in certain cases. Moreover, we observe
that the correlated GC design, GC-MM-C, performs better compared to the uncorrelated design,
GC-MM-C, especially when A is large.

Finally, the simulation results, especially those with A = 4, show that as ? increases, i.e., as 1 − ?
gets close to the ratio of non-straggler threshold to the number of workers, comparative performance
of the LCC scheme improves and even outperforms LCC-MM and UC-MM schemes. This observation
highlights the fact that when the PS is limited to receive computations from the same subset of workers,
which is the case when ? is large, LCC may perform better.

Entropy 2020, 22, 544 19 of 31

6 12 18 24 30 36

Initial delay(ms)

0

5

10

15

20

25

30

35

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(a)

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(b)

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

30

35

40

45

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(c)

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

30

35

40

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(d)

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

30

35

40

45

50

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(e)

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

30

35

40

45

50

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(f)

Figure 5. Average completion time analysis for GC, GC-MM-U, GC-MM-C, LCC, LCC-MM, LCC-2
and UC-MM schemes with random fixed initial delay; (a) r = 4 and p = 0.2, (b) r = 6 and p = 0.2, (c) r =
4 and p = 0.3, (d) r = 6 and p = 0.3, (e) r = 4 and p = 0.4, and (f) r = 6 and p = 0.4.

7.2.2. Scenario 2

In the previous simulations, we focus on worker-based delays by using an initial delay parameter.
We remark that with non-blocking communication approach communication and computation can be
executed in parallel; however, each worker can send a message when the corresponding computation
is completed and the previous message is successfully received by the PS. Hence, under certain
scenarios where the communication latency is higher than the computation latency MMC strategy
might be inefficient. In other words, the success of the MMC strategy depends on the ratio between

Entropy 2020, 22, 544 20 of 31

the average computation and communication latency. To this end, we extend our previous analysis by
adding additional exponentially distributed delays with parameter ` to the communication latency to
demonstrate the impact of the communication latency on the MMC schemes.

We first set A = 4, and consider 4 sub-scenarios each corresponding to a different ?, ` pair, where
? takes values 0.2 and 0.4, and ` takes values 2 and 4. For each sub-scenario we again change the
initial delay in the range of 6 to 36 ms, and the results are illustrated in Figure 6.

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

30

35

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(a)

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

30

35

40

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(b)

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

30

35

40

45

50

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(c)

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

30

35

40

45

50

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(d)

Figure 6. Average completion time analysis for GC, GC-MM-U, GC-MM-C, LCC, LCC-MM, LCC-MM-2
and UC-MM schemes with random fixed initial delay and exponential communication; (a) r = 4, p =
0.2 ` = 2, (b) r = 4, p = 0.2 ` = 4, (c) r = 4, p = 0.4 ` = 2, and (d) r = 4, p = 0.4 ` = 4.

One can easily observe, comparing Figure 6b and Figure 5a, that even for small ?, MMC schemes,
especially UC-MM, can lose their advantage over single-message schemes when the communication
latency is considerably high. Indeed, LCC and its multi-message variations, LCC-MM and LCC-MM-2,
outperform UC-MM in all four sub-scenarios except the first one, in which UC-MM performs slightly
better than LCC. Another interesting observation is that when ` = 4, GC-MM-C outperforms UC-MM
especially when ? is low. Hence, when the communication latency in the network is large, GC with
MMC can be preferred against UC-MM.

We repeat the simulations for the same four sub-scenarios with communication load A = 6, and
the results are illustrated in Figure 7. Although the results show similarities with the previous one, we
can identify some variations. First, as we expected, the relative performance of LCC deteriorates, due
to the over-computation, especially when ? = 0.2. When ? = 0.2, compared to the case of A = 4, LCC
loses its advantage against UC-MM. We also observe that in none of these four sub-scenarios LCC is
the best one.

Entropy 2020, 22, 544 21 of 31

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

30

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(a)

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

30

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(b)

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

30

35

40

45

50

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(c)

6 12 18 24 30 36

Initial delay (ms)

0

5

10

15

20

25

30

35

40

45

50

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

LCC-MM-2

UC-MM

(d)

Figure 7. Average completion time analysis for GC, GC-MM-U, GC-MM-C, LCC, LCC-MM, LCC-2
and UC-MM schemes with random fixed initial delay and exponential communication delay; (a) r = 6,
p = 0.2 and ` = 2, (b) r = 6, p = 0.2 and ` = 4, (c) r = 6, p = 0.4 and ` = 2, and (d) r = 6, p = 0.4 and ` = 4.

C1 C2 C3 C4 C5 C6

C1 C2 C3 C4 C5 C6

M3M1 M2

M1 M2 M3 M4 M5 M6

LCC-MM-2

LCC-MM

Figure 8. Overlapping communication and computation, green and blue blocks illustrate the
computation and the communication steps, respectively.

Figure 6 and Figure 7 point out that LCC-MM-2 can be a better alternative compared to LCC,
LCC-MM and UC-MMC when both the communication latency and communication load A are high.
This is because LCC-MM-2, improves upon the LCC-MM and UC-MM schemes via reducing the
number of messages sent at each iteration as well as increasing the time between two communication
rounds which better overlaps the communication and computation processes as illustrated in Figure

Entropy 2020, 22, 544 22 of 31

8. Thanks to overlapped communication time, LCC-MM-2 scheme is more robust to communication
latency compared to LCC-MM and UC-MM.

(a) (b)

(c) (d)

Figure 9. Per-iteration completion time for different schemes with A = 4; (a) failure probability p=0.2,
initial delay 12 ms, (b) failure probability p=0.2, initial delay 24 ms , (c) delay probability p=0.4, initial
delay 12 ms, and (d) delay probability p=0.4, initial delay 24 ms.

Finally, to monitor the marginal effect of the communication latency, we pick four particular cases;
? = 0.2 with 12 ms initial delay, ? = 0.2 with 24 ms initial delay, ? = 0.4 with 12 ms initial delay, and
? = 0.4 with 24 ms initial delay; and plot the performance of all the schemes with respect to ` in Figure
9. We observe that the average completion time increases with respect `; however, while GC and LCC
exhibit a gradual increase, LCC-MM and UC-MM experience a step increase with `. In particular,
when ? = 0.2, it is clear how UC-MM and LCC-MM schemes lose their advantages with increasing
communication latency.

7.3. Real Time Simulations

Data driven simulations ignore the effect of congestion on the completion time statistics. To
remedy this, we perform real time analyses on Amazon EC2 servers. As with the data driven
simulations, we initialize 21 Amazon EC2 t2.micro instances, where the first one is labeled as the PS,
and we use the MPI protocol to establish connections between these instances. At the beginning of
each iteration, after receiving the model update from the PS, we randomly induce a fixed delay at each
instance using time.sleep() command. Then, the PS waits until the required condition to complete an
iteration, which depends on the scheme employed, is met. We present the average completion time
over 1000 iterations. We first set A = 3, and consider four different sub-scenarios with p=0.1, 0.2, 0.3,

Entropy 2020, 22, 544 23 of 31

0.4. In each scenario, we change the initial delay from 6 ms to 30 ms and the results are illustrated in
Figure 10.

Although GC-MM-C and UC-MM outperform LCC when both initial delay and ? are low, in
general, LCC achieves the best performance, especially when ? is large. Nevertheless, we also observe
that GC-MM-C and UC-MM perform close to LCC, particularly when ? is low; indeed, in all the cases,
the performance gap between LCC and UC-MM is at most 26%. Hence, when the decoding complexity
of the LCC scheme as well as the initial data encoding process are taken into consideration, UC-MM
scheme is still a strong candidate for distributed computation.

6 12 18 24 30

Initial delay (ms)

0

5

10

15

20

25

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

UC-MM

(a)

6 12 18 24 30

Initial delay (ms)

0

5

10

15

20

25

30

35

40

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

UC-MM

(b)

6 12 18 24 30

Initial delay (ms)

0

5

10

15

20

25

30

35

40

45

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

UC-MM

(c)

6 12 18 24 30

Initial delay (ms)

0

5

10

15

20

25

30

35

40

45

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

GC-MM-U

GC-MM-C

LCC

LCC-MM

UC-MM

(d)

Figure 10. Per-iteration completion time for different schemes with A = 3; (a) p = 0.1, (b) p = 0.2, (c) p =
0.3, and (d) p = 0.4.

Next, we set A = 4 and repeat the simulation as in the previous case, but this time we compare the
performance of the GC, LCC, LCC-MM, LCC-MM-2, and UC-MM schemes. We observe that when ?

is low, i.e., ? = 0.1 and ? = 0.2, MMC schemes LCC-MM and UC-MM outperform others. Indeed,
UC-MM can perform up to 40% better compared to LCC. On the other hand, when we consider larger
? values, LCC, LCC-MM, LCC-MM-2, and UC-MM schemes have similar performance, although
average completion time of UC-MM scheme is slightly higher when the initial delay is large.

We remark that although the real time simulation results present similar trends with our initial
data driven analysis, we observe some differences as well. In particular, when A = 4 and ? = 0.2, we
expect UC-MM and LCC-MM schemes to perform much better based on our data driven analysis
illustrated in Figure 5a. However, as we discussed in Section 7.2.2, communication latency is also an
important factor for the average completion time statistics, and the multi-message schemes are more
prone to communication delays. Our interpretation for the results in Figure 11b is that the performance

Entropy 2020, 22, 544 24 of 31

of the UC-MM and LCC-MM schemes are limited due to the congestion at the PS. To show the effect of
congestion more explicitly we limit our focus to two cases with initial delay of 12 ms and ? = 0.2, and
initial delay of 24 ms and ? = 0.2. For these two cases, we compare the data driven simulation results
of GC, LCC, LCC-MM, LCC-MM-2 and UC-MM schemes with their real time counterparts in Figure 12.

6 12 18 24 30

Initial delay (ms)

0

5

10

15

20

25

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

LCC

LCC-MM

LCC-MM-2

UC-MM

(a)

6 12 18 24 30

Initial delay (ms)

0

5

10

15

20

25

30

35

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

LCC

LCC-MM

LCC-MM-2

UC-MM

(b)

6 12 18 24 30

Initial delay (ms)

0

5

10

15

20

25

30

35

40

45

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

LCC

LCC-MM

LCC-MM-2

UC-MM

(c)

6 12 18 24 30

Initial delay (ms)

0

5

10

15

20

25

30

35

40

45

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

GC

LCC

LCC-MM

LCC-MM-2

UC-MM

(d)

Figure 11. Per-iteration completion time for different schemes with A = 4; (a) delay probability p = 0.1,
(b) delay probability p = 0.2, (c) delay probability p = 0.3, and (d) delay probability p = 0.4.

It is clear from Figure 12a that all the schemes suffer from the congestion, but its effect is more
significant for multi-message schemes. Figure 12b, further shows that multi-message schemes,
particularly LCC-MM and UC-MM, may lose their advantage due to congestion. We emphasize
that these observations are consistent with our data driven simulation results with exponential
communication delay.

Entropy 2020, 22, 544 25 of 31

(a) (b)
Figure 12. Comparison of data driven simulation results with real time simulation results; (a) p = 0.2
and initial delay is 12 ms, and (b) p = 0.2 and initial delay is 24 ms.

One of the most interesting observations from the real time simulation results is the trend of the
LCC schemes, particularly LCC and LCC-MM-2, with respect to initial delay. According to data driven
results in Figure 5, LCC scheme should be robust to the initial delay; hence, we expect the average
completion time of the LCC scheme not to increase with initial delay, but the real time simulation
results in Figure 11d seem to be inconsistent with this intuition. However, this discrepancy results
from the way communication delay is introduced in real time scenarios. When we introduce delay
using the time.sleep() command in real time simulations, the instance might be still sleeping in the
next iteration since average completion time is less than the initial delay in general. In other words,
an initial delay at a particular iteration can affect the following iterations, which is not the case in
data driven simulations. This impact becomes more visible as ? increases. To verify our reasoning we
repeat the simulations for ? = 0.4 with different initial delays, but this time we terminate the delay
when the iteration is completed, so that the delay in one iteration has no impact on the following
iterations. The corresponding simulation results are illustrated in Figure 13, which support our
interpretation.

6 12 18 24 30

Initial delay(ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e
ra

g
e
 c

o
m

p
le

ti
o
n
 t
im

e
 (

m
s
)

LCC

LCC-MM

LCC-2

UC-MM

Figure 13. Performance under uncorrelated delay.

This observation leads to a new discussion on the modelling of delay at workers. In the literature,
the delay is mostly associated with the computation process. In that case, one can argue that after each
iteration uncompleted jobs will be terminated, so that the delay will not affect the following iterations.

Entropy 2020, 22, 544 26 of 31

On the other hand, it is also possible to observe delays due to access failure or scheduled tasks for
other clients. Such delays are not limited to a single iteration, causing correlation among delays over
consecutive iterations.

Next, we consider both correlated and uncorrelated delays for completeness of our analysis.
We set A = 6, and for both correlated and uncorrelated scenario we analyze two cases with ? = 0.1
and ? = 0.3. The corresponding results are illustrated in Figure 14. In the case of correlated delay
with ? = 0.1, compared to LCC, LCC-MM and UC-MM can achieve 36–40% and 42–58% reduction
in the average completion time, respectively. Similarly, they achieve around 48% and %60 reduction,
respectively, when the delay is uncorrelated. When the delay is uncorrelated, we observe similar
trends for ? = 0.3, such that both LCC-MM and UC-MM achieve around 40% reduction in the average
completion time compared to LCC. When the delay is correlated, UC-MM still outperforms LCC, but
its performance deteriorates with the increase in the initial delay and when the initial delay is large
LCC-MM becomes a better option. We believe that understanding the impact of correlation in the
delay over time is an interesting future research direction.

6 12 18 24 30

Initial delay (ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

LCC LCC-MM-2 LCC-MM UC-MM

(a)

6 12 18 24 30

Initial delay(ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

LCC LCC-MM-2 LCC-MM UC-MM

(b)

6 12 18 24 30

Initial delay(ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

LCC LCC-MM-2 LCC-MM UC-MM

(c)

6 12 18 24 30

Initial delay(ms)

0

2

4

6

8

10

12

14

16

18

20

A
v
e

ra
g

e
 c

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
)

LCC LCC-MM-2 LCC-MM UC-MM

(d)

Figure 14. Per-iteration completion time for different schemes with A = 6; (a) correlated delay, p = 0.1,
(b) uncorrelated delay, p = 0.1 (c) correlated delay, p = 0.3, and (d) uncorrelated delay, p = 0.3.

7.4. Discussions

Comparing data driven and real time simulation results, we have shown that network congestion,
especially in large-scale implementations, might be a predominant issue for the performance. For real
time implementations, we expect the communication latency to scale with the number of instances
which limits the advantage of the MMC approach. However, a hierarchical network architecture, where
the instances are grouped and multiple PSs are employed, can be used to alleviate the congestion, and

Entropy 2020, 22, 544 27 of 31

thus MMC approach can still be beneficial.
In this paper, we have mostly limited our focus to the exact recovery of the full gradient; however

partial gradient recovery, as well as gradient approximation, are both important research directions,
which have been recently studied by several works [50–54]. We remark that partial gradient or
approximate gradient recovery, can reduce the computation time by allowing less accurate updates.
Moreover, the most popular optimization framework for deep learning is SGD, which basically uses
unbiased estimation of the gradient using randomly sampled data [57]. Therefore, one can argue that
the full gradient may not be required for a successful implementation of the GD framework in many
machine learning applications. However, as already discussed in [12], missing partial gradients may
cause GD algorithm to diverge in some cases, particularly when an acceleration strategy, such as
Nesterov’s accelerated gradient, is employed. In addition, even for the SGD implementation, it is
shown that the number of required iterations for training can be reduced by increasing the batch size
[58], which is actually the main motivation behind large-scale implementations [59,60]. Furthermore,
impact of the stragglers on the convergence may also depend on the dataset, its distribution among
the workers (such as i.i.d./non-i.i.d. distributions) and the straggler realizations.

Finally, we want to note that in this paper, for the overall latency analysis we take into account
the computation time and the communication time, but ignore the latency at PS due to the encoding
complexity. As discussed in [14], the implemented code structure also plays an important role in
the overall latency. However, in the scope of this paper, our focus has been to introduce a design
framework for distributed learning with MMC, and we also note that different code structures can
be incorporated with the introduced framework. Hence, we leave the MMC strategy with reduced
decoding complexity as a future extension of this work.

8. Conclusion

We have introduced novel coded and uncoded DGD schemes when MMC is allowed from each
worker at each iteration. First, we have provided a closed-form expression for the per-iteration
completion time statistics of these schemes under a shifted exponential computation time model, and
verified our results with Monte Carlo simulations. Then, we have compared these schemes with other
DGD schemes in the literature in terms of the average computation and communication loads incurred.

We have observed that allowing multiple messages to be conveyed from each worker at each GD
iteration can reduce the average completion time significantly by exploiting non-straggling workers at
the expense of an increase in the average communication load. We have also observed that UC-MM
with simple circular shift can be more efficient compared to coded computation approaches when the
workers have limited storage capacity. We emphasize that despite benefits of coded computation in
reducing the computation time, their relevance in practical big data problems is questionable due to
the need to jointly transform the whole dataset, which may not even be possible to store in a single
worker. In this paper, we have performed comprehensive simulations with different parameters to
highlight the fundamental trade-offs in the practical implementation of the distributed computation in
the context of gradient descent for machine learning applications.

Author Contributions: Conceptualization, E.O., D.G. and S.U.; methodology, E.O., D.G. and S.U.;
writing–original draft preparation, E.O.; writing–review and editing, D.G. and S.U.; funding acquisition, D.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Marie Sklodowska-Curie Action SCAVENGE (grant agreement
no. 675891), and by the European Research Council (ERC) Starting Grant BEACON (grant agreement no. 677854).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dean, J.; Corrado, G.S.; Monga, R.; Chen, K.; Devin, M.; Le, Q.V.; Mao, M.Z.; Ranzato, M.; Senior, A.; Tucker,
P.; Yang, K.; Ng, A.Y. Large Scale Distributed Deep Networks. In Proceedings of the 25th International

Entropy 2020, 22, 544 28 of 31

Conference on Neural Information Processing Systems; Curran Associates Inc.: New York, NY, USA, 2012;
Volume 1; pp. 1223–1231.

2. Dekel, O.; Gilad-Bachrach, R.; Shamir, O.; Xiao, L. Optimal Distributed Online Prediction Using Mini-batches.
J. Mach. Learn. Res. 2012, 13, 165–202.

3. Zinkevich, M.A.; Weimer, M.; Smola, A.; Li, L. Parallelized Stochastic Gradient Descent. In Proceedings of
the 23rd International Conference on Neural Information Processing Systems; Curran Associates Inc.: Red
Hook, NY, USA, 2010;Volume 2; pp. 2595–2603.

4. Li, M.; Andersen, D.G.; Park, J.W.; Smola, A.J.; Ahmed, A.; Josifovski, V.; Long, J.; Shekita, E.J.; Su, B.Y.
Scaling Distributed Machine Learning with the Parameter Server. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation; USENIX Association: Berkeley, CA, USA,
2014; pp. 583–598.

5. Li, S.; Kalan, S.M.M.; Avestimehr, A.S.; Soltanolkotabi, M. Near-Optimal Straggler Mitigation for Distributed
Gradient Methods. 2018 IEEE International Parallel and Distributed Processing Symposium Workshops; IEEE:
Piscataway, New Jersey, USA, 2018, pp. 857–866.

6. Ferdinand, N.; Draper, S.C. Anytime Stochastic Gradient Descent: A Time to Hear from all the Workers.
In Proceedings of the 2018 56th Annual Allerton Conference on Communication, Control, and Computing
(Allerton); IEEE: Piscataway, New Jersey, USA, 2018, pp. 552–559. doi:10.1109/ALLERTON.2018.8635903.

7. Mohammadi Amiri, M.; Gündüz, D. Computation Scheduling for Distributed Machine Learning With
Straggling Workers. IEEE Trans. Signal Process. 2019, 67, 6270–6284. doi:10.1109/TSP.2019.2952051.

8. Behrouzi-Far, A.; Soljanin, E. On the Effect of Task-to-Worker Assignment in Distributed Computing
Systems with Stragglers. In Proceedings of the 2018 56th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), IEEE: Piscataway, New Jersey, USA, 2018, pp. 560–566.
doi:10.1109/ALLERTON.2018.8636064.

9. Chen, J.; Monga, R.; Bengio, S.; Józefowicz, R. Revisiting Distributed Synchronous SGD. CoRR 2016,
Available online: abs/1604.00981, (accessed on: 11 May 2020) [1604.00981].

10. Aktas, M.F.; Soljanin, E. Straggler Mitigation at Scale. CoRR 2019, abs/1906.10664, doi:
10.1109/TNET.2019.2946464 [1906.10664].

11. Wang, D.; Joshi, G.; Wornell, G.W. Efficient Straggler Replication in Large-Scale Parallel Computing. ACM
Trans. Model. Perform. Eval. Comput. Syst. 2019, 4, 2376–3639. doi:10.1145/3310336.

12. Tandon, R.; Lei, Q.; Dimakis, A.G.; Karampatziakis, N. Gradient Coding: Avoiding Stragglers in Distributed
Learning. In Proceedings of the 34th International Conference on Machine Learning; Precup, D.; Teh, Y.W., Eds.;
PMLR International Convention Centre: Sydney, Australia, 2017; Volume 70, pp. 3368–3376.

13. Ye, M.; Abbe, E. Communication-Computation Efficient Gradient Coding. In Proceedings of the 35th
International Conference on Machine Learning; Dy, J.; Krause, A., Eds.; PMLR: Stockholmsmässan,
Stockholm Sweden, 2018; Vol. 80, pp. 5610–5619.

14. Halbawi, W.; Azizan, N.; Salehi, F.; Hassibi, B. Improving Distributed Gradient Descent Using Reed-Solomon
Codes. In 2018 IEEE Int. Symp. on Inf. Theory (ISIT); IEE: Piscataway, New Jersey, USA, 2018, pp. 2027–2031.
doi:10.1109/ISIT.2018.8437467.

15. Ozfatura, E.; Gündüz, D.; Ulukus, S. Gradient Coding with Clustering and Multi-Message Communication.
In 2019 IEEE Data Science Workshop (DSW); IEEE: Piscataway, New Jersey, USA 2019, pp. 42–46.
doi:10.1109/DSW.2019.8755563.

16. Sasi, S.; Lalitha, V.; Aggarwal, V.; Rajan, B.S. Straggler Mitigation with Tiered Gradient Codes, 2019, Available
online: [arXiv:cs.IT/1909.02516]. (accessed on: 11 May 2020)

17. Lee, K.; Lam, M.; Pedarsani, R.; Papailiopoulos, D.; Ramchandran, K. Speeding Up Distributed Machine
Learning Using Codes. IEEE Trans. Inf. Theory 2018, 64, 1514–1529.

18. Ferdinand, N.; Draper, S.C. Hierarchical Coded Computation. In Proceedings of the IEEE International
Symposium on Information Theory (ISIT); Vail, CO, USA; 17–22 June 2018 , pp. 1620–1624.

19. Maity, R.K.; Singh Rawa, A.; Mazumdar, A. Robust Gradient Descent via Moment Encoding and LDPC
Codes. In Proceedings of the IEEE International Symposium on Information Theory (ISIT); Paris, France,
France 7–12 July 2019, pp. 2734–2738. doi:10.1109/ISIT.2019.8849514.

20. Li, S.; Kalan, S.M.M.; Yu, Q.; Soltanolkotabi, M.; Avestimehr, A.S. Polynomially Coded Regression: Optimal
Straggler Mitigation via Data Encoding. CoRR 2018, Available online: abs/1805.09934, [1805.09934]. (Accessed
on: 11 May 2020)

https://doi.org/10.1109/ALLERTON.2018.8635903
https://doi.org/10.1109/TSP.2019.2952051
https://doi.org/10.1109/ALLERTON.2018.8636064
http://xxx.lanl.gov/abs/1604.00981
http://xxx.lanl.gov/abs/1906.10664
https://doi.org/10.1145/3310336
https://doi.org/10.1109/ISIT.2018.8437467
https://doi.org/10.1109/DSW.2019.8755563
http://xxx.lanl.gov/abs/1909.02516
https://doi.org/10.1109/ISIT.2019.8849514
http://xxx.lanl.gov/abs/1805.09934

Entropy 2020, 22, 544 29 of 31

21. Ozfatura, E.; Gündüz, D.; Ulukus, S. Speeding Up Distributed Gradient Descent by Utilizing Non-persistent
Stragglers. In Proceedings of the IEEE International Symposium on Information Theory (ISIT); Paris, France,
France 7–12 July 2019, pp. 2729–2733. doi:10.1109/ISIT.2019.8849684.

22. Dutta, S.; Fahim, M.; Haddadpour, F.; Jeong, H.; Cadambe, V.; Grover, P. On the Optimal Recovery Threshold
of Coded Matrix Multiplication. IEEE Trans. Inform Theory 2019, 66, 278–301

23. Yu, Q.; Maddah-Ali, M.; Avestimehr, S. Polynomial Codes: an Optimal Design for High-Dimensional Coded
Matrix Multiplication. In Advances in Neural Information Processing Systems 30; Guyon, I.; Luxburg, U.V.;
Bengio, S.; Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Eds.; Curran Associates, Inc..: Red Hook,
NY, USA, 2017; pp. 4403–4413.

24. Park, H.; Lee, K.; Sohn, J.; Suh, C.; Moon, J. Hierarchical Coding for Distributed Computing. In Proceedings
of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA 17–22 June 2018, pp.
1630–1634.

25. Mallick, A.; Chaudhari, M.; Joshi, G. Fast and Efficient Distributed Matrix-vector Multiplication Using
Rateless Fountain Codes. In Proceedings of the ICASSP 2019 - 2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK 12–17 May 2019 , pp. 8192–8196.

26. Karakus, C.; Sun, Y.; Diggavi, S.; Yin, W. Straggler Mitigation in Distributed Optimization Through Data
Encoding. In Advances in Neural Information Processing Systems 30; Guyon, I.; Luxburg, U.V.; Bengio, S.;
Wallach, H.; Fergus, R.; Vishwanathan, S.; Garnett, R., Eds.; Curran Associates, Inc., Red Hook, NY, USA,
2017, pp. 5434–5442.

27. Kiani, S.; Ferdinand, N.; Draper, S.C. Exploitation of Stragglers in Coded Computation. In Proceedings of
the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA 17–22 June 2018 , pp.
1988–1992.

28. Das, A.B.; Tang, L.; Ramamoorthy, A. C3LES: Codes for Coded Computation that Leverage Stragglers. In
Proceedings of the 2018 IEEE Information Theory Workshop (ITW), Guangzhou, China, 25–29 November
2018, pp. 1–5.

29. Ozfatura, E.; Ulukus, S.; Gündüz, D. Distributed Gradient Descent with Coded Partial Gradient
Computations. In Proceedings of the ICASSP 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Brighton, UK, 12-17 May 2019 , pp. 3492–3496.

30. Haddadpour, F.; Yang, Y.; Chaudhari, M.; Cadambe, V.R.; Grover, P. Straggler-Resilient and
Communication-Efficient Distributed Iterative Linear Solver. CoRR 2018, Available online: abs/1806.06140,
[1806.06140]. (accessed on: 11 May 2020)

31. Wang, H.; Guo, S.; Tang, B.; Li, R.; Li, C. Heterogeneity-aware Gradient Coding for Straggler Tolerance. In
Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS),
Dallas, TX, USA, 7–10 July 2019, pp. 555–564.

32. Kim, M.; Sohn, J.; Moon, J. Coded Matrix Multiplication on a Group-Based Model. In Proceedings of the
2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July, 2019, pp. 722–726.
doi:10.1109/ISIT.2019.8849317.

33. Yang, Y.; Interlandi, M.; Grover, P.; Kar, S.; Amizadeh, S.; Weimer, M. Coded Elastic Computing. In
Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12
July, 2019, pp. 2654–2658.

34. Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. Straggler Mitigation in Distributed Matrix Multiplication:
Fundamental Limits and Optimal Coding. In Proceedings of the 2018 IEEE International Symposium on
Information Theory (ISIT), Vail, CO, USA 17–22 June 2018, pp. 2022–2026.

35. Dutta, S.; Bai, Z.; Jeong, H.; Low, T.M.; Grover, P. A Unified Coded Deep Neural Network Training
Strategy based on Generalized PolyDot codes. In Proceedings of the 2018 IEEE International Symposium on
Information Theory (ISIT), Vail, CO, USA 17–22 June 2018, pp. 1585–1589.

36. Soto, P.; Li, J.; Fan, X. Dual Entangled Polynomial Code: Three-Dimensional Coding for Distributed Matrix
Multiplication. Proceedings of the 36th International Conference on Machine Learning; Chaudhuri, K.;
Salakhutdinov, R., Eds.; PMLR: Long Beach, CA, USA, 2019; Vol. 97, pp. 5937–5945.

37. Park, H.; Moon, J. Irregular Product Coded Computation for High-Dimensional Matrix Multiplication. In
Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7-12
July 2019, pp. 1782–1786.

https://doi.org/10.1109/ISIT.2019.8849684
http://xxx.lanl.gov/abs/1806.06140
https://doi.org/10.1109/ISIT.2019.8849317

Entropy 2020, 22, 544 30 of 31

38. Das, A.B.; Ramamoorthy, A. Distributed Matrix-Vector Multiplication: A Convolutional Coding Approach.
In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7-12
July 2019, pp. 3022–3026.

39. Mallick, A.; Joshi, G. Rateless Codes for Distributed Computations with Sparse Compressed Matrices. In
Proceedings of the 2019 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France,
7-12 July 2019, pp. 2793–2797.

40. Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. Coded Fourier Transform. In Proceedings of the 2017 55th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA,
3–6 Oct. 2017

41. Reisizadeh, A.; Prakash, S.; Pedarsani, R.; Avestimehr, A.S. CodedReduce: A Fast and Robust Framework
for Gradient Aggregation in Distributed Learning, 2019. Available online: https://arxiv.org/abs/1902.01981
(accessed on: 11 May 2020).

42. Buyukates, B.; Ulukus, S. Timely Distributed Computation with Stragglers, 2019, Available online:
[arXiv:cs.IT/1910.03564]. (accessed on 11 May 2020)

43. Hasircioglu, B.; Gomez-Vilardebo, J.; Gunduz, D. Bivariate Polynomial Coding for Exploiting Stragglers in
Heterogeneous Coded Computing Systems, 2020, Available online: [arXiv:cs.IT/2001.07227]. (accessed on 11
May 2020)

44. Severinson, A.; i Amat, A.G.; Rosnes, E.; Lázaro, F.; Liva, G. A Droplet Approach Based on Raptor Codes
for Distributed Computing With Straggling Servers. In Proceedings of the 2018 IEEE 10th International
Symposium on Turbo Codes Iterative Information Processing (ISTC), Hong Kong, Hong Kong, 3–7 December
2018, pp. 1–5.

45. Severinson, A.; Graell i Amat, A.; Rosnes, E. Block-Diagonal and LT Codes for Distributed Computing With
Straggling Servers. IEEE Trans. Comm. 2019, 67, 1739–1753.

46. Zhang, J.; Simeone, O. Improved Latency-communication Trade-off for Map-shuffle-reduce Systems with
Stragglers. In Proceedings of the ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019, pp. 8172–8176.

47. Li, S.; Maddah-Ali, M.A.; Avestimehr, A.S. Coded Distributed Computing: Straggling Servers and Multistage
Dataflows. In Proceedings of the 2016 54th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), Monticello, IL, USA, 27–30 September 2016, pp. 164–171.

48. Konstantinidis, K.; Ramamoorthy, A. CAMR: Coded Aggregated MapReduce. In Proceedings of the 2019
IEEE International Symposium on Information Theory (ISIT), Paris, France, 7-12 July 2019, pp. 1427–1431.

49. Dutta, S.; Joshi, G.; Ghosh, S.; Dube, P.; Nagpurkar, P. Slow and Stale Gradients Can Win the Race:
Error-Runtime Trade-offs in Distributed SGD. The 21st International Conference on Artificial Intelligence
and Statistics (AISTATS), Playa Blanca, Lanzarote, Canary Islands, 9–11 April 2018.

50. Bitar, R.; Wootters, M.; Rouayheb, S.E. Stochastic Gradient Coding for Straggler Mitigation in Distributed
Learning. CoRR 2019, abs/1905.05383, Available online: [1905.05383]. (accesssed on: 11 May 2020)

51. Wang, H.; Charles, Z.B.; Papailiopoulos, D.S. ErasureHead: Distributed Gradient Descent without Delays
Using Approximate Gradient Coding. CoRR 2019, abs/1901.09671, Available online: [1901.09671]. (accesssed
on: 11 May 2020)

52. Wang, S.; Liu, J.; Shroff, N.B. Fundamental Limits of Approximate Gradient Coding. CoRR 2019,
abs/1901.08166, Available online: [1901.08166]. (accesssed on: 11 May 2020)

53. Horii, S.; Yoshida, T.; Kobayashi, M.; Matsushima, T. Distributed Stochastic Gradient Descent Using LDGM
Codes. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris,
France, 7–12 July 2019, pp. 1417–1421.

54. Zhang, J.; Simeone, O. LAGC: Lazily Aggregated Gradient Coding for Straggler-Tolerant and
Communication-Efficient Distributed Learning. CoRR 2019, abs/1905.09148, Available online: [1905.09148].
(accessed on: 11 May 2020)

55. Chen, T.; Giannakis, G.B.; Sun, T.; Yin, W. LAG: Lazily Aggregated Gradient for Communication-efficient
Distributed Learning. Proceedings of the 32Nd International Conference on Neural Information Processing
Systems; Curran Associates Inc.: Red Hook, NY, USA, pp. 5055–5065.

56. New York University. Python MPI, 2017. Available online: https://nyu-cds.github.io/python-mpi/
57. Bottou, L.; Curtis, F.; Nocedal, J. Optimization Methods for Large-Scale Machine Learning. SIAM Review

2018, 60, 223–311.

http://xxx.lanl.gov/abs/1910.03564
http://xxx.lanl.gov/abs/2001.07227
http://xxx.lanl.gov/abs/1905.05383
http://xxx.lanl.gov/abs/1901.09671
http://xxx.lanl.gov/abs/1901.08166
http://xxx.lanl.gov/abs/1905.09148

Entropy 2020, 22, 544 31 of 31

58. Shallue, C.J.; Lee, J.; Antognini, J.; Sohl-Dickstein, J.; Frostig, R.; Dahl, G.E. Measuring the Effects of Data
Parallelism on Neural Network Training. J. Mach. Learn. Res. 2019, 20, 1–49.

59. Goyal, P.; Dollár, P.; Girshick, R.B.; Noordhuis, P.; Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K.
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. CoRR 2017, abs/1706.02677, Available online:
[1706.02677]. (accessed on: 11 May 2020)

60. You, Y.; Zhang, Z.; Hsieh, C.J.; Demmel, J.; Keutzer, K. ImageNet Training in Minutes. Proceedings of the
47th International Conference on Parallel Processing; ACM: New York, NY, USA, August 2018; pp. 1–10.
doi:10.1145/3225058.3225069.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://xxx.lanl.gov/abs/1706.02677
https://doi.org/10.1145/3225058.3225069
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	An Overview of Existing Straggler Avoidance Techniques
	Coded Computation Schemes
	Coded Transmission Schemes
	Uncoded Computation Schemes

	Coded Computation with MMC
	Lagrange Coded Computation (LCC)
	LCC with MMC

	GC with MMC
	Correlated Code Design
	Uncorrelated Code Design
	Clustering
	Hybrid Implementation

	Uncoded Computation with MMC
	Per-Iteration Completion Time Statistics
	Numerical Results and Discussions
	Model-Based Analysis
	Data Driven Simulations
	Scenario 1
	Scenario 2

	Real Time Simulations
	Discussions

	Conclusion
	References

