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Abstract—In energy harvesting communications, users trans-
mit messages using energy harvested from nature during the
course of communication. With an optimum transmit policy,
the performance of the system depends only on the energy
arrival profiles. In this paper, we introduce the concept of energy
cooperation, where a user wirelessly transmits a portion of its
energy to another energy harvesting user. This enables shaping
and optimization of the energy arrivals at the energy-receiving
node, and improves the overall system performance, despite the
loss incurred in energy transfer. We consider several basic multi-
user network structures with energy harvesting and wireless
energy transfer capabilities: relay channel, two-way channel
and multiple access channel. We determine energy management
policies that maximize the system throughput within a given
duration using a Lagrangian formulation and the resulting KKT
optimality conditions. We develop a two-dimensional directional
water-filling algorithm which optimally controls the flow of har-
vested energy in two dimensions: in time (from past to future)
and among users (from energy-transferring to energy-receiving)
and show that a generalized version of this algorithm achieves
the boundary of the capacity region of the two-way channel.

Index Terms—Energy harvesting, wireless energy transfer,
energy cooperation.

I. INTRODUCTION

IN energy harvesting communications, users transmit mes-
sages using energy harvested from nature [1]–[3]. In such

systems, transmission policies of the users need to be carefully
designed according to the energy arrival profiles. Recent
work addresses this energy management problem for various
energy harvesting communication settings [4]–[19]. When the
energy management policies are optimized as in [4]–[19],
the resulting performance of the system depends only on the
energy arrival profiles. In this paper, we introduce the notion
of energy cooperation in energy harvesting communications
where users can share a portion of their harvested energy
with the other users by means of wireless energy transfer
[20]–[22]. This energy cooperation enables us to control and
optimize the energy arrivals at users to the extent possible. In
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the classical setting of cooperation [23], users help each other
in the transmission of their data by exploiting the broadcast
nature of wireless communications and the resulting overheard
information. In contrast to the usual notion of cooperation,
which is at the signal level, energy cooperation we introduce
here is at the battery energy level. In a multi-user setting,
energy may be abundant in one user in which case the loss
incurred by transferring it to another user may be less than
the gain it yields for the other user. It is this cooperation that
we wish to explore in this paper for several basic multi-user
scenarios, where energy can be transferred from one user to
another through a separate wireless energy transfer unit.

Wireless energy transfer has been recently proposed as a
promising technique for a wide variety of wireless networking
applications [24]–[29]. In future wireless networks, nodes
are envisioned to be capable of harvesting energy from the
environment and transferring energy to other nodes, rendering
the network energy self-sufficient and self-sustaining with a
significantly prolonged lifetime. Wireless energy transfer is a
relatively new concept for wireless communications; however,
it has been considered in other contexts earlier: Wireless
powering of engineering systems by microwave power transfer
technology has been used in many applications [30]–[32]
for a long time, such as space missions [31] and optical
communications [32]. While microwave power transfer is
viewed as the key technology for large-scale cellular networks
[24], recent advances in wireless energy transfer technology
supports feasibility of wireless network design in smaller
scales. In [33], [34], wireless energy transfer with strong
inductive coupling has been demonstrated with relatively high
efficiency over relatively long distances with small device
sizes. Another related line of research in medical implanting
applications has been presented in [27]–[29] where wireless
nodes are powered by wireless energy transfer, which also use
the wirelessly transferred energy for communications. RFID
technology is another prominent example along this direction,
where nodes harvest received energy and use the harvested
energy (via reflection) for communication [35]. Relying on
the possibility of efficient wireless energy transfer, in this
paper, we investigate the optimum communication schemes
in multi-user systems with nodes that have energy harvesting
and energy transfer capabilities.

In communication systems with wireless energy transfer,
energy and information flow simultaneously. Motivated by
this nature of such systems, the trade-off between energy
and information transmission has been addressed in several

0090-6778/13$31.00 c© 2013 IEEE



GURAKAN et al.: ENERGY COOPERATION IN ENERGY HARVESTING COMMUNICATIONS 4885

recent works [36]–[42]. Among these works, the one that is
most pertinent to our work is [41], where multi-user commu-
nication systems with simultaneous energy and information
transmission are studied. Our problem formulation captures a
different trade-off than those studied in [36]–[42] since in our
model wireless energy transfer is maintained by a separate
wireless energy transfer unit, and the harvested energy source
is independent of the received signal energy.

In this paper, we study the offline optimal energy manage-
ment problem for several basic multi-user network structures
with energy harvesting transmitters and one-way wireless
energy transfer. Offline throughput maximization problem has
been recently investigated for various settings with energy
harvesting transmitters in [4]–[19]. In [4], transmission com-
pletion time minimization problem for an energy harvesting
transmitter with an unlimited sized battery is solved, and
this solution is extended to the case of a transmitter with
a finite sized battery in [5] by showing its equivalence to a
throughput maximization problem. References [6]–[11] extend
the throughput maximization problem and its solution to
fading, broadcast, multiple access and interference channels.
In [12]–[15], the end-to-end throughput maximization problem
is solved for two-hop cooperative relay networks for various
settings. Extensions of the throughput maximization problem
for nodes with battery imperfections are considered in [16],
[17], and processing costs are incorporated in [18], [19].

As extensively emphasized in [4]–[19], in energy harvesting
transmitters, energy arrivals in time impose energy causality
constraints on the transmission policies of the users. In the
optimal policy, due to the concavity of the throughput in pow-
ers, energy needs to be allocated as constant as possible over
time subject to energy causality constraints. In the presence
of wireless energy transfer, energy causality constraints take a
new form: energy can flow in time from the past to the future
for each user, and from one user to the other at each time. This
requires a careful joint management of energy flow in two
separate dimensions, and different management policies are
required depending on how users share the common wireless
medium and interact over it. In this context, we analyze several
basic multi-user energy harvesting network structures with
wireless energy transfer. To capture the main trade-offs and
insights that arise due to wireless energy transfer, we focus
our attention on simple two- and three-user communication
systems.

First, we examine additive Gaussian two-hop relay channel
with one-way energy transfer from the source node to the
relay node where the objective is to maximize the end-to-end
throughput. Next, we consider the Gaussian two-way channel
with one-way energy transfer, and the two-user Gaussian
multiple access channel with one-way energy transfer. For
these two channel models, we determine the two-dimensional
simultaneously achievable throughput regions. For all three
cases, we use a Lagrangian approach and determine the
optimum transmit powers and energy transfer policies via
the KKT optimality conditions. In particular, we develop
a two-dimensional directional water-filling algorithm which
optimally controls the energy flow in time and among users.
As observed in [6], energy harvesting setting gives rise to
a directional water-filling algorithm, where energy can flow
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Fig. 1. Two-hop relay channel with energy harvesting source and relay
nodes, and one-way energy transfer from the source node to the relay node.

only from the past to the future due to the energy causality
constraints. In addition, with wireless energy transfer, at any
give time, energy can flow from one user to the other depend-
ing on the direction of wireless energy transfer. Therefore,
the directionality of energy flow in two separate dimensions
requires careful management of energy over time and users.
Solutions obtained in each setting yield new insights on energy
cooperation at the battery energy level in the presence of
wireless energy transfer.

II. TWO-HOP RELAY CHANNEL WITH ONE-WAY ENERGY

TRANSFER

In this section, we consider a two-hop relay channel con-
sisting of a source node, a relay node and a destination node
as shown in Fig. 1. The two queues at the source and the
relay nodes are the data and energy queues. The energies
that arrive at the source and the relay nodes are saved in
the corresponding energy queues. The data queue of the
source always carries some data packets to be delivered to
the destination. The data packets sent from the source node
cause a depletion of energy from the source energy queue and
an increase in the relay data queue. These data packets are
then served out of the relay data queue with a cost of energy
depletion from the relay energy queue. The relay operates in
a full-duplex mode, i.e., it can receive and send data within a
single slot; in addition, the relay can receive energy as well
in the same slot. Therefore, the data and energy queues of
the relay are updated simultaneously in every slot. We assume
that the data and energy buffer sizes are unlimited. In addition,
energy expenditure is only due to data transmissions; any other
energy costs, e.g., processing, circuitry, are not considered in
this paper. There is a separate wireless energy transfer unit at
the source node. Information and energy transfer channels are
orthogonal to each other. In this setting, the source node may
wish to share a portion of its energy with the relay node so
that the relay can forward more data.

The channels from the source to the relay and from the relay
to the destination are additive white Gaussian noise (AWGN)
channels. The received signals yr and yd at the relay and the
destination, respectively, are given by yr =

√
hsxs + ns and

yd =
√
hrxr+nr, where hs and hr are the channel coefficients

for the source-to-relay and relay-to-destination channels, re-
spectively. ns and nr are Gaussian noises each with zero-mean
and unit-variance. We assume that hs = hr = 1 without loss
of generality as otherwise the energy arrivals can be properly
scaled.
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Time is slotted and there are a total of T equal length slots.
Without loss of generality, we assume that the slots are of
unit length. At times t = 1, . . . , T , the source harvests energy
with amounts E1, E2, . . . , ET and the relay harvests energy
with amounts Ē1, Ē2, . . . , ĒT . Without loss of generality, we
assume E1 > 0, Ē1 > 0. The normalized energy transfer
efficiency is α where α = α′ hr

hs
and α′ is the actual energy

transfer efficiency. We assume 0 ≤ α ≤ 1. This means
that when the source transfers δi amount of energy to the
relay through the wireless energy transfer unit in slot i, αδi
amount of energy enters the energy queue of the relay in
the next slot. Similarly, when the source uses power Pi for
data transmission, the data queue of the relay is increased by
1
2 log (1 + Pi) bits in the next slot. The source and relay slots
are indexed by one slot delay, so that, the slot subscripts are
aligned at the source and the relay; see Fig. 2. Power policy
of the source is the sequences Pi and δi, and the power policy
of the relay is the sequence P̄i.

As the energy that has not arrived yet cannot be used for
data transmission or energy transfer, the power policies of the
source and the relay are constrained by the causality of energy
in time. These constraints yield the following feasible set:

F =
{
(δ,P, P̄) :

k∑
i=1

Pi ≤
k∑

i=1

(Ei − δi),

k∑
i=1

P̄i ≤
k∑

i=1

(Ēi + αδi),

Pk, P̄k, δk ≥ 0, ∀k
}

(1)

where vectors P, P̄ and δ denote sequences Pi, P̄i and δi,
respectively. F is the feasible set due to energy causality in
harvested and transferred energies and is valid for the two-way
and multiple access system models as well. For the two-hop
relay channel model, we have an additional constraint: The
relay transmits data that arrives from the source. Therefore,
the power policies of the source and the relay need to satisfy
the following data causality constraints at the relay:

k∑
i=1

1

2
log (1 + P̄i) ≤

k∑
i=1

1

2
log (1 + Pi), k = 1, . . . , T

(2)

We formulate the end-to-end throughput maximization prob-
lem in the next section.

III. END-TO-END THROUGHPUT MAXIMIZATION FOR THE

RELAY CHANNEL

The optimal offline end-to-end throughput maximization
problem with wireless energy transfer subject to energy causal-
ity at both nodes and data causality at the relay node is:

max
P̄i, Pi, δi

T∑
i=1

1

2
log (1 + P̄i)

s.t.
k∑

i=1

1

2
log (1 + P̄i) ≤

k∑
i=1

1

2
log (1 + Pi), ∀k

(δ,P, P̄) ∈ F (3)

δ1
Ē1 Ē2 Ē3 Ē4

P1 P3 P4P2

P̄1 P̄2 P̄3

δ4δ3

E2 E3 E4E1

δ2

P̄4

Fig. 2. Slotted system model: The queues of the relay are updated with one
slot delay with respect to the queues of the source so that the slot indices are
aligned.

It can be shown that (3) is equivalent to a convex optimization
problem (see [20]), by a change of variables from P̄i, Pi, δi
to r̄i = 1

2 log
(
1 + P̄i

)
, ri = 1

2 log (1 + Pi) , δi. Thus, (3)
can be solved using standard techniques [43]. The Lagrangian
function for the problem in (3) is:

L =−
T∑

i=1

log (1 + P̄i) +

T∑
k=1

μk

(
k∑

i=1

Pi − (Ei − δi)

)

+

T∑
k=1

ηk

(
k∑

i=1

P̄i − (Ēi + αδi)

)

+

T∑
k=1

λk

(
k∑

i=1

log (1 + P̄i)−
k∑

i=1

log (1 + Pi)

)

−
T∑

k=1

σkPk −
T∑

k=1

ψkP̄k −
T∑

k=1

ρkδk (4)

We first argue that Pi and P̄i are non-zero in an optimal
policy since E1 > 0 and Ē1 > 0. As (3) reduces to the
problem in [12], [13] for fixed δi, the powers Pi and P̄i are
positive and non-decreasing for positive initial energy. Hence,
it suffices to show that δ1 < E1 in an optimal policy. Assume
δ1 = E1. Then, P1 = 0 and from (2) P̄1 = 0. For now,
assume that P2 > 0. Then, we must also have P̄2 > 0. For
some 0 < ε � 1, define a new energy transfer sequence
δ
′
1 = E1 − ε, δ

′
2 = δ2 + ε, and new source and relay power

allocations P
′
1 = ε, P

′
2 = P2 − ε and P̄

′
1 = ε, P̄

′
2 = P̄2 − ε

while keeping the source and relay power levels and energy
transfer values in the remaining slots unchanged. Note that this
power allocation is feasible: For the source energy causality
constraint over the first slot we have, P

′
1 = ε = E1−(E1−ε) =

E1 − δ
′
1. Together with the fact that

∑k
i=1 P

′
i =

∑k
i=1 Pi and∑k

i=1 δ
′
i =

∑k
i=1 δi, ∀k ≥ 2, we have

∑k
i=1 P

′
i ≤

∑k
i=1 Ei−

δ
′
i, ∀k, since the original source power allocation and energy

transfer profile are feasible. Similarly for the relay energy
causality constraint over the first slot we have, P̄

′
1 = ε ≤

Ē1+α(E1−ε) for small enough ε. Together with the fact that∑k
i=1 P̄

′
i =

∑k
i=1 P̄i and

∑k
i=1 δ

′
i =

∑k
i=1 δi, ∀k ≥ 2, we

have
∑k

i=1 P̄
′
i ≤

∑k
i=1 Ēi + αδ

′
i, ∀k, since the original relay

power allocation and energy transfer profile are feasible. The
data causality constraint trivially holds for the first slot since,
1
2 log (1 + P

′
1) =

1
2 log (1 + P̄

′
1). Similarly, 1

2 log (1 + P
′
2) =

1
2 log (1 + P2 − ε) ≤ 1

2 log (1 + P̄2 − ε) since P̄2 ≤ P2 due
to data causality of the original allocation in the second slot.
Therefore,

∑k
i=1

1
2 log (1 + P̄

′
i ) ≤ 1

2

∑k
i=1 log (1 + P

′
i ), ∀k,

and data causality is satisfied in all slots. Hence, this new
allocation satisfies the energy and data causality constraints
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in (3) and achieves higher end-to-end throughput due to
the concavity of the objective function with respect to P̄i.
Therefore this contradicts optimality. On the other hand, if
P2 = 0, then P̄2 = 0 also. We then go until the first slot k
where Pk > 0. For that slot, we have P̄k > 0 and we use the
above construction with P2 and P̄2 replaced with Pk and P̄k,
respectively. This discussion implies, Pi and P̄i are non-zero
for all i in an optimal policy, and we have σi = ψi = 0, ∀i.

The KKT conditions for this problem are:

−1 +
∑T

k=i λk

1 + P̄i
+

T∑
k=i

ηk = 0, ∀i (5)

−
∑T

k=i λk

1 + Pi
+

T∑
k=i

μk = 0, ∀i (6)

T∑
k=i

μk − α

T∑
k=i

ηk − ρi = 0, ∀i (7)

with the additional complementary slackness conditions as:

λk

(
k∑

i=1

log (1 + P̄i)−
k∑

i=1

log (1 + Pi)

)
= 0, ∀k (8)

μk

(
k∑

i=1

Pi − (Ei − δi)

)
= 0, ∀k (9)

ηk

(
k∑

i=1

P̄i − (Ēi + αδi)

)
= 0, ∀k (10)

ρkδk = 0, ∀k (11)

From (5), (6) and (7) we get:

P̄i =
1−

∑T
k=i λk∑T

k=i ηk
− 1, ∀i (12)

Pi =

∑T
k=i λk∑T
k=i μk

− 1, ∀i (13)

ρi =
T∑

k=i

μk − α
T∑

k=i

ηk, ∀i (14)

Next, we obtain necessary optimality conditions for (3).

A. Necessary Optimality Conditions

The first necessary optimality condition for (3) is that the
source has to send as many bits as the relay can send and the
relay has to finish up all the data in its data buffer. In other
words, in the optimal policy, no data should be left in the data
queue of the relay at the end.

Lemma 1 The optimal power sequences P ∗
i , P̄ ∗

i must satisfy
the constraint

∑T
i=1

1
2 log(1 + P̄ ∗

i ) =
∑T

i=1
1
2 log(1 + P ∗

i ).

Proof: Suppose the stated constraint is satisfied with strict in-
equality. Then, we can increase δT , increase P̄T and decrease
PT without violating the energy constraints and improve the
overall throughput which contradicts the optimality of P̄ ∗

i , P ∗
i ,

δ∗i . �
We note that if the relay energy profile is sufficient to

forward all the bits in the optimal source data stream with

respect to the source energy profile, that is, if the separable
policy in [12], [13] yields a policy that satisfies the necessary
condition in Lemma 1, then it is the optimal solution for (3)
and no energy transfer is needed.

The second observation about the optimal policy is that the
source has to exhaust the energies that have been harvested
throughout the communication session either for data trans-
mission or in the form of wireless energy transfer.

Lemma 2 The optimal power profiles P ∗
i , P̄ ∗

i and energy
transfers δ∗i must satisfy

∑T
i=1 P

∗
i =

∑T
i=1(Ei − δ∗i ).

Proof: Suppose this constraint is satisfied with strict inequal-
ity. Then, we can increase δT and P̄T then decrease PT to
achieve a larger throughput and satisfy the constraints of (3).
This contradicts the optimality of P ∗

i , P̄
∗
i , δ

∗
i . �

Next, we observe that if there is a non-zero energy transfer
from the source to the relay, then the relay has to exhaust all
of its energy in the optimal policy.

Lemma 3 For the optimal power sequences P ∗
i , P̄ ∗

i and
energy transfer sequence δ∗i , if δ∗i �= 0 for some i, then∑T

i=1 P̄
∗
i =

∑T
i=1(Ēi + αδ∗i ).

Proof: Suppose this constraint is satisfied with strict inequal-
ity. Using a similar argument as in Lemma 2, we can decrease
δT and increase P̄T to achieve a larger throughput and satisfy
the constraints of problem (3). This contradicts the optimality
of P ∗

i , P̄
∗
i , δ

∗
i . �

Finally, we note that, in the optimal policy, the total energy
expenditure at the relay must be higher than the total energy
expenditure at the source.

Lemma 4 The optimal power sequences P ∗
i and P̄ ∗

i must
satisfy

∑T
i=1 P

∗
i ≤

∑T
i=1 P̄

∗
i , and with equality if and only if

P ∗
i = P̄ ∗

i for all i.

Proof: We will give a proof based on majorization theory
and Schur convexity [44]. We denote the optimal source
and relay rate allocation vectors as r∗ = [r∗1 , . . . , r

∗
T ] and

r̄∗ = [r̄∗1 , . . . , r̄
∗
T ], where r∗i = 1

2 log (1 + P ∗
i ) and r̄∗i =

1
2 log (1 + P̄ ∗

i ), for i = 1, . . . , T . First, we note that the
optimal rate allocations of both the source and the relay are
monotone non-decreasing sequences by [4, Lemmas 1 and 4],
i.e., r∗i ≤ r∗i+1 and r̄∗i ≤ r̄∗i+1, for i = 1, . . . , T . Second,
we note the data causality constraint at the relay

∑k
i=1 r̄

∗
i ≤∑k

i=1 r
∗
i , for all k < T , and the equality

∑T
i=1 r̄

∗
i =

∑T
i=1 r

∗
i

by Lemma 1. These imply that r∗ is majorized by r̄∗, which
is denoted by r∗ 	 r̄∗; see [44, Definition 1.A.1]. Since
P ∗
i = 22r

∗
i − 1 and g(x) = 22x − 1 is strictly convex,∑T

i=1 P
∗
i =

∑T
i=1 2

2r∗i −1 is a strictly Schur convex function
of r∗ [44, Proposition 3.C.1]. Then, since r∗ 	 r̄∗, we have
that

∑T
i=1 P

∗
i =

∑T
i=1 2

2r∗i −1 ≤
∑T

i=1 2
2r̄∗i −1 =

∑T
i=1 P̄

∗
i

[44, Proposition 4.B.1]. Moreover, due to the strict convexity
of g(x), and the resulting strict Schur convexity, equality is
possible only when r∗i = r̄∗i for all i. �
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An immediate application of Lemma 4 is that if
∑T

i=1 Ēi <∑T
i=1 Ei, i.e., if the total energy of the relay is less than the

total energy of the source, then the relay cannot forward the
source data stream only with its own energy. In this case, we
must have δ∗i �= 0 for some i, i.e., some energy transfer is
strictly needed. We state this in the following lemma.

Lemma 5 If the data buffer of the relay is empty at some slot
k, k ≤ T , then

∑k
i=1 P

∗
i ≤

∑k
i=1 P̄

∗
i , and with equality only

when P ∗
i = P̄ ∗

i for all i = 1, . . . , k.

Proof: If the data buffer of the relay is empty at some slot k,
k ≤ T , then we must have

∑k
i=1 r

∗
i =

∑k
i=1 r̄

∗
i . Together with

the data causality constraints at the relay
∑k̃

i=1 r̄
∗
i ≤

∑k̃
i=1 r

∗
i ,

for k̃ = 1, . . . , k − 1, we conclude that the subvector r∗k =
[r∗1 , . . . , r

∗
k] is majorized by the subvector r̄∗k = [r∗1 , . . . , r

∗
k],

i.e., r∗k 	 r̄∗k. Then,
∑k

i=1 P
∗
i =

∑k
i=1 2

2r∗i −1 ≤
∑k

i=1 2
2r̄∗i −

1 =
∑k

i=1 P̄
∗
i , and with equality iff r∗k = r̄∗k due to the strict

Schur convexity. �

Necessary conditions in Lemmas 1 through 5 do not provide
detailed structural properties for the optimal policy for an
algorithmic solution. In the next sections, we consider specific
scenarios to gain insight on the optimal policy. In particular,
we examine cases that correspond to practically interesting
settings, such as the case of only one of the nodes harvesting
energy.

B. Specific Scenario: Relay Energy Higher at the Beginning
Lower at the End

We consider the scenario where the relay energy arrival
profile is higher at the beginning, intersects the energy arrival
profile of the source once, and remains lower until the end
of the communication, as shown in Fig. 3. In particular, we
assume that there exists ĩ ∈ [0, T ] such that

∑i
k=1 Ēk ≥∑i

k=1 Ek , for all i = 1, . . . , ĩ, and
∑i

k=1 Ēk ≤
∑i

k=1 Ek, for
all i = ĩ + 1, . . . , T . In Fig. 3, ĩ = 3. We note that this case
also covers the setting where the relay is not energy harvesting,
and only the source harvests energy during the communication
session.

For this case, we propose the following solution. Form a
new energy arrival profile as: min{

∑i
k=1

Ēk+αEk

α+1 ,
∑i

k=1 Ek}
as shown in Fig. 3, and maximize the throughput with respect
to this profile. In particular, use

∑i
k=1 Ek for i = 1, . . . , ĩ, and∑i

k=1
Ēk+αEk

α+1 for i = ĩ+1, . . . , T ; and perform energy trans-
fer only at slots ĩ + 1, . . . , T . The resulting power sequences
are matched for the source and the relay. More specifically,
we propose

P ∗
i = P̄ ∗

i =

min

{∑ni
j=ni−1

Ēj+αEj

α+1 ,
∑ni

j=ni−1
Ej

}
ni − ni−1

(15)

where

ni = arg min
ni−1≤k≤T

⎧⎨
⎩
min{

∑k
j=ni−1

Ēj+αEj

α+1 ,
∑k

j=ni−1
Ej}

k − ni−1

⎫⎬
⎭

(16)

E1 + E2

1 2 . . .
slot number i

∑T
i=1 Ei

∑
Ei

Source energy arrivals Ei

Relay energy arrivals Ēi

Min of Ei and (αEi + Ēi)/(1 + α)

(αEi + Ēi)/(1 + α)

Optimal policy

. . . ĩ ĩ + 1 T

E1

∑T
i=1 Ēi

Ē1

Ē1 + Ē2

Fig. 3. Optimal power sequence and energy transfer when the relay energy
profile is higher at the beginning and lower at the end with crossing only
once.

We next show that there exist λi, μi, ηi, ρi ≥ 0 that satisfy
(5)-(11) and yield the solution in (15)-(16) via (12)-(14). In
particular, ρi = 0 and ηi = μi

α for i = ĩ + 1, . . . , T . Since
α
∑T

k=i ηk =
∑T

k=i μk for all i = ĩ+1 . . . , T , we have from
(12) and (13)

P̄ ∗
i + αP ∗

i =
1∑T

k=i ηk
− (1 + α), i = ĩ+ 1, . . . , T (17)

Hence, P̄ ∗
i = 1

(1+α)
∑T

k=i ηk
−1, which implies that λT = 1

1+α

and λi = 0 for i = ĩ+ 1, . . . , T − 1. Moreover, ηi =
μi

α > 0

whenever
∑i

k=1
Ēk+αEk

α+1 is active for some i = ĩ+1, . . . , T .
As in [6], [7], we can show that such ηi = μi

α that yield
the power sequence in (15)-(16) are uniquely found for i =
ĩ+ 1, . . . , T .

It remains to find the Lagrange multipliers for i = 1, . . . , ĩ.
We observe that ηi = 0 and ρi =

∑ĩ
k=i μk for i = 1, . . . , ĩ.

That is, the relay power constraint is not active in the first ĩ
slots, i.e.,

∑i
k=1 P̄

∗
k <

∑i
k=1 Ēk, i = 1, . . . , ĩ. To justify this

claim, we note that since P ∗
i = P̄ ∗

i for i = ĩ + 1, . . . , T ,

we have
∑ĩ

i=1
1
2 log (1 + P ∗

i ) =
∑ĩ

i=1
1
2 log (1 + P̄ ∗

i ). By
Lemma 5, selecting Pi = P̄i for i = 1, . . . , ĩ is the
minimum energy consuming policy at the relay. Since by
assumption

∑i
k=1 Pk ≤

∑i
k=1 P̄k for i = 1, . . . , ĩ, Pi = P̄i

is feasible and hence optimal, which in turn implies that∑i
k=1 P̄

∗
k <

∑i
k=1 Ēk for i = 1, . . . , ĩ. As a consequence,∑T

k=i ηk =
∑T

k=ĩ+1 ηk, i.e., constant for all i = 1, . . . , ĩ. As
P̄ ∗
i ≤ P̄ ∗

ĩ+1
, we can specify 0 ≤ λi ≤ 1

1+α recursively, with

λi > 0 only when
∑i

k=1 Ek constraint is active, as follows

λi = 1− P̄ ∗
i

T∑
k=ĩ+1

ηk −
T∑

k=i+1

λk (18)

Moreover, μi > 0 for slots where
∑i

k=1 Ek constraint is active

and μi =
∑T

k=i λk

P∗
i

−
∑T

k=i+1 μk. Note that if δ∗i �= 0 for some
i, the optimal source and relay power sequences are unique
while there may exist infinitely many δ∗i that yield the same
optimal power levels.

A particular case covered is when only the source has
energy replenishments and the relay has all its energy available
initially, i.e., Ē1 > 0 and Ēi = 0 for i > 1. If Ē1 >

∑T
i=1 Ei,

the relay can forward all the bits sent from the source and the
optimal policy is trivial. If Ē1 <

∑T
i=1 Ei, the optimal policy

is obtained by forming a common energy profile via energy
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T
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. . .21

∑
Ei

Ē1 + αδ1

Ē1 + Ē2 + αδ1

E1 − δ1

∑T
i=1 Ēi + αδ1

Fig. 4. Optimal power sequences and energy transfer when the source energy
is available at the beginning.

transfer and matching the power and rate sequences. Another
special case is when ĩ = 0, i.e., when Ēi < Ei for all i. In
this case, min{

∑i
k=1

Ēk+αEk

α+1 ,
∑i

k=1 Ek} =
∑i

k=1
αĒk+Ek

α+1
for all i and matching the relay and source power sequences
is optimal with δ∗i = Ei − Ēi+αEi

α+1 . When ĩ = T , we have
Ēi > Ei, ∀i. The source optimizes the throughput according
to {Ei}Ti=1 and the relay power is matched with the source.

C. Specific Scenario: Source Energy Available at the Begin-
ning

We consider the scenario where the source has all of its
energy available at the beginning (i.e., E1 > 0 only), and the
relay harvests energy throughout the communication. Let the
relay energy profile not be satisfactory to forward the optimal
source data stream which has constant rate 1

2 log (1 +
E1

T ).
Assume δi �= 0 for some i. Since the source is not energy
harvesting, the total energy of the source will then be E1− δi
yielding an optimal transmission power of E1−δi

T . Hence, the
throughput of the source is independent of the slot index i the
energy is transferred. However, transferring the energy at slot
j < i can only increase the relay transmit powers after that
slot; therefore, energy transfer has to be performed as early as
possible, i.e., at the first slot. Hence, the jointly optimal policy
is δ∗1 �= 0 and δ∗i = 0 for the remaining slots as shown in Fig.
4. Note that the power sequences of the source and the relay
are not matched. δ∗1 is found by solving a fixed point equation
as:

f(Ē1 + δ∗1 , Ē2, . . . , ĒT ) =
T

2
log

(
1 +

E1 − δ∗1
T

)
(19)

where f(Ē1, Ē2, . . . , ĒT ) is the maximum number of bits
corresponding to the energy arrival sequence Ē1, Ē2, . . . , ĒT .

IV. GAUSSIAN TWO-WAY CHANNEL WITH ONE-WAY

ENERGY TRANSFER

In this section, we consider a two-way channel as shown in
Fig. 5. The two queues at the nodes are the data and energy
queues. The energies that arrive at the nodes are saved in
the corresponding energy queues. The data queues of both
users always carry some data packets. The physical layer is a
memoryless Gaussian two-way channel [45] where the channel
inputs and outputs are x1, x2 and y1, y2, respectively. The
input-output relations are y1 = x1 + x2 + n1 and y2 = x1 +
x2 + n2 where n1 and n2 are independent Gaussian noises
with zero-mean and unit-variance. In slot t, the first and second
users harvest energy in amounts Et and Ēt, respectively. There

data queue

energy

queue

energy

δiEi Ēi

User 2User 1 data queue

queue

Fig. 5. Two-way channel with one-way energy transfer.

is a separate wireless energy transfer unit at the first user, that
transfers energy from the first user to the second user with
efficiency 0 ≤ α ≤ 1. The power policy of user 1 is composed
of the sequences Pi and δi, and the power policy of user 2 is
the sequence P̄i.

For the Gaussian two-way channel with individual power
constraints P1 and P2, rate pairs (R1, R2) with R1 ≤
1
2 log (1 + P1), R2 ≤ 1

2 log (1 + P2) are achievable [45]. For
a fixed energy transfer vector δ, and feasible power control
policies P and P̄, the set of achievable rates is:

Cδ(P, P̄) =
{
(R1, R2) : R1 ≤

T∑
i=1

1

2
log (1 + Pi),

R2 ≤
T∑

i=1

1

2
log (1 + P̄i)

}
(20)

The notation shows the dependence of the region on the energy
transfer vector δ. This region is shown in Fig. 6 for different
values of δ. Each of these regions are rectangles of the form
Ri ≤ Ci where Ci is the maximum throughput achieved for
user i found by maximizing (20) constrained to the feasibility
constraints F . As δ is increased, energy is transferred from
user 1 to user 2 therefore C1 decreases while C2 increases.
By taking the union of the regions over all possible energy
transfer vectors and power policies for the users, we obtain
the capacity region of the Gaussian two-way channel as:

C(E, Ē) =
⋃

(δ,P,P̄)∈F
Cδ(P, P̄) (21)

We determine the capacity region of the Gaussian two-way
channel in the next section, by solving weighted rate maxi-
mization problems which trace the boundary of the capacity
region.

V. CAPACITY REGION OF THE GAUSSIAN TWO-WAY

CHANNEL

In this section, we characterize the capacity region as well
as the optimal power allocation and energy transfer policies.
We start by noting that the capacity region is convex in the
following lemma. The proof of this lemma is provided in
Appendix A.

Lemma 6 C(E, Ē) is a convex region.
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Since C(E, Ē) is convex, each boundary point can be found
by solving the following weighted rate maximization problem:

max
P̄i, Pi, δi

T∑
i=1

θ1
1

2
log (1 + Pi) + θ2

1

2
log (1 + P̄i)

s.t. (δ,P, P̄) ∈ F (22)

The problem in (22) is a convex optimization problem as the
objective function is concave and the feasible set is a convex
set [43]. We write the Lagrangian function for (22) as:

L =−
T∑

i=1

[
θ1 log (1 + Pi) + θ2 log (1 + P̄i)

]

+

T∑
k=1

μk

(
k∑

i=1

Pi − (Ei − δi)

)

+
T∑

k=1

ηk

(
k∑

i=1

P̄i − (Ēi + αδi)

)

−
T∑

k=1

σkPk −
T∑

k=1

ψkP̄k −
T∑

k=1

ρkδk (23)

We note that P̄i are always non-zero in the optimal policy as
Ē1 > 0. Therefore, we have ψk = 0, ∀k. However, Pk = 0
may be optimal at some slots k and for some values of θ1, θ2
in which case

∑k
i=1 δi =

∑k
i=1 Ei as energy should not be

wasted in an optimal policy. In the particular case of θ1 =
θ2,

∑k
i=1 δi <

∑k
i=1 Ei, ∀k and Pi > 0, ∀i [22]. The KKT

conditions for this problem are:

− θ1
1 + Pi

+

T∑
k=i

μk − σi = 0, ∀i (24)

− θ2

1 + P̄i
+

T∑
k=i

ηk = 0, ∀i (25)

T∑
k=i

μk − α
T∑

k=i

ηk − ρi = 0, ∀i (26)

with the additional complementary slackness conditions as:

μk

(
k∑

i=1

Pi − (Ei − δi)

)
= 0, ∀k (27)

ηk

(
k∑

i=1

P̄i − (Ēi + αδi)

)
= 0, ∀k (28)

ρkδk = 0, ∀k (29)

σkPk = 0, ∀k (30)

From (24), (25) and (26) we get:

Pi =

(
θ1∑T
k=i μk

− 1

)+

, ∀i (31)

P̄i =
θ2∑T
k=i ηk

− 1, ∀i (32)

ρi =

T∑
k=i

μk − α

T∑
k=i

ηk, ∀i (33)

R2

1

2

θR

3

R1

Fig. 6. Capacity region of the Gaussian two-way channel.

We will give the solution for general θ1, θ2 > 0 in the
sequel. Before that, we note that in the extreme case when
θ2 = 0, the problem reduces to maximizing the first user’s
throughput only and hence any energy transfer is strictly sub-
optimal, i.e., δ = 0 is optimal. This corresponds to point 1
in Fig. 6. Similarly, when θ1 = 0, the problem reduces to
maximizing the second user’s throughput only and the first
user must transfer all of its energy to the second user, i.e.,
δ = E is optimal. This corresponds to point 3 in Fig. 6.
When θ1, θ2 > 0, we obtain the points between points 1
and 3 in Fig. 6. In this case, for a given energy transfer
profile δ1, . . . , δT , the optimization problem can be separated
into two optimization problems, each only in terms of the
power control policy of the corresponding user. For fixed δ,
the optimal power policies of the two users can be found by
[4].

Next, we provide the necessary optimality condition for a
non-zero energy transfer.

Lemma 7 For the optimal power sequences P ∗
i , P̄

∗
i and

energy transfer sequence δ∗i , if δ∗i �= 0 and P ∗
i �= 0 for a

slot i, then
1 + P ∗

i

1 + P̄ ∗
i

=
θ1
θ2α

(34)

Proof: From (31), (32) and (33), we have

1 + P ∗
i

1 + P̄ ∗
i

=
θ1

∑T
k=i ηk

θ2(α
∑T

k=i ηk + ρi − σi)
(35)

If there is a non-zero energy transfer, δ∗i �= 0, we have from
(29), ρi = 0 and if P ∗

i �= 0 we have from (30), σi = 0.
Therefore, (34) must be satisfied if δ∗i �= 0 and P ∗

i �= 0. �

In order to devise an algorithmic solution, we apply a
change of variable P̃i = P̄i

α and re-write the optimization
problem in terms of Pi, P̃i, δi as follows:

max
P̃i, Pi, δi

T∑
i=1

θ1
1

2
log (1 + Pi) + θ2

1

2
log (1 + αP̃i)

s.t.
k∑

i=1

Pi ≤
k∑

i=1

(Ei − δi), ∀k

k∑
i=1

P̃i ≤
k∑

i=1

(
Ēi

α
+ δi

)
, ∀k

Pk, P̃k, δk ≥ 0, ∀k (36)
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Fig. 7. The proper scaling of the energy arrivals for a two slot system.

The optimal power allocation for this transformed problem is:

P ∗
i = (θ1νi − 1)

+
, ∀i (37)

P̃ ∗
i = θ2ν̃i −

1

α
, ∀i (38)

where νi and ν̃i in slot i are defined by

νi =
1∑T

k=i μk

and ν̃i =
1∑T

k=i ηk
(39)

The power level expressions in (37)-(38) lead to a direc-
tional water-filling interpretation [6]. In particular, we note that
energy has to be jointly allocated in time and user dimensions
together. This calls for a two-dimensional directional water-
filling algorithm where energy is allowed to flow in two
dimensions, from left to right (in time) and from up to down
(among users). We, next, explain this algorithm.

A. Two-Dimensional Directional Water-filling Algorithm

We utilize right permeable taps for users to account for the
energy which is saved in their individual batteries to be used in
the future and down permeable taps to account for energy that
is transferred from user 1 to user 2; see Figs. 7 and 8. The base
levels for users 1 and 2 are 1 and 1

α , respectively, as shown in
Fig. 7. Moreover, to facilitate the water flow interpretation, we
scale the energy arrivals of user 2 by 1

α as in the transformed
problem (36). Then, we fill the scaled energies into slots to
get the initial water levels. If the resulting water levels are not
monotonically increasing in time for both users, then water
has to flow through the horizontal taps until the levels are
balanced. However, the water flow through the vertical taps
follow a different rule: If water level of user 1, νi is higher than
θ1
θ2

times the water level of user 2, ν̃i at some slot, then water
flows through the vertical taps till νi

ν̃i
= θ1

θ2
is satisfied. If user

1’s energy is run out before this proportionality is satisfied,
then the water flow stops. This follows from Lemma 7. Once
the balanced water levels are found, P ∗

i will be found from
(37) and P̃ ∗

i from (38). Then, P̄ ∗
i = αP̃ ∗

i will give the optimal
relay power allocation.

E1+Ē1+E2
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Fig. 8. Two-dimensional directional water-filling with right/down permeable
meter taps for θ1 = θ2 and α = 1.

While finding the balanced water levels, the two dimensions
of the water flow (i.e., in time and among users) are coupled
and therefore it is not easy to determine beforehand which taps
will be open or closed in the optimal solution. In particular,
the water flow of user 2 from time slot i to time slot i + j,
j > 0, may become redundant if some energy is transferred
from user 1 in time slot i+j. To circumvent this difficulty, we
let each tap (right/down permeable) have a meter measuring
the water that has already passed through it and we allow that
tap to let the water flow back if an update in the allocation
necessitates it. This way, we keep track of the source of the
energy and whether it is transferred to future time slots or to
the other user.

One can possibly propose many different procedures to
obtain a solution for the balanced water levels and hence an
optimal policy. For instance, the following particular proce-
dure could be followed to obtain a solution: First, we fill
energy into the slots with all taps closed. Then, we open
only the right permeable taps and perform directional water-
filling (over time) for both users individually [6]. Then, we
open the down taps one by one in a backward fashion. Water
is allowed to flow from user 1 to user 2 only and only if
the ratio of the water levels of user 1 and user 2 is higher
than θ1

θ2
. If water flows down through a tap, the amount is

measured by the meter. Water levels in the slots connected by
the bi-directional horizontal taps need to be equal. Whenever
water flows down through a down permeable tap, the water
levels must equalize in the transformed setting, or equivalently,
they must satisfy the proportionality relationship in (34) in the
original setting. When the water levels are properly balanced,
the optimal solution is obtained. This procedure is depicted in
Fig. 8 for the case of θ1 = θ2 and α = 1. The advantage of
this particular algorithm is that the initial temporal directional
water-filling is simple and follows from [6].

The balanced water levels in the two-dimensional direc-
tional water-filling algorithm can alternatively be obtained by
iteratively allowing the water to flow from a single tap at
a time provided that all taps are visited infinitely often. In
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particular, we open only one of the horizontal and vertical
taps at a time and we keep track of transferred energy in each
tap by means of meters. Whenever a horizontal tap is opened,
the two water levels are equalized if the directionality of the
tap allows water to flow; otherwise, they are equalized to the
extent possible according to the meter readings. Similarly, if
a vertical tap is opened, water flows till the ratio of user 1’s
water level to user 2’s water level equals θ1

θ2
if this ratio is

higher than θ1
θ2

; otherwise, this ratio is made closer to θ1
θ2

to the extent possible according to the meter readings. This
iterative algorithm is given in Algorithm 1. We note that if
we go through all the possible taps sufficiently many times,
our algorithm will converge to the balanced water levels and
hence to an optimal solution. This is due to the fact that each
iteration strictly increases the objective function in view of
the strict concavity of log(.) function and that bounded real
monotone sequences always converge.

An example run of the first algorithm proposed above (non-
iterative) is given in Fig. 8 for θ1 = θ2 and α = 1. Initially,
we open the right permeable taps and the water levels are
equalized for the first user. Then, we open the down permeable
taps. In the second slot there is no need for energy transfer
because E1+E2

2 < Ē2. In the first slot there will be some
non-zero energy transfer since E1+E2

2 > Ē1, and some water
flows through the first down permeable tap. Since user 1’s
right permeable tap has a positive meter at that point, some
water is allowed to flow from right to left thereby equalizing
the water levels of user 1’s first and second slots and user 2’s
first slot.

B. A Specific Run of the Algorithm

In order to show more specifically how the algorithm runs,
further explain the particular sequence of steps followed in the
first two-dimensional water-filling algorithm proposed above
(non-iterative), and justify the need to use metered taps to keep
track of the water flow, we next provide a numerical example
where E = [0, 12, 0] mJ, Ē = [6, 6, 0] mJ and α = 1. Let T1i,
T2i denote the horizontal taps of the first and second users
connecting the ith and i + 1st slots, and let Qi denote the
ith vertical tap. The optimal solution is P = [0, 4.8, 4.8] and
P̄ = [4.8, 4.8, 4.8], which is obtained by spreading the energy
as equally as possible in two dimensions among the users and
time slots, subject to energy causality. We next consider two
sub-optimal orderings of tap openings.

Assume that we open the horizontal taps first and keep
the vertical taps closed. This yields the transient water levels
P = [0, 6, 6] and P̄ = [4, 4, 4]. Now, if we open the vertical
taps, water is transferred in the second and third slots and the
balanced final levels are P = [0, 5, 5] and P̄ = [4, 5, 5]. This
profile is not optimal since the second user changes its power
level when the battery is non-empty, violating [4, Lemma 2].

Now, assume that we open the vertical taps first and keep
the horizontal taps closed. Energy is transferred in the second
slot and the new transient water levels will be P = [0, 9, 0]
and P̄ = [6, 9, 0]. Then, when we open the horizontal taps, we
will have P = [0, 4.5, 4.5] and P̄ = [5, 5, 5]. This profile is not
optimal either, as after energy transfer, the source power level
is less than the relay power level, violating Lemma 7.

Algorithm 1: Two dimensional directional water-filling
(iterative algorithm)

Initialize
1: for i = 1 : N do
2: U1[i] = 1+Ei, U2[i] = 1+Ēi

α � Fill energy into slots
3: end for

Define procedure
4: procedure WF(i, j,K, L) � Water-filling from slot i to

slot j, from user K to user L
5: if K = L then Tap = TK [i], c = 1

� If among the same user, the horizontal tap
6: else Tap = Q[i], c = θ1

θ2
� Otherwise the vertical tap

7: end if
8: if UK [i] ≥ cUL[j] then � If higher water level
9: t = min (U

K [i]−cUL[j]
1+c , UK [i]− 1), Tap = Tap+ t

� Find water flow, update tap
10: UK [i] = UK [i]− t, UL[j] = UL[j] + t

� Equalize water levels
11: else if Tap > 0 then � If meter is positive
12: t = min

(
UL[j]− 1

α ,Tap, cUL[j]−UK [i]
1+c

)
� Find amount of water that can flow

13: UK [i] = UK [i] + t, UL[j] = UL[j]− t
� Equalize as meter allows

14: Tap = Tap − t
15: end if
16: end procedure

Main Algorithm
17: while diff < ε do
18: for i = 1 : N − 1 do
19: WF(i, i+ 1, 1, 1) � User 1 horizontal tap
20: end for
21: for i = N : 2 do
22: WF(i, i, 1, 2) � Vertical tap
23: WF(i− 1, i, 2, 2) � User 2 horizontal tap
24: end for
25: Pi =

(
U1[i]− 1

)+
and P̄i = αU2[i]− 1

26: thrk =
∑T

i=1 θ1
1
2 log (1 + Pi) + θ2

1
2 log (1 + P̄i)

27: diff = thrk − thrk−1

28: k = k + 1
29: end while

Return
30: P ∗

i = Pi and P̄ ∗
i = P̄i

We now show how the first proposed (non-iterative) two-
dimensional directional water-filling algorithm works. First,
we open the horizontal taps to get P = [0, 6, 6] and P̄ =
[4, 4, 4] with the water meters reading [0, 6] and [2, 2]. Recall
that the taps with positive meter readings allow bi-directional
energy transfer. Next, we open the vertical taps in a backward
fashion. Once Q3 is opened, water flows to the second user
and since T21, T22 are bi-directional it starts to fill all the
slots of the second user. A balance is established when
P = [0, 4.8, 4.8] and P̄ = [4.8, 4.8, 4.8], which is the optimal
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User 2User 1 data queuedata queue

queue

Fig. 9. Multiple access channel with one-way energy transfer.

solution.

VI. MULTIPLE ACCESS CHANNEL WITH ONE-WAY

ENERGY TRANSFER

In this section, we consider the multiple access channel
scenario shown in Fig. 9. In the multiple access channel, the
received signal is y = x1+x2+n where x1 and x2 are signals
of user 1 and user 2, respectively, and n is a Gaussian noise
with zero-mean and unit-variance. For the Gaussian two-user
multiple access channel with individual power constraints P1

and P2, rate pairs (R1, R2) with R1 ≤ 1
2 log (1 + P1), R2 ≤

1
2 log (1 + P2), R1+R2 ≤ 1

2 log (1 + P1 + P2) are achievable
[46]. For a fixed energy transfer vector δ, and feasible power
control policies P and P̄, the set of achievable rates is a
pentagon defined as [10]:

Cδ(P, P̄) =
{
(R1, R2) : R1 ≤

T∑
i=1

1

2
log (1 + Pi),

R2 ≤
T∑
i=1

1

2
log (1 + P̄i),

R1 +R2 ≤
T∑
i=1

1

2
log (1 + P̄i + Pi)

}
(40)

For each feasible (P, P̄, δ), the region is a pentagon. We obtain
the capacity region by taking the union of these regions over
all feasible power allocations and energy transfer profiles:

C(E, Ē) =
⋃

(δ,P,P̄)∈F
Cδ(P, P̄) (41)

We determine the capacity region of the Gaussian multiple
access channel in the next section.

VII. CAPACITY REGION OF THE GAUSSIAN MULTIPLE

ACCESS CHANNEL

In this section, we characterize the capacity region as well
as the optimal power allocation and energy transfer policies.
First, we note in the following lemma that the capacity region
is convex. We prove this lemma in Appendix B.

Lemma 8 C(E, Ē) is a convex region.

Since the region is convex, each boundary point is a solution
to maxR∈CM θR [47] for some θ = [θ1, θ2]. We examine two
cases separately, θ1 ≥ θ2 and θ1 < θ2.

α = 1

1

R1

2

3

4 R24

α < 1

Fig. 10. Capacity region of the Gaussian multiple access channel for α = 1
and α < 1.

A. θ1 ≥ θ2

In this case, the boundary points between 1, 2 and 3 in
Fig. 10 are found by solving the following problem:

max
P̄i, Pi, δi

T∑
i=1

(θ1 − θ2)
1

2
log (1 + Pi) + θ2

1

2
log (1 + P̄i + Pi)

s.t. (δ,P, P̄) ∈ F (42)

The problem in (42) is a convex optimization problem as the
objective function is concave and the feasible set is a convex
set [43]. We write the Lagrangian function for (42) as:

L =−
T∑

i=1

[
(θ1 − θ2) log (1 + Pi) + θ2 log (1 + P̄i + Pi)

]

+

T∑
k=1

μk

(
k∑

i=1

Pi − (Ei − δi)

)

+

T∑
k=1

ηk

(
k∑

i=1

P̄i − (Ēi + αδi)

)

−
T∑

k=1

σkPk −
T∑

k=1

ψkP̄k −
T∑

k=1

ρkδk (43)

The KKT conditions are:

−θ1 − θ2
1 + Pi

− θ2
1 + Pi + P̄i

+

T∑
k=i

μk − σi = 0, ∀i (44)

− θ2

1 + Pi + P̄i
+

T∑
k=i

ηk − ψi = 0, ∀i (45)

T∑
k=i

μk − α
T∑

k=i

ηk − ρi = 0, ∀i (46)

We claim that in this case, δi = 0, ∀i is optimal. Therefore,
the first user should not transfer any energy. To prove this
claim, we first note that the first term in the objective function
in (42) is a monotone concave function of Pi and the second
term is a monotone concave function of Pi + P̄i. Assume
δk > 0 for some slot k and let Pi, P̄i, δi satisfy the constraints
in (1). We first consider the case α = 1. Now for some
0 < ε � 1, define a new energy transfer value in slot k
as δ

′
k = δk − ε, while keeping the energy transfer levels in the

remaining slots unchanged. Also define new source and relay
power allocations in slot k as P

′
k = Pk+ε, P̄

′
k = P̄k−ε, while

keeping the source and relay power levels in the remaining
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slots unchanged. It can be verified that this new allocation
satisfies the constraints in (1) and P

′
k+ P̄

′
k = Pk+ P̄k together

with P
′
k > Pk. This implies that by giving any transferred

energy back to user 1, we can increase the objective function
in (42). Therefore, in an optimal policy, energy transfer is not
needed for α = 1. We note that if P̄

′
k = 0, we can set δ

′
k = 0

and δ
′
m = δm + δ

′
k where m > k is the first slot after k such

that P̄m > 0. As the transferred energy at slot k is not used at
slots k, . . . ,m− 1, the change in the energy transfer does not
violate energy constraints. We can now use our construction
on this modified energy transfer sequence and conclude that
δk = 0. Finally, if k = T this allocation cannot be optimal
since transferred energy is wasted. We conclude that if energy
transfer is not needed for α = 1, then it is also not needed for
the general case of α < 1 due to the inefficiency of wireless
energy transfer. We also remark that for θ2 = θ1 and α = 1,
transferring no energy is sufficient but not necessary; there
may exist multiple different optimal energy transfer profiles,
including the one with no energy transfer.

Since energy transfer is not needed, optimal power control
policies for the two users are the same as those in the energy
harvesting multiple access channel with no energy transfer and
can be found by the generalized backward directional water-
filling algorithm described in [10]. That is, the capacity region
boundary from point 1 to point 3 in Fig. 10 is found by the
algorithm in [10]. Specifically, for θ1 = θ2, we have ηk = μk

for all k and the sum-rate optimal power policies are obtained
by applying single-user directional water-filling algorithm to
the sum of the energy profiles of the two users [10].

B. θ1 < θ2

Here, we consider the remaining parts of the boundary,
namely the points from point 3 to point 4 in Fig. 10. In this
case, we need to solve the following optimization problem:

max
P̄i, Pi, δi

T∑
i=1

(θ2 − θ1) log (1 + P̄i) + θ1 log (1 + P̄i + Pi)

s.t. (δ, P̄, P) ∈ F (47)

which is a convex optimization problem and the corresponding
KKT conditions are:

− θ1
1 + Pi + P̄i

+
T∑

k=i

μk − σi = 0, ∀i (48)

−θ2 − θ1
1 + P̄i

− θ1
1 + Pi + P̄i

+
T∑

k=i

ηk − ψi = 0, ∀i (49)

T∑
k=i

μk − α

T∑
k=i

ηk − ρi = 0, ∀i (50)

We do not have an analytical closed form solution for (48)-
(50). Since (47) is a convex optimization problem, standard
numerical methods for convex optimization may be employed.
We find that the solution of (47) has a simple form in some
special cases, which we investigate next.

When α = 1, we find that the optimal solution of (47)
requires all the energy of user 1 transferred to user 2. To verify
this fact, we use contradiction. Assume that Pk > 0 for some

slot k. Then σk = 0 due to the slackness condition. Note
from (48)-(49) that

∑T
i=k ηi − ψk >

∑T
i=k μi, as θ2 > θ1.

Combining this with (50), we get ψk + ρk < 0, which is
a contradiction. Thus, in the optimal solution, we must have
Pk = 0, ∀k. Therefore, user 1 should not transmit any data,
and instead should transfer all of its energy to user 2 by the
end of T slots. This policy corresponds to point 4 in Fig. 10.
On the other hand, sum-rate optimal point, point 3, achieves
the same throughput as point 4. This implies that when α = 1,
points 2, 3 and 4 in Fig. 10 lie on the 45o line. In particular,
the optimal throughput of user 2, which is obtained by single-
user throughput maximization subject to harvested energies of
user 2 plus the harvested energies of user 1, coincides with
the optimal sum-throughput.

When α < 1, points 3 and 4 in Fig. 10 are not on the
same line. We observe that when θ2

θ1
is sufficiently large, user

1 transfers all of its energy to user 2. In order to verify this
claim, we note that, if user 1 transfers some but not all of its
energy at the end of T slots, then PT > 0 and σT = 0. In this
case, from (48)-(50) and as ρT ≥ 0, we have

1 + P̄T

1 + P̄T + PT
≥ α(θ2 − θ1)

(1− α)θ1
(51)

Since 1+P̄T

1+P̄T+PT
< 1, we conclude that if α(θ2−θ1)

(1−α)θ1
≥ 1, then

(51) cannot be satisfied which forces all of the energy of
user 1 to be transferred to user 2 so that σT > 0. Note that
α(θ2−θ1)
(1−α)θ1

≥ 1 is equivalent to θ2
θ1

≥ 1
α . Hence, if θ2

θ1
≥ 1

α , in
the optimal solution, user 1 transfers all of its energy to user
2. This implies that the capacity region boundary intersects
the horizontal line in Fig. 10 with slope less than or equal to
1
α .

VIII. NUMERICAL RESULTS

In this section, we provide numerical examples for studied
multi-user settings and illustrate the resulting optimal policies.
In all examples, we assume that the slot length is 1 second,
noise spectral density is N0 = 10−19 W/Hz and the available
bandwidth is 1 MHz.

A. Numerical Example for the Gaussian Two-Hop Relay
Channel

We first consider the two-hop relay channel with energy har-
vesting and energy transfer in Section II. In our first numerical
study, the source and the relay have the energy arrival profiles
E = [2; 3; 5; 4] mJ and Ē = [5; 1; 2; 1] mJ, respectively, and the
wireless energy transfer efficiency is α = 0.5. We note that
for these energy harvesting profiles the relay energy profile
is higher at the beginning and lower at the end with crossing
only once in the third slot. Therefore, the resulting optimal rate
profiles are matched in the optimal policy. An optimal energy
transfer vector is δ = [0; 0; 1.33; 3.33] mJ and the resulting
optimal power allocation vectors after the energy transfer are
P̄ = P = [2; 3; 4; 6.33] mW. We note that while the optimal
energy transfer profile is not unique, resulting optimal powers
are unique.

Next, we change the energy arrival profiles for the source
and the relay as E = [12; 0; 0; 0] mJ and Ē = [5; 1; 0; 2]
mJ, respectively, with energy transfer efficiency α = 0.5.
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Fig. 11. Capacity region of the two-way channel with energy transfer.

Note that the source node is not energy harvesting. In this
case, we find the optimal energy transfer vector as δ =
[2.67; 0; 0; 0] mJ and the resulting optimal power vectors are
P̄ = P = [2.33; 2.33; 2.33; 2.33] mW. Note that the optimal
power sequences for the source and the relay match in this
specific example, which does not hold in general.

B. Numerical Example for the Gaussian Two-Way Channel

In this section, we consider the Gaussian two-way channel
model in Section IV. The energy arrival profiles of user 1
and user 2 are E = [5; 10; 5] mJ and Ē = [2; 1; 1] mJ,
respectively, and the wireless energy transfer efficiency is set
to α = 0.7. Path loss of each link is set to 10 dB. We
found the capacity region by running the two-dimensional
directional water-filling algorithm for all θ1, θ2 ≥ 0. We plot
the resulting capacity region in Fig. 11, where we also plot
the capacity region when energy transfer is not allowed. Note
that when energy transfer is not allowed, the capacity region
is the rectangle with single-user optimal rates subject to the
individual energy arrivals. We observe that the availability of
wireless energy transfer significantly improves the capacity
region.

C. Numerical Example for the Gaussian Multiple Access
Channel

In this section, we consider the Gaussian multiple access
channel model in Section VI. The energy arrival profiles of
user 1 and user 2 are E = [5; 2; 5] mJ and Ē = [1; 3; 1] mJ,
respectively, and wireless energy transfer efficiency is α = 0.5.
The path loss in user 1 to user 2 channel is set to 10dB, while
user 1 to receiver and user 2 to receiver links have 100dB path
losses. We plot the resulting capacity region in Fig. 12 and we
compare it with the region when no energy transfer is allowed.
Note that when no energy transfer is allowed, the region is
found by the backward directional water-filling algorithm in
[10]. We observe in Fig. 12 that the boundary of the capacity
regions when energy transfer is allowed and not allowed match
when the priority of user 1 is higher than the priority of
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Fig. 12. Capacity region of the multiple access channel with energy transfer.

user 2. However, the availability of wireless energy transfer
significantly improves the capacity region when priority of
user 2 is higher than the priority of user 1.

IX. CONCLUDING REMARKS

Energy cooperation made possible by wireless energy trans-
fer is a fundamental shift in terms of the energy dynamics of
a wireless network, yielding new performance limits. In this
paper, we studied the communication performance of simple
two- and three-node wireless networks in a deterministic
setting where nodes harvest energy from the environment and
wireless energy transfer is possible from one user to another
in one-way and with efficiency α. We first considered the
Gaussian two-hop relay channel and studied the end-to-end
throughput maximization problem. We showed that if the relay
energy profile is higher first and then lower, the rates of
the source and the relay nodes need to be matched in the
optimal policy. We also showed that if the source is not energy
harvesting, then transferring energy in the first slot is optimal.
Next, we studied the capacity region of the Gaussian two-
way channel. We showed that the boundary of the capacity
region is achieved by policies that are given by a generalized
version of two-dimensional directional water-filling algorithm.
Finally, we studied the Gaussian multiple access channel. We
showed that no energy transfer is needed if the priority of
the first user is higher, and all of the energy needs to be
transferred to the second user if the priority of the second
user is sufficiently high. These results reveal new insights
on how energy is optimally allocated in multi-user scenarios
when wireless energy transfer is available as a new degree of
freedom in network design.

We remark that the analysis for finding the optimal policies
in each multi-user setting can be extended for the cases when
bi-directional energy transfer is allowed. In the two-hop relay
setting, if bi-directional energy transfer is allowed, for α = 1,
perfectly matching the energy profiles of the source and the
relay nodes would be feasible and hence optimal: In this case,
we would collect energy arrivals of the source and the relay in
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a single energy queue and perform a single-user optimization.
We would then divide resulting power allocation equally for
the source and the relay. Recently, references [48] and [49]
presented extensions of the analysis for two-way and multiple
access channels, and for relay channels without a data buffer
at the relay, when bi-directional energy transfer is allowed.
Finally, we note that, while we presented results in this paper
for the case of one-way energy transfer from the source node
to the relay, it is possible to formulate and consider the setting
where one-way energy transfer is from the relay to the source
node. In this paper, we have chosen to consider the case
with one-way energy transfer from the source to the relay,
in order to capture a certain kind of trade-off, where the
source node cooperates with the relay at the energy level by
transferring some of its energy to the relay and the relay in
return cooperates with the source node at the signal level by
forwarding the source’s data to the destination. In the case of
one-way energy transfer from the relay to the source node, the
relay would cooperate both at the energy level and the signal
level with the source node. This would capture another type
of trade-off, where the relay would need to balance the energy
needs of data forwarding and energy transfer to the source.

APPENDIX A
PROOF OF LEMMA 6

Consider two feasible power policies and energy transfer
profiles (P1, P̄1, δ1) and (P2, P̄2, δ2). Let us consider a new
policy as a convex combination of these two policies, i.e.,
(P3, P̄3, δ3) = λ(P1, P̄1, δ1) + (1 − λ)(P2, P̄2, δ2) for 0 <
λ < 1. First we show that this new policy is feasible:

k∑
i=1

P3i =
k∑

i=1

λP1i + (1 − λ)P2i (52)

≤ λ

k∑
i=1

(Ei − δ1i) + (1− λ)

k∑
i=1

(Ei − δ2i) (53)

=

k∑
i=1

(Ei − δ3i), k = 1, . . . , T (54)

We use similar arguments for P̄3i, δ3i and show that the policy
(P3, P̄3, δ3) is feasible.

Now, consider the upper corner points of the achievable rate
regions for (P1, P̄1, δ1) and (P2, P̄2, δ2). Since log(1 + p) is
concave in p, we have

T∑
i=1

log(1 + P3i) >

T∑
i=1

λ log(1 + P1i)

+ (1− λ)

T∑
i=1

log(1 + P2i) (55)

T∑
i=1

log(1 + P̄3i) >

T∑
i=1

λ log(1 + P̄1i)

+ (1− λ)

T∑
i=1

log(1 + P̄2i) (56)

This means that the new policy (P3, P̄3, δ3) achieves a
higher throughput for both users than the line connecting

the two upper corner points under policies (P1, P̄1, δ1) and
(P2, P̄2, δ2). Therefore, the region C(E, Ē) is a convex region.

APPENDIX B
PROOF OF LEMMA 8

Consider two feasible power policies and energy trans-
fer profiles (P1, P̄1, δ1) and (P2, P̄2, δ2). Let us consider a
new policy as a convex combination of these two policies,
i.e., (P3, P̄3, δ3) = λ(P1, P̄1, δ1) + (1 − λ)(P2, P̄2, δ2) for
0 < λ < 1. Since the constraints in set F are linear in the
power vectors, it can be shown as in the proof of Lemma 6
in Appendix A that this new policy is feasible.

Now, let Si be the pentagon created by the policy
(Pi, P̄i, δi), for i = 1, 2, 3. Choose t1 ∈ S1 and t2 ∈ S2

to form t3 = λt1 + (1 − λ)t2 for 0 ≤ λ ≤ 1. We need to
show that t3 ∈ S3. We proceed as follows:

t31 = λt11 + (1 − λ)t21 (57)

≤ λ
T∑
i=1

log(1 + P1i) + (1 − λ)
T∑

i=1

log(1 + P2i) (58)

≤
T∑

i=1

log(1 + λP1i + (1 − λ)P2i) (59)

=
T∑

i=1

log(1 + P3i) (60)

Similarly, we show t32 ≤
∑T

i=1 log(1 + P̄3i). Finally

t31 + t32 = λ(t11 + t21) + (1− λ)(t21 + t22) (61)

≤ λ

T∑
i=1

log(1 + P1i + P̄1i)

+ (1 − λ)

T∑
i=1

log(1 + P2i + P̄2i) (62)

≤
T∑
i=1

log
(
1 + λ(P1i + P̄1i) + (1 − λ)(P2i + P̄2i)

)
(63)

=

T∑
i=1

log(1 + P3i + P̄3i) (64)

These inequalities show that t3 ∈ S3 since it satisfies the
boundary conditions of S3. Therefore, the region C(E, Ē) is a
convex region.
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