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Energy Harvesting Transmitters That Heat Up:
Throughput Maximization Under

Temperature Constraints
Omur Ozel, Member, IEEE, Sennur Ulukus, Fellow, IEEE, and Pulkit Grover, Member, IEEE

Abstract— Motivated by the damage due to heating in sensor
operation, we consider the throughput optimal offline data
scheduling problem in an energy harvesting transmitter, such
that the resulting temperature remains below a critical level.
We model the temperature dynamics of the transmitter as
a linear system and determine the optimal transmit power
policy under such temperature constraints as well as energy
harvesting constraints over an additive white Gaussian noise
channel. We first derive the structural properties of the solution
for the general case with multiple energy arrivals. We show
that the optimal power policy is piecewise monotone decreasing
with possible jumps at the energy harvesting instants. We derive
analytical expressions for the optimal solution in the single energy
arrival case. We show that, in the single energy arrival case, the
optimal power is monotone decreasing, the resulting temperature
is monotone increasing, and both remain constant after the
temperature hits the critical level. We then generalize the solution
for the multiple energy arrival case.

Index Terms— Energy harvesting, wireless sensors, throughput
maximization, optimal scheduling, temperature constraints.

I. INTRODUCTION

IN MANY wireless sensor applications, temperature
increase caused by sensor operation has to be carefully

managed. For example, wireless sensors implanted in the
human body have to be designed such that the temperature due
to their operation does not cause any threat for the metabolism.
A line of medical research started by Pennes in 1948 [1]
explores the temperature dynamics due to electromagnetic
radiation in conjunction with heat losses to the environment
and dissipation of heat in the tissue. In the context of sen-
sors that communicate data, temperature sensitivity varies
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depending on the type of tissue. For a given specific tissue,
it is recommended that the temperature does not exceed a
critical level, in order to prevent damage to the tissue. This
necessitates careful scheduling of data transmission [2]. This
problem arises in various types of body area sensor networks,
see e.g., [3]–[5] and references therein. Finally, temperature
increase in a sensor is a threat for the proper operation of the
hardware itself [6]–[9]. In this context, the electric power that
feeds the amplifier circuitry has to be carefully scheduled so
as to avoid permanent damage in the circuit.

In order to obtain design principles with regard to tem-
perature sensitivity of such systems, determining transmission
schemes under a safe temperature threshold Tc is a useful
objective. In this paper, we consider data transmission with
energy harvesting sensors under such temperature constraints.
Data transmission with energy harvesting transmitters has been
an active topic of recent research [10]–[17]. In particular,
throughput maximization under offline and online knowledge
of the energy arrivals is considered in these references for
single-user and multi-user energy harvesting communication
systems. In [18]–[22], this problem is investigated under
imperfections such as battery energy leakage, charge/discharge
inefficiency, and presence of processing costs.

In the current paper, we aim to bridge physical heat dis-
sipation with data transmission in energy harvesting com-
munication systems. When the sole purpose is to maximize
the throughput, the transmitter may generate excessive heat
while utilizing the energy resource. In a temperature sensitive
application, the heat accumulation caused by the transmission
power policy has to be explicitly taken into account. In such
a case, heat generated in the transmitter circuitry causes a
form of “information-friction” [23]. We study the effect of
this “friction” in a deadline constrained communication of an
energy harvesting transmitter over an AWGN channel. For
simplicity, we use transmit power as a proxy for hardware
power. That is, we assume that the energy dissipated by
the power amplifier dominates other energy sinks in the
circuitry. More work is needed to understand full implications
of communication circuitry’s energy in this context. Our
formulation also relates to [24] in that the cumulative effect
of heat generated in the hardware affects the communication
performance.

We determine the throughput optimal offline power
scheduling policy under energy harvesting and temperature
constraints. Our thermal model is based on a view of the trans-
mitter’s circuitry as a linear heat system where transmit power
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Fig. 1. The model representing an energy harvesting wireless node placed
in an environment that has constant temperature Te.

is an input as in [1], [7], [9], and [24]. We impose that the
temperature does not exceed a critical level Tc. Consequently,
we obtain a convex optimization problem. We solve this
problem using a Lagrangian framework and KKT optimality
conditions. We first derive the structural properties of the
solution for the general case of multiple energy arrivals. Then,
we obtain closed form solutions under a single energy arrival.
For the general case, we observe that the optimal power policy
may make jumps at the energy arrival instants, generalizing the
optimal policies in [10] and [11]. Between energy harvests,
the optimal power is monotonically decreasing. We establish
for the case of a single energy arrival that the optimal power
policy monotonically decreases, corresponding temperature
monotonically increases, and both remain constant when the
critical temperature is reached. Then, we consider the case
of multiple energy arrivals. We observe that the properties of
the solution for the single energy arrival case are guaranteed
to hold only in the last epoch of the multiple energy arrival
case. In the remaining epochs, the temperature may not be
monotone and the transmitter may need to cool down to
create a temperature margin for the future, if the energy
harvested in the future is large. We illustrate possible cases
and obtain insights regarding the optimal temperature pattern
in the multiple energy arrival case.

II. THE MODEL

We consider an energy harvesting transmitter node placed in
an environment as depicted in Fig. 1. The node harvests energy
to run its circuitry and wirelessly send data to a receiver.

A. Channel Model

The received signal Y , the input X , channel gain h and
noise Z are related as

Y = √
h X + Z (1)

where Z is additive white Gaussian noise with zero-mean
and unit-variance. In this paper, the channel is static. Without
loss of generality, we take h = 1. We use a continuous time
model: A scheduling interval has a short duration with respect
to the duration of transmission and we approximate it as
[t, t + dt] where dt denotes infinitesimal time. In [t, t + dt],

Fig. 2. Energy Ei becomes available for data transmission at time si . D is
the deadline.

the transmitter decides a feasible transmit power level P(t)
and 1

2 log (1 + P(t)) dt bits are sent to the receiver,1 where
the base of log is 2. To be precise, the underlying physical
signaling is in discrete time and the scalings in SNR and
rate due to bandwidth and the base of the logarithm are
inconsequential for the analysis.

B. Energy Harvesting Model

As shown in Fig. 2, the initial energy available in the battery
at time zero is E0. Energy arrivals occur at times {s1, s2, . . .}
in amounts {E1, E2, . . .} with s0 = 0. We call the time interval
between two consecutive energy arrivals an epoch. D is the
deadline. Ei and si are known offline and are not affected by
the heat due to transmission. Let h(t) = max{k : sk < t}
and N be the number of energy arrivals in the interval [0, D)
and by convention we let sN+1 = D. The transmitter has a
battery with unlimited storage capacity. Accordingly, arriving
energy is fully stored in the battery and the power scheduling
policy P(t) is subject to energy causality constraints as:

∫ t

0
P(τ )dτ ≤

h(t)∑
i=0

Ei , ∀t ∈ [0, D] (2)

C. Thermal Model

In our thermal model, we use the transmit power as the
major source of heat dissipated to the environment and assume
that other mechanisms2 that generate heat are negligible.
In particular, we model the temperature dynamics of the
system as follows:

d

dt
T (t) = a P(t) − b(T (t) − Te) + c (3)

where P(t) is the transmit power policy and T (t) is the tem-
perature at time t . Te is the constant temperature of the
environment that is not affected by the heating effect due to the
transmit power level P(t). a and b are non-negative constants.
c represents the cumulative effect of additional heat sources
and sinks and it can take both positive and negative values.
In the following, we consider the case of no extra heat source
or sink, i.e., c = 0.

Our thermal model in (3) is intimately related to the thermal
model in [7] and [9] where hardware heating is modeled as
a first order RC heat circuit. In particular, thermal dynamics
of a power controlled transmitter due to its amplifier power
consumption could be modeled as in (3). In this case, as

1The rate-power relation R = 1
2 log (1 + P) is taken for convenience. The

results developed throughout the paper remain unaltered if the rate-power
relation is taken as a monotone increasing, differentiable and concave function.

2Such mechanisms include the effects of circuit power for computation
and recharging of the battery as well as mechanical heat generation due to
actuation and scavenging energy.
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in [25, en. (2)], the transmit power P(t) can be decom-
posed as P(t) = Pr f (t) + Pamp(t) where Pr f (t) is the
RF power output and Pamp(t) is the power consumption
of the amplifier and other circuit power consumptions are
negligible. We assume the linear relation Pamp(t) = αPr f (t)
where α is a constant, c.f. [25]. Even though an additional
maximum power limit is needed for this assumption to hold,
we neglect this additional constraint in our model. In this
case, Pr f (t) drives the throughput and Pamp(t) drives the
thermal dynamics. Since Pamp(t) = α

1+α P(t), the power level
that drives the temperature is directly proportional to P(t) as
in (3). Our thermal model is also related to the well-known
Pennes’ bioheat equation [1] where specific absorption rate
in a biomedical implant is directly proportional to the output
power of the power amplifier that feeds the transmit antenna.
In this case, we are interested in the temperature of the tissue
and the thermal dynamics are driven by Pr f (t). By using
the linear equations that relate Pr f (t), Pamp(t) and P(t), we
obtain another version of the thermal model in (3). We assume,
for simplicity, that the spatial variation in temperature is not
significant and leave the general case of spatial temperature
variations as future work. Finally, we refer the reader to [24]
for another related heating model.

From (3), the solution of T (t) for any given P(t) with the
initial condition T (t ′) at time t ′ is:

T (t) = e−b(t−t ′)
(∫ t

t ′
eb(τ−t ′) (a P(τ ) + bTe) dτ + T (t ′)

)
(4)

By inserting t ′ = 0 in (4), we get (c.f. [24, eq. (3)]):

T (t) = e−bt
(∫ t

0
ebτ (a P(τ ) + bTe) dτ + T (0)

)
(5)

The temperature should remain below a critical tempera-
ture Tc, i.e., T (t) ≤ Tc, where we assume that Tc > Te. Let us
define Tδ � Tc − Te, which is the largest allowed temperature
deviation from the environment temperature. Typically, initial
temperature is Te, i.e., the system is assumed initially at
rest and in the absence of any heat source, the temperature
is stabilized at the constant environment temperature Te.
From (5), using T (t) ≤ Tc and T (0) = Te, we get the
following equivalent condition for the temperature constraint:∫ t

0
aebτ P(τ )dτ ≤ Tδebt , ∀t ∈ [0, D] (6)

Note that the temperature constraints in (6) and the energy
causality constraints in (2) do not interact. Due to the heat
generation dynamics governed by (3), we observe in (6) that
the cost of power increases exponentially in time (i.e., the
multiplier in front of P(τ ) is exponential in τ ) while the heat
budget also increases exponentially in time (i.e., the upper
bound on the right hand side of (6) is exponential in t). We also
remark that since the relation of T (t) and P(t) is as in (5) and
the constraint on T (t) is deterministic, the transmitter does not
need to measure the instantaneous temperature level T (t) to
determine its power level P(t).

III. PROBLEM FORMULATION

Offline throughput maximization problem over the inter-
val [0, D] under energy causality and temperature constraints

with initial temperature T (0) = Te is:

max
P(t), t∈[0,D]

∫ D

0

1

2
log (1 + P(τ )) dτ

s.t.
∫ t

0
aebτ P(τ )dτ ≤ Tδebt , ∀t

∫ t

0
P(τ )dτ ≤

h(t)∑
i=0

Ei , ∀t (7)

where the space of actions is the set of measurable func-
tions P(t) defined over the interval [0, D]. Note that (7) is
a convex functional optimization problem.

The Lagrangian for (7) is:

L =
∫ D

0

1

2
log (1 + P(t)) dt

−
∫ D

0
λ(t)

(∫ t

0
aebτ P(τ )dτ − Tδebt

)
dt

−
∫ D

0
β(t)

⎛
⎝

∫ t

0
P(τ )dτ −

h(t)∑
i=0

Ei

⎞
⎠ dt (8)

Taking the derivative of the Lagrangian with respect to P(t)
and equating to zero:

1

1 + P(t)
− ebt

∫ D

t
λ(τ)dτ −

∫ D

t
β(τ)dτ = 0 (9)

which gives

P(t) =
[

1∫ D
t β(τ)dτ + ebt

∫ D
t λ(τ)dτ

− 1

]+
(10)

In addition, the complementary slackness conditions are:

λ(t)

(∫ t

0
aebτ P(τ )dτ − Tδebt

)
= 0, ∀t (11)

β(t)

⎛
⎝

∫ t

0
P(τ )dτ −

h(t)∑
i=0

Ei

⎞
⎠ = 0, ∀t (12)

In (9) and (11)-(12), λ(t) ≥ 0 and β(t) ≥ 0 are distribu-
tions that are allowed to have impulses and their integrals
over [0, D] interval are not both zero, i.e.,

∫ D
0 λ(τ)dτ > 0

or
∫ D

0 β(τ)dτ > 0, in order to prohibit P(t) from being
unbounded. In particular,

∫ D
t λ(τ)dτ > 0 or

∫ D
t β(τ)dτ > 0

for all t ∈ [0, D) as otherwise P(t) in (10) cannot have
finite energy. We note that (9) and (11)-(12) are necessary
and sufficient conditions since the problem is convex. The
solution is unique almost everywhere3 as the objective function
is strictly concave.

We note that the problem in (7) could be solved by using
calculus of variations. See [7] for application of calculus of
variations for a similar problem to (7). As another alternative,
we note that (7) could equivalently be solved by using a
Hamiltonian approach from optimal control theory. We refer
the reader to Appendix A for the details of this Hamiltonian
approach. In the following, we proceed with the Lagrangian

3That is, if P1(t) and P2(t) are solutions, then the set {t ∈ [0, D] : P1(t) �=
P2(t)} has Lebesgue measure zero.
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formulation in (8) and the corresponding optimality conditions
in (9) and (11)-(12).

IV. GENERAL PROPERTIES OF AN OPTIMAL POLICY

In this section, we obtain the structural properties of the
optimal power scheduling policy using the optimality condi-
tions. In the following lemmas, P(t) refers to the optimal
policy and T (t) is the resulting temperature unless otherwise
stated. Additionally, we note that T (0) = Te is a standing
assumption in each lemma unless otherwise specified in the
hypothesis of the lemma.

We first note that the temperature level never drops
below Te. In particular, if the initial temperature is between
Te and Tc, the temperature at all times will remain between
Te and Tc.

Lemma 1: Te ≤ T (t) ≤ Tc whenever the initial temperature
is Te ≤ T (0) ≤ Tc.

Proof: From (3), since P(t) ≥ 0 we have d
dt T (t) ≥ 0

whenever T (t) = Te. The constraint T (t) ≤ Tc is satisfied
by any feasible policy in (7).

The following lemma states that if the temperature T (t)
is constant, then the power P(t) is constant also (while it
is not true the other way around, see Lemma 3), and that if
the temperature hits the maximum allowed level Tc, then the
power must be below a threshold.

Lemma 2: Whenever T (t) is constant over an interval I ⊆
[0, D], P(t) is also constant over that interval. If the temper-
ature hits the level Tc at t = th , then P(th + ε) ≤ Tδb

a for all
sufficiently small ε > 0.

Proof: If T (t) is constant in I , d
dt T (t) = 0 and from (3),

P(t) is also constant in the same interval. If T (th) = Tc

for some th ∈ [0, D), then d
dt T (th + ε) ≤ 0 and from (3),

P(th + ε) ≤ Tδb
a .

The following lemma shows that if the power P(t) is a
monotone increasing function, then so is the temperature T (t).
We first prove this result for piecewise constant functions
and then generalize it to arbitrary functions. We note that
a particular instance of a monotone increasing piecewise
constant power is observed in the solution of the throughput
maximization problem without temperature constraints [10].

Lemma 3: If P(t) is a monotone increasing piecewise con-
stant function, then T (t) is monotone increasing. More gen-
erally, if P(t) is a monotone increasing function, so is T (t).

We provide the proof of Lemma 3 in Appendix B. The next
lemma shows that if the temperature remains constant over
an interval, then that constant level could only be Te or Tc,
i.e., any other temperature cannot be a stable temperature.

Lemma 4: If T (t) is constant over an interval I ⊆ [0, D],
then that constant level could only be Te or Tc.

We provide the proof of Lemma 4 in Appendix C. The
following lemma states that at the end of the communication
session either the harvested energy is exhausted or the critical
temperature is reached.

Lemma 5: At t = D, either the temperature constraint or the
energy causality constraint or both are tight.

Proof: If neither of the constraints are tight, then the power
policy P(t) could be increased over a set of non-zero Lebesgue
measure in the last epoch. This strictly increases the through-
put, contradicting the optimality.

The following lemma shows that the optimal power should
be monotonically decreasing between energy harvests.

Lemma 6: P(t) is piecewise monotone decreasing except
possibly at the energy arrival instants. In particular, it is
monotone decreasing between consecutive energy harvests.

We provide the proof of Lemma 6 in Appendix D. Next, we
show that discontinuities in the power level could only occur
in the form of positive jumps, and only at the instances of
energy harvests.

Lemma 7: If there is a discontinuity in P(t), it is a positive
jump and it occurs only at the energy arrival instants. The
temperature T (t) is continuous throughout the [0, D] interval.

Proof: Since ebt is a continuous function of t , λ(t) ≥ 0 and
β(t) ≥ 0, any jump in P(t) has to be positive due to (10). Any
positive jump at instants other than sk violates monotonicity
of P(t) within each epoch due to Lemma 6. Due to (5), the
resulting temperature T (t) is continuous throughout the [0, D]
interval.

By Lemma 7, we can take β(t) in the form
β(t) = ∑N+1

j=1 β jδ(t − s j ) without loss of optimality,
where β j ≥ 0, j = 1, . . . , N + 1, are finitely many Lagrange
multipliers corresponding to the energy causality constraints at
the energy harvesting instants s j and the deadline, sN+1 = D.
Here and throughout the paper, δ(.) denotes the Dirac delta
function. We note that this notation is not related to the
temperature margin Tδ defined earlier.

The next lemma shows, for an arbitrary feasible policy P(t),
that if the temperature reaches the critical level Tc at some th ,
then the power just before th must be larger than a threshold.

Lemma 8: If T (th) = Tc for some th ∈ [0, D), then
P(th − ε) ≥ Tδb

a for all sufficiently small ε > 0.

Proof: Since T (th) = Tc, we have:
∫ th

0
aebτ P(τ )dτ = Tδebth (13)

We combine (6) with (13) to get
∫ th

t
aebτ P(τ )dτ ≥ Tδ

(
ebth − ebt

)
, ∀t ∈ [0, th] (14)

which implies in view of the continuity of P(t) (except for
the finitely many energy arrival instants) proved in Lemma 7
that P(th − ε) ≥ Tδb

a for all sufficiently small ε > 0.
We next state the continuity of the optimal power

policy P(t) at points when it hits the critical temperature Tc.

Lemma 9: If T (th) = Tc for some th ∈ [0, D) then P(t) is
continuous at th and P(th) = Tδb

a .



5444 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 8, AUGUST 2016

Proof: The proof follows from Lemma 2 and Lemma 8 and
the fact that negative jumps in P(t) are not allowed due to
Lemma 7.

Next, we show that when the temperature hits the bound-
ary Tc, it has to return to Tc.

Lemma 10: Whenever T (th) = Tc for some th < D, there
exists t > th such that T (t) = Tc.

We provide the proof of Lemma 10 in Appendix E. The
following lemma identifies the exact conditions where the
power P(t) makes a jump.

Lemma 11: If there is a jump in P(t), it occurs only at
an energy arrival instant, when the battery is empty and the
temperature is strictly below Tc.

Proof: Due to the slackness conditions in (11)-(12), a jump
occurs if either the battery is empty or the temperature
constraint is tight, i.e., T (t) = Tc. By Lemma 9, P(t) is
continuous whenever T (t) = Tc. Therefore, a jump in P(t)
occurs at an energy arrival instant, when the battery is empty
and T (t) < Tc.

We finally remark that energy may have to be wasted as
aggressive use of energy may cause temperature to rise above
the critical level.

V. OPTIMAL POLICY IN THE SINGLE

ENERGY ARRIVAL CASE

In this section, we consider a single epoch where E units of
energy is available at the transmitter at the beginning. We first
develop further structural properties for the optimal power
control policy in this specific case and then obtain the solution.

A. Properties of an Optimal Policy

The next lemma shows that, if the power falls below a
certain threshold at an intermediate point and remains under
that threshold until the deadline, then it should remain constant
throughout.

Lemma 12: If 0 < P(t) ≤ Tδb
a for t ∈ [t1, D], then P(t) is

constant over [t1, D].
We provide the proof of Lemma 12 in Appendix F. The

following lemma states that the power has to remain constant
at the level Tδb

a when the temperature reaches the critical
level Tc.

Lemma 13: Let t ′ ∈ [0, D] denote min{t ∈ [0, D] :
T (t) = Tc}. If t ′ < D, then P(t) = Tδb

a for all t ∈ [t ′, D].
Proof: By Lemma 9, P(t ′) = Tδb

a . By Lemma 6, P(t) is
monotone decreasing, and thus 0 ≤ P(t) ≤ Tδb

a for
t ′ < t ≤ D. By Lemma 12, P(t) = c for all t ∈ [t ′, D].
By Lemma 7, P(t) is continuous and therefore, P(t) = Tδb

a
for all t ∈ [t ′, D].

The following lemma states that the optimal power is always
larger than a constant value determined by the fixed system
parameters.

Lemma 14: The optimal policy P(t) satisfies:

P(t) ≥ min

{
Tδb

a
,

E

D

}
, ∀t ∈ [0, D] (15)

Proof: If the temperature constraint is not tight, then the
problem reduces to the energy constrained problem in which
case P(t) = E

D . If the temperature constraint is tight, P(t)
is monotone decreasing by Lemma 6 and when the temper-
ature level reaches Tc, P(t) remains at Tδb

a by Lemma 13.
Hence, P(t) ≥ Tδb

a .
The following lemma shows that, since the power is always

larger than a constant value, battery energy level is never zero,
except possibly at the deadline.

Lemma 15: In an optimal policy, energy in the battery is
non-zero except possibly at t = D.

Proof: By Lemma 14, the optimal power is always larger than
a positive constant. Thus, the battery energy does not drop to
zero.

The following lemma shows that the temperature is
monotone increasing throughout the transmission duration, and
also is a concave function of time.

Lemma 16: The temperature with the optimal power policy
is monotone increasing and concave.

Proof: If the temperature constraint is never tight, then the
optimal power level is E

D , and from Lemma 3, the temperature
is monotone increasing. Concavity in this case follows from
the concavity of the explicit expression in (46) with T (0) = Te.
Now, assume that the temperature constraint is tight at t = D.
By Lemma 14, P(t) ≥ Tδb

a . From (3), we have:

dT

dt
= a P(t) − b (T (t) − Te) (16)

≥ a
Tδb

a
− b (T (t) − Te) (17)

= b (Tc − T (t)) ≥ 0 (18)

as T (t) ≤ Tc by the temperature constraint. Since P(t) is
monotone decreasing by Lemma 6 and T (t) is monotone
increasing, from (16), dT

dt is monotone decreasing, proving
the concavity of T (t) in this case.

B. Optimal Policy

In view of Lemma 15, the energy constraint can be tight
only at t = D. Therefore, the corresponding Lagrange multi-
plier is a single variable β(t) = βδ(t − D). From Lemma 16,
T (t) is monotone increasing. Due to Lemma 13, when T (t)
reaches Tc, power level has to remain at Tδb

a . Accordingly,
we denote the instant when the temperature reaches Tc

as t0.
1) Sufficiently Large Energy: In this case, the energy con-

straint is never tight, and β = 0. In view of Lemma 5, the
temperature constraint is tight at t = D.

First, consider the case that D is sufficiently large so
that there exists t0 < D such that T (t0) = Tc. For
t ∈ [0, t0), T (t) < Tc and from (11), λ(t) = 0. From (10),
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when t ∈ [0, t0) we have P(t) = 1
C e−bt − 1 where

C = ∫ D
t0

λ(τ)dτ > 0. Since at t = t0 the temperature

reaches Tc, from Lemma 13, we have P(t) = Tδb
a for t ∈

[t0, D]. Then, the optimal power has the form:

P(t) =
(

1

C
e−bt − 1

)
(u(t) − u(t − t0)) + Tδb

a
u(t − t0)

(19)

where u(t) is the unit step function. Now, from Lemma 9,
P(t) is continuous at t0 and C should be chosen accordingly.
In particular, C = 1(

Tδb
a +1

)e−bt0 . The following Lagrange

multiplier λ(t) verifies (19):

λ(t) = b(
Tδb
a +1

)e−bt u(t − t0) + e−bD(
Tδb
a +1

)δ(t − D) (20)

The corresponding optimal temperature pattern for 0 ≤ t ≤ t0
is:

T (t) = a

(
Tδb

a
+ 1

)
te−b(t−t0) + a

b
e−bt − a

b
+ Te (21)

and T (t) = Tc for t0 ≤ t ≤ D. We note that t0 satisfies:(
Tδ

a
+ 1

b

)
ebt0 − 1

b
=

(
Tδb

a
+ 1

)
t0ebt0 (22)

so that T (t0) = Tc. Hence, T (t) monotonically increases till
it reaches Tc, which is consistent with Lemma 16.

Next, consider the case that D < t0. In this case,

P(t) = 1

C
e−bt − 1 (23)

where C = D((
Tδ
a + 1

b

)
ebD− 1

b

) and λ(t) = Cδ(t − D). Therefore,

the optimal P(t) in this case is

P(t) = 1

D

((
Tδ

a
+ 1

b

)
ebD − 1

b

)
e−bt − 1 (24)

We also remark that t0 level that satisfies (22) monotonically
increases with Tδ . To see this, we rearrange (22) as follows:

1

b

⎛
⎝1 − 1(

Tδb
a + 1

)e−bt0

⎞
⎠ − t0 = 0 (25)

Let us define a multi-variable real function w(t0, Tδ) as the
left hand side of (25) and denote a specific solution as t∗0 for
fixed Tδ . It is easy to see that (25) always has a solution t0 for
fixed Tδ. To see this, we evaluate the derivative with respect
to t0 as:

∂

∂ t0
w(t0, Tδ) = 1(

Tδb
a + 1

)e−bt0 − 1 ≤ 0, ∀t0 ≥ 0 (26)

That is, w(t0, Tδ) is monotone decreasing with t0. At t0 = 0,
w(t0, Tδ) > 0 while w(t0, Tδ) → −∞ as t0 grows. In view
of the continuity of w(t0, Tδ), there exists a t0 such that
w(t0, Tδ) = 0. Additionally, we observe in (25) that for fixed
t0, w(t0, Tδ) monotonically increases with Tδ. Therefore, if
w(t∗0 , Tδ) = 0, then, due to monotone increasing property
with respect to Tδ, w(t∗0 , T

′
δ ) > 0 for T

′
δ > Tδ . Hence, for t∗∗

0
such that w(t∗∗

0 , T
′
δ ) = 0, we have t∗∗

0 > t∗0 due to monotone
decreasing property with respect to t0.

2) Energy Limited Case: Note that the optimal power
policies in the energy unconstrained cases in (19) and (24)
have finite energies. If the available energy E is larger than the
corresponding energy level in (19) and (24), then the solution
is as in (19) and (24). Otherwise, the energy constraint is active
and the Lagrange multiplier is β > 0. From (10), we have:

P(t) = 1

β + ebt
∫ D

t λ(τ)dτ
− 1 (27)

We first note that there is a critical energy level Ecrit ical

such that if E ≤ Ecrit ical , then constant power policy
P(t) = E

D is optimal. This critical level is:

Ecrit ical = Tδb

a

DebD

ebD − 1
(28)

This is the critical level below which the temperature con-
straint is not tight by the constant power allocation P(t) = E

D .
The expression in (28) is evaluated from (46) by inserting
T (0) = Te, and requiring T (D) ≤ Tc. When E ≤ Ecrit ical ,
λ(t) = 0 since temperature constraint is never tight. In this
case, β = 1

E
D +1

. Ecrit ical is the maximum energy level

for which a constant power level is optimal. If P(t) =
Ecritical

D , T (t) is monotone increasing over [0, D] and reaches
Tc at t = D. If E > Ecrit ical , the constant power level
Ecritical

D does not satisfy the temperature constraint. We note
from (28) that Ecrit ical increases with the deadline D. There-
fore, there exists a deadline level D̃ for which D > D̃ implies
E < Ecrit ical and hence constant power policy is optimal.

An alternative way of observing the behavior of the optimal
policy is to fix the available energy E and Te and vary
the critical temperature Tc. In this case, there is a critical
temperature limit T limit

c for which P(t) = E
D is optimal

whenever Tc > T limit
c :

T limit
c = Te + a

b

E

D

ebD − 1

ebD
(29)

which again is evaluated from (46) with T (0) = Te. In the
following, we consider E > Ecrit ical or Tc < T limit

c so that
both energy and temperature constraints are tight at the end
of the communication session.

Again, we consider two possibilities: temperature constraint
becomes tight at a t0 < D, and temperature constraint becomes
tight at t = D. In both cases, the energy constraint becomes
tight at t = D.

First, consider the case that t0 < D: Due to (11), λ(t) = 0
for t ∈ [0, t0) and from (10), we get:

P(t) = 1

β + Cebt
− 1 (30)

where C = ∫ D
t0

λ(τ)dτ > 0. Additionally, P(t) = Tδb
a for

the remaining portion of the epoch in view of Lemma 13. t0
is such that for t > t0, P(t) = Tδb

a and T (t0) = Tc. Since
P(t0) = Tδb

a we have:

1

β + Cebt0
= Tδb

a
+ 1 (31)
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Fig. 3. The optimal power policy in the single energy arrival case for different
energy and deadline constraints. (a) Fixed Tc and varying E . (b) Fixed E and
varying Tc .

Similarly, for T (t0) = Tc, we have from (5) with T (0) = Te:

e−bt0

(∫ t0

0
ebt

(
a

(
1

β + Cebt
− 1

)
+ bTe

)
dt + Te

)
= Tc

(32)

Finally, the energy constraint has to be satisfied at t = D:∫ t0

0

(
1

β + Cebt
− 1

)
dt + Tδb

a
(D − t0) = E (33)

If there exists t0 ≤ D for (31)-(33), then P(t) is:

P(t) =
(

1

β + Cebt
− 1

)
(u(t) − u(t − t0)) + Tδb

a
u(t − t0)

In this case, the corresponding Lagrange multiplier is:

λ(t) = bCe−b(t−t0)u(t − t0) + Ceb(t0−D)δ(t − D) (34)

Otherwise, when no such t0 < D exists, the temperature
constraint is tight only at t0 = D. In this case, P(t) is as
in (30) for t ∈ [0, D] where β and C have to satisfy:

e−bD
(∫ D

0
ebt

(
a

(
1

β + Cebt
− 1

)
+ bTe

)
dt + Te

)
= Tc

(35)∫ D

0

(
1

β + Cebt
− 1

)
dt = E

(36)

The corresponding Lagrange multiplier is λ(t) = Cδ(t − D).
Depending on the energy E and the critical temperature Tc,

the optimal power scheduling policy P(t) varies according to
the plots in Fig. 3. For small E and fixed Tc or for large Tc and
fixed E , a constant power policy is optimal. For moderate and
large E , the optimal power policy is exponentially decreasing
and may hit the power level Tδb

a . Note that t0 level at
which temperature touches the critical level decreases as Tc

is decreased and as E is increased. In particular, for fixed Tc,
the level of t0 is bounded below by the solution for E = ∞
whereas for fixed E , t0 goes to 0 as Tc approaches Te.

VI. OPTIMAL POLICY FOR MULTIPLE ENERGY ARRIVALS

In this section, we extend the solution to the case of
multiple energy arrivals. We start with extending the prop-
erties observed for the single energy arrival case when initial
temperature T (0) is different from Te. The following lemma
generalizes Lemmas 6, 13 and 16 for the case of an arbi-
trary T (0).

Lemma 17: Assume that the initial temperature T (0) is in
the range Te < T (0) < Tc instead of T (0) = Te and consider
the single energy arrival case: P(t) is monotone decreasing.
Let th ∈ [0, D] denote min{t ∈ [0, D] : T (t) = Tc}.
If th < D, then P(t) = Tδb

a for all t ∈ [th, D] and the tem-
perature is monotone increasing and concave. If T (0) = Tc,
then P(t) = min

{
Tδb
a , E

D

}
.

Proof: If T (0) is in the range Te < T (0) < Tc then, instead
of (6), we have the following temperature constraint:∫ t

0
aebτ P(τ )dτ ≤ Tδebt − Tg, ∀t ∈ [0, D] (37)

where Tg = T (0) − Te ≥ 0. Note that Tδebt − Tg ≥ 0 for
all t ∈ [0, D], i.e., the right hand side of (37) is always non-
negative. The argument in Lemma 6 is valid in the presence of
the additional term Tg in (37), and therefore P(t) is monotone
decreasing.

The second claim follows from the argument in Lemma 13.
In particular, in addition to Lemma 6, Lemma 12 directly
extends with the constraint in (37). Hence, the result follows
by applying the argument in Lemma 13.

Finally, T (t) is monotone increasing and concave due to
the steps followed in Lemma 16. In particular, if the tem-
perature constraint is tight at t = D, P(t) ≥ Tδb

a . Hence,
(16)-(18) hold and the temperature is monotone increasing and
concave. If T (0) = Tc, then P(t) = min

{
Tδb
a , E

D

}
due to the

energy constraint. Note that the temperature decreases in case
min

{
Tδb
a , E

D

}
= E

D .
As in the single epoch case, we will investigate the solution

under special cases. In particular, we will investigate the
solution according to the time when the temperature hits the
critical level. To this end, we specialize in an interval [t1, t2]
such that T (t) < Tc for all t ∈ [t1, t2) and T (t2) = Tc

where 0 < t1 < t2 ≤ D. Note that the temperature T (t) is a
continuous function of t and hence there exist such intervals.
We assume that the solution is known in [0, t1) ∪ (t2, D] and
we let Te ≤ T (t1) < Tc. In this case, the solution of (7) over
the interval [t1, t2] is equal to the solution of the following
problem obtained by restricting the temperature constraint to
be satisfied at t = t2 only:

max
P(t), t∈[t1,t2]

∫ t2

t1

1

2
log (1 + P(τ )) dτ

s.t.
∫ t2

t1
aebτ P(τ )dτ = Tδebt2 − Tgebt1

∫ t

0
P(τ )dτ ≤

h̃(t)∑
i=0

Ẽi , ∀t ∈ [t1, t2] (38)

where Tg = T (t1) − Te ≥ 0. In (38), Ẽi is determined as
follows: Ẽ0 is the available energy in the battery at time
t = t1. Ẽi for i = 1, . . . , Ñ are the energy arrivals at instants
s̃i ∈ (t1, t2). h̃(t) is defined accordingly. While the times s̃i

are exactly those in the original problem, the amounts Ẽi may
be different from the original amounts as some energy may be
left for use in the (t2, D] interval. For the following argument,
whether Ẽi equals the original energy arrival amount is not
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relevant and we leave Ẽi as arbitrary amounts. To obtain
the solution of (38) using this Lagrangian framework, it is
necessary and sufficient to find Ñ + 2 variables βi ≥ 0,
i = 1, . . . , Ñ + 1 and C ≥ 0 such that

P(t) =
⎡
⎣ 1∑Ñ+1

j=i β j + Cebt
− 1

⎤
⎦

+
, t ∈ [s̃i−1, s̃i ) (39)

with the corresponding slackness conditions. Therefore, for
the [t1, t2] interval, the solution has the structure in (39),
which is parameterized by finitely many Lagrange multipliers.
In particular, throughout an epoch over which T (t) < Tc,

power level satisfies P(t) =
[

1
β+Cebt − 1

]+
for some β ≥ 0

and C ≥ 0 not both equal to zero. This also holds in a
subinterval of an epoch over which T (t) < Tc. In the following
lemma, we show that in such an epoch, the temperature T (t)
is unimodal.

Lemma 18: If P(t) =
[

1
β+Cebt − 1

]+
for t ∈ [t1, t2] for some

β > 0 and C > 0, the resulting T (t) is unimodal over [t1, t2].
We provide the proof of Lemma 18 in Appendix G. In the

following lemma, we show that, in an epoch [si , si+1], the
temperature cannot return to Tc if it hits and falls below Tc.

Lemma 19: If T (th) = Tc and T (th +	) < Tc for some 	 >
0 where both th and th + 	 are in [si , si+1], then T (t) < Tc

for all t ∈ [th + 	, si+1].
Proof: By Lemma 9, P(th) = Tδb

a . By Lemma 6,
power is monotone decreasing in an epoch. Therefore, if
T (th + 	) < Tc, then P(th +	) < Tδb

a and hence P(t) < Tδb
a

for all t ∈ [th + 	, si+1]. This, in turn, means that T (t) < Tc

for all t ∈ [th + 	, si+1].
Next, we complete the unimodal structure of the temperature

by showing that it has to be monotone decreasing if it hits and
falls below Tc.

Lemma 20: In an epoch [si , si+1], if the temperature touches
Tc at th and falls below it, then the temperature is monotone
decreasing in [th, si+1].
Proof: By Lemma 19, if T (th + 	) < Tc, then T (t) < Tc for
all t ∈ [th + 	, si ]. Therefore, we have

P(t) =
[

1

β + Cebt
− 1

]+
, t ∈ [th + 	, si+1] (40)

for some β > 0 and C > 0. By Lemma 18, T (t) is unimodal
over t ∈ [th +	, si ]. Therefore, T (t) is monotone decreasing.

We next consider epochs [si , si+1] and its subintervals over
which T (t) < Tc and T (t) = Tc. By Lemma 18 and in view
of the discussion around (38), whenever T (t) < Tc over an
epoch, T (t) reaches its peak level over that epoch at only one
instance. Consequently, if T (t) < Tc for all t ∈ [si , si+1], there
are three possible cases. The first two possibilities are that T (t)
is monotone increasing or monotone decreasing throughout
the epoch. The third possible case is that T (t) is monotone
increasing in [si , t1i ] and monotone decreasing in (t1i , si+1]

Fig. 4. Energy expenditure with the optimal power policy with multiple
energy arrivals. In view of the temperature constraint, as Tc is decreased, the
energy is spent faster subject to energy causality.

for some t1i ∈ (si , si+1). Otherwise, T (t) hits Tc and T (t)
does not return to Tc if it falls below it due to Lemma 19.
Therefore, if T (t) hits Tc in an epoch [si , si+1], then that epoch
is divided into three successive subintervals Ii1, Ii2, Ii3 with
Ii1 = [si , ti1), Ii2 = [ti1, ti2) and Ii3 = [ti2, si+1] for some
si < ti1 ≤ ti2 < si+1. T (t) is monotone increasing over Ii1,
remains at Tc over Ii2 and is monotone decreasing over Ii3.
We finally note that if T (t) < Tc at t = D, then T (t) < Tc for
all t ∈ [0, D]. This follows from Lemma 10. In this case, the
temperature constraint is never tight and the optimal power
policy is identical to the one in [10].

In Fig. 4, we plot the optimal energy expenditure for
different values of critical temperature level Tc. We observe
that as Tc is decreased, the temperature budget shrinks and
the temperature constraint becomes more likely to be tight.
In this case, energy is spent faster not to create high amounts
of heat in the system. In general, there is a tension between
causing unnecessary heat in the system and maximizing the
throughput. While we have fully characterized this tension
in the single energy arrival case, it needs to be further
explored in the multiple energy arrivals case. In particular,
when a high amount of energy arrives into the system during
the progression of communication, the transmitter has to
accommodate it by cooling down and creating a temperature
margin for future use. While maximizing the throughput
generally requires using the energy in the system to the fullest
extent, the transmitter may have to waste energy due to the
temperature limit. We investigate this tension in numerical
examples in the next section.

VII. NUMERICAL RESULTS

In this section, we provide numerical examples to illustrate
the optimal power policy and the resulting temperature profile.
For plots in Figs. 5, 6, 7 and 8, we set a = 0.1, b = 0.3, Te =
37 and Tc = 38. Therefore, the critical power level is Tδb

a = 3.
In Figs. 5 and 6, we consider the energy unlimited scenario.

In this case, the solution of (22) is found as t0 = 2.993.
In Fig. 5, we set D = 2 < t0 and we observe that the optimal
power policy is always above the level Tδb

a . In this case, power
strictly monotonically decreases while temperature strictly
monotonically increases with temperature touching the critical
level Tc at the deadline. In Fig. 6, we set the deadline as
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Fig. 5. Power, energy and temperature plots for unlimited energy and D = 2
for the single epoch case.

Fig. 6. Power, energy and temperature plots for unlimited energy and
D = 3.5 for the single epoch case.

D = 3.5 > t0. We calculate that the energy needed to have
the power policy in Fig. 6 is E = 17.98. In other words,
if the initial energy is E ≥ 17.98 then the power policy
in Fig. 6 is optimal. We observe that the optimal power level
monotonically decreases to the level Tδb

a and remains at that
level afterwards. Similarly, the temperature level rises to Tc

and remains at that level afterwards. Note that the throughput
and the energy consumption in Fig. 6 are higher with respect
to those in Fig. 5. Parallel to this observation, the monotone
decrease is sharper in the power policy in Fig. 6 compared to
that in Fig. 5. Since the power level has to be stabilized at
Tδb
a , the temperature increase cost paid for achieving certain

throughput is minimized if energy consumption starts faster
and drops later.

Fig. 7. Power, energy and temperature plots for limited energy E = 17.71
and D = 3.5 for the single epoch case.

Fig. 8. Power, energy and temperature plots for two energy arrivals,
E0 = 6.08 and E1 = 14.55 at t = 1.5 and D = 5.

In Fig. 7, we set the deadline to D = 3.5 and the energy
limit to E = 17.71. Note that this energy level is slightly less
than the energy of the power policy in Fig. 6, which translates
into a right shift of the point t0. In particular, we calculate
t0 = 3.2 as the solution of (31)-(33) in this case. Similar to the
effect of decreasing the deadline observed in the comparison
of Figs. 5 and 6, we observe that decreasing the energy level
yields a smoother power policy. Power level drops to Tδb

a
and the temperature hits Tc at a later time t0 and both remain
constant afterwards.

In Fig. 8, we consider the same system as in previous figures
with two energy arrivals instead of one and with D = 5.
In particular, E0 = 6.08 is available initially and E1 = 14.55
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Fig. 9. Power, energy and temperature plots for two energy arrivals, E0 = 25
at t = 0 and E1 = 17 at t = 2 and D = 3.5.

arrives at time s1 = 1.5. In this case, we calculate t0 = 3.9.
The energy causality constraint is tight and the power level
makes a jump at the energy arrival instant. Note that the
temperature is continuous at the energy arrival instant even
though its first derivative is not. While the power level has a
smooth start, a sharper decrease is observed towards the end
since the harvested energy has to be fully utilized. In particular,
the temperature increase before the energy arrival is kept to a
minimum level so as to have a higher heat budget for the larger
energy that arrives later. The temperature hits Tc at t = 3.95
after which the power and temperature both remain constant.

Finally in Fig. 9, we illustrate a curious behavior in the
optimal policy. For this example, we set a = 0.1, b = 1.1,
Te = 37 and Tc = 37.92. Initial energy is E0 = 25
and energy arrives at t = 2 with amount E1 = 17 and
the deadline is D = 3.5. We observe that energy causality
constraint is tight at t = 2 whereas it is not tight at t = D
meaning that some energy is wasted in order not to cause
excessive heat. The temperature generated in this throughput
optimal power policy first monotonically increases, hits Tc at
t = 1.31, remains there till t = 1.66 and drops below Tc.
We interpret the drop in the temperature in the first epoch as
an effort to create temperature margin for the high energy
arrival in the next epoch. We calculate t0 = 2.23 as the
time after which power level remains at Tδb

a = 10.12 and
the temperature remains at Tc. Note that under unlimited
energy, temperature would hit Tc at t = 0.878. Due to the
energy scarcity in the first epoch, temperature hits Tc later
and drops below Tc. A common behavior we observe in each
numerical example is that temperature ultimately increases
between two epochs where energy causality constraint is tight.
Further research is needed to quantify the relations between the
amount of temperature generated while performing optimally
in terms of throughput. While monotonicity of the temperature
is lost when multiple energy harvests exist, we note that

monotonicity of the temperature is guaranteed in the last epoch
due to Lemma 17.

VIII. CONCLUSIONS

We considered throughput maximization for an energy har-
vesting transmitter over an AWGN channel under temperature
constraints. We used a linear system model for the heat dynam-
ics and determined the throughput optimal power scheduling
policy under a maximum temperature constraint by using a
Lagrangian framework and the KKT optimality conditions.
We determined for the single energy arrival case that the
optimal power policy is monotone decreasing whereas the
temperature is monotone increasing and both remain constant
after the temperature hits the critical level. We then generalized
the solution for the case of multiple energy arrivals. While
monotonicity of the temperature is lost when multiple energy
harvests exist, we observed that the temperature ultimately
increases while maximizing the throughput. We also observed
that the main impact of the temperature constraints is to
facilitate faster energy expenditure subject to energy causality
constraints. Additionally, even though using all of the available
energy is optimal for throughput maximization only, with
temperature constraints, energy may have to be wasted in order
not to exceed the critical temperature. Our power consumption
model hinges on a linear relation between transmit power and
dissipated power. Linearity of power dissipation with transmit
power is an assumption that results from first-order analysis
and is for simplicity of our models. An exciting direction for
future work is to consider more realistic models which can be
derived for particular applications, e.g., mm-wave wearables.

APPENDIX A
HAMILTONIAN APPROACH FOR SOLVING (7)

We can cast the problem in (7) as an optimal control
problem with pure state constraints [26]. In this case, the state
of the system is the tuple [T (t) B(t)] where B(t) = ∫ t

0 P(τ )dτ
is the total energy expenditure by the time t . The input is P(t)
for 0 ≤ t ≤ D. This problem is in the following form:

max
P(t), t∈[0,D]

∫ D

0

1

2
log (1 + P(τ )) dτ

s.t.
d

dt
T (t) = f1(T, B, P),

d

dt
B(t) = f2(T, B, P)

g1(T, B, t) ≤ 0, g2(T, B, t) ≤ 0 (41)

where f1(T, B, P) = a P − b(T − Te) and f2(T, B, P) = P

while g1(T, B, t) = T − Tc and g2(T, B, t) = B − ∑h(t)
i=0 Ei .

Note that g1 and g2 do not depend on the input P . With these
selections, optimization problem (41) is in the same form as
that stated in [26, eqs. (2.1)–(2.6)]. In this case, Hamiltonian is

H(T, B, P, λ1, λ2, t) = 1

2
log (1 + P) − λ1(t) f1(T, B, P)

− λ2(t) f2(T, B, P) (42)

and the corresponding Lagrangian is

LH (T, B, P, λ1, λ2, t)

= H(T, B, P, λ1, λ2, t)

− ν1(t)g1(T, B, t) − ν2(t)g2(T, B, t) (43)
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where λ1(t) and λ2(t) are the co-state trajectories; ν1(t)
and ν2(t) are multiplier functions. We note that Pontryagin’s
maximum principle is necessary and sufficient in this case
since (41) is a concave maximization problem. One can derive
the equivalence of necessary and sufficient conditions for this
optimal control problem to those in (9) and (11)-(12).

APPENDIX B
PROOF OF LEMMA 3

We first prove the first statement of the lemma which is
concerned with piecewise constant functions. Let us start with
the case of a single constant power value for the entire duration
of communication, i.e., P(t) = p for t ∈ [0, D]. From (5),
we have:

T (t) = e−bt
(∫ t

0
ebτ (ap + bTe) dτ + T (0)

)
(44)

= e−bt
(

(ap + bTe)

b

(
ebt − 1

)
+ T (0)

)
(45)

= Te + a

b
p +

(
T (0) − Te − a

b
p
)

e−bt (46)

For T (0) = Te, (46) is a monotone increasing function of t .
In particular, T (t) ≤ Te + a

b p. Now, let us consider the case
of M constant power levels for the duration of communication,
i.e., P(t) = pi over the interval [Ii−1, Ii ) where pi < pi+1 for
all i and 0 = I0 < I1 < . . . < IM = D where M > 1 is the
number of intervals. In this case, we have for t ∈ [Ii−1, Ii ):

T (t) = Te+ a

b
pi +

(
T (Ii−1)−Te − a

b
pi

)
e−b(t−Ii−1) (47)

where T (Ii−1) ≤ Te + a
b pi−1. Hence, the coefficient of

e−b(t−Ii−1) in (47) has a negative sign as T (Ii−1) − Te −
a
b pi ≤ a

b (pi−1 − pi ) < 0. This proves that T (t) is monotone
increasing.

To generalize this result for any monotone increasing
function P(t), we obtain any monotone increasing simple
approximation [27] of P(t), denoted as Pn(t), such that
P1(t) ≤ P2(t) ≤ . . . ≤ Pn(t) for all t ∈ [0, D] and
Pn(t) → P(t) pointwise. For example, one can select Pn(t) =
P(In(i−1)) for t ∈ [In(i−1), Ini ) and Ini = D

2n (i − 1) for
i = 1, . . . , 2n . Let us call the resulting temperature Tn(t).
Hence, ebt P1(t) ≤ ebt P2(t) ≤ . . . ≤ ebt Pn(t) for all t ∈ [0, D]
and ebt Pn(t) → ebt P(t) pointwise. By monotone convergence
theorem [27], we have∫ t

0
ebτ Pn(τ )dτ →

∫ t

0
ebτ P(τ )dτ, ∀t ∈ [0, D] (48)

Accordingly, Tn(t) → T (t) pointwise and we have

d

dt
Tn(t) = a Pn(t) − b (Tn(t) − Te)

→ d

dt
T (t) = a P(t) − b (T (t) − Te) , ∀t ∈ [0, D] (49)

Since Pn(t) is a monotone increasing piecewise constant
function, from the first part of the proof, Tn(t) is monotone
increasing, i.e., d

dt Tn(t) = a Pn(t) − b (Tn(t) − Te) ≥ 0.
Since d

dt Tn(t) → d
dt T (t) pointwise, this implies d

dt T (t) ≥ 0,
i.e., T (t) is monotone increasing as well.

APPENDIX C
PROOF OF LEMMA 4

Assume T (t) is constant over I . Without loss of generality,
assume that there is no energy arrival in the interval I , and
otherwise let I be the portion of the interval without any
energy arrivals. By Lemma 2, P(t) is constant over I . If
P(t) = 0 over I , then T (t) = Te from (3). If P(t) �= 0,
we have from (10)

P(t) = 1∫ D
t β(τ)dτ + ebt

∫ D
t λ(τ)dτ

− 1 (50)

where β(t) = 0 over the interval I by (12) since β(t) > 0
implies energy constraint is tight and P(t) = 0. Therefore,∫ D

t β(τ)dτ = B is constant over I . If T (t) < Tc, then by (11),
λ(t) = 0 over I and hence

∫ D
t λ(τ)dτ = C is constant over I .

However, this makes (50) a time varying function of t because
of the ebt term in the denominator, and this contradicts the fact
that P(t) is constant. Finally, if C = 0, this means that the
temperature constraint is never tight. In this case, the piecewise
constant power policy in [10] is optimum, and the temperature
is monotonically increasing from Lemma 3, and therefore,
cannot be a constant over an interval.

APPENDIX D
PROOF OF LEMMA 6

We prove the statement by contradiction. Assume that for
some interval [t1, t2], P(t) is strictly monotone increasing, and
that the interval [t1, t2] does not contain an energy arrival

instant. Define a new power policy as Pnew(t) =
∫ t2

t1
P(τ )dτ

t2−t1
over t ∈ [t1, t2] and Pnew(t) = P(t) otherwise. Pnew(t)
satisfies the energy causality constraint in (7) since Pnew(t)
uses the same amount of energy as P(t) over [t1, t2] and
the energy constraint for P(t) is not tight in this interval.
Pnew(t) also satisfies the temperature constraint. To see this,
we first note that Pnew(t) satisfies the following inequality
(see [28, Theorem in p. 207]):∫ t2

t1
aebτ Pnew(τ)dτ ≤

∫ t2

t1
aebτ P(τ )dτ (51)

as both P(t) and ebt are monotone increasing. In addition,
since P(t) is temperature feasible:∫ t1

0
aebτ P(τ )dτ ≤ Tδebt1 (52)

∫ t2

0
aebτ P(τ )dτ ≤ Tδebt2 (53)

Combining (51) and (53), we conclude that Pnew(t) satisfies
the temperature constraint at t = t2:∫ t2

0
aebτ Pnew(τ)dτ =

∫ t1

0
aebτ Pnew(τ)dτ

+
∫ t2

t1
aebτ Pnew(τ)dτ (54)

≤
∫ t1

0
aebτ P(τ )dτ

+
∫ t2

t1
aebτ P(τ )dτ (55)

≤ Tδebt2 (56)
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Additionally, the temperature constraint is satisfied for t > t2
since Pnew(t) and P(t) are identical for t > t2 and P(t) is
temperature feasible. Hence, we need to show that Pnew(t)
satisfies the temperature constraint for all t ∈ (t1, t2) to
establish the temperature feasibility of Pnew(t). That is, we
need to show:∫ t1

0
aebτ P(τ )dτ +

∫ t

t1
aebτ Pnew(τ)dτ ≤ Tδebt , t ∈ (t1, t2)

(57)

Since Pnew(t) = p is constant over [t1, t2], we have:∫ t

t1
aebτ Pnew(τ)dτ = a

b
p

(
ebt − ebt1

)
, t ∈ [t1, t2] (58)

Using (58) in (57) and since ebt ≥ 0, (57) takes the following
equivalent form:

e−bt
(∫ t1

0
aebτ P(τ )dτ − a

b
pebt1

)
+ a

b
p ≤ Tδ (59)

Note that the left hand side of (59) is either monotone
increasing or monotone decreasing in t as it is a linear function
of e−bt . Since the inequality (59) holds at t = t1 and t = t2 as
Pnew(t) satisfies the temperature constraint at those points, we
conclude that Pnew(t) satisfies the temperature constraint for
all t ∈ [t1, t2]. In addition, Pnew(t) yields higher throughput
than P(t) due to the concavity of logarithm. This contradicts
the optimality of P(t). The proof holds even when [t1, t2]
includes an energy arrival instant provided that the energy
causality constraint is not tight at that instant.

APPENDIX E
PROOF OF LEMMA 10

Assume that T (th) = Tc for some th < D and T (t) < Tc

for all th < t < D. By Lemma 9, P(th ) = Tδb
a . From (4) with

T (th) = Tc, the constraint T (t) ≤ Tc becomes:∫ t

th
aebτ P(τ )dτ ≤ Tδ

(
ebt − ebth

)
, th < t ≤ D (60)

Since T (t) < Tc in th < t < D, only energy causality
constraint is active and thus P(t) for th < t < D is the
piecewise constant monotone power allocation in [10]. On the
other hand, P(t) = Tδb

a satisfies (60) with equality for all t .
Therefore, we must have P(t) = c < Tδb

a for all t ∈ (th , th +δ)

for some δ > 0. However, this contradicts P(th) = Tδb
a since

there cannot be a negative jump in P(t) by Lemma 7.

APPENDIX F
PROOF OF LEMMA 12

Assume P(t) is not constant over [t1, D]. Let
Er = ∫ D

t1
P(τ )dτ > 0. Define a new policy Pnew(t) = Er

D−t1
for t ∈ [t1, D] and Pnew(t) = P(t) otherwise. Pnew(t) is
both energy and temperature feasible. Energy feasibility
holds by construction as Pnew and P have the same energy
over [t1, D]. Temperature feasibility also holds: T (t1) ≤ Tc

since P(t) is temperature feasible and as Er
D−t1

< Tδb
a , we

have T (t) ≤ Tc for all t1 < t < D from (6). Now, by

Jensen’s inequality Pnew(t) achieves strictly larger throughput
since log is strictly concave. This contradicts the optimality
of P(t). Hence, P(t) = c > 0 for t ∈ [t1, D].

APPENDIX G
PROOF OF LEMMA 18

From (4), we have for t ∈ [t1, t2],
T (t) = e−b(t−t1)

·
(∫ t

t1
eb(τ−t1)

(
a

[
1

β+Cebτ
−1

]+
+ bTe

)
dτ +T (t1)

)

(61)

First, we note that when P(t) = 0, d
dt T (t) ≤ 0 from (3).

Hence, it suffices to show that T (t) is unimodal when
P(t) = 1

β+Cebt − 1 > 0. By evaluating the integral, we get

T (t) = a

bC
e−bt log

(
β + Cebt

β + Cebt1

)

+
(

T (t1) − Te + a

b

)
e−b(t−t1) + Te − a

b
(62)

We claim that T (t) in (62) is unimodal for t > t1. Note that
the derivative of T (t) is:

d

dt
T (t) = e−bt

(
aebt

β + Cebt
− a

C
log

(
β + Cebt

β + Cebt1

)

− b
(

T (t1) − Te + a

b

)
ebt1

)
(63)

We let x = ebt , x1 = ebt1 and concentrate on ax
β+C x −

a
C log

(
β+C x
β+C x1

)
for x > x1. We note that ax

β+C x −
a
C log

(
β+C x
β+C x1

)
is a strictly monotone decreasing function of

x for x > x1 > 0. In particular, we have:

d

dx

(
ax

β + Cx
− a

C
log

(
β + Cx

β + Cx1

))
= −Cx

(β + Cx)2 (64)

Thus, aebt

β+Cebt − a
C log

(
β+Cebt

β+Cebt1

)
is strictly monotone decreas-

ing in t . As aebt

β+Cebt − a
C log

(
β+Cebt

β+Cebt1

)
> 0 at t = t1, we

conclude that the factor in (63) that multiplies e−bt can take
value 0 at most once. In particular, aebt

β+Cebt − a
C log

(
β+Cebt

β+Cebt1

)
−

b
(
T (t1) − Te + a

b

)
ebt1 can take positive or negative values at

t = t1. If it is positive at t = t1, it hits value 0 at most once for
t > t1. If it is negative at t = t1, it stays negative throughout
t > t1. This proves that T (t) is unimodal over [t1, t2].
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