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Abstract—We consider scheduling for energy harvesting
channels in which the users incur processing cost per unit time
that they are on. The presence of processing costs forces the
users to operate in a bursty mode. We consider online trans-
mission scheduling where the users know the energy harvests
only causally as they happen, and need to determine the opti-
mum transmit powers and the optimum burst durations on the
fly. We first consider the single-user channel. For this case, we
first consider the case of independent and identically distributed
(i.i.d.) Bernoulli energy arrivals, and then extend our analysis
to the case of general i.i.d. energy arrivals. We determine the
exactly optimum online policy for Bernoulli arrivals and propose
a nearly optimum online policy for general arrivals. The proposed
policy is near-optimum in that it performs within a constant gap
from the optimum policy for all energy arrivals and battery-
sizes. We then extend our analysis to the case of two-way energy
harvesting channels with processing costs; in this case, the users
incur processing costs for being on for transmitting or receiving
data. We consider the case where the users harvest energy from
fully correlated energy sources. We determine the exactly opti-
mum online power schedule for i.i.d. Bernoulli energy arrivals
and develop a nearly optimum online power schedule for general
i.i.d. energy arrivals. Our proposed policy is distributed, which
users can apply independently with no need for cooperation or
coordination between them.

Index Terms—Energy harvesting communications, online
scheduling, processing costs, two-way channels, near-optimal
policy, fully-correlated.

I. INTRODUCTION

WE FIRST consider a single-user energy harvesting
channel, see Fig. 1, where the transmitter incurs a

processing cost per unit time that it is on. The processing
cost is the power consumed by the transmitter to be on and
transmitting. This cost forces the transmitter to transmit in
bursts instead of transmitting continually. The transmitter has
a finite-sized battery, which is recharged by an exogenous
i.i.d. energy harvesting process. We consider the problem of
online scheduling, where the transmitter knows the energy
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Fig. 1. Single-user energy harvesting channel.

arrivals only causally, and needs to determine a power alloca-
tion and burst length policy with only a causal knowledge of
the energy arrivals. We then extend our analysis to the case of
a two-way energy harvesting channel, Fig. 2, where users har-
vest energy from a fully correlated energy source. The users
have finite but arbitrary-sized batteries to save unused energy
for future use. Each user is subject to an arbitrary processing
cost which accounts for power used per unit time by the user
for being on to transmit or receive data. The processing costs
force users to operate in bursty modes, where they do not
utilize the entire duration available for communication. The
users need to determine their power allocation and burst length
policies based only on causal knowledge of energy arrivals.

Offline scheduling, where the transmitter knows the energy
harvesting profile non-causally ahead of time, has been con-
sidered extensively in [1]–[21], starting with the single-user
channel [1]–[4], extending to multi-user and multi-hop set-
tings [5]–[16], and incorporating processing costs [17]–[21]
which lead to bursty communication as in glue-pouring
in [22]. Early work in online scheduling, where the trans-
mitter gets to know the energy harvesting profile only
causally [3], [4], [23]–[31] has formulated the problem using
dynamic programming and Markov decision process tech-
niques.

In this paper, we follow the unique approach developed
in [32]–[34] for online scheduling in a single-user energy har-
vesting system with a finite-sized battery. This approach has
recently been extended to multiple access [35], [36] and broad-
cast [37], [38] settings. In this paper, we extend this approach
for the single-user and two-way channels with processing
costs. For the single-user case, our paper may be viewed as an
extension of the online setting in [33] to incorporate process-
ing costs at the transmitter, or equivalently, as an extension of
the offline setting in [17] and [18] which consider processing
costs to an online setting. In addition, we further extend our
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Fig. 2. Two-way energy harvesting channel with fully-correlated energy
arrivals.

setting from consideration of a single-user channel to the case
of two-way channels.

For the single-user case, as is common in this
approach [32]–[38], we first consider the case of
i.i.d. Bernoulli energy arrivals, where the energy arrival
amount is either zero or equals the size of the battery,
i.e., either no energy arrives or the energy arrival fills the
battery resetting the system. For this case, we determine the
exactly optimal online transmission policy. We show that the
optimum transmit power decreases exponentially between
energy arrivals. Due to the presence of processing costs,
there may exist bursts in the transmission, i.e., slots may
not be fully utilized. We show that the bursty transmission
can only occur in the last slot. We also show that the total
transmission duration decreases with the processing cost.
Next, we consider the case of general i.i.d. energy arrivals,
and propose a sub-optimal policy. We develop multiplicative
and additive lower bounds on the performance of the proposed
policy, and a universal upper bound for the performance of
any online policy with processing costs. We show that the
developed lower and upper bounds are within a constant gap
for all energy arrivals and battery sizes; hence, the proposed
sub-optimal policy performs within a constant gap from the
optimal policy.

We then consider the two-way channel with fully-correlated
energy arrivals, see Fig. 2. This may happen in practice if
the users harvest energy from a common source, which may
occur, for instance, if the users are within a close proximity
of each other and are exposed to the same energy harvesting
source. We note that even though the energy arrivals are fully-
correlated, the energy intakes of the users are different due
to their different battery sizes, see Fig. 2. As in the single-
user case, we first consider i.i.d. Bernoulli arrivals where each
energy arrival amount is either zero or larger than the sizes of
both batteries so it fills both batteries simultaneously resetting
the system. We show that the optimum powers of the users
decrease over time, and the on-off times of the users are fully
synchronized. We show that a burst may occur only in the
last slot. Next, we consider the case of general i.i.d. energy
arrivals. For this case, we propose a distributed sub-optimal
policy for power and burst duration selection. The policy is
fully distributed and can be applied by each user independently
without a need for cooperation or coordination. We develop
multiplicative and additive lower bounds on the performance

of the proposed policy. We show that the proposed sub-optimal
policy is near-optimal in that it performs within a constant gap
of the optimal policy for all energy arrival processes and sizes
of the batteries at the users.

II. SINGLE-USER CHANNEL

We first consider a single-user energy harvesting channel,
see Fig. 1. The transmitter has a battery of size B. Time is
slotted. The amount of energy in the battery, bi, evolves as:

bi+1 = min{B, bi − θi(Pi + ε) + Ei+1} (1)

where Ei is the energy harvested in slot i, ε is the processing
cost (power) per unit time, and θi is the duration in slot i
that the transmitter is on and transmitting. In (1), θiPi is the
energy spent for transmission, and θiε is the energy spent for
being on.

The physical layer is Gaussian with rate transmitted in
slot i [39],

ri = θi

2
log(1 + Pi) (2)

where Pi is the allocated power and θi is the transmission
duration in slot i. These two variables satisfy θi(Pi + ε) ≤ bi,
which means that the total energy used is less than the energy
available in the battery in this slot.

We first consider the case where Ei are i.i.d. Bernoulli ran-
dom variables with a particular support: P[Ei = B] = p and
P[Ei = 0] = 1−p, that is, when energy arrives it fills the bat-
tery completely. For this case, we determine the optimal online
policy in the next sub-section. We then consider the general
i.i.d. energy arrivals and propose a near-optimal policy in the
following sub-section, and prove optimality guarantees on it.

A. Optimal Strategy: Case of Bernoulli Arrivals

Due to the special i.i.d. Bernoulli energy arrival structure,
when an energy arrives, it fills the battery, and resets the
system. This constitutes a renewal. Then, from [40, Th. 3.6.1]
(see also [32]–[38]), the long-term average rate can be
found as:

lim
n→∞ E

[
1

n

n∑
i=1

ri

]
= 1

E[L]
E

[
L∑

i=1

ri

]
(3)

= p
∞∑

k=1

p(1 − p)k−1
k∑

i=1

ri (4)

=
∞∑

i=1

∞∑
k=i

p2(1 − p)k−1ri (5)

=
∞∑

i=1

p(1 − p)i−1ri (6)

where L is the inter-arrival time between energy harvests,
which is geometric with parameter p, and E[L] = 1/p. Note
that, via renewal reward theory, (3) reduces the infinite horizon
problem into a finite horizon problem; instead of calculating
the average reward over time, it is calculated over a single
renewal event. The renewal event here is an energy arrival.
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Then, (4) follows by substituting a geometric distribution with
parameter p for random variable L, (5) follows by interchang-
ing the order of summations, and (6) follows by evaluating
the inner sum.

Inserting (2) in (6), the online power allocation problem is:

max{Pi,θi}

∞∑
i=1

p(1 − p)i−1 θi

2
log(1 + Pi)

s.t.
∞∑

i=1

θi(Pi + ε) ≤ B

0 ≤ θi ≤ 1, Pi ≥ 0, ∀i (7)

This optimization problem can be viewed as maximizing the
expected transmitted rate before the next energy arrival.

The problem in (7) is non-convex. We transform it to
an equivalent convex problem by defining new variables
P̄i = Piθi,

max
{P̄i,θi}

∞∑
i=1

p(1 − p)i−1 θi

2
log

(
1 + P̄i

θi

)

s.t.
∞∑

i=1

P̄i + θiε ≤ B

0 ≤ θi ≤ 1, P̄i ≥ 0, ∀i. (8)

Here, P̄i can be interpreted as the transmit energy allocated
to the ith slot, and θi is the duration during which this energy
is transmitted. The optimum online scheduling problem is to
find the sequence of {P̄i, θi}∞i=1.

The Lagrangian for the problem in (8) is:

L = −
∞∑

i=1

p(1 − p)i−1 θi

2
log

(
1 + P̄i

θi

)
−

∞∑
i=1

γiP̄i

+ λ

( ∞∑
i=1

P̄i + θiε−B

)
−

∞∑
i=1

μiθi−
∞∑

i=1

νi(1−θi) (9)

where λ, γi, μi, νi are non-negative Lagrange multipliers.
First, we note that, in the optimum solution of (7), Pi = 0

if and only if θi = 0. This follows because, when Pi or θi

is zero, the objective function is zero, and choosing the other
variable non-zero wastes resources. While by definition P̄i = 0
when either Pi = 0 or θi = 0, from the preceding argument,
in the optimum solution of (8), P̄i = 0 if and only if Pi = 0
and θi = 0. Since the problem in (8) is convex, the optimal
solution is found by the KKT optimality conditions. Taking the
derivative of (9) with respect to P̄i, equating it to zero, and
using the corresponding complementary slackness condition:

P̄i

θi
= p(1 − p)i−1

λ
− 1 (10)

for slots where θi > 0. When θi = 0, from the preceding dis-
cussion P̄i = 0. Noting that Pi = P̄i

θi
, from (10), we conclude

that the optimal power is decreasing over time. Therefore,
there exists a time slot when it hits zero. Hence, we define
Ñ for which we have P̄i, Pi, θi > 0,∀i ∈ {1, . . . , Ñ}, and
P̄i = Pi = θi = 0,∀i ∈ {Ñ + 1, . . .}. Note that the transmis-
sion duration of the single-user problem with no processing

costs in [33] (let us denote it as Ñnpc) forms an upper bound
for the transmission duration here, i.e., Ñ ≤ Ñnpc. This is
because, any processing costs use up energy for being on and
reduce the effective battery size, and the transmission duration
is an increasing function of the battery size [37].

Next, taking the derivative of (9) with respect to θi, we have

− p(1 − p)i−1 log

(
1 + P̄i

θi

)
+ P̄i

θi

p(1 − p)i−1

1 + P̄i
θi

+ λε − μi + νi = 0

(11)

The optimal θi can be 0, 1, or 0 < θi < 1. When 0 < θi < 1,
we have bursty transmission. In this case, from complementary
slackness, we have μi = νi = 0. Then, from (10)-(11),

p(1 − p)i−1
(

log

(
p(1 − p)i−1

λ

)
− 1

)
= λ(ε − 1) (12)

Hence, (12) should be satisfied in any slot i where 0 < θi < 1,
i.e., where there is burstiness. Next, we note that, since the left
hand side of (12) is monotonically decreasing in i, (12) can be
satisfied in at most one slot. Moreover, this slot can only be the
last slot. This follows from the presence of factor p(1 − p)i−1

in front of the log in (8). Hence, it is always better to fill-up
(i.e., θi = 1) earlier slots first; fractional θi should come later.

Next, we discuss how to solve for the optimum online pol-
icy. We just showed above that for all slots we have θi = 1,
except for possibly the last slot where θÑ ≤ 1. From the total
energy constraint and (10), we have:

Ñ−1∑
i=1

(
p(1 − p)i−1

λ
− 1 + ε

)
+ θÑ

(
p(1 − p)Ñ−1

λ
− 1 + ε

)
= B

(13)

In addition, for i ∈ {1, . . . , Ñ}, we need to satisfy:

p(1 − p)i−1 ≥ λ (14)

p(1 − p)i−1
(

1 − log

(
p(1 − p)i−1

λ

))
+ λ(ε − 1) ≤ 0 (15)

where (14) ensures the non-negativity of power in (10),
and (15) ensures the existence of non-negative Lagrange
multipliers {νi} satisfying (11). Hence, we need to find the
optimal Ñ, λ, θÑ that satisfy (12), (13), (14) and (15). Towards
this end, we consider the following approach: We first fix Ñ
to be the single-user transmission duration with no processing
costs in [33], i.e., Ñ = Ñnpc, and solve for λ in (12) with
i = Ñ. Then, we check whether (14) and (15) are satisfied. If
they are, then, we solve for θÑ from (13). If there does not
exist a solution, then we reduce Ñ and repeat until we reach
Ñ = 1. If we do not have a solution when we reach Ñ = 1,
then this means that (12) cannot be satisfied, and we must
have θÑ = 1. In this case, (13) becomes:

Ñ∑
i=1

(
p(1 − p)i−1

λ
− 1 + ε

)
= B (16)

For this case, we solve (16) along with (14)-(15) for the largest
Ñ and the corresponding λ.
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B. Near-Optimal Strategy: General Arrivals

Now, we consider a general i.i.d. energy arrival process Ei

with recharge rate E[Ei] = μ. In this case, we no longer have a
renewal structure, and finding the exactly optimal online policy
is analytically intractable. Instead, we propose a sub-optimal
online policy and prove that it performs close to optimal.

1) Sub-Optimal Policy: We first define the proposed sub-
optimal online policy for Bernoulli energy arrivals and then
extend it to general energy arrivals. We note from (10) that, for
Bernoulli energy arrivals, the optimal total transmit power allo-
cated decreases exponentially over time. As in [32]–[38], this
motivates us to construct a fractional power policy over time,
in particular, we use a total allocated energy of Bp(1 − p)i−1

in slot i. That is, we allocate a fixed p fraction of available
energy in the battery to use in slot i. We then decide on the
duration of the burst θi by solving a single-slot problem as:

max
P̄i,θi

θi

2
log

(
1 + P̄i

θi

)
s.t. P̄i + θiε ≤ Bp(1 − p)i−1

0 ≤ θi ≤ 1, P̄i ≥ 0 (17)

In the optimal policy, the first constraint is satisfied with equal-
ity, hence P̄i = Bp(1 − p)i−1 − θiε, and the problem can be
written only in terms of θi as:

max
θi∈[0,1]

θi

2
log

(
1 + Bp(1 − p)i−1

θi
− ε

)
(18)

For general energy arrivals, we allocate a fraction q = μ/B
of the available energy in the battery for slot i, i.e., qbi. Then,
solve for the optimum burst θi in each slot as in (18):

max
θi∈[0,1]

θi

2
log

(
1 + qbi

θi
− ε

)
. (19)

2) A Lower Bound on the Proposed Online Policy: In
Lemma 1 and Lemma 2 below, we develop multiplicative and
additive lower bounds for the performance of the proposed
sub-optimal algorithm for Bernoulli arrivals. In the follow-
ing, we denote the solution of maximization problems in (18)
and (19) for available power P as θ∗(P, ε), i.e., the solu-
tion of (18) is θ∗(Bp(1 − p)i−1, ε) and the solution of (19)
is θ∗(qbi, ε).

Lemma 1: The achievable rate with the proposed sub-
optimal policy for any i.i.d. Bernoulli energy arrival process
with average recharge rate of μ = E[Ei] is lower bounded as,

r ≥ 1

2 − μ
B

max
θ∈[0,1]

θ

2
log
(

1 + μ

θ
− ε

)
(20)

≥ 1

2
max

θ∈[0,1]

θ

2
log
(

1 + μ

θ
− ε

)
(21)

We provide the proof of Lemma 1 in Appendix A. The
multiplicative bound in Lemma 1 performs well when the
achievable rates are small, whereas the additive bound in
Lemma 2 performs well when the achievable rates are large.
We provide the proof of Lemma 2 in Appendix B.

Lemma 2: The achievable rate with the proposed sub-
optimal policy for any i.i.d. Bernoulli energy arrival process

with average recharge rate of μ = E[Ei] is lower bounded as,

r ≥ max
θ∈[0,1]

θ

2
log
(

1 + μ

θ
− ε

)
− 0.72 − 1

2
log+(ε) (22)

where log+ (x) = max { log (x), 0}.
We next show that i.i.d. Bernoulli energy arrivals yield the

lowest rate over all i.i.d. energy arrivals with the same mean.
The proof follows by the approach in [33, Proposition 4] as,

f (x) = max
θi∈[0,1]

θi

2
log

(
1 + qx

θi
− ε

)
(23)

is concave in x. The concavity of f (x) follows since it is equiv-
alent to the maximization of θi

2 log
(

1 + P̄i
θi

)
over the feasible

set P̄i + θiε ≤ qx, 0 ≤ θi ≤ 1, P̄i ≥ 0. The objective of this
equivalent problem is jointly concave in θi, P̄i, and the con-
straint set is affine in x, θi and P̄i. Then, it follows that f (x)
is concave in x; see also [41, Sec. 3.2.5].

Lemma 3: The rate of the proposed sub-optimal policy with
any i.i.d. energy arrival process is no smaller than that with
an i.i.d. Bernoulli energy arrival process of the same mean.

Combining Lemmas 1, 2, and 3, we have the following
general theorem for arbitrary i.i.d. energy arrival processes.

Theorem 1: The achievable rate with the proposed sub-
optimal policy for any arbitrary i.i.d. energy arrival process
with average recharge rate μ = E[Ei] is lower bounded as
in (20) and (22).

3) An Upper Bound for Online Policies: In Theorem 2
below, we develop a universal upper bound for the
performance of any online policy in terms of E[Ei] = μ.

Theorem 2: For a recharge rate of E[Ei] = μ, the achiev-
able rate of any online algorithm is upper bounded as,

r ≤ max
θ∈[0,1]

θ

2
log
(

1 + μ

θ
− ε

)
. (24)

Proof: We consider the rate of the optimum offline algorithm
which upper bounds the rates achievable by any online algo-
rithm. We consider the following larger than actual feasible
region for the offline policy by neglecting the no-energy-
overflow constraints due to the finite-sized battery [2], [3]:

F n �
{

{P̄i, θi}n
i=1 :

1

m

m∑
i=1

P̄i + θiε ≤ 1

m

m∑
i=1

Ei, ∀m

}
(25)

Then, we consider the further larger feasible set by keeping
only the bound for m = n, and starting with a full battery B,

Gn �
{

{P̄i, θi}n
i=1 :

1

n

n∑
i=1

P̄i + θiε ≤ 1

n

(
n∑

i=1

Ei + B

)}
(26)

Then, we have:

r ≤ lim
n→∞ max

{P̄i,θi}n
i=1∈Gn

1

n

n∑
i=1

θi

2
log

(
1 + P̄i

θi

)
(27)

Since the energies Ei are i.i.d., from strong law of large num-
bers, for all δ > 0, there exists an integer N such that, for all
n ≥ N, we have 1

n (
∑n

i=1 Ei + B) ≤ μ + δ. Hence, for large
enough n, i.e., n ≥ N, we have Gn to be

Gn �
{

{P̄i, θi}n
i=1:

1

n

n∑
i=1

P̄i + θiε ≤ μ + δ

}
(28)
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Then, from the joint concavity of the objective function, it is
maximized when all θi = θ and all P̄i = P̄. Hence, we have
P̄ + θε ≤ μ + δ. Since this is valid for all δ > 0, we take its
limit to zero, which gives the desired result in (24).

4) Putting the Bounds Together: The additive lower bound
in Theorem 1 (i.e., (22)) together with the general upper bound
in Theorem 2 (i.e., (24)) imply that there is a constant gap
between the bounds. Both the proposed sub-optimal policy
and the optimal policy live between these bounds which are
separated by a finite gap. Hence, the proposed online policy
performs within a constant gap of the optimal online policy
for all system parameters.

III. TWO-WAY CHANNEL

We next consider a two-way energy harvesting channel with
a common energy harvesting source, see Fig. 2. Transmitter j
has a battery of finite size Bj. The energy available in the jth
user battery in slot i, bji, evolves as:

bj(i+1) = min
{
Bj, bji − θjiPji − max{θ1i, θ2i}εj + Ej(i+1)

}
(29)

where Pji is the power transmitted by user j in slot i, Eji is the
energy harvested at the jth user in slot i, εj is the processing
cost incurred per unit time for being on,1 and θji is the duration
for which user j is on, either transmitting or receiving, in slot i.

The physical layer is Gaussian with sum rate in slot i [39],

r1i + r2i = θ1i

2
log(1 + P1i) + θ2i

2
log(1 + P2i) (30)

where rji is the rate of user j in slot i. The power and burst
of user j, θji, Pji, are constrained by the current battery state
as θjiPji + max{θ1i, θ2i}εj ≤ bji. The objective of the online
scheduling is to obtain the optimal policy which consists of
{θ1i, θ2i, P1i, P2i} to maximize the expected rate. In (30), the
1
2 factors in front of logs are due to Shannon capacity formula
(see [39, eq. (9.17)]), not due to time-sharing. There is no
time-sharing; the system is full-duplex, and hence, the sum of
two single-user rates is achievable (see [39, Sec. 15.1.6]).

In the following, we first consider the case where the energy
arrivals, E1i = E2i = Ei, are i.i.d. Bernoulli random variables
with support {0, B}, and with P[E1i = E2i = B] = p, where
B ≥ max{B1, B2}, i.e., when an energy comes it fills both
batteries completely. For this case, we determine the optimal
online policy. Subsequently, we consider the case of general
i.i.d. energy arrivals, and propose a distributed near-optimal
policy.

A. Optimal Strategy: Case of Bernoulli Arrivals

With Bernoulli energy arrivals, each energy arrival resets
the system state; energy arrivals form a renewal process. From
[40, Th. 3.6.1], the long-term average throughput is,

lim
n→∞ E

[
1

n

n∑
i=1

(r1i + r2i)

]
= 1

E[L]
E

[
L∑

i=1

(r1i + r2i)

]
(31)

1In this paper, we assume that the cost of being on while transmitting is
the same as cost of being on while receiving. A more general model could be
to consider different energy costs for being on for transmission and reception.

= p
∞∑

k=1

p(1 − p)k−1
k∑

i=1

(r1i + r2i) (32)

=
∞∑

i=1

∞∑
k=i

p2(1 − p)k−1(r1i + r2i) (33)

=
∞∑

i=1

p(1 − p)i−1(r1i + r2i) (34)

where L is the geometric inter-arrival time with E[L] = 1/p.
Hence, the online power allocation problem becomes:

max{Pji},{θji}

∞∑
i=1

p(1 − p)i−1(r1i + r2i)

s.t.
∞∑

i=1

(θ1iP1i + max{θ1i, θ2i}ε1) ≤ B1

∞∑
i=1

(θ2iP2i + max{θ1i, θ2i}ε2) ≤ B2

P1i, P2i ≥ 0, 0 ≤ θ1i, θ2i ≤ 1, ∀i (35)

This optimization problem can be viewed as maximizing the
expected transmitted sum rate before the next energy arrival.

Problem (35) is non-convex. We transform it to an equiva-
lent convex problem by defining new variables P̄ji = θjiPji,

max
∞∑

i=1

p(1 − p)i−1
(

θ1i

2
log

(
1 + P̄1i

θ1i

)
+ θ2i

2
log

(
1 + P̄2i

θ2i

))

s.t.
∞∑

i=1

(
P̄1i + max{θ1i, θ2i}ε1

) ≤ B1

∞∑
i=1

(
P̄2i + max{θ1i, θ2i}ε2

) ≤ B2

P̄1i, P̄2i ≥ 0, 0 ≤ θ1i, θ2i ≤ 1, ∀i (36)

where the maximization is over {P̄ji}, {θji}.
Before proceeding with finding the optimal policy, we state

two important observations: First, both users should consume
all of their energies in their batteries. If a user does not con-
sume all of its energy, then we can increase its power until all
of its energy is used, increasing the objective function. Second,
the two users’ transmissions should be fully synchronized, i.e.,
θ1i = θ2i, for all i. If for a slot i users are not synchronized,
say, e.g., θ1i < θ2i, then we can always increase θ1i to be equal
to θ2i without violating the constraints of the problem, while
increasing the objective function. Hence, hereafter, we will
assume that θ1i = θ2i = θi for all i, so that max{θ1i, θ2i} = θi.
In this case, the Lagrangian for (36) is:

L = −
∞∑

i=1

p(1 − p)i−1
(

θi

2
log

(
1 + P̄1i

θi

)
+ θi

2
log

(
1 + P̄2i

θi

))

+ λ1

( ∞∑
i=1

(
P̄1i + θiε1

)− B1

)
−

∞∑
i=1

ν1iP1i

+ λ2

( ∞∑
i=1

(
P̄2i + θiε2

)− B2

)
−

∞∑
i=1

ν2iP2i

−
∞∑

i=1

μl
iθi −

∞∑
i=1

μu
i (1 − θi) (37)
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From the KKTs, the optimal powers for the slots with θi > 0:

P̄1i

θi
=
(

p(1 − p)i−1

λ1
− 1

)+
,

P̄2i

θi
=
(

p(1 − p)i−1

λ2
− 1

)+
(38)

For the slots with θi = 0, both powers are zero, i.e., P̄1i =
P̄2i = 0, as otherwise, any assigned positive power is wasted,
since the objective function is zero when θi = 0.

From (38), we observe that for slots with θi > 0, the powers
P1i and P2i are monotonically decreasing in time. In addi-
tion, due to the decreasing p(1 − p)i−1 factors before the
log, we can divide the slots into {1, . . . , Ñ} where θi > 0,
and {Ñ + 1, . . .} where θi = 0. Furthermore, the transmission
duration Ñ is bounded above by the maximum of the user
transmission durations without any processing costs (define
them as Ñnpc1 and Ñnpc2), i.e., Ñ ≤ max{Ñnpc1, Ñnpc2}. This
follows as the processing costs reduce the energy available in
the battery dedicated for transmission, and hence reduce the
effective battery size at both users; it is shown in [37] that the
transmission duration is monotone increasing in the battery
size.

Similarly, from the optimality conditions, the bursts satisfy:

2∑
j=1

log

(
1 + P̄ji

θi

)
−

P̄ji
θi

1 + P̄ji
θi

=
∑2

j=1 λjεj + μu
i − μl

i

p(1 − p)i−1
(39)

substituting (38), we obtain,

2∑
j=1

log

(
p(1 − p)i−1

λj

)
=
∑2

j=1 λj(εj − 1) + μu
i − μl

i

p(1 − p)i−1
+ 2

(40)

From complementary slackness, if θi ∈ (0, 1), then we have
μu

i = μl
i = 0. Thus, in this case, (40) becomes:

2∑
j=1

(
log

(
p(1 − p)i−1

λj

)
− 1

)
=
∑2

j=1 λj
(
εj − 1

)
p(1 − p)i−1

(41)

The left and right hand sides of (41) are monotone decreasing
and increasing, respectively. Hence, (41) can be satisfied at
most for one time index, thus the bursty transmission can occur
at most in one slot. Due to decreasing p(1−p)i−1 multiplying
the rate, this bursty transmission can occur only in the last
slot.

From the above, the optimal solution is characterized by
λ1, λ2, Ñ, θÑ . Next, we solve for them. For the complete
solution we need to solve (40) along with the total power
constraints, which using (38) become:

Ñ−1∑
i=1

[
p(1 − p)i−1

λ1
− 1 + ε1

]
+ θÑ

[
p(1 − p)Ñ−1

λ1
− 1 + ε1

]
= B1

(42)
Ñ−1∑
i=1

[
p(1 − p)i−1

λ2
− 1 + ε2

]
+ θÑ

[
p(1 − p)Ñ−1

λ2
− 1 + ε2

]
= B2

(43)

Solving (42) and (43) for θÑ we have:

θÑ =
B1 −∑Ñ−1

i=1

(
p(1−p)i−1

λ1
− 1 + ε1

)
p(1−p)Ñ−1

λ1
− 1 + ε1

(44)

=
B2 −∑Ñ−1

i=1

(
p(1−p)i−1

λ2
− 1 + ε2

)
p(1−p)Ñ−1

λ2
− 1 + ε2

(45)

We note that (44) and (45) are strictly increasing in λ1 and
λ2 when the numerators and denominators are non-negative.
Hence, for each fixed λ1 which makes θÑ ∈ (0, 1) there cor-
responds a unique λ2 which makes (44) and (45) equal. This
in effect makes it easy to search over the pairs {λ1, λ2} which
equate (44) and (45), using a one dimensional search on either
λ1 or λ2. We also need to satisfy for i ∈ {1, . . . , Ñ}:
λ1 ≤ p(1 − p)i−1 (46)

λ2 ≤ p(1 − p)i−1 (47)

0 ≤
2∑

j=1

(
log

(
p(1 − p)i−1

λj

)
− 1

)
+
∑2

j=1 λj
(
1 − εj

)
p(1 − p)i−1

(48)

where (46) and (47) ensure the non-negativity of the power,
and (48) guarantees the existence of a non-negative Lagrange
multiplier μu

i satisfying (40).
Towards this end, next, we present a method to obtain the

optimal solution. We first initialize Ñ = max{Ñnpc1, Ñnpc2},
where Ñnpcj can be found by solving a single-user problem
with no processing costs for user j as in [33]. From this, we
obtain {λ1, λ2} pairs which equate equations (44) and (45)
and make θÑ ∈ (0, 1). Then, we check if any of the obtained
pairs satisfies (41), (46), (47) and (48). If yes, then this is the
optimal solution. Otherwise, we decrease Ñ by one and repeat
this again. If we reach Ñ = 1 and no solution is found, then,
this implies that θÑ = 1. Hence, we solve similarly for the
largest integer Ñ and that corresponding λ1, λ2 that satisfy:

Ñ∑
i=1

(
p(1 − p)i−1

λ1
− 1 + ε1

)
= B1 (49)

Ñ∑
i=1

(
p(1 − p)i−1

λ2
− 1 + ε2

)
= B2 (50)

along with the conditions (46), (47) and (48).

B. Near-Optimal Strategy: General Arrivals

Now, we consider an arbitrary i.i.d. energy arrival process
Ei with average admitted recharge rate μj = E[ max{Bj, Ei}] at
user j. Although finding the exactly optimal policy in this case
may not be tractable, we propose a distributed sub-optimal
policy which we show is near-optimal.

1) Sub-Optimal Policy: We first present our proposed sub-
optimal policy for the Bernoulli case and then extend it to the
case of general energy arrivals. For Bernoulli energy arrivals,
motivated by (38), we assign exponentially decaying total
power for each user. In each slot, the users allocate a frac-
tion p of the available energy in the battery, and then optimize
the transmit power and burst duration. Hence, in slot i, the
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energy allocated for transmission by user j is Bjp(1 − p)i−1.
Then, the users solve the following single-slot optimization
problem:

max
P̄ji,θi

θi

2
log

(
1 + P̄1i

θi

)
+ θi

2
log

(
1 + P̄2i

θi

)

s.t. P̄1i + θiε1 ≤ B1p(1 − p)i−1

P̄2i + θiε2 ≤ B2p(1 − p)i−1

P̄1i, P̄2i ≥ 0, 0 ≤ θi ≤ 1 (51)

Since, the first two constraints will be satisfied with equality
we have P̄ji = Bjp(1 − p)i−1 − θiεj, which reduces (51) to:

max
θi∈[0,1]

θi

2
log

(
1 + B1p(1 − p)i−1

θi
− ε1

)

+ θi

2
log

(
1 + B2p(1 − p)i−1

θi
− ε2

)
(52)

Similarly, for the case of general energy arrivals, we allocate
a fraction qj = μj

Bj
of the battery energy, i.e., qjbji, and solve:

max
θi∈[0,1]

θi

2
log

(
1 + q1b1i

θi
− ε1

)
+ θi

2
log

(
1 + q2b2i

θi
− ε2

)
(53)

Problems (52) and (53) can be solved by both users indepen-
dently, because both users know the energy arrival Ei, and
they are consuming the power in a deterministic fractional
way, hence, both users can track the state of both batteries.

2) An Upper Bound for Online Policies: In the following
theorem, we develop an upper bound for all online policies in
terms of the average admitted energy.

Theorem 3: For an average admitted energy μj at user j,
the achievable rate for any online policy is upper bounded by:

rub = max
θ∈[0,1]

θ

2

(
log
(
1 + μ1

θ
− ε1

)
+ log

(
1 + μ2

θ
− ε2

))
. (54)

Proof: We denote the admitted energy arrivals as Ẽji =
min{Bj, Eji}. We use the offline achievable rate as an upper
bound for the online achievable rate. We consider the fol-
lowing set which is larger than the feasible set of the offline
case:

F n �
{

{P̄1i, P̄2i, θi}n
i=1 :

1

m

m∑
i=1

P̄1i + θiε1 ≤ 1

m

(
m∑

i=1

Ẽ1i

)
,

1

m

m∑
i=1

P̄2i + θiε2 ≤ 1

m

(
m∑

i=1

Ẽ2i

)
,∀m = 1, . . . , n

}
(55)

which neglects the overflow constraints due to the finite
battery [2], [3]. We then consider a bigger feasible set by
considering the constraints only when m = n to get:

Gn �
{

{P̄1i, P̄2i, θi}n
i=1 :

1

n

n∑
i=1

P̄1i + θiε1 ≤ 1

n

(
n∑

i=1

Ẽ1i

)
,

1

n

n∑
i=1

P̄2i + θiε2 ≤ 1

n

(
n∑

i=1

Ẽ2i

)}
(56)

Hence, the online achievable rate is upper bounded by:

lim
n→∞ max

Gn

1

n

n∑
i=1

θi

2

(
log

(
1 + P̄1i

θi

)
+ log

(
1 + P̄2i

θi

))
(57)

Since the energies Ẽ1i, Ẽ2i are i.i.d., from strong law of large
numbers, for all δ > 0 there exists an integer N such that for all
n ≥ N, we have 1

n

∑n
i=1 Ẽ1i ≤ μ1+δ and 1

n

∑n
i=1 Ẽ2i ≤ μ2+δ.

For large enough n, i.e., n ≥ N, the constraints in (56) will be:

1

n

n∑
i=1

P̄1i + θiε1 ≤ μ1 + δ,
1

n

n∑
i=1

P̄2i + θiε2 ≤ μ2 + δ (58)

Then, from the joint concavity of the objective function, it is
maximizes when all θi = θ and P̄ji = P̄j. Since this is valid
for all δ > 0, we can the take δ to zero, which gives (54).

3) A Lower Bound on the Proposed Online Policy: In this
section, we derive multiplicative and additive bounds for the
performance of the proposed sub-optimal policy. In what fol-
lows, we denote the solution of the problems in (52) and (53)
for available powers P1, P2 as θ∗(P1, P2), i.e., the solutions
of (52) and (53) are denoted as θ∗(B1p(1 − p)i−1, B2p(1 −
p)i−1) and θ∗(q1b1i, q2b2i), respectively.

Lemma 4: The achievable rate with the proposed fractional
policy for any i.i.d. Bernoulli energy arrival process with
average admitted energy μj at user j is lower bounded as:

r ≥ 1

2
rub (59)

We provide the proof of Lemma 4 in Appendix C.
Lemma 5: The achievable rate under the proposed frac-

tional policy for any i.i.d. Bernoulli energy arrival process
with average admitted energy μj at user j is lower bounded as:

r ≥ rub − 1.44 − 1

2
log+(ε1) − 1

2
log+(ε2) (60)

where log+ (x) = max {0, log (x)}.
We provide the proof of Lemma 5 in Appendix D.
We next show that i.i.d. Bernoulli energy arrivals give the

lowest rate over all i.i.d. energy arrivals with the same mean.
The proof follows by the approach in [33, Proposition 4] as

f (x1, x2) � max
θi∈[0,1]

θi

2

(
log

(
1 + q1x1

θi
− ε1

)

+ log

(
1 + q2x2

θi
− ε2

))
(61)

is jointly concave in x1, x2. The concavity of f (x1, x2) follows
since it is equivalent to maximizing θi

2 log(1+ P̄1i
θi

)+ θi
2 log(1+

P̄2i
θi

) over the feasible set P̄1i + θiε1 ≤ q1x1, P̄2i + θiε2 ≤ q2x2,
0 ≤ θi ≤ 1, P̄1i, P̄2i ≥ 0. The objective function here is
jointly concave θi, P̄1i, P̄2i and the constraint set is affine in
x1, x2, θi, P̄1i, P̄2i. Then, it follows that f (x1, x2) is concave in
x1, x2; [41, Sec. 3.2.5]. In addition, [33, Lemma 2] can be used
as we have a single random variable representing the common
energy arrival.

Lemma 6: For the proposed fractional policy, any
i.i.d. energy arrival process yields an achievable sum rate no
less than that of the Bernoulli energy arrivals with the same
mean.
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Fig. 3. Optimum online power allocation for i.i.d. Bernoulli arrivals.

Combining Lemmas 4, 5, and 6, we have the following
general theorem for arbitrary i.i.d. energy arrival processes.

Theorem 4: The achievable sum rate with the proposed sub-
optimal policy for any arbitrary i.i.d. energy arrival process
with average admitted energy of μj at user j and with μ1

B1
= μ2

B2
is lower bounded by (59) and (60).

4) Putting the Bounds Together: The additive lower bound
in Theorem 4 (i.e., (60)) together with the general upper bound
in Theorem 3 (i.e., (54)) imply that there is a constant gap
between the bounds. Both the proposed sub-optimal policy
and the optimal policy live between these bounds which are
separated by a finite gap. Hence, the proposed online policy
performs within a constant gap of the optimal online policy
for all system parameters.

IV. NUMERICAL RESULTS

In this section, we illustrate our results using several numer-
ical examples. We begin with the single-user setting. We first
show the optimal policy for Bernoulli energy arrivals. We fix
the battery size to B = 2 and the probability of energy arrival
to p = 0.1. We show the optimal policy in Fig. 3 for ε values
of 0.1 and 1.5. As the processing cost increases, the trans-
mission time decreases. When ε = 0.1, the optimal power is
decreasing and is non-zero for a total duration of 2.6 slots.
However, when the processing cost is 1.5, the transmission
duration decreases to 0.55 slots. Next, in Fig. 4, for the case
of Bernoulli energy arrivals, we show the optimal policy ver-
sus the proposed sub-optimal policy. Here, we have B = 3,
p = 0.3, ε = 0.1. In the sub-optimal policy the energy is
spread over more (infinite) slots.

In Figs. 5 and 6, we show the performance of the proposed
sub-optimal policy and the optimal policy in terms of the
expected rate versus the battery size. We fix p = 0.1 and
show the performance for processing costs of ε = 1 and
ε = 10 in Figs. 5 and 6. We note that, for the case of Bernoulli
arrivals, the performance of the proposed sub-optimal policy
is quite close to the performance of the optimal policy, in
fact, much closer than the derived theoretical bounds show. In
Figs. 5 and 6, we further plot two other sub-optimal schemes.

Fig. 4. Optimum online power allocation versus sub-optimal power allocation
for i.i.d. Bernoulli arrivals.

Fig. 5. Optimum online policy versus proposed sub-optimum online policy.

The first scheme uses the same total fractional power as our
proposed policy but fixes θi = 1 for all i (i.e., neglects the
processing cost effect) and transmits whenever it is feasible to
transmit. The second scheme also uses the same total fractional
power as our proposed policy but uses a fractional decreasing
burstiness as θi = (1 − p)i−1θ∗. We observe that both of these
policies perform worse than our proposed policy. We observe
that the policy with θ = 1 performs close to the optimal when
the value of processing cost is negligible with respect to the
battery size, i.e., for large battery sizes. However, for small
battery sizes, e.g., B in [1, 10] when ε = 1 and B in [1, 100]
when ε = 10, this algorithm performs poorly.

In Figs. 5 and 6, we also plot the performance of the
proposed sub-optimal policy when the energy arrivals come
from a continuous uniform distribution (non-Bernoulli) with
the same mean as the Bernoulli energy arrivals. As expected,
the rate is higher for the case of general energy arrivals com-
pared to Bernoulli energy arrivals with the same mean. Finally,
we show the performance of our scheme versus the process-
ing cost in Fig. 7. The gap between the optimal and the
sub-optimal decreases for high processing costs.
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Fig. 6. Optimum online policy versus proposed sub-optimum online policy.

Fig. 7. Performance versus processing cost for i.i.d. Bernoulli arrivals.

Fig. 8. The optimal and sub-optimal power allocations for Bernoulli.

Next, we consider the two-way channel. We first show
the optimal versus proposed sub-optimal power allocation for
Bernoulli arrivals in Fig. 8. As we showed, in the optimal
power allocation, bursty transmission takes place only in the

Fig. 9. Performance of Bernoulli and general energy arrivals.

Fig. 10. Performance of Bernoulli energy arrivals versus the processing cost.

last slot. We then compare the performance of the proposed
sub-optimal scheme and the optimal policy in Fig. 9. The
performance of our proposed policy is close to the optimal.
We also show the performance of the sub-optimal policy on
a general energy arrival with a continuous uniform distribu-
tion with the same mean as Bernoulli. In Fig. 9 we also show
the performance of the fractional θi scheme which is used
in the proof of Lemma 4, and a scheme which always uses
θi = 1 whenever feasible, i.e., neglects the processing costs.
Both perform worse than our proposed policy. Finally, we
show the performance of our scheme versus the processing
cost in Fig. 10. We observe that for high processing costs the
performance gap is small.

V. CONCLUSION

We considered energy harvesting channels where users incur
processing costs (power spent to run the circuitry) for being
on to transmit or receive data, in addition to the power spent
for communication. Such processing costs may result in bursty
transmissions, where users may not be on all the time. In such
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channels, the users need to determine the optimal burst dura-
tion (duration to be on) and the optimal transmit power. In
this paper, we considered the design of online power control
algorithms which use only the causal knowledge of energy
arrivals. First, we studied the single-user channel. In this
channel, we characterized the optimal online policy for the
case of Bernoulli energy arrivals. We showed that the opti-
mal power policy is decreasing and can be bursty (i.e., the
user may not utilize the entire slot). However, the bursty
transmission can occur only in the last slot of transmis-
sion. We then considered the case of general energy arrivals.
For this case, we proposed a sub-optimal online power con-
trol scheme, and proved that it performs within a constant
gap of the optimal. The sub-optimal policy allocates powers
fractionally over time and solves a single-slot optimization
problem to determine the burst duration in each slot. We then
extended our analysis to the two-way channel model. We con-
sidered the special case of fully-correlated energy arrivals at
the users. In this channel, we first characterized the optimal
policy for the case of Bernoulli energy arrivals. We showed
that the powers of both users decrease and the transmission
of both users need to be synchronized, i.e., both users turn
on or off simultaneously. We then proposed a sub-optimal
distributed policy for the case of general fully-correlated
energy arrivals. The proposed policy allocates powers frac-
tionally in a distributed manner, and each user solves a
single-slot problem distributedly. We proved that the proposed
distributed scheme performs within a constant gap of the
optimal.

In the two-way channel, we assumed that the energy
cost for being on is the same for transmitting and receiv-
ing data. As a future work, different energy costs for
transmission and reception can be considered. In addition,
we assumed that the energy arrivals at the two users are
fully-correlated. Arbitrarily correlated energy arrivals at the
users can be considered in future work. Further research
directions are to consider energy cooperation between the
users in an online setting, and finite-sized data buffers at
both users.

APPENDIX A
PROOF OF LEMMA 1

We lower bound the performance as follows. The first lower
bounding step in (63) is obtained by choosing all θi as θi =
(1 − p)i−1θ∗, where θ∗ denotes θ∗(Bp, ε) in short:

r = 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2
log

(
1 + Bp(1 − p)i−1

θi
− ε

)]
(62)

≥ 1

E[L]
E

[
L∑

i=1

θ∗(1 − p)i−1

2
log

(
1 + Bp

θ∗ − ε

)]
(63)

= θ∗

2
log

(
1 + Bp

θ∗ − ε

)
1

E[L]
E

[
L∑

i=1

(1 − p)i−1

]
(64)

= θ∗

2
log

(
1 + Bp

θ∗ − ε

)
p

[ ∞∑
L=1

p(1 − p)L−1
L∑

i=1

(1 − p)i−1

]
(65)

= θ∗

2
log

(
1 + Bp

θ∗ − ε

)[ ∞∑
L=1

p2(1 − p)L−1 1 − (1 − p)L

p

]
(66)

= θ∗

2
log

(
1 + Bp

θ∗ − ε

)[ ∞∑
L=1

p(1 − p)L−1(1 − (1 − p)L)] (67)

= θ∗

2
log

(
1 + Bp

θ∗ − ε

)[ ∞∑
L=1

p
(
(1 − p)L−1 − (1 − p)2L−1

)]

(68)

= θ∗

2
log

(
1 + Bp

θ∗ − ε

)[
p

(
1

p
− (1 − p)

2p − p2

)]
(69)

= θ∗

2
log

(
1 + Bp

θ∗ − ε

)(
1

2 − p

)
(70)

= 1

2 − μ
B

max
θ∈[0,1]

θ

2
log
(

1 + μ

θ
− ε

)
(71)

which is (20). Here, (71) follows since E[Ei] = μ = Bp and
θ∗ = θ∗(Bp, ε) = θ∗(μ, ε). Finally, (21) follows as μ

B ≥ 0.

APPENDIX B
PROOF OF LEMMA 2

We first prove for the case ε < 1. The first lower bounding
step in (73) is obtained by choosing all θi as θi = θ∗, where
θ∗ denotes θ∗(Bp, ε) in short:

r = 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2
log

(
1 + Bp(1 − p)i−1

θi
− ε

)]
(72)

≥ 1

E[L]
E

[
L∑

i=1

θ∗

2
log

(
1 + Bp(1 − p)i−1

θ∗ − ε

)]
(73)

= θ∗

2

1

E[L]
E

[
L∑

i=1

log

(
(1 − ε)

(
1 + Bp(1 − p)i−1

(1 − ε)θ∗

))]
(74)

= θ∗

2

1

E[L]
E

[
L∑

i=1

log(1 − ε) + log

(
1 + Bp(1 − p)i−1

(1 − ε)θ∗

)]
(75)

≥ θ∗

2

1

E[L]
E

[
L∑

i=1

log(1 − ε) + log

(
1 + Bp

(1 − ε)θ∗

)

+ log
(
(1 − p)i−1

)]
(76)

≥ θ∗

2

1

E[L]
E

[
L∑

i=1

log(1 − ε) + log

(
1 + Bp

(1 − ε)θ∗

)]
− 0.72

(77)

= θ∗

2
log

(
1 + Bp

θ∗ − ε

)
− 0.72 (78)

which is (22), since E[Ei] = μ = Bp, θ∗ = θ∗(Bp, ε), and
log+(ε) = 0 in this case.

Next, we prove for the case ε ≥ 1:

r = 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2
log

(
1 + Bp(1 − p)i−1

θi
− ε

)]
(79)

≥ 1

E[L]
E

⎡
⎣ L∑

i=1

max
θi∈[0,1]

θi

2
log

⎛
⎝1 +

Bp(1−p)i−1

θi
− ε

ε

⎞
⎠
⎤
⎦ (80)

= 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2
log

(
1 + Bp(1 − p)i−1

θiε
− 1

)]
(81)
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≥ 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2
log

(
Bp

θi

)]

− 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2
log(ε)

]

− 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2
log

(
1

(1 − p)i−1

)]
(82)

= 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2
log

(
Bp

θi

)]

− 1

E[L]
E

[
L∑

i=1

1

2
log(ε)

]

− 1

E[L]
E

[
L∑

i=1

1

2
log
(
(1 − p)i−1

)]
(83)

= max
θ∈[0,1]

θ

2
log

(
Bp

θ

)
− 1

2
log(ε) − 0.72 (84)

≥ max
θ∈[0,1]

θ

2
log

(
1 + Bp

θ
− ε

)
− 1

2
log(ε) − 0.72 (85)

which is (22), since log+(ε) = log(ε) in this case. Here, (80)
follows since at the maximum Bp(1−p)i−1

θi
− ε is non-negative

and ε ≥ 1, (82) follows since for any three positive func-
tions a(x), b(x), c(x), we have: maxx [a(x) − b(x) − c(x)] ≥
maxx a(x)− maxx b(x)− maxx c(x), and (85) follows since we
added a negative term (1 − ε) inside the log.

APPENDIX C
PROOF OF LEMMA 4

The first step, (87), for the lower bound follows by using a
sub-optimal decreasing burst as θi = θ∗(1 − p)i−1, where θ∗
is a short notation for θ∗(B1p, B2p):

r = 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2

(
log

(
1 + B1p(1 − p)i−1

θi
− ε1

)

+ log

(
1 + B2p(1 − p)i−1

θi
− ε2

))]
(86)

≥ 1

E[L]
E

[
L∑

i=1

(1 − p)i−1rub

]
(87)

= rub
1

E[L]
E

[
L∑

i=1

(1 − p)i−1

]
(88)

= rub
1

E[L]

[ ∞∑
L=1

p(1 − p)L−1
L∑

i=1

(1 − p)i−1

]
(89)

= rub

[ ∞∑
L=1

p2(1 − p)L−1 1 − (1 − p)L

p

]
(90)

= rub

[
p

(
1

p
− (1 − p)

2p − p2

)]
(91)

= rub

(
1

2 − p

)
(92)

≥ 1

2
rub (93)

where (93) follows since p ≥ 0.

APPENDIX D
PROOF OF LEMMA 5

The proof technique we use for the case εj ≤ 1 is different
than εj > 1. In what follows, we assume that ε1 > 1 while
ε2 ≤ 1, however, all other combinations follow similarly. We
bound the performance of (86) as follows:

r ≥ 1

E[L]
E

⎡
⎣ L∑

i=1

max
θi∈[0,1]

θi

2

⎛
⎝log

⎛
⎝1 +

B1p(1−p)i−1

θi
− ε1

ε1

⎞
⎠

+ log

(
1 + B2p(1 − p)i−1

θi
− ε2

))⎤⎦ (94)

= 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2

(
log

(
1 + B1p(1 − p)i−1

ε1θi
− 1

)

+ log

(
1 + B2p(1 − p)i−1

θi
− ε2

))]
(95)

≥ 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2

(
log

(
B1p

θi

)

+ log

(
1 + B2p(1 − p)i−1

θi
− ε2

))]

− 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2
log(ε1)

]

− 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2
log

(
1

(1 − p)i−1

)]
(96)

≥ 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2

(
log

(
B1p

θi

)

+ log

(
1 + B2p(1 − p)i−1

θi
− ε2

))]
− 1

2
log(ε1) − 0.72

(97)

≥ 1

E[L]
E

[
L∑

i=1

max
θi∈[0,1]

θi

2

(
log

(
1 + B1p

θi
− ε1

)

+ log

(
1 + B2p(1 − p)i−1

θi
− ε2

))]
− 1

2
log(ε1) − 0.72

(98)

≥ 1

E[L]
E

[
L∑

i=1

θ∗

2

(
log

(
1 + B1p

θ∗ − ε1

)

+ log

(
1 + B2p(1 − p)i−1

θ∗ − ε2

))]
− 1

2
log(ε1) − 0.72

(99)

= θ∗

2
log

(
1 + B1p

θ∗ − ε1

)
− 1

2
log(ε1) − 0.72

+ 1

E[L]
E

[
L∑

i=1

θ∗

2
log

(
(1 − p)i−1

(
1 − ε2

(1 − p)i−1
+ B2p

θ∗

))]

(100)
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≥ θ∗

2
log

(
1 + B1p

θ∗ − ε1

)
− 1

2
log(ε1) − 0.72

+ 1

E[L]
E

[
L∑

i=1

θ∗

2
log

(
(1 − p)i−1

(
1 − ε2 + B2p

θ∗

))]
(101)

≥ θ∗

2
log

(
1 + B1p

θ∗ − ε1

)
− 1

2
log(ε1) − 1.44

+ θ∗

2
log

(
1 + B2p

θ∗ − ε2

)
(102)

where (94) follows as the maximum B1p(1−p)i−1

θi
− ε1 is non-

negative, and ε1 > 1, (96) follows since for any three positive
functions a(x), b(x), c(x) we have: maxx [a(x)−b(x)−c(x)] ≥
maxx a(x) − maxx b(x) − maxx c(x), (97) follows by bounding
the last term numerically by 0.72, (98) follows since we added
1 − ε1 which is negative, (102) follows again by numerically
bounding 1

E[L]E[
∑L

i=1
1
2 log( 1

(1−p)i−1 )] by 0.72. The θ∗ used
here is a shorthand for θ∗(B1p, B2p).
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