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Abstract—We consider the energy harvesting diamond channel,
where the source and two relays harvest energy from nature and
the physical layer is modeled as a concatenation of a broadcast
and a multiple access channel. Since the broadcast channel is
degraded, one of the relays has the message of the other relay and
the multiple access channel can be modeled as a cooperative mul-
tiple access channel with common data. We find the optimal offline
transmit power and rate allocations that maximize the end-to-end
throughput. For the broadcast side, we show that there exists an
optimal source power allocation, which is equal to the single-user
optimal power allocation for the source energy arrivals. We then
show that the fraction of the power spent on each broadcast link
depends on the energy arrivals for the relays. For the multiple
access side with no co-operation, with fixed source rates, we show
that the problem can be cast as a multiple access channel with both
data and energy arrivals and can be formulated in terms of data
transmission rates only. We use a dual decomposition method to
solve the overall problem efficiently. Finally, we focus on the dia-
mond channel with co-operative multiple access capacity region
and find the optimal rates and powers using a decomposition into
inner and outer maximization problems.

Index Terms—Energy harvesting, cooperative communications,
diamond channel, resource allocation.

I. INTRODUCTION

W E CONSIDER the cooperative energy harvesting dia-
mond channel [1], see Fig. 1, where all transmitters

harvest energy from nature. We model the physical layer
as a concatenation of a Gaussian broadcast channel and a
Gaussian multiple access channel. Since the broadcast channel
is degraded, one of the relays has the message of the other relay.
Therefore, the multiple access channel is an extended multiple
access channel with common data [2], which we also call the
cooperative multiple access channel. Our aim is to determine
the optimum power and rate allocation policies of the users in
order to maximize the end-to-end throughput of this system.

There has been a considerable amount of recent work in
power control for energy harvesting communications [3]–[26].
In [3], the transmission completion time minimization problem
is solved for an unlimited-sized battery. In [4], the throughput
maximization problem is solved and its equivalence to the
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transmission completion time minimization problem is shown
for an arbitrarily sized battery. In [5]–[11], the problem is
extended to fading, broadcast, multiple access and interfer-
ence channels. Throughput maximization problem with battery
imperfections is considered in [12], [13], processing costs are
incorporated in [14]–[17] and decoding costs are studied in
[18]. Of particular relevance are [19]–[23], where two-hop
communication is considered with energy harvesting nodes
for half- or full-duplex relay settings. Recently, in [27], [28],
two-hop communication systems with two parallel relays are
studied. In [27], two parallel half-duplex relays with various
combinations of different transmission modes are considered.
Due to the half-duplex nature of the relays, broadcast and mul-
tiple access operations are not simultaneously possible. In [28],
all four links of the broadcast and multiple access channels are
restricted to be orthogonal, and no storage of data is allowed
at the relays due to strict delay constraints. The setting in the
current paper can be viewed as a generalization of [28] to gen-
eral broadcast and multiple access channels, and general data
storage at the relays.

In the setting of the diamond channel, see Fig. 1, when the
transmission rates of the source in the broadcast side are fixed,
the problem can be viewed as an energy harvesting multiple
access channel where data packets as well as the harvested
energies arrive at the transmitters intermittently over time. Of
particular relevance to this specific problem, are references
[10], [29], [30] where optimal scheduling problems on a mul-
tiple access channel are investigated. In [29], minimum energy
scheduling problem over a multiple access channel where data
packets arrive over time is solved. In [10], a multiple access
channel with energy arrivals is considered but it is assumed that
the users are infinitely backlogged, i.e., the data packets do not
arrive over time. In [30], an energy harvesting multiple access
channel with additional maximum power constraints on each
user is considered. These previous works either consider data
arrivals or energy arrivals but not both; in our current work, we
need to consider both constraints due to the two-hop nature of
the diamond channel.

In the first part of the paper, in Section III, we focus on the
broadcast half of the diamond network. We first show that there
exists an optimal source power allocation policy which is equal
to the single-user optimal power policy for the source energy
arrivals and does not depend on the relay energy arrivals. This
is a generalization of [7], [9], which proved the optimality of a
single-user power allocation for the capacity region of a broad-
cast channel; our work shows that the result remains the same
even when the broadcast channel is concatenated with a mul-
tiple access channel. Our result is also a generalization of the
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Fig. 1. Cooperative diamond network with energy harvesting nodes.

separation result proved in [19], [20], which showed that, in a
single relay channel, the source can optimize its transmit power
irrespective of the relay’s energy arrivals; our work shows that
this result remains the same for the case of two relays forming
a multiple access second hop. Next, we show that even though
the total power can be selected as the single-user optimal power,
the fraction of the power spent on each broadcast link depends
on the energy arrivals of the relays. Specifically, we show that
the optimal source rate allocation can be found by solving an
optimal broadcasting problem with slot-dependent user priori-
ties and these priorities can change only at instants when one of
the relay data buffers is empty.

In the second part of the paper, in Section IV, we turn our
attention to the multiple access side of the diamond network. As
mentioned before, this is a cooperative multiple access channel
with common data. To take the full advantage of cooperation
arising from common data, the relays need to use commonly
generated codebooks. For simplicity of operation, the relays
may choose to ignore the constructed common data, and operate
the second hop as a regular multiple access channel. Therefore,
we first consider a regular Gaussian multiple access channel
for the second hop of the diamond channel. In this setting,
first we note that when the transmission rates of the source
in the broadcast side are fixed, the overall problem becomes
a multiple access channel with both data and energy arrivals.
Then, we show that this problem can be formulated in terms
of data transmission rates only, instead of formulating over
both transmission powers and data rates. In the multiple access
channel with only energy arrivals, it was observed in [10],
that the optimal sum rate is equal to the single-user optimal
rate with both user energies merged. This may naturally sug-
gest that, with the presence of the data causality constraints,
the optimal sum rate is given by the single-user optimal rate
with both data and energy causality constraints merged. In
Section IV-A, we show that this suggestion is not entirely valid,
but a majorization relationship exists between these two solu-
tions. In Section IV-B, we solve the overall diamond channel
problem with non-cooperative multiple access channel, using a
dual decomposition method.

In the third part of the paper, in Section V, we recover
the original setting of the diamond channel by focusing on

the cooperative (extended) multiple access capacity region.
With the extended multiple access capacity region, we find the
overall solution using a decomposition into inner and outer
maximization problems. The outer problem consists of find-
ing the optimal source transmission rates in the broadcast side.
The inner problem consists of finding the optimal relay rate and
power allocations when the transmission rates of the source in
the broadcast side are fixed. We solve the overall problem by
iterating between the two sides.

II. SYSTEM MODEL

We consider the energy harvesting diamond channel shown
in Fig. 1. The harvested energies are saved in the correspond-
ing batteries. The physical layer is modeled as a concatenation
of a broadcast channel and a multiple access channel. In the
broadcast channel, relay 1 is the stronger receiver: the chan-
nel noises have variances σ 2

1 ≤ σ 2
2 . The Gaussian broadcast

channel capacity region with transmitter power p is given
by [31]

CBC (p) =
{

r1 ≤ f

(
αp

σ 2
1

)
, r2 ≤ f

(
(1 − α)p

αp + σ 2
2

)}
(1)

where α is the fraction of power spent for the message of
user 1, and f (x) � 1

2 log(1 + x). The function g(r1, r2) is the
minimum energy required to transmit at rates (r1, r2):

g(r1, r2) � σ 2
1 22(r1+r2) +

(
σ 2

2 − σ 2
1

)
22r2 − σ 2

2 (2)

and is strictly convex in (r1, r2). Since relay 2 is degraded with
respect to relay 1, relay 1 can decode the messages intended
for relay 2. Therefore, the second hop is an extended multiple
access channel with common data. The capacity region for this
channel with transmitter powers (p1, p2) and Gaussian noise
power σ 2

3 is given as [1], [2], [32]:

CE M AC (p1, p2) =
{

r1 ≤ f
(
(1 − β)p1/σ

2
3

)
,

r1+r2 ≤ f
((

p1 + p2 + 2
√

βp1 p2

)
/σ 2

3

)}
(3)

If the presence of common data is ignored, the second hop
becomes a regular Gaussian multiple access channel whose
capacity region is given as [31]:

CM AC (p1, p2) =
{

r1 ≤ f
(

p1/σ
2
3

)
, r2 ≤ f

(
p2/σ

2
3

)
,

r1 + r2 ≤ f
(
(p1 + p2) /σ 2

3

)}
(4)

There are N equal length slots of duration τ seconds and
τ = 1 is assumed without loss of generality. We refer to relay 1
as the top and relay 2 as the bottom relay and use subscripts
t and b to denote their parameters; subscript s denotes the
source node’s parameters. In slot i , the source, top and bottom
relays harvest energy with amounts Esi , Eti , Ebi , respectively.
We denote the transmission power of the source as psi and
source rates to the top (bottom) relay as rti (rbi ), the transmis-
sion power of the top (bottom) relay to the destination as p̄ti
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( p̄bi ) and data rates of the top (bottom) relays to the destina-
tion as r̄t i (r̄bi ). We denote these power and rate sequences with
the vectors ps, p̄t , p̄b, rt , rb, r̄t , r̄b. The energy that has not yet
been harvested cannot be used, leading to the following energy
causality constraints at all transmitters:

k∑
i=1

p̄ti ≤
k∑

i=1

Eti , ∀k (5)

k∑
i=1

p̄bi ≤
k∑

i=1

Ebi , ∀k (6)

k∑
i=1

psi ≤
k∑

i=1

Esi , ∀k (7)

The relays cannot forward data that has not yet arrived, leading
to the following data causality constraints at the relays:

k∑
i=1

r̄t i ≤
k∑

i=1

rti , ∀k (8)

k∑
i=1

r̄bi ≤
k∑

i=1

rbi , ∀k (9)

The rate allocations must be achievable for each channel:

(rti , rbi ) ∈ CBC (psi ), ∀i (10)

(r̄t i , r̄bi ) ∈ CE M AC ( p̄ti , p̄bi ), ∀i (11)

where we will use CM AC ( p̄ti , p̄bi ) in (11), if we operate the
second hop as a regular multiple access channel.

We aim to maximize the end-to-end throughput:

max
ps ,p̄t ,p̄b,rt ,rb,r̄t ,r̄b,α

N∑
i=1

r̄t i +
N∑

i=1

r̄bi

s.t. (5)−(11) (12)

In this paper we will solve the problem in (12). We will sep-
arately focus on the broadcast and the multiple access sides of
the problem in the following sections.

III. BROADCAST CHANNEL SIDE

First, we will focus on the broadcast side of the problem. We
consider the source which is broadcasting data to the two relays,
and focus on the source power (psi ) and rate (rti , rbi ) alloca-
tions. We first prove some properties of the optimal solution
which hold regardless of the existence of the multiple access
link.

Lemma 1 Either the source energy or both of the relay energies
must be consumed fully.

Proof: The proof follows by contradiction. If any excess
energy is left, then we can increase the rates, which contradicts
optimality. �
Lemma 2 There exists an optimal source profile (p∗

s , r∗
t , r∗

b)

that is on the boundary of the broadcast capacity region in each

slot, i.e., r∗
ti = f

(
αi p∗

si

σ 2
1

)
, r∗

bi = f

(
(1−αi )p∗

si

αp∗
si +σ 2

2

)
, ∀i .

Proof: In slots where the constraints r∗
ti ≤ f

(
αi p∗

si

σ 2
1

)
and

r∗
bi ≤ f

(
(1−αi )p∗

si

αp∗
si +σ 2

2

)
are satisfied with strict inequality, we can

increase r∗
ti or r∗

bi without violating any feasibility constraints
as we can always increase the right hand sides of the data
feasibility constraints in (8) and (9). �

Using Lemma 2 we can remove the broadcast capacity region
constraints from the problem and let psi = g(rti , rbi ). The cor-
responding energy causality constraints for the source node can
now be written as:

k∑
i=1

g(rti , rbi ) ≤
k∑

i=1

Esi , ∀k (13)

The optimization problem can now be written as:

max
p̄t ,p̄b,rt ,rb,r̄t ,r̄b

N∑
i=1

r̄t i +
N∑

i=1

r̄bi

s.t. (5)−(6), (8)−(9), (11), (13) (14)

The following theorem states a key structural property of the
optimal policy, and is proved in Appendix A.

Theorem 1 There exists an optimal total source power
sequence g(r∗

ti , r∗
bi ) which is the same as the single-user opti-

mal transmit power sequence for the energy arrivals Esi .

Theorem 1 tells us that there exists a solution to the problem
in (14) in which g(r∗

ti , r∗
bi ) = Pi , where Pi s are the single-

user optimal transmit powers for the energy arrivals Esi . This
constraint can always be relaxed to g(rti , rbi ) ≤ Pi . Using
Theorem 1, the optimization problem becomes:

max
p̄t ,p̄b,rt ,rb,r̄t ,r̄b

N∑
i=1

r̄t i +
N∑

i=1

r̄bi

s.t. (5)−(6), (8)−(9), (11), g(rti , rbi ) ≤ Pi (15)

We note that the single-user optimal transmit powers Pi s can
be found by the directional water filling algorithm in [5] or the
staircase water filling algorithm in [6]. Theorem 1 generalizes
the results of [7], [9] to the case of concatenated networks, and
the results of [19], [20] to the case of multiple relays. While the
source power does not depend on the energy arrival profile of
the relays, the fraction of the total power spent on each broad-
cast link depends on the energy arrival profile of the relays. In
the following lemmas, we show how to find the distribution of
power over the broadcast links.

Lemma 3 There exists a positive real vector μ � {μi }N
i=1, μi ∈

[0, 1] such that (r∗
ti , r∗

bi ) simultaneously solves the problem in
(15) and the following optimization problem:

max
rti ,rbi

N∑
i=1

μi rti +
N∑

i=1

rbi

s.t. g(rti , rbi ) ≤ Pi (16)

Lemma 4 μi can increase (decrease) only when the bottom
(top) data buffer is empty.
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The proofs of Lemma 3 and Lemma 4 are given in
Appendix B.

In a single-hop broadcasting problem as in [7]–[9], the capac-
ity region can be traced by solving the following optimiza-
tion problem: maxr1i ,r2i μ1

∑N
i=1 r1i + μ2

∑N
i=1 r2i for some

μ1, μ2 ∈ R
+. Here, μ1, μ2 are called user priorities and are

constant throughout slots. Lemmas 3 and 4 show us that the
existence of a multiple access layer affects the broadcast layer
by introducing variable user priorities in time. The user priori-
ties can change only when one of the data buffers is empty: the
priority of the first user can increase only when the bottom data
buffer is empty, and can decrease only when the top data buffer
is empty. From [7], the solution to (16) is:

rti = 1

2
log(1 + min{Pci , Pi }) (17)

rbi = 1

2
log

(
1 + (Pi − Pci )

+

Pci + σ 2
2

)
(18)

where, if μi ≥ 1, all of the power is allocated to the top relay
only. If μi < 1, we define

Pci �
(

μiσ
2
2 − σ 2

1

1 − μi

)+
(19)

In other words, given (μi , Pi ), the rate pairs (rti , rbi ) can
uniquely be determined from (17) and (18). We denote the
unique rate pairs found from (17) and (18) for fixed (μi , Pi )

by rti (μi , Pi ) and rbi (μi , Pi ). Let us define the function z(μ)

which is a maximization over (p̄t , p̄b, r̄t , r̄b) for fixed μ:

z(μ) = max
p̄t ,p̄b,r̄t ,r̄b

N∑
i=1

r̄t i +
N∑

i=1

r̄bi

s.t.
k∑

i=1

r̄t i ≤
k∑

i=1

rti (μi , Pi ), ∀k

k∑
i=1

r̄bi ≤
k∑

i=1

rbi (μi , Pi ), ∀k

(5)−(6), (11) (20)

Then, the original problem in (12) is equivalent to:

max
μ∈[0,1]N

z(μ) (21)

IV. NON-COOPERATIVE MULTIPLE ACCESS CHANNEL

SIDE

In this section, we consider the regular multiple access chan-
nel by ignoring the presence of common data. We note that the
problem in (20) is a throughput maximization problem in an
energy harvesting multiple access channel with data arrivals as
shown in Fig. 2. For notational convenience, we denote dti i =
rti (μi , Pi ), dbi = rbi (μi , Pi ). When μ is fixed, the data arrivals
to the multiple access side are fixed and the data causality
constraints can be written as

k∑
i=1

r̄t i ≤
k∑

i=1

dti , ∀k (22)

Fig. 2. Multiple access channel with energy and data arrivals.

k∑
i=1

r̄bi ≤
k∑

i=1

dbi , ∀k (23)

We start this section by reformulating the problem in terms
of the rates only. We consider the following energy causality
constraints on the rates:

k∑
i=1

σ 2
3 (22r̄t i − 1) ≤

k∑
i=1

Eti , ∀k (24)

k∑
i=1

σ 2
3 (22r̄bi − 1) ≤

k∑
i=1

Ebi , ∀k (25)

k∑
i=1

σ 2
3 (22(r̄t i +r̄bi ) − 1) ≤

k∑
i=1

Eti + Ebi , ∀k (26)

and the corresponding throughput maximization problem:

max
r̄t i ,r̄bi

N∑
i=1

r̄t i +
N∑

i=1

r̄bi

s.t. (22)−(26) (27)

The following lemma, proved in Appendix C, shows that this is
an equivalent representation for the problem in (20).

Lemma 5 The problems in (20) and (27) are equivalent.

We solve the problem in (27) in the remainder of this section.
We denote the optimal solution to (27) by (r̄∗

ti , r̄∗
bi ). We have the

following lemma.

Lemma 6 The optimal sum rate for relays is non-decreasing in
time, i.e., r̄∗

ti + r̄∗
bi ≤ r̄∗

t,i+1 + r̄∗
b,i+1,∀i .

Proof: The proof follows by contradiction. Assume that there
is a slot k such that r̄∗

tk + r̄∗
bk > r̄∗

t,k+1 + r̄∗
b,k+1. We will show

that this policy cannot be optimal. There can be three cases,
case 1: r̄∗

tk > r̄∗
t,k+1, r̄∗

bk ≤ r̄∗
b,k+1, case 2: r̄∗

bk > r̄∗
b,k+1, r̄∗

tk ≤
r̄∗

t,k+1 and case 3: r̄∗
bk > r̄∗

b,k+1, r̄∗
tk > r̄∗

t,k+1. Assume that the
first case happens. Consider the modified policy r̂tk = r̂t,k+1 =
r̄∗

tk+r̄∗
t,k+1

2 . This modified policy is feasible and transmits the
same amount of data as r̄∗

ti , r̄∗
bi , but due to the convexity of
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the functions 22(r̄t i +r̄bi ) and 22r̄t i , consumes less energy. This
additional energy can be used to transmit more data and there-
fore the policy (r̄∗

ti , r̄∗
bi ) cannot be optimal. For the second

case, we set r̂bk = r̂b,k+1 = r̄∗
bk+r̄∗

b,k+1
2 and for the third case

we modify both r̄∗
tk, r̄∗

t,k+1 and r̄∗
bk, r̄∗

b,k+1 to reach a similar
contradiction. �

A. Relaxed Problem and Majorization

Without the data causality constraints of (22) and (23) it was
observed in [10], that the optimal sum rate is equal to the single-
user optimal rate with the energies merged as Eti + Ebi . This
may naturally suggest that, with the presence of the data causal-
ity constraints, the optimal sum rate is given by the single-user
optimal rate with both data and energy causality constraints.
In this section, we show that this suggestion is not entirely
valid, but a majorization relationship exists between these two
solutions. Consider the following problem:

max
qi

N∑
i=1

qi

s.t.
k∑

i=1

σ 2
3 (22qi − 1) ≤

k∑
i=1

Eti + Ebi , ∀k

k∑
i=1

qi ≤
k∑

i=1

dti + dbi , ∀k (28)

This problem can be solved using the geometric approach in [3]
or the directional waterfilling with both data and energy arrivals
in [5]. We note that the problem in (28) is a relaxed version of
(27) where the energy arrivals and data arrivals are merged to a
single-user. I.e., we sum up (22) and (23) to obtain a single data
arrival constraint and remove (24) and (25). We denote the solu-
tion to (28) by q∗

i . Now, we show two weak majorization results
whose proofs are provided in Appendix D and E respectively.

Lemma 7 We must have
∑k

i=1 r̄∗
ti + r̄∗

bi ≤ ∑k
i=1 q∗

i ,∀k.

Lemma 8 If at any slot k, we have
∑k

i=1 r̄∗
ti + r̄∗

bi = ∑k
i=1 q∗

i ,

then
∑k

i=1 22(r̄∗
ti +r̄∗

bi ) ≥ ∑k
i=1 22q∗

i . If, in addition, we have

σ 2
3

(∑k
i=1 22q∗

i − 1
)

= ∑k
i=1 Eti + Ebi , then we must have

r̄∗
ti + r̄∗

bi = q∗
i for i = 1, . . . , k.

In some special instances of the problem, Lemmas 7 and 8
can be utilized, by enforcing the constraint r̄t i + r̄bi = q∗

i ,∀i ,
replacing r̄bi = q∗

i − r̄t i and solving a single-user problem.

B. Iterative Solution

In this section, we will solve the overall problem by utiliz-
ing a dual decomposition method. After applying Lemma 5, the
problem in (15) is equivalent to:

max
r̄t i ,r̄bi ,rti ,rbi

N∑
i=1

r̄t i +
N∑

i=1

r̄bi

s.t. (8), (9), (24) − (26), g(rti , rbi ) ≤ Pi (29)

Defining a new variable as wi = r̄t i + r̄bi , we formulate the
following equivalent optimization problem:

max
r̄t i ,r̄bi ,rti ,rbi ,wi

N∑
i=1

wi

s.t. (8), (9), (24), (25), g(rti , rbi ) ≤ Pi

k∑
i=1

σ 2
3 (22wi − 1) ≤

k∑
i=1

Eti + Ebi , ∀k

wi = r̄t i + r̄bi , ∀i (30)

which can be relaxed to:

max
r̄t i ,r̄bi ,rti ,rbi ,wi

N∑
i=1

wi

s.t. (8), (9), (24), (25), g(rti , rbi ) ≤ Pi

k∑
i=1

σ 2
3

(
22wi − 1

)
≤

k∑
i=1

Eti + Ebi , ∀k

wi ≤ r̄t i + r̄bi , ∀i (31)

since at slots where the last inequality is not satisfied with
equality, r̄t i and r̄bi can be decreased until equality is satisfied
without changing the throughput. The problem in (31) is con-
vex since the objective function is linear and the constraints are
convex. Define the following sets:

Rs = {(rti , rbi ) ∈ (R+ × R
+) : g(rti , rbi ) ≤ Pi , ∀i} (32)

Rt = {r̄t i ∈ R
+ :

k∑
i=1

σ 2
3 (22r̄t i − 1) ≤

k∑
i=1

Eti , ∀k} (33)

Rb = {r̄bi ∈ R
+ :

k∑
i=1

σ 2
3 (22r̄bi − 1) ≤

k∑
i=1

Ebi , ∀k} (34)

Rw = {wi ∈ R
+ :

k∑
i=1

σ 2
3 (22wi − 1) ≤

k∑
i=1

Eti + Ebi , ∀k}
(35)

Now, we write the partial Lagrangian function for the problem
in (31) corresponding to the constraints (8), (9) and wi ≤ r̄t i +
r̄bi as follows:

L =
N∑

i=1

wi +
N∑

k=1

λ1k

(
k∑

i=1

rti −
k∑

i=1

r̄t i

)

+
N∑

k=1

λ2k

(
k∑

i=1

rbi −
k∑

i=1

r̄bi

)
+

N∑
i=1

νi (r̄t i + r̄bi − wi )

(36)

Now, the dual function is [33]:

K(λ1,λ2, ν)= max
(rti ,rbi )∈Rs ,r̄t i ∈Rt ,r̄bi ∈Rb,wi ∈Rw

L(rt , rb, r̄t , r̄b, w)

(37)

= max
(rti ,rbi )∈Rs

[
N∑

i=1

rti

N∑
k=i

λ1k +
N∑

i=1

rbi

N∑
k=i

λ2k

]
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+ max
r̄t i ∈Rt

[
N∑

i=1

r̄t i

(
νi −

N∑
k=i

λ1k

)]

+ max
r̄bi ∈Rb

[
N∑

i=1

r̄bi

(
νi −

N∑
k=i

λ2k

)]

+ max
wi ∈Rw

N∑
i=1

(1 − νi )wi (38)

Denote the collection of Lagrange multiplier vectors as γ �
(λ1,λ2, ν). For fixed γ , we define the following subproblems:

K1(γ ) = max
(rti ,rbi )∈Rs

N∑
i=1

rti

N∑
k=i

λ1k +
N∑

i=1

rbi

N∑
k=i

λ2k (39)

K2(γ ) = max
r̄t i ∈Rt

N∑
i=1

r̄t i

(
νi −

N∑
k=i

λ1k

)
(40)

K3(γ ) = max
r̄bi ∈Rb

N∑
i=1

r̄bi

(
νi −

N∑
k=i

λ2k

)
(41)

K4(γ ) = max
wi ∈Rw

N∑
i=1

(1 − νi )wi (42)

Slater’s condition holds for the problem in (29), [33].
Therefore, there is no duality gap and the optimal values of the
dual problem and the primal problem are the same. This implies
that (29) is equivalent to the following problem:

min
γ≥0

K(γ ) (43)

or equivalently:

min
γ≥0

H(γ ) (44)

where H � K1 + K2 + K3 + K4. We observe that for fixed
γ we can solve the subproblems independently. We solve the
problem in (44) by separately solving the outer minimization
and inner maximization problems.

1) Inner Maximization: Here, we focus on the inner prob-
lems (39)–(42). We start by analyzing (39). We define ai =∑N

k=i λ1k and bi = ∑N
k=i λ2k . Then (39) becomes:

max
rti ,rbi

N∑
i=1

airti +
N∑

i=1

birbi

s.t. g(rti , rbi ) ≤ Pi (45)

Since the constraint set depends only on index i , (45) is solved
individually for each i as follows:

max
rti ,rbi

ai rti + birbi

s.t. g(rti , rbi ) ≤ Pi (46)

The problem in (46) is a single-user throughphut maximization
problem in a broadcast channel setting as in [7] with user pri-
orities as ai and bi . Therefore, the solution to (46) is given by

rti (ai/bi , Pi ) and rbi (ai/bi , Pi ) with the definitions as given in
(17)–(19).

Now, we examine (40). We define ci � νi −∑N
k=i λ1k and

with this definition (40) becomes:

max
r̄t i

N∑
i=1

ci r̄ti

s.t.
k∑

i=1

σ 2
3 (22r̄t i − 1) ≤

k∑
i=1

Eti , ∀k (47)

We reformulate the problem in (47) in terms of powers as:

max
p̄ti

N∑
i=1

ci

2
log

(
1 + p̄ti

σ 2
3

)

s.t.
k∑

i=1

p̄ti ≤
k∑

i=1

Eti , ∀k (48)

The problem in (47) is a convex optimization problem and by a
Lagrangian analysis similar to [5] we obtain:

p̄ti =
(

ci∑N
k=i πk

− 1

)+
= ci

(
1∑N

k=i πk
− 1

ci

)+
(49)

where πk is the Lagrange multiplier corresponding to the
energy causality constraint at slot k in (48). The solution to (49)
is given by directional waterfilling on rectangles of width ci

and base level 1/ci as explained in [34, Fig. 2]. In slots where
ci < 0, no power should be allocated and those slots can be
treated as if they are not there.

The problems in (41) and (42) have the same structure and
are solved similarly. In (41), the fading levels are di � νi −∑N

k=i λ2k and energy arrivals are Ebi and in (42), the fading
levels are (1 − νi ) and energy arrivals are Eti + Ebi . If the fad-
ing levels are negative in any slot, those slots can be skipped.
Denote the solutions to K1(γ ) by (r∗

ti (γ ), r∗
bi (γ )) and the solu-

tions to K2(γ ),K3(γ ),K4(γ ) by r̄∗
ti (γ ), r̄∗

bi (γ ) and w∗
i (γ ),

respectively.
2) Outer Minimiziation: The outer minimization problem

is the problem of finding optimal γ in (44). For this problem we
will use the normalized subgradient method, which is defined as

γ l+1 =
(

γ l − ζl
vl

‖vl‖
)+

(50)

where γ l+1 is the lth iterate, vl is any subgradient of h at γ l and
ζl > 0 is the lth step size. The (+) operator is used to enforce
the constraints that γ ≥ 0. For completeness, first we define the
subgradient of a function: v is a subgradient of H at x if [33,
Eq. (6.20)]

H( y) ≥ H(x) + vT( y − x), ∀ y (51)

Now, we show that a subgradient for H(γ ) is readily avail-
able once the inner maximization problems are solved. The
following lemma is proved in Appendix F.
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Lemma 9 The vector
[(∑k

i=1 r∗
ti (γ

l) −∑k
i=1 r̄∗

ti (γ
l)
)

,(∑k
i=1 r∗

bi (γ
l) −∑k

i=1 r̄∗
bi (γ

l)
)

,
(
r̄∗

ti (γ
l) + r̄∗

bi (γ
l)

−w∗
i (γ (l))

) ]N

k=1
is a subgradient for H(γ ) at γ l .

We note that the subgradient method is not a descent method,
i.e., the iterations at every step do not necessarily decrease the
objective value. Therefore, it is necessary to keep track of the
best point found so far. At each step, we set:

Hl
best = min{Hl−1

best,H(γ l)} (52)

We denote γ l
best as the argument of Hl

best. It can be shown that
for appropriately selected ζl , Hl

best → H∗ [35, Section 6.3].
Furthermore, if the step size ζl is chosen such that

∑∞
l=1

ζl = ∞,
∑∞

l=1 ζ 2
l < ∞, then γ l

best → γ ∗ [36, Proposition 5.1].
Once the optimal γ ∗ is found, w∗

i (γ ∗) is the optimal sum rate
and we can find r∗

ti (γ
∗), r∗

bi (γ
∗) as the optimal source rates

and r̄∗
ti (γ

∗), r̄∗
bi (γ

∗) as the optimal relay rates. If r̄∗
tk(γ

∗) +
r̄∗

bk(γ
∗) > w∗

k (γ ∗) for some slot k then we can decrease first
or second user rates until equality is achieved.

V. COOPERATIVE (EXTENDED) MULTIPLE ACCESS

REGION

In this section, consider an extended multiple access capacity
region for the second hop of the diamond channel. We note that
the statement of Theorem 1 still holds when the multiple access
region of (3) is used instead of (4). However, the statement of
Lemma 5 and the discussions in Section IV do not hold and
it is not clear how to formulate the multiple access side using
rate expressions only. Therefore, here we keep the expressions
in terms of both power and rate allocations. Using the approach
followed before, we have that the original problem in (12) is
equivalent to:

max
μ∈[0,1]N

z(μ) (53)

where z(μ) is defined as in (20). We solve the problem in (53)
in this section.

A. Inner Maximization

In this section, we focus on the inner problem in (20) for
fixed μ. We define the new variables p̄1ti = (1 − βi ) p̄ti and
p̄2ti = βi p̄ti and rewrite (20) as:

max
N∑

i=1

r̄t i +
N∑

i=1

r̄bi

s.t.
k∑

i=1

r̄t i ≤
k∑

i=1

rti (μi , Pi ),

k∑
i=1

r̄bi ≤
k∑

i=1

rbi (μi , Pi )

k∑
i=1

p̄1ti + p̄2ti ≤
k∑

i=1

Eti ,

k∑
i=1

p̄bi ≤
k∑

i=1

Ebi ,

r̄t i ≤ f ( p̄1ti/σ
2
3 )

r̄t i + r̄bi ≤ f
(
( p̄1ti + p̄2ti + p̄bi + 2

√
p̄2ti p̄bi )/σ

2
3

)
(54)

We denote the vector triple P = (p̄1t , p̄2t , p̄b) and define the
function y(P) as maximization over (r̄t , r̄b) for fixed P:

y(P) � max
(r̄t ,r̄b)

N∑
i=1

r̄t i +
N∑

i=1

r̄bi

s.t.
k∑

i=1

r̄t i ≤
k∑

i=1

rti (μi , Pi ),

k∑
i=1

r̄bi ≤
k∑

i=1

rbi (μi , Pi )

r̄t i ≤ f ( p̄1ti/σ
2
3 )

r̄t i + r̄bi ≤ f
(
( p̄1ti + p̄2ti + p̄bi + 2

√
p̄2ti p̄bi )/σ

2
3

)
(55)

For fixed P, (55) is a linear program, and y(P) can be deter-
mined efficiently. We next note the following fact.

Lemma 10 y(P) is non-decreasing and concave in P.

Proof: Since increasing the powers can only expand the fea-
sible region, y is non-decreasing in its arguments. To prove
the concavity: Let P = (p̄1t , p̄2t , p̄b) and Q = (q̄1t , q̄2t , q̄b) be
two power vectors. Let λ = 1 − λ̄ ∈ [0, 1]. Let (r̄t , r̄b) solve
y(P) and (s̄t , s̄b) solve y(Q). Now, we show that (λr̄t +
λ̄s̄t , λr̄b + λ̄s̄b) is feasible for the problem y(λP + λ̄Q). The
first two constraints in (55) are linear, thus, their linear com-
binations are feasible. The third constraint is convex because
f is concave. The last constraint is convex because f is con-
cave, non-decreasing, and

√
p̄2ti p̄bi is concave. Thus, (λr̄t +

λ̄s̄t , λr̄b + λ̄s̄b) is feasible for y(λP + λ̄Q). Now,

y(λP + λ̄Q) ≥
N∑

i=1

λr̄t i + λ̄s̄t i + λr̄bi + λ̄s̄bi (56)

= λy(P) + λ̄y(Q) (57)

where (56) follows because the maximum value of the prob-
lem can be no smaller than the objective value of any feasible
point, and (57) follows from the fact that (r̄t , r̄b) solves y(P)

and (s̄t , s̄b) solves y(Q). �
The problem in (54) can equivalently be written as:

max
p̄1t ,p̄2t ,p̄b

y(p̄1t , p̄2t , p̄b)

s.t.
k∑

i=1

p̄1ti + p̄2ti ≤
k∑

i=1

Eti , ∀k

k∑
i=1

p̄bi ≤
k∑

i=1

Ebi , ∀k (58)

The problem in (58) is convex as it involves maximizing a
concave function over a feasible set with linear constraints.
This can be performed efficiently by iterating over feasible
(p̄1t , p̄2t , p̄b) such that every iteration increases the objec-
tive function, for example, using the method described in [28,
Section III.B]. Due to convexity, the convergence to an opti-
mal solution is guaranteed. Once (p̄∗

1t , p̄∗
2t , p̄∗

b) is found, z(μ) =
y(p̄∗

1t , p̄∗
2t , p̄∗

b).
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B. Outer Maximization

The outer maximization problem is the problem of find-
ing the optimal μ in (53). For this purpose, we use the block
coordinate descent method on the vector μ. First, we fix
(μ1, . . . , μN−1) and solve the following problem

max
μN ∈[0,1]

z(μ1, μ2, . . . , μN−1, μN ) (59)

which can be done using a one-dimensional search on
μN ∈ [0, 1]. Then, using this newly found μN , we fix
(μ1, . . . , μN−2, μN ) and maximize over μN−1. We cyclically
iterate through each μi , one at a time, maximizing the objective
function with respect to that μi . By construction, the itera-
tions z(μ(k)) is a monotone increasing sequence and is bounded
because the optimal value of problem (12) is bounded, which
guarantees convergence. The iterations converge to an optimal
point due to the convexity of the original problem. We can uti-
lize Lemma 4 to search over μ space more efficiently. Using
this procedure, we reduced an N dimensional search for μ to
N one dimensional searches for each individual μi . For large
N , this search can be computationally demanding, however
numerically we observed quick convergence.

VI. NUMERICAL RESULTS

In this section, we provide numerical examples and illus-
trate the resulting optimal policies. We consider band-limited
AWGN broadcast and multiple-access channels. The bandwidth
is BW = 1 MHz and the noise power spectral density is N0 =
10−19 W/Hz. We assume that the path loss between the source
and relay 1 (hsr1) is 123 dB, source and relay 2 (hsr2) is 127 dB
and the path loss between relays and destination are assumed
to be same (hr1d = hr2d ) and 130 dB. With these definitions,
equations (1) and (2) become:

r1 ≤ BW log2

(
1 + αPhsr1

N0 BW

)

= log2

(
1 + αP

0.2

)
Mbps (60)

r2 ≤ BW log2

(
1 + (1 − α)Phsr2

αPhsr2 + N0 BW

)

= log2

(
1 + (1 − α)P

αP + 0.6

)
Mbps (61)

g(r1, r2) = 0.2 ∗ 2(r1+r2) + (0.6 − 0.2) ∗ 2r2 − 0.6 W (62)

The extended multiple access capacity region described in (3)
becomes:

r1 ≤ BW log2

(
1 + (1 − β)hr1d P1

N0 BW

)
= log2 (1 + (1 − β)P1) Mbps (63)

r1 + r2 ≤ BW log2

[
1 + (N0 BW )−1

(
hr1d P1 + hr2d P2 + 2

√
βhr1d P1hr2d P2

)]
= log2

(
1 + P1 + P2 + 2

√
β P1 P2

)
Mbps (64)

Fig. 3. Percentage error between the best iteration so far and the optimal value
vs iteration number k.

Similarly the non-cooperative multiple access capacity region
described in (4) becomes

r1 ≤ BW log2

(
1 + hr1d P1

N0 BW

)
= log2 (1 + P1) Mbps (65)

r2 ≤ BW log2

(
1 + hr2d P2

N0 BW

)
= log2 (1 + P2) Mbps (66)

r1 + r2 ≤ BW log2

(
1 + hr1d P1 + hr2d P2

N0 BW

)
= log2 (1 + P1 + P2) Mbps (67)

A. Deterministic Energy Arrivals

In this subsection, we consider deterministic energy arrivals,
and focus on the offline problem studied in this paper. We
study a 3 slot scenario with the following energy arrivals, Es =
[5, 20, 9] J, Et = [4, 6, 5] J, Eb = [6, 10, 4] J.

First, we investigate the non-cooperative Gaussian mul-
tiple access scenario, disregarding the possible cooperation
between the top and bottom relays. The evolution of our
subgradient descent based algorithm is shown in Fig. 3.
The step size is taken as ζk = 1.3

k and the initial points are
taken as λ0

1 = [3.4, 1, 1],λ0
2 = [2.8, 1.1, 1.4], ν0 = [10, 4, 3].

The plot shows the percentage error between the best
iteration so far and the optimal value of the problem
in (12). The algorithm converges after around 104 steps
to reasonable accuracy. The resulting Lagrange multi-
pliers are found as λ1 = [3.04, 0.04, 0.4] × 10−3,λ2 =
[4.29, 0, 0] × 10−3, ν = [4.51, 4.29, 4.26] × 10−3. The opti-
mal rates are then found as rt = [1.55, 1.18, 1.14] Mbits, rb =
[0.69, 1.7, 1.72] Mbits, r̄t = [1.16, 1.34, 1.35] Mbits, r̄b =
[1.4, 1.73, 0] Mbits, w = [1.72, 1.87, 1.87] Mbits. We observe
that by setting r̄b = w − r̄t = [0.56, 0.53, 0.52] Mbits we can
get wi = r̄t i + r̄bi ,∀i and this set of rates is the optimal solu-
tion. The feasibility of this solution can be verified. Due to the
non-uniqueness of the solution, there may exist multiple r̄∗

ti , r̄∗
bi

pairs that yield the optimal sum rate however the optimal
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Fig. 4. Maximum departure region and trajectories to reach the optimal point
for BC with no MAC, BC with non-cooperative MAC and BC with cooperative
MAC.

sum rate r̄∗
ti + r̄∗

bi is unique. The optimal sum throughput in

this case is calculated as
∑N

i=1 r̄t i +∑N
i=1 r̄bi = 5.46 Mbits.

The optimal user priorities for the source are calculated as
μ1 = [0.81, 0.72, 0.71].

Second, we investigate the extended multiple access
scenario. The optimal user priorities for the source are
found as μ2 = [0.83, 0.43, 0.43]. The optimal rates
are then found as rt = [0.74, 0.07, 0.07] Mbits, rb =
[1.27, 2.3, 2.3] Mbits, r̄t = [0.74, 0.07, 0.07] Mbits, r̄b =
[1.27, 2.3, 2.3] Mbits, p̄1t = [1.8, 0.1, 0.1] W, p̄2t =
[2.2, 5.39, 5.39] W, p̄b = [4.82, 7.58, 7.58] W. We note
that p̄2t is much larger than p̄1t which means that relay 1
has spent a significant portion of its power on the cooper-
ative communication rather than forwarding its own data.
The optimal sum throughput in this case is calculated as∑N

i=1 r̄t i +∑N
i=1 r̄bi = 6.76Mbits which is higher than in the

non-cooperative case.
Finally, we examine the maximum departure region and the

optimal trajectories for the broadcast side of this diamond chan-
nel for the non-cooperative and cooperative Gaussian multiple
access channel second hops. Without the existence of relays,
for the two user Gaussian broadcast channel, to maximize the
sum rate we need to set μ = [1, 1, 1] and rbi = 0,∀i , i.e., all
the power must be allocated to the stronger user [7]. The exis-
tence of the multiple access layer changes this structure. We
sketch the maximum departure region and trajectories to reach
the optimal point in Fig. 4. When there is no multiple access
layer, all the power is allocated to the first user. In the case
of non-cooperative multiple access layer, the rates to both of
the relays follow a balanced pattern. In the case of cooperative
multiple access layer, the weaker relay gets more data than the
stronger relay due to the possibility of cooperation.

B. Stochastic Energy Arrivals

In this subsection, we consider stochastic energy arrivals and
we compare the performance of the offline optimal policy with
that of a suboptimal online policy. These policies are inspired
by the optimal offline policy while they require partial or no
offline knowledge of the energy arrivals. We have shown that a
partial separation holds between the broadcast and the multiple

access parts of the problem, therefore the online policies we
consider will be of separation based. We denote the amount of
energy in the batteries of the source, top relay and bottom relay
as Bs, Bt , Bb and the data buffers of the top and bottom relays
as Dt , Db. The presented online algorithms are of best-effort
type [5], [37], where the transmitters aim to keep a constant
power if feasible, or transmit with the currently available power
otherwise.

1) Source Power and Rate Allocation: This policy deter-
mines the source power psi and rate (rti , rbi ) allocations. We
choose a policy that transmits with constant power equal to the
average recharge rate of the source battery, if there is enough
energy, otherwise it uses all of the battery energy, i.e., ps =
min{E[Es], Bs}. First, we define a constant C which depends
only on the average recharge rates of the top and bottom relays,
as follows:

C =
⎧⎨
⎩

log2(1+E[Et ])
log2(1+E[Eb]) , if regular MAC

log2(1+E[Eb])
log2(1+E[Eb]+E[Et ])

, if cooperative MAC
(68)

The reasoning behind the choice of C is as follows. For the
regular MAC, the top relay can transmit at most an average
rate of log2(1 + E[Et ]), considering its own energy arrivals.
Similarly, the bottom relay can transmit at most an average
rate of log2(1 + E[Eb]). Therefore, we have r̄t

r̄b
∼ log2(1+E[Et ])

log2(1+E[Eb]) .
We choose the source rate division to be exactly equal to
this quantity. For the cooperative MAC, we use a constant β

policy and set β = 1 − E[Eb]
E[Et ]

. Then, from (63) we have r̄t ∼
log2(1 + E[Eb]) and from (64) r̄b ∼ log2(1 + E[Eb] + E[Et ]).
We choose the source rate division to be exactly equal to the
ratio of two rates. From (60) and (61), we choose the power
share α∗ to satisfy the following equation:

C =
log2

(
1 + αE[Es ]

0.2

)
log2

(
1 + (1−α)E[Es ]

αE[Es ]+0.6

) (69)

2) Top and Bottom Relay Power and Rate Allocation: This
policy determines the top and bottom relay power (pti , pbi )

and rate (r̄t i , r̄bi ) allocations. We note that the policy for the
relays must depend on the data arrivals from the source. For
the regular MAC, the online policy is determined as follows.
We set the top relay power allocation as the average recharge
rate of the top relay battery if there is enough energy and
data, otherwise it uses either all of the battery energy or trans-
mits at a rate that transmits all of the available data. We
set pt = min{E[Et ], Bt , 2Dt −1}, rt = log2 (1 + pt ). Similarly
we set pb = min{E[Eb], Bb, 2Db−1}, rb = log2 (1 + pb). If the
constraint rt + rb ≤ log2(1 + pt + pb) is not satisfied, then we
decrease rb, pb until equality is satisfied.

For the cooperative MAC, additional to pt , pb

we need to determine β given in (64). We set
pt = min{E[Et ], Bt , 2Dt −1}, rt = log2 (1 + pt ). We use a
constant β policy and set β = 1 − E[Eb]

E[Et ]
. Now, we set pb =

min{E[Eb], Bb} and rb = log2(1 + pt + pb + 2
√

βpt pb) − rt .
If rb > Db, then rb, pb are decreased until equality is satisfied.

3) Simulations: In the simulations, we consider Bernoulli
energy arrival processes. The source energy arrivals are Esi = 0



GURAKAN AND ULUKUS: COOPERATIVE DIAMOND CHANNEL WITH ENERGY HARVESTING NODES 1613

Fig. 5. Average sum throughput versus average recharge rate for offline and
online policies.

with probability 0.5 and Esi = 2ξ with probability 0.5 where
ξ is the average recharge rate, and we denote this process by
Ber(0.5, ξ). We assume that Eti ∼ Ber(0.5, 0.5ξ) and Ebi ∼
Ber(0.5, 0.3ξ). We perform simulations for a deadline of 10
slots. The performance metric of the policies is the average sum
throughput over 100 realizations of the stochastic energy arrival
process. We plot our results in Fig. 5. We observe that the sum
throughput increases with increasing energy recharge rate.

VII. CONCLUSION

We considered the energy harvesting diamond channel where
the physical layer is modeled as a concatenation of a broad-
cast channel and a multiple access channel. In the first part
of the paper, we focused on the broadcast half of the dia-
mond network. We first showed that there exists an optimal
source power allocation policy which is equal to the single-
user optimal power policy for the source energy arrivals and
does not depend on the relay energy arrivals. Next, we showed
that even though the total power can be selected as the single-
user optimal power, the fraction of the power spent on each
broadcast link depends on the energy arrivals of the relays. In
the second part of the paper, we turned our attention to the
multiple access side of the diamond network. This is a coop-
erative multiple access channel with common data. Initially,
we ignored the possible cooperation between the relays and
assumed a regular Gaussian multiple access channel with
non-cooperating users. In this setting, first we showed that
when the transmission rates of the source in the broadcast
side are fixed, the overall problem becomes a multiple access
channel with both data and energy arrivals. We showed that
this problem can be formulated in terms of data transmis-
sion rates only, instead of formulating over both transmis-
sion powers and data rates. We solved the overall diamond
channel problem with non-cooperative multiple access chan-
nel using a dual decomposition method. In the last part of
the paper, we considered the cooperative (extended) multiple
access capacity region for the second hop. With the extended
multiple access capacity region, we found the overall solu-
tion using a decomposition into inner and outer maximization
problems.

APPENDIX A
PROOF OF THEOREM 1

In this proof, we are only interested in (r∗
ti , r∗

bi ). Therefore,
to find the necessary optimality conditions, we write the
Lagrangian function of the problem in (14) as:

L = −
N∑

i=1

r̄t i −
N∑

i=1

r̄bi +
N∑

k=1

λ1k

(
k∑

i=1

r̄t i −
k∑

i=1

rti

)

+
N∑

k=1

λ2k

(
k∑

i=1

r̄bi −
k∑

i=1

rbi

)
+

N∑
k=1

γk

(
k∑

i=1

g(rti , rbi )

−
k∑

i=1

Esi

)
−

N∑
i=1

θ1i rti −
N∑

i=1

θ2i rbi + other terms

(70)

where other terms include the Lagrange multipliers for the
other constraints but they are not needed in the proof and are
omitted for the sake of brevity. The complementary slackness
conditions for these Lagrange multipliers are:

λ1k

(
k∑

i=1

r̄t i −
k∑

i=1

rti

)
= λ2k

(
k∑

i=1

r̄bi −
k∑

i=1

rbi

)
= 0 (71)

γk

(
k∑

i=1

g(rti , rbi ) −
k∑

i=1

Esi

)
= 0 (72)

θ1i rti = θ2i rbi = 0, λ1k, λ2k, γk ≥ 0 (73)

Taking the derivatives of L with respect to rti and rbi :

−
N∑

k=i

λ1k +
(

N∑
k=i

γk

)
σ 2

1 22(rti +rbi ) − θ1i = 0 (74)

−
N∑

k=i

λ2k +
(

N∑
k=i

γk

)(
g(rti , rbi ) + σ 2

2

)
− θ2i = 0 (75)

From (74) and (75), we get:

g(rti , rbi ) = θ2i +∑N
k=i λ2k∑N

k=i γk
− σ 2

2 (76)

22(rti +rbi ) = θ1i +∑N
k=i λ1k

σ 2
1

∑N
k=i γk

(77)

Lemma 11 When the optimal total source power g(r∗
ti , r∗

bi )

increases, the energy buffer must be empty.

Proof: We will show that if g(rti , rbi ) < g(rt,i+1, rb,i+1) then
γi > 0. First, assume rb,i+1 > 0 which implies from (73) that
θ2,i+1 = 0. Then, from (76), g(rti , rbi ) < g(rt,i+1, rb,i+1) is
only possible if γi > 0. Next, assume rb,i+1 = 0 which implies
that rt,i+1 > 0 otherwise g(rt,i+1, rb,i+1) = 0 which cannot
be optimal. When rb,i+1 = 0, g(rti , rbi ) < g(rt,i+1, rb,i+1) is
equivalent to 22(rti +rbi ) < 22(rt,i+1+rb,i+1), and from (77) and
θ1,i+1 = 0, we must have γi > 0. �

Next, we show that the total source power cannot strictly
decrease over the slots.
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Lemma 12 The total source power must be non-decreasing, i.e.,
g(r∗

ti , r∗
bi ) ≤ g(r∗

t,i+1, r∗
b,i+1), ∀i .

Proof: We will prove this statement by contradiction.
Specifically, we assume a policy in which there is a slot k
such that g(r∗

tk, r∗
bk) > g(r∗

t,k+1, r∗
b,k+1). We will show that this

policy cannot be optimal. �
We first show that if g(rtk, rbk) > g(rt,k+1, rb,k+1) then

λ1k = λ2k = 0 cannot happen. First, assume rbk > 0 which
implies from (73) that θ2k = 0. Then, from (76), g(rtk, rbk) >

g(rt,k+1, rb,k+1) is only possible if λ2k > 0. Next, assume
rbk = 0 which implies that rtk > 0 otherwise g(rtk, rbk) =
0 which cannot be optimal. When rbk = 0, g(rtk, rbk) >

g(rt,k+1, rb,k+1) is equivalent to 22(rtk+rbk ) > 22(rt,k+1+rb,k+1),
and from (77) and θ1k = 0, we have λ1k > 0.

Now, for g(r∗
tk, r∗

bk) > g(r∗
t,k+1, r∗

b,k+1) to happen, we need
to have either r∗

tk > r∗
t,k+1, r∗

bk ≤ r∗
b,k+1 or r∗

bk > r∗
b,k+1, r∗

tk ≤
r∗

t,k+1 or r∗
tk > r∗

t,k+1, r∗
bk > r∗

b,k+1. We will examine these
cases separately.

Case 1: r∗
tk > r∗

t,k+1, r∗
bk ≤ r∗

b,k+1: We must have r∗
tk >

0 which implies θ1k = 0. In this case, for g(r∗
tk, r∗

bk) >

g(r∗
t,k+1, r∗

b,k+1), we must also have r∗
tk + r∗

bk > r∗
t,k+1 +

r∗
b,k+1. This implies from (77) that λ1k > 0 and

∑k
i=1 r̄∗

ti =∑k
i=1 r∗

ti . From the data causality constraints at the (k −
1)st slot and

∑k
i=1 r̄∗

ti = ∑k
i=1 r∗

ti , we must have r̄tk ≥ rtk .
Similarly, from data causality at the (k + 1)st slot and∑k

i=1 r̄∗
ti = ∑k

i=1 r∗
ti , we must have r̄t,k+1 ≤ rt,k+1. This

implies that we must have r̄tk ≥ rtk > rt,k+1 ≥ r̄t,k+1, thus
r̄tk > r̄t,k+1. Now, consider the following modified policy
for some δ > 0, r̂tk = r∗

tk − δ, r̂t,,k+1 = r∗
t,k+1 + δ, r̂tk = r̄∗

tk −
δ, r̂t,k+1 = r̄∗

t,k+1 + δ. Data causality constraints are trivially
satisfied. Energy causality at the top node can be satisfied by
letting P̂tk = p̄tk − ε and P̂t,k+1 = p̄t,k+1 + ε because there
exists ε > 0 such that r̄∗

tk ≤ f
(
( p̄tk − ε)/σ 2

3

)
and r̄∗

t,k+1 ≤
f
(
( p̄t,k+1 + ε)/σ 2

3

)
. Energy causality at the source node is sat-

isfied since at slot k we have g(r∗
tk − δ, r∗

bk) < g(r∗
tk, r∗

bk) and
at slot k + 1 we have g(r∗

tk − δ, r∗
bk) + g(r∗

t,k+1 + δ, r∗
b,k+1) <

g(r∗
tk, r∗

bk) + g(r∗
t,k+1, r∗

b,k+1) due to joint convexity of g(·, ·)
and r∗

tk + r∗
bk > r∗

t,k+1 + r∗
b,k+1. This means that the modified

policy is feasible, forwards the same amount of data, and con-
sumes strictly less energy than the original one. This additional
energy can be used to increase r∗

bk and r∗
tk which causes the

data buffers at the top and bottom relays to be non-empty. This
modified policy cannot be optimal because it does not satisfy
the fact that if g(rtk, rbk) strictly decreases in time, then both
λ1k and λ2k cannot be zero, as proved at the beginning above.
This also means the original policy cannot be optimal because
its throughput is equal to the throughput of a sub-optimal
policy.

Case 2: r∗
bk > r∗

b,k+1, r∗
tk ≤ r∗

t,k+1: We must have r∗
bk > 0,

therefore θ2k = 0. From λ2k > 0, we must have that the bot-
tom data buffer is empty, which implies

∑k
i=1 r̄∗

bi = ∑k
i=1 r∗

bi .
From this point on, the proof follows exactly as in Case 1 but
with modifications to r∗

bk, r̄∗
bk, p̄bk instead of to r∗

tk, r∗
tk, p̄tk , and

we conclude that this case cannot happen.
Case 3: r∗

bk > r∗
b,k+1, r∗

tk > r∗
t,k+1: This case follows the

same line of reasoning as the previous cases and by modifying
both r∗

tk, r∗
bk we reach the same conclusion.

To summarize, since none of the above cases can be true, we
have g(r∗

ti , r∗
bi ) ≤ g(r∗

t,i+1, r∗
b,i+1),∀i . �

We can always impose the constraint
∑N

i=1 g(r∗
ti , r∗

bi ) =∑N
i=1 Esi on the problem in (14) because this does not change

the optimal value. From Lemma 12, the total source power
must be non-decreasing, and from Lemma 11, the total source
power can only increase when the energy buffer is empty. The
source power policy that satisfies these properties is the unique
single-user optimal power policy [3], [5].

APPENDIX B
PROOF OF LEMMA 3

Assume (r∗
ti , r∗

bi ) solves the problem in (15). Carrying out a
similar analysis as in Appendix A, the KKT conditions are

−
N∑

k=i

λ1k + γkσ
2
1 22(rti +rbi ) − θ1i = 0 (78)

−
N∑

k=i

λ2k + γk(g(rti , rbi ) + σ 2
2 ) − θ2i = 0 (79)

where γk is the Lagrange multiplier for the constraint
g(rti , rbi ) ≤ Pi . Now, we examine the following optimization
problem for some μ1,μ2 ∈ R

N .

max
rti ,rbi ≥0

N∑
i=1

μ1i rti +
N∑

i=1

μ2i rbi (80)

s.t. g(rti , rbi ) ≤ Pi (81)

Since the constraint set depends only on the current slot i , this
problem is separable into N local optimization problems which
are given as

max
rti ,rbi ≥0

μ1i rti + μ2i rbi (82)

s.t. g(rti , rbi ) ≤ Pi (83)

The problem in (83) is convex and is solved in [7]. Following
[7, Eqn. (13)] the KKT conditions are

−μ1 + ηkσ
2
1 22(rti +rbi ) − ω1i = 0 (84)

−μ2 + ηk(g(rti , rbi ) + σ 2
2 ) − ω2i = 0 (85)

with the complementary slackness conditions as

ω1i rti = ω2i rbi = ηi (g(rti , rbi ) − Pi ) = 0, ∀i (86)

We require the same (r∗
ti , r∗

bi ) pair to solve both of these
problems. When r∗

ti = 0 we set μ1i = 0, otherwise from (78),

(84) we have μ1i = (
∑N

k=i λ1k)ηk/γk . Similarly, when r∗
bi =

0 we set μ2i = 0 otherwise from (79), (85) we have μ2i =
(
∑N

k=i λ2k)ηk/γk . Note that ηk, γk > 0 because the energy
causality constraints will always be satisfied with equality at
every slot. Now we define

μi � min

{
μ1i

μ2i
, 1

}
= min

{∑N
k=i λ1k∑N
k=i λ2k

, 1

}
(87)
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With this definition, the problems (81) and (16) are equivalent
and have the same solution as (15). This proves Lemma 3. We
observe from (87) that if μi > μi+1 then λ1k > 0 which implies
the top data buffer is empty. Similarly, if μi < μi+1 then
λ2k > 0 which implies the bottom data buffer is empty. This
proves Lemma 4.

APPENDIX C
PROOF OF LEMMA 5

Denote the feasible set and the optimal value of the problem
in (20) by (F1, T1) and that of the problem in (27) by (F2, T2).
First, we show T1 ≤ T2. For any ( p̄ti , p̄bi , r̄t i , r̄bi ) ∈ F1, from
(11) we have

p̄ti ≥ σ 2
3

(
22r̄t i − 1

)
, p̄bi ≥ σ 2

3

(
22r̄bi − 1

)
, (88)

p̄ti + p̄bi ≥ σ 2
3

(
22(r̄t i +r̄bi ) − 1

)
(89)

These constraints imply
k∑

i=1

p̄ti ≥ σ 2
3

(
k∑

i=1

22r̄t i − 1

)
, ∀k (90)

k∑
i=1

p̄bi ≥ σ 2
3

(
k∑

i=1

22r̄bi − 1

)
, ∀k (91)

k∑
i=1

p̄ti + p̄bi ≥ σ 2
3

(
k∑

i=1

22(r̄t i +r̄bi ) − 1

)
, ∀k (92)

Together with (5) and (6), (90)–(92) imply

σ 2
3

(
k∑

i=1

22r̄t i − 1

)
≤

k∑
i=1

Eti , ∀k (93)

σ 2
3

(
k∑

i=1

22r̄bi − 1

)
≤

k∑
i=1

Ebi , ∀k (94)

σ 2
3

(
k∑

i=1

22(r̄t i +r̄bi ) − 1

)
≤

k∑
i=1

Eti + Ebi , ∀k (95)

This means (r̄t i , r̄bi ) ∈ F2 and therefore T1 ≤ T2.
Now, we show T2 ≤ T1. For any (r̄t i , r̄bi ) ∈ F2, we will find

p̄ti , p̄bi such that ( p̄ti , p̄bi , r̄t i , r̄bi ) ∈ F1. To accomplish this,
we solve the feasibility problem

max
p̄ti , p̄bi

1

s.t. p̄ti ≥ σ 2
3

(
22r̄t i − 1

)
, ∀i

p̄bi ≥ σ 2
3

(
22r̄bi − 1

)
, ∀i

p̄ti + p̄bi ≥ σ 2
3

(
22(r̄t i +r̄bi ) − 1

)
, ∀i

k∑
i=1

p̄ti ≤
k∑

i=1

Eti ,

k∑
i=1

p̄bi ≤
k∑

i=1

Ebi , ∀k (96)

We can let p̄ti + p̄bi = σ 2
3

(
22(r̄t i +r̄bi ) − 1

)
,∀i without

changing the optimal value of the feasibility problem. Now, we
have the following set of inequalities to be satisfied:

p̄ti ≥ σ 2
3

(
22r̄t i − 1

)
, ∀i (97)

p̄ti ≤ σ 2
3

(
22(r̄t i +r̄bi ) − 22r̄bi

)
, ∀i (98)

k∑
i=1

p̄ti ≤
k∑

i=1

Eti , ∀k (99)

k∑
i=1

p̄ti ≥
k∑

i=1

[
σ 2

3

(
22(r̄t i +r̄bi ) − 1

)
− Ebi

]
, ∀k (100)

We note that this set of inequalities is consistent by showing
every lower bound is no larger than every upper bound. (97) is
consistent with (98) since 22(x+y) − 22y ≥ 22x − 1,∀x, y ≥ 0.
(97) is consistent with (99) since r̄t i satisfies (93). (98) is con-
sistent with (100) since r̄bi satisfies (94) and finally (99) is
consistent with (100) since r̄t i , r̄bi satisfy (95). We also have
p̄ti ≥ 0 which is consistent with both (98) and (99) since these
lower bounds are non-negative. This feasibility problem then
has a solution and there exists p̄ti , p̄bi that solve (96). This
means there exists ( p̄ti , p̄bi , r̄t i , r̄bi ) ∈ F1 and therefore T2 ≤
T1, proving the lemma.

APPENDIX D
PROOF OF LEMMA 7

The statement is true for k = N because the optimal value
of problem (28) is at least as large as that of (27) since
any profile that is feasible for (27) is also feasible for (28).
We will show that if the statement holds for slot k, i.e.,∑k

i=1 r̄∗
ti + r̄∗

bi ≤ ∑k
i=1 q∗

i , then it also holds for slot k − 1.
By induction this will imply that it is true for all k. Assume
on the contrary that

∑k−1
i=1 r̄∗

ti + r̄∗
bi >

∑k−1
i=1 q∗

i . Together with∑k
i=1 r̄∗

ti + r̄∗
bi ≤ ∑k

i=1 q∗
i , this implies r̄∗

tk + r̄∗
bk < q∗

k .

Now, we claim that we must have
∑k−1

i=1 22(r̄∗
ti +r̄∗

bi ) >∑k−1
i=1 22q∗

i . This is true because otherwise, up to slot k − 1,
the profile r̄∗

ti + r̄∗
bi sends more data than q∗

i and in view of
the energy constraints in (28) leads to a more relaxed feasible
set. This means that the profile q∗

i can be replaced with r̄∗
ti + r̄∗

bi
for slots 1 to k − 1 and for the remaining slots k, . . . , N more
data can be transmitted because there is more energy left.
This contradicts the optimality of q∗

i , therefore we must have∑k−1
i=1 22(r̄∗

ti +r̄∗
bi ) >

∑k−1
i=1 22q∗

i .

Note that this also means σ 2
3

(∑k−1
i=1 22q∗

i − 1
)

<∑k−1
i=1 Eti + Ebi because otherwise r̄∗

ti + r̄∗
bi cannot be energy

feasible. From the assumption, we have
∑k−1

i=1 r̄∗
ti + r̄∗

bi >∑k−1
i=1 q∗

i , which implies
∑k−1

i=1 q∗
i <

∑k−1
i=1 dti i + dbi because

otherwise r̄∗
ti + r̄∗

bi cannot be data feasible. These collectively
mean that slot k − 1 cannot be an energy or data exhaust-
ing slot for q∗

i and therefore q∗
k−1 = q∗

k . From this fact
and r̄∗

ti + r̄∗
bi is non-decreasing, we have r̄∗

t,k−1 + r̄∗
b,k−1 ≤

r̄∗
tk + r̄∗

bk < q∗
k = q∗

k−1 which implies r̄∗
t,k−1 + r̄∗

b,k−1 < q∗
k−1.

Together with
∑k−1

i=1 r̄∗
ti + r̄∗

bi >
∑k−1

i=1 q∗
i , this implies∑k−2

i=1 r̄∗
ti + r̄∗

bi >
∑k−2

i=1 q∗
i . Following the same reasoning as

before, we have that k − 2 is a non energy and data exhausting
slot for q∗

i and therefore q∗
k−2 = q∗

k−1. We apply the same
argument to reach the conclusion that q∗

1 = q∗
2 = · · · = q∗

k
and r̄∗

ti + r̄∗
bi < q∗

i ,∀i ≤ k. This contradicts the assumption∑k−1
i=1 r̄∗

ti + r̄∗
bi >

∑k−1
i=1 q∗

i .
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APPENDIX E
PROOF OF LEMMA 8

The proof follows from majorization theory. We know
that r̄∗

ti + r̄∗
bi and q∗

i are non-decreasing in i , so they are

ordered vectors. From Lemma 7, we have
∑l

i=1 r̄∗
ti + r̄∗

bi ≤∑l
i=1 q∗

i ∀l < k and if in addition we have
∑k

i=1 r̄∗
ti + r̄∗

bi =∑k
i=1 q∗

i , then the vector q∗
i is majorized by the vector r̄∗

ti + r̄∗
bi .

This means
∑k

i=1 g(r̄∗
ti + r̄∗

bi ) ≥ ∑k
i=1 g(q∗

i ) for any convex,
increasing g and in particular for g = 2x [38, Section I.3.C1B].

Furthermore, if we have σ 2
3

(∑k
i=1 22q∗

i − 1
)

= ∑k
i=1 Eti +

Ebi , then we have σ 2
3

(∑k
i=1 22(r̄∗

ti +r̄∗
bi ) − 1

)
≥ ∑k

i=1 Eti +
Ebi . From energy feasibility of r̄∗

ti + r̄∗
bi we also have

σ 2
3

(∑k
i=1 22(r̄∗

ti +r̄∗
bi ) − 1

)
≤ ∑k

i=1 Eti + Ebi . These two con-

straints are feasible if and only if σ 2
3

(∑k
i=1 22(r̄∗

ti +r̄∗
bi ) − 1

)
=∑k

i=1 Eti + Ebi = σ 2
3

(∑k
i=1 22q∗

i − 1
)

. From the strict con-

vexity of 2x and therefore strict Schur-convexity of
∑

2x we
must have r̄∗

ti + r̄∗
bi = q∗

i ,∀i ≤ k.

APPENDIX F
PROOF OF LEMMA 9

Similar to the discussion that follows [35, Section 6.1, Eq.
(1.1)] we have:

H(γ ) ≥
N∑

i=1

w∗
i (γ (l)) −

N∑
k=1

λ1k

(
k∑

i=1

r̄∗
ti (γ

l) −
k∑

i=1

r∗
ti (γ

l)

)

−
N∑

k=1

λ2k

(
k∑

i=1

r̄∗
bi (γ

l) −
k∑

i=1

r∗
bi (γ

l)

)

−
N∑

i=1

νi

(
w∗

i (γ (l)) − r̄∗
ti (γ

l) − r̄∗
bi (γ

l)
)

(101)

=
N∑

i=1

w∗
i (γ (l)) −

N∑
k=1

λl
1k

(
k∑

i=1

r̄∗
ti (γ

l) −
k∑

i=1

r∗
ti (γ

l)

)

−
N∑

k=1

λl
2k

(
k∑

i=1

r̄∗
bi (γ

l) −
k∑

i=1

r∗
bi (γ

l)

)

−
N∑

i=1

νi
l
(
w∗

i (γ (l)) − r̄∗
ti (γ

l) − r̄∗
bi (γ

l)
)

+
N∑

k=1

(λl
1k − λ1k)

(
k∑

i=1

r̄∗
ti (γ

l) −
k∑

i=1

r∗
ti (γ

l)

)

+
N∑

k=1

(λl
2k − λ2k)

(
k∑

i=1

r̄∗
bi (γ

l) −
k∑

i=1

r∗
bi (γ

l)

)

+
N∑

i=1

(νi
l − νi )

(
w∗

i (γ (l)) − r̄∗
ti (γ

l) − r̄∗
bi (γ

l)
)

(102)

=H(γ l) + vT(γ − γ l) (103)

where the inequality follows from the fact that
(r∗

ti (γ
l), r∗

bi (γ
l)) ∈ Rs so feasible for K1(γ ) but may not solve

K1(γ ), r̄∗
ti (γ

l) ∈ Rt but may not solve K2(γ ), r̄∗
bi (γ

l) ∈ Rb

but may not solve K3(γ ), and w∗
i (γ (l)) ∈ Rw but may not

solve K4(γ ). The expression for vT is given in the statement of
the lemma.
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