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Capacity of a Class of Diamond Channels
Wei Kang, Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—We study a special class of diamond channels which
was introduced by Schein in 2001. In this special class, each di-
amond channel consists of a transmitter, a noisy relay, a noiseless
relay and a receiver. We prove the capacity of this class of diamond
channels by providing an achievability scheme and a converse. The
capacity we show is strictly smaller than the cut-set bound. We note
that there exists a duality between this diamond channel coding
problem and the Kaspi-Berger source coding problem.

Index Terms—Diamond channel, multiple relay networks,
cut-set bound, source-channel coding duality.

I. PROBLEM STATEMENT AND THE RESULT

T HE diamond channel was first introduced by Schein in
2001 [1]. The diamond channel consists of one trans-

mitter, two relays and a receiver, where the transmitter and the
two relays form a broadcast channel as the first stage and the
two relays and the receiver form a multiple access channel as
the second stage. The diamond channel is a special case of the
multiple relay channel [2] with no direct link between the trans-
mitter and the receiver. The capacity of the diamond channel
in its most general form is open. Schein explored several
special cases of the diamond channel, one of which [1, Sect.
3.5] is specified as follows (see Fig. 1). The multiple access
channel consists of two orthogonal links with rate constraints

and , respectively. The broadcast channel contains a
noisy branch and a noiseless branch, i.e., with input and two
outputs and . We refer to the relay node receiving as
the noisy relay and the relay node receiving as the noiseless
relay. Schein provided two achievability schemes for this class
of diamond channels. In this paper, we will prove the capacity
of this special class of diamond channels.

The formal definition of the problem is as follows. Consider
a discrete channel with finite input alphabet and finite output
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Fig. 1. The diamond channel.

alphabet , which is characterized by the transition proba-
bility . Assume an -length block code consisting of

where

(1)

(2)

(3)

(4)

Here denotes the encoding function at the transmitter, and
denote the processing functions at the noisy and noiseless re-

lays, respectively, and denotes the decoding function at the
receiver.

The encoder sends into the channel, where
. The decoder reconstructs

. The average probability of error is de-
fined as

(5)

The rate triple is achievable if for every
and every sufficiently large , there exists an -length

block code , such that and

(6)

(7)

(8)

The following theorem characterizes the capacity of the class
of diamond channels considered in this paper.

Theorem 1: The rate triple is achievable in
the above channel if and only if the following conditions are
satisfied:

(9)
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Fig. 2. Rate region of �� �� � when ��� ��� �� � � � ��� �� � ���� ���.

(10)

(11)

(12)

for some joint distribution

(13)

with cardinalities of alphabets satisfying

(14)

(15)

The above theorem can be restated in the following form:

(16)

where the joint distribution satisfies (13) and cardinalities of
alphabets satisfy (14) and (15).

II. THE ACHIEVABILITY

Assume a given joint distribution

(17)

and consider that the information theoretic quantities on the
right-hand side (RHS) of (9), (10), (11), and (12) are evaluated
with this fixed joint probability distribution.

Consider a message with rate . If , re-
liable transmission can be achieved by letting be a con-
stant and , i.e., by sending the message through
the noiseless relay, because . Thus, we
will only consider the case where

(18)

We will show that the message can be reliably transmitted with
a pair of functions such that lies in the

inverse pentagon1 with corners and in Fig. 2. However, we
instead prove the reliable transmission with
lying in the inverse pentagon with corners and , which con-
tains the inverse pentagon with corners and and thus imposes
a stronger condition to prove.

By enlarging the achievable rate region for a given distri-
bution, we simplify the proof of the achievability, which can
be found in the sequel. However, it does not imply that we
can achieve any rate larger than the capacity given in Theorem
1. Any achievable rate region, say the union of the inverse
pentagon with corners and over all distributions, is outer
bounded by the converse region, which is the union of the
inverse pentagon with corners and over all distributions.
Thus, we conclude that even though for a given distribution the
inverse pentagon with corners and seems to be larger than
the inverse pentagon with corners and , after the union over
all distributions, the two regions coincide.

It is straightforward to have reliable transmission with the rate
pair at point by letting be a constant and .
Thus, it remains to prove that reliable transmission is possible
with the rate pair at point , i.e.

(19)

(20)

Let us assume that the message is decomposed as
. For a positive number , we have

(21)

(22)

(23)

1By “inverse pentagon” with corner points 	 and 
, we mean the region in the
�� �� � space that is to the “north-east” of line segment �	� 
�. More specifi-
cally, this is the region described by (10), (11), and (12).
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Random codebook generation: We use a superposition code
structure. The size of the inner code is . Conditioning on each
inner codeword, we independently generate many different
outer codebooks. The size of each outer codebook is . In
other words, there are cloud centers and satellite
codewords in each cloud. The detailed generation is as follows.

• Independently generate many sequences,
, according to

where , for .
• For , independently generate

many different codebooks, .
Each codebook is generated as follows.

• For the codebook
, independently generate many code-

words according
to , where

, for .
There will be no overlapping codebooks with high probability
when is sufficiently large, because

(24)

Encoding at the transmitter: Let be
the message. We send codeword

into the channel.
Processing at the noisy relay: First, from the received signal
, decode using joint typical decoding. The probability

of decoding error here will go to zero when (21) is satisfied.
Second, according to , construct a conditional
rate distortion code, which maps into conditioned on
with the codebook rate . Finally,
send and to the destination, i.e.

(25)

where

(26)

Processing at the noiseless relay: Let
where

(27)

Decoding: Decoder collects from the noisy relay.
Since , the decoder can obtain , the first part
of message , from . The decoder collects , the second
part of message , from the noiseless relay. With ,
the decoder determines that outer code codebook is
used at the transmitter. The decoder then decodes the codeword

from codebook via a joint typical
decoder, i.e.

(28)

The probability of error goes to zero when (23) is satisfied,
which concludes the proof of the achievability part.

III. THE CONVERSE

Define and . We note that

(29)

We have (30), shown at the bottom of the next page, where
1) Because of the following equality [3, Lemma 7]:

(31)

2) Due to Fano’s inequality.
3) is a deterministic function of . Due to the memoryless

property, we have

(32)

4) is a deterministic function of and is a deterministic
function of . Due to the memoryless property, we have

(33)

(34)

We have

(35)

where
1) Due to Fano’s inequality.

We have

(36)
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1) Due to Fano’s inequality.
2) is a deterministic function of
3) is a deterministic function of . Due to the memoryless

property, we have

(37)

(38)
We have

(39)

where
1) Due to Fano’s inequality.
2) Because of the following equality [3, Lemma 7]:

(40)

Define a time-sharing random variable , which is uniformly
distributed on . Also define a set of random vari-
ables such that

(41)

Define and . We note that
and , for an arbitrary

. Assume , then

(42)

(30)
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(43)

(44)

(45)

where (42), (43), (44), and (45) are the same as (9), (10), (11),
and (12), concluding the proof.

Finally, we note that the bounds on the cardinalities of the
alphabets in (14) and (15) can be proven in a way similar to [4,
Appendix D].

IV. REMARKS

We have two remarks regarding this result as follows.
First, the capacity is strictly smaller than the cut-set bound

[5]. Consider the following example. Let and be binary
and

(46)

where the sum is a modulo-2 sum and has a Bernoulli distri-
bution with entropy 0.5 bits. We assume bits.
The cut-set bound in this example is 1 bit, which is not achiev-
able. The reason is as follows. If we assume that the cut-set
bound is achievable, i.e., , then we have

(47)

This means that has to be independent of and . Also, we
have

(48)

This means that has to be independent of and if is
independent of and . However, if and are independent
of and , we arrive at the following contradiction:

(49)

which means that the cut-set bound is not achievable in this ex-
ample. We note that, even in this binary example where

, the cardinalities of the auxiliary random variables
and are and . These large cardinality bounds
make it practically impossible to evaluate the capacity of this
diamond channel. However, we note that, even though we were
not able to compute the exact value of the capacity in this ex-
ample, we were able to conclude that the capacity is strictly less
than the cut-set bound, which is 1 bit.

Fig. 3. Kaspi-Berger rate distortion problem.

Second, if we assume , then Theorem 1 can
be rewritten as follows:

(50)

(51)

(52)

(53)

for some joint distribution

(54)

We note that the RHS of (50), (51), (52), and (53) in addition to
the distribution constraint in (54) are the same as the rate region
of the rate-distortion problem studied by Kaspi and Berger as
shown in Fig. 3 [4, Th. 2.1, Case C].

This duality between our diamond channel coding problem
and the Kaspi-Berger source coding problem is similar to the
duality between the single-user channel coding problem and the
Slepian-Wolf source coding problem [6, Sect. 3.1] by viewing
the codebook information in the channel coding problem as
the information sent to all the terminals in the source coding
problem, e.g., the information with rate in Fig. 3. Thus, the
achievability of our diamond channel coding problem can be
obtained from the achievability of Kaspi-Berger source coding
problem, in the same way that the achievability of the multiple
access channel coding problem can be obtained from the achiev-
ability of fork network coding problem [6, Sect. 3.2].
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