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It is natural to consider extending our proof techniques to clients
with different degrees of adaptivity !. The major difficulty in extending
our techniques to a wider range of values for ! lies in the expressions
that arise when computing the value of the expected waiting time. For
smaller values of !, these expressions do not differ significantly from
those appearing in this work and an analysis of similar nature may be
performed. For larger values of !, one needs to take into consideration
that several packets may be transmitted in the time interval [t � !; t].
This work is a first step toward the design of worst case efficient sched-
ules. As a future research, it would be interesting to establish tight
bounds on the worst case expected waiting time for every value of !.
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The Capacity Region of a Class of Discrete Degraded
Interference Channels

Nan Liu, Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—We provide a single-letter characterization for the capacity re-
gion of a class of discrete degraded interference channels (DDICs). The
class of DDICs considered includes the DADIC studied by Benzel in 1979.
We show that for the class of DDICs studied, encoder cooperation does not
enlarge the capacity region, and therefore, the capacity region of the class
of DDICs is the same as the capacity region of the corresponding degraded
broadcast channel.

Index Terms—Capacity region, degradedness, interference channel.

I. INTRODUCTION

In wireless communications, where multiple transmitter and receiver
pairs share the same communication medium, interference is unavoid-
able. How to best manage interference coming from other users and
how not to cause too much interference to other users while maintaining
the quality of communication is a challenging question and of a great
deal of practical interest.

To be able to understand the effect of interference on communica-
tions better, an interference channel (IC) has been introduced in [2].
The IC is a simple network consisting of two pairs of transmitters and
receivers. Each pair wishes to communicate at a certain rate with negli-
gible probability of error. However, the two communications interfere
with each other. To best understand the management of interference,
we need to find the capacity region of the IC. However, the problem
of finding the capacity region of the IC is essentially open except in
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some special cases, e.g., a class of deterministic ICs [3], discrete addi-
tive degraded interference channels (DADICs) [1], strong ICs [4], [5],
ICs with statistically equivalent outputs [6]–[8].

In this correspondence, we consider a class of DDICs. In a DDIC,
only the “bad” receiver faces interference, while the “good” receiver
has the ability to decode both messages and thus, behaves like the re-
ceiver of a multiple-access channel. It is this fact that makes the DDIC
easier to analyze as compared to the IC, where both receivers are faced
with interference.

We provide a single-letter characterization for the capacity region of
a class of DDICs. This class of DDICs includes the DADICs studied by
Benzel [1]. We show that for the class of DDICs studied here, encoder
cooperation does not enlarge the capacity region, and therefore, the
capacity region of this class of DDICs is the same as the capacity region
of the corresponding degraded broadcast channel, which is known.

II. SYSTEM MODEL

A discrete memoryless IC consists of two transmitters and two re-
ceivers. Transmitter 1 has message W1 to send to receiver 1. Trans-
mitter 2 has message W2 to send to receiver 2. Messages W1 and W2

are independent. The channel consists of two input alphabets, X1 and
X2, and two output alphabets, Y1 and Y2. The channel transition prob-
ability is p(y1; y2jx1; x2).

In this correspondence, our definition of degradedness is in the sto-
chastic sense, i.e., we say that an IC is DDIC if there exists a probability
distribution p0(y2jy1) such that

p(y2jx1; x2) =
y 2Y

p(y1jx1; x2)p
0(y2jy1) (1)

for all x1 2 X1; x2 2 X2; and y2 2 Y2. However, we note that for any
DDIC, we can form another DDIC (physically degraded) by

p(y1; y2jx1; x2) = p(y1jx1; x2)p
0(y2jy1) (2)

which has the same marginals p(y1jx1; x2) and p(y2jx1; x2) as the
original DDIC. Since the receivers do not cooperate in an IC, similar
to the case of the broadcast channel [9, Problem 14.10], the capacity re-
gion is only a function of the marginals p(y1jx1; x2) and p(y2jx1; x2),
and the rate pairs in the capacity region can be achieved by the same
achievability scheme for different ICs with the same marginals. Hence,
the capacity results that we obtain for DDICs which satisfy (2) will
be valid for any DDIC that has the same marginals, p(y1jx1; x2) and
p(y2jx1; x2). Thus, without loss of generality, from now on, we may
restrict ourselves to studying DDICs that satisfy (2).

A DDIC is characterized by two transition probabilities: p0(y2jy1)
and p(y1jx1; x2). For notational convenience, let T 0 denote the jY2j�
jY1j matrix of transition probabilities p0(y2jy1), and T�x denote the
jY1j � jX1j matrix of transition probabilities p(y1jx1; �x2), for each
�x2 2 X2.

Throughout the correspondence, �n will denote the probability
simplex

(p1; p2; . . . ; pn)

n

i=1

pi = 1; pi � 0; i = 1; 2; . . . ; n (3)

and Jn will denote the representation of the symmetric group of per-
mutations of n objects by the n � n permutation matrices.

The definition of an input symmetric channel, which will be used
later on, is given in [10, Sec. II-D]. For completeness, we repeat it here.
For an m�n stochastic matrix T 0 (an n input, m output channel), the
input symmetry group G is defined as

G = fG 2 Jn : 9� 2 Jm; T
0
G = �T 0g (4)

i.e., G is the set of permutation matrices G such that the column per-
mutations of T 0 with G may be achieved with corresponding row per-
mutations. T 0 is input symmetric, if G is transitive, i.e., any element of
f1; 2; . . . ; ng can be mapped to every other element of f1; 2; . . . ; ng
by some member of G.

The class of DDICs we consider in this paper satisfies the following
conditions.

1. T 0 is input symmetric. Let the input symmetry group be G.
2. For any x02; x

00
2 2 X2, there exists a permutation matrix G 2 G,

such that

Tx = GT
x

(5)

3. H(Y1jX1 = x1; X2 = x2) = �, independent of x1; x2.
4. p(y1jx1; x2) satisfies

x

p(y1jx1; x2) =
jX2j

jY1j
; x1 2 X1; y1 2 Y1: (6)

5. Let pppx ;x be the jY1j-dimensional vector of probabilities
p(y1jx1; x2) for a given x1; x2. Then, there exists an ~x2 2 X2,
such that

x ;x

ax ;x pppx ;x :
x ;x

ax ;x = 1; ax ;x � 0

� G

x

bx pppx ;~x :
x

bx = 1; bx � 0; G 2 G (7)

Examples of DDICs that satisfy Conditions 1–5 are given in Sec-
tion VI.

Channel T 0 being input symmetric means that the output entropy of
channel T 0 is maximized when the input distribution is chosen to be
the uniform distribution, i.e.,

max
ppp2�

H(T 0ppp) = H(T 0uuu) (8)

where uuu denotes the uniform distribution in �n. This is because, for
any ppp 2 �n, if we let qqq = jGj�1

G2G
Gppp, then we have

H(T 0qqq) = H jGj�1

G2G

T
0
Gppp (9)

= H jGj�1

G2G

�GT
0
ppp (10)

� jGj�1

G2G

H(�GT
0
ppp) (11)

= H(T 0ppp) (12)

where (10) follows from the fact that G 2 G, and (11) follows from the
concavity of the entropy function. Note that for any G0 2 G

G
0
qqq = qqq (13)

by the fact that G is a group. Since G is also transitive, qqq = uuu.
Condition 2 implies that for any p(x1); H(Y1jX2 = x2) does not

depend on x2. Combined with Condition 1, Condition 2 further implies
that H(Y2jX2 = x2) does not depend on x2 either. These two facts
will be proved and utilized later.

A sufficient condition for Condition 3 to hold is that the vectors
p(y1jX1 = x1; X2 = x2) for all (x1; x2) 2 X1 � X2 are permu-
tations of each other. This is true for instance when the channel from
X1 and X2 to Y1 is additive [1].
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By Condition 4, we can show that when X2 takes the uniform dis-
tribution, Y1 will also be uniformly distributed. Combined with Condi-
tion 1, Condition 4 implies that whenX2 takes the uniform distribution,
H(Y2) is maximized, irrespective of p(x1).

In Condition 5, the first line of (7) denotes the set of all convex com-
binations of vectors pppx ;x for all (x1; x2) 2 X1 � X2, while the
second line denotes all convex combinations, and their permutations
withG 2 G, of vectors pppx ;~x for all x1 2 X1, but for a fixed ~x2 2 X2.
Therefore, this condition means that all convex combinations of pppx ;x

may be obtained by a combination of convex combinations of pppx ;~x

for a fixed ~x2, and permutations in G.
The DADICs considered in [1] satisfy Conditions 1–5, as we will

show in Section VI-A.
The aim of this correspondence is to provide a single-letter charac-

terization for the capacity region of DDICs that satisfy Conditions 1–5.
Rather than following the proof technique of [1], we use a time-sharing
random variable in the achievable region in place of the convex-hull op-
eration and obtain a somewhat simpler proof.

III. AN OUTER BOUND

When we assume that the encoders are able to fully cooperate,
i.e., both encoders know both messages W1 and W2, we get a cor-
responding degraded broadcast channel with input x = (x1; x2).
The capacity region of the corresponding degraded broadcast channel
serves as an outer bound on the capacity region of the DDIC. The
capacity region of the degraded broadcast channel is known [9], [11],
[12], and thus, a single-letter outer bound on the capacity region of the
DDIC is

p(u);p(x ;x ju)

f(R1; R2) : R1�I(X1;X2;Y1jU); R2�I(U ; Y2)g

(14)

where the auxiliary random variable U satisfies the Markov chain
U �! (X1;X2) �! (Y1; Y2), and its cardinality is bounded by
jUj � min(jY1j; jY2j; jX1jjX2j). More specifically, for DDICs that
satisfy Condition 3, (14) can be written as

p(u);p(x ;x ju)

(R1; R2) : R1 � H(Y1jU)� �; R2 � I(U ;Y2) :

(15)
Let us define � as

� = max
ppp2�

H(T 0
ppp) (16)

which is the maximum entropy of Y2 over all possible distributions of
Y1. Then, the following region is a further upper bound on the capacity
region of the DDIC:

p(u);p(x ;x ju)

(R1; R2) : R1 � H(Y1jU)� �

R2 � � �H(Y2jU) (17)

which, for later purposes, is rewritten as

p (u);p(x ;x ju)

(R1; R2) : R1 �
u2U

pU (u)H(Y1jU = u)� �

R2 � � �
u2U

pU (u)H(Y2jU = u) :

(18)

IV. AN ACHIEVABLE REGION

Based on [7, Theorem 4], the following region is achievable:

co
p(x );p(x )

f(R1; R2) : R1 � I(X1;Y1jX2)

R2 � I(X2;Y2)g (19)

where co denotes the closure of the convex hull operation. This achiev-
able region corresponds to the achievability scheme that the “bad” re-
ceiver treats the signal for the “good” receiver as pure noise, and the
“good” receiver decodes both messages as if it is the receiver in a mul-
tiple-access channel.

A time-sharing random variable may be used in place of the closure
of the convex-hull operation [9, Sec. 14.3], and thus we may write the
region in (19) as

p(q);p(x jq);p(x jq)

f(R1;R2) : R1 � I(X1;Y1jX2; Q)

R2 � I(X2;Y2jQ)g (20)

where the mutual informations are calculated according to the distri-
bution

p(q)p(x1jq)p(x2jq)p(y1jx1; x2)p
0(y2jy1) (21)

where Q is a time-sharing random variable. Random variable Q may
take values from any arbitrary set, denoted as Q. For calculation pur-
poses, without of loss of generality, we may restrict jQj to jQj � 2
[13]. For DDICs that satisfy Condition 3, (20) reduces to

p(q);p(x jq);p(x jq)

f(R1;R2) : R1 � H(Y1jX2; Q)� �

R2 � H(Y2jQ)�H(Y2jX2; Q)g: (22)

We note that (22) remains an achievable region if we choose p(x2jq)
to be the uniform distribution, for all q. Furthermore, for this choice of
p(x2jq), we have

p(y1jq) =
x ;x

p(y1jx1; x2)p(x1jq)
1

jX2j
(23)

=
1

jX2j
x

p(x1jq)
x

p(y1jx1; x2) (24)

=
1

jY1j
(25)

where (25) uses Condition 4. Thus, when p(x2jq) is chosen as the uni-
form distribution independent of q; p(y1jq) results in a uniform distri-
bution as well, for all q 2 Q. With � defined as in (16), using the fact
that the DDIC under consideration satisfies Condition 1, i.e., it satis-
fies (8), we have that when p(x2jq) is uniform, independent of q, and
consequently p(y1jq) is uniform, independent of q

H(Y2jQ = q) = � (26)

which means

H(Y2jQ) =
q2Q

H(Y2jQ = q)p(q) = �: (27)
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Hence, choosing p(x2jq) to be the uniform distribution, independent
of q, in (22), yields the following as an achievable region:

p(q);p(x jq)

(R1; R2) : R1�
1

jX2j
x ;q

p(q)H(Y1jX2 = x2; Q=q)��

R2���
1

jX2j
x ;q

p(q)H(Y2jX2=x2; Q=q)

(28)

Due to Condition 2, for any q, any p(x1jq) = pppq , and any x02; x2
00 2

X2, there exists a permutation matrix G 2 G such that

H(Y1jX2 = x
0
2; Q = q) = H Tx ppp

q (29)

= H GTx ppp
q (30)

= H Tx ppp
q (31)

= H Y1jX2 = x
00
2 ; Q = q (32)

which means that for any q and p(x1jq); H(Y1jX2 = x2; Q = q) does
not depend on x2. Furthermore, for any q, any p(x1jq) = pppq , and any
x02; x

00
2 2 X2, there exist permutation matrices G 2 G and �, of order

jY1j and jY2j, respectively, such that

H(Y2jX2 = x
0
2; Q = q) = H T

0
Tx ppp

q (33)

= H T
0
GTx ppp

q (34)

= H �T 0
Tx ppp

q (35)

= H T
0
Tx ppp

q (36)

= H Y2jX2 = x
00
2 ; Q = q (37)

where (35) follows from the fact that G 2 G. Equation (37) means that
for any q and p(x1jq); H(Y2jX2 = x2; Q = q) does not depend on
x2 either. Hence, the achievable region in (28) can further be written as

p(q);p(x jq)

(R1; R2) : R1 �
q

p(q)H(Y1jX2 = x2; Q = q)� �

R2 � � �
q

p(q)H(Y2jX2 = x2; Q = q)

(38)

for any x2 2 X2. Since we will use Condition 5 later, we choose to
write the region in (38) as

p (q);p (x jq)

(R1; R2) : R1�
q

pQ(q)H(Y1jX2=~x2; Q=q)��

R2���
q

pQ(q)H(Y2jX2=~x2; Q=q)

(39)

where ~x2 is given in Condition 5.

V. THE CAPACITY REGION

In this section, we show that the achievable region in (39) contains
the outer bound in (18), and thus, (18) and (39) are both, in fact, single-
letter characterizations of the capacity region of DDICs satisfying Con-
ditions 1–5.

To show (39) contains (18), it is sufficient to show that for any pU (u)
and p(x1; x2ju), the region

(R1; R2) : R1 �
u2U

pU (u)H(Y1jU = u)� �

R2 � � �
u2U

pU (u)H(Y2jU = u) (40)

is the same as the region

(R1; R2) : R1 �
q2Q

pQ(q)H(Y1jX2 = ~x2; Q = q)� �

R2 � � �
q2Q

pQ(q)H(Y2jX2 = ~x2; Q = q) (41)

for some pQ(q) and pX jQ(x1jq). More specifically, it suffices to show
that for any distribution pU(u) and p(x1; x2ju), and picking Q = U
and pQ(u) = pU (u) for all u 2 U , there exists some pX jQ(x1ju),
which we will call p0(x1ju), such that

H(Y1jU = u) = H(Y1jX2 = ~x2; Q = q) (42)

H(Y2jU = u) = H(Y2jX2 = ~x2; Q = q) (43)

for all u 2 U , where the entropies on the left-hand side of (42) and
(43) are the quantities in region (40), evaluated with the marginals of
the joint distribution

pU (u)p(x1; x2ju)p(y1jx1; x2)p
0(y2jy1) (44)

and the entropies on the right-hand side of (42) and (43) are the quanti-
ties in region (41), evaluated with the marginals of the joint distribution

pU(u)p0(x1ju)p(y1jx1;X2 = ~x2)p
0(y2jy1): (45)

Using Condition 5, for each u 2 U , there exists a pu(x1) = pppu and
a permutation matrix Gu 2 G, such that

x ;x

p(x1; x2jU = u)pppx ;x = G
u
T~x ppp

u
: (46)

By choosing p0(x1ju) = pppu, we have

H(Y1jU = u) = H (Gu
T~x ppp

u) = H (T~x ppp
u)

= H(Y1jX2 = ~x2; Q = u) (47)

and we also have

H(Y2jU = u) = H T
0
G
u
T~x ppp

u (48)

= H �u
T
0
T~x ppp

u (49)

= H T
0
T~x ppp

u (50)

= H(Y2jX2 = ~x2; Q = u) (51)

for all u 2 U , where (47) and (48) follow from (46), and (49) is due to
the fact that G 2 G. Hence, based on (47) and (51), we conclude that
for any pU(u) and p(x1; x2ju), there exists a pppu for each u 2 U , such
that by choosingQ = U ; pQ(u) = pU(u) and pX jQ(x1ju) = pppu, the
regions (40) and (41) are the same. Thus, we have proved that region
(39) contains region (18).

Therefore, we conclude that the single-letter characterization of the
capacity region of DDICs satisfying Conditions 1–5 is (39) and (18).
Furthermore, we note that for these DDICs, encoder cooperation cannot
enlarge the capacity region.
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VI. EXAMPLES

In this section, we will provide three examples of DDICs for which
Conditions 1–5 are satisfied. The first example is the channel model
adopted in [1], for which the capacity region is already known. In the
second and third examples, the capacity regions were previously un-
known, and using the results of this correspondence, we are able to
determine the capacity regions.

A. Example 1

A DADIC is defined as [1]

Y1 = X1 �X2 � V1 (52)

Y2 = X1 �X2 � V1 � V2 (53)

where

X1 = X2 = Y1 = Y2 = S = f0; 1; . . . ; s� 1g (54)

and � denotes modulo-s sum, and V1 and V2 are independent noise
random variables defined over S with distributions

pppi = (pi(0); pi(1); . . . ; pi(s� 1)); i = 1; 2: (55)

Since Y2 = Y1 � V2, matrix T 0 is circulant, and thus input symmetric
[10, Sec. II-D]. Hence, Condition 1 is satisfied. It is straightforward
to check that Conditions 2–5 are also satisfied. For example, when
s = 3, we have

T 0 =

p2(0) p2(2) p2(1)

p2(1) p2(0) p2(2)

p2(2) p2(1) p2(0)

(56)

and the input symmetry group for T 0 is

G= G0 =

1 0 0

0 1 0

0 0 1

; G1=

0 0 1

1 0 0

0 1 0

; G2=

0 1 0

0 0 1

1 0 0

(57)

which is transitive, i.e., 1
G
�! 2; 1

G
�! 3; 2

G
�! 1; 2

G
�! 3; 3

G
�! 1;

3
G
�! 2. From (52)

T0 =

p1(0) p1(2) p1(1)

p1(1) p1(0) p1(2)

p1(2) p1(1) p1(0)

T1 =

p1(2) p1(1) p1(0)

p1(0) p1(2) p1(1)

p1(1) p1(0) p1(2)

T2 =

p1(1) p1(0) p1(2)

p1(2) p1(1) p1(0)

p1(0) p1(2) p1(1)

: (58)

Conditions 2–4 are satisfied because

T1 = G1T0; T2 = G2T0 (59)

� = H(V1) (60)

x

p(y1jx1; x2) = p1(0) + p1(1) + p1(2) = 1: (61)

Next, we check Condition 5.

x ;x

ax ;x pppx ;x :
x ;x

ax ;x = 1; ax ;x � 0 (62)

= a

p1(0)

p1(1)

p1(2)

+ b

p1(2)

p1(0)

p1(1)

+c

p1(1)

p1(2)

p1(0)

: a+ b+ c = 1; a; b; c � 0 (63)

because even though (62) is a convex combination of nine vectors, due
to vectors repeating themselves in the columns of T0; T1; and T2, the
set, in fact, consists of convex combinations of only three vectors. On
the other hand, for ~x2 = 0

G
x

bx pppx ;~x :
x

bx = 1; bx � 0; G = G0 (64)

= a

p1(0)

p1(1)

p1(2)

+ b

p1(2)

p1(0)

p1(1)

+c

p1(1)

p1(2)

p1(0)

: a+ b+ c = 1; a; b; c � 0 (65)

because (64) is the convex combinations of the columns of T0, with the
unitary permutation. Thus

x ;x

ax ;x pppx ;x :
x ;x

ax ;x = 1; ax ;x � 0

= G
x

bx pppx ;~x :
x

bx = 1; bx � 0; G = G0 (66)

� G
x

bx pppx ;~x :
x

bx = 1; bx � 0; G 2 G (67)

and Condition 5 is satisfied.

B. Example 2

Next, we consider the following DDIC. We have jX1j = jX2j =
jY1j = 2; jY2j = 3, and p(y1jx1; x2) is characterized by

Y1 = X1 �X2 � V1 (68)

where V1 is Bernoulli with p: p0(y2jy1) is an erasure channel with
parameter 0 � � � 1, i.e., the transition probability matrix is

T 0 =

1� � 0

� �

0 1� �

: (69)

Thus, the channel is such that the “bad” receiver cannot receive all the
bits that the “good” receiver receives. More specifically, � proportion
of the time, whether the bit is a 0 or 1 is unrecognizable, and thus
denoted as an erasure e.

It is easy to see that T 0 is input symmetric because the input sym-
metry group

G =
1 0

0 1
;

0 1

1 0
(70)

is transitive. Conditions 2–5 are satisfied because p(y1jx1; x2) is the
same as in Example 1 in Section VI-A.

C. Example 3

Let a; b; c; d; e; f be nonnegative numbers such that a + b+ c = 1
and d + e + f = 1=2. We have jX1j = 4; jX2j = jY1j = 3, and
jY2j = 6. The DDIC is described as

T 0 =

d e f

e f d

d f e

f e d

e d f

f d e

; T0 =

a b c c

b c a b

c a b a

;

T1 =

c a b a

a b c c

b c a b

; T2 =

b c a b

c a b a

a b c c

: (71)
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Fig. 1. Explanation of Condition 5 in Example 3.

It is straightforward to see that T 0 is input symmetric because the input
symmetry group

G = G0 =

1 0 0

0 1 0

0 0 1

; G1 =

0 0 1

1 0 0

0 1 0

;

G2 =

0 1 0

0 0 1

1 0 0

; G3 =

1 0 0

0 0 1

0 1 0

;

G4 =

0 1 0

1 0 0

0 0 1

; G5 =

0 0 1

0 1 0

1 0 0

(72)

is transitive. Conditions 2–4 are satisfied because

T1 = G1T0; T2 = G2T0 (73)

� = �a log a� b log b� c log c (74)

x

p(y1jx1; x2) = a+ b+ c = 1: (75)

To show Condition 5, we use Fig. 1. The set on the first line of (7) in
Condition 5 is the convex combination of the following six points:

a

b

c

;

a

c

b

;

c

a

b

;

b

a

c

;

b

c

a

;

c

b

a

(76)

resulting in all the points within the hexagon in Fig. 1. The three sets

G

x

bx pppx ;~x :
x

bx = 1; bx � 0; G = G0

= �1

a

b

c

+ �2

b

c

a

+ �3

c

a

b

+�4

c

b

a

:

4

i=1

�i = 1; �i � 0 (77)

and

G

x

bx pppx ;~x :
x

bx = 1; bx � 0; G = G1

= �1

c

a

b

+ �2

a

b

c

+ �3

b

c

a

+�4

a

c

b

:

4

i=1

�i = 1; �i � 0 (78)

and

G

x

bx pppx ;~x :
x

bx = 1; bx � 0; G = G2

= �1

b

c

a

+ �2

c

a

b

+ �3

a

b

c

+�4

b

a

c

:

4

i=1

�i = 1; �i � 0 (79)

correspond to the points in the three shaded areas,

[abc; cba; bca; cab]; [acb; abc; bca; cab]; and [bac; cab; abc; bca]

respectively. Since the three shaded areas cover the entire hexagon, and
fG0; G1; G2g � G, Condition 5 is satisfied.

VII. CONCLUSION

We provided a single-letter characterization for the capacity region
of a class of DDICs, which is more general than the class of DADICs
studied by Benzel [1]. We showed that for the class of DDICs studied,
encoder cooperation does not enlarge the capacity region, and the best
way to manage the interference is through random codebook design
and treating the signal intended for the “good” receiver as pure noise
at the “bad” receiver.
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An Algorithm to Compute the Nearest Point
in the Lattice

Robby G. McKilliam, Student Member, IEEE,
I. Vaughan L. Clarkson, Senior Member, IEEE, and

Barry G. Quinn

Abstract—The lattice A is an important lattice because of its covering
properties in low dimensions. Clarkson described an algorithm to compute
the nearest lattice point in A that requires O(n logn) arithmetic opera-
tions. In this correspondence, we describe a new algorithm. While the com-
plexity is still O(n logn), it is significantly simpler to describe and verify.
In practice, we find that the new algorithm also runs faster.

Index Terms—Channel coding, direction-of-arrival estimation, fre-
quency estimation, lattice theory, nearest point algorithm, quantization,
synchronization.

I. INTRODUCTION

The study of point lattices is of great importance in several areas
of number theory, particularly the studies of quadratic forms, the ge-
ometry of numbers, and simultaneous Diophantine approximation, and
also to the practical engineering problems of quantization and channel
coding. They are also important in studying the sphere packing problem
and the kissing number problem [1], [2].

A lattice, L, is a set of points in n such that

L = fxxx 2 njxxx = BwBwBw;www 2 ng

where BBB is termed the generator matrix.
The lattice A�

n
is an interesting lattice due to its covering proper-

ties in low dimensions. It gives the thinnest covering in all dimensions
up to 8 [2]. A�

n
has also found application in a number of estimation

problems including period estimation from sparse timing data [3], fre-
quency estimation [4], and direction of arrival estimation [5].

The nearest lattice point problem is as follows. Given yyy 2 n and
some lattice L whose lattice points lie in n, find the lattice point xxx 2
L such that the Euclidean distance between yyy and xxx is minimized. If
the lattice is used for vector quantization then the nearest lattice point
corresponds to the minimum distortion point. If the lattice is used as a
code for a Gaussian channel, then the nearest lattice point corresponds
to maximum-likelihood decoding [6].

Conway and Sloane [6] appear to have been the first to study the
problem of computing the nearest lattice point inA�

n
. By decomposing

A�

n
into a union of translations of its dual lattice An, they discovered

an algorithm for computing the nearest lattice point to a given point in
O(n2 logn) arithmetic operations. Later [7], they were able to improve
the execution time of the algorithm to O(n2) operations.

Manuscript received January 6, 2008; revised April 8, 2008. Published Au-
gust 27, 2008 (projected). The work of R. G. McKilliam is supported in part by
a scholarship from the Wireless Technologies Laboratory, CSIRO ICT Centre,
Sydney, Australia.

R. G. McKilliam and I. V. L. Clarkson are with the School of Information
Technologyand Electrical Engineering, The Universityof Queensland, Brisbane,
Qld., 4072, Australia (e-mail: robertm@itee.uq.edu.au; v.clarkson@uq.edu.au).

B. G. Quinn is with the Department of Statistics, Macquarie University,
Sydney, NSW 2109, Australia (e-mail: bquinn@efs.mq.edu.au).

Communicated by E. Viterbo, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2008.928280

0018-9448/$25.00 © 2008 IEEE


