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Abstract—We study the degraded compound multi-receiver
wiretap channel (DCMRWC). DCMRWC consists of two groups
of users and a group of eavesdroppers, where, if we pick an arbi-
trary user from each group of users and an arbitrary eavesdropper,
they satisfy a certain Markov chain. We study two different com-
munication scenarios for this channel. In the first scenario, the
transmitter wants to send a confidential message to users in the
first (stronger) group and a different confidential message to users
in the second (weaker) group, where both messages need to be
kept confidential from the eavesdroppers. For this scenario, we
assume that there is only one eavesdropper. We obtain the secrecy
capacity region for the discrete memoryless channel model, the
parallel channel model, and the Gaussian parallel channel model.
For the Gaussian multiple-input multiple-output (MIMO) channel
model, we obtain the secrecy capacity region when there is only
one user in the second group. In the second scenario we study,
the transmitter sends a confidential message to users in the first
group which needs to be kept confidential from the second group
of users and the eavesdroppers. Moreover, the transmitter sends
a different confidential message to users in the second group
which needs to be kept confidential only from the eavesdroppers.
For this scenario, we do not put any restriction on the number
of eavesdroppers. As in the first scenario, we obtain the secrecy
capacity region for the discrete memoryless channel model, the
parallel channel model, and the Gaussian parallel channel model.
For the Gaussian MIMO channel model, we establish the secrecy
capacity region when there is only one user in the second group.

Index Terms—Compound wiretap channels, Gaussian multiple-
input multiple-output (MIMO) compound wiretap channels, se-
crecy capacity region.

I. INTRODUCTION

I NFORMATION-theoretic secrecy was initiated by Wyner
in his seminal work [1], where he considered the degraded

wiretap channel and established the capacity-equivocation rate
region of this degraded channel model. Later, Csiszar and Ko-
rner generalized his result to arbitrary, not necessarily degraded,
wiretap channels in [2]. In recent years, multiuser versions of
the wiretap channel have attracted a considerable amount of re-
search interest (see references [3]–[21] in [3]). Among all these
extensions, two natural extensions of the wiretap channel to the
multiuser setting are particularly of interest here: secure broad-
casting and compound wiretap channels.
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Secure broadcasting refers to the situation where a trans-
mitter wants to communicate with several legitimate receivers
confidentially in the presence of an external eavesdropper. We
call this channel model the multi-receiver wiretap channel.
Since the underlying channel model without an eavesdropper
is the broadcast channel, which is not understood to the full
extent even for the two-user case, most works on secure broad-
casting have focused on some special classes of multi-receiver
wiretap channels, where these classes are identified by certain
degradation orders [4]–[9]. In particular, in [5]–[8], the authors
consider the degraded multi-receiver wiretap channel, where
observations of all users and the eavesdropper satisfy a certain
Markov chain. In [5] and [6], the secrecy capacity region is
derived for the two-user case, and in [7] and [8], the secrecy
capacity region is established for an arbitrary number of legiti-
mate users. The importance of this result lies in the fact that the
Gaussian multi-receiver wiretap channel belongs to this class,
and the secrecy capacity region of the degraded multi-receiver
wiretap channel serves as a crucial step in establishing the
secrecy capacity region of the Gaussian multiple-input mul-
tiple-output (MIMO) multi-receiver wiretap channel [3], [10],
though the latter channel is not necessarily degraded. In [3],
besides proving the secrecy capacity region of the Gaussian
MIMO multi-receiver wiretap channel, we also present new
optimization results regarding extremal properties of Gaussian
random vectors, which we generalize here.

Another extension of the wiretap channel that we are par-
ticularly interested in here is the compound wiretap channel.
In compound wiretap channels, there are a finite number of
channel states determining the channel transition probability.
The channel takes a certain fixed state for the entire duration
of the transmission, and the transmitter does not have any
knowledge about the channel state realization. Thus, the aim of
the transmitter is to ensure the secrecy of messages irrespective
of the channel state realization. In addition to this definition, the
compound wiretap channel admits another interpretation. Con-
sider the multi-receiver wiretap channel with several legitimate
users and many eavesdroppers, where the transmitter wants to
transmit a common confidential message to legitimate users
while keeping all of the eavesdroppers totally ignorant of the
message. Since each eavesdropper and legitimate user pair can
be regarded as a different channel state realization, this channel
is equivalent to a compound wiretap channel. Therefore, one
can interpret a compound wiretap channel as multicasting a
common confidential message to several legitimate receivers in
the presence of one or more eavesdroppers [11]. In this study,
we mostly refer to this interpretation, which is also the reason
why we classify the compound wiretap channel as an extension
of the wiretap channel to a multiuser setting.

Keeping this interpretation in mind, first works about the
compound wiretap channel are due to Yamamoto [12], [13].
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Yamamoto [12], [13] considers the parallel wiretap channel
with two subchannels where each subchannel is wiretapped by a
different eavesdropper. [12] and [13] establish capacity-equiv-
ocation rate region for the situation where in each subchannel,
the legitimate receiver is less noisy with respect to the eaves-
dropper of this subchannel. Other works which implicitly
study the compound wiretap channel are [4], [7]–[9], and [14],
where works [4], [7], and [8] consider the transmission of a
common confidential message to many legitimate receivers in
the presence of a single eavesdropper, work in [9] focuses on
two legitimate receivers one eavesdropper and one legitimate
receiver two eavesdroppers scenarios, and [14] studies the
fading wiretap channel with many receivers. Liang et al. [11]
consider the general discrete compound wiretap channel and
provides inner and outer bounds for the secrecy capacity. In
addition to these inner and outer bounds, [11] also establishes
the secrecy capacity of the degraded compound wiretap channel
as well as its degraded Gaussian MIMO instance. Another work
on the compound wiretap channel is [15] where the secrecy
capacity of a class of nondegraded Gaussian parallel compound
wiretap channels is established.

In this paper, we consider compound broadcast channels from
a secrecy point of view, which enables us to study the secure
broadcasting problem over compound channels. We note that
the current literature regarding the compound wiretap channel
considers the transmission of only one confidential message,
whereas here, we study the transmission of multiple confiden-
tial messages, where each of these messages needs to be deliv-
ered to a different group of users in perfect secrecy. Hereafter,
we call this channel model the compound multi-receiver wiretap
channel to emphasize the presence of more than one confiden-
tial message. The compound multi-receiver wiretap channel we
study here consists of two groups of users and a group of eaves-
droppers, as shown in Fig. 1. We focus on a special class of
compound multi-receiver wiretap channels which exhibits a cer-
tain degradation order. If we consider an arbitrary user from
each group and an arbitrary eavesdropper, they satisfy a cer-
tain Markov chain. In particular, we assume that there exist
two fictitious users. The first fictitious user is degraded with re-
spect to any user from the first group, and any user from the
second group is degraded with respect to the first fictitious user.
There exists a similar degradedness structure for the second
fictitious user in the sense that it is degraded with respect to
any user from the second group, and any eavesdropper is de-
graded with respect to it. Without eavesdroppers, this channel
model reduces to the degraded compound broadcast channel
studied in [16]. Adapting their terminology, we call our channel
model the degraded compound multi-receiver wiretap channel
(DCMRWC). Here, we consider the general discrete memory-
less version of DCMRWC as well as its specializations to the
parallel DCMRWC, the Gaussian parallel DCMRWC, and the
Gaussian MIMO DCMRWC. We study two different communi-
cation scenarios for each version of DCMRWC.

In the first scenario, which is illustrated in Fig. 2, the trans-
mitter wants to send a confidential message to users in the
first group, and a different confidential message to users in the
second group, where both messages need to be kept confidential
from the eavesdroppers. For this scenario, we assume that there

Fig. 1. DCMRWC.

Fig. 2. First scenario for the DCMRWC.

Fig. 3. Second scenario for the DCMRWC.

exists only one eavesdropper and obtain the secrecy capacity
region in a single-letter form. While obtaining this result, the
presence of the fictitious user between the two groups of users
plays a crucial role in the converse proof by providing a con-
ditional independence structure in the channel, which enables
us to define an auxiliary random variable that yields a tight
outer bound. After establishing single-letter expressions for the
secrecy capacity region, we consider the parallel DCMRWC.
For the parallel DCMRWC, we obtain the secrecy capacity re-
gion in a single-letter form as well. Though the general discrete
memoryless DCMRWC encompasses the parallel DCMRWC
as a special case, we still need a converse proof to establish
the optimality of independent signalling in each subchannel.
After we obtain the secrecy capacity region of the parallel
DCMRWC, we consider the Gaussian parallel DCMRWC.
In particular, we evaluate the secrecy capacity region of the
parallel DCMRWC for the Gaussian case, which is tantamount
to finding the optimal joint distribution of auxiliary random
variables and channel inputs, which is shown to be Gaussian.
We accomplish this by using Costa’s entropy power inequality
[17]. Finally, we consider the Gaussian MIMO DCMRWC
and evaluate its secrecy capacity region when there is only
one user in the second group. We show the optimality of a
jointly Gaussian distribution for auxiliary random variables and
channel inputs by generalizing our optimization results in [3].

In the second scenario we study here, which is illustrated
in Fig. 3, the transmitter wants to send a confidential message
to users in the first group which needs to be kept confidential
from users in the second group and eavesdroppers. Moreover,
the transmitter sends a different confidential message to users
in the second group, which needs to be kept confidential from
the eavesdroppers. If there were only one user in each group
and one eavesdropper, this channel model would reduce to the
channel model that was studied in [18]. However, here, there
are an arbitrary number of users in each group and an arbitrary
number of eavesdroppers. Hence, our model can be viewed as a
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generalization of [18] to a compound setting. Adapting their ter-
minology, we call this channel model the DCMRWC with lay-
ered messages. We first obtain the secrecy capacity region in
a single-letter form for a general discrete memoryless setting,
where again the presence of fictitious users plays a key role in
the converse proof. Next, we consider the parallel DCMRWC
with layered messages and establish its secrecy capacity re-
gion in a single-letter form. In this case as well, we provide
the converse proof which is again necessary to show the opti-
mality of independent signalling in each subchannel. After we
obtain the secrecy capacity region of the parallel DCMRWC
with layered messages, we evaluate it for the Gaussian parallel
DCMRWC with layered messages by showing the optimality
of a jointly Gaussian distribution for auxiliary random variables
and channel inputs. For that purpose, we again use Costa’s en-
tropy power inequality [17]. Finally, we consider the Gaussian
MIMO DCMRWC with layered messages and evaluate its se-
crecy capacity region when there is only one user in the second
group. To this end, we show that jointly Gaussian auxiliary
random variables and channel inputs are optimal by extending
our optimization results in [3].

II. SYSTEM MODEL

In this paper, we consider DCMRWC (see Fig. 1) which con-
sists of two groups of users and a group of eavesdroppers. There
are users in the first group, users in the second group, and

eavesdroppers. The channel is assumed to be memoryless
with a transition probability

(1)

where is the channel input, is the channel
output of the user in the first group, ,

is the channel output of the user in the second group,
, and is the channel output of the

eavesdropper, .
We assume that there exist two fictitious users with observa-

tions , such that they satisfy the Markov
chain

(2)

This Markov chain is the reason why we call the compound
multi-receiver wiretap channel we study the DCMRWC. Actu-
ally, there is a slight inexactness in the terminology here because
the Markov chain in (2) is more restrictive than the Markov
chain

(3)

and it might be more natural to define the degradedness of the
compound multi-receiver wiretap channel by the Markov chain
in (3). However, in this study, we adapt the terminology of the
previous work on compound broadcast channels [16], and call
the channel satisfying (2) the DCMRWC. Finally, we note that
when there are no eavesdroppers, this channel reduces to the
degraded compound broadcast channel that was studied in [16].

A. Parallel DCMRWC

The parallel DCMRWC, where each user’s and each eaves-
dropper’s channel consists of independent subchannels, i.e.,

(4)

(5)

(6)

has the following overall transition probability:

(7)

where is the subchannel’s input. We de-
fine the degradedness of the parallel compound multi-receiver
wiretap channel in a similar fashion. In particular, we call a
parallel compound multi-receiver wiretap channel degraded, if
there exist two sequences of random variables

(8)

(9)

which satisfy Markov chains

(10)

B. Gaussian Parallel DCMRWC

The Gaussian parallel DCMRWC is defined by

(11)

(12)

(13)

where all column vectors , , , ,
, , are of dimensions .

are Gaussian random vec-
tors with diagonal covariance matrices , ,

, respectively. The channel input is subject to a
trace constraint as

(14)

In this paper, we will be interested in Gaussian parallel DCM-
RWCs which means that the covariance matrices satisfy the fol-
lowing order:

(15)

Since noise covariance matrices are diagonal, the order in (15)
implies

(16)

where , , denote the diagonal element of ,
, , respectively.
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The diagonality of noise covariance matrices also ensures the
existence of diagonal matrices and such that

(17)

For example, we can select as
which already satisfies (17) because of

which is due to (16). Similarly, we can select
. Thus, for Gaussian parallel compound multi-receiver chan-

nels, the two possible ways of defining degradedness, i.e., (2)
and (3), are equivalent due to the equivalence of (15) and (17).

C. Gaussian MIMO DCMRWC

The Gaussian MIMO DCMRWC is defined by

(18)

(19)

(20)

where all column vectors , , , ,
, , are of dimensions .
, , are Gaussian random vectors

with covariance matrices , , ,
respectively. Unlike in the case of Gaussian parallel channels,
these covariance matrices are not necessarily diagonal. The
channel input is subject to a covariance constraint

(21)

where .
In this paper, we study Gaussian MIMO DCMRWCs for

which there exist covariance matrices and such that

(22)

We note that the order in (22), by which we define the degrad-
edness, is more restrictive than the other possible order that can
be used to define the degradedness, i.e.,

(23)

In [16], a specific numerical example is provided to show that
the order in (23) strictly subsumes the one in (22).

D. Comments on Gaussian MIMO DCMRWC

We provide some comments about the way we define the
Gaussian MIMO DCMRWC. The first one is about the co-
variance constraint in (21). Though it is more common to
define capacity regions under a total power constraint, i.e.,

, the covariance constraint in (21) is more
general and it subsumes the total power constraint as a special
case [19]. In particular, if we denote the secrecy capacity region
under the constraint in (21) by , then the secrecy capacity
region under the trace constraint, , can be
written as [19]

(24)

The second comment is about our assumption that is strictly
positive definite. This assumption does not lead to any loss of

generality because for any Gaussian MIMO compound multi-
receiver wiretap channel with a positive semidefinite covariance
constraint, i.e., and , we can always construct an
equivalent channel with the constraint where

(see [19, Lemma 2]), which has the same secrecy ca-
pacity region.

The last comment is about the assumption that the transmitter
and all receivers have the same number of antennas. This as-
sumption is implicit in the channel definition [see (18) – (20)]
and also in the definition of degradedness [see (22)]. However,
we can extend the definition of the Gaussian MIMO DCMRWC
to include the cases where the number of transmit antennas and
the number of receive antennas at each receiver are not neces-
sarily the same. To this end, we first introduce the following
channel model:

(25)

(26)

(27)

where , , are the channel matrices of sizes ,
, , respectively, and is of size . The channel outputs

, , are of sizes , , , respectively.
The Gaussian noise vectors , , are assumed to have
identity covariance matrices.

To define degradedness for the channel model given in (25)
– (27), we need the following definition from [16]: A receive
vector of size is said to be degraded
with respect to of size , if there exists a
matrix of size such that and .
Using this equivalent definition of degradedness, we now give
the equivalent definition of degradedness for the channel model
in (25) – (27). To this end, we first introduce two fictitious users
with observations and , which are given by

(28)

(29)

The Gaussian MIMO compound multi-receiver wiretap channel
in (25) – (27) is said to be degraded if the following two con-
ditions hold: 1) is degraded with respect to any user from
the first group, and any user from the second group is degraded
with respect to , and 2) is degraded with respect to any
user from the second group, and any eavesdropper is degraded
with respect to , where degradedness here is with respect to
the definition given above.

In the rest of the paper, we consider the channel model given
in (18) – (20) instead of the channel model given in (25) – (27),
which is more general. However, if we establish the secrecy ca-
pacity region for the Gaussian MIMO DCMRWC defined by
(18) – (20), we can also obtain the secrecy capacity region for
the general Gaussian MIMO DCMRWC defined by (25) – (27)
using the analysis carried out in [3, Sec. 7.1] and [16, Sec. V].
Since this analysis is quite standard and can be found in other
works cited above, whenever we have a capacity result for the
Gaussian MIMO DCMRWC defined by (18) – (20), we pro-
vide the extension of this capacity result to the general Gaussian
MIMO DCMRWC defined by (25) – (27) without a proof.
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III. PROBLEM STATEMENT AND MAIN RESULTS

In this paper, we consider two different communication sce-
narios for the DCMRWC.

A. First Scenario: External Eavesdroppers

In the first scenario, the transmitter wants to send a confiden-
tial message to users in the first group and a different confiden-
tial message to users in the second group, where both messages
need to be kept confidential from the eavesdroppers. In this case,
we assume that there is only one eavesdropper, i.e., .
The graphical illustration of the first scenario is given in Fig. 2.

An code for the first scenario
consists of two message sets

, , an encoder ,
one decoder for each legitimate user in the first group

, and one de-
coder for each legitimate user in the second group

. The probability of error is
defined as , where and are
given by

(30)

(31)

A secrecy rate pair is said to be achievable if there
exists an code which has and

(32)

where we dropped the subscript of since . We note
that (32) implies

(33)
From these definitions, it is clear that we are only interested in
perfect secrecy rates of the channel. The secrecy capacity region
is defined as the closure of all achievable secrecy rate pairs. A
single-letter characterization of the secrecy capacity region is
given as follows.

Theorem 1: The secrecy capacity region of the DCMRWC is
given by the union of rate pairs satisfying

(34)

(35)

where the union is over all such that

(36)

for any pair.
Showing the achievability of this region is rather stan-

dard, thus is omitted here. We provide the converse proof in
Appendix I. The presence of the fictitious user with observation

proves to be crucial in the converse proof. Essentially, it
brings a conditional independence structure to the channel,
which enables us to define the auxiliary random variable ,
which, in turn, provides the converse proof.

As a side note, if we disable the eavesdropper by setting
, the region in Theorem 1 reduces to the capacity region of the

underlying degraded compound broadcast channel which was
established in [16].

1) Parallel DCMRWC: In the upcoming section, we will
consider the Gaussian parallel DCMRWC. For that purpose,
here, we provide the secrecy capacity region of the parallel
DCMRWC in a single-letter form.

Theorem 2: The secrecy capacity region of the parallel
DCMRWC is given by the union of rate pairs satis-
fying

(37)

(38)

where the union is over all distributions of the form
such that

(39)

for any triple.
Though Theorem 1 provides the secrecy capacity region for a

rather general channel model including the parallel DCMRWC
as a special case, we still need a converse proof to show that
the region in Theorem 1 reduces to the region in Theorem 2
for parallel channels. In other words, we still need to show the
optimality of independent signalling on each subchannel. This
proof is provided in Appendix II.

2) Gaussian Parallel DCMRWC: We now obtain the secrecy
capacity region of the Gaussian parallel DCMRWC. To that
end, we need to evaluate the region given in Theorem 2, i.e.,
we need to find the optimal joint distribution .
We first introduce the following theorem which will be instru-
mental in evaluating the region in Theorem 2 for Gaussian par-
allel channels.

Theorem 3: Let , , , be zero-mean Gaussian
random variables with variances , , , , respectively,
where

(40)

Let be an arbitrarily dependent random variable pair,
which is independent of , and the second-mo-
ment of be constrained as . Then, for any fea-
sible , we can find a such that

(41)

and
(42)

(43)

for any satisfying the order in (40).
The proof of this theorem is provided in Appendix III. In this

proof, Costa’s entropy power inequality [17] plays a key role.
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We now establish the secrecy capacity region of the Gaussian
parallel DCMRWC.

Theorem 4: The secrecy capacity region of the Gaussian par-
allel DCMRWC is given by the union of rate pairs
satisfying

(44)

(45)

where the union is over all such that
and .

The proof of this theorem is provided in Appendix IV. Here,
denotes the part of the total available power which is de-

voted to the transmission in the subchannel. Furthermore,
denotes the fraction of the power of the subchannel

spent for the transmission to users in the first group.
3) Gaussian MIMO DCMRWC: In this section, we first

obtain the secrecy capacity region of the Gaussian MIMO
DCMRWC when . To that end, we need to evaluate the
region given in Theorem 1. In other words, we need to find the
optimal random variable pair . We are able to do this
when there is only one user in the second group, i.e., .
For this, we need the following theorem.

Theorem 5: Let be zero-mean Gaussian
random vectors with covariance matrices , , , respec-
tively, where

(46)

Let be arbitrarily dependent random vector, which is in-
dependent of , and let the second moment of be
constrained as . Then, for any feasible ,
we can find a positive semidefinite matrix such that ,
and it satisfies

(47)

and

(48)

for any satisfying the order in (46).
The proof of this theorem can be found in [3]. Using this

theorem, we can establish the secrecy capacity region of the
Gaussian MIMO DCMRWC when as follows.

Theorem 6: The secrecy capacity region of the Gaussian
MIMO DCMRWC when is given by the union of rate
pairs satisfying

(49)

(50)

where we dropped the subscript of since , and
the union is over all positive semidefinite matrices such that

.
The proof of this theorem is given in Appendix V. Now, we

would like to comment about why we can obtain the secrecy
capacity region of the Gaussian MIMO DCMRWC only when

. The reason is that we can extend Theorem 3, which
was used to obtain the secrecy capacity region of the Gaussian
parallel DCMRWC, to vector case in Theorem 5 partially, i.e.,
not completely. In particular, we could not show that the matrix

in Theorem 5 also satisfies

(51)

for any Gaussian random vector with covariance matrix sat-
isfying . If (51) can be shown, the secrecy
capacity region of the Gaussian MIMO DCMRWC can be ob-
tained as the union of rate pairs satisfying

(52)

(53)

where the union is over all positive semidefinite matrices such
that .

Finally we note that using the analysis carried out in [3, Sec.
7.1] and [16, Sec. V], the capacity result given in Theorem 6 can
be extended to the general Gaussian MIMO DCMRWC defined
by (25) – (27) as follows.

Corollary 1: The secrecy capacity region of the general
Gaussian MIMO DCMRWC, which is defined by (25) – (27),
when , is given by the union of rate pairs
satisfying

(54)

(55)

where we dropped the subscripts of , since , and
the union is over all positive semidefinite matrices such that

.

B. Second Scenario: Layered Confidential Messages

In the second scenario, the transmitter wants to send a con-
fidential message to users in the first group which needs to be
kept confidential from the second group of users and eavesdrop-
pers. The transmitter also wants to send a different confidential
message to users in the second group, which needs to be kept
confidential from the eavesdroppers. As opposed to the first sce-
nario, in this case, we do not put any restriction on the number of
eavesdroppers. The graphical illustration of the second scenario
is given in Fig. 3. The situation where there is only one user
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in each group and one eavesdropper was investigated in [18].
Hence, this second scenario can be seen as a generalization of
the model in [18] to a compound channel setting. Following the
terminology of [18], we call this channel model DCMRWC with
layered messages.

An code for DCMRWC with layered mes-
sages consists of two message sets ,

and an encoder , one de-
coder for each legitimate user in the first group

, and one decoder for each legitimate user
in the second group . The
probability of error is defined as where

and are given by

(56)

(57)

A secrecy rate pair is said to be achievable if there exists an
code which has

(58)

and

(59)

We note that these two secrecy conditions imply

(60)

Furthermore, it is clear that we are only interested in perfect
secrecy rates of the channel. The secrecy capacity region is
defined as the closure of all achievable secrecy rate pairs. A
single-letter characterization of the secrecy capacity region is
given as follows.

Theorem 7: The secrecy capacity region of the DCMRWC
with layered messages is given by the union of rate pairs

satisfying

(61)

(62)

where the union is over all random variable pairs such
that

(63)

for any triple .
The proof of this theorem is given in Appendix VI. Similar

to the converse proof of Theorem 1, the presence of the ficti-
tious users and plays an important role here as well. In
particular, these two random variables introduce a conditional
independence structure to the channel which enables us to de-
fine the auxiliary random variable that yields a tight outer

bound. Despite this similarity in the role of fictitious users in
converse proofs, there is a significant difference between The-
orems 1 and 7; in particular, it does not seem to be possible
to extend Theorem 1 to an arbitrary number of eavesdroppers,
while Theorem 7 holds for any number of eavesdroppers. This
is due to the difference of two communication scenarios. In the
second scenario, since we assume that users in the second group
as well as the eavesdroppers wiretap users in the first group, we
are able to provide a converse proof for the general situation of
arbitrary number of eavesdroppers.

As an aside, if we set , then DCMRWC
with layered messages reduces to the degraded multi-receiver
wiretap channel with layered messages of [18], the secrecy ca-
pacity region in Theorem 7 reduces to the secrecy capacity re-
gion of the channel model in [18].

1) Parallel DCMRWC With Layered Messages: In the next
section, we investigate the Gaussian parallel DCMRWC with
layered messages. To that end, here we obtain the secrecy ca-
pacity region of the parallel DCMRWC with layered messages
in a single-letter form as follows.

Theorem 8: The secrecy capacity region of the parallel
DCMRWC with layered messages is given by the union of rate
pairs satisfying

(64)

(65)

where the union is over all such that

(66)

for any .
Since the parallel DCMRWC with layered messages is a spe-

cial case of the DCMRWC with layered messages, Theorem
7 implicitly gives the secrecy capacity region of the parallel
DCMRWC with layered messages. However, we still need to
show that the region in Theorem 7 is equivalent to the region in
Theorem 8. That is, we need to prove the optimality of indepen-
dent signalling in each subchannel. The proof of Theorem 8 is
provided in Appendix VII.

2) Gaussian Parallel DCMRWC With Layered Messages:
We now obtain the secrecy capacity region of the Gaussian
parallel DCMRWC with layered messages. To that end, we
need to evaluate the region given in Theorem 8, i.e., we need to
find the optimal distribution . We first introduce
the following theorem, which is an extension of Theorem 3.

Theorem 9: Let , , , , be zero-mean Gaussian
random variables with variances , , , , , respec-
tively, where

(67)

Let be an arbitrarily dependent random variable pair,
which is independent of , and the second
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moment of be constrained as . Then, for any
feasible , we can find a such that

(68)

and

(69)

(70)

for any satisfying the order in (67).
The proof of this theorem is given in Appendix VIII. The

proof of this theorem basically relies on Theorem 3 and Costa’s
entropy power inequality [17].

Using this theorem, we can establish the secrecy capacity re-
gion of the Gaussian parallel DCMRWC with layered messages
as follows.

Theorem 10: The secrecy capacity region of the Gaussian
parallel DCMRWC with layered messages is given by the union
of rate pairs satisfying

(71)

(72)

where , and the union is over
all such that .

The proof of this theorem is given in Appendix IX. Similar
to Theorem 4, here also, denotes the amount of power
devoted to the transmission in the subchannel. Similarly,
is the fraction of the power of the subchannel spent for
the transmission to users in the first group.

3) Gaussian MIMO DCMRWC With Layered Messages: We
now obtain the secrecy capacity region of the Gaussian MIMO
DCMRWC with layered messages. To that end, we need to eval-
uate the region given in Theorem 7, i.e., find the optimal random
vector pair . We are able to find the optimal random
vector pair when there is only one user in the second
group, i.e., . To obtain that result, we first need the fol-
lowing generalization of Theorem 5.

Theorem 11: Let be Gaussian random
vectors with covariance matrices , , , , respec-
tively, where

(73)

Let be an arbitrarily dependent random vector pair,
which is independent of , and the second
moment of be constrained as . Then, for any

feasible , there exists a positive semidefinite matrix
such that , and it satisfies

(74)

and
(75)

(76)

for any satisfying the order in (73).
The proof of this theorem is given in Appendix X. Using this

theorem, we can find the secrecy capacity region of the Gaussian
MIMO DCMRWC with layered messages when as
follows.

Theorem 12: The secrecy capacity region of the Gaussian
MIMO DCMRWC with layered messages when is
given by the union of rate pairs satisfying

(77)

(78)

where the union is over all positive semidefinite matrices such
that .

The proof of this theorem is given in Appendix XI. As an
aside, if we set in this theorem, we can recover
the secrecy capacity region of the degraded multi-receiver
wiretap channel with layered messages that was established
in [18].

Finally we note that using the analysis carried out in [3, Sec.
7.1] and [16, Sec. V], the capacity result given in Theorem 12
can be extended to the general Gaussian MIMO DCMRWC de-
fined by (25) – (27) as follows.

Corollary 2: The secrecy capacity region of the general
Gaussian MIMO DCMRWC, defined by (25) – (27), with
layered messages when is given by the union of rate
pairs satisfying

(79)

(80)

where the union is over all positive semidefinite matrices such
that .

IV. CONCLUSION

In this paper, we studied two different communication sce-
narios for the DCMRWC. In the first scenario, the transmitter
wants to send a confidential message to users in the first group,
and a different confidential message to users in the second
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group, where both messages are to be kept confidential from
an eavesdropper. We establish the secrecy capacity region of
the general discrete memoryless channel model, the parallel
channel model, and the Gaussian parallel channel model. For
the Gaussian MIMO channel model, we obtain the secrecy
capacity region when there is only one user in the second group.

In the second scenario we study, the transmitter sends a con-
fidential message to users in the first group which is wiretapped
by both users in the second group and eavesdroppers. In addi-
tion to this message sent to the first group of users, the trans-
mitter sends a different message to users in the second group
which needs to be kept confidential only from the eavesdrop-
pers. In this case, we do not put any restriction on the number of
eavesdroppers. As in the first scenario, we establish the secrecy
capacity region for the general discrete memoryless channel
model, the parallel channel model, and the Gaussian parallel
channel model. For the Gaussian MIMO channel model, we ob-
tain the secrecy capacity region when there is only one user in
the second group.

APPENDIX I
PROOF OF THEOREM 1

Achievability is clear. We provide the converse proof. For an
arbitrary code achieving the secrecy rates , there exist

and which vanish as such that

(81)

(82)

(83)

where (81) and (82) are due to Fano’s lemma, and (83) is due to
the perfect secrecy requirement stated in (32).

We define the following auxiliary random variables:

(84)

which satisfy the following Markov chain:

(85)

for any pair. The Markov chain in (85) is a consequence
of the fact that the channel is memoryless and degraded.

We first bound the rate of the second message

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

where (87) is due to (82), (88) is a consequence of (83), (89)
comes from the Markov chain

(96)

which is a consequence of the fact that the channel is degraded,
(91) comes from the Markov chain

(97)

which is due to the fact that the channel is degraded and mem-
oryless, and (94) is a consequence of the Markov chain

(98)

which is due to the Markov chain in (2) and the fact that the
channel is memoryless.

Next we bound the rate of the first message

(99)

(100)

(101)

(102)

(103)

(104)

(105)

(106)

(107)

(108)

(109)
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(110)

(111)

(112)

(113)

where (101) is due to (81), (102) is a consequence of (83), (103)
comes from the Markov chain

(114)

which is due to the fact that the channel is degraded, (105) comes
from the Markov chain

(115)
which is a consequence of the fact that the channel is degraded
and memoryless, (106) follows from the Markov chain

(116)

for all , which results from the Markov chain
in (2) and the fact that the channel is memoryless, (108) is a
consequence of the Markov chain

(117)

for all , which is due to the fact that the channel is
memoryless, (110) comes from the fact that conditioning cannot
increase entropy, and (111) is again due to the Markov chain
in (117).

Next, we define a uniformly distributed random variable
, and , , ,

, and . Using these definitions in (95) and (113),
we obtain the single-letter expressions in Theorem 1.

APPENDIX II
PROOF OF THEOREM 2

The achievability of this region follows from The-
orem 1 by selecting

with a joint distribution of the product form
. We next provide the converse proof. To that

end, we define the following auxiliary random variables:

(118)

which satisfy the Markov chain

(119)

for any triple because of the facts that the channel is
memoryless and subchannels are independent.

We bound the rate of the second message as follows:

(120)

(121)

(122)

(123)

(124)

(125)

(126)

where (122) follows from the Markov chain

(127)

which is a consequence of the facts that the channel is degraded
and memoryless, and subchannels are independent, and (125) is
due to the Markov chain

(128)

which is a consequence of the Markov chain in (10) and the
facts that the channel is memoryless and subchannels are
independent.

We next bound the rate of the first message as follows:

(129)

(130)

(131)

(132)

(133)

(134)
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(135)

(136)

(137)

where (131) and (132) follow from the Markov chain

(138)
which is due to the facts that the channel is degraded and mem-
oryless, subchannels are independent, and the Markov chain in
(10), (135) results from the fact that conditioning cannot in-
crease entropy, (136) comes from the Markov chain

(139)

which is a consequence of the facts that the channel is memory-
less, and subchannels are independent.

In view of (126) and (137), we obtain the single-letter
expressions in Theorem 2. Finally, we note that each ex-
pression in the bounds given by (126) and (137) depend on
the joint distribution through its marginals

. Thus, there is no loss of optimality to choose
. This completes the con-

verse proof.

APPENDIX III
PROOF OF THEOREM 3

We first note that

(140)

where the right-hand side can be shown via the entropy power
inequality [20], [21]. To show the left-hand side, let us define a
Gaussian random variable with variance , and inde-
pendent of . Thus, we can write down the difference
of differential entropy terms in (140) as

(141)

(142)

(143)

(144)

(145)

(146)

where (144) is due to the fact that conditioning cannot increase
entropy and (145) is a consequence of the fact that and

are independent.
Equation (140) implies that there exists such that

and

(147)

which will be used frequently hereafter.
We now state Costa’s entropy power inequality [17] which

will be used in the upcoming proof.1

Lemma 1 ([17, Theorem 1]): Let be an arbitrarily
dependent random variable pair, which is independent of ,
where is a Gaussian random variable. Then, for ,
we have

(148)

We now consider (42). We first note that we can write as

(149)

where is a Gaussian random variable with variance ,
which is independent of . in (149) is given by

(150)

where it is clear that . Using (149) and Costa’s entropy
power inequality [17], we get

(151)

(152)

which is equivalent to

(153)

(154)

where (154) is obtained by using (147). Equation (154) is equiv-
alent to

(155)

(156)

(157)

1Although, Theorem 1 in [17] states the inequality for a constant � , using
Jensen’s inequality, the current form of the inequality for an arbitrary � can be
shown.
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where we used the definition of given in (150) to obtain (157).
Equation (157) proves (42).

We now consider (43). First, we note that we can write

(158)

where is a Gaussian random variable with variance ,
which is independent of . in (158) is given by

(159)

where it is clear that . Using (158) and Costa’s entropy
power inequality [17], we get

(160)

(161)

which is equivalent to

(162)

(163)

(164)

where (164) is obtained by using the definition of given in
(159). Equation (164) is equivalent to

(165)

which is (43). This completes the proof of Theorem 3.

APPENDIX IV
PROOF OF THEOREM 4

Achievability is clear. We provide the converse proof. To this
end, let us fix the distribution such that

(166)

and . We first establish the bound on given
in (45). To this end, we start with (38). Using the Markov chain

, we have

(167)

(168)

(169)

where (169) comes from the fact that Gaussian maximizes

(170)

which can be shown via the entropy power inequality [20], [21].
We now use Theorem 3. For that purpose, we introduce the di-
agonal covariance matrix which satisfies

(171)

for any pair, and in particular, for the diagonal elements
of these matrices, we have

(172)

for any triple . Thus, due to Theorem 3, for any selection
of , there exists a such that

(173)

(174)

(175)

for any triple . Using (175) in (169), we get

(176)

We define and , where
due to (173). Thus, we have established the desired

bound on given in (45). We now bound . We start with
(37). Using the Markov chain , we have

(177)

(178)

(179)

where (179) comes from (174). Since we defined ,
(179) is the desired bound on given in (44), completing the
proof.

APPENDIX V
PROOF OF THEOREM 6

The main tools for the proof of Theorem 6 are Theorem 5, and
the following so-called worst additive noise lemma [22], [23].

Lemma 2 ([22], [23]): Let be a Gaussian random vector
with covariance matrix , and be a positive semidefinite
matrix. Consider the following optimization problem:

(180)

where and are independent. A Gaussian is the minimizer
of this optimization problem.
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We first bound . Assume we fixed the distribution of
such that . Then, we have

(181)

(182)

(183)

To show (183), consider which is a Gaussian random vector
with covariance matrix , and is independent of

. Thus, we can write

(184)

(185)

(186)

(187)

where (186) is due to Lemma 2, and (187) follows from the fact
that

(188)

for , , [3], [19].
For the rest of the proof, we need Theorem 5. According to

Theorem 5, for any , there exists a
such that

(189)

(190)

because . Using (189) in (183) yields

(191)

which is the desired bound on .
The desired bound on can be obtained as follows:

(192)

(193)

(194)

(195)

where (194) is due to (190). This completes the proof of The-
orem 6.

APPENDIX VI
PROOF OF THEOREM 7

We first show the achievability of the region given in Theorem
7, then provide the converse proof.

A) Achievability: First, we present the following lemma
which simplifies the achievability proof.

Lemma 3 ([11, Lemma A.1]): Let
be random variables such that they satisfy the following Markov
chains:

(196)

(197)

If , there exists a random variable such
that and satisfies the following
Markov chain:

(198)

Similarly, if , there exists a random
variable such that and
satisfies the following Markov chain:

(199)

We now show the achievability of the region given in Theorem
7. First, we fix the distribution .

Codebook generation:

1) Generate length- sequences through
where .

We index sequences as where
, and .

2) For each , generate length- se-
quences through where

. We index se-
quences as where ,

and .
Encoding:
If is the message to be transmitted, we pick

independently and uniformly, and send the corresponding .
Decoding:
The legitimate users can decode the messages with vanish-

ingly small probability of error, if the rates satisfy

(200)

(201)

which is the same as the region given in Theorem 7 because of
the degradedness of the channel.

Equivocation computation:
We now show that this coding scheme satisfies the secrecy

requirements given in (58) and (59). To this end, we will take a
shortcut by using Lemma 3, as it is done in [11]. To show (58),
we consider the enhanced eavesdroppers with observations

such that ,
where the existence of the random variable is ensured by
Lemma 3. Following the equivocation computation in [18,
Appendix A], one can get

(202)
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which implies that the secrecy requirement in (58) is satisfied.
Next we show that the proposed encoding scheme sat-

isfies the secrecy requirement in (59) as well. Similar to
what we did to show (58), we take a shortcut by using
Lemma 3. In particular, we consider the enhanced second
group of users with observations such that

where
the existence of the random variable is ensured by Lemma
3. Following the equivocation computation in [18, Appendix
A], one can get

(203)

which implies that the secrecy requirement in (59) is satisfied.
This completes the achievability proof of Theorem 7.

B) Converse: First, we note that for an arbitrary code
achieving the secrecy rate pairs , there exist
and which vanish as such that

(204)

(205)

(206)

(207)

where (204) and (205) are due to Fano’s lemma, and (206) and
(207) come from perfect secrecy requirements in (58) and (59).

We now define the following auxiliary random variables:

(208)

for , which satisfy the Markov chains

(209)

for any triple and for . The Markov chain in
(209) is a consequence of the fact that the channel is memoryless
and degraded.

We first establish the desired bound on as follows:

(210)

(211)

(212)

(213)

(214)

where (210) can be obtained by following the steps similar to
(86) – (91) in Appendix I and (213) is due to the Markov chain

(215)

which is a consequence of the Markov chain in (2).

We now establish the bound on as follows:

(216)

(217)

(218)

(219)

(220)

(221)

(222)

(223)

(224)

where (216) can be obtained by following the steps similar
to (99) – (105) in Appendix I, (217) is a consequence of the
Markov chain

(225)
which results from the Markov chain in (2), (220) comes from
the Markov chain

(226)

which is due to the fact that the channel is memoryless, (222)
is also due to the Markov chain in (226), and (223) comes from
the fact that conditioning cannot increase entropy.

Single-letterization can be accomplished as outlined in the
proof of Theorem 1, completing the converse proof.

APPENDIX VII
PROOF OF THEOREM 8

The achievability of the region given in Theorem 8 can be
shown by selecting with a
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joint distribution of the form . We
next provide an outline of the converse proof. To that end, we
define the following auxiliary random variables:

(227)

which satisfy the Markov chains

(228)

for any triple. These Markov chains are a consequence
of the facts that the channel is memoryless and degraded, and
subchannels are independent. Once the auxiliary random vari-
ables in (227) are identified, the rest of the converse
proof is similar to the converse proof of Theorem 2 given in
Appendix II. In particular, to obtain the desired bound on ,
we start with

(229)

which is a direct consequence of Theorem 7. Next, following
the steps similar to (121) – (126) in Appendix II, one can reach
the desired bound:

(230)

Similarly, to obtain the desired bound on , we start with

(231)

which is also a direct consequence of Theorem 7. Next, fol-
lowing the steps similar to (130) – (137) in Appendix II, one
can each the desired bound:

(232)

To complete the converse proof, we note that each expres-
sion in the bounds given by (230) and (232) depend on the
the joint distribution through its marginals

. Thus, there is no loss of optimality to choose
. This completes the con-

verse proof.

APPENDIX VIII
PROOF OF THEOREM 9

According to Theorem 3, there exists a such that

(233)

(234)

(235)

for any as long as they satisfy

(236)

We first show (70). To this end, we note that (233) and (234)
imply

(237)

Furthermore, (233) and (235) imply

(238)

Combining (237) and (238) yields

(239)

which is the desired result in (70).
We now show (69). We first note that we can write as

(240)

where is a zero-mean Gaussian random variable with vari-
ance , and independent of . in (240) is given
by

(241)

where it is clear that . We now use Costa’s entropy
power inequality [17] to arrive at (69)

(242)

(243)

which is equivalent to

(244)

which can be written as

(245)

(246)

(247)

(248)
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where (246) is due to (234) and (248) comes from (241). Since
(248) is the desired result in (69), this completes the proof.

APPENDIX IX
PROOF OF THEOREM 10

Achievability is clear. We provide the converse proof. We fix
the distribution such that

(249)

and . We first establish the bound on given
in (72). To this end, we start with (65). Using the Markov chain

, we have

(250)

(251)

(252)

where (252) comes from the fact that is max-
imized by Gaussian distribution which can be shown by using
the entropy power inequality [20], [21]. We now use Theorem
9. For that purpose, we introduce and which satisfy

(253)

for any triple, and in particular, for the diagonal, ele-
ments of these matrices, we have

(254)

for any . Thus, due to Theorem 9, for any selection of
, we have

(255)

(256)

(257)

for any . Using (256) in (252) yields

(258)

By defining and , where
due to (255), we get the desired bound on given

in (72).
We now bound . We start with (64). Using the Markov

chain , we have

(259)

(260)

(261)

(262)

where (261) is due to (257). Since (262) is the desired bound on
given in (71), this completes the proof.

APPENDIX X
BACKGROUND INFORMATION FOR APPENDIX XI

In Appendix XI, we need some properties of the Fisher infor-
mation and the differential entropy, which are provided here.

Definition 1 ([3, Definition 3]): Let be an arbi-
trarily correlated length- random vector pair with well-defined
densities. The conditional Fisher information matrix of given

is defined as

(263)

where the expectation is over the joint density , and the
conditional score function is

(264)

(265)

The following lemma will be used in the upcoming proof.
In fact, an unconditional version of this lemma is proved in [3,
Lemma 6].

Lemma 4: Let be random vectors such
that and are independent. Moreover, let ,

be Gaussian random vectors with covariances matrices ,
such that . Then, we have

(266)

The following lemma is also instrumental for the upcoming
proof whose proof can be found in [3].
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Lemma 5 ([3, Lemma 8]): Let , be positive semidef-
inite matrices satisfying , and be a ma-
trix-valued function such that for .
Moreover, we assume that is gradient of some scalar field.
Then, we have

(267)

The following generalization of the de Bruin identity [20],
[21] is due to [24]. In [24], the unconditional form of this iden-
tity, i.e., the case where , is proved. However, its gen-
eralization to this conditional form for an arbitrary is rather
straightforward, and given in [3, Lemma 16].

Lemma 6 ([3, Lemma 16]): Let be an arbitrarily
correlated random vector pair with finite second order moments,
and be independent of the random vector which is zero-mean
Gaussian with covariance matrix . Then, we have

(268)

APPENDIX XI
PROOF OF THEOREM 11

According to Theorem 5, for any selection of , there
exists a such that

(269)

(270)

for any such that . Furthermore, satisfies [3]

(271)

Equations (269) and (270) already imply

(272)

for any such that , which is the desired inequality
in (76).

We now prove (75). For that purpose, we note that (271) im-
plies

(273)

for any Gaussian random vector , independent of , with
covariance matrix such that because of Lemma
4. The order in (273) is equivalent to

(274)

Now, we can obtain (75) as follows:

(275)

(276)

(277)

(278)

(279)

where (276) is due to (269), (277) is obtained by using Lemma
6, and (278) comes from Lemma 5 by noting (274). Since (279)
is the desired inequality in (75), this completes the proof.

APPENDIX XII
PROOF OF THEOREM 12

We first establish the desired bound on given in (80) as
follows:

(280)

(281)

(282)

where (280) comes from Theorem 7 by noting the Markov chain
, and (282) can be obtained by using the worst

additive noise lemma, i.e., Lemma 2, as it is done in the proof of
Theorem 6. We now use Theorem 11. According to Theorem 11,
for any selection of , there exists a positive semidefinite
matrix such that and

(283)

(284)

for any pair. Using (283) in (280) yields

(285)

which is the desired bound on given in (80).
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We now obtain the desired bound on given in (79) as
follows:

(286)

(287)

(288)

where (286) comes from Theorem 7 by noting the Markov chain
and (288) is obtained by using (284).

Since (288) is the desired bound on given in (79), this com-
pletes the proof.
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