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Deaf Cooperation and Relay Selection Strategies for
Secure Communication in Multiple Relay Networks
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Abstract—In this paper, we investigate the roles of coopera-
tive jamming (CJ) and noise forwarding (NF) in improving the
achievable secrecy rates of a Gaussian wiretap channel (GWT).
In particular, we study the role of a deaf helper in confusing
the eavesdropper in a GWT channel by either transmitting
white Gaussian noise (cooperative jamming) or by transmitting a
dummy codeword of no context yet drawn from a codebook known
to both the destination and the eavesdropper (noise forwarding).
We first derive the conditions under which each mode of deaf
cooperation improves over the secrecy capacity of the original
wiretap channel and show that a helping node can be either a
useful cooperative jammer or a useful noise forwarder but not
both at the same time. Secondly, we derive the optimal power allo-
cation for both the source and the helping node to be used in each
of the two modes of deaf helping. Thirdly, we consider the deaf
helper selection problem where there are relays present in the
system and it is required to select the best deaf helpers, ,
that yield the maximum possible achievable secrecy rate. For the
case of , we give the optimal selection strategy with optimal
power allocation. The computational complexity of the optimal
selection strategy when is relatively large, especially for
large values of and . Thus, we propose a suboptimal strategy
for the selection problem when . We derive the complexity
of the proposed selection strategies and show that, for ,
our suboptimal strategy, which works in a greedy fashion, enjoys
a significantly less computational complexity than the optimal
strategy. Nevertheless, as demonstrated by numerical examples,
our suboptimal strategy gives rise to reasonable performance
gains in terms of the achievable secrecy rate with respect to the
case of .

Index Terms—Complexity, cooperative jamming, deaf cooper-
ation, information theoretic secrecy, noise forwarding, relay net-
works, secrecy rates, selection strategies.

I. INTRODUCTION

T HE notion of introducing artificial noise in a GWT
channel by a helpful interferer to confuse the eaves-

dropper and improve over the secrecy capacity of the original
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wiretap channel was introduced in [1]–[4]. In [2]–[4], this
notion was called cooperative jamming (CJ). The term refers to
the cooperation strategy in which a helping interferer transmits
white Gaussian noise when it can hurt the eavesdropper more
than it can hurt the legitimate receiver and hence improve the
achievable secrecy rate. In [5], the idea of helping interferer
was applied to the GWT channel in a scheme tantamount to the
CJ scheme for the two-user multiple access wiretap channel
where one of the users performs cooperative jamming. In [6],
the destination carried out jamming over the feedback channel
to confuse the eavesdropper.
In the context of relay networks with secrecy constraints, the

role of cooperative jamming was further investigated in sev-
eral works. For example, the discrete memoryless relay net-
work was investigated in [7] where achievable secrecy rates
were developed when relays help increase secrecy rate by in-
serting noise into the network. On the other hand, the relay se-
lection problem in the secrecy context was investigated, e.g.,
in [8] and [9]. In particular, [8] proposed a scheme that en-
ables an opportunistic selection of two relays to increase secu-
rity where one relay uses the decode-and-forward (DF) strategy
while the other uses the CJ strategy to introduce useful interfer-
ence and thus help increase the achievable secrecy rate. In [9],
one relay node is selected to assist two source nodes to exchange
messages with each other using the amplify-and-forward (AF)
strategy while one or two additional relay nodes are selected to
transmit jamming signals to confuse the eavesdropper. The role
of cooperative jamming in the presence of multiple eavesdrop-
pers was studied in [10] where noise generators (cooperative
jammers) were employed in a multiple-relay multiple-eaves-
dropper network to improve security. The impact of coopera-
tive jamming on the secrecy outage probability of a slow fading
wiretap channel was studied in [11] where related security met-
rics, namely, jamming coverage and jamming efficiency, were
introduced and different jamming strategies were proposed de-
pending on the various levels of available channel state infor-
mation. In a stochastic network model, it was shown in [12]
that packet collisions caused by jamming nodes can be used to
increase the level of secrecy. Cooperative jamming strategies
in multiple antenna relays networks were investigated in [13],
[14], and [15].
Power allocation for the the source and relay nodes in coop-

erative jamming relay networks was studied, e.g., in [16], [13],
and [15]. In [16], the communication between the source and
destination occurs in two hops. Both the source and the relay
are allowed to split their available power into a useful infor-
mation part and a jamming part. Reference [16] solves for the
power allocation under the assumption that both the relay and
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the destination have the knowledge of the jamming signals. In
[13], a cooperative jamming strategy is proposed when the relay
is equipped with multiple antennas. Under the constraint that
the jamming signals must lie in the subspace orthogonal to the
channel vector between the relay and the destination, the an-
tenna weights and transmit power of the source and the relay that
maximize the achievable secrecy rate subject to a total transmit
power constraint were derived in a closed form. In [15], a co-
operative jamming strategy is proposed for two-hop relay net-
works where the eavesdropper can wiretap the transmission in
both hops. In the model in [15], the source, the destination, and
the eavesdropper have multiple antennas, whereas the relay has
a single antenna. Under similar constraint to the one in [13],
namely, that the jamming signals lie in the subspace orthog-
onal to the channels to the legitimate nodes, closed-form solu-
tions were derived for jamming beamformers that maximize the
achievable secrecy rate, and the optimal power allocation was
obtained using numerical methods.
In all the references above, the role of a helping node was re-

stricted to cooperative jamming, decode-and-forward, and am-
plify-and-forward. However, a helping node can also play other
roles to improve secrecy. In general, in the relay-eavesdropper
channel, the relay, which is assumed to be a trusted entity, can
help improve secrecy either by listening to the source or by
acting as a deaf helper. The role of a relay node to provide and
improve secrecy in a wiretap channel was first studied in [17]. In
particular, [17] introduced another passive (deaf) mode of coop-
eration, called noise forwarding (NF), in which the relay node
sends a dummy (context-free) codeword drawn at random from
a codebook that is known to both the legitimate receiver and
the eavesdropper to introduce helpful interference that would
hurt the eavesdropper more than the legitimate receiver. This
deaf cooperation strategy was applied without power control to
the Gaussian single-relay single-eavesdropper channel in [18].
The idea of such strategy is to create a virtual multiple access
wiretap channel where only one user (the source) is active, i.e.,
sending relevant information, while the other user (the relay) is
acting as an interferer that sends a signal drawn from a given
codebook. In this way, the destination can perform successive
decoding and cancel out the relay signal and achieve higher se-
crecy rate for the intended message.
At this point, it is useful to compare the two aforementioned

alternatives of deaf cooperation for secrecy introduced in the lit-
erature. Generally speaking, it is not useful to perform CJ when
the helper is closer to the destination than to the eavesdropper,
on the other hand, one can still introduce helpful interference
in this case by transmitting a dummy codeword from a code-
book that is known to the destination and the eavesdropper. The
transmission of dummy codewords refers to Wyner’s idea of
stochastic encoding for secrecy [19] where multiple codewords
are associated with a single message. Since the cost of these
dummy codewords is a decrease in the transmitter’s rate, if the
helper takes the responsibility of sending these dummy code-
words, then the secrecy rate of the transmittermay improve [20].
In this paper, we investigate in detail the conditions under

which a deaf helper performing either CJ or NF strategy would
give rise to a larger achievable secrecy rate than the secrecy ca-
pacity of the original GWT channel. In particular, we give the

necessary and sufficient conditions, in terms of power values
and relative channel gains, for each of the two strategies to
yield higher secrecy rate than the secrecy capacity of the orig-
inal GWT channel. We also obtain, in terms of the channel gains
solely, the necessary conditions for each of the CJ and the NF
strategies to yield a secrecy rate higher than the secrecy capacity
of the GWT channel. In particular, we reach the following useful
conclusion. Depending on the relative location of a helping node
with respect to the destination and the eavesdropper, a helping
node may either be a useful jammer or a useful noise forwarder
but not both at the same time, or it may not be useful at all
as a deaf helper. Moreover, we derive the optimal power allo-
cation policy for each of the two strategies where we assume
that the source, the deaf helper, the legitimate receiver, and the
eavesdropper have perfect knowledge of all the relevant channel
gains.
On the other hand, we consider applying both CJ and NF

strategies in multiple relay networks to improve secrecy rates
achievable when only CJ strategy is used. In particular, we
consider a multiple relay network of relays in addition to a
source, a legitimate receiver, and an eavesdropper. The objec-
tive is to select a set of relays that act as the best
deaf helpers, i.e., that maximize the secrecy rate achievable by
deaf cooperation using relays. We first consider the special
case of . We give the optimal Single Deaf Helper Se-
lection (SDHS) strategy that identifies the optimal deaf helper
node and its mode of cooperation (CJ or NF). The optimal
strategy in this case is obvious and clearly requires com-
putations. However, our strategy enjoys the extra advantage of
using the optimal power allocation at both the source and the
selected relay without any additional cost in complexity that
could be incurred by using a numerical algorithm to find the
optimal power allocations. This is due to the fact that we have
a closed-form for the optimal power allocation policy in this
case and hence we avoid using numerical algorithms to find the
optimal power allocations.
Next, we consider the general selection problem, i.e., the case

where . Deriving a closed-form for the optimal power
allocations becomes intractable in this case. To avoid using nu-
merical methods that generally do not guarantee convergence to
the global optimum and that are usually computationally expen-
sive, we use a constant power allocation at each node. Having
fixed the power allocation policy in this case, we note that the
computational complexity of the optimal selection strategy is
still relatively large, especially for large values of and .
Thus, we propose a suboptimal Multiple Deaf Helper Selection
(MDHS) strategy that selects at most relays over at most
selection stages in which the source and the relays negotiate to
identify the deaf helpers to be selected one by one in a greedy
fashion.
In terms of the computational complexity of the multiple deaf

helper selection strategies, we distinguish between two cases.
In the first case, is a fixed constant that does not depend
on , whereas, in the second case, is some fixed fraction
of , i.e., for some rational . In the first
case, we show that our MDHS strategy requires com-
putations while the optimal strategy requires computa-
tions. Hence, our strategy leads to a reduction of in
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Fig. 1. A multiple relay network.

complexity with respect to the optimal strategy. In the second
case, we show that the reduction in complexity by using our
MDHS strategy as compared to using the optimal strategy is

, i.e., using our strategy leads to an exponential
reduction in complexity with respect to the optimal strategy.
Finally, we give some numerical examples to compare our

strategies, in terms of the achievable secrecy rate, with those
based on only one mode of deaf cooperation. We also quan-
tify through some numerical examples the improvement in the
achievable secrecy rate when theMDHS strategy is used instead
of the SDHS strategy.

II. SYSTEM MODEL

We consider the following communication scenario. A
source, , sends a confidential message to a destination, ,
over an AWGN channel in the presence of an informed eaves-
dropper, . The communication occurs in the presence of a set
of nodes (relays), , from which one is
selected to help improve the achievable perfect secrecy through
deaf cooperation, i.e., CJ or NF (see Fig. 1). Assuming that the
relay node is selected to be the deaf helper, the outputs
of the GWT channel, with the deaf helper , at the destination
and the eavesdropper are given by

(1)

(2)

where , is the channel gain between
nodes and is the channel input at node ,
and are real-valued zero mean, unit variance AWGN at
the destination and the eavesdropper, respectively. The channel
inputs satisfy the following average power constraints

(3)

It is assumed that all channel gains in (1)–(2) are known to
, and . For a fixed deaf helper node, , the above system

given by (1)–(2) and power constraints (3) is equivalent to

(4)

(5)

with

(6)

where and .

III. IMPROVING SECRECY THROUGH DEAF COOPERATION

In this section, we consider the CJ and the NF schemes. In
both schemes, the channel input at the source in (4)–(5) is a
symbol of the codeword that represents the encoded confiden-
tial message. Such codeword is drawn from an i.i.d. Gaussian
codebook, i.e., is Gaussian random variable with zero mean
and variance where . Also, in both schemes, the
channel input at the deaf helper in (4)–(5) is also Gaussian
with zero mean and variance where . However, the
difference between the two schemes comes from the origin of
. In the CJ scheme, is white Gaussian noise that plays

the same role as the background noise at the destination and
the eavesdropper except for the fact that it is generated artifi-
cially. On the other hand, in the NF scheme, is a symbol
of a dummy (context-free) codeword drawn from a Gaussian
codebook that is assumed to be available at both the destination
and the eavesdropper. Accordingly, for given power values
and , the secrecy rate achievable by the CJ scheme [4],
is given by

(7)

Whereas the secrecy rate achievable by the NF scheme [17],
, is given by

(8)

On the other hand, when no helper node is involved, the secrecy
capacity of the original GWT channel [21] for a given power
value is given by

(9)

where . In the following theorem, we give
the necessary and sufficient conditions for

and .
Theorem 1: if and only if one

of conditions (10) or (11) below is satisfied:

(10)

(11)
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On the other hand, if and only if
one of conditions (12), (13), or (14) below is satisfied:

(12)

(13)

(14)

A proof of Theorem 1 is given in Appendix A.
One important observation one can make in regard with The-

orem 1 is that the CJ strategy cannot be beneficial, i.e., it cannot
achieve higher secrecy rate than the secrecy capacity of the orig-
inal GWT channel, if the value of the relative channel gain
between the relay node and the eavesdropper is less than
1 or less than the value of the relative channel gain between
the source and the eavesdropper . On the other hand, the NF
strategy is not useful, if . This observation is stated for-
mally in the following corollary.
Corollary 1: is a necessary condition for

the CJ scheme to achieve higher secrecy rate than the secrecy
capacity of the original GWT channel. On the other hand,

is a necessary condition for the NF scheme to achieve
higher secrecy rate than the secrecy capacity of the original
GWT channel.

IV. MAXIMIZING THE SECRECY RATES ACHIEVABLE BY THE
CJ AND NF SCHEMES

For fixed relative channel gains and , we obtain the so-
lutions of the following optimization problems.

(15)

(16)

Let be the maximizer of (15) and be
the maximizer of (16). We define and

.
Theorem 2: The solution of (15) and (16) above is given in

the following cases:
1) : In this case, we have the following three possibil-
ities depending on the value of :
a) If , then

(17)

(18)

b) If , then

(19)

(20)

(21)

(22)

c) If , then

(23)

(24)

(25)

(26)

2) : In this case, we have the following three possibil-
ities depending on the value of :
a) If , then

(27)

and

(28)

(29)

b) If , then

(30)

(31)

and

(32)

c) If , then

(33)

(34)

where

(35)

A proof of Theorem 2 is given in Appendix B.
As a consequence of Theorem 2, one can identify, in terms of

the relative channel gains solely, the minimal set of necessary
conditions for each of and
to hold. These conditions are stated formally in the following
corollary.
Corollary 2: If , then . On

the other hand, if then .

V. DEAF HELPER SELECTION PROBLEM

A. Single Deaf Helper Selection

In this section, we are interested in selecting one relay from
the set of relays that would act as the best deaf helper that
maximizes the achievable secrecy rate which could be either

if the best deaf helper is a cooperative jammer or if
the best deaf helper is a noise forwarder. Here, we assume that
the original power constraints at the relays given by
(3) are equal. That is . Consequently, the scaled
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power constraints at the relays , given by (6), have
different values depending on the values of the corresponding
channel gains . Thus, in order to clarify the presen-
tation in this section, we choose to consider the original system
given by (1)–(2) together with the original power constraints
(3). Let and denote the variance of and ,
respectively, where and .
The secrecy rates and in (7) and (8), respectively,

can be written as functions of and as follows

(36)

(37)

We note that all the results of Theorems 1 and 2 as well as
Corollary 1 are valid here by replacing with with

with with and with

and , respectively, for and
where and are the optimal power con-
trol policies that maximize (36) and (37), respectively. Hence,
using Corollary 2, one can find two disjoint subsets of which
we denote by and , where

(38)

is the set of potential cooperative jammers, and

(39)

is the set of potential noise forwarders. In other words, the set
is the set that contains every relay node whose relative

channel gain satisfies the condition in Corollary 2 necessary for
the CJ scheme to achieve a secrecy rate larger than .
On the other hand, the set is the set that contains every
relay node whose relative channel gain satisfies the condition in
Corollary 2 necessary for the NF scheme to achieve a secrecy
rate larger than . Since these two subsets are disjoint, it
follows that a node in cannot be a useful cooperative jammer
and a useful noise forwarder at the same time. It is also note-
worthy that there might be some other nodes in that do not
fall in any of the two subsets and .
One can always regard the optimal power allocation poli-

cies and as functions of the channel
gains where and , respectively.
Hence, the optimal rates and can be also regarded as
functions of . Below, we describe a strategy for se-
lecting the optimal relay node that maximizes the deaf
cooperation secrecy rate.

B. Single Deaf Helper Selection (SDHS) Strategy

For each , using its knowledge of its own channel
gains and using the conditions in (38)–(39), identifies which

mode of cooperation (CJ or NF) it should target. Accord-
ingly, computes one of the two rates and

depending on the target mode of cooperation.
We note that the rate is computed using the values of the
optimal power allocations that are given by Theorem 2. Then
sends this information to . Upon receiving such information
from all identifies the relay with the maximum
rate and knows its mode of cooperation. Consequently,
notifies that it has been selected as the optimal deaf helper
which in turn notifies of the former’s selection. It is assumed
that this information is also intercepted by . By executing
the SDHS strategy described above, the optimal relay that
achieves is
identified together with its mode of deaf cooperation.

C. Multiple Deaf Helpers Selection

The system permits us to involve at most relays,
, in deaf cooperation. Each relay can be either a cooperative

jammer or a noise forwarder. Let denote the set of
the selected cooperative jammers and denote the
set of the selected noise forwarders where .
The achievable secrecy rate in this case for fixed power values

, is given as a function of
by

(40)

The expression above is a generalization of (7) and (8) when
there are more than one deaf helper in the system. To see
this, recall that the set of noise forwarders together
with the source create a multiple access wiretap channel to
the destination and the eavesdropper where the received
noise level at and is modified by the sum of the respective
jamming powers (scaled by the respective channel gains) of the
cooperative jammers in . The achievable deaf cooperation
rate is simply the maximum individual rate of
in the achievable secrecy rate region of this multiple access

wiretap channel [4]. Hence, the rate results
from the intersection of all the rate constraints that involve
node in the achievable secrecy rate region of this multiple
access wiretap channel.
In fact, when there are more than one deaf helper, the problem

of finding an optimal power control policy for (40) becomes
analytically intractable and no closed-form solution could be
found. One could possibly resort in this case to numerical al-
gorithms. However, numerical algorithms usually have large
running time and their convergence to the global optimum is
not guaranteed. Hence, using one such algorithm inside a se-
lection strategy will slow it down and substantially increase the
total number of computations carried out through the selection
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strategy. Thus, in the context of the selection problem, using nu-
merical methods for finding the optimal power allocations is not
an efficient option. Therefore, when the number of deaf helpers
to be selected is greater than 1, we will use a fixed power al-
location policy. That is, when , we set and

.
Having fixed the power allocation policy, we turn our atten-

tion to the selection problem. In fact, the problem of finding a
subset of at most deaf helpers that maximizes the secrecy
rate out of available relays is a combinatorial optimization
problem that can be reduced to the following integer program.
Suppose that each relay is associated with a variable that can
be assigned one of three labels: CJ, NF, or IDLE, depending on
whether the relay is a cooperative jammer, noise forwarder, or
idle (i.e., non-transmitting). Note that for each set of assign-
ments that assigns labels to the variables, one can compute
the rate (40) in polynomial time. In the integer program, it is
required to find the set of label assignments to the variables
that maximizes (40). Clearly, the integer program described
above can be reduced to our multiple relay selection problem
in polynomial time. That is, if we are given the sets and

that maximizes (40), then we can obviously obtain the
optimal set of label assignments for the above integer program
in polynomial time (more specifically, linear time). This implies
that our multiple relay selection problem is at least as hard as
the above integer programming problem which is generally
known to be NP-hard. Hence, we assume that the optimal
selection strategy, that chooses the best deaf helpers out of
the available relays, would, in general, have to evaluate the
achievable rate using every possible disjoint pair of subsets

such that . As it will be
discussed in Section V.E below, the computational complexity
of this strategy is significantly high especially for large values
of and . Thus, we propose below a suboptimal strategy that
builds upon the SDHS strategy presented earlier in a greedy
fashion for the multiple deaf helper selection problem. Later,
in Section V.E, we show that our suboptimal strategy leads to a
substantial reduction in computational complexity with respect
to the optimal selection strategy.

D. Multiple Deaf Helpers Selection (MDHS) Strategy

The strategy is carried out over at most stages to select
at most deaf helpers. As mentioned above, we set the trans-
mission power at the source and the relay nodes as and

. We define and as the set of selected
cooperative jammers and noise forwarders by the end of stage
, respectively. Before the first selection stage, we have

. In the first stage, we run the SDHS strategy to obtain
the best deaf helper , identify its mode of cooperation
(CJ or NF), and compute the corresponding achievable secrecy
rate . These are all made known to . Moreover, the identity
of and its cooperation mode are known to , and the rest
of the relays by the end of the first stage. Accordingly, we either
have and or vice versa depending on
the identified mode of cooperation of . For , we
do the following: For each
computes two secrecy rates, namely, and

using (40), i.e., the secrecy rates when
plays the role of a cooperative jammer and when it plays the
role of a noise forwarder. Hence, finds the maximum of the
two rates and its corresponding mode of cooperation. Then
sends this rate to . Consequently, finds the maximum of
all the rates it receives from all the relays involved in stage . If

, then the strategy is terminated and the last selec-
tion stage would be . Note that this means that the strategy
may terminate with less than selected helpers. Otherwise,
identifies the relay corresponding to the rate and its mode
of cooperation. Upon termination at stage where ,
the set of the selected deaf helpers and their
modes of cooperation are eventually known to , and and
the achievable secrecy rate in this case is . We summarize the
steps of the MDHS strategy above in the following. First fix the
power allocation policy as and , then
do the following:
1) Find the best deaf helper, its mode of cooperation, and the
corresponding achievable rate as in the SDHS strategy.

2) While the number of selected deaf helpers is less than ,
do the following:
a) every unselected node in the set available relays ,
computes the achievable secrecy rate twice: once
when it adds itself to the set of already selected coop-
erative jammers, and another time when it adds itself
to the set of already selected noise forwarders. This is
done using formula (40). Then, it finds the maximum
of the two rates, identifies the corresponding mode of
deaf cooperation that it should take (whether it is CJ
or NF), and sends the resulting rate and the mode of
cooperation to the source.

b) The source finds the maximum of all the values it re-
ceives from all the relays involved in the step 2-a.
This is the value of the achievable rate of the current
selection stage. The source also identifies the corre-
sponding relay whose rate is the maximum among all
the rates it received in step 2-a and identifies its mode
of cooperation (CJ or NF). Then, the source compares
the current rate value with the rate value obtained in
the previous selection stage.
i) If the rate obtained in the previous selection
stage is greater than or equal to the current
rate value: stop and output the selected helpers
(the set of the selected cooperative jammers and
the set of the selected noise forwarders) up to
the previous selection stage, and the achievable
rate obtained in the previous selection stage
as the resulting achievable rate. Note that if
the strategy is terminated at this step, then the
number of the selected deaf helpers could be
less than .

ii) Otherwise, the source updates the value of
the achievable rate with the current value it
obtained in step 2-b, adds the corresponding
relay either to the set of the selected cooper-
ative jammers or the set of the selected noise
forwarders depending on its mode of deaf co-
operation identified in step 2-b above.
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E. Complexity Analysis

Wemeasure the complexity of a selection strategy by the total
number of computations carried out during the execution of the
strategy. In regard to the SDHS strategy, it is obvious that the
strategy involves computations since evaluating the rates
(together with the power functions) given in (36) and (37) at all
the nodes requires computations ( computa-
tions per relay) and finding the maximum of all the rate values
received by from all also requires computa-
tions. It is indeed intuitive that, given some fixed power alloca-
tion policy, the complexity of the optimal single deaf helper se-
lection strategy is no more than , however, what we have
here is stronger since we ensure that the source and the selected
helper will use the optimal power allocation without any addi-
tional cost in complexity that could be incurred, for example,
by using a numerical algorithm to compute the optimal power
values. Clearly, by Theorem 2 where we have derived the op-
timal power allocation policy for the single helper problem in
closed-form, there is no additional cost in complexity.
Now, we turn our attention to the multiple deaf helper se-

lection problem. Let be disjoint sets of co-
operative jammers and noise forwarders, respectively. Let

and . Consider the expression in
(40) for the achievable rate . It is clear that the
number of all subsets is . Hence, the minimiza-
tion in (40) is taken over values. On the other hand, for each

, the evaluation of the expression inside the in
(40) requires computations since there are terms involved
in the computation of this expression. For simplicity, we will
assume that the number of computations is rather than
since this will not affect the overall complexity order. Finding
the minimum of values requires computations (again,
for simplicity, we will assume that this requires computa-
tions). Thus, the evaluation of requires a total
of computations.
As shown earlier in Section V.C, our multiple relay selection

problem is at least as hard as an integer programming problem
which is generally known to be NP-hard. Hence, it is reason-
able to assume that the optimal strategy would require com-
puting the rates achieved by all the possible pairs of disjoint
subsets where . On the
other hand, our MDHS strategy avoids computing the achiev-
able rates for all such pairs due to its greedy nature. In the next
theorem, we quantify the complexity of both strategies, i.e., the
optimal strategy and our MDHS strategy, and show the substan-
tial reduction in complexity that is achieved by using ourMDHS
strategy compared to the optimal strategy. The next theorem dis-
tinguishes between two cases in the complexity analysis of the
strategies. In the first case, is a fixed constant that is not al-
lowed to growwith .Whereas, in the second case, is a fixed
fraction of , i.e., for some rational .
Theorem 3: Let be the complexity of the optimal

strategy that selects deaf helpers out of available relay
nodes as described above. We assume that the optimal strategy
requires computing the rates achieved by all the possible pairs of
disjoint subsets where .
Let be the complexity of the MDHS strategy of

Section V.D. Define the complexity reduction ratio as
. For any , we have

(41)

(42)

If is a fixed constant (i.e., it does not depend on ), then

(43)

(44)

On the other hand, if is a fixed fraction of , i.e., for
some rational , then

(45)

(46)

Proof: First, consider the complexity of the optimal se-
lection strategy . The number of subsets
with and , for some

, is . For each such pair of
subsets, the evaluation of requires
computations as discussed above. Thus, is given by

which reduces to (41).
Next, consider the complexity of the MDHS strategy .
Let be the sets of cooperative jammers and noise
forwarders selected by the end of the th selection stage,

where is the termination stage. Note that the
number of computations required to evaluate
is upper bounded by . Note also that the worst case
for is when . The previous two facts will be
used to obtain an upper bound on . Now, observe that
at the th selection stage of this strategy, each relay of the

remaining relays, that are not selected up till stage
, computes twice. One time for the choice

, and another time for the
choice . Hence, the total
number of computations executed by all such relays is upper
bounded by . The total number of
computations carried out by the source to find the maximum
of the rate values it receives from the relays is

. Therefore, the complexity of the MDHS strategy is
upper bounded as in (42).
Now, suppose that is a fixed constant. Thus, it is clear

from (41) and (42) that is whereas
is . Hence, (44) follows immediately. Next,

suppose that . Then, is lower bounded as

where the first inequality above
follows from the fact that . On
the other hand, from (42), it is easy to see that is

which, in this case, is . This proves
(45). It is easy to see that (46) follows immediately.
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Indeed Theorem 3 quantifies the order of reduction in com-
plexity obtained when our MDHS strategy is used compared
to the case when the optimal selection strategy is used under
the reasonable assumption that the optimal strategy has to com-
pute the rates achieved by all the possible pairs of disjoint sub-
sets of relays. Theorem 3 shows that the complexity reduc-
tion is of polynomial order, namely, when is a
fixed constant, and the reduction is of exponential order, namely,

when for some rational .
In fact, this implies that our MDHS strategy actually gives a
substantial reduction in complexity and thus it operates signifi-
cantly faster than the optimal strategy. For example, if
and , then using (41) and (42) above, one can compute a
lower bound on the actual reduction ratio (i.e., the worst case
reduction ratio) which is approximately in this case. That
is, our MDHS strategy runs approximately faster than the
optimal strategy when and . Consider another
example where and . In this case, the worst case
reduction ratio is approximately 665, i.e., our MDHS strategy
runs approximately 665 faster than the optimal strategy. One
can notice that the reduction ratio has decreased substantially
for smaller values of and , however, it is still large enough
to make the MDHS strategy significantly faster than the optimal
strategy.

VI. NUMERICAL EXAMPLES

First, we consider the single deaf helper case. We compare
the two modes of deaf cooperation and verify the conditions
of Corollary 2 by plotting the optimal secrecy rate achievable
by each of CJ and NF modes against the relative channel gain
between the deaf helper and the eavesdropper, .
In Fig. 2, we set the scaled power constraints of the source

and the deaf helper defined in (6) as . We con-
sider two cases. In the first case, we choose , namely,
we set . In the second case, we choose ,
namely, . For each case, we plot and versus
the relative channel gain . We observe that
when and otherwise. One
can also see that where is the
capacity of the Gaussian channel between the source and the
destination when no secrecy constraint is imposed, i.e., when
the eavesdropper is not present. On the other hand, we observe
that when whereas

otherwise.
Next, we consider the multiple deaf helper case. Consider a

disk of radius 1 km where the source is located at the center,
both the destination and the eavesdropper are located at some
fixed points on the circumference. Consider relays whose
locations are chosen randomly and uniformly in this disk. Each
channel gain is generated according to the formula:
where is the channel gain, is a lognormal random variable to
account for shadowing, and is a Rayleigh random variable for
fading, is the distance, and is the path loss. We assume that
the underlying Gaussian random variables from which and
are generated are independent, zero mean, and unit variance

Gaussian random variables.We also take .We set
and .

Fig. 2. The optimal achievable rates by the two modes of deaf cooperation,
and as functions of the relative channel gain from the deaf helper

to the eavesdropper , plotted for two cases of the relative channel gain from
the source to the eavesdropper .

Fig. 3. The achievable secrecy rate, , versus the maximum allowed number
of deaf helpers, , for three cases: CJ/NF, NF only, and CJ only. This is done
for , and 50.

In Fig. 3, we plot the achievable secrecy rate against the max-
imum allowed number of helpers, , for and 50, in
three different cases. In the first case, the secrecy rate is obtained
using the MDHS strategy described in the previous section. In
the second case, we only consider CJ as the only deaf cooper-
ation mode, i.e., ignore all the relays that could be useful noise
forwarders and use the MDHS strategy only for useful coopera-
tive jammers. In the third case, we consider only NF as the only
mode available for deaf cooperation. It is clear from Fig. 3 that
making use of the two modes (CJ/NF) together in the system
could significantly increase the achievable secrecy rates. Also,
we notice that one could benefit from considering a larger set of
relays, i.e., larger , as this may lead to a better selected set of
helpers.
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Fig. 4. The achievable secrecy rate versus the maximum allowed number of
helpers, , for three different realizations of relays locations, for .

In Fig. 4 the achievable secrecy rate, , is plotted against
the maximum allowed number of helpers, , for three different
realizations of the relays where . It can be seen that the
selected helpers could be cooperative jammers (CJ) or noise for-
warders (NF), or both, and that one can improve the achievable
rate by selecting more than one helper. One can also see that
the number of selected helpers could be less than . Specifi-
cally, for the realizations considered here, the numbers of se-
lected helpers are 2, 4, and 6.

VII. CONCLUSION

In this paper, we considered two modes of deaf cooperation
for secrecy, CJ and NF. We gave the necessary and sufficient
conditions for each of the two modes to yield higher secrecy
rates than the secrecy capacity of the original GWT channel. We
also showed that a node cannot be both useful jammer and noise
forwarder at the same time. Moreover, we derived the optimal
power control policy that maximizes the secrecy rate achieved
by each of the twomodes. For the deaf helper selection problem,
we proposed an optimal strategy to select a single deaf helper
that maximizes the secrecy rate achievable by deaf cooperation
with a single helper. We also proposed a suboptimal strategy for
the selection of multiple deaf helpers to increase the achievable
secrecy rates. We discussed the complexity of the two proposed
strategies. Finally, we gave numerical examples to verify our
results.

APPENDIX
PROOF OF THEOREM 1

First, we show that if and only
if (10) or (11) holds. It is easy to see that if any of (10) and (11)
holds, then . Now, suppose that

, then from (7) and (9), we have
and which

imply

(47)

(48)

Condition (48) implies . On the other hand,
we cannot have since this contradicts (47).
By considering the remaining possibilities, we either have

(49)

which directly implies (47), or we have

(50)

which directly implies (48). Thus, if
, then we either have (47) and (50) satisfied

together which is indeed condition (10), or we have (48) and
(49) satisfied together which is condition (11).
Now, we prove the second part of Theorem 1. Again, it

is easy to verify that if any of conditions (12)–(14) holds,
then . Now, suppose that

, then from (8) and (9), we
have and
which imply

(51)

(52)

(53)

Condition (53) implies that . On the other
hand, we cannot have since this contradicts (51).
Now, we consider the three remaining possible cases of relative
channel gains. We either have

(54)

which directly implies all the conditions (51)–(53) above, or we
have

(55)

which directly implies both conditions (52) and (53), or we have

(56)

which directly implies condition (51). Thus, if
, we either have condition (54) satisfied which is

indeed condition (12), or we have conditions (51) and (55)
both satisfied which is the same as (13), or we have conditions
(52),(53), and (56) satisfied together which is the same as (14).

APPENDIX
PROOF OF THEOREM 2

We define

, and

. Hence, ,
and

. We first consider the case where
. Following Corollary 1, the NF strategy is not

useful in this case, hence, in this case if then
, otherwise .

This proves (18) and (29). On the other hand, if ,
then again following Corollary 1, both strategies are useless
and we have and .
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This proves (33)–(34). The remaining possible cases where
are and , i.e., cases

1-(a) and 2-(a) in Theorem 2. Suppose that .
The derivatives and are given by

and

. We

note that . Moreover,
has two zeros, one of them is at where is given by
(35) which turns out to be the unconstrained global maximum
of . Thus, the optimal power values and

are given by (17). Suppose now that . If
, then from condition (11) in Theorem 1, we must

have since . Otherwise, suppose

that . First, note that for all

if . On the other hand, has two
zeros, one of them is the unconstrained global maximizer of

with respect to for any given . Moreover,
for all , this unconstrained global maximizer is greater
than . Noting that the value of such unconstrained
global maximizer at is , we conclude that

and which proves (28).
Next, we consider then case where . By Corollary 1,

the CJ strategy is not useful in this case, hence, in this case if
then , otherwise,

. This proves (19), (23), and (30). The remaining possible cases
where are , and
, i.e., cases 1-(b), 1-(c), and 2-(b) in Theorem 2. First, one can

easily verify that

(57)

We also have

, and

. Now, suppose first that

. We note that and

are positive for all . Hence, we must have .

On the other hand, is positive for all

while if and only if . Hence, if

, then . If , then from (57),

(8), and by noting that , we must have .
This proves (20)–(22). Suppose now that . In this
case, and are positive for all .
Thus, both and are increasing in
for any given value of , hence their minimum is also

increasing in . Thus, which proves (26). Now,

if , then and are both

positive. Hence, which proves (24). If ,
then one can verify that is increasing in while

is decreasing in . Thus, the unconstrained
global maximizer of their minimum is the point where they
are equal, i.e., . Hence,
which proves (25). Finally, suppose that . If

, then from condition (14) in Theorem 1, we

must have since , which proves

(31). If , then again in this case and

are positive for all and . Thus, arguing

as above, we conclude that . On the other hand,

while . Thus, again by

arguing as above, we must have which
proves (32).
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