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Mutual Information Games in Multiuser Channels
With Correlated Jamming

Shabnam Shafiee, Member, IEEE, and Sennur Ulukus, Member, IEEE

Abstract—We investigate the behavior of two users and one
jammer in an additive white Gaussian noise (AWGN) channel with
and without fading when they participate in a noncooperative
zero-sum game, with the channel’s input/output mutual informa-
tion as the objective function. We assume that the jammer can
eavesdrop on the channel and can use the information obtained
to perform correlated jamming. We also differentiate between
the availability of perfect and noisy information about the user
signals at the jammer. Under various assumptions on the channel
characteristics, and the extent of information available at the users
and the jammer, we show the existence, or otherwise nonexistence
of a simultaneously optimal set of strategies for the users and the
jammer, and characterize those strategies whenever they exist.

Index Terms—Correlated jamming, eavesdropping, mutual in-
formation games, wireless multiuser security, zero-sum games.

I. INTRODUCTION

C ORRELATED jamming, the situation where the jammer
has full or partial knowledge about the user signals has

been studied in the information-theoretic context under various
assumptions [3]–[5]. In [3], the best transmitter/jammer strate-
gies are found for an additive white Gaussian noise (AWGN)
channel with one user and one jammer who participate in a two
person zero-sum game with the mutual information as the objec-
tive function. The jammer is power constrained and has full or
partial knowledge of the transmitted signal which may be ob-
tained through eavesdropping. In [4], the problem is extended
to a single-user multiple-input multiple-output (MIMO) fading
channel with the assumption that the jammer has full knowledge
of the user signal. This model has been further extended in [5] to
consider fading in the channel between the jammer and the re-
ceiver. In [5], various assumptions are made on the availability
of the user channel state at the user, and the jammer channel
state at the jammer. Reference [6] studies the jamming problem
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for a different communication model. It considers a time-slotted
packet communication link in the presence of a jammer, where
the communication link is fixed rate, and in each slot, the trans-
mitter and the jammer choose their respective power levels in a
random fashion from zero or a positive value, and both parties
are subject to fixed energy constraints.

In this paper, we study a multiuser system under correlated
jamming. Without loss of generality, we consider a system of
two users and one jammer who has full or partial knowledge
of the user signals through eavesdropping, and examine the
existence of optimum user and jammer strategies towards
achieving maximum mutual information. In the nonfading
two-user channel, we show that the game has a solution which
is Gaussian signaling for the users, and linear jamming for
the jammer. Here we define linear jamming as employing a
linear combination of the available information about the user
signals plus Gaussian noise, where the available information is
the user signals in the case of perfect information, and a noisy
version of a linear combination of the user signals in the case
of eavesdropping. We show that the power that the jammer
allocates for jamming each user’s signal is proportional to that
user’s power.

We then consider fading in the user channels. As opposed to
[5], where the user channel states could only be known at the
users, we assume the possibility of the jammer gaining informa-
tion about the user channel states by eavesdropping on the feed-
back channel from the receiver to the users. We show that if the
jammer is not aware of the user channel states, it would disre-
gard its eavesdropping information and only transmit Gaussian
noise. If the jammer knows the user channel states but not the
user signals, the game has a solution which is composed of the
optimal user and jammer power allocation strategies over the
channel states, together with Gaussian signaling and linear jam-
ming at each channel state. The optimal power allocations in this
case are such that only one user transmits at any given channel
state. If the jammer knows the user channel states and the user
signals, the game does not always have a Nash equilibrium so-
lution, in which case, we characterize the max-min user strate-
gies, and the corresponding jammer best response. The max-min
user strategy corresponds to the user’s best move, in a situation
where the user chooses its strategy only once, while after the
user chooses its strategy, the jammer can observe it and choose
the corresponding best jamming. Note that if the game had a
solution, max-min and min-max strategies would have been the
same, and would have also been the same as the game solution.

The term capacity will hereafter always refer to the channel’s
information capacity, which is defined as the channel’s max-
imum input/output mutual information [8].

0018-9448/$26.00 © 2009 IEEE
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Fig. 1. A communication system with two users and one jammer.

II. SYSTEM MODEL

Fig. 1 shows a communication system with two users and
one jammer. We consider several different settings based on the
channel characteristics and the jammer’s information. In the ab-
sence of fading, the attenuations of the user channels are known
to everyone. Therefore, we can assume that the attenuations
are real numbers. The AWGN channel with two users and one
jammer is modeled as

(1)

where is the th user’s signal, is the attenuation of the
th user’s channel, is the jammer’s signal, is the attenua-

tion of the jammer’s channel ,and is a zero-mean Gaussian
random variable with variance . To model fading in the re-
ceived powers, we consider and as fading random vari-
ables, and to further model the phase of the channel coefficients,
we substitute the real attenuations and with complex
fading random variables for the amplitude fading coefficient
of the th user’s channel, and for the amplitude fading coeffi-
cient of the jammer’s channel

(2)

All fading random variables are assumed to be independent and
identically distributed (i.i.d.) in time and independent across the
transmitters. The user and jammer signals are power constrained
as for , and .

Regarding the knowledge of the jammer about the transmitted
signals, we consider both cases of perfect information and im-
perfect information gained through eavesdropping. In the first
case, we assume that the jammer knows the signals of the users
perfectly, i.e., it knows and at the beginning of its trans-
mission. In the second case, we assume an AWGN eavesdrop-
ping channel for the jammer

(3)

where is the signal received at the jammer, is the atten-
uation of the th user’s eavesdropping channel, and is a
zero-mean Gaussian random variable with variance . There-
fore, in this case, the jammer knows a noisy version of a linear
combination of the user signals and . To model fading in
the received powers, we consider as real fading variables,

and to model fading in the received amplitudes, we substitute
them with complex amplitude fading random variables . The
receiver is assumed to know the user channel states, while var-
ious assumptions are made on the amount of information that
the users and the jammer have about the channel fading realiza-
tion of the communication and eavesdropping channels; these
assumptions are stated at the beginning of each section.

III. JAMMING IN NONFADING MULTIUSER AWGN CHANNELS

In this section, we find the best user/jammer strategies when
the channels are nonfading, both when the jammer knows the
exact user signals, and when it eavesdrops on the users’ channel
and obtains a noisy version of a linear combination of the user
signals.

A. Jamming With Complete Information

Here the system model is (1) where the attenuations are con-
stant real numbers, and and are known to the jammer.
The jammer and the two users are involved in a zero-sum
game with the input/output mutual information as the objective
function. We investigate the existence and uniqueness of a Nash
equilibrium solution for this game [9]. A Nash equilibrium
is a combination of strategies, one for each player, such that
no player has an incentive for unilaterally changing its own
strategy, meaning that no player will gain more, by unilaterally
deviating from the Nash equilibrium solution. Note that in
a zero-sum game, if the objective function is convex over
the set of the strategies of the players that are minimizing it,
and concave over the set of the strategies of the players that
are maximizing it, then the mathematical saddle point of the
objective function corresponds to the game’s Nash equilibrium
solution. However, in general, all mathematical saddle points
of an objective function may not necessarily correspond to a
game solution, e.g., matrix games [9].

The arguments in [8, Theorem 2.7.4] can be easily ex-
tended to the two-user system to show that if

, the input/output mutual information
is a concave function of for fixed

and , a concave function of for fixed
and , and a convex function of for fixed

and . Due to the convexity/concavity of the mutual
information with respect to the channel transition probability
distribution/user input probability distribution, and given that
the set of the user and jammer signaling which satisfy the
corresponding power constraints is convex, has a
saddle point in that set, which is the Nash equilibrium solution
of the game [10, Theorem 16, p. 75], [11, Proposition 2.6.9].
In the sequel, we show that when the users employ Gaussian
signaling, the best jamming strategy is linear jamming (linear
combination of the user signals plus Gaussian noise), and when
the jammer employs linear jamming, the best strategy for the
users is Gaussian signaling, which proves that Gaussian input
distributions for the users and linear jamming for the jammer
is a saddle point of the input/output mutual information, and
therefore, a Nash equilibrium solution for the game. Due to the
interchangeability property of game solutions [10, Theorem 8,
p. 48], if there is any other pair of strategies which is a game
solution as well, it has to result in the same mutual information
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value as the game solution corresponding to Gaussian signaling
and linear jamming [10, Theorem 7, p. 48].

First, assume that the jammer employs linear jamming

(4)

The power constraint on the jammer will enforce
. Using (1), the output of the channel will be

(5)

From the users’ perspective, the channel becomes an AWGN
multiple-access channel, and therefore the best signaling
scheme for the users is Gaussian [8].

Next, we should show that if the users perform Gaussian sig-
naling, then the best jamming strategy is linear jamming. The
channel output is as in (1), where and are independent
Gaussian random variables, and , the jammer signal, is an ar-
bitrary random variable to be chosen by the jammer. We write
the input/output mutual information of the channel

(6)

The jammer’s strategy can only affect the second term above.
We have

(7)

(8)

(9)

where is the covariance matrix of .
The inequalities hold for arbitrary and . We choose

and . Next, we prove the
optimality of linear jamming.

Assume that is a jamming signal that minimizes (6), and its
corresponding covariance matrix in (9) is . Define as

(10)

Note that is uncorrelated with and . The power of this
jamming signal is

(11)

For this jamming signal to be feasible, we should have

(12)

Now define a linear jamming signal as in (4), where
for , and is an independent Gaussian

random variable with power . This linear jammer has the
same power as and therefore is feasible. Also, it results in
the same value as . Since uncorrelated Gaussian signals
are also independent, achieves (8) and (9) with equality, but
these inequalities also hold for which is assumed to be the

worst jammer, therefore is a worst jammer and minimizes
(6) too. We conclude that linear jamming is optimal.

The next step is to find and for the linear jamming signal
in (4) which achieves the highest upper bound in (9). Since both
(8) and (9) hold with equality, the linear jamming parameters
that maximize (9), maximize (7), or equivalently, minimize the
mutual information in (6). Following the literature [3], [4], we
call this mutual information value, the capacity. Using (5)

(13)
which is a monotonically increasing function of the signal-to-
noise ratio (SNR), therefore the jammer’s equivalent objective is
to minimize the SNR value. We have the following minimization
problem:

s.t. (14)

Using the Karush–Kuhn–Tucker (KKT) necessary conditions
and including the limiting feasible values, the optimum jam-
ming coefficients are

if

if
(15)

where

(16)

and the jammer transmits as in (4). We observe that the amount
of power the jammer allocates for jamming each user is propor-
tional to that user’s effective received power which is for
user .

Fig. 2 shows an example of the jammer decision regions. In
region A, and the jammer
only uses enough power to zero out the transmitted signals. In
region B,
and the jammer uses all of its power to cancel the trans-
mitted signals as much as possible. In region C,

and the
jammer uses part of its power to cancel the transmitted signals,
and the rest of its power to add Gaussian noise to the trans-
mitted signal. Therefore, for low channel coefficients, where the
effective received powers of the users are small, the optimum
jamming strategy is to subtract the user signals as much as
possible, while in high channel coefficients, the jammer uses
its power both for adding Gaussian noise and for (negatively)
correlating with the user signals.

B. Jamming With Eavesdropping Information

Now suppose that the jammer gains information about the
user signals only through an AWGN eavesdropping channel as
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Fig. 2. Jamming decision regions when � � �, � � ��, � � �, � � �,
and � � �.

in (3). We define linear jamming as transmitting a linear com-
bination of the signal received at the jammer and Gaussian
noise, i.e.,

(17)

Here, we will prove that in the eavesdropping case as well, linear
jamming and Gaussian signaling is a game solution. The proof
of the optimality of Gaussian signaling when the jammer is
linear is similar to the previous section as follows. Using (1), (3),
and (17), if the jammer is linear, the channel becomes an AWGN
multiple-access channel, therefore, the best signaling for the
users is Gaussian [8]. However, when it comes to showing the
optimality of linear jamming when the users employ Gaussian
signaling, the method of the previous section cannot be used,
since from (3) and (17), the values of and that
are achievable through linear jamming, should further satisfy

(18)

Therefore, linear jamming may not achieve all values in (9)
that are allowed under the power constraints. Here, we show
the optimality of linear jamming, by setting up an equivalent
multiple-access channel. Define random variables and in
terms of and as

(19)

(20)

It is straightforward to verify that and are uncorrelated,
and hence, independent Gaussian random variables. Moreover,
since the two pairs have a one-to-one relation, they result in
the same input/output mutual information, i.e.,

[8]. Therefore, the game’s objective function can

Fig. 3. An interpretation of a communication system with two users and one
jammer with eavesdropping information.

be replaced with . Now, using (1), (19), and (20),
we can rewrite in terms of and as

(21)

where and
. We can also write the eavesdropping

signal received at the jammer using (3), (19), and (20) as

(22)

Note that is independent of . Equations (21) and (22) de-
fine a two-user, one-jammer system, depicted in Fig. 3, where
the jammer has eavesdropping information only about one of the
users, which is the key in proving the optimality of linear jam-
ming as follows. We rewrite the equivalent input/output mutual
information as

(23)

The jammer’s strategy can only affect the second term above

(24)

(25)

(26)

where is the covariance matrix of
Following steps similar to those in the previous section, when
the users are Gaussian, employing linear jamming together with
a good choice of and can make both inequalities hold
with equality, and will only be a function of and

. However, and are independent and ,
therefore, is only a function of . In the sequel, we
show that all values that are achievable by all feasible
jamming signals, are also achievable by some feasible linear
jamming signal, and therefore, linear jamming achieves (25) and
(26) with equality and also achieves the largest possible upper
bound in (26).

Using (22), the linear least squared error (LLSE) estimate of
from is [12]

(27)
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and the LLSE estimation error is

(28)

Since and are Gaussian, this estimate is also the min-
imum mean-squared error (MMSE) estimate of , therefore,
any other estimate of results in a higher mean-squared error.
Now consider any jamming signal which is a function of ,
i.e., , where is a potentially random function. The
LLSE estimate of from is

(29)

and the estimate error is

(30)

This is also another estimator of from , hence, the estima-
tion error in is greater than or equal to the estimation error
in

(31)

Therefore, the feasible values of should satisfy

(32)

Meanwhile, using (17) and (22), the achievable values for a
linear jammer satisfy

(33)

Also, from (17) and (22), for a linear jammer,
, which together with (33) results in that linear jam-

ming can achieve all values satisfying

(34)

The right-hand sides of (32) and (34) are identical, where the
former limits the values for all feasible jammers, and the
latter describes all the values that are achievable with
linear jamming. We conclude that for any signal in the set of
feasible jamming signals, there is an equivalent linear jamming
signal which results in the same upper bound in (26), which
means that there exists a feasible linear jamming signal which
is as effective as any other feasible jamming signal, and this
concludes the proof.

We now derive the jamming coefficient for an optimal linear
jammer with eavesdropping information. Using (3) and (17), the
jamming signal is

(35)

and the received signal is as in (1). The jammer’s optimization
problem is

Fig. 4. SNR as a function of � when � � � � � � � � � and the
powers are � � � � � � � � �, for the cases when the jammer has full
information and when it has eavesdropping information.

s.t. (36)

The KKTs for this problem result in a third-degree equation in
and can be solved using numerical optimization.
Fig. 4 shows the SNR as a function of one of the channel co-

efficient . The SNR is compared in two scenarios, when the
jammer eavesdrops, and when it has full information about the
user signals. We observe that at very low , the patterns of the
two scenarios differ considerably, while for very large values of

, they follow the same monotone SNR pattern. This is in fact
expected, since at very small channel attenuations, the jammer
with complete information is able to cancel a good portion of
the user signals, while the noise in the eavesdropping channel
restricts the eavesdropping jammer in doing the same. Also,
when the channel attenuation is very high, in both scenarios, the
jammer uses most of its power for adding noise, and therefore,
they both follow the same pattern. However, when the jammer
has full information about the user signals, the jamming coef-
ficients are proportional to the user channel attenuations, and
therefore, the jamming coefficient for the second user is very
small compared to the first user, while when the jammer has
eavesdropping information, the jamming coefficient is forced to
be the same for both users. This causes the difference between
the two scenarios at high SNR.

IV. JAMMING IN FADING MULTIUSER AWGN CHANNELS

We now investigate the optimum user/jammer strategies
when the channels are fading. Throughout this section, we use
the term CSI, for the channel state information on the links from
the users to the receiver, and assume that the link between the
jammer and the receiver is nonfading. This section is divided
into three parts corresponding to three different assumptions:
1) no CSI at the transmitters, 2) uncorrelated jamming with full
CSI at the transmitters, and 3) correlated jamming with full
CSI at the transmitters. In each part, the receiver is assumed
to know the CSI, while various assumptions are made on the
availability of the CSI at the jammer.
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The problem of correlated jamming in single-user MIMO
fading channels, with the assumption that the transmitter and
the jammer do not have the CSI, but the receiver has the CSI,
has been investigated in [4], and it has been shown that the best
strategies for the user and the jammer is to evenly spread their
powers over their corresponding transmit antennas, and transmit
independent Gaussian signals, and the jammer is better off disre-
garding its information about the user signal. The problem of un-
correlated jamming in single-user multiple-input single-output
(MISO) fading channels has also been investigated in [5], where
the user and jammer are restricted to employ Gaussian signaling.
In [5], both the user channel and the jammer channel are con-
sidered to have fading, and also it is assumed that the user and
jammer may or may not have access to the CSI of their own
channels, but they do not have access to the CSI of their oppo-
nent’s channel.

A. No CSI at the Transmitters

When the transmitters do not have the CSI, it is reasonable
to assume that the jammer does not have the CSI either. In the
sequel, we show that the jammer’s information about the trans-
mitted signals will be irrelevant and therefore, it will not make
any difference whether it has perfect or noisy information about
the transmitted signals. This is a multiuser generalization of the
results of [4] in a single-input single-output (SISO) system.

Assuming that the user links are fading and the jammer link
is nonfading, the received signal is

(37)

The receiver is assumed to know the fading coefficients while
the users and the jammer only know the fading statistics. Here,
we assume that all the random variables are complex valued and

and are circularly symmetric complex Gaussian. Fol-
lowing [4] in finding the Nash equilibrium solution of the mu-
tual information game by conditioning on the fading coefficients

(38)

(39)

where and are functions of and . The rest of the
development is similar to the nonfading case, with the only dif-
ference that all the distributions are conditioned on and .
The strategies corresponding to the game solution will therefore
be Gaussian signaling and linear jamming. The jamming signal
is as in (4), and the received signal is

(40)

The last step is to find the best and . Given that the jammer
knows the statistics of the fading, its optimization problem is

given in (41) and (42) at the bottom of the page. The function in
(41) is very similar to (13), except for the expectation taken over
the channel states. The jamming coefficients and in (41)
and (42) are independent of and . Distributions of and

are centered around zero, therefore intuitively, shifting them
will make their norms larger. This fact can also be derived using
[13, Theorem 1]. Therefore, the optimum jamming coefficients
are , and the jammer disregards its complete infor-
mation. We conclude that if the jammer’s information is noisy,
it cannot do any better than what it did when it had noiseless
information, and therefore, it should disregard the incomplete
information, whether the incompleteness is because of fading
or AWGN or both in the jammer’s eavesdropping channel.

B. Uncorrelated Jamming With CSI at the Transmitters

We now consider a two-user fading channel with a jammer
who does not have any information about the user signals and,
therefore, is uncorrelated with the users. We also assume that the
user links are fading and the state of the user links are known to
the users. The users are now able to distribute their powers opti-
mally over the user channel states. Capacity of fading channels
with CSI both at the transmitter and the receiver when there is
no jammer, has been investigated in [14] and [15], and optimum
signaling and power allocation strategies have been derived. In
this subsection, we consider the same problem when there is a
jammer in the system. The system model is as in (37).

When the CSI is available both at the transmitter and the re-
ceiver, the maximum input/output mutual information is

(43)

which is a convex function of for any fixed
conditional input distribution , and a concave
function of for any fixed conditional transition
distribution . At each channel state, there is
a saddle point which is to employ Gaussian signaling and linear
jamming. This specifies the solution to the mutual information
subgame at any given channel state. Moreover, if a saddle point
exists over all possible power allocation strategies of the user
and the jammer, under user and jammer power constraints, that
saddle-point power allocation along with the signaling and jam-
ming strategies specified as the solution of the subgames corre-
sponding to each channel state, will give the overall solution.

We proceed with first assuming that even though the users
have the CSI, the jammer does not have the CSI, and then as-
suming that the CSI is available both at the users and at the
jammer. The latter is a reasonable assumption, since we can as-
sume that the jammer eavesdrops on the communication link
from the receiver to the transmitter where the receiver sends the
CSI feedback information to the user.

If the jammer has no information about the fading channel
state, the best strategy for the jammer is to transmit Gaussian

(41)

s.t. (42)
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noise. From the users’ perspective the channel becomes an
AWGN multiple-access channel, where the effective noise is
the sum of the ambient Gaussian noise and the jammer Gaussian
signal. The best user strategy in this case is a straightforward
extension of the results in [16] where only one user transmits
at a time [1], [2].

Next, we assume that the uncorrelated jammer has the CSI as
well. The received signal is the same as in (37). At each channel
state, the jammer transmits Gaussian noise at the power level
allocated to that state. The power allocation strategies will be
functions of the two channel states . The capacity is

(44)

Since every term of the capacity corresponding to a channel state
is concave in for fixed and convex in for fixed

, the capacity is a concave function of for fixed and a
convex function of for fixed . Given the convexity/concavity
properties of the capacity and using [10, Theorem 16, p. 75],
[11, Proposition 2.6.9], the set of saddle points is compact and
nonempty and therefore the mutual information game has a so-
lution. At the game solution, the pair of strategies should satisfy
the KKTs of the two optimization problems corresponding to
the user and the jammer

(45)

where is the complementary slackness variables for
for . If at a pair of fading levels, both users transmit with
nonzero powers, (45) results in

(46)

which happens with zero probability if the fading probability
density function (pdf) is continuous. Therefore, similar to the
system without a jammer in [16], only one user transmits at any
given channel state [1], [2]. Define as

(47)

Now, the users and the jammer power allocations are functions
of , therefore, we can replace by in the previous equations.
The user power allocation for , is

if

if
(48)

where is

if

if
(49)

and the jammer’s power allocation is

if

if
(50)

Fig. 5. User/jammer transmission regions in uncorrelated jamming with CSI.

Fig. 6. � ��� and ���� for ��� ���� � ��, ������� � �, and � � �.

where and are found by using power constraints on the
users and the jammer [1], [2]. The strategies follow a pattern
as in Fig. 5, that is, the users do not transmit simultaneously,
no party transmits at very low fading levels, as the channels get
better, the user with a relatively better channel transmits, and
eventually the jammer starts transmitting at even better chan-
nels. The threshold values , , , and are to be chosen to
satisfy the power constraints.

Fig. 6 shows and for a single-user example [1],
[2], where the fading is assumed to be Rayleigh with param-
eter . Fig. 6 also includes the power allocation curve for a case
where there is no jammer [14], which, compared to the case with
a jammer, shows that the presence of the jammer changes the
power allocation strategy of the user. When there is a jammer,
we observe that both the user and the jammer keep quiet at very
low fading levels. Then, as the user channel gets better, the user
starts transmitting, with more power allocated to better chan-
nels, and eventually at even better channels, the jammer starts
jamming, again with more power allocated to better channels.
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C. Correlated Jamming With CSI at the Transmitters

In this subsection, we consider a two-user fading channel with
a jammer who knows the user signals and, therefore, is corre-
lated with the users. We assume that the user links are fading
and the state of the user links are known to the users and the
correlated jammer. The users and the jammer are now able to
distribute their powers optimally over the user channel states.
The jammer link is again assumed to be nonfading. We first
show that this game does not always have a Nash equilibrium
solution, and then we find the max-min user strategies and the
corresponding jamming strategy. The max-min user power al-
location corresponds to the users’ best power allocation, in a
situation where the user chooses its strategy only once, while
after the user chooses its strategy, the jammer can observe it and
choose the corresponding best jamming strategy. Note that if the
game had a solution, max-min and min-max strategies would
have been the same, and would have also been the same as the
game solution.

The input/output mutual information is as in (43), which
is a weighted sum of the input/output mutual information at
each channel state. The user and jammer power constraints
can be written as for
and . Any pair of user and jammer
strategies results in a pair of user and jammer power allocation
strategies over the user channel fading distribution. Therefore,
the game’s solution can be described as a pair of user and
jammer power allocation strategies, along with the user and
jammer signaling functions at each channel state. Using our
results for the nonfading channels, we have that irrespective
of the existence or non-existence of optimal power allocation
functions for the user and the jammer, the subgames always
have a Nash equilibrium solution at each channel state, under
any pair of user and jammer power allocation functions. The
solution of the subgames at each channel state is Gaussian
signaling for the users and linear jamming for the jammer.

We now show that if and are the fading levels of the first
and the second user channels, again only one user transmits at

any given . First, given any pair of user power
allocation functions and , we find the jammer’s
best response power allocation strategy. The jammer’s best re-
sponse can also be thought of as a set of functions
and which minimizes the capacity as shown in (51) at
the bottom of the page. Here, and are
constrained as
and is nonnegative. The first-order KKT conditions for

and are given in (52) and (53) also shown at the
bottom of the page, which result in

(54)

Therefore, for the optimal pair of and , we can de-
fine and such that

(55)

(56)

and write the KKTs for the jammer’s best response as in (57)
and (58) at the bottom of the page, where is the comple-
mentary slackness variable for . From (57) and (58), the
best response jamming strategy can be described in terms of
and . Now, for any pair of user power allocations
and and the corresponding jamming best response, the
capacity can be written as

(59)

Assume that both users transmit at . Since the
jamming best response is only a function of and , the
KKTs for the user power allocations can be written as

(60)

(61)

(51)

(52)

(53)

(57)

(58)
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which, using (56), again result in the condition in (46). There-
fore, and cannot be nonzero at the same time,
which means that, at any , only one user trans-
mits. Given that only one user is active at any given time, one
can focus on the single-user case. In the sequel, we consider the
corresponding single-user problem.

The capacity in the single-user system is

(62)

The capacity here does not have the convexity/concavity prop-
erties in the user and jammer power allocation functions. In the
sequel, we show that a pair of strategies, which is simultane-
ously optimal for the user and the jammer, does not always exist.
We first assume that the user chooses its strategy once at the be-
ginning of the communication, knowing that the jammer will
employ the corresponding optimal jamming strategy. We then
characterize the user and jammer strategies in this scenario. If
the game had a Nash equilibrium solution, it would have been
this pair of user and jammer strategies, however, we prove the
opposite. We consider the resulting jamming strategy and as-
sume that the jammer chooses this strategy at the beginning of
the communication, and show that if the user had the possibility
of changing its strategy, the current user strategy would have not
been optimal.

First, given any user power allocation function , we find
the jammer’s best response by solving for a pair of functions

and which minimizes the capacity in (62), while
being constrained as , where

is nonnegative. The first-order KKT conditions for the
jammer are given in (63) and (64) shown at the bottom of the
page, where is the complementary slackness variable for

. Whenever , the jammer uses all its power to
correlate with the user signal, and the optimum jamming coef-
ficient should satisfy

(65)

which does not result in a closed-form solution for the jammer
best response. In order to derive the max-min user strategy, we
need to have the jamming best response in terms of the user
power allocation. To make the problem tractable, from this point
on, let us assume that . Now at any channel state that the
user transmits, the jammer should also transmit, and unless the
jammer completely cancels the user signal, the optimal jamming

strategy should be such that , since otherwise, the
capacity would be infinite. The KKTs result in

(66)

(67)

The optimal jamming strategy is

if

if
(68)

where is chosen to satisfy the jammer’s power constraint. The
total power that the jammer allocates to each channel state is
found as

if
if

(69)

which describes the best response of the jammer to the user
power allocation . The capacity can now be written as a
function of the user power allocation alone

(70)
We now derive the best user power allocation that maximizes

this capacity. First note that the function inside the expectation
in (70) is zero for , therefore, in the optimal user
power allocation, is either zero, or such that

. The capacity can now be written as

(71)

The KKT condition for the user power, whenever the user trans-
mits, results in , for which the total power that the
jammer allocates to the channel states is found as

if
if (72)

Now, we show that the pair of user and jammer power allo-
cations corresponding to the user’s max-min solution derived
above does not correspond to the Nash equilibrium solution of
the game. We consider the jamming strategy in (72) and assume

(63)

(64)
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that the jammer chooses this strategy at the beginning of the
communication, and show that the current user strategy is not
optimal. Consider the fading state and two fading
levels and in the vicinity of
and close enough to such that . For
these states, we have and for the user,
and and for the jammer. Therefore,

and correspond to two channel states which are almost
identical in their fading levels, while the jammer is active only
in but not in . Obviously, it is not optimal for the user to
transmit at while not transmitting at . Therefore, the pair
of the user and jammer power allocations derived above (which
is the user max-min solution), is not a game solution, and the
game does not admit a solution.

Even though the max-min solution derived above is not the
game Nash equilibrium solution, it is the optimal pair of user
and jammer strategies in a system where a conservative user
would like to guarantee itself with some capacity value. It also
describes the best strategy for a user which is less dynamic than
the jammer in terms of changing the transmission strategy, and
can choose its strategy only once.

V. CONCLUSION

We characterized the Nash equilibrium solution corre-
sponding to the mutual information game in a nonfading
multiple-access channel with a correlated jammer. We showed
that whether the jammer knows the user signals, or it only has
access to a noise corrupted version of the superposition of the
user signals, the game has a solution, and the optimal strategies
are Gaussian signaling for the users and linear jamming for the
jammer.

In fading channels, except for the case when the jammer is
correlated and both the user and the jammer have access to the
user channel state, we showed that the mutual information game
admits a Nash equilibrium solution, and characterized the corre-
sponding user and jammer signaling and power allocation strate-
gies. When the jammer is correlated and both the users and the
jammer have access to the channel state, we showed that a set of
simultaneously optimal power allocation functions for the users
and the jammer does not always exist, and consequently char-
acterized the max-min user power allocation strategies and the
corresponding jammer power allocation strategy.
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